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Abstract
Study of Circularly Symmetrical Two-dimensional
Digital Filters Possessing Separable Denominator

Transfer Functions
Seetharaman Swarmnamani

Multi-dimensional signal processing has many applications in modern-day devices and
softwares. Specifically, two-dimensional signal processing and analysis has evoked a lot of
interest among researchers due to their numerous advantages in areas such as image pro-
cessing. Two-dimensional digital filters are being widely used in modern image processing
software for various types of processing and analysis. In such applications, the signal does
not have any preferred spatial direction and so the required filter function, possessing cir-
cularly symmetric frequency response characteristics, is of great importance.

The main objective of this Thes:is has been to implement two-dimensional filter func-
tions using simple design procedures and to study the presence of circular symmetry in
such designed filters by parameter modifications. In keeping with the simple design crite-
ria, the two-dimensional filters studied in this thesis have been designed starting from two
one-dimensional filters as an independent product. Only IIR Filters have been considered
for this purpose due to their capability of approximating the required response with low
order filters and also their flexibility in terms of altering filter parameters to obtain new -
filters. The filters have been checked for stability before analysis. The design has made

use of the fact that varying the feedback factor “k” in an IIR filter produces a near-circular



symmetric response for certain values of “k” between specific magnitude ranges.

Algorithms have been obtained to check the extent of circular symmetry under specific
magnitude ranges and to correct the feedback factor “k” in order to obtain the maximum
proximity to circular symmetry. The lowpass filter has been primarily chosen to illustrate
the objective of the thesis. Both Butterworth and Chebyshev cases have been studied. This
study has also focussed on the effect of changing the pole-parameters(polar angles) in two-
dimensional lowpass filter functions and its contribution to circular symmetry.

The most common filter kinds, as well as their combination, have been studied and
analysed for circular symmetry.

Considerable success has been achieved in obtaining near-circular symmetry especially
among the two-dimensional lowpass filters. It has also been found that there exists numer-
ous possibilities to achieve near circular symmetry based on the parameter modifications

and magnitude range of the filter under study.
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Chapter 1

Introduction

The topic of Multidimensional system (MDS) analysis and design has attracted con-
siderable attention during recent years and is still receiving increased attention by
theorists and practitioners. Because of its important applications in many practical
systems, this subject is still being investigated. Different aspects of problems have
been thoroughly studied and these include modeling, stability, structure analysis and
realizations, digital filter design, multidimensional signal processing, reconstruction
and so on. Many important results have been obtained.

Specifically, interest has been directed by researchers into the area of two-dimensional
(2-D) digital systems due to several reasons: high efficiency due to high-speed compu-
tations; permitting better image processing and analysis; great application flexibility
and adaptivity; decreasing cost of software or hardware implementations due to the
large expansion and evolution of standard computers, microcomputers, microproces-
sors, and high-integration digital circuits. These two-dimensional digital systems are
being used increasingly to replace analog systems in important areas such as fac-

simile, television, sonar, radar, bio-medicine, remote sensing, underwater acoustics,



moving-objects recognition, robotics and so on.

Important operations that can be performed by two-dimensional digital systems
include the following: two-dimensional digital filtering, two-dimensional digital trans-
formations, local space processing, data compression, and pattern recognition. Dig-
ital filtering, digital transformations, and local space operators play important roles
in preprocessing of images, performing smoothing, enhancement, noise reduction, ex-
tracting boundaries and edges before pattern recognition, data compression operations
permitting the reduction of large number of data representing the images in digital
form and solving or minimizing transmission and storage problems. Pattern recog-
nition operations permit the extraction of significant information and configurations
from the images for final interpretation and utilization.

Over the past decade, researchers have shown particular interest in two-dimensional
filters, both recursive and non-recursive. These two-dimensional filters find increasing
applications in many fields, such as image processing and seismic signal processing.
In many of these applications, the signal does not have any preferred spatial direc-
tion, and so the required filter functions, possessing circularly symmetric frequency
response characteristics are finding great importance. Also two dimensional filters
find increasing applications in image restoration and enhancement. As an example,
two dimensional highpass filtering removes the unwanted background noise from an
image so that the details contained in the higher spatial frequencies are easier to

perceive.



1.1 Two-Dimensional Digital filters

In general, similar to one-dimensional(herewith referred to as 1-D) digital filters, two-
dimensional digital(herewith referred to as 2-D) filters can be classified into two main
groups. The first group comprises a finite sequence transfer function and so the filters
in this group are called Finite Impulse Response (FIR) filters. The second group
comprises an infinite sequence transfer function and so the filters in this group are

called Infinite Impulse Response (IIR) filters.

1.1.1 Finite Impulse Response Filters (FIR Filters)

The transfer function of 2-D FIR filters can be described by using 2-D z-transform as

follows:

M N
H(z,2,) = Z Z Anin, 2] M2y ™ (1.1)

n1=0n3=0

Eqn.(1.1) means that some of the 1-D design methods can be directly extended

to two(2-D) or more dimensions(m-D) by appropriate modifications in the design
procedures. It should also be noted that a straightforward extension of 1-D technique
to 2-D design may not always be possible. In the 2-D FIR filters, problems of stability
do not occur since the impulse response is bounded and exists only for finite time or

the stability of H(z,, z>) is guaranteed. Therefore

M N
> > lh(z,2) <o (1.2)

n1=0 na=0

for all finite values of M and N.



1.1.2 Infinite Impulse Response Filters (IIR Filters)

The transfer function of 2-D IIR filters can be described by using 2-D z-transform [1]

and can be expressed as a ratio of two variable polynomials as follows:

N(z,z) _ TS auoizs? (1.3)

H(z1,2) = =
( ' 2) D(zla Zg) Zli{:[) Z[L=0 bklzi—k‘z;l

where bgg = 1, a;;and by are real coefficients.

For any input signal X(z,, z2), the output of the filter is given by,
Y(Zl, 22) = H(Z]_, 2'2) - X(Zl, 2'2) (14)

In the 2-D IIR filters, one important problem to be dealt with is stability. Ac-
cording to stability theorem [2], [3], the 2-D IIR filter is guaranteed to be stable in
the bounded-input bounded-output(BIBO) sense, if there exists no value of z; and z,
for which

D(z1,2) =0 for both |z1] > 1and || >1 (1.5)

exists simultaneously [1]. This means it is highly preferable that the given analog
transfer function must have Very Strictly Hurwitz Polynomial (VSHP) denominator
[3], [4]- In the Laplace domain, the polynomial D(s;, s3) is said to be very strictly
Hurwitz polynomial if (1/D(s;, s2)) does not possess any singularities in the region
(s1, s2) with Re(s;)>0 and Re(s2)>0. Therefore, the design of a 2-D IIR filter requires
obtaining the coefficients a;; and bg; in Eqn.(1.3) so that H(e1%, /~22) approximates
a given response G(jwi, jws) where w; and w, are horizontal and vertical spatial

frequencies respectively, which also ensures the stability of the filter. If we obtain



a transfer function whose denominator is a VSHP and then obtain a corresponding

digital transfer function by using the double bilinear transformation given by
zz—1 .
—, =12 1.6
i (L6)

then we can guarantee stability in the digital domain also.

1.2 Types of Symmetries associated with 2-D Trans-

fer Functions

Two and higher dimensional systems may possess different types of symmetries. These
symmetries have been used to reduce the complexity of the design and implementation
of systems.

To understand how symmetry concept is extended to mathematical functions,
consider a real function f(x;, x») of two independent variables x; and x2. The function
f(x;1, x3) assigns a unique value to each pair of values of x; and x; and so may be
represented by a three dimensional object having the (x;, x;) plane as the base and
the value of the function at each point in the plane as the height. We may say that a
function possesses a symmetry, if a pair of operations, performed simultaneously, one
on the base of the function object (i.e.,(x:, x2) plane), and the other on the height of
the object(function value) leaves the function undisturbed.

In other words, existence of symmetry in a function implies that the value of the
function at (x;7, x2r) meets a certain requirement or condition, where (xir, Xor)

is obtained by some operation on (x;, x2), and this condition being satisfied for all



points in the region.

Most of the applications require that a 2-D digital filter shall have a certain symme-
try in its magnitude response. This symmetry property can be used in the reduction
of the number of multiplications in the implementation of these filters and also in the
reduction of the number of variables in the optimization procedure. The following

gives a brief review of the different symmetry constraints [5].

1.2.1 Displacement(Identity) Symmetry

If a function possesses displacement identity symmetry with a displacement of d, the

symmetry conditions on the function can be expressed as

flz+d)=f(z)Vze X (1.7)

1.2.2 Rotational Symmetry

Choosing the rotational center as the origin and the rotation angle as w/2 radians,

we get the four-fold rotational symmetry condition as
f(xlaa:?) = f(—$2,.'1:1) VzeX (18)
following which we have

f(z1,32) = f(—21,22) = f(—21, — T2) = f(z1, —22) (1.9)



1.2.3 Centro - Symmetry

In the two-variable case, twofold rotational symmetry (rotation by 7 radians) is called

centro-symmetry. The required condition for centro-symmetry is
f(—$1, —.’172) = f(.’El, .'Ez) Vze X (1.10)

In a similar way, conditions for centro-anti-, centro-conjugate and centro-conjugate

antisymmetries may be stated.

1.2.4 Reflection Symmetry

Reflections about the x; axis, the x, axis, and the diagonals x;= x5 and x;= -X, line,

respectively, result in reflection symmetries which could be any one of the following:

T azis reflection — f(z1, —xz2) = f(z1, z2) (1.11)

T, axis reflection — f(—zy,z2) = f(21, Z2) (1.12)

T1 = z, line intersection — f(z2,z1) = f(z1,Z2) (1.13)

z) = —x3 line intersection — f(—xz2, —z,) = f(z1, Z2) (1.14)
180° rotation about the origin — f(—zy, —z2) = f(z1, T2) (1.15)
90° rotation about the origin — f(z2, —z1) = f(z1,2Z2) (1.16)



1.2.5 Quadrantal Symmetry

The condition on the function to possess quadrantal identity symmetry is
f(xl:r 1‘2) = f(I].’ _$2) = f(—x].,x?) = f(—.xl! _22) (1’17)

It is easy to verify that the four quadrants of the X-plane correspond to the four

symmetry regions. Hence this symmetry is called quadrantal symmetry.

1.2.6 Diagonal Fourfold Reflection Symmetry

Similar to the quadrantal case, if the function possesses reflection symmetry with
respect to the z; = z; line and the z; = —z, line simultaneously, it is supposed to

possess diagonal fourfold reflection symmetry
f(z1,22) = f(22,71) = f(—22, —71) = f(—71, —T2) (1.18)

As in quadrantal symmetry, the function possesses two-fold rotational symmetry

when it possesses diagonal fourfold reflection symmetry.

1.2.7 Octagonal Symmetry

In this case the function possesses quadrantal symmetry and diagonal symmetry si-

multaneously. The conditions for a function to posses octagonal symmetry are given



by

f(z1,32) = f(zy, —I3) = f(—l'l,-’L‘z) = f(-'L'z,-'Z?l) = f(—z2, —1'1) = f(—fI?L, —332)

= f(xz, —371) = f(—-'172,2?1)
(1.19)

1.2.8 Circular Symmetry

Mathematically, circular symmetry in 2-D filter responses can be defined as the filter

response being able to satisfy the general equation of a circle, according to which,

WCHwi=M (1.20)

where w; and w, are the frequencies in the two dimensions, and M is the magnitude
response which needs to be a constant in order to satisfy the circular symmetry
property.

However, it has been clearly proved in [7], [14] that, it is not possible to obtain
exact circularly symmetric stable rational transfer function with denominator other
than unity in the analog domain. In order to approximate circular symmetry, a

product separable function given by,

H(SI, 82) = h]_ (S]_) hg(Sg) (121)

is considered.
From the above the following can be deduced:
(1) Any separable function H(s;, sp) = h;('s1) X ha('s2) is quadrantally symmetric.
(2) When h,(.) = ha(.), H(sy, sp) is also octagonally symmetric, where h;(.) is a



single variable function.

(3) For the magnitude of circular symmetry being the main criterion, |A;(jw;){®
should approximate Ae®i for suitable values of A and a.

(4) When stable all-pole 2-D transfer functions are constrained to possess quad-

rantal symmetry, they turn out to be sepa.réble.

1.3 Realization of the 2-D Filter Functions

The realization of the filter networks from the transfer function can be accomplished

using the following important methods:

1.3.1 Direct Method

All 2-D transfer functions can be realized using this method. This realization follows
from the algorithm given by Shank [8].

It can be shown that Eqn.(1.3) can be written as

I J K L
Y (z1,22) = (Zzaijzfiz;j*X(zh:@)) — D0 bRt *Y(zl,22)) (1.22)

=0 7=0 =0 [=0

The above equation can be directly realized using different approaches [9]. How-

ever, one main limitation of direct realization is that it results in high round-off errors.

1.3.2 Parallel Realization

In this case the given 2-D transfer function is to be expanded,where possible, into

partial fractions.
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1.3.3 Cascade Realization

Here, it is required that the given 2-D transfer function is expressed as a product of
several lower order 2-D transfer functions which may not be possible since a 2-variable
polynomial, in general, is not factorizable. It is noted here that when the 2-D function

may be expressed as a product of realizable low-order functions, then a cascade type

of realisation can be used.

1.3.4 Wave Realization

This realization starts from a given analog network which is transformed into digital
domain by a double bilinear transformation. As is evident, exact realizations of the

product separable transfer functions are not possible [10].

1.4 Scope of the Thesis

Finite impulse frequency response (FIR) filter functions possessing nearly circular
symmetric responses can be generated from 1-D FIR. functions [11]. This procedure
cannot, however, be used to generate 2-D infinite impulse response (IIR) functions
approximating circular symmetry, as the application of such a transformation to a
1-D IIR function results in a 2-D IIR function which is not, in general, factorizable
into a set of quarter plane or half-plane stable functions without further effort [12].
It has been recently proved that if a quarter plane filter possesses quadrantal sym-
metry in its magnitude response, then its denominator can be expressed as a product
of two 1-D polynomials [13], [14]. It can be easily verified that the presence of circu-~

lar symmetry implies the presence of octagonal, and hence, quadrantal symmetries.
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Therefore it is reasonable to constrain the desired function to possess octagonal sym-
metry in its magnitude response and to choose the filter function with a product
separable denominator. The main scope of this thesis is to choose and study such
filter functions. Such a choice eliminates the necessity for checking the stability of
the filter during the approximation stage of the design. For filters which do not pos-
sess quadrantal symmetry in their frequency responses, this constraint, namely the
denominator being product separable, restricts the domain of functions over which
approximation is carried out resulting in suboptimal solutions. Also, since there is no
constraint on the numerator polynomials, the types of responses one can approximate
using separable denominator filter functions seems to be practically unlimited.

In this thesis, the most common types of filter responses namely Lowpass, High-
pass, Bandpass and Bandstop have been considered in detail with respect to the above
mentioned theory. Separable denominator transfer functions will be considered in all
the above cases. This means that the 2-D filters will be studied as an extension to
the 1-D counterpart. All the 2-D filter designs, considered in this thesis work, will
therefore be derivations from two 1-D filters. This, in effect, is also the simplest of
all conventional 2-D filter designs and therefore gives a lot of scope for future work.

In Chapter-2, Lowpass filters obtained from Butterworth, Chebyshev and pole-
parameter transformations will be utilized in-order to design 2-D filters of approxi-
mate circular symmetry. The Lowpass filter will be chosen as the basis of comparison
for the distinctly different types of filters, studied in this chapter. The effect of
pole-parameter transformation and its effect on performance of the filter will then
be studied. In this respect, first we point out that the pole vectors of the Butter-

worth filters(of order n=2%) can be subjected to “prescribed symmetrical swinging”
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[15], such that certain symmetry properties present in the original pole-pattern can
be maintained invariant. Here we introduce a new family of filters called “2-D Com-
plementary Pole-Pair Filters (2-D CPPF’s)”, generated by exploiting the symmetry
invariant property as mentioned above. The performance of the new filters obtained
are studied. The effect of this symmetrical swinging affecting the circular symmetry
of these types of filters will also be studied.

In Chapter-3, Butterworth transformations of the Highpass, Bandpass and Band-
stop filters will be implemented and their approximation to near-circular symmetry
for each case will be studied. The Chebyshev filter design for these types of filters
and their comparison to the Butterworth counterpart will be left as a scope for future
study.

In Chapter-4, we will investigate the possibilities of combining different 2-D But-
terworth filters to form unique transfer functions and therefore unique filter responses.
The possibility of circular symmetry after the combination of two transfer functions
will be studied. It is possible to obtain user specific filter responses by such combi-
nation filters. In this chapter, three different designs of combination filters will be
considered and studied.

The basic goal, underlying in all of the above study, is to emphasise on the possi-
bilty of near circular symmetry starting with filters possessing separable denominators
and their combinations. Circular symmetry as we know is one of the most important
aspect of commonly used filters, in emerging fields such as image processing. The
main goal of this thesis is to obtain the nearest approximation to such filters with the

simplest design methods possible.
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Chapter 2

Generation of Stable Lowpass IIR
2-D Transfer Functions Possessing

Near-circular Symmetry

2.1 Introduction

In order to design a filter having required specifications, one can suitably choose a
transfer function with no common factors between the numerator and the denomina-
tor. Specifically in 1-D systems in the s-domain, let

N,(s)

D.(s) 1)

H,(s) =

be the transfer function in the analog domain with N,(s) and D,(s) being relatively
prime. For the above function to be stable, we must have D,(s) to be a Strictly

Hurwitz Polynomial (SHP). A strictly Hurwitz polynomial is one which contains its
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zeros strictly in the left-half of s-plane. In a similar manner, if

Hl2) = 5400 (2.2)

is a transfer function in the discrete domain with N;(z) and D;(z) being relatively
prime, then Dy(z) should be a Schur polynomial in order that Hy(z) shall be stable.
A Schur polynomial contains its zeros strictly within the unit circle.

A simple method to generate a 2-D transfer function is to combine two 1-D transfer
functions as a product. In other words, the eventual 2-D sequence is separable as two

1-D sequences that can be expressed as
h(z1,2) = f(z1)g(z2) (2.3)

where f(z;) and g(z;) are 1-D functions of independent variables z; and z,, respec-
tively. Such sequences are a special class of 2-D sequences. The 2-D sequence h(z1,z3)
of this type has (N} — 1)(N2 — 1) degrees of freedom where

the region of support of f(z;) : 0 <z; < N; — 1 and

the region of support of g(z;) : 0 <z, < Np —1

In the 2-D analog case in the s-domain, the transfer function may be expressed as

Hi(s1,57) = g—g—i%’; (2.4)

The numerator N,(s1,s2) and the denominator D,(s;, s2) are polynomials in s,
and s; with both even and odd terms. It may be possible that both the even and the

odd parts of the polynomial become zero at specified sets of points, but not in their
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neighborhood. If this occurs in the denominator of the transfer function, it is called
a non-essential singularity of the first kind(NSFK). If in the 2-D transfer functions
both numerator and denominator polynomials become zero simultaneously at a given
set of points, it is known as non-essential singularity of the second kind(NSSK)[19].
The above two cases may be expressed as follows:

(a) Dqa(s1,82) = 0 and N,(s1,82) # O constitute non-essential singularity of the
first kind at (s;, s2)-

(b) Dqa(s1,82) = 0 and N,(s1,s2) = 0 constitute non-essential singularity of the
second kind at (s1,s2).

In the case of 2-D discrete or digital systems, a similar situation exists.

A well known method of designing digital filters is to start from the analog filter
transfer function and then apply bilinear transformations s; — f*_:—i, i=1, 2, to obtain
the corresponding digital filter transfer function. In 1-D systems, such a transforma-
tion does not pose any problems. However in 2-D systems, this could pose problems
concerning stability. In such cases, the denominator polynomial may cause problems
because of non-essential singularities of first or the second kind. The occurrence of
non-essential singularity of the first kind[4] always results in an unstable filter. The
occurrence of non-essential singularity of the second kind could result in instability.
However, it is not possible to determine, by inspection, if such a transfer function is

stable or not [4], [20]. The next section discusses on the stability issue of filters.

2.2 Stability

As mentioned before, 2-D filters can be classified into two main categories namely the

Finite Impulse Response Filters(FIR) and the Infinite Impulse Response Filters(IIR).
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The Finite Impulse Response Filters have transfer functions resulting from a finite
sequence and the Infinite Impulse Response Filters have transfer functions resulting
from an infinite sequence.

One impoﬁ:ant issue concerning both the above types of Filters is the stability
of the filter. Now it is known that Finite Impulse Response Filters are inherently
stable. Infinite Impulse Response Filters may or may not be stable depending upon
the transfer function.

The most commonly used definition for stability is based on the bounded-input
bounded-output(BIBO) criterion. This criterion states that a filter is stable if its
response to a bounded input is also bounded. Mathematically, it is possible to show

that for causal linear shift-invariant systems, this corresponds to the condition that

i i | B(n1,7m2) [< 00 (2.5)

n1=0n,=0

where h(n;,n,) is the impulse response of the filter.

The above definition points out an important observation that the stability crite-
rion is always verified if the number of terms of the impulse response is finite, which
is the case with FIR Filters. However, the above condition does not prove feasible to
the test of stability for IIR filters. In the 1-D case, it is possible to relate the BIBO
stability conditior to the positions of the z-transfer function poles which have to be
within the unit circle and it is possible to test the stability by determining the zeros
of the denominator polynomial. Similarly, in the 2-D case, a theorem establishing
the relationship between the stability of the filter and the zeros of the denominator
polynomial, can be formulated. This theorem states that [8], for causal quadrant

filters, if B(z1,22) is a polynomial in 2z; and z;, the expansion of 1/B(zi, 23) in the
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negative powers of z; and z, converges absolutely if and only if
B(z1,22) #0 for {|z|21,|2 |21} (2.6)

The above theorem has the same form as in the 1-D case, i.e., it relates the
stability of the filter to the singularities of the z-transform. However, in the 2-D
case such a formulation for stability condition does not produce an efficient method
for stability test, as in 1-D, due to the lack of appropriate factorization theorem of
algebra. Therefore, it is necessary in principle, to use an infinite number of steps
to test the stability. Also, even if it is possible to find methods to test conditions
equivalent to Eqn.(2.6) in a finite number of steps [21], computationally it is not easy
to incorporate them in a design method and there is a problem of stabilizing the filters
which may become unstable.

From the point of view of stability tests, there can be two different approaches that
can be considered, in designing an IIR filter. One method is to carry out the stability
test in every stage of the filter design so that the eventual filter is stable. In the
second method, stability is not considered as a part of the design and a magnitude-
squared transfer function is first designed. Then a stable filter is obtained, by choosing
the poles in the stability region. Such an approach is convenient, because squared-
magnitude functions can be in a simple form and it is easy to find the poles of the
filter.

However, in the 2-D case, poles in the stability region cannot be substituted for
poles in the instability regions. This is because, unlike in the 1-D case, it is not
possible to substitute the 2-D pole-pair combination by taking the inverse pole-pair

transformation. Therefore different methods have to be used in arriving at a solution.
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One possible solution can be obtained by considering this as a deconvolution prob-
lem. In the quadrant filter case, a filter H(z;, 22) can be divided as a product of four
filters **H (21, 22), ¥~ H(z1,22), ~~H(21, 22), "t H (21, z2) each of which correspond-
ingly represents their transfer function in the first, second, third and fourth quadrant,
respectively, and each of which is stable, if computed through suitable sequence of
computation. In view of the property that multiplication in the z-domain corresponds
to a convolution in the space domain, the problem corresponds to the reconstruction
of the four sequences. Similar procedures may be applied for unsymmetrical half-
plane filters as well. In this case, the coefficient matrix, corresponding to the squared
magnitude function, can be considered as the convolution of two unsymmetrical half-
plane sequences. Thus it is possible to decbmpose the sequence into two half-plane
filters. However in both the above cases there are problems which can arise, as the
cepstra obtained using the above procedure are not finite in extent and some amount
of truncation is necessary. This again modifies the transfer function and also the min-
imum phase property cannot be guaranteed after truncation. It is possible to observe
that half-plane filters constitute a more general class than the quadrant ones since
completely general transfer functions with real impulse response can be generated.
The decomposition of a squared-magnitude function in four different quadrant filters
or two half-plane filters, each being stable if a suitable sequence of computation is
chosen, can give a direct method of obtaining linear phase filtering with IIR imple-
mentation. This is especially important when visual images have to be processed,

because the shape of the object is related primarily to the phase information.
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2.3 Circular Symmetry: Importance and Significance

Of the various types of symmetry that we have discussed in Chapter-1, the symmetry
that is of interest to us in this thesis is the circular symmetry of 2-D filters. In
many of the applications such as image processing and seismic signal processing,
the signal does not possess any preferred spatial direction. Therefore it is desirable
to process images with filters whose frequency response is approximately circularly
symmetric. As mentioned earlier, FIR filter functions possessing nearly circularly
symmetric frequency response can be generated using 1-D FIR functions[11]. But the
same is not possible in the case of IIR functions, since the 2-D IIR function is not,
in general, factorizable into a set of quarter-plane or half-plane functions. Moreover,
the incorporation of the stability constraints in the approximation procedure, is yet
another difficulty experienced in the design of IIR Filters. As a solution to this
problem, it has been recently proved that if a quarter-plane filter possesses quadrantal
symmetry in its magnitude response, then its denominator can be expressed as a
product of 2-D polynomials [13], [14]. It can be readily verified that the specification
of circular symmetry, implies the presence of the lower order symmetries namely,
octagonal and hence, quadrantal symmetries. Therefore it may be reasonable to
constrain the desired transfer function of the filter to possess octagonal symmetry(say)
and choose the filter function with a product separable denominator. In cases where
the filter function is not even quadrantally symmetric, the separable denominator
constraint restricts the domain of functions over which approximation is carried out
and results in sub-optimal solutions. But since the circular symmetry condition must
also include quadrantal symmetry, the separable denominator condition does not

prevent us from attaining optimal solutions. One another important aspect is that
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there is no constraint over the numerator polynomials in any of the above designs.
Hence the types of responses that can be obtained using separable denominator filter
function is practically endless. The following two sections give a brief overview of the
general design methods of FIR and IIR Filters following which the design method
adopted in obtaining circular symmetry of Lowpass filters is described in detail.

2.4 Design Methods for 2-D FIR Digital Filters

FIR filters have transfer functions resulting from a finite sequence. Their main char-
acteristic is that they can be designed to approximate a required frequency response
that can be a modified by a linear phase term, if suitable symmetries are required to
be present in the impulse response.

Let us consider a 2-D filter having the orders N and M odd in its non-causal form.
By means of a translation of its impulse response it is possible to obtain the causal
form. This introduces a linear phase term in the transfer function. Therefore the

frequency response of the filter can be written in the form

_ _ (M-1)/2  (N-1)/2 )
H(e?, e72) = z Z ance-J(kw1+lw2) (2.7)
=—(M-1)/2 l=—(N~1)/2

From the above equation, if the coefficients an.(k,{) has the symmetry property

tne(ksl) = ne(ky —1) = ane(—k, —1) = anc(—F, I) (2.8)

with respect to the axes in the four quadrants, the frequency response is given by
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the following expression
(M-1)/2(N-1)/2

H(,e™?) = >~ Y a(m,n)cos(mw:)cos(nws) (2.9)

m=0 n=0

where a(0, 0) = a,.(0,0)

a(m,0) = 2a,.(m,0) where m =1, ..., ..1\'!2;1
a(0,n) = 2a,.(0,n) where m = 1,..., 5=
a(m,n) = 4an(m,n) where m =1,..., 8=1in =1, N1

In the above case, it is obvious that the frequency response is symmetric with
respect to the axes. This can be verified with a simple sign change of w; and w, in
Eqn.(2.7). From Eqn.(2.7), the frequency response of the causal filter can be obtained
by multiplying the equation by a linear phase term, corresponding to the shift of the
impulse response.

This linear phase term can be written as exp(—j {[(M — 1)/2]w; + [(IV — 1)/2]ws}).

The design problem now reduces to the evaluation of the coefficient matrix a(k, ()
S0 as to meet a set of specifications in the space or frequency domain. Several different
methods have been proposed some of which are a direct generalization from their 1-D
counterparts. Few of the most commonly used methods are discussed in brief, as

follows.

2.4.1 Frequency Transformation Method

A suboptimum design method is based on the transformation of the frequency re-
sponse of the 1-D filter into the frequency response of the 2-D filter [11]. Let us

consider, a linear phase 1-D filter with NV odd. The frequency response of such a filter
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dropping the linear phase term can be written as

(N-1)/2
H(E)= Y. a(k)cos(kw) (2.10)

k=0

If for the above, a transformation of variables given by
cos(w) = Acosw; + Bcoswsy + Ccoswycosws + D (2.11)

is carried out, using the properties of trigonometric functions and Chebyshev polyno-

mials, it is possible to obtain a 2-D function of the type

) ) (N=-1)/2(N-1)/2
H(e_ywl,ejwz) — Z Z a(k;, l)cos(kwl)COS(lwz) (2-12)

k=0 =0

The above equation is formally identical to a linear phase 2-D filter, as in Eqn.(2.9).
For instance, if Eqn.(2.9) is solved for w; as a function of ws, it is possible to
draw the curves in the (w; w2) plane, wherein the frequency response of the 2-D filter
assumes the same value as the 1-D filter in w. This means that the filter can be

designed in 1-D and then can be transformed into 2-D if A, B, C, D can be chosen

D =t

to obtain useful transformation contours. With the choice A = B =C = —D = &,
the mapping contours are approximately circular, atleast for small values of w and
circularly symmetric filters can therefore be designed. This design procedure is very
convenient from the computational point of view, and can be generalized to the use
of transformation relations more complex than the simple relation of Eqn.(2.10) [22].

However, some care has to be given in carrying out the transformation, which is

sensitive to numerical error when the number of coefficients becomes high.
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2.4.2 Linear Programming Method

Another design methodology is possible using linear programming approach [23] and
the multiple exchange ascent algorithm [24]. The main problem with these methods,
is the computation time. This limits the maximum length of the impulse response
of the filters obtained to about 9 x 9 in the linear programming case and to about
15 x 15 in the multiple exchange ascent case. This design problem can be more
tractable by reducing the number of variables in the linear programming by means
of frequency sampling approach [23]. In this case, a grid of points is chosen in the
frequency domain and most of the frequency sample values are fixed through a direct

translation of the filter specifications.

2.4.3 Window Method

The design of FIR filters can be carried out using another efficient and simple tech-
nique called the window method. Here we start with the fact that the 2-D frequency
response being periodic, it is possible to represent it as a Fourier series, whose coef-
ficients are proportional to the samples of the impulse response of the filter. This is
based on the 2-D sampling theorem. Therefore, it is now possible to obtain, either
analytically or by using an approximation method based on discrete inverse Fourier
transform, the sampled impulse response, starting from the frequency domain spec-
ifications. The problem here is that the resulting impulse response is, in general,
of infinite order and has to be truncated to obtain a digital filter that is usable in
practice.

This truncation can be performed using a rectangular or circular window with

an abrupt transition between the value “1” in the zone where the impulse response

24



has to be retained and “0” in the truncation region. However, such a truncation
usually results in a large error in the frequency response for all practical applications.
This is due to the fact that convolution in the frequency domain corresponds to
multiplication in the sequence domain. Therefore, having a transform containing a
wide main lobe and high side lobes as the truncation sequence, discontinuities in the
theoretical frequency response are smoothened and oscillations appear. The problem
is therefore, to truncate the impulse response by introducing as minimum error as
possible, in the frequency response. To achieve this purpose, the sampled impulse
response h(k,l) values are multiplied by a window function of samples w(k, ), whose
transform presents a suitable trade-off between the width of the main lobe and the
area under the sidelobes.

For an illustration, a 2-D window, having circular symmetry properties, can be

defined starting from a 1-D window as [25]

w(z,y) =w (\/xz + y2) (2.13)

A number of windowing functions have been proposed to design filters in the 1-
D case. For the 2-D case, extensions to the 2-D domain are normally used. The
different types of window functions are (a) the Lanczos extension window (b) the
Cappellini window (c) the Kaiser window (d) the Weber-type approximation windows
(Cappellini windows 2 and 3)[25]. These vary in their primary function definition.

Their discussion is beyond the scope of this thesis.

25



2.5 Design Methods for 2-D IIR Digital Filters

IIR Filters have transfer functions resulting from an infinite sequence. In general,
it is more difficult to design a 2-D IIR filter than a 1-D IIR filter. 1-D techniques
normally depend on the factorizability of one-variable polynomials, resulting in simple
algorithms for the stability test and stabilization of unstable filters. Such techniques,
unfortunately, are not directly generalizable to the 2-D case.

From the 2-D IIR filter function in Eqn.(1.3), it can be seen that the coefficients
ax; and by have to be chosen to approximate the desired frequency response with
a stable recursive implementation. The stability is an important problem of the
recursive or IIR filters. Different design methods have been proposed, of which two
design methods are the most common.

The first method involves spectral transformation from one-dimension to two-
dimensions. The second method is based on parameter optimization, using classes of
filter structures, as for example the cascade connection of second order filter sections,
wherein stability of the filter is introduced using approximation algorithms.

The first method, as proposed in [8], consists of transformation from one-dimension
to two-dimensions. This involves a mapping operation from 1-D to 2-D, with a rota-
tion operation. Given a 1-D continuous filter in the factored form, its transfer function

can be seen as one of a 2-D filter varying in one direction only:

H(s1,52) = Hi(s2) = Ho [%—2:—%%] (2.14)

where g; and p; are the zeros and poles of the filter.

As was mentioned before, a rotation operation, needs to be performed with the
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transformation operation. A rotation of the (s;,s2) axes by an angle § may be

performed by means of the transformation
s1 = sycosp + sysinf S = —sysinf + socosf (2.15)

Thus we obtain a filter whose frequency response is a function of s; and s, and
corresponds to a rotation by an angle -8 of Eqn.(2.15). From this a digital filter can
be obtained by applying bilinear z-transforms to both the continuous variables. This
method has been used to obtain simple rotated blocks which can be combined to
obtain the design of circularly symmetric recursive filters [29]. Here the conditions of
stability have also been proved.

Another method in the similar sense, involves transformation of the squared mag-
nitude function of a 1-D filter to the 2-D domain, followed by a suitable decomposition
of the resulting filter.

Given a causal filter(first quadrant filter), it is possible to define the corresponding

second, third and fourth quadrant filters, according to the relations given by
hi(k,l) = hao(k, —1) = h3(—k, —=1) = hy(—k, ) (2.16)
with the followiI;g transfer functions given by
Hy(z1,22) = Ha(21,25") = Ha(2(", 23 ') = Hy(z1', z2) (2.17)

If the above four filters are cascaded, we obtain a zero-phase digital filter whose

frequency response is defined by the coefficients p(k, !) and g(k, !) determined through
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the convolution of the coefficients of the four filters and is of the following form:

_ Xk Xito P(k; 1) cos(kwi)cos (lws) (2.18)

eju.u w2 —
G(e™, &™) S0 T a(k, U)cos(kwr)cos(lway

If we take a squared magnitude function of a 1-D IIR filter, and apply the trans-
formation of Eqn.(2.11) to its numerator and denominator, then the above equation
can be obtained. The squared magnitude function obtained has to be factorized to
obtain stable recursive filters.

Based on the review given so far, in what follows, we consider the generation
of 2-D filters having circular symmetry. Although it has been clearly proved in [7],
[14] that it is not possible to obtain exact circularly symmetric filters, we consider the
extent to which such filters can be designed by using separable 1-D transfer functions.
In this Chapter we only consider the design of circularly symmetric Lowpass filters.
The design of other filters namely Highpass, Bandpass and Bandstop filters will be

dealt with in the subsequent chapters.

2.6 Design of 2-D Butterworth Filters using Separa-

ble »1—D Transfer Functions

The simplest way to design a 2-D filter is to obtain it as a product of two 1-D Filter
transfer functions. Depending upon the requirement, it could be either an FIR or an
IIR transfer function. As mentioned earlier, an FIR filter is one which has a transfer
function resulting from a finite sequence and the IIR Filter is one which has a transfer

function resulting from an infinite sequence. This section deals with the direct design
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of 2-D IIR filters using separable transfer functions of two 1-D cases, which are exactly

equal in all respects.

2.6.1 Design of 2-D IIR Lowpass Butterworth Filter using Sep-

arable Transfer Functions

Depending upon the frequency requirements to be met, filters, in general, are usually
classified as

(a) Lowpass Filters - These filter out the high-frequency components of a signal
and pass only the low-frequency signal below a certain frequency, in each dimension.

(b) Highpass Filters - These filter out the low-frequency components of a signal
and pass only the high-frequency signal above a certain frequency, in each dimension.

(c) Bandpass filters - These filter out a band of frequencies, one below a low
frequency and another above a high-frequency, in each dimension and passes the rest
of the signal.

(d) Bandstop filters - These filter out a band of frequencies, one above a low
frequency and another below a high-frequency, in each dimension and passes the rest
of the signal.

In this chapter, only the implementation of the Lowpass Filter design' is being

considered.

Lowpass Filter

The design of a 2-D IIR Butterworth filter is carried out by first designing the 1-
D Butterworth filter and then combining two similar 1-D transfer functions as a

product. The program to implement the above has been written using MATLAB
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using the various built-in subroutines to achieve the filter specifications. The following
procedure has been adopted to design the filter:

(1) Given the specifications namely pass-band edge (W,), stop-band edge (W),
losses in the pass-band (R,) and stop-band (R;), the order of the filter (N) and the
Butterworth natural frequency (W,) are determined using the MATLAB function
“buttord”. The procedure, so far, is in single dimension only.

(2) Knowing the order of the filter (V) and the Butterworth natural frequency
(W.), the filter’s poles, zeros and the scalar gain (K) is determined using the MAT-
LAB function “butter”.

(3) Having determined the poles, zeros and the scalar gain of the filter, the nu-
merator (zeros) and the denominator (poles) polynomials are determined using the
MATLAB function “poly”.

(4) Now we have the transfer function of the 1-D filter. The same procedure as
above, is extended to the second dimension and the transfer function for the second
dimension is obtained.

(5) The product of the two 1-D polynomials is determined.

(6) A general subroutine, suitable for any order of the filter has been written to
determine the frequency response of the 2-D filter. The corresponding magnitude and
contour plots are plotted using the MATLAB functions “mesh” and “contour”.

The following MATLAB algorithm (Program A1) has been written for the Lowpass
filter specifications as shown in Table (2.1).

All frequencies are in radians.

The values of W,, W, R,, R, for both the dimensions, can be changed in the

program, based on the required design.

30



(W,l=W,2 [ W,1=W,2 [ R,1 = R,2(dB) | R, 1 = R,2(dB) | N | W,1 = W,2 |
[ 015 | 065 0.5 45 4] 02675 |

Table 2.1: Filter Specifications for the Butterworth Lowpass Filter. Scripts 1 and 2
refer to the two-dimensions respectively.

Program-Al

%% 2-D LOWPASS BUTTERWORTH IIR FILTER(lowpass.m) - (for Fig.(2.1)}
clear all;
close all;
%% Specification of the 1st 1-D Filter
Wp1 = 0.15;
Ws1 = 0.65;
Rpl = 0.5;
Rsl = 45;
%% To determine the order-N1 end natural frequency-Wnl
[N1, Wni] = buttord(Wp1, Wsl1, Rpl, Rsl);
%% Specification of the 2nd 1-D Filter

Wp2 = 0.15;
Ws2 = 0.65;
Rp2 = 0.5;
Rs2 = 45;

%% To determine the order-N2 and natural frequency-Wn2

[N2, Wn2] = buttord(Wp2, Ws2, Rp2, Rs2);

%% To determine the poles and zeros and the scalar gain of the 1st 1-D filter
[Z1,P1,K1] = butter(N1,Wnl);

Nmrl1 = real(poly(21));

Dnr1 = real(poly(P1));

%% To determine the poles and zeros and the scalar gain of the 2nd 1-D filter
[22,P2,K2] = butter(N2,Wn2);

Nmr2 = real(poly(Z22));

Dnr2 = real(poly(P2));

%% To determine the 2-D transfer function as a product of 2 1-D transfer functions
%% as Numerator(N) and Denominator(D)

for m=1:1:size(Nmrl1,2)
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for n=1:1:size(Nmr2,2)

N(m,n)= Nmrl(m}*Nmr2(n);

end

end

for m=1:1:size(Dnrl1,2)

for n=1:1:size(Dnr2,2)

D(m,n)= Dnri(m)}*Dnr2(n);

end

end

%% To determine the frequency response of the 2-D Lowpass filter
lim=pi1;

cl=0;

for wi = -lim:lim/20:lim

c2=0;

cl=cli+1;

for w2 = -lim:lim/20:lim

c2=c2+1;

for col=1:1:size(Nmr2,2)

NRow(1,col}j=cos((size(Nmr2,2)-col) *w2) - j *sin((size(Nmr2,2)-col)*w2);
end

for row=1:1:size(Nmr2,2)
NCol(row,1)=cos((size(Nmrl,2)-row)*wl) - j *sin((size(Nmrl,2)-row)*wl);

end
NR = NRow * N’ * NCol;
a=real(NR);

b=imag(NR);

for col=1:1:size(Dnr2,2)

DRow(1,col)=cos((size(Dnr2,2)-col}) *w2) - j *sin((size(Dnr2,2)-col)*w2);
end

for row=1:1:size(Dnr2,2)

DCol(row,1)=cos((size(Dnrl,2)-row)*wl) - j *sin((size(Dnr1,2)-row)*wl);
end

DR = DRow * D' * DCol;

c=real(DR);

d=imag(DR);

MOD(cl,c2) = K1*K2*(sqrt((a*c + b*d)~2 + (b*c - a*d)~2)}/(c~2+d"2);

end
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end

%% To plot the frequency response of the 2-D Lowpass filter
wl=-lirn:lim/20:lim;

w2=-lim:lim/20:lim;

[ww!, ww2]=meshgrid(wl,w2);

zz=MOD/(maz(maz(MOD)));

mesh(wl,w2,zz);

azis ('image’);

zlabel(’'wl’);

ylabel("w2’);

zlabel(’Magnitude Response’);

title(” (8)2-D IIR Butterworth LPF - Order-{(Contour Plot)’,’FontSize’,18);
grid on;

figure;

contour(wwl,ww2,zz);

azis(’image’);

zlabel("wl’);

ylabel("'w2’); -
zlabel(’Magnitude Response’);

title(’ ()2-D IIR Butterworth LPF - Order-{(Contour Plot)’, 'FontSize’ 18);
grid on;

%% End of program

The results of the algorithm namely the magnitude and the contour plots are as

shown in Fig.(2.1). It is noted that the contours are not circularly symmetric.
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(a) 2-D lIR Butterworth LPF - Order-4(Magnitude Plot)

Magnitude Response
o

P
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Figure 2.1: 2-D IIR Butterworth LPF, Order-4 (a) Magnitude plot (b) Contour plot
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2.7 Generation of Stable 2-D ITR Product Separa-
ble Denominator Transfer Functions and Test for

Circular Symmetry

In order to obtain a required symmetry, the magnitude response of the filter has to
be varied. One way to do it is to vary the coefficients of the filter. This necessarily
perturbs the pole-zero locations of the filter in each dimension and thus varies the
filter characteristics. But there is a possibility that the filter may become unstable
as a result. If FIR filters are used, then we do not have to worry about stability,
as it is a known fact that FIR filters are inherently stable. However FIR filters may
require high order filters to satisfy the change in magnitude characteristics and thus
its implementation could be difficult. If however, we use an IIR filter, by using one or
more feedback paths in the design, we may achieve the above purpose. But we need
to take care of the stability of the filter. In the case of 2-D systems, the complexity of
testing the stability of the system is quite high. Therefore it is necessary to obtain the
bounds of one or more coefficients, in order to ensure that the designed filter is stable.
In this section, we design a filter transfer function possessing variable characteristics
in their frequency response depending upon certain assigned variables.

The basic structure that will be used to explain this, is shown by a signal flow
graph in Fig.(2.2).

From Fig.(2.2), the overall transfer function can be deduced as

‘/c TabTbc

Ve 1-ThTw (2.19)

Tac =
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Figure 2.2: Basic structure for the 2-D transfer function expressed as a signal flow
graph.

From Eqn.(2.19) (Mason’s formula), it can be seen that any change in g, will
result in a scale change in the magnitude response of the filter. Also, it has to be
ensured that the eventual transfer function Ty, is stable. Now in order to change the
magnitude characteristics of the transfer function, one of the transmittance should
be changed. This is always possible by using T¢; as a variable quantity. This results
in a Variable Characteristic Transfer Function(VCTF) [3].

As mentioned in the previous section, one of the simplest ways to generate a 2-D
IIR VCTF is to obtain it as a product of two stable 1-D Strictly Hurwitz Polynomi-
als(SHP), one in the s; domain and the other in the s; domain, and from this we can
obtain the denominator polynomial. The numerator polynomial can either be product
separable or non-product separable. Then the application of bilinear transformation
results in a transfer function which is stable in the discrete domain.

For our case, let us consider a 2-D transfer function T'(s;, s;) given as a product
of two 1-D functions T}(s;) and T5(s;) each having the form as shown in Eqn.(2.19).

Therefore,

T3(s1,52) = T1(s1) Ta(s2) (2.20)
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Let T1(s1) = where g;(s1) is a third order butterworth polynomial given

by

q1(s1) = st + 251 + 25, + 1 and fi(s1) = k1.

Similarly for g>(s2) and f2(s2) in the second dimension, the expressions to obtain
T5(s2) are given by

ga(s2) = 83 + 252 + 25, + 1 and fo(s2) = ka.

A third order polynomial is considered for purposes of illustration. The example
can be of any order.

In our case let us focus our attention on the case when k; = ky = k.

In order to determine the range of & over which the filter is stable, we apply the
stability condition[30]. According to this condition if Q.(s) = m(s) + n(s) where
m(s) is an even polynomial and n(s) is an odd polynomial and if m;(s) is an even
polynomial, then Q,(s) +m;(s) is a strictly Hurwitz polynomial if and only if, in the

partial fraction expansion,

m(s) + ma(s) Ko
o) = Ko +§ 2+ ﬁ, (2.21)

with B2 < %, (B's being real), we have the conditions
(i) Ko >0, (ii) K; > 0 for all values of i and (iii) K > 0.
From the above condition we have, in our present case, letting m = 2s2+1, m; =

k and n = s% + 2s,

m(s) +mu(s) 282 +1+k HE 3k (2.99)
n(s) T s34+25 s s2+42 )

Evaluating the above conditions from Eqn.(2.22), we have £ = 3 or ¥ = —1. Therefore
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the range of k is —1 < k£ < 3.

From Eqn.(2.20) we have T3(s1,s2) = ( .3{?25%1:!-251 (g +2s§§_2 7). Substituting
s1 = jw; and s = jws in the above equation and simplifying the transfer function by
eliminating all the higher powers of w; and ws and retaining only the second degree

powers, we have in two dimensions, the relationship to be satisfied as

{4k(1 + k)%? + 41 + k)%l = 1+ k)* — ¢} (2.23)

where € =response of the transfer function.

Plotting a direct response for Eqn.(2.23) for a value of & = 0.5, we have the
magnitude and contour plots as shown in Fig.(2.3).

As we notice from Fig.(2.3), it is a circularly symmetric response corresponding
to the Eqn.(2.23) which, in general terms, is the equation of a circle. If however, the
contour plots of T3(s1, s2) are drawn after bilinear transformation for £ = —0.6, k =
—0.4, k = —0.3, k = —0.2, k£ =0, we obtain the results as shown in Figs.(2.4), (2.5)
and (2.6). It can be seen that circularly symmetric response is possible only in a
limited frequency range, since the contribution due to the higher frequencies is not

considered.
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(a) Magnitude plot of Eqn.(2.23) for k=0.5
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(b) Contour plot of Eqn.(2.23) for k=0.5

Figure 2.3: Plot of Eqn.(2.23) for k=0.5. (a) Magnitude plot (b) Contour plot
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(a)2-D [IR Butterworth LPF for k=—0.6

-1 -0.5

Figure 2.4: Contour plots for 2-D IIR Butterworth LPF for (a) k=-0.6 (b) k=-0.4
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2_D |IR Butterworth LPF for k=-0.3
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Figure 2.5: Contour plot for 2-D IIR Butterworth LPF for k=-0.3

From the Figs.(2.4), (2.5), (2.6), it can be deduced that for a certain range of
k, in and around k& = —0.3, the filter exhibits circular symmetry. The program for

obtaining the above results (Program A2) has been written using MATLAB.
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(a)2-D IIR Butterworth LPF for k=-0.2

w1l

(b)2-D IIR Butterworth LPF for k=0

Figure 2.6: Contour plots for 2-D IIR Butterworth LPF for (a) k=-0.2 (b) k=0
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Program A2

%% Function to determine the transfer function of the filter for
%% a given kl,k2(garg_rama_mag_ copy.m) - for Figs.(2.4), (2.5), (2.6).
k1=-0.3;

Bi1={1};

Al=[12 2 1];

B2=B1;

[R C]=size(Al);
AL(C)=AI1(C)+ki;
A2=A1;

k2=kl1;

%% Bilinear transformation of the transfer function
[N1,D1]=bilinear(B1,A1,1);
[N2,D2]=bilinear(B2,A2,1);
%% To determine the 2-D transfer function of the IIR Filter
for m=1:1:size(N1,2)

for n=1:1:3ize(N2,2)
N(m,n)= N1(m}*N2(n);
end

end

for m=1:1:size(D1,2)

for n=1:1:size(D2,2)
D(m,n)= D1(m)*D2(n);
end

end

lim=pi;

interval=pi/50;

cl=0;

for wl = -lim:interval:lim
c2=0;

cl=cl+1;

for w2 = -lim:interval:lim
c2=c2+1;

for col=1:1:size(N2,2)
NRow(1,col)=(cos(w2) + j *sin(w2)) ~(size(N2,2)-col);

end
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for row=1:1:5ize(N2,2)

NCol(row,1)=(cos(wl) + j *sin(wl})~(size(N1,2}-row);
end

NR = NRow * N’ * NCol;

a=real(NR);

b=imag(NR);

for col=1:1:size(D2,2)

DRow(1,col)=(cos(w2) + j *sin(w2)) ~(size(D2,2)-col);
end

for row=1:1:size(D2,2) DCol(row,I)=(cos(wl) + j *sin(wl))~(size(DI1,2)-row);

end
DR = DRow * D’ * DCol;
c=real(DR);
=imag(DR);
MOD(c1,c2) = (sqrt((a*c + b*d)~2 + (b%c - a*d)~2))/(c~2+d"2);
end
end

%% To plot the frequency response plots
wl=-lim:interval:lim;
w2=-lim:interval:lim;

[ww!, ww2]=meshgrid(wl,w2);
2z=MOD/(maz(maz(MOD)));

figure;

contour(wwl,ww2,zz);

azis(’image’);

zlabel(’w1’);

ylabel('w2’);

zlabel('Magnitude Response’);

title(’2-D IIR Butterworth LPF for k=-0.3’,’FontSize’,18);
grid on;

%% End of Program
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2.8 Algorithm to Check the Extent of Circular Sym-
metry for a Given Magnitude Range

From the above study, it is seen that, for a given value of k, it becomes necessary
to determine whether, at a certain value of the magnitude range, the filter exhibits
circular symmetry. An iterative algorithm, has been written in MATLAB, to check
the extent of circular symmetry under a given magnitude range and if required, alter
the value of the variable quantity(in this case k) so as to obtain the circular symmetric
condition.

As a particular case, the initial value of £ has been taken as £k = —0.6. The
magnitude range under check is 0.49<Mag<0.51.

The algorithm has been written as follows.

(1) Program A3 is the main program showing the inputs to be given for the
circular symmetry test. The filter is first designed given the transfer function in
terms of numerator and denominator polynomials.

(2) The transfer function of the 2-D filter is determined using a separate subrou-
tine(same as program A2) which is called from the main program. This subroutine
returns the 2-D transfer function of the filter.

(3) The subroutine for the circular symmetry test is then called(Program A3-b).

(4) The basic idea underlying Program A3-b is explained as follows. The mag-
nitude range for the circular symmetry check for the derived frequency response is
defined. In this case this value is between (0.49, 0.51).

(5) The magnitude values falling under this range is isolated into a separate matrix

and their frequency positions with respect to both the dimensions are noted.
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(6) To check if these isolated values of magnitude fall under a circle, their individ-
ual magnitude values are noted and a percentage error of 5% is used to include the
points into a circle. If desired, any other percentage value can also be chosen.

(7) If all the radius values fall under this limit then the given magnitude range is
considered to be fairly circularly symmetric and if this is not the case, the value of k&
is decreased by a value of 0.1 and the whole process is carried out from the beginning.

Thus this algorithm is highly useful in determining the extent of circular symmetry
in 2-D Filters. It is noted that this procedure can be used for testing the circular
symmetry of any filter, given the transfer function. In cases where circular symmetry
is not very obvious, the value of the percentage error inside the program can be varied
in order that the best match for circular symmetry can be obtained.

For this particular case, the algorithm gave a circular symmetry result for the
above mentioned magnitude range when the value of k¥ = —0.3. The program for the
above procedure (Program A3, A3-b) has been written in MATLAB and is shown as

follows:

Program A3

%% Program to design a filter and check the extent of circular symmetry
%% for a specific filter transfer function that is input by the user.
% % (garg_rama_ circular.m) for Figs.(2.7), (2.8), (2.9)
%% This program calls two subroutines.
%% Define the numerator(B1) and denominator(Al) polynomials of the transfer function
%% for which circular symmetry is to be tested
Bi=[1]; A1=[1 2 2 1];
%% Increment the value of k and output the result for each k.
for k1=-0.9:0.1:0
%% This defines the range of k that s to be tested.
%% Calls the sub-routine to design the filter for a specific k (same as Program A2)
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Mag = garg_rama_mag(B1,Al1,k1);

%% Calls the subrvutine to test extent of circular symmetry (Program A3-b)
[output/=garg_rama_ circ(Mag)

end

%% End of program

Sub-routine A3-b

%% Program to check the extent of circular symmetry for a designed filter
%% given the Magnitude transfer function

function [output/=garg_rama_ circ(Mag);

%% To isolate the necessary magnitudes

jI1=0; var_circ =0.1;

for i=1I:size(Mag,1)

for j=1:size(Mag,2)

if Mag(i,j)>0.49 & Mag(i,j)<0.51

JI=j1+1; points(1,j1) = Mag(i,j);

else

Mag(i,5}=0;

end

end

end

%% To plot the frequency response of the isolated magnitudes
lim=ps;

interval=pi/100;

wl=-lim:interval:lim; w2=-lim:interval:lim;
[wwl,ww2]=meshgrid(wl,w2);

figure;

contour({wwl,ww2,Mag);

azis(’image’); zlabel(’w1’); ylabel('w2’); grid on;

title(” Test for circular symmetry for k=-0.3 ’,’FontSize’, 18);
%% To get the w1, w2 values for the non-zero elements of Mag
count=0;

for i = I1:size(Mag,1)

for j = 1:size(Mag,2)

if Mag(i,j) "=0

count=count+1;

z(count) = wwl(i,j); y(count) = ww?2(i,j);
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end

end

end

%% Check for radius

countl=0; clear Radius;

for i = I:size(z,2)

z1 = z(i); y! = y(i); z1=sqrt(zl1~2 + y1~2);
countl=countl+1; Radius(countl) = zI;

end

maz_ Radius = maz(Radius); min_ Radius = min(Radius);
Radius_vector = (meaz_ Radius - min_ Radius)/maz_ Radius;
%% Output the result of test for circular symmetry

if Radius_ vector < 0.02

output = char(’Circularly Symmetric’);

else

output = char(’Not Circularly Symmetric’);

end

%% End of program

The results are plotted as shown in Figs.(2.7), (2.8) and (2.9) for different values

of k. The magnitude range under study is varied between the lowest to. the highest
value within ranges of 10% of the magnitude. From this, the region of interest (where
the filter is approximately circularly symmetric) is found and further simulations are
carried on with a 2% magnitude range within the reduced region of interest and
eventually, after repeated simulations of Program A3, results show that for a value of
k = —0.3, for this specific transfer function, optimum circular symmetry is achieved.
Going beyond this value of k resulted in degradation of circular symmetry. Figs.(2.7),
(2.8) and (2.9) show the final plots of the filter for different values of k. The magnitude

values under study in these figures are in the range 0.49<Mag<0.51.

Fig.(2.7) shows the plots for £k = —0.6 and k£ = —0.4. Here we see that with higher

value of k the plot tends to a circle.
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(a)Test for circular symmetry for k=—0.6
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Figure 2.7: 2-D IIR Butterworth LPF response and test for circular symmetry under
magnitude range 0.49<Mag<0.51 for (a) k=-0.6 (b) k=-0.4.

49



Test for circular symmetry for k=-0.3

< e

Figure 2.8: 2-D IIR Butterworth LPF response and test for circular symmetry under
magnitude range 0.49<Mag<0.51 for k=-0.3.

Fig.(2.8) shows the plot for k = —0.3 for which, it is clear that we have circular
symmetry exists between the magnitude under study.

Fig.(2.9) shows that as the value of k increase beyond &£ = —0.3 circular symmetry
ceases to exist, under the given magnitude range under study.

We have considered, by and far, filters of third order. In a similar manner, sim-
ulations can be extended to higher order filters. However with higher order filters,
the computations become more complex. Therefore only third order filters have been

considered in this work.
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(a)Test for circular symmetry for k=-0.2
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Figure 2.9: 2-D IIR Butterworth LPF response and test for circular symmetry under
magnitude range 0.49<Mag<0.51 for (a) k=-0.2 (b) k=0.
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2.9 Design of 2-D ITR Chebyshev Lowpass Filter

We have discussed, so far, in detail about the implementation of 2-D Lowpass But-
terworth filter design and specifically, its contribution to circular symmetry. In this
section, we will discuss about the 2-D Lowpass chebyshev filter design and its approx-
imation to circular symmetry.

The Chebyshev lowpass filter makes use of the Chebyshev polynomial[31]. It is
well known that Chebyshev characteristics has an equi-ripple variation in the pass-
band and a fast monotonic decrease in gain, outside the pass-band. Inorder to design
a 2-D Chebyshev lowpass filter from the 1-D design, as before in the Butterworth

design, we will consider it as a product of two 1-D transfer functions.

2.9.1 The Chebyshev Lowpass Characteristics

For the Lowpass characteristics, we chose the value of the transfer function within

the range, such that w < 1.

We know that | Cp(w) |< 1 for w < 1. Therefore we chose a small number € such
that

F(w?) = €2C%(w).

Therefore we will have

| H(jw) [*= - (2.24)

"1+ eC2(w)

Eqn.(2.24) will have its values that fall between 1 and 77y in the range 0 < w < 1.
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For w > 1, and from Eqn.(2.24)

1

€292(n—1)2n (2.25)

| H(jw) |*~
Therefore the gain a(w) can be calculated as

o(w) ~ —10log(e222"Vy?* = —20loge — 20(n — 1) log 2 — 20n logw (2.26)

2.9.2 2-D Chebyshev Lowpass Characteristics and Test for
Circular Symmetry

As has been discussed before in the 2-D IIR Butterworth filter function derivation,
the simplest way to obtain a 2-D filter function for Chebyshev filter is to cascade the
transfer function of two 1-D filter functions.

As we have discussed in Section 2.7, let us consider a 2-D transfer function given

as a product of two 1-D functions.
Cs(s1,52) = Ci(s1) Ca(sz) (2.27)

Let Ci(s1) = m where g;(s;) is a third order Chebyshev polynomial given
by [31].
g1(s1) = s} + 1.9388s2 + 2.62945s; + 1.6380 and fi(s;) = k;.
Similarly for go(s2) and f2(s2) the expressions to obtain T3(s;)are given by
ga(s2) = s3 + 1.9388s2 + 2.62945s, + 1.6380 and fo(s;) = ko.
These functions have a ripple width € = 0.1526. '

For symmetry purpose, let us focus our attention on the case when k; = k, = k.
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According to the stability condition of Eqn.(2.21) we determine the range of k =
ki = ky for which the 1-D transfer function is stable.

From Eqn.(2.21) it is found that this range of k is —1.6380 < k£ < 4.0978.

Plotting the response for the above range of k gives near circularly symmetric
response between the range —1.0 < k < —0.4. The plots corresponding to the above
range are shown in the Figs.(2.10), (2.11) and (2.12) and these correspond to a ripple
width of € = 0.1526. These have been plotted using the same Program A2 but with
different input values.

The figures also show a plot for ¥ = 0.4. Using Program A3 the values of &
mentioned in the figures, are tested for circular symmetry within the magnitude range
0.28 < Mag < 0.32. This magnitude range essentially depends upon the necessity
of the specific user and it may be chosen based on the magnitude study of interest.
The same study can also be done for other magnitude ranges. In this specific case
of magnitude range, it is found that, circular symmetry is obtained for a value of
k = —0.64. This result has been achieved after extensive simulations of Program A3.
The plots shown in Fig.(2.13) show the results of the applying Program A3 to the
transfer function achieved for the above case of Chebyshev filter.

Fig.(2.12) also shows the plot for k¥ = 0.4. This plot shows that, a Chebyshev type
response analogous to its 1-D counterpart, can be achieved for values of k£ beyond 0.4

and within stability limits.
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(a)2-D Chebyshev Lowpass Filter for k=—1.0
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(b)2-D Chebyshev Lowpass Filter for k=-0.8
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Figure 2.10: 2D Chebyshev LPF characteristics for (a) k=-1.0 and (b) k=-0.8.
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(c)2-D Chebyshev Lowpass Filter for k=—0.64

Figure 2.11: 2D Chebyshev LPF characteristics for (a) k=-0.64

As an example, another value of ripple width € = 0.3493 has been considered. In
this case the equation for g;(s;) and g2(s2) is given by

g1(s1) = s3 + 1.2529s2 + 1.53495s; + 0.7157.

ga(s2) = s3 + 1.2529s2 + 1.53495s, + 0.7157.

The rest of the expression being the same, it has been found that for the above
equation, the stability range of k is given by —0.7157 < k£ < 0.9230. Contour plots
are obtained for the above range and the plots for which near circular symmetry is
obtained, are shown as in Fig.(2.14(a)-(¢)). These have been plotted using Program

A2 with appropriate input values.
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(a)2—-D Chebyshev Lowpass Filter for k=—-0.4

-1.5 -1 -0.5 o] 0.5 1 1.5
wi

(b)2-D Chebyshev Lowpass Filter for k=0.4

Figure 2.12: 2D Chebyshev LPF characteristics for (a) k=-0.4 and (b) k=0.4.
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(a)Test for circular symmetry for k=-1.0 (b)Test for circular symmetry for k=~-0.8

7 X\

(d)Test for circular symmetry for k=—0.4
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-1.5 -1 -as8

4]
wl

Figure 2.13: Plots to show the extent of circular symmetry for the case where € =
0.1526. These plots are shown for the same corresponding values of % as shown in
Figs.(2.10), (2.11), (2.12). All the plots show the magnitude range 0.28 < Mag <
0.32.
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Applying Program A3 to this case of transfer function, the extent of circular
symmetry is calculated between the range 0.49 < k < 0.51. The plots in Fig.(2.15)

show these results.

Comparing the above two cases where the plots have been shown for two different
cases, it can be seen that, the value of k& changes for near circular symmetry (in the
second case being k = —0.25). It is noted that this is the closest one can approach
to circular symmetry for test under the specified magnitude range. It is possible that
for another range better symmetry can be obtained.

Table (2.2) summarizes the above two cases.

[ Ripple Width (¢) | Stability range of k& | Value of k for near circular symmetry |

0.1526 —1.6380 < k < 4.0978. -0.64
0.3493 —0.7157 < k < 0.9230 -0.25

Table 2.2: Analysis results for the extent of circular symmetry in 2-D Chebyshev
lowpass transfer functions for two different values of ripple width. The magnitude
range under study for both the above cases is 0.49<Mag<0.51.

From Table(2.2) it can be noted that, depending on the value of € and therefore the
transfer function, the value of k changes for circular symmetry for a chosen value of
magnitude range and the same can be obtained by Program A3. The 2-D Chebyshev
lowpass filter characteristics have thus been analyzed and its approximation to circular

symmetry has been studied and shown in this section.



(a)2~D Chebyshev Lowpass Filter for k=-0.5 (b)2-D Chebyshev Lowpass Filter for k=-0.3

I
-08 08 V4 02 ©

(d)2~D Chebyshev Lowpass Filter for k=-0.2

(e)2—-D Chebyshev Lowpass Filter for k=—0.1

15

Figure 2.14: 2D Chebyshev lowpass filter characteristics for the second case considered
for ripple width € = 0.3493. Plots (a)-(e) are shown for different values of k close to
circular symmetry.
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(a)Test for circular symmetry for k=-0.5
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(c)Test for circular symmetry for k=-0.25
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Figure 2.15: Plots to show the extent of circular symmetry for the second case where
€ = 0.3493. The plots are shown for the same corresponding values of k£ as in
Fig.(2.14). All the plots show the magnitude range 0.28 < Mag < 0.32.
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2.10 Pole-Parameter Transformation and Analysis of

Lowpass Butterworth Filters

2.10.1 Imtroduction

Having discussed in detail the implementation of filters possessing separable denomi-
nator 2-D filter transfer functions for the Butterworth and Chebyshev filters, we now
go on to study another interesting aspect of filter design namely the pole-parameter
transformation[15] and their analysis. In this respect, we will discuss this topic with
respect to the Lowpass Butterworth filter design in particular. A brief review of this
topic is as follows[15].

The Butterworth filter approximation is based on the fact that all the poles of the
filter are uniformly placed on the unit circle in the s-plane. This section deals with a
new family of transitional filters, whose design is based on the judicious positioning
of the poles in the s-plane. The transitional feature of the new family, dealt with
here, is between two Butterworth filters of specific even orders. The poles of these
filters constitute a specific reference pole pattern. They lie along the arc of a circle
between the reference poles of two specific Butterworth filters. The pole-phasors of
each member of the family are of equal magnitude w,, not necessarily of unit radius. If
the order of the Butterworth filter is a binary power (i.e., n = 2*, k being an integer),
then the pole-locations of the filter exhibit very interesting symmetry properties. The
pole-locations are such that they are symmetric about the horizontal axis reference
such that a single quadrant pole-parameter synthesis is representative of all the poles
of the filter. A new family of Butterworth filters can now be formed by what is called

“prescribed symmetrical swinging” of the poles of the filter by specific angles such

62



that the symmetry constraint of the original pole-pattern is not altered. Also, various
performance characteristics such as selectivity of magnitude response, sensitivity or
critical Q factor, can be smoothly varied by changing the polar angles appropriately.
The transitional family of filters following this method have the same bandwidth and

hence comparison among the various members of the family is more realistic[15].

2.10.2 Pole-parameter Representation

It is well known that the poles of a Butterworth filter of a specific order, are located
uniformly on the unit circle in the s-plane. The line joining any pole with the origin
of the coordinates is called the pole-phasor having a magnitude w, or the “pole-
frequency” and angle 6, or the polar-angle as shown in the following figure.

Jo

s-plane

sr(- G, .0)

.
[
x

s*(- ©.-j )

Figure 2.16: Pole parameter representation

The pole parameters shown in Fig.(2.16) correspond to the negative real pole

(sr) and a complex-conjugate pole-pair (s, s*). There is a high degree of geometrical
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symmetry exhibited by the pole-phasors of a Butterworth filter of even order which

is being exploited in the synthesis of a filter family by pole-parameter variation.

2.10.3 Complementary Symmetry

For a Butterworth filter of specified order, the poles located on the left-half of s-
plane, on the second and third quadrant, are symmetrical about the horizontal axis
and hence exhibit a mirror image symmetry. Therefore all the poles on the left-half
of the s-plane can be represented just by the poles on the second quadrant only, i.e.,
the second quadrant poles are a representative of all the poles on the left-half of the
s-plane.

Let us consider a n** order Butterworth filter. The pole parameters corresponding

to the second quadrant poles are given by

k = 1, 2, ..... 3 72—1, fOT n even
ok = 1 (2.28)
k=0,1,... :E%l for n odd
and
@elr k=12, ...,2 forneven
ka = 2n 2 f (2-29)
kx k=0,1,....,%5% fornodd

For example if the order of the filter is 8, i.e., n = 8, then there will be 4 pole-
phasors of magnitude unity and angles /16, 3x/16, 57 /16, 7n/16.

Let us consider the general case, in which all pole-phasors have a magnitude equal
to wp (not neéessarily unity), and the polar angles retained at values as given by

Eqn.(2.29). Normalizing the d.c value of the transfer function A(w) to unity such that

64



A(w) at w = 0 is independent of w,, we can write the squared magnitude expression

of the transfer function as follows:

“p (2.30)

2(,) =
Alw) = w2 + w?n

From the above expression, the pole locations can be written as

(2k — 1
Sk = Wy exp ](—l , fork=1,2,..., E, V n even (2.31)
2n 2
and
gk n-—1
Sk =WpeXp | |, fork=0,1,2,.., 5 V n odd (2.32)

In general, for any Butterworth filter of a given odd or even order, the Butterworth
poles exhibit very interesting symmetry properties with respect to both real as well
as the imaginary axis. In addition, if the Butterworth filter is of even order, then the
filter displays varying degrees of symmetry. These additional symmetry properties
are exploited in designing the new family of transitional filters.

Here, we consider only those filters whose order is a binary power, i.e., n = 2%, k
being integers greater than 2 only. This is because, filters of such order possess the
highest degree of symmetry and therefore it is easy to deal with such a case although
it is possible to extend the same case to filters of various orders. For such class of
filters, whose order is a binary power, in addition to half-plane symmetry along the
real or imaginary axis, which is common to all Butterworth filters, it is also symmetric
with respect to the 7/4 axis, in each quadrant of the s-plane.

To discuss our case, let us consider the order of the filter to be 16, i.e., n = 186.

Therefore we have 16 poles on the left half of the s-plane, symmetric about the real
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axis. Now in general, a Butterworth filter with n = 2* will have n/2 poles in the

second quadrant given by

O = T vEk=1,2,32 (2.33)

This is illustrated in the Fig.(2.17) for n = 16.

jo

Figure 2.17: Pole plot for a 1-D filter of order n = 16.

Fig.(2.17) shows eight poles on the second quadrant. Since the pole positions are
symmetric about the real axis, the eight poles on the second quadrant are represen-
tative of all the poles of the filter. The eight poles designated as s;,s3, s3, -.., 53 make
angles 6,,6,, ..., 03 respectively to the real axis. Within the second quadrant, it is evi-
dent that the poles are symmetric about the 7/4 axis and the symmetrical pole-pairs

are given as follows.
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h=% =]
— 3= _ 13w
| 2= =% | (2.34)
(6= b=
— I _— 97
l6.=3 0 =% |

Also, it is clear that the polar angles of each of the above four symmetrical pole-

pairs add up to w/2. In general we may write this as follows
T
(91 + 03) = (92 + 87) = (93 + 96) = (94 -+ 95) = ‘é‘ (2.35)

Such pole-pairs, whose 8, values add up to /2 can thus be designated as “Com-
plementary Pole Pairs(CPP’s)”. It can be seen that each pair of poles with §; and
8(n/2)~1+1,l0cated symmetrically on either side of the 7/4 axis, exhibit the CPP prop-
erty since,

(01 + 9(n/2)—l+1) = 72_r, Vi= L2,.. % (2'36)

2.10.4 Symmetrical Swinging of Butterworth Poles Preserving

the CPP Property

We shall now consider a modification in the Butterworth filter pole-pattern, which
will still preserve the CPP property. Before we consider the modification, it is in-
teresting to note that the adjacent Butterworth poles in the second quadrant pos-
sess another symmetry, this time, the adjacent pole-pairs (s, s2), (s3, $4), (55, 5¢) and
(s7, ss) being symmetrical about the lines OA, OB, OC and OD which make an angle
of w/16, 3w /16, 57 /16, 97 /16, respectively.
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Now, modifying the reference pole-pattern, by swinging the pole-vectors in each
adjacent pole-pair by equal angles 0, towards the respective axes of symmetry, the
new pole locations are (s;, 55), (53, 54), (S5, S5) and (s7, sg). Therefore the new set of

polar angles will be as follows

6, = (3 +0) = (5 — o) |
6, = (- 00) 6, = (5 +00) | (2.37)
6= (5 +60) 9 = (45 o) |
[ 6= (% - ) 0 = (% + ) |

Figure 2.18: Pole parameter swinging and shifting of the adjacent pole-pair towards
each other.
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By varying the value of 6p, a family of transitional filters can be obtained. There-
fore, in general, for a Butterworth filter of order n = 2* the modified polar angles can

be given by the following general expression.

(k=1 k-1 _ n
6, = o+ (-1}, VE=1,2,..,7 (2.38)

It can also be seen that the modified pole-pattern as given by the Eqn.(2.38) still

possesses the CPP property as we get

(6} + 6 j2)—11) = g Vi=1,2, g (2.39)
from Eqn.(2.36). Thus it is seen that, the symmetrical swinging of the pole-phasors,
equally on both sides conserves the net angle contributed by the adjacent pole-phasors,
the net angle being /2. This symmetrical swinging of adjacent pole-phasors can be
both in the positive or negative direction, being towards or away from the respective
axes of symmetry, such that 8o > 0 or 6y < 0 and [fp],,,,, = =. These family of filters
obtained by modifications in the pole-pattern may be referred to as the CPP Filters.

The squared magnitude function of an n** order CPPF can now be obtained as
a product of the component squared magnitudes of each CPPF. The second order

transfer function corresponding to the complex conjugate pole-pair given by the pole-

parameters wpyr and +0,; can be written as follows:

2

wie
= 4
Te(s) 52 + 2wpk cos(Bpr) s + w (2.40)

From Eqn.(2.40) the squared magnitude function is thus written as
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4
w,
Cm 2 (2.41)
s=jw  w + 2w cos(20k)w? + wiy

A (w) = Te(s)Ti(—s)

From Eqn.(2.41), the squared magnitude function of each CPPF can be obtained
individually and the final squared magnitude function can be obtained by taking the
product of all the individual magnitude expressions.

For our case, say n = 16, we know that all the CPP’s have the same polar mag-
nitude wpx = w,. Also from the CPP property, within the 2nd quadrant the adjacent

pole-pairs are symmetrical. Therefore
' l; 1] 1 ™
(6, +0,) = (6, + b3) = 1 (2.42)
We also have the symmetry property that
¢+@=§ (2.43)

Using Eqn.(2.41) the squared magnitude function for the poles (si, sg), (53,57),
(s3, Ss) and (sy, s5) can be written individually and using the above symmetry prop-

erties, they can be eventually combined as follows

A (W) = [Alg(w) - A35(w)] - [AZ7(w) - A36(w)] (2.44)

32

w32 — 2wl6 cos 166;ws + w32

From Eqn.(2.44), it is possible to deduce the final expression for the magnitude
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function for a general order n = 2* as

C‘1211.
A2 _ P " 2.45
() w2 — 2w cos(nf) Jw™ + w2n (2.45)

The value 6 is a free parameter, offering another additional degree of freedom. It
affects all the 4,’s and hence the Q,’s including the critical one of the new family of

filters that we have designated as the Complementary Pole Pair Filters(CPPF’s).

2.10.5 Low-Q Filters(LQF)

Low-Q filters are CPPF’s corresponding to 6, > 5-- This swings the CPP’s of the
Butterworth filters towards the 7/4 axis in the second quadrant. All the coefficients of
A?*(w) as in Eqn.(2.45) will be positive, since cos(nf;) < 0. Therefore the denominator
expression increases monotonically with respect to w and therefore A%(w) becomes
monotonically decreasing, although not maximally flat. The analysis is more clear if
we compare it with a Butterworth filter of the same order. Also the comparison is
categorized into two different categories based on two factors:

(a) both the filters having the same pass-band attenuation.

(b) both the filters having the same value of w,.

Let us consider a Butterworth filter and a Low-Q filter of the same order. Based
on the first factor let us consider that the filters have identical pass-band attenuation,
ie.,

Ace = AcL (2.46)

where Acp and Acy are respectively, the magnitudes of the Butterworth filter and
the Low-Q filter at cut-off w = 1. From Eqn.(2.30), (2.45) and (2.46), with wp and
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wr, as the pole frequencies of the Butterworth filter and the Low-Q filter respectively,

we have

w2 4+ 2w cos(nfdy) — w =0 (2.47)

Solving the above equation for wy, we obtain,

wi = —wh cos(n&’l) + \/ 1 + w¥ cos?(nb;) (2.48)

As we know here that cos(nf;) < 0 for LQF and also that the filters needed are

for practical applications, the value of wy may be derived as

, - 1/n
Wy = wpg [wg Icos(nel)l =+ \/1 + wi cosz(nel)] (2.49)
From Eqn.(2.49), we can deduce that
wr, > Wpg (250)

This means that, in order to maintain identical maximum pass-band attenuation
as in Eqn.(2.46), the pole-frequency w;, of the LQF should be chosen larger than the
pole-frequency wp of Butterworth filter. Next, one can compare the slopes at cut-off

for the Butterworth and the Low-Q filters, where the slope S, is given by

dA(w)
.= (2.51)
and deduce that
Scs _ (ﬂ)zn ! | >1 (2.52)
Scr  \wp 1+ wp Icos (n6'1)|
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where Scp and Scr, are slopes at cut-off, corresponding to the Butterworth filter and
the Low-Q filter respectively. Thus we can summarize that

(a) the magnitude response of a LQF is strictly monotonic, while that of the .
Butterworth filter is maximally flat.

(b) pole-frequency of the LQF is larger than that of the Butterworth filter.

(c) slope at cut-off of the Butterworth filter is larger than that of the LQF.

(d) critical pole-Q of the Butterworth filter is larger than that of the LQF.

Another case is when both filters have identical w, values, (i.e. wp = wr). It can

be shown that
Acs > Acr (2.53)

and also
bce > Ocr (2.54)

where fcp and fcp are, respectively, t;he critical angles of the Butterworth filter and

the Low-Q filter, respectively.

2.10.6 High-Q Filters(HQF)

High-Q filters are CPPF’s corresponding to 4, < 3m- This swings the CPP’s of the
Butterworth pole-phasors away from the w/4 axis in the second quadrant. Due to the
above condition, cos(n;) > 0 and the denominator expression of Eqn.(2.45) exhibits
maxima and minima at certain values of w. The magnitude response of HQF is thus

non-monotonic with a single peak occuring at w,, given by

wh g = wh cos(né)) (2.55)
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where wg is the pole-frequency of the HQF.
From Eqn.(2.45) and Eqn.(2.55) the corresponding peak squared magnitude can

be evaluated as
1

Ay = —— 2.56
mH sin2 (nel) ( )
which is independent of the pole-frequency.
The magnitude ratio in the pass-band for the HQF can be written as
Am
g = S22 (2.57)

where A g is the magnitude of the HQF response at cut-off. Similarly, the magnitude

ratio in the pass-band for the Butterworth filter is given by,
app = —— (2.58)

where A p is the magnitude of the Butterworth filter at cut-off, the peak magnitude
of the filter being unity. However, the peak-magnitude of the HQF is not unity. To
facilitate easy comparison, we can change the d.c. value of the HQF response to
{sin(nﬁ'l)}, so that the peak value of the response becomes unity for this case too.
Incorporating this normalization in Eqn.(2.45) the squared magnitude response of the
HQF can be derived as

wP sin?(né))

n — 2wy cos(nby)w™ + wiP (2.59)

A W) =

Analytically it can be shown that the stop-band response of the HQF is much
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better than that of the Butterworth filter and it can be deduced that
A2, < sin?(nf)) (2.60)

It can thus be summarized that

(2) the slope at cut-off of the HQF is larger than that of the Butterworth filter.

(b) pole-frequency of the HQF is smaller than that of the Butterworth filter, i.e.,
wg < Wp.

(c) critical-pole-Q of the HQF is larger than that of the Butterworth filter.

2.10.7 Implementation of Pole Parameter Transformation

The program for the implementation of the pole parameter transformations has been
written in MATLAB using the different built-in subroutines(Program A4). The pro-
gram consists of the following main steps.

1. A Butterworth ﬁltér of order n = 8 is first designed and its poles are plotted.

2. The magnitude function of the Butterworth filter is then obtained and plotted.

3. The poles of the filter are shifted by an angle of five degrees positive and
negative and the new magnitude function is obtained using Eqn.(2.45) for each of the
above case.

4. The magnitude function of the shifted pole filter is plotted and compared with
that of the original filter. '

5. For a positive five degree shift the magnitude function corresponded to a Low-Q
filter and for a negative five degree shift the magnitude function corresponded to a
High-Q filter.
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Program A4

%% BUTTERWORTH LOWPASS FILTER ( 1-D)
%% CPPF and effects of changing the phasor angle
%% Order of the filter
nl=8;

%% To obtain and plot the poles of the filter
i=1;

if rem(nl,2)==

for k1=(n1+2)/2 : (37n1)/2

al = cos(((2%k1)-1)*pi/(2°n1));
b1 = sin(((2%k1)-1)*pi/(2%n1));
s1(1,i)= al+j*b1;

t=t+1;

azis([-1 0 0 1 ]);
plot(al1,b1,’yo’);

hold on;

end

else

for kI=(n1+3)/2:((3%n1)+1)/2
al=cos((k1-1)*pi/nl);
bi=sin(((k1-1)*pi)/n1);
sI(1,i)= al+j*b1;

i=i+1;

ozis([-1 00 1 ]);
plot(al,b1,'yo’);

hold on;

end

end

title("Plot of poles of the Butterworth filter’);
zlabel(’Real azis’);
ylabel(’Imag.azis’);

grid on;

print -dps buttpole.ps;

s1 ’

%%%% To obtain the polar phasor
Mag_cp=abs(s1’);



ang_ cp=angle(s1’);
degree=180*ang_ cp/pi;

%%%% To display the polar phasor w.r.t quadrant-2
for kl1=1:n1

if degree(k1)>0

degree_ disp(k1)=180-degree(k1);

end

if degree(k1)<0

degree_ disp(k1)=-180-degree(k1);

end

end

degree_ disp’

%%%% To obtain the magnitude function for the butterworth filter B%% %%
Nmr=Mag_cp(1)~(2*nl);

Dnr(1,1)=1;

Dnr(1,n1)=-2*(Mag_ cp(1)~(n1))*cos(ni®ang_cp(1));
Dnr(1,2*n1)=Mag_cp(1)~(2%nl1);

cl=0;

for w=0:0.01:2

cl=cl+1;

Dnrval(c1)=(Dnr(1,1)*w~(2*n1)) + (Dnr(l,n1}*(w~ni})) + (Mag_cp(1)~(2%ni));
Mod(c1)=sqrt(Nmr/Dnrval(cl));

end

%% SHIFT of poles by theta = 5degrees

Jor k2=1:2:n1

new_deg _5(k2) = degree(k2) - 5;

new_deg 5(k2+1) = degree(k2+1) + 5;

end

ang_cp_5 = (new_deg__5)*pi/180;

%% To display the angle w.r.t. quadrant 2

Jor k3=1m1

if new_deg_5(k3)<0

new_deg_5_disp(k3)=-180 - new_deg_5(k3);

end

if new_deg5(k3)>0 .
new_deg 5_ disp()c.?):l 80 - new_deg_5(k3);

end
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end
new_deg_5_disp’

%% To obtain and plot the magnitude function after 5degshift
Nmr_5 = Mag_cp(1)~(2%n1);

Dnr_5(1,1) = 1;

Dnr_5(1,n1) = -2*(Mag_cp(1)~(n1})*cos(nl*ang_cp_5(1));
Dar_5(1,2"n1) = Mag_cp(1)~(2*n1);

cl = 0;

for w = 0:0.01:2

cl =cl+1;

Drnrval_5(cl)=(Dnr_5(1,1)*w"(2"n1)) + (Dar_5(1,n1)*(w"n1)) + (Mag_cp(1)~(2*n1));
Mod_ 5(cl)=sgrt(Nmr_5/Dnrval_5(cl));

end

%% SHIFT of poles by theta = -5 degrees

for k2=1:2n1

new_deg_m5(k2) = degree(k2) + 5 ;

new_deg_m5(k2+1) = degree(k2+1) - 5;

end

ang_cp_ms5 = new_deg_m5*pi/180;

%% To display the pole phasors w.r.t quadrant2

for k{=1m1

if new_deg m5(k4)<0

new_deg_m5_ disp(k{}=-180 - new_deg_m5(k{);

end

if new_deg_m&(k{)>0

new_deg_m5_ disp(k{)=180 - new_deg_m5(k{);

end

end

new_deg_m5_disp’

%% To obtain and plot the magnitude function after -Sdegshift
Nmr_m5 = (Mag_cp(1)~(2*nl))*((sin(nl®ang_cp_m5(1)))~2);
Dnr_m5(1,1) = 1;

Dnr_m5(1,n1} = -2*(Mag_ cp(1)~(n1))*cos(nl*ang_cp_m5(1));
Dnr_m5(1,2*n1) = Mag_cp(1)~(2*n1);

cl = 0;

for w = 0:0.01:2

cl =cl+1;
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Dnrval_mb5(cl)=(Dnr_m5(1,1)*w~(2*n1)) + (Dnr_m5(1,n1)*(w"nl1)) + (Mag_cp(1)~(2*n1)};
Moaod_mS5(cl)=sqrt(Nmr_m5/Dnrvel_m5(cl));

end

%% To plot the polar plot showing the shift in angle by 5degrees.

figure;

polar(ang_cp,Mag_ cp,'y*’);

hold on;

polar((ang_cp_ 5)'.Mag_cp,’'r+’);

hold on;
polar((ang_cp_m5)’,Mag_cp,’go’);
legend(’no shift’,’5deg shift’,’-5deg shift’);
print -dps polarp.ps;

%% End of program

The results are plotted and the respective plots are shown.
Figs.(2.19(a) and (b)) show the pole placement in the different axis domains and
Fig.(2.20) shows a comparative study of the magnitude responses.

The results have been summarized in Table(2.3)

| Filters : Pole shift( in degrees) | w,(rad) 6, (degrees) | Q.
LQF : 6y =5° 1.0785 | 16.25° 28.75° 61.25° 73.75° | 1.7868
HQF : §y = —5° 0.9580 | 6.25° 38.75° 51.25° 83.75° | 4.59270

Table 2.3: Summary of the results obtained due to the analysis of the pole parameter
transformation filters.

The above method of pole-parameter transformation can be readily extended to
the 2-D case as it is a simple and straight forward extension of the 1-D case, the

magnitude functions being product separable.
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(a) Plot of poles of the Butterworth filter
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Figure 2.19: (a) Polar plot for 1-D filter of order n = 8. (b) Shifting of the poles by
+5°.
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Figure 2.20: Magnitude response of the CPP filters : comparitive study

2.10.8 Two-dimensional CPPF

With the above review in 1-D, we shall extend the same to the construction of com-
plementary pole-pair filters to the 2-D case also. In this case, the 2-D CPPF is simply
obtained as a product of two cascaded 1-D filters as an independent product. This
means that variation of pole parameters in each dimension is independent too.

For the sake of simplicity in performing arithematic calculations, the concept of
2-D CPPF has been studied using the same transfer function that was used in the
first program in this chapter(Program Al). The transfer function used in that case
is taken and the roots are determined as follows.

Let Ti(sy) = m where g;(s1) is a third order butterworth polynomial
given by

g1(s1) = s? +2s? + 251 +1 and fi(s1) = &;.
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Similarly for g,(s2) and f2(s;) in the second dimension, the expressions to obtain
T>(s2) are given by

g2(s2) = s3 + 253 + 25, + 1 and fo(s;) = ko.

The above transfer function gives two complex poles on the 2" and 3¢ quadrant
respectively forming angles of +60° and —60° respectively with the X-axis in the
negative direction. The value of £ = k; = k, is chosen as the optimum value for
circular symmetry as was derived from Program A3. It has thus been chosen to be
—0.3 and the poles (P,) are determined based on the transfer function that includes
the above value of k.

The poles are then shifted by an angle +5° as shown in Fig.(2.21), giving rise
to two different pole-pairs (P1’, P2') and (P1”, Py'), making angles of +65°and +55°

respectively with the negative real axis.

65 -~
o
-55 R4
- "
65 ”' L
S
.
nto ”
3
;
’
pp P2

Figure 2.21: Shift of poles by angle of 3-5° for the two independent transfer functions.
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The poles for these angles are then calculated and the transfer function is deter-
mined. The optimum range of %, for stability, for these two transfer functions is found
to be

(a) For positive shift in pole of 5° (away from each other) : —1 < k£ < 1.7279

(b) For negative shift in pole of 5°(towards each other) : —1 < k¥ < —0.6689

From the above results the optimum value of & for circular symmetry is determined
using Program A2 and Program A3 and it is thus found that for & = —0.48, the
positive pole shift of 5°, exhibits circular symmetry and for £k = —0.67, the negative
pole shift of 59, exhibits circular symmetry. ‘

The Program for the 2-D case follows the same pattern as the 1-D case and
therefore has not been shown. Fig.(2.22(a) and (b)) show the 2-D filter response
before any pole parameter transformation has been applied to it.

Fig.(2.23(a)-(e)) show the 2-D filter response after a pole shift of +5° has been
applied to it. Applying Program A3 to these responses(Fig.(2.24(a)-(e)), it has been
found that at £ = —0.48, it exhibits near circular symmetry for the magnitude range
0.49 < Mag < 0.51. This has been shown only for this case, as an illustration. The
same procedure has however been used in determining the value of k& for all the cases
of pole shifts discussed in this section.

Fig.(2.25(a)-(e)) show the the 2-D filter response after a pole shift of —5° has been
applied to it. Here it is seen that near circular symmetry has been obtained at a value
of k = —0.67.

For both positive and negative pole-parameter shifting, it has been found that
circular symmetry can still be achieved within the optimum stability range for k.

The same can be achieved for different values of 8,, i.e., for different values of shift

83



in the angle and therefore different values of k. The plots that follow show the above
simulation for values of 4, = £3°, &7°.

Fig.(2.26(a)-(e)) show the the 2-D filter response after a pole shift of +3° has been
applied to it. Here it is seen that near circular symmetry has been obtained at a value
of £k = —0.08.

Fig.(2.27(a)-(e)) show the the 2-D filter response after a pole shift of —3° has been
applied to it. Here it is seen that near circular symmetry has been obtained at a value

of £ = —0.04.
Fig.(2.28(a)-(e)) show the the 2-D filter response after a pole shift of +7° has been

applied to it. Here it is seen that near circular symmetry has been obtained at a value

of k = —-0.2.
Fig.(2.29(a)-(e)) show the the 2-D filter response after a pole shift of —7° has been

applied to it. Here it is seen that near circular symmetry is not a possibilty in any

magnitude range.
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(a) Mesh plot before transformation for k=-0.3
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Figure 2.22: 2-D CPPF before pole parameter transformation showing near circular
symmetry at k = k; = k; = —0.3. (a) Magnitude Plot (b) Contour Plot
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(a)Plot after pole-shift of +5deg and k=-0.8 (b)Plot after pole shift of +5deg and k=-0.6

1
(e)Plot after pole shift of +5deg and k=-0.2
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Figure 2.23: 2-D CPPF after pole parameter transformation of §, = +5° showing
near circular symmetry at &k = k; = k;, = —0.48.
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(a) Plot showrng extent of circ. symmetry at k=-0.8 (b)Plot showmg extent of circ. symmetry at k..—o 6
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Figure 2.24: Plots to illustrate the extent of circular symmetry obtained after shifting
the poles of the original transfer function by +5°.
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(a)Plot after pole shift of -5deg and k=~0.98 (b)Plat after pole shift of -5deg and k=-0.90
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(d)Plot after pole shift of -Sdeg and k=-0.76 -5deg and k=-0.67
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Figure 2.25: 2-D CPPF after pole parameter transformation of 6, = —5° showing
near circular symmetry at & = k; = ky = —0.67.

88



(a)Piot after pole-shift by +3deg and k=-0.6

(b)Plot after pole-shift by +3deg and k=-0.2
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(c)Piot after pole—shift by +3deg and k=-0.08
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Figure 2.26: 2-D CPPF after pole parameter transformation of 6, =

near circular symmetry at k£ = k; = k, = —0.08.
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(a)Plot after pole—shift by -3deg and k=-0.6

(b)Plot after pole-shift by -3deg and k=-0.2
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(c)Plot after pole-shift by —3deg and k=-0.04
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Figure 2.27: 2-D CPPF after pole parameter transformation of §, = —3° showing
near circular symmetry at k£ = k; = ko, = —0.04.

90



(a)Plot after pole-shift by +7deg and k=-0.6 (b)Plot after pole-shift by +7deg and k=-0.4
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Figure 2.28: 2-D CPPF after pole parameter transformation of 8, = +7° showing
near circular symmetry at & = k; = k; = 0.18.
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Figure 2.29: 2-D CPPF after pole parameter transformation of 8, = —7°. It is noted
that there is clearly no circular symmetry in this case.
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As it can be seen, for different values of angular shift in the complex poles in each
of the cases, the value of k also shifts correspondingly for near circular symmetry.
However, with greater increase in the value of the angular shift it can be seen that
the filter loses its circular symmetry within the stable region of k, .i.e., comparing the
circular symmetric characteristic for 6, = +3°, +5°and + 7°, it can be easily deduced
that for §, = £7° the circular symmetric property reduces considerably and shifts
towards the outer limits of k.

Table (2.4) summarizes the results for the six cases that has been discussed.

| Angular Shift(in degrees) | Stability range of k | Value of & for circular symmetry
6, =— -1 <k<-0.7134 No value
6, =-5 ~1 <k < —0.6689 | k=-0.6700(approx. outer limit)
6, = -3 -1 <k <6.7056 k=+0.0400
fo = +3 -1 <k <4.9936 k=-0.0800
6, = +5 —1 <k <1.7277 | k=-0.4800(approx. outer limit)
0, = +7 —1<k<0.0189 k=+0.1800 (outer Limit)

Table 2.4: Summary of the results achieved due to different values of angular shift
in the complex poles and their corresponding values of k for circular symmetry. The
range of magnitude chosen for all the above cases is 0.49<Mag<0.51.

2.10.9 Summary and Discussion

In summary, this chapter has shown in detail the approximation to circular symmetry
that can be achieved in stable, 2-D Lowpass transfer functions, starting from, two 1-D
transfer functions. The study has been done using both Butterworth and Chebyshev
transfer functions. Another interesting aspect of filter design namely the effect of pole
parameter transformation on circular symmetry has been studied in the 2-D case and
the results have been shown.

In the study of Butterworth filters, extensive simulations have been done for the
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third order filter and results have been plotted. An algorithm to determine the extent
of circular symmetry in specific magnitude ranges has been written and this has been
used in all the above cases, as a tool to determine the range and value of the feedback
factor £ for circular symmetry for each of the above cases. It has been found from
the results obtained that, circular symmetry varies with the the value of k, within
stability limits. Specific magnitude ranges has been chosen for all the cases, so as to
be consistent with the comparative study.

In the Chebyshev study, it has been proved that the value of & for circular sym-
metry, varies as a function of ripple width €. For the same order and different value
of ripple width, results have been plotted and tabulated.

The effect of pole-parameter transformation on circular symmetry has been studied
with six different cases of pole-parameter transformation and the results have been
tabulated. It has been proved from the results that, the greater the deviation from
the original poles of the transfer functions, the smaller the value of k for stability and
thus circular symmetry.

Thus, in this Thesis, this chapter is an important work towards the study of 2-D

near circular symmetric filters possessing separable denominator transfer functions.
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Chapter 3

Generation of Stable 2-D Bandpass,
Bandstop and Highpass Filters and
their Approximation to Circular

Symmetry

The previous chapter dealt with the implementation of 2-D Lowpass Filter design only.
In this chapter, the implementation of other types of filters namely Highpass filter, ~
Bandpass filter and Bandstop filter and their approximation to circular symmetry

will be discussed. We will restrict our discussion, in this chapter, to the Butterworth

filter design only.
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3.1 Bandpass Filter

Bandpass filters have a specific band or range of frequencies above and below which
they attenuate signals. Thus, very low and very high frequency components of a
signal are attenuated and the signals within the specified pass-band range possess a
high gain.

The design of 2-D IIR Butterworth Bandpass filter is carried out in the same man-
ner as the Lowpass design, in principle, by first designing the 1-D Butterworth filter
and then combining two similar 1-D transfer functions as a product. The code has
been written using MATLAB (Program B1) using the different built-in subroutines to
achieve the filter specifications. The following procedure has been adopted to design
the filter:

(1) The required specifications namely the order of the filter (V) and the upper
and lower pass-band edges (W, ), as a 1x2 matrix, are first defined. The filter chosen
in this case has an analog cut-off frequency of [0.3, 1] and is of the fourth order.

(2) The numerator and denominator polynomials of the analog transfer function
are determined using the MATLAB function ‘butter” for the Bandpass filter design.
This gives the transfer function for the FIR filter.

In this case, the fourth order Bandpass transfer function(1D) is given by

0.2401s*
Hp[R(s) = (3.1)

(s® + 1.829257 + 2.87305° + 2.54265° + 1.7839s*

+
0.7628s® + 0.258652 + 0.0494s + 0.0081)

Having determined the numerator and denominator polynomials for the analog

transfer function of the FIR filter, the IIR filter transfer function (1D) is then deter-
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mined, as from Eqn.(2.19). This is given by

0.2401s*
H[IR(S) = (32)

(s® + 1.8292s7 + 2.873055 + 2.54265° + (1.7839 + 0.2401k)s*

+
0.7628s® + 0.258652 + 0.0494s + 0.0081)

Now in order for Eqn.(3.2) to be stable, the range of k needs to be determined.

Following the same method suggested in Chapter-2 and from Eqn.(2.20) we have

m(s) +mi(s) _ s® + 2.8730s5 4 (1.7839 + 0.2401k)s* + 0.258652 + 0.0081

3
n(s) 1.8292s7 + 2.54265° + 0.7628s3 + 0.0494s (33)

Now Eqn.(3.3) can be split into partial fractions as follows:

K5+ 3 Kis Ko _ s® +2.8730s% + (1.7839 + 0.2401k)s* + 0.2586s2 + 0.0081
T2 B2 s 1.82925s(s2 + 1.0002)(s2 + 0.3)(s2 + 0.09)

(3-4)
where f; = 1.0002, > = 0.3, B3 = 0.09 are the roots of the denominator of Eqn.(3.3).
For Eqn.(3.4) to be a strictly Hurwitz polynomial, K; > 0.
Therefore, we find the values of K; such that K; > 0 and from the equations
obtained, we find the range of k for stability.
From Eqn.(3.4), we have the following equations from which we determine the

range of k.
0.0081

0= 1.8292

s8 +2.8730s% + (1.7839 + 0.2401k)s* + 0.2586s2 + 0.0081
1.829252(s2 + 0.3)(s% + 0.09)

>0 (3.5)

K, = | s =1.0002 >0

(3-6)
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s® +2.8730s° + (1.7839 + 0.2401k)s* + 0.2586s2 + 0.0081 , ,
K2 = l ss=03 >0
1.829252(s2 + 1.0002)(s? + 0.09) '
(3.7)
8 6 4 2
Ky=? +2.8730s° + (1.7839 + 0.2401k)s* + 0.2586s% + 0.0081 |s2=009 >0
1.829252%(s? + 1.0002)(s2 + 0.3)
(3:8)

Solving the Eqns.(3.6), (3.7) and (3.8), we have the following ranges of &k respectively,
for which Eqn.(3.2) is stable.

k < 1.4169,k > —1.0048, k < 1.3684 (3.9)
Thus, the resultant range of k for which Eqn.(3.2) is stable is given by
—1.0048 < k£ < 1.3684 (3.10)

(3) Bilinear transformation is then performed to determine the digital counter
part. This is done using the MATLAB function “bilinear”. Refer to Program B2.

(4) Now we have the digital transfer function of the 1-D filter. The same procedure
as above, is extended to the second dimension and the transfer function for the second
dimension is obtained independently.

(5) The product of the two 1-D polynomials is then determined.

(6) A general subroutine suitable for any order of the filter has been written to
determine the frequency response of the 2-D filter. Refer Program B2. The corre-
sponding contour plots are plotted using the MATLAB function “contour”.

The MATLAB program namely, Program Bl and B2 have been written for the

Bandpass filter specifications given by
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Wal=W,2 | N1 = N2

[0.3 1] 4

All frequencies are in radians. The scripts 1 and 2 refer to the first and second
dimensions, respectively.

Program B1

%% 2D-BANDPASS BUTTERWORTH FILTER
clear all;

close all;

Ni=4;

Wn1=[0.3 1];

N2=NI;

Wn2=Wni;

[B1,A1] = butter(N1,Wnl,’s’);
[B2,A2] = butter(N2,Wn2,’s’);
for k1=-1.0:0.1:1.36
2z=garg_rama_mag(B1,Al,k1);
lim=pi;

interval=pi/50;
wl=0:interval:lim;
w2=_0:interval:lim;

[wwl, ww2]=meshgrid(wl,w2);
figure;

contour(wwl,ww2,zz);
azis(’image’);

zlabel(*w1’);

ylabel('w2’);

zlabel(’Magnitude Response’};
title(’2-D Butterworth BPF’);
grid on;

print -dps bandpasscont.ps;

end

Program B2

%% Function to determine the transfer function of the filter for
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%% a given kl1,k2

Junction [zz] = garg_rama_mag(B1,AL,k1);
k2=k1;

B2=B1;

[R C]=size(Al);

A1((C+1)/2) = AI((C+1)/2) + k1*BI1((C+1)/2);
A2=Al1;

%% Bilinear transformation of the transfer function
[N1,D1]=bilinear(B1,Al,1);
[N2,D2[=bilinear(B2,A2,1);

%% To determine the 2-D transfer function of the IIR Filter
for m=1:1:size(N1,2)

for n=1:1:size(N2,2)

N(m,n)= NI1{(m)*N2(n);

end

end

for m=1:1:size(D1,2)

for n=1:1:size(D2,2)

D(m,n)= DI1(m)*D2(n);

end

end

lim=pi;

interval=pi/50;

cl=0;

for w1l = O:interval:lim

c2=0;

cl=cl+1;

for w2 = QO:interval:lim

c2=c2+1;

for col=1:1:size(N2,2)

NRow(1,col)=(cos(w2) + j *sin(w2))~(size(N2,2)-col);
end

for row=1:1:size(N2,2)

NCol(row,1)=(cos(wl) + j *sin(wl))~(size(N1,2)-row);

end
NR = NRow * N’ * NCol;
a=real(NR);
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=imag(NR);
for col=1:1:size(D2,2)
DRow(l,col)=(cos(w2) + j *sin(w2))~(size(D2,2)-col};
end
for row=1:1:size(D2,2)
DCol(row,1)=(cos(wl) + j *sin(wl))~(size(D1,2)-row);
end
DR = DRow * D' * DCol;
c=real(DR); d=imag(DR);
MOD(cl,c2) = (sqrt((a*c + b*d)~2 + (b*c - a*d)~2))/(c"2+d"2);
end
end
wl=0:interval:lim; w2=0:interval:lim;
[wwl, ww2]=meshgrid(wl,w2);
2z=MOD/(maz(maz(MOD)));
%% End of Program

The results of the algorithm, namely the contour plots for the first quadrant are
shown in Fig.(3.1(a)-(e)). A large number of plots for all possible values of k& within
the stability ranges were plotted. Only the plots of interest have been shown. As it
can be seen from the these plots, there is a certain range of k£ for which near circular
symmetry is exhibited in the frequency response for specific magnitude ranges. From
Section 2.8 using Program A3 the extent of circular symmetry is determined for the
above responses and the optimum value of k for which we have the closest proximity
to circular symmetry is determined.

The plots in Fig.(3.2) show the extent of circular symmetry for the responses
shown in Fig.(3.1). The plot for ¥ = —1.36 is not shown since there are no points
within this magnitude range which approximate to circular symmetry.

It is evident from the above plots that at k¥ = —0.14, the response exhibits near
circular symmetry and for other values of k above and below the value —0.14, circular

symmetry gradually ceases to exist.
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(a) 2-D lIR BPF for k=-1.0 (b) 2-D IIR BPF for k=—0.4
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(c) 2-D IIR BPF for k=-0.14
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(d) 2-D IIR BPF for k=-0.1 (e) 2-D lIR BPF for k=1.36

2 n i " i L L i M N
oS as a7 a8 09 1 1.1 12 a3 0.4 as -] Q7 aa 09 1
wi 'l

Figure 3.1: 2-D IIR Butterworth Bandpass filter of 4t order - contour plots.
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(a)Plot showing extent of circ.symmetry at k=—1.0 (b)Plot showing extent of circ.symmetry at k=-0.4
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c)Plot showing extent of circ.symmetry at k=-0.14 (d)Plot showing extent of circ.symmetry at k=-0.1
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Figure 3.2: Plots to show the extent of circular symmetry of the responses shown in
Fig.(3.1). The magnitude range under consideration is 0.8<Mag<1.
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3.2 Bandstop Filter

Bandstop filters have a specific band or range of frequencies within which they atten-
uate signals. Thus, very low and very high frequency components of signals have a
high gain and the signals within the specified attenuation range have very low gain.

The design of 2-D IIR Butterworth Bandstop filter is carried out in the same
manner as the Bandpass design, in principle, by first designing the 1-D Butterworth
filter and then combining two similar 1-D transfer functions as a product. The code
has been written using MATLAB(Program B3) using the different built-in subroutines
to achieve the filter specifications. The following procedure has been adopted to design
the filter:

(1) In this case, the required specifications namely the order of the filter N and
the upper and lower pass-band edges (W), as a 1x2 matrix, are first defined. The
filter chosen has an analog cut-off frequency of [0.3, 1] and is of the fourth order. This
means that frequencies beyond this range have high gain.

(2) The numerator and denominator polynomials of the analog transfer functions
are determined using the MATLAB function “butter” for the Bandstop filter design.
This gives the transfer function for the FIR filter. |

In this case, the 4** order Bandstop transfer function (1D) is given by

8 6 4 2
Hirr(s) = 5% +1.2s° 4 0.54s* + 0.1080s“ + 0.0081 (3.11)

(s® + 1.829257 + 2.8730s° + 2.54265° + 1.7839s*+

0.7628s% + 0.258652 + 0.0494s + 0.0081)

Having determined the numerator and denominator polynomials for the analog

transfer function of the FIR filter, the IIR filter transfer function(1D) is then deter-
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mined, as from Eqn.(2.19). This is given by

s8 +1.25% + 0.54s* + 0.108s2 + 0.0081
Hirr(s) = (3.12)

(s® +1.829257 + 2.8730s°% + 2.54265° + 1.7839s%+

0.7628s° + 0.258652 + 0.0494s + 0.0081+
k(s® 4+ 1.2 + 0.54s* + 0.108s% + 0.0081))

Now for Eqn.(3.12) to be stable, the range of k needs to be determined. Following

the same method suggested in Chapter- 2 and from Eqn.(2.20) we have

(s® + 2.8730s® + 1.7839s* + 0.25865% + 0.0081+

m(s) +ma(s) k(s® + 1.25% + 0.54s* + 0.108s% + 0.0081)) 513
m(s)  1.8292s7 + 2.542655 + 0.76285 + 0.0494s (3.13)
Now Eqn.(3.13) can be split into partial fractions as follows
(s8 + 2.8730s% + 1.7839s* + 0.25865% + 0.0081+
K; K k(s® + 1.25% + 0.54s* + 0.108s® 4- 0.0081))
Kaos+3 e+ =2 = . ’ (3.14)
TS24+ B¢ s 1.82925(s? + 1.0002)(s2 + 0.3)(s? + 0.09)

where B; = 1.0002, B2 = 0.3, B3 = 0.09 are the roots of the denominator of
Eqn.(3.13).

For Eqn.(3.14) to be a strictly Hurwitz polynomial, K; > 0.

Therefore we find the values of Kj; such that K; > 0 and from the equations
obtained, we find the range of £ for stability.

From Eqn.(3.14), we have the following equations from which we determine the
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range of k.
_0.0081(1 +k)

_ 3.15
Ko Ta202 0 (3-13)

(s® + 2.8730s° + 1.7839s* + 0.25865% + 0.0081+
k(s® + 1.2s% + 0.54s* + 0.108s* + 0.0081))

= 2-1.0002 >0 (3.16
K 1.829252(s2 + 0.3)(s2 + 0.09) s (3.16)
(s® + 2.8730s° + 1.7839s* + 0.25865° + 0.0081+
k(s® +1.2s% +0.545* + 0.108s% + 0.0081)) 2 03 >0 517
K, = =03 > .
2 1.829252(s2 + 1.0002)(s? + 0.09) s (3.17)
(s® + 2.8730s% + 1.7839s* + 0.258652 + 0.0081+
k(s® +1.25% + 0.545* + 0.108s2 + 0.0081))
K3 = |s2=0.09 >0 (3.18)

1.829252(s2 + 1.0002)(s? + 0.3)

Solving the Eqns.(3.15), (3.16), (3.17) and (3.18), we have following ranges of k

respectively, for which Eqn.(3.12) is stable.
—1 < k < o0, norange, k < 1.4138, k < 1.3685 (3.19)
Thus, the resultant range of k for which Eqn.(3.12) is stable is given by
-1 < k <1.3685 (3.20)

(3) Bilinear transformation is then performed to determine the digital counterpart.
This is done using the MATLAB function ‘bilinear”. Refer to Program B4.
(4) Now we have the digital transfer function of the 1-D filter. The same procedure

as above is extended to the second dimension and the transfer function for the second
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dimension is obtained independently.

(5) The product of the two 1-D polynomials is determined.

(6) A general subroutine, suitable for any order of the filter has been written to
determine the frequency response of the 2-D filter. Refer Program B4. The corre-
sponding contour plots are plotted using the MAT LAB function “contour”.

The MATLAB program namely, Program B3 and B4 has been written for the

Bandstop filter specifications given by

Wal=W,2 | N1 =N2

[0.3 1] 4

All frequencies are in radians. The scripts 1 and 2 refer to the first and second

dimensions respectively.

Program B3

%% 2D-BAND-STOP BUTTERWORTH FILTER
clear all;

close all;

Ni=4;

Wni1=[0.3 1];

N2=NI;

Wn2=Wnli;

[B1,A1] = butter(N1,Wnl,’stop’,’s’);
[B2,A2] = butter(N2,Wn2,’stop’,’s’);
for k1=-1.0:0.1:1.36
zz=garg_rama_mag(B1,AL,kl);
lim=ps;

interval=pi/50;

wl=0:interval:lim;
w2=0:interval:lim;
[wwl,ww2]=meshgrid(wl,w2);

figure;

contour(ww!,ww2,zz);
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azis(’image’);

zlabel(’w1’);

ylabel("w2’);
zlabel(’Magnitude Response’);
title(’2-D Butterworth BPF’);
grid on;

print -dps bandstopcont.ps;

end

Program B4

%% Function to determine the transfer function of the filter for
%% o given kl1,k2

function [zz] = garg_rama_mag(B1,Al1,k1);

k2=kl;

B2=BI1;

[R C]=size(Al);

for t=0: 2:C-1

A1(C-t) = A1(C-t) + k1*BI(C-t);

end

A2=A1;

%% Bilinear transformation of the transfer function
[N1,D1]=bilinear(B1,A1,1);
[N2,D2]=bilinear(B2,A2,1);

%% To determine the 2-D transfer function of the IIR Filter
for m=1:1:size(N1,2)

Jor n=1:1:size(N2,2)

N(m,n)= N1(m)*N2(n);

end

end

for m=1:1:size(D1,2)

Jor n=1:1:size(D2,2)

D(m,n)= D1(m}*D2(n);

end

end

lim=ps;

interval=pi/50;

clI=0;
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for wi = O:interval:lim

c2=0;

cl=cl+1;

for w2 = O:interval:lim

c2=c2-+1;

for col=1:1:size(N2,2)

NRow(1,col)=(cos(w2) + j *sin(w2))~(size(N2,2)-col);
end

for row=1:1:size(N2,2)

NCol(row,1)=(cos(wl) + j *sin(wl)) ~(size(N1,2)-row);

end
NR = NRow * N' * NCol;
a=real(NR);

b=imag(NR);

for col=1:1:size(D2,2)

DRow(1,col)=(cos(w2) + j *sin(w2)) ~(size(D2,2)-col);
end

for row=1:1:size(D2,2)

DColfrow,1)=(cos(wl) + j *sin(wl))~(size(D1,2)-row);

end
DR = DRow * D' * DCol;
c=real(DR);
=imag(DR);
MOD(cl1,c2) = (sqrt((a*c + b*d)~2 + (b%c - a*d)~2))/(c~2+d"~2);
end
end

wl=0:interval:lim;
w2=0:interval:lim;
[wwl,ww2|=meshgrid(wl,w2);
zz=MOD/(maz(maz(M0D)));
%% End of Program
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The results of the algorithm namely the contour plots for the first quadrant are as
shown in Fig.(3.3(a)-(e)). A large number of plots for all possible values of ¥ within
the stability ranges were plotted. Only the plots of interest have been shown. As it
can be seen from Fig.(3.3), there is a certain range of £ for which circular symmetry
is exhibited in the frequency response for specific magnitude ranges. From Section
2.8, using Program A3, the extent of circular symmetry is determined for the above
responses and the optimum value of k for which we have the closest proximity to
circular symmetry is determined.

The plots in Fig.(3.4) show the extent of circular symmetry for the responses
shown in Fig.(3.3). The plot for ¥ = 1.36 is not shown since there are no points
within this magnitude range which approximate to circular symmetry.

It is evident from the above plots that at £ = —0.40, the response exhibits near
circular symmetry and for other values of £ above and below —0.40, the circular
symmetry gradually ceases to exist. For the above study of Bandstop filter, near-
circular symmetry has been considered for both the lower and upper pass-band in

order to evaluate the optimum value of k.
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3.3 Highpass Filter

Highpass filters have a specific value of frequency above which they allow signals.
Thus, low frequency components of signal are attenuated and the signals above the
specified range have a high gain.

The design of 2-D IIR Butterworth Highpass filter is carried out in the same
manner as the Lowpass design, in principle, by first designing the 1-D Butterworth
filter and then combining two similar 1-D transfer functions as a product. The code
has been written using MATLAB(Program B5) using the various built-in subroutines,
to achieve the filter specifications. The following procedure has been adopted to design
the filter:

(1) The required specifications namely the pass-band edge(W;) and the order of
the filter N are first defined. The filter chosen has an analog cut-off frequency of [0.3]
and it has been chosen to be of the fourth order.

(2) The numerator and denominator polynomials of the analog transfer functions
are determined using the MATLAB function “butter” for the Highpass filter design.
This gives the transfer function for the FIR filter.

In this case, the 4t® order Highpass transfer function(1D) is given by

34

H =
rrr(S) = 7170783955 + 0.307352 + 0.07065 + 0.0081

(3.21)

Having determined the numerator and denominator polynomials for the analog trans-

fer function of the FIR filter, the IIR filter transfer function(1D) is then determined,
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as from Eqn.(2.19). This is given by

st

Hrrr(s) = s*(L + k) + 0.7839s3 + 0.3073s2 + 0.0706s + 0.0081

(3.22)

Now for Eqn.(3.22) to be stable, the range of k needs to be determined. Following

the same method suggested in Chapter-2 and from Eqn.(2.20) we have

m(s) + mi(s) _ s*(1+k) +0.3073s* + 0.0081

= 2
n(s) 0.78395% + 0.07065s (3.23)
Now Eqn.(3.33) can be split into partial fractions as follows :
Ki K 4 0. 2 . 1
Kops + 3 o 420 =2 (1 + k) +0.3073s + 0.008 (3.24)

s+ pE s 0.7839s(s2 + 0.0901)

where B; = 0.0901 is the root of the denominator polynomial of Eqn.(3.23).

For Eqn.(3.24) to be a strictly Hurwitz polynomial, K; > 0.

Therefore, we find the values of K; such that K; > 0 and from the equations
obtained, we find the range of k for stability.

From Eqn.(3.24) we have the following equations from which we determine the

range of k.
0.0081
0= T899 >0 (3.25)
Ko=1+k>0 (3.26)

_sf14+E)+ 0.3073s2 + 0.0081

2 _
578357 | s =0.0901 >0 (3.27)

K

Solving the Eqns.(3.26) and (3.27), we have the following ranges of k, for which

114



Eqn.(3.22) is stable
—l<k<oo, k<1.4134 (3.28)

Thus, the resultant range of & for which Eqn.(3.22) is stable is given by

—-1<k<14134 (3.29)

(3) Bilinear transformation is then performed to determine the digital counterpart.
This is done using the MATLAB function “bilinear”. Refer to Program B6.

(4) Now we have the digital transfer function of the 1-D filter. The same procedure
as above, is extended to the second dimension and the transfer function for the second
dimension is obtained independently.

(5) The product of the two 1-D polynomials is determined.

(6) A general subroutine suitable for any order of the filter was written to deter-
mine the frequency response of the 2-D filter. Refer Program B32. The corresponding
contour plots are plotted using the matlab function “contour”.

The MATLAB program namely, Program B5 and B6 has been written for the

Highpass filter specifications given by

Wal=W,2 | N1=N2

[0.3] 4

All frequencies are in radians. The scripts 1 and 2 refer to the first and second

dimensions respectively.
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Program B5

%% 2D-HIGHPASS BUTTERWORTH FILTER
clear all;

close all;

Ni={;

Wn1=[{0.3 |;

N2=N1;

Wn2=Wni;

[B1,A1] = butter(N1,Wnl,’high’,’s’);
[B2,A2] = butter(N2,Wn2,’high’,’s’);
for k1=-1.0:0.1:1.4
zz=garg_rama_mag(B1,Al1,kl);
lim=p1;

intervel=pi/50;

wl=0:interval:lim;
w2=0:interval:lim;
[wwl,ww2][=meshgrid(wl,w2);

figure;

contour(wwl, ww2,zz);

azis(’image’);

zlabel('wl’);

ylabel('w2’);

zlabel(’Magnitude Response’);
title(’2-D Butterworth BPF’);

grid on;

print -dps highpasscont.ps;

end

Program B6

%% Function to determine the transfer function of the filter for
%% a given kl1,k2

function [zz] = garg_rama_ mag(B1,Al,k1);

k2=kl1;

B2=B1;

[R Cl=size(Al);

AL(1) = AI(1) + kI*BI(1);

A2=AI1;
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%% Bilinear transformation of the transfer function
[N1,D1]=bilinear(B1,A1,1);
[N2,D2]=bilinear(B2,A2,1);

%% To determine the 2-D transfer function of the IIR Filter
for m=1:1:size(N1,2)

for n=1:1:s1ze(N2,2)

N(m,n)= NI(m)}*N2(n);

end

end

for m=1:1:size(D1,2)

for n=1:1:size(D2,2)

D(m,n)= DI1(m)*D2(n);

end

end

lim=ps;

interval=pi/50;

cl=0;

for wl = O:interval:lim

c2=0;

cl=cl+1;

for w2 = O:interval:lim

c2=c2+1;

for col=1:1:size(N2,2)

NRow(!,col)=(cos(w2) + j *sin(w2)) ~(size(N2,2)-col);
end

for row=1:1:size(N2,2)

NCol(row,1)=(cos(wl) + j *sin(wl))~(size(N1,2)-row);

end
NR = NRow * N’ * NCol;
a=real(NR);

b=imag(NR);

for col=1:1:size(D2,2)

DRow(1,col)=(cos(w2) + j *sin(w2))~(size(D2,2)-col);
end

for row=1:1:size(D2,2)

DCol(row,1)=(cos(wl) + j *sin(wl))"(size(D1,2)-row};

end
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DR = DRow * D’ * DCol;

c=real(DR); d=tmag(DR);

MOD(c1,c2) = (sqrt((a*c + b*d}~2 + (b*c - a*d)~2})/(c~2+d~2);
end

end

wl=0:tnterval:lim; w2=0:interval:lim;
[wwl,ww2]=meshgrid(wl,w2);

2z=MOD/(maz(maz(MOD)));

%% End of Program

The results of the algorithm namely, the contour plots for the first quadrant are as
shown in Fig.(3.5(a)-(e)). A large number of plots for all possible values of £ within
the stability ranges were plotted. Only the plots of interest have been shown. As
it can be seen from the above plots, there is a certain range of k for which circular
symmetry is exhibited in the frequency response for specific magnitude ranges. From
Section 2.8 using Algorithm A3, the extent of circular symmetry is determined for the
above responses and the optimum value of & for which we have the closest proximity
to circular symmetry is determined.

The plots in Fig.(3.6) show the extent of circular symmetry for the responses shown
in Fig.(3.5). The plot for £ = 1.4 has not been shown since there are no values that
exhibit near-circular symmetry within the chosen magnitude range. It is evident from
the above plots that at k = —0.8, the response exhibits near circular symmetry and
for other values of k& above and below —0.8, the circular symmetry gradually ceases
to exist. However, it is noted that, specifically for a Highpass filter, since the pass-
band range extends to infinity, it is really not possible to define a circular symmetric
response all over the pass-band. In this section, strictly, near-circular symmetry has

been demonstrated in the transition band.
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Figure 3.5: 2-D IIR Butterworth Highpass Filter of 4th order-contour plots.
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Figure 3.6: Plots to show the extent of circular symmetry of the responses shown in
Fig.(3.5). The magnitude range under consideration is 0.45<Mag<0.55.
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3.4 Summary and Discussion

This chapter has dealt with the 'design of 2-D Bandpass, Bandstop and Highpass IIR
Butterworth filters and their approximation to circular symmetry within stability
limits.

For the Bandpass filter, near circular symmetry has been obtained corresponding
to a single quadrant of the filter response. This is because the Bandpass response is
obviously a closed response within a quadrant, and circular symmetry in one quadrant
means corresponding symmetry in all the four quadrants.

For the Bandstop filter, near circular symmetry can be seen in the two transition
regions(lower and upper) and depending on the requirement, the study can be ex-
tended to a more specific region. Here too, the example shown takes into account the
circular symmetry for both these regions of interest. In the lower transition region
and below, circular symmetry study can be extended due to the response from all the
four quadrants. The upper transition band and higher., however extend to infinity and
therefore, this study can only be restricted to the lower part of the upper transition
region.

For the Highpass filter, however, as has been mentioned before, the circular sym-
metry study can only be studied in the lower transition region due to the infinite
bound of the pass-band region.

In general, from the results obtained from above, it can be seen that near circular
symmetry has been obtained in certain frequency ranges for a particular value of a
magnitude range. Depending on the required application, it is possible to change the
specification in such a manner that circular symmetry for a different magnitude range

can be studied and analysed.
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Chapter 4

Combination Filters

Certain applications require specific types of symmetric response which may be uniquely
obtained by combination of two or more filters of the same or different kind. This
has been carried out before in different ways in 1-D analysis. This chapter deals with
such types of combination filters, extended to the second dimension. In this chapter,
it will be shown that transfer functions of one or more filters can be arithmetically
added and/or subtracted to achieve a specific type of response. It is also intended
here to study the extent of circular symmetry that can be achieved by such types of
combination filters.

In this chapter we will deal with three different types of combination filters,
namely:

1. Lowpass and Bandpass combination.

2. Bandpass Filter obtained as a result of the subtraction of two Lowpass filters.

3. Bandstop Filter obtained as a result of adding a Lowpass and a Highpass filter.

The above filters are achieved by combining the transfer functions of the two

different types of filters.
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4.1 Lowpass and Bandpass Combination Filter

First we will consider one of the the most elementary types of combination namely, the
combination of a Lowpass and a Bandpass filter to form a specific type of response,
in which the pass-band of the eventual combination filter will have variable gain
depending upon how the transition regions of the Lowpass and the Bandpass filter add
up. Fig.(4.1) shows the one-dimensional interpretation of the Lowpass and Bandpass

combination filter. The design procedure is very simple in its sense. Firstly the

I-DLOWPASS FILTER 1-D BANDPASS HLTER 1-DCOMBINATION FILTER

@ 0.5000 X

Figure 4.1: A one-dimensional interpretation of the Lowpass+Bandpass combination.

individual filters, namely the Lowpass and the Bandpass filter have been designed

separately based on the design parameters shown in Table (4.1). The individual

Table 4.1: Combination filter parameters - Lowpass + Bandpass Filter.
| [ Lowpass Filter | Bandpass Filter
Order 4 4
Cut-off(rad) 0.5 [0.3 1]
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filters are designed and analysed separately for their respective responses.

Another important aspect of this study, has been to analyse the extent of cir-
cular symmetry of the combination filter when the individual filters are themselves
approximated to circular symmetry.

In this case, the Lowpass and the Bandpass filters have been separately analysed
for circular symmetry following the same procedure in Chapter-3. Following that

analysis, we have the results as follows.

- 0.0625
Lowpass Transfer function= 73565:570:85365250.3966570.0625

Range of k& for stability = —1 < k£ < 1.4143.

Value of k for near circular symmetry = —0.26.

The plots in Fig.(4.2) show the response for the Lowpass filter corrected for near
circular symmetry.

The Bandpass filter considered here, has the same response as the one shown in

Section 3.1. Refer Section 3.1 for figures.

The effective response of the combination filter which is obtained as a result of
adding the Lowpass and the Bandpass transfer functions is shown below.

The response of the combination filter as shown in Fig.(4.3), has then been studied
to test its closeness to circular symmetry using Program A3(Chapter-2). This study
reveals the plot on Fig.(4.4).
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Figure 4.2: Plots showing (a) the response of the Lowpass filter (b) approximation
to circular symmetry between magnitude range [0.7,0.9](normalised) derived from
Program A3.
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Figure 4.3: Plot showing the response of the combination filter.

Plot showing extent of circular symmetry

Figure 4.4: Plot showing the extent of circular symmetry in the combination of a
Lowpass and a Bandpass filter. Magnitude range under study=[0.7 0.9](normalised)
derived from Program A3.
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It is evident from Fig.(4.4) that, near circular symmetry cannot be obtained in
the transition region, although the individual filters are near-circularly symmetric in
their respective transition regions. Circular symmetry is however, found possible in
the pass-band regions of the combination filter within which the individual Lowpass
and Bandpass pass-band regions are not affected by the magnitude response of each

other. It is seen that the Bandpass region of the combination filter exhibits near

circular symmetry to an extent.

The Program to obtain the above results has been written in MATLAB and is

shown below in Program C1.

Program C1

%% 2-D LOWPASS+BANDPASS COMBINATION BUTTERWORTH FILTER
clear all; close all;

%%2-D LOWPASS BUTTERWORTH FILTER

Lk1=-0.26; LN1=4; LWnl1=0.5; L N2=LNI; LWn2=LWnli;
[LB1,LA1] = butter(LN1,LWnl,’s’);

[LB2,LA2] = butter(LN2,LWn2,’s");

LPTF = garg_rama_mag(LB1,LA1,Lkl);

%%2-D BANDPASS BUTTERWORTH FILTER

Bk1=-0.14; BN1=4; BWn1=[0.3 1]; BN2=BN1; BWn2=BWnl;
[BB1,BAl] = butter(BNI1,BWnl,’s’);

[BB2,BA2] = butter(BN2,BWn2,’s’);
BPTF=garg_rama_mag(BB1,BAl,Bkl);

TTF=LPTF+BPTF;

TTF=TTF/(maz(maz(TTF}));

lim=pi; interval=pi/50;

wl=0:nterval:lim; w2=0:interval:lim;

[wwl, ww2]=meshgrid(wl,w2);

figure;

contour(wwl,ww2,(TTF));

azis(’image’); zlabel(’'wl’); ylabel(*w2’); zlabel(’Magnitude Response’);
title(’2-D Butterworth Lowpass+ Bandpass Combination Filter’);

grid on;
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4.2 Lowpass and Lowpass Combination Filter

Next we will consider a more interesting combination namely, the combination of
two Lowpass filters to form an eventual Bandpass response. Fig.(4.5) shows the one-
dimensional interpretation of the two Lowpass combination filter. It shows that when
two Lowpass filters of different cut-off frequencies (the first one higher than the second

one) are subtracted from each other, we get an eventual Bandpass response. The de-

I-DLOWPASS FILTER 1-DLOWPASS FILTER 1-D BANDPASS COMBINATION FILTER

-

Figure 4.5: A one-dimensional interpretation of the two Lowpass filter combination.

sign procedure is simple. First, the individual Lowpass filters are designed separately
based on the design parameters shown in Table (4.2). The most important aspect of
this study has been to analyse the extent of circular symmetry of the combination
filter when the individual filters are themselves approximated to circular symmetry.
In our case, both the Lowpass filters have been separately analysed for circular
symmetry following the same procedure as in Chapter-3. Note that the first Lowpass

filter that has been considered here for illustration follows the same design as the one
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Table 4.2: Combination filter parameters - Lowpass - Lowpass Filter.
[ | Lowpass Filterl | Lowpass Filter2 |

Order 4 . 4

Cut-off(rad) 0.5 0.2

that was chosen in Section 4.1. The analysis of the Lowpass filters are as follows:

- _ 0.0625
Lowpass Transfer function(1) = $7+1.3066531-0.853652+0.32665+0.0625

Range of k for stability = —1 < k < 1.4143.

Value of & for near circular symmetry for Filter 1 = -0.26.

- _ 0.0016
Lowpass Transfer function(2) = ;355555570 130652 £0.02095 700016

Range of k& for stability = —1 < k£ < 1.4360.

Value of & for near circular symmetry for Filter 2 = -0.01.

The plots in Fig.(4.6) show the response for the Lowpass filters corrected for near
circular symmetry for a specific magnitude range(from Program A3). It is seen that
the individual filters exhibit near circular symmetry within the specific magnitude
range.

The effective response of the combination filter which is obtained as a result of
subtracting the Lowpass filter(2) from Lowpass Filter(1) is shown in Fig.(4.7). This
figure shows both the mesh and contour plots of the combination filter which approx-
imates to a Bandpass response. The extent of circular symmetry has been tested for
this combination filter and it has been seen that the combination flter exhibits near
circular symmetry in the outer range of subtraction. Theoretically, the subtraction
of two Lowpass filters should result in a Bandpass filter. From the combination filter
plots, it is seen that a Bandpass filter with a short pass-band region has been ob-

tained. Near circular symmetry is possible in the outer boundary of this pass-band
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(a) 2-D Lowpass Filter(1) for k=-0.26
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-t -08 -08 -04 -02 a €2 04 08 08 1
wi

(c) 2-D Lowpass Filter(2) for k=-0.01 (d) Extent of circular symmetry for Lowpass Filter(2)
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Figure 4.6: Plots (a) and (c) showing the response of the Lowpass filters (1) and (2)
respectively and plots (b) and (d) showing their approximation to circular symmetry
for a specific magnitude range [0.2, 0.4](normalised) derived from Program A3.

region. Circular symmetry exists for certain magnitudes in the pass-band regions of

the individual filters which are not affected by the magnitude response of each other.
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(a) 2-D Lowpass+Lowpass Combination Filter {b) 2-D Lowpass+Lowpass Combination Filter

Magntiude Rasponse
weoe b -

(c) Extent of circular symmetry in the Combination filter

Figure 4.7: Plots (a) and (b) showing the response of the combination filter(magnitude
and contour plots respectively) and plot (¢) showing the extent of circular symme-
try in this response between the magnitude range[0.2, 0.4](normalised) derived from
Program A3.
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The Program to obtain the above results has been written in MATLAB and is
shown below in Program C2.

Program C2

%% 2-D LOWPASS+LOWPASS COMBINATION BUTTERWORTH FILTER
clear all;

close all;

%%2-D LOWPASS BUTTERWORTH FILTER - 1
Lk1=-0.26; LNI=4; LWn1=0.5; LN2=LN1; LWn2=LWnl;
[LB1,LAL] = butter(LN1,LWnl,’s’);

[LB2,LA2] = butter(LN2,LWn2,’s’);

LPTF = garg_rama_mag(LB1,LA1,Lkl);

LPTF = LPTF/maz(maz(LPTF));

%%2-D LOWPASS BUTTERWORTH FILTER - 2
lk1=0; INI=4; IWn1=0.2; IN2=INI1; IWn2=I{Wnli;
[IB1,lA1] = butter(IN1,lWnl,’s’);

[IB2,1A2] = butter(IN2,I1Wn2,’s’);
{PTF=garg_rama_mag(I1B1,lA1,lk1);

IPTF = IPTF/maz(maz(IPTF));
TTF=LPTF-IPTF;

TTF=TTF/(maz(maez(TTF)));

lim=pi; interval=pi/50;

wl=-lim:nterval:lim;

w2=-lim:interval:lim;
[wwl,uww2]=meshgrid(wl,w2);

figure;

mesh(wwl!,ww2,(TTF));

azis('image’);

zlabel('wl’);

ylabel('w2’);

zlabel(’Magnitude Response’);

title("2-D Butterworth Lowpass+Lowpass Combination Filter’);
grid on;

% %print -dps bandpasscont.ps;
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4.3 Lowpass and Highpass Combination Filter

We will now consider another type of combination filter which effectively yields a
Bandstop filter by combining arithematically, the responses of a Lowpass and High-
pass filters. We will consider the Lowpass and Highpass filters with near circular
symmetric responses on their outer limits so that the Bandstop filter can also be
studied for its extent of circular symmetry by the combination of the above filters.
Fig.(4.8) shows the one-dimensional interpretation of the Lowpass and Highpass com-

bination filter. The design procedure, here again, is very simple in its sense. Firstly

I-DLOWPASS FILTER I-D HIGHPASS FLTER 1-D COMBINATION FILTER

Figure 4.8: A one-dimensional interpretation of the Lowpass-+Highpass combination.

the individual filters, namely the Lowpass and the Highpass filter have been designed
separately based on the design parameters shown in Table (4.3). The individual filters
are designed and analysed separately for their respective responses.

Another important aspect of this study has been to analyse the extent of cir-

cular symmetry of the combination filter when the individual filters are themselves

133



Table 4.3: Combination filter parameters - Lowpass + Highpass filter.

L | Lowpass Filter | Highpass Filter |
Order 4 4
Cut-off(rad) 0.5 0.7

approximated to circular symmetry.

In our case, the Lowpass and the Highpass filters have been separately analysed
for circular symmetry following the same procedure as in Chapter-3. Following that
analysis, we have the following results:

0.0625

Lowpass Transfer function= 33355:5753853652 10.3266550.0625

Range of k for stability = —1 < k£ < 1.4143.

Value of & for near circular symmetry = —0.26.

Note that the Lowpass filter considered here, follows the same design as that
considered in Section 4.1.

The plots in Fig.(4.9) show the response for the Lowpass filter corrected for near
circular symmetry. The Highpass filter considered here, has a cut-off frequency of 0.7
leaving a stop-band range for the combination filter between [0.5, 0.7]. The Highpass
filter is first studied independently, for circular symmetry following the same method
as suggested in Section 3.3. Following that analysis we have the following results:

. . o
Highpass Transfer function= gm0t 108963702401

Range of £ for stability = —1 < k& < 1.4167.

Value of k for near circular symmetry = —0.52.

The response of the Highpass filter after its test for stability due to variation in
parameter k is as shown in Fig.(4.10). The response of the combination filter is as
shown in Fig.(4.11) has then been tested for its extent of circular symmetry using
Program A3(Chapter-2). This study reveals the following plots. The reason why the
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(b) Extent of circular symmetry for Lowpass Filter

Figure 4.9: Plot (a) showing the response of the Lowpass filter and plot (b) showing its
approximation to circular symmetry between magnitude range [0.2, 0.4](normalised)
derived from Program A3.
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(a) 2-D Highpass Filter (Cut-off=0.7 & k=-0.52)

(b} Extent of circular symmetry for the Highpass filter
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Figure 4.10: Plot (a) showing the response of the Highpass filter and plot (b) showing
its extent of circular symmetry for £ = —0.52 and in the magnitude range [0.2,
0.4](normalised) derived from Program A3.
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Extent of circular symmetry for Combination filter

Figure 4.11: Plot to show the extent of circular symmetry in the combination of a
Lowpass and a Highpass filter. Magnitude range under study=[0.2 0.4](normalised)
derived from Program A3.

magnitude range of [0.2, 0.4] is chosen for study of circular symmetry is that, the
transition regions of the individual filters lie around this value of magnitude range.
It is evident from Fig.(4.11) that near circular symmetry can still be obtained in the
transition region of the combination filter. Circular symmetry is also not affected by

the responses of the filters in their respective pass-bands due to the effect of their

combined magnitudes.
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The Program to obtain the above results were written in MATLAB and is shown

below in Program C3.

Program C3

%% 2-D LOWPASS+HIGHPASS COMBINATION BUTTERWORTH FILTER
clear all;

close all;

Lk1=-0.26; LN1=4; LWn1=0.5; LN2=LN1; LWn2=LWnl;
[LB1,LAl] = butter(LN1,LWnl,’s’);

[LB2,LA2] = butter(LN2,LWn2,’s’);

LPTF = garg_rama_mag_LP(LB1,LA1,Lkl);

%%2-D HIGHPASS BUTTERWORTH FILTER

Hk1=-0.52; HN1=4; HWn1=0.7; HN2=HN1; HWn2=HWnl;
[HB1,HA1] = butter(HN1,HWnl, high’,’s’);

[HB2,HAZ] = butter(HN2, HWn2, 'high’,’s");
HPTF=garg_rama_mag_ HP(HBI1,HAI,Hk1);
TTF=LPTF+HPTF;

TTF=TTF/(maz(maz(TTF)));

lim=pi; interval=pi/50;

wl =0:interval:lim; w2=0:interval:lim;
[wwl,wwl]=meshgrid(wl,w2);

figure;

mesh(ww!,ww2,(TTF));

azis('image’);

zlabel(’wl’); ylabel('w2’);

zlabel(’Magnitude Response’);

title(’2-D Butterworth Lowpass+Highpass Combination Filter’,’FontSize’,18’);
grid on;

figure;

contour(wwl,ww2,(TTF));

azis('image’);

zlabel('wl’); ylabel('w2’);

zlabel(’Magnitude Response’);

title(’2-D Butterworth Lowpass+Highpass Combination Filter’,’FontSize’,18°);

grid on;

138



4.4 Summary and Discussion

In this chapter, we have dealt with three different types of combination filters. The
purpose of this chapter has been to study the effect of combining individual filters
which have near circular symmetry in their transition regions. The effective combi-
nation filter has been studied and analysed to see if the circular symmetry still exists
in its response.

The first combination filter to be studied was the effect of a Lowpass and a Band-
pass filter to form a Lowpass filter of larger pass-band. This study revealed that near
circular symmetry in the combination filter can only be obtained in the individual
pass-band regions of the two filters and the transition region does not exhibit circular
symmetry.

The second combination filter to be studied was the effect of combining(subtracting)
two Lowpass filters of different pass-band widths, to obtain a Bandpass filter. Here it
has been shown that circular symmetry exists to an extent in the transition regions
of the Bandpass combination filter. Circular symmetry also exists in the individual
filter’s pass-band regions where-in the responses of the individual filters do not affect
each other.

The third combination filter to be studied was the effect of combining a Lowpass
and a Highpass filter to form a Bandstop combination filter. Here again, it has
been proven that circular symmetry exists in the transition region of the Bandstop
combination filter response.

This chapter is just the first step towards the study of combining filter responses
to obtain unique and user-specific responses. Modern image processing softwares use

this feature to obtain specific responses towards enhancing image quality.
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Chapter 5

Conclusions

Multi-dimensional system and analysis is a topic that is developing in great pace and
specifically 2-D systems are used widely in modern image processing software and
analysis. One of the main uses that 2-D system finds itself in, are the 2-D filters.
Modern image processing softwares[6] require sufficient amount of pre-processing of
the raw image data that is being used for analysis.. These pre-processing steps com-
prise mainly of filtering noise and smoothening defects that might otherwise cause
serious implications in image analysis. This pre-processing stage largely uses Butter-
worth filters of a given order to correct the image and mould it for efficient image
analysis. Image processing itself, in its true sense, uses different kinds of filters for
various image manipulation purposes such as sharpening, smoothening, edge detec-
tion and other arithematic operations. In all these cases we deal with image data
which is truly two-dimensional in its sense. Thus it becomes necessary that we deal
with 2-D filters which do not have any preferential orientation towards data manipu-
lation because the image signal itself, does not have any preferential spatial direction.

This fact has been the main motivation behind this thesis work. This study, in all
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its chapters, focuses mainly on the extent of circular symmetry of 2-D filters ob-
tained as a result of simplistic design procedures. Other interesting aspects such as
pole-parameter transformation and their effect on circular symmetry and the effect of

combining different types of 2-D filter functions have also been studied and analysed.

5.1 Circular Symmetry of 2-D Filters

We have implemented a simple method of designing 2-D IIR filters, namely using the
product of two 1-D IIR transfer functions. The most important factor to be considered
for filter design is the stability of the filters. It is necessary to test stability for any filter
design, inorder that the filter does not become unstable for bounded input frequency.
It is a known fact that Finite Impulse Response(FIR) filters are inherently stable.
However there is more flexibility with IIR Filters in terms of parameter modifications
to obtain a required set of filters. The main problem, however, affecting the design of
IIR filters is the stability of the filters. Bringing the filter into the second dimension
also increases the complexity to test stability. This again is one of the main reasons
why 2-D filters obtained as the product of two, 1-D filters have been used in this thesis.
Methods have already been proposed[30] to perform a stability check on such types
of separable denominator transfer functions in two dimensions. In this thesis, these
have been used , to test the designed filter for stabilty, before further analysis. This
ensures that the filter is stable and can withstand the various parameter modifications
that it undergoes for approximation to circular symmetry. It has also been shown
in[30], that it is possible to have variable magnitude characteristics for 2-D filters
by changing the feedback factor k& in the IIR filter transfer function, within stability

limits, and obtain responses close to circular symmetry. This is the most important
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factor used in this thesis to study the different possibilities of circular symmetry.
The circular symmetry study in this thesis can be divided into four different groups
based on the nature and type of filters that have been used, namely Lowpass filter
study, study of filters obtained due to pole-parameter variation, study of the other
common types of filters namely Highpass, Bandpass and Bandstop filters and the
study of combination of these common types of filters. All the filter transfer function
considered in the above study have an infinite impulse response. In what follows, we

will have a summary of the various conclusions we have obtained as a result of this

study.

5.1.1 Study of Circular Symmetry in Lowpass Filters

In Chapter-2, we have concentrated on the two most commonly used filter transfer

functions, namely, the Butterworth and the Chebyshev transfer functions. These are

used to approximate 2-D circular symmetry.

Butterworth Filters

The transfer function that has been used in this thesis for this type of filter is of
third order. The point here is to adhere to the lowest order possible that can easily
illustrate the effect of circular symmetry. Higher order filters can be used for the
same kind of analysis but will involve more complexity in terms of design, computer
programming and time of execution. It is thus sufficient to consider a third order
transfer function to illustrate the approximation to circular symmetry.

2-D filters have been plotted first, simply as a product of two 1-D filters and it

has been clearly shown that circular symmetry is not a possibility(Fig.(2.1)), without
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further effort. The feedback factor k is then tested for stability limits(—1 < k£ < 3) and
for this specific third order transfer function (Eqn.(2.20)) various filters are plotted
between these limits and the transfer function is analysed. It has been found that
circular symmetry exists(Fig.(2.5)) at a value of ¥ = —0.3. A separate program has
been written using MATLAB to study the magnitude charateristic of each of these
filters obtained as a function of k£ and circular symmetry has been studied between
the normalised magnitude range of 0.49 < Mag < 0.51. It is from this program
that the accurate value of k (Fig.(2.8)) is determined for closest proximity to circular
symmetry. It is possible to study a different magnitude range of interest and for each

of these range, there will exist a different value of k for near circular symmetry.

Chebyshev Filters

There are two transfer functions that have been used to study the case of Chebyschev
filters. These two transfer functions are different from each other based on the single
most important factor of distinction between filters of this type namely, the ripple
width. The transfer function of the filters that have been used to study these cases
is of third order. The ripple widths that have been considered are ¢ = 0.1526 and
e = 0.3493.

For the first case, where the ripple width is € = 0.1526, it has been found that
circular symmetry exists for a value of £ = —0.64, if the magnitude range range under
study is 0.28 < Mag < 0.32.

For the second case, where the ripple width is € = 0.3493, it has been found that
circular symmetry exists for a value of £ = —0.25, if the magnitude range range under

study is 0.49 < Mag < 0.51.
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In effect, for the parameters chosen in their respective cases, the first case(Fig.(2.13c))
exhibits better circular symmetry than the second case(Fig.(2.15c)). Hence, for a
given ripple width and order of a chebyshev filter, it is possible to determine the
value of k£ (within stability limits) and the range of magnitude response over which

the circular symmetry is possible.

5.1.2 Study of Circular Symmetry in Complementary Pole-
pair Filters

Complementary pole-pair filters are a unique set of filters obtained as a result of
change in the pole-parameters. In this case the pole-parameter that has been chosen
for study of different kinds of filters is the polar angle of the poles of these filters. -
This study has been illustrated in one dimension to explain the nature of these types
of filters[15] and it has then been extended to the second dimension for the purpose
of meeting the objectives of this thesis.

Circular symmetry study here has been carried out for different cases based on
the change in the polar angle and accordingly, extensive simulations have been done
for specific change in polar angles of £3°, +5° and =+ 7°. It is seen from Fig.(2.23c),
Fig(2.25¢), Fig.(2.26¢), Fig.(2.27c), Fig.(2.28¢c) and Fig.(2.29c) that the best possible
circular symmetries that can be obtained within the magnitude range 0.49 < Mag <
0.51, are for the respective values of £ as shown in the each plot. It can also be
observed that circular symmetry gradually ceases to exist, as the angle of the pole-
parameter variation increases. The same can also be proved for a different magnitude
range under study. In this case we will have different values of & for circular symmetry

for each of the angle variation but the effective disintegration in circular symmetry
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will still be experienced for greater increase in the polar angle.

5.1.3 Study of Circular Symmetry in 2-D Highpass, Bandpass

and Bandstop Filters

Common types of filters that are used in practice, apart from the Lowpass filters, are
the Highpass, Bandpass and Bandstop filters. In Chapter-3, the extent of circular

symmetry on 2-D filters of the above types have been studied.

Bandpass Filters

The Bandpass filter that has been studied in this case has an analog cut-off frequency
between [0.3, 1.0] and has been chosen to be fourth order. The IIR transfer function
of such a filter is then determined(Eqn.(3.1)) and the values of k for which the filter is
stable is found to be in the range —1.0048 < k£ < 1.3684. Within these limits, it has
been found that the filter exhibits near circular symmetry only in high magnitude
ranges 0.8 < Mag < 1.0 and for a value of ¥ = —0.14(Fig.(3.1c)), near circular
symmetry has been obtained within the specified magnitude range. It is noted that the
study of circular symmetry for Bandpass filter has been shown only for one quadrant.
This is due to the fact that, 2-D filters with separable denominator polynomials exhibit
symmetry about the X and Y axis and circular symmetry is a possibility within only
one of the quadrants. It is also seen that for higher values of k, circular symmetry

completely ceases to exist.
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Bandstop Filters

The Bandstop filter that has been studied in this case has an analog cut-off frequency
of [0.3, 1.0] and has been chosen to be of fourth order. This means that the filter
has high gain beyond this region. The IIR transfer function of such a filter is then
determined(Eqn.(3.11)) and the values of & for which the filter is stable is found to be
in the range —1 < k < 1.3685. Within these limits, it has been found that the filter
exhibits near circular symmetry only in high magnitude ranges 0.45 < Mag < 0.55
and for a value of k = —0.40(Fig.(3.4c)), near circular symmetry has been obtained
within the specified magnitude range. Here too, the study of circular symmetry
has been shown only for one quadrant. Although it is possible that for frequencies
lower than the lower cut-off frequencies, circular symmetry can exist covering all four
quadrants. It is noted that near circular symmetry can only be seen within the lower
cut-off region in both dimensions, since for the higher cut-off region, there cannot be
a closed response covering all four quadrants, as the response extends to infinity. For

higher values of k, even this extent of circular symmetry ceases to exist.

Highpass Filters

The Highpass filter that has been used in this case is a fourth order filter with a cut-off
beyond 0.3. For a Highpass filter, since the pass-band region exists from a certain
cut-off frequency to infinity it is entirely not possible to define circular symmetry in
the passband. It can only be defined for a single quadrant(half a semicircle) and it
has to be assumed that the symmetry exist upto infinity. Having defined the transfer
function from the known parameters mentioned above(Eqn.(3.21)), the range of & for

stability of the filter is given by —1 < k < 1.4134. It has been found that there exists
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a symmetry that can be approximated to a circle, at infinity for a vlaue of k¥ = —0.80.
Beyond this value this symmetry cease to exist. Although circular symmetry cannot
be visualised for a Highpass filter with separable denominator transfer function, it
has been proved that there exists a symmetry that approximates to a circle at infinity

in the transition region of the filter.

5.1.4 Study of Circular Symmetry in 2-D Combination Filters

Another interesting aspect that has been considered in Chapter-4 of this work is
to combine some common filters that have already been approximated for circular
symmetry and study the extent of circular symmetry on the combination filters. There

are three such combinations which have been considered.

Combination of Lowpass and Bandpass Filter

In this case a Lowpass and a Bandpass filter which have been already considered in
Chapter-2 and Chapter-3 respectively, have been used to form a combination response
which resembles a Lowpass response with non-uniform gain in its pass-band region.
This has been obtained by adding the individual responses of the filters. It is seen
here that circular symmetry does not exist in the combination filter in the transition
region but still exists in certain parts of the response which are not an effect of the

combination.(Fig.(4.3)).

Combination of Lowpass and Lowpass Filter

In this case, two Lowpass filters of different cut-off frequencies, 0.5 and 0.2 respec-

tively, have been used to form a combination response which resembles a Bandpass
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response. This has been obtained by subtracting the two responses. It is seen here
that circular symmetry is a distinct possibilty in the region shown in (Fig.(4.7c)). This
study can also be extended to different magnitude regions to see how the subtraction

of two near circular symmetric filters affect the symmetry.

Combination of Lowpass and Highpass Filter

In this case a Lowpass and a Highpass filter which have analog cut-off frequencies of 0.5
and 0.7 respectively, have been used to form a combination response which resembles
a Bandstop response. It is seen here too that circular symmetry only exists in certain
regions of the filters which are not entirely affected by the individual reponse of each
other(Fig.(4.11)). In this case the Lowpass response and the Highpass response show
their individual closeness to circular symmetry and we do not see the same in the
transition band.

Thus, the overall purpose of this thesis has been to study the effect of circular
symmetry on separable denominator 2-D transfer functions. Four of the most common
types of filters have been chosen and studied. It has been seen largely that circular
symmetry is possible in the Lowpass and the Bandpass responses and is not a distinct
possibility in the Highpass and Bandpass responses due to the unlimited response
range. The different filters and cases considered have been obtained after number
of simulations. However it is possible to vary the value of ¥ or the magnitude range
under study to obtain innumerable instances of near circular symmetry in these cases.
There is a lot of scope for future work in this respect.

From the foregoing, it is clear that it is possible to obtain 2-D circular symmetric

filters, starting from 1-D filters. These could be Lowpass, Highpass, Bandpass or
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Bandstop filters, obtained either directly or by a combination of other filters. Apart
from the configuration considered in Fig.(2.2), it appears possible that there may
exist other configurations exhibiting circular symmetry and this is a suggestion for
further work.

An interesting investigation would be to start from two Allpass filters which give

rise to complementary filters. This is a suggestion for future work.
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