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ABSTRACT

A Neural Network Model for Resource Leveling

Daniela Savin

A new neural network model aimed at solving the resource leveling (RL) prob-
lem in construction is developed. The model is derived by mapping a formulation
of the RL problem as a quadratic augmented Lagrangian raultiplier (QALM) opti-
mization, onto an artificial neural network (ANN) architecture employing a Hopficld
network. Specifically, it is shown that the augmented Lagrangian associated to the
RL problem can be interpreted as the energy function of the Hopfield neural network
(NN). The ANN architecture consists of two main blocks. The first is the Hopfield
NN block, and the second is a control block for the adjustment of Lagrange multi-
pliers in the QALM optimization. The latter is also used for the computation of the
new set of weights of the Hopfield block.

A new methodology for the derivation of the weight-matrix of the Hopfield-
based NN architecture for RL is also proposed. An in-depth study of the matrices
generated from the formulation of the RL problem as a QALM optimization, has
revealed some very useful structural properties. It is shown that due to these prop-
erties, it is possible to develop a flexible and computationally efficient procedure
for the formulation and updating of the weight-matrix of the ANN configuration.
This procedure allows for the on-line computation of the new set of weights of the
Hopfield NN block with the adjustment of Lagrange parameters. The procedure
also solves the key issue of mapping the QALM optimization formulation of the RL
problem, onto an ANN architecture.

Finally, an experimental validation of the proposed model is presented along

with its results.
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Chapter 1

Introduction

1.1 General

A construction project can be viewed as a collection of activities performed in a log-
ical sequence. In performing these activities, resources, which include equipment,
technology, people, materials, time and money are used. Planning and contro! of the
resources required to complete a project on time and within the budget, while meet-
ing established specifications, are among the most challenging and difficult manage-
ment responsabilities, which necessitate the utilization of construction management
techniques.

Construction management is an ample and complex task. It requires knowl-
edge of the construction processes, of modern management science, of decision sup-
port systems, as well as the use of computers (Hendrickson and Au 1989). Generally,
construction management is differentiated from project management by the empha-
sis on the construction phase of a new facility (I avanagh 1978). By contrast, project
management embraces a broader perspective, including all the management activ-
ities related to the design, construction, operation and demolition of the facility.
The main components of construction management are planning, scheduling and

controlling project activities.



Construction planning comprises the identification of work tasks and the logi-
cal interdependencies among them. It constitutes the necessary precursor to schedul-
ing. Scheduling involves the establishment of activities durations, project completion
time, floats, and the identification of critical activities. It also involves the manage-
ment of resources. Project control covers monitoring the work in progress, taking
corrective actions, and updating the plan.

To succesiully manage projects, it is necessary for a management team to
establish a plan for the utilization of the available resources, whether they are la-
bor, materials, equipment or money. Resource management is one of the most
important elements for planning, competitiveness and profitability in any construc-
tion project. It includes resource-constrained scheduling, time-constrained schedul-
ing (resource leveling) and time-cost tradeoff. A basic distinction exists between
resource-constrained and time-constrained scheduling. For resource-constrained sche-
duling, the focus is on utilizing limited resources in an effective manner. The schedul-
ing objective is to extend the project duration, if needed, as little as possible beyond
the original completion time, while the resource constraints are met. For time-
constrained scheduling there are no resource limits, and the emphasis is on keeping
the original project duration fixed.

Resource leveling (RL) is essential to the efficient utilization of resources and
cost control of a project. Network techniques usually produce uneven resource re-
quirement profiles, whenever there is an assumption of unlimited resources. These
resource profiles generate high costs, uneven cash flows, and generally reflect ineffi-
cient use of existing resources.

A review of the literature reveals that the major research emphasis has been on
the development of resource-constrained scheduling procedures. However, Burgess
and Killebrew (1962) recommended that resource leveling should routinely precede

any resource constraint considerations. Once the leveling has been completed, a

g
[



maximum resource requirement would have been established. If the maximum re-
quired is greater than the available resources, alternative actions need to be con-
sidered to manage the peak resource demand periods, including the possiblity of
extending the project duration. However, when the project duration is extended,
the leveling process should be repeated.

Supporting Burgess’s position on the importance of resource leveling, Fleming
et al. (1987) reported the view of the resource leveling supporters who indicate that
a "schedule should never be approved until resources have been initially allocated
to the tasks being scheduled, analyzed and then leveled to their most eficient use”.

The project management literature has focused on two primary approaches
with regard to resource leveling: optimization and heuristics. Optimization tech-
niques seek the best (optimum) solution, while heuristic techniques produce good
near-optimal solutions.

Different formulations of the RL problem as constrained optimizations have
been proposed and discussed in the literature (Easa 1989; Ramlogan and Goul-
ter 1989; Movassaghi and Beidoun 1988; Karaa and Nasr 1986). However, due to
the combinatorial complexity of the RL problem, the optimization methods offer
computationally-efficient solutions only for small to medium-sized projects (Antill
and Woodhead 1990; Moder et al. 1983; Ahuja 1976). For larger projects, heuristic
techniques have been developed to solve the RL problem (Seibert and Evans 1991;
Harris 1990; Woodworth and Willie 1976). The ability of handling larger projects
is achieved by relaxing the goal of searching for an optimal solution. Specifically, a
heuristic technique is concerned only with achieving lower values for the objective
function associated with an optimization problem, while satisfying the network con-
straints. In order to arrive at a near-optimal solution for a RL problem, it would
be necessary to employ different heuristic methods in parallel (Ahuja et al. 1994).
Therefore, the investigation in the development of alternative heuristical methods

for solving the RL problem is still very intensive, leading the way to the application



of more effective techniques, such as neural networks.

Neural networks are increasingly applied to civil and construction engineering.
(Flood and Kartam 1994; Savin et al. 1994; Garrett 1992; Moselhi et al. 1991). It is
to be noted that the most utilized architecture has been the backpropagation. Very
little work has been done using other kinds of architectures, specifically the Hopfield
architecture (Savin et al. 1995; Kobayashi and Nonaka 1990; Gulati et al. 1987).
The recent and promising results in solving combinatorial optimization problems by
using neural networks (NNs) (Peterson and Anderson 1988), have encouraged the
beginnings of research in the development of heuristic methods for solving the RL
problem using Artificial Neural Network (ANN) models (Shimazaki et al. 1991).
This research investigates the potential use of ANN techniques for RL.

1.2 Motivation

The motivation for studying resource leveling problem arises from the following:

o Current techniques {optimization, heuristic) are not sufficient in solving the

resource leveling problem.

¢ Resource leveling is a combinatorial NP-complete (nondeterministic polyno-
mial time complete) problem. For NP-complete problems, no algorithm ca-
pable of providing an exact solution to the problem, in a computational time
which is a polynomial in the size of the problem, is yet known. For resource
leveling, as the number of noncritical activities increases, the required number
of all possible combinations of activities within their available floats would be
impractical. Therefore, there is a need for a procedure to overcome this com-
binatorial complexity. Artificial neural networks have been found to be a new
promissing approach to solve such problems efficiently and in a short period

of time.



1.3 Scope and Objectiires

The scope of this work is limited to time-constrained scheduling using artificial
neural networks. The fluctuations in the pattern of resource usage are minimized
by shifting the noncritical activities within their available floats, while maintaining
the original project duration unchanged.

The objectives of this research are as follows:

o To explore the curreui';tet':lf{niques used for resource leveling and identify their

shortcomings.

¢ To introduce a procedure to overcome the shortcomings of the resource leveling

techniques.

o To test the potential use of neural networks to reduce the complexity of re-
source leveling, based on high degree of interconnectivity and parallel process-

ing.

¢ To develop a neural network model for resource leveling.

14 Methodology

In order to achieve the above mentioned objectives, the following tasks were per-

formed:

¢ Extensive literature review on both, the present resource leveling techniques

and the neural networks applications to scheduling,

e Formulation of the resource leveling as an equality-constrained optimization

problem.

¢ Formulation of the resource leveling problem as an augmented Lagrangian.



¢ Development of a neural network model for resource leveling, by mapping the

augmented Lagrangian onto a Hopfield neural network.

o Development of a flexible and computationally-efficient procedure for the for-

mulation and updating of the weight-matrix of the Hopfield network.

» Experimental verification of the proposed artificial neural network model for

small-sized construction projects.

1.5 Organization of the Thesis

The thesis is organized as follows: In Chapter 2 a review of the resource leveling
theories and the relevant background material is presented. Different approaches
to resource leveling discussed in the literature are described arjd their shortcomings
identified. This is followed by a brief description of Artiﬁcié.l Neural Networks in
Chapter 3 with emphasis placed on using Hopfield NN for optimization problems.
Chapter 4 presents a summary of the Augmented Lagrangian Method, followed by
Chapter 5, which includes a detailed description of the proposed neural network for
resource leveling. Chapter 6 covers a description of a procedure for the formulation
and the on-line updating of the weight-matrix of the Hopfield network. An exper-
imental verification of the proposed artificial neural network model, along with its
results are presented in Chapter 7. Finally, Chapter 8 summarizes the work done

during this research and concludes its findings, together with proposed future work.



Chapter 2

A Review of Resource Leveling

2.1 Project Scheduling

2.1.1 Introduction

Project scheduling establishes the completion time of the project, when the activi-
ties may be performed and with what resources. The scheduling process integrates
information on several aspects of the project, including the estimated durations of ac-
tivities, constraints imposed by the availability of resources, due-date requirements,
and the technological precedence relations among activities established during the
planning process. This information is processed into a schedule, which provides an
essential communication and coordination link between the individuals and organi-
zations participating in constructing the project. Schedules are the primary working
tools for project planning, evaluation, and control.

Bar charts and project-networks are two scheduling techniques mainly used in
the construction industry. Bar charts, also called Gantt charts, remain one of the
most widely used project scheduling methods. They are simple to generate, easy to
understand and use. The bar chart is a graphic presentation, in the form of bars,

which shows the anticipated start and finish dates of each activity in a project. The



major limitation of bar charts is their inability to show enough interdependencics
among activities and time-resource trade-offs (Harris and McCaffer 1989).

Unlike the bar charts, networks graphically portray the relationships between
the activities and milestones in the project. Several techniques have evolved in the
late 1950s for organizing and representing this basic information. Best known today
are PERT (Program Evaluation and Review Technique) and CPM (Critical Path
Method). The major diference between the two is that CPM assumes that activity
duration is deterministic, while PERT views the time to complete an activity as a
random variable that can be characterized by an optimistic, a pessimistic, and a
most likely estimate of its duration (Moder et al. 1983).

Over the years, a large number of variants has arisen to address specific prob-
lems such as complex activity interdependencies (Precedence Diagram Method -
PDM), project cost control (PERT/COST), time-cost tradeofl, and the multitude
of uncertainties found in the construction environment (Graphical Evaluation and
Review Technique - GERT, Monte Carlo simulations) (Antill and Woodhead 1990;
Moder et al. 1983). A special technique, the Line of Balance (LOB), has becn
developed for scheduling repetitive projects (Harris and McCaffer 1989), and also
efforts have focused on the development of more performant scheduling techniques
for projects comprising both repetitive and non-repetitive activities (Moselhi and
El-Rayes 1993; O’Brien, J. 1975).

Considerable research works have been carried out in recent years on the use of
artificial intelligence (Al) techniques for project planning and scheduling (Ahuja et
al. 1994), such as knowledge-based expert systems (KBES) (Moselhi and Nicholas
1990; Echeverry et al. 1989; Navinchandra et al. 1988; Hendrickson et al. 1987;
Levitt and Kunz 1985), including fuzzy sets (Lorterapong 1995; Chang et al. 1990),
and Artificial Neural Networks (ANNs) (Mawdesley and Carr 1993), which have
significantly changed the features of the traditional scheduling process. The inte-

gration of network-based and Al-based techniques will be a good advancement in



project planning and scheduling, as they complement each other by offering a prob-
lem solving strategy and a modeling system to describe the project plans (Morad
and Vorster 1993; Kartam et al. 1993).

In order to demonstrate the possible use of ANNs in time-constrained schedul-

ing, it is useful to briefly describe the project scheduling techniques, such as CPM.

2.1.2 Critical Path Method

The critical path method ” ... is the representation of a project plan by a schematic
diagram or network that depicts the sequence and interrelation of all the component
parts of the project, and the logical analysis and manipulation of this network in
determining the best overall program of operation” (Antill and Woodhead 1990).
The diagram that represents the project consists of a network of arrows and nodes.
The two most popular approaches are either to place the activities on the arrows
(AcA) and have the nodes signify milestones, or to place activities on the nodes {AoN
or Precedence Diagram Method (PDM)), and let arrows show precedence relations
among activities (Ahuja et al. 1994). This research work focuses on using activity-
on-arrow {AoA) networks, therefore the subsequent exposition will refer only to this
class of networks.

In constructing an AoA network, an arrow is used to represent an activity, with
its head indicating the direction of progress of the project. The precedence relations
among activities are introduced by defining events. An event represents a point in
time that signifies the completion of one or more activities and the beginning of
new ones. The beginning and ending points of an activity are thus described by two
events, known as the head and the tail. Activities originating from a certain event
cannot start until the activities terminating at the same event have been completed.
Figure 2.1(a) shows an example of a typical representation of an activity (7, 7), with
its tail event 7 and its head event j.

The time required for each activity needs to be estimated; this estimate of the
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Figure 2.1: Typical representation of an activity in activity-on-arrow networks

duration is based on lzhoxvledge of the work, experience or historical data. Once
estimated, the duration of each activity is marked next to the corresponding arrow
in the network logic, as it can be seen in Figure 2.1(b). The earliest possible time
of each event is then calculated and written in the left-hand square alongside cach
event. The calculation of the earliest event times (ET) is known as the forward pass.
The reverse process, the backward pass, determines the latest possible time for the
event, that is the latest possible time for each activity to finish without delaying the
completion date of the project. The latest event time (LT) is calculated and written
in the right-hand square alongside each event, as it is illustrated in Figure 2.1(b).
Note here that for a particular activity, the earliest event time (ET) of its beginning
node represents the earliest start time (EST) of the activity, and the latest event
time (LT) of its ending node represents the latest finish time (LFT) of that activity.
The earliest finish time (EFT) and the latest start time (LST) of the activity are
calculated as shown in Figure 2.2.

Having completed the forward and backward passes, the earliest and latest
times of each event are known, as it is illustrated in Figure 2.3. From this, the total
float, or spare time available for each activity, can be calculated. Total float is the
total amount of time by which the activity could be extended, or delayed, without

affecting the project completion date. Total float is the total time available for the

10
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Figure 2.2: Illustration of the activity start and finish times and the float
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Figure 2.3: Example of an activity-on-arrow network

activity less its duration, i.e., the latest time of finish event less the earliest time
of the start event less the duration. Activities with a total float equal to zero are
critical activities. The sequence of critical activities connecting the start and end
points of the project is known as the critical path, which is the longest path in the
network. The length of the critical path represents the shortest possible time to
complete the project. More details about CPM calculations can be found in (Ahuja
et al. 1994; Moder et al. 1983; Lester 1982).

Based on CPM computations, a bar chart is then created (Ahuja et al. 1994).
This bar chart (which is a version of the Gantt bar chart) is still a very popular
scheduling tool. It enumerates the activities to be performed on the vertical axis,
and their corresponding durations on the horizontal axis. On a CPM bar chart
an activity is represented by a continuous line, whereas its float is illustrated by a
dashed line, as it is shown in Figure 2.4(a}. It is possible to schedule activities by
either early start or late start logic, which means the float could precede the activity
or succeed it. In the examples presented in this thesis, all activities begin at their
earliest start times, therefore the floats succeed the activities.

In estimating the duration of an activity, the resources required to perform

that activity have to be considered. The resources can be written alongside each
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arrow in the network, next to activity duartion, in square brackets, as it is shown in
Figure 2.1(b). The CPM method assumes that the only constraints on the schedule
are precedence relations among activities, without taking into consideration the role
of resources in establishing an efficient schedule. This is not a realistic approach,
since the allocation of resources may cause the original schedule to be unfeasible.
Thus, the project planner must be concerned not only with the logic and time
constraints of the activities in a project, but also with the management of the
resources.

Resource management is the process by which the planner of the project de-
cides which resources to obtain, from what source, when to obtain them, and how
to use them. Techniques used in resource management have received increasing at-
tention in recent years, leading to the development of new procedures. There are
two important aspects of resource management: resource leveling (time-constrained
scheduling), in which the project must be completed by a specific date, and resource
allocation (resource-constrained scheduling), in which the project must be completed

with the limited resources available, even if it means extending the project deadline.

2.1.3 Resource Leveling

Time-constrained scheduling, also known as resource leveling, is considered to be
an important problem facing construction schedulers. It affects project productivity
and costs. The main objective of RL is to minimize the fluctuations in the pattern
of resource usage, making the resource requirements as uniform as possible. This is
accomplished by using an initial CPM schedule, and shifting the noncritical activities
within their available floats, while maintaining the original duration intact.

Large variations in resource requirements result in additional costs associated

with:

e Obtaining and releasing resources to meet the varying resource requirements
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s Productivity and perhaps quality losses due to learning curve effects
¢ Idle resources during periods of low resource requirements

o Overtime costs for peak resource requirement periods

¢ Management time to coordinate the resources

¢ Acquisition and storage due to wide fluctuations in material usage

< it
Difficulty of coordinating and controlling large numbers of people during pe-

riods of peak manpower usage

Uneven cash flows

Therefore, the project team must minimize the fluctuations in the resource require-
ment profile, since a more steady usage rate leads to lower resource costs.

Based on the CPM bar chart, by summing the resources required of the ac-
tivities which occur on any given unit of time (e.g., day, week), the required project
resources can be represented as a function of time. The graph of resource require-
ment as a function of time is called a profile, or the histogram of required resources.
For example, consider the hypothetical construction project which is modelled by
the arrow notation CPM network, shown in Figure 2.3. The project duration is 11
days, and the critical path runs through activities A, B, C, and D. In addition to the
duration, a resource requirement (in square brackets) for each activity is also shown,
assuming that only one type of resource is used. The bar chart for the early start
schedule is shown in Figure 2.4(a). The corresponding resource requirement profile
is depicted in Figure 2.4(b). As it can be seen, the early start schedule generates a
widely varying profile.

The fact that the amount of resource required varies with time may result in

lower productivity, added project cost, or inability to profitably obtain the resources
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in such a fashion. Therefore, there is a need to smooth, or to level the peaks and val-
leys in the resource profile. Using float is one way to reshape resource requirements.
It may be possible to achieve higher resource utilization and lower costs by exploring
different assignment patterns, since it is always possible to start an activity within
the range defined by its early and late schedules.Based on this consideration, a cycle
of schedule updates may become necessary, until the schedule corresponding to the
lowest cost is obtained. Generally spééking, the smoother the resource profile, the
lower lS the overall cost (Ahuja et al. 1994). For the example-project considered
in Figure 2.3, by rescheduling the noncritical activities E, F and G within their
available floats, as it is shc;lwn in the bar chart of Figure 2.5(a), a leveled (smoothed)
resource histogram is obtaﬁied_, as illustrated in Figure 2.5(b). The fluctuations in
the pattern of resource usage from Figure 2.4(b) have been reduced, and the profile
of required resources after leveling is constant, as it can be seen in Figure 2.5(b).
In a case when the final profile of resource usage exceeds the maximum amount
of resources available, then the use of the previously mentioned resource-constrained

scheduling techniques, is required.

2.1.4 Resource-Constrained Scheduling

Resource-constrained scheduling techniques are designed to produce schedules with
limited available resources , which causes the project duration to extend beyond the
original critical path length (Ahuja et al. 1994; Moder et al. 1983; Adrian 1973).
The construction of a resource-limited profile is similar to that of the unlimited
resource approach, except that if the total resource demand of an activity exceeds
the specified limit, then that activity must be dalayed outside its time-span. When
this happens, project delays are inevitable, unless corrective actior can be taken
immediately.

Resource-constrained scheduling is an important issue in project scheduling,

and has been a major concern of research since the introduction of CPM/PERT
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network scheduling techniques. A pumber of techniques for resource-constrained
scheduling have been developed through the years (Karshenas and Haber 1990; Al-
lamn 1988; Patterson 1984; Kurtulus and Davis 1982; Talbot and Patterson 1979;
Panwalkar and Islander 1977; Davis and Patterson 1975). A new and promissing
technique, employing fuzzy set theory for modeling the uncertainties associated with
the durations of project activities and the resource availabilities, was recently prb—
posed by Moselhi and Lorterapong (Lorterapong 1995; Moselhi and Lorterapong
1993).

+ Resource-constrained scheduling is a complex, challenging and interesting pro-
blem. However, the scope of this thesis is limited to time-constrained scheduling.
Therefore, the most important findings from the literature, related only to resource

leveling, are reported next.

2.2 Resource Leveling Techniques

Unlike resource allocation 'techniques which use the project duration as the measure
of their effectiveness, resource leveling techniques do not have such a measure of
effectiveness, making them difficult to assess (Seibert and Evans 1991), i.e., for given
resources, a shorter project duration reflects a better allocation of those resources.
The sum of the absolute daily deviations in resource usage may find the best solution
in some cases. The sum of squares of deviations may render the best schedule in
other cases. As a result, no universally-accepted criterion exists for determining
the best solution for a resource leveling problem (Shah et al. 1993). The simplest
measure of the efficiency of a leveled schedule would be a constant amount of each
resource for the project duration. However, différent types of resources are needed in
varying amounts over the life of the project (Adrian 1973). Most project-scheduling
software packages require the user to input an initial resource curve for each type of

resource, prior to leveling the resources. Resource curves have been discussed in few
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articles found in the literature (Seibert and Evans 1991; Easa 89; Leachman 1983;
Galbreath 1965); most of them assume that resource utilization rate is constant,
and the optimum schedule after leveling should have a rectangular distribution of
resources. How well the resources are leveled versus the assumed initial profile is
a question that many researchers have tried to address; The resource improvement
coefficient (Martinez and loannou 1993) resource-utilization factor and the sum of
the residuals squared (Seibert and Evans 1991), the minimum moment value (Harris
1978), represent only few examples of the methods reported in the literature.

Two main techniques for resource leveling have been reported in the literature:
optimization and heuristic. Optimization techniques aim at producing the best lev-
eled schedules. Heuristics are approxiniate techniques which provide acceptable, but
not necessarily "the best” solutions in most cases. The major research emphasis has
been on the development of heuristic-based rather than optimization-based tech-
niques. Heuristics provide good, practical solutions in most cases; but as resources
become more scarce and the competition among project activities stronger, opti-
mal solutions will be increasingly sought by project managers (Shah et al. 1993).
Optimization techniques draw optimal solutions; but the computational capacity
required by them often exceeds the present hardware capacities of even the main-
fran'.le computers, especially for large projects that are common in the construction
industry. However, with the advent of Al procedures, efficient algorithms and high-
performance computers, optimization techniques for resource leveling are expected

to become feasible.

2.2.1 Optimization Techniques

Optimization techniques for RL require a mathematical formulation of the problem.
In general, the RL is formulated as an integer or mixed integer linear programming
problem, in which an objective function has to be minimized subject to a set of

constraints. Most of the researchers have used comercially available optimization
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software packages, e.g. LINDO, and very few others have tried enumerative algo-
rithms (i.e., implicit enumeration and branch-and-bound). A survey of the general
purpose integer linear programming algorithms can be found in Rao (1984) and in
Geoffrion and Marsten (1972). Only one dynamic programming approach to re-
source leveling was proposed by Petrovic, in 1968. The method uses the sum of
the squared deviations from the mean resource requirement as the dependent crite-
rion. Although Petrovic claims that his approach is capable of handling the multiple
resource problem, his description and formulation of the problem is limited to the
single resource problem. The author states that the "... high dimensions of the func-
tional equations make the solution difficult, and may become, in practice, serious
limitations to the feasibility of the general computation”.

A mathematical model that uses the complete enumeration of all possible
combinations of shifting the noncritical activities within their allowable floats, has
been presented by Ahuja (1976). This author showed that the comparison of sum
of squares of the resource requirement for each time unit does help select the most
leveled schedule, but the comparison leads to a rectangular distribution. Therefore,

in order to produce a more gradual distribution (e.g., parabolic), it is necessary to

~+, apply another criterion. The criterion used by the model is the minimization of the

fluctuations of day-to-day resource changes. A major drawback of this method is
that its application becomes less feasible as the size of the network increases; the
number of all the combinations, that have to be investigated to arrive at the final
solution, exceeds the computational capacity of even the most modern and large
computers.

In 1986, Karaa and Nasr developed an optimization model that minimizes
the total cost of leasing additional resources in construction, under the constraint of
maximum and most efficient use of owned equipment and contracted labor force. The
mode] has a mixed integer-linear programming structure, and derives the schedule

for equipment rentals, as well as the utilization scheme for owned equipment and
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other available resources. The model can be used as an estimating tool for multi-
project, multi-resource planning and sharing, and as a means to implement the most
efficient utilization of resources throughout the duration of a project. The model
has the capability of mapping continuous, intermitent, uniform and nonuniform
activities. The main limitation of the model lies within its dimensionality. As the
project increases in corhp]exity, the number of integer variables becomes too large
to be handled by existing linear programming software packages (e.g., LINDO). The
authors suggested a way to reduce the dimensionality problem, by decomposing the
network in subnetworks of activities between two major milestones.

A mixed integer programming model, that minimizes the sum of the squares
of deviations from the mean resource requirement, was introduced by Movassaghi
and Beidoun (1988). This optimization algorithm for RL assumes a single resource
requirement, and a constant rate of resource demand. The objective function is
subjected to a set of constraints relating the available total float times to the prece-
dence relationships of the affected activities. In order to solve their mixed integer
programming problem, the authors have used the branch-and-bound algorithm and
the dual simplex method. The existence of a large number of constraints and vari-
ables is the main limitation of the procedure. The authors stated that the computer
time increases almost exponentially with the number of integer variables.

Easa (1989) proposed an integer-linear optimization model for resource lev-
eling for a single resource and continuous activities. The objective function of the
model minimizes the absolute deviations between the resource requirements and a
uniform resource level, between consecutive resource requirements, or between the
resource requirements and desirable nonuniform resource levels. Extensions of the
model to multiple resources and trade-off of cost scheduling are suggested. The
model is applicable to AcA or AoN networks, and is intended for small to medium
sized construction projects. The model requires as the input the CPM scheduling

results, and the resource rates of activities. This information is used by an interface
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program which establishes automatically a file containing the objective function and
the constraints of the model. This file is then input to an integer-linear optimization
program, which produces the optimal solution. As is the case with integer optiniza-
tion models, this model has also the dimensionality limitation. For large projects,
the number of binary variables and constraints may be too large to be handled by
existing computer packages. |

Another mixed integer model for RL was developed by Ramlogan and Goul-
ter (1989). The model schedules activities within their available free floats, such
that the project duration, as calculated by the CPM, does not increase. However,
the estimated activities durations used in the critical path analysis are not consid-
ered the model’s constraints. The scheduled activities durations are determined by
the model. This procedure has three objectives, all related to the overall objective
of total resource leveling: 1) resource leveling for the individual activities, 2) mini-
rization of total duration of the individual activities (in essence making the activity
occur on consecutive days), and 3) overall resource leveling of the project. These
objectives are placed within the formulation in a weighted multi-objective frame-
work. The functionality of the model is demonstrated by application to an example
project, using LINDO optimization package. The model is complex, and would
"theoretically” give an optimal project schedule. The computational requirements
of the model are quite intensive. However, the authors suggested that when more
efficient branch-and-bound or other integer algorithms are developed, the efficiency
will improve significantly.

Shah, Farid and Baugh (1993) proposed a Scheme language program, inter-
faced with LINDO and S-plet, to find the minimum resource limit required to finish
a project within its planned duration. Multiple resources can be scheduled by trans-
forming various resource requirements into a common base, or by using the weighting
method. The computer program uses an integer-linear programming model, origi-

nally developed by Wiest (1977) for resource allocation, and adapted by the authors
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for resource leveling. Instead of requiring a resource limit as input, the program cal-
culates the minimum resource limit required to finish the project within its planned
duration. By minimizing the required resource limit, the resource histogram is au-
tomatically leveled. Under this resource limit, however, a better solution may yield
either a lower sum of absolute deviations, or a lower sum of squares of deviations.
Therefore, generally the program provides a near-optimal solution, and it is appli-
cable only to small projects.

Resource leveling is a NP-complete problem, which usually takes time of ezp(n)
order,and therefore, when the size of the problem increases it becomes intractable.
Typically, if the combinatorial optimization problem is of size n, then the possible
solutions are of the €" or n!. For NP-complete problems, no algorithm is known
which provides an exact solution to the problem, in a computational time which
is a polynomial in the size of the problem. As the number of noncritical activities
increases, the required number of all possible combinations of activities within their
available floats would be impractical. For example, if a project has 10 noncritical
activities, each having a float of 6 time units, there will be 6!° {over 60 million}
possible combinations (Easa 1989). Therefore, there is a need for a procedure to

overcome this combinatorial complexity.

2.2.2 Heuristic Techniques

Heuristic techniques produce good feasible schedules using rules of thumb to deter-
mine priorities among the competing activities. Some of the predominant priority
rules commonly used are: the least float, the earliest start time, the minimum late
start time, the minimum early finish time, the minimum late finish time, the largest
duration and the shorthest duration (Ahuja et al. 1994, Antill and Woodhead 1990,
Moder et al. 1983, Harris 1978). Heuristic rules may be employed using either
parallel or series methods. The series method accomplishes leveling by allocating

resources to activities in series (one activity at a time, from start to finish). The
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parallel method allocates resources to activities, one day at a time ( Ahuja et al.
1994, Antill and Woodhead 1990, Moder et al. 1983, Harris 1978). The best lev-
eling may be obtained by trial and error, applying different heuristics for the same
problem and choosing the best alternative. Heuristic techniques can handle large
projects, but the solution they provide might not be the optimum one.

The simplest and the most popular of the algorithms reviewed, was developed
by Burgess and Killebrew (1962). 1t is a systematic heuristic procedure for leveling
a single resource. They found out that the sum of squares of the period by period
resource requirements decreases as the peaks and valleys in the profile are leveled,
and this sum of squares reaches 2 minimum for a schedule in which the period to
period resource requirement is constant. The procedure begins with all activities
scheduled at their earliest possible starting times. Beginring with the last activity
in the network, activities are shifted one period at a time to later starting times,
until their total float is exhausted. For each alternative, the position of the activity
and the resulting sum of squares of the resource profile are evaluated. The activity
is then rescheduled in the position that yields the lowest sum of squares. The algo-
rithm’s inability to guarantee the optimum schedule, with respect to minimizing the
variance in the resource levels, is considered to be its major limitation. However,
a procedure for an optimal solution would require that all feasible combinations
of activity locations to be evaluated, which is computationally impractical for net-
works of significant size. A second limitation of this algorithm arises from the fact
that it handles a single resource, when in practice projects typically utilize multiple
resources.

Levy, Thompson and Wiest (1963) described a multiship (multiple project),
multishop (multiple resource) leveling heuristic used to minimize peak manpower
requirements for shops (resources) in a naval shipyard. An ample description of
this heuristic technique, called MS? (for multiship, multishop), or simply Wiest’s
procedure, can also be found in Wiest and Levy (1977). The algorithm consists of
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two steps. In the first step, the workloads of all shops are smoothed, simultaneously
decreasing the maximum manpower availability for all shops one unit at a time.
When a peak load period is encountered, the algorithm randomly selects an activity
from a list of activities possessing float greater than zero. This activity is then
shifted some number of periods to the right of the peak period. The specific number
of periods that the activity is shifted is randomly selected by the algorithm. When
it is no longer feasible to further reduce the amount of the resources, the second step
of the algorithm starts bf\performing further smoothing on individual shops. The
resources are leveled sequentially, from the most expensive to the least expensive.
A limitation of the sequential process is that the leveling of any given resource
places additional restrictions on the potential starting times of the activities using
the other resources. The final resource profiles are dependent on the order in which
the resources are leveled. The evaluation criterion for the schedules produced by
this algerithm is the resources’ costs, and its objective is to minimize these costs.
A major limitation of this algorithm arises from the heuristics used to select an
activity to be shifted, and the number of periods that activity is to be shifted. Since
selecting an activity and its shifting periods are randomly done, then the probability
of producing a good solution is relatively small.

Galbreath (1965) proposed a computer program to handle multiple resource
leveling, using heuristics. The program examines the total resource requirement for
each resource type and the total for each day. If the resource requirement is greater
than the available resources, then the activities scheduled on that day“are shifted
within their allowable free floats, or total floats (if free floats have been reduced to
zero), until the resource requirement matches the availability. After having examined
all the activities in this fashion, the extra resource required (if any) would be the
new total resource requirement for that day. The next resource is then considered for
the same day, in a similar fashion, until the last resource has been used for that day.

This is repeated until the final day of the project has been reached. An important
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feature of the program is that it allows the activities to split into segments during the
leveling process. Another advantage is that each resource availability level can be
presented to any desired curve. One of the limitations of this method is associated
with the order in which activities are selected for rescheduling; different selecting
rules yield different leveling solutions. Relocating an activity without regard to the
area into which it is placed is also another shortcoming of the algorithm. Relocating
an activity strictly on the basis of an excess of requirement over availability for one
resource considered along, is a scheme open to criticism, too.

Woodworth and Willie (1976) described a heuristic algorithm for the multiple
project, multiple resource problem. Although the leveling algorithm is not discussed
in detail, they described it as a modification of the Burgess and Killebrew proce-
dure. They implemented an alternative heuristic method, which starts with the
first activity in each project. On the second and subsequent passes through each
project, the activities are moved to the left, to their earliest starting times, as well
as to the right, to later starting times. Woodworth and Willie deal with the mul-
tiple resource problem by prioritizing the resources for analysis. The criterion used
to evaluate the levelness of the produced schedules is the sum of squares for each
individual resource, across all projects. As a heuristic algorithm, this procedure has
the same limitations as discussed earlier for the other heuristic procedures. The
limitation associated with sequential scheduling of different resource types, dicussed
in the Levy, Thompson and Wiest algorithm, is also applicable to this one. Finally,
the authors conclude that the algorithm has no trade-off functions , therefore the
resulting schedule may not be the least-cost schedule.

In an attempt to extend and refine the eflorts of the above mentioned authors
(i.e., Antill and Woodhead 1990; Wiest and Levy 1977; Adrian 1973; Galbreath
1965; Burgess and Killebrew 1962), Harris (1978) developed the minimum moment
algorithm. This heuristic method assumes that the activities are continuous, re-

source rates are constant, and the network logic is fixed. It can be used for AoA or
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PDM networks. The minimum moment algorithm considers the resource histogram
as an area, and sets its objective as the minimization of the moment of that area,
along the x-axis. The method uses the concept of Burgess’ sum of the squares of
the daily resource sums, and develops an improvement factor to select the activity
to be shifted. Shifting begins with activities on the lq.f:est sequence step, and the
improvement factor is used to select the particular one\'bn the step , to be shifted.
When all the activities on a step have been considered, the next earlier step is ex-
amined. This process céntinues until the first step has been reached. Free float is
used to set the range of possible shifting of activities. The order is then reversed,
starting with the first sequence step and proceeding to the last step, using the back
float to set the range of shifting. Harris suggests the leveling of multiple resources
in series, as described by Antill and Woodhead (1990}, or by combining them in a
single application, by assigning weights.

Martinez and loannou (1993) described a computer program (CPMLevel) that
utilizes 2 modified version of the minimum moment algorithm (Harris 1978), to
smooth the resource histogram in both AoA and PDM networks. The authors state
that, in addition to solving the CPM and resource leveling problem, CPMLevel also
performs limited resource allocation, and uses graphics animation to show the effect
of each step in the leveling procedure, of the resource histogram. In comparison
with the minimum moment algorithm, CPMLevel provides the opportunity to use
late sequence steps instead of early sequence steps, on either or both the forward
and the backward passes. The authors demonstrated that dynamically assigned
sequence steps can provide better results, when compared to assignment by early
sequence steps.

Thesen (1978) designed a computer program for monthly development of de-

tailed daily schedules of manpower assignments. The program was designed to
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handle large projects, multiple resources and "any number of different project net-

works”. Although it is reported that this program is capable of leveling the man-
power assignments, the description and formulation of the problem is clearly limited
to scheduling under limited resources.

Leachman (1983) described a complex heuristic technique, for handling mul-
tiple resources, in multiple projects environment. The author emphasized the vari-
ation of the intensity of activity resource loading, as a tool for leveling the overall
resource load profiles, in contrast to the traditional approach of simply rescheduling
fixed intensity activities. Activity intensity variables are defined, which measure
activity demand rates for resources and consequent activity durations for the pro-
duction of each output unit. A heuristic approach consisting of an iterative non-
linear programming procedure was presented, which computed activity durations
(intensities) for the minimization of resource capacity costs, subjected to mecting
construction due dates. A major criticism of this method is the complexity of the
algorithm. Ephremidis (1987) briefly described a computer program for the mul-
tiple project, multiple resource leveling problem. Although the leveling algorithm
is not discussed in detail, the author describes it as a‘.?nrgi\iﬁcation of the Wiest
procedure (Wiest 1977). He also states that the program ca.n:"deal with the problem
of optimizing the project duration time with limited resources.

Harris (1990) introduced a new heuristic model for resource leveling, called
PACK. The model assigns project activities to specific days, so that the final re-
source histogram approaches a rectangular shape, and its moment approaches a
minimum value. This heuristic method adopts a new procedure, where a base re-
source histogram is determined by using only the critical activities and those that
have total floats less than or equal to the activity duration. Then, each noncritical
activity is directly positioned in time, and its resource contributions are added to
the base histogram. The author describes three rules for determining the schedul-

ing priority of the noncritical activities. First, activities are placed in decreasing
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resource rate order. Second, if a tie on resource rate exists, the tied activities are
placed in increasing order of total float. Third, if there is a tie on both the resource
rate and the total float, the priority is to place the activities in decreasing order of
sequence steps. The method accepts fractional values for activity durations and for
relationships lead times between activities. This heuristic method assumes that the
duration of each activity is constant, the resource rate of utilization of the resource
is also constant, the activities are time continuous, and the network logic is fixed.

Kobayashi and Nonaka (1990) very briefly described a Hopfield-model-based

scheduling method, which minimizes daily resource usage variation by neural com-

putation. The authors compared two approaches to schedule integration of hier-
archical scheduling, applicable to large scale plant projects.” The first approach is
a knowledge-based interactive scheduling method, and the second is based on us-

ing ANNs, The comparison between these two approaches suggests that the less

automated and demanding knowledge-based method gives a better solution. Al-

though the problem!‘-‘()f integrating sub-schedules to plan an overall schedule with
flattened resource usage is not identical with the classical resource leveling problem,
the concept of using Hopfield NN to flatten the resource usage deserves a special
consideration. However, the authors did not provide any implementation details of
their work to support their results.

The first use of ANNs in solving the RL problem was attempted by Shi-
mazaki, Sano and Tuchiya (1991). They have formulated the RL as a constrained-
optimization problem, and have studied the possibility of mapping this optimization
onto a Hopfield NN architecture. However, they did not address the problem of de-
veloping an explicit NN model associated with an energy function, that would have
required a solution to the key question cf specifying the weight-matrix. The map-
ping is ill-defined, due to the nonlinear form of the constraints, which introduces
cross-products of four variables in the expression of their energy function. Since the

energy function of a Hopfield NN contains only products of two variables, in order
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to use the energy function proposed by the authors, an extended set of variables had
to be considered instead of the one proposed by the authors. Moreover, the optimal
solution presented by the authors does not represent a schedule for the example
project, and the objective function finally converged to its initial value. While this
approach is interesting from a conceptual point of view, there remains skepticism
that it can be used without further and extensive developments, which is th“e concern

of this research work.

2.3 Summary

In this chapter, a review of the literature related to resource leveling has been pre-
sented. Different resource leveling models have been discussed, and their advantages
as well their limitations have been outlined.

Due to the combinatorial complexity of the RL problem, the utilization of op-
timization techniques seems to be impractical. The most practical procedures utilize
heuristic algorithms. However, these heuristic procedures do not guarantee optimal
project schedules, and no heuristic or combinations of heuristic methodologies have
demonstrated the ability to consistently produce the best schedule for every project.
Because the current techniques (optimization, heuristic) are not sufficient in solving

the RL problem, there is a need for other avenues, such as ANNs, to be explored.
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Chapter 3

Neural Networks

3.1 Introduction

Neurocomputing is a fundamentally new and different information-processing pa-
radigm and an alternative to algorithmic programming. Neurocomputing can be
defined as "the engineering discipline concerned with nonprogrammed adaptive
information-processing systems - neural networks - that develop associations be-
tween objects in response to their environment” (Hecht-Nielsen 1988). Instead of
performing a step-by-step procedure for carrying out the desired transformation, the
neural network itself generates its own internal ru]es‘ governing the association, and
refines those rules by comparing its results to the provided examples. Through trial
and error, the network learns how to perform the task. Neurocomputing does not,
however, replace algorithmic programming. Algorithmic computing and neurocom-

puting complement each other (Flood and Kartam 1994).
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3.2 Neural Networks - General

In contrast to conventional computers which are programmed to perform specific
tasks, most neural networks must be taught, or trained. They learn new associ-
ations, new patterns, and new functional dependencies. Learning rules and algo-
rithms generated from examples that are used for training the networks, replace
the programming required for ‘;onventional computation. Unlike programmers us-
ing conventional programming methods, NN users do not specify an algorithm to
be executed by each computing node. Instead, theyH select what in their view is the
best architecture, specify the characteristics of the neurons and initial weights, and
choose the training mode for the network. Appropriate procedures are then input
to the network, so it can acquire knowledge from the environment. As a result of
such exposure, the network assimilates the information that can later be recalled
by the user. Instead of performing a program of instructions sequentially as in a
von Neumann computer, NN models explore many competing hypothesis simultane-
ously using massively parallel networks composed of many computational elements
connected by links with variable weights (Lippmann 1987).

Compared to conventional digital computing techniques, neural networks are
advantageous because they can learn from examples and generalize solutions, can
adapt to fine changes in the nature of a problem, are tolerant to errors in the
input data, and can process information rapidly. They are suitable for solving com-
plex pattern- recognition problems, identifying handwritten characters, in adaptive
control, for estimation, classification, and generally for problems that have proved
intractable or far too expensive with algorithmic computers. However, neural net-
works have a number of shortcomings such as, the production of inexact solutions, a
lack of theory to guide selection of the most appropriate size and configuration for a
network, slow progress during training, no guarantee of success in finding an accept-
able solution, and a limited ability to rationalize the solutions provided. Although

NNs do not require knowledge acquisition, training requires a comprehcnsive set of
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Multiplicative weights

Figure 3.1: General symbol of a neuron (from Zurada 1992, p.32)

examples and the quality of these will affect the NN’s final performance. Where
appropriate, the advantages of neural networks can be combined with those of sym-

bolic and procedural methods of computation in hybrid schemes (Flood and Kartam

1994).

3.2.1 Processing Elements

The basic processing elements of artificial neural networks are called artificial neu-
rons; they are more often referred to as neurons, nodes, urits, or processing elements
(PEs). Also, artificial neural networks (ANNSs) are usually called neural networks
(NNs). All these terms are used interchangeably throughout this thesis. Each pro-
cessing element (neuron) has many input signals, but only a single output signal. A
general neuron symbol is shown in Figure 3.1.

The signal flow of neuron inputs, z;, is considered to be unidirectional as
indicated by arrows, as is the neuron’s output signal flow, 0. The strength of each
connection z; entering a processing element is indicated by an adaptive coefficient

called weight, w;. This weight is generally used to amplify, attenuate, and possibly
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change the sign of the signal in the incoming connection.

_ The processing that each neuron does is determined by a transfer or activation
function - a2 mathematical formula that defines the element’s output signal as a
function of the input signals and the adaptive coefficients (weights). The activation
function is assumed to be nonlinear. Hard limiting (i.e., either the step or the signum
function), threshold, and soft limiting (i.e., the sigmaidal) are the three most often
used forms of nonlinearities (Vemuri 1988). In some cases, neurons can be considered
as simple threshold units that fire when their total input exceeds certain bias levels.
The resulting value of the activation function is the output of the artificial neuron,

and it is given by the following relationship

o= f(wTx), (3.1)

where w is the weight vector, x is the input vector, and f(w7x) is the activation
function. Usually, the activation function is referred to as f(net), where the variable

net is defined as the scalar product of the weight and input vector
net £ wTx. (3.2)

Neuron inputs and outputs are usually either discrete or continuous, or a mixture

of them (Zurada 1992).

3.2.2 Neural Networks Architectures

The output signal of a neuron fans out along many pathways to provide input signals
to other neurons. These pathways connect the processing elements into a network,
usually called artificial neural network, or simply neural network, as depicted in
Figure 3.2.

Often a NN is divided into layers or groups of processing elements, all hav-
ing the same activation function. The topology of the connections among neurons
influences what function a NN can carry out. Over the years, many topological con-

figurations have been proposed. Networks comprising only a single layer of PEs as

34



Input layer

Layers of
processing elements

Connections

Hidden layers

01 02 a3 " s Om Oul'putlayer

Figure 3.2: General representation of a feedforward neural network (from Hecht-
Nielsen 1988, p.37)

well as many layers have been tried. In multi-layer NNs neurons are located in one
of three types of places: the input layer, the output layer, and the hidden layer(s).
Neurons in the input layer and the output layer are used to communicate with the
exterior, while neurons in the hidden layers communicate only with other neurons.
In feedforward networks, the signal flow from one layer to the next is unidirectional.
In feedback networks, both forward and backward connections exist. Among the
various NN paradigms available, the feedforward NN, with backpropagation of the
error, is by far the most utilized architecture (Hegazy et al. 1994).

In Figure 3.2, an input array, or sequence of numbers, is entered into the net-
work. Each neuron in the first layer takes a component of the input array, operates
on it in parallel with the other neurons in the layer according to the activation
function, and delivers a single output to processing elements in the next layer. The

result is an output array representing some characteristic associated with the input.
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Since inputs and weights can change over time, the network adapts and learns. Most
activation functions include a learning law, which is an equation that modifies all
or some of the neuron’s weights, in response to the input signals and the values
supplied by the a.ctivation function. The learning law allows the neuron’s response
to cﬁange with time, dépending on the nature of the input signals. It is the means
by which the network ”learns” or adapts itself to the desired outputs. A neural
network learns how to process information usually by being given either supervised
or unsupervised training. In both cases, it runs through a series of trials. Supervised
learning occurs when the NN is supplied by both the input values and the correct
output values, and the NN adjusts its weights based upon the error of the computed
output. The concept of error in a neural network is defined as the degree to which
the observed pattern of output differs from the expected pattern of output. Unsu-
pervised learning occurs when the NN is only provided with the input values, and
the network adjusts the weights based solely on the input values and the current
network output. An example of unsupervised training applied to civil engineering
is that of simulated evolution, which has been used to train a network to provide
near-optimal solutions to the flow-shop sequencing problem (Flood 1989).

Neural networks vary in their architecture, each being designed to perform a
different type of task. Although all of them consist of processing elements joined by
a multitude of connections, they differ in the learning laws incorporated into their
activation functions, the topology of their connections, and the weights assigned to
their connections. In fact, some neural networks can learn without being trained
(self-organizing map) and some do not even learn at all (Hopfield network) (Zurada
1992; Freeman and Skapura 1992). Neural network models have been successfully
applied to solve a variety of problems. In particular, Hopfield neural networks have
provided acceptable solutions to optimization problems such as A/D conversion,
linear programming and the travelling salesperson problem {TSP) (Hopfield and

Tank 1985; Tank and Hopfield 1986). In order to explain how NNs can be used in

36



solving optimization problems, the Hopfield NN is presented next.

3.3 Hopfield Neural Network

There are two versions of an ANN, usually called the Hopfield memory, or the
Hopfield NN. The two versions are the discrete Hopfield memory, or discrete-time
Hopfield network, and the continuous-time Hopfield network, depending on whether
the neuron outputs are a discrete or a continuous function of the inputs.

A Hopfield NN is a single layer feedback network with complete interconnec-
tions, and it can be viewed as a nonlinear dynamical system. As a dynamical sys-
tem, it processes the initial condition information over time, while moving through
a sequence of states. The general architecture of a Hopfield NN is illustrated in
Figure 3.3.

Figure 3.3 shows a fully connected network of n neurons, without the feedback
from each neuron to itself. Note also the existence of the external input signals ¢;,
usually called biases, and the threshold values T;. The feedback input to the ith
neuron is equal to the weighted sum of neuron outputs x;, wherej = 1,2,...,n and
j # i. Denoting wj; as the weight value connecting the output of the jth neuron with
the input of the itk neuron, we can express the total input net; of the ith neuron as

n
neti= > wyg;+4-Ti, i=12,...,n. (3.3)
=LA

Equation (3.3) can be rewritten as
net=Wx+i-t. (3.4)

where
xé[xlxg...a:j...zn]T, (3.5)

is the output vector,

net & [nety nety ... net; ... nety ], (3.6)
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Figure 3.3: Hopfield neural network (from Zurada 1992, p.255)
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is the vector containing the activations to each neuron,
t2[TyT... Ty ... T, )T, (3.7)
is the threshold vector, and
1& (4142008500 dn]T, (3.8)

is the vector containing the external inputs to each neuron. Matrix W, usually
called the weight (connectivity matrix), is an n x n matrix containing the network

weights, and can be defined as

0 wy w3 ... Wi
st 0 Wez ... Wy
Ja
W= Wy Wi 0 e Wap . (3.9)
Way Wn2 Wnz ... 0

A

Note here that, in this model, the weight matrix W is symmetriéal and with
diagonal entries equal to zero.

Typical activation functions used are

A 1
f(net) = 1 + exp(—Anet)’ (3.10)
and
1 , net>0
f(net) & sgn(net) = ne (3.11)
0 , net<0.

where A > 0 in (3.10) is a constant called the gain parameter, and it is proportional
to the neuron gain, determining the steepness of the continuous function f(net)
near net = 0. The continuous activation function is shown in Figure 3.4 for various
A. Notice that as A — oo, the limit of the continuous function (3.10) becomes

the sgn(net) function, defined in (3.11). The soft-limiting activation function (3.10)
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f (net)

Figure 3.4: Neuron activation function (from Freeman and Skapura 1992, p.145)

is often called sigmoidal characteristic, as opposed to the hard-limiting activation
function given in (3.11). The hard-limiting activation function describes the discrete
neuron model, while the soft-limiting activation function describes the continuous
neuron model.

(i’?rresponding to the unipolar continuous activation function (3.10), the do-
main of output vector X is defined as the interior of the n-dimensional hypercube
(0,1)*. When the hard-limiting activation function (3.11) is used, the output vector
is one of the vertices of the n-dimensional hypercube (0,1)". If the asynchronous

update scheme is used,
1 ,if net;>0
T; = ’ ' (3.12)
0 ,if net;<0.
the output vector moves from vertex to vertex, until it stabilizes in one of the 2"
vertices available. Note that the movement is from a vertex to an adjacent vertex

since the asynchronous update mode allows for a single-component update of an
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n-tuple vector at a time. The final position of the output vector is determined by
weights, thresholds, inputs, the initial vector x, and by the order 'of transitions. The
open question is whether the system is stable, and whether it converges or not.
The stability and the convergence of the Hopfield NN can be evaluated by
studying a so-called computational energy function. If this energy function has
the properties of a Lyapunov function, i.e., it is positive definite, bounded, and
it decreases in time, then the Hopfield NN would be asymptotically stable (Zurada
1992). The energy function for the discrete-time Hopfield NN has the form (Hopfield
and Tank 1985)
E= —-;-xTWx —iTx — +tTx. (3.13)

Hopfield and Tank (1985) have shown that this energy function decreases only when
the weight matrix W is symmetric, i.e., w; = wj. Since the weight matrix W
is indefinite because of its zero diagonal, i.e., wy; = 0, then the energy function E
has neither a minimum nor a maximum value in the unconstrained output space.
However, since the energy function is bounded within the n-dimensional hypercube,
it has to finally reach its minimum in one of the 2" vertices of the hypercube, under
the update algorithm (3.12).

Continuous-time Hopfield NNs are generalized discrete-time Hopfield NNs in
which the energy function decreases continuously in time. For a very high gain A of
the neurons, continuous-time networks perform similarly to discrete-time networks,
and in the limit case A — oo, they perform identically. Continuous-time Hopfield
NNs are example§ of nonlinear, dynamical, and asymptotically stable systems.The
evolution of the system is in the general direction of the negative gradient of an
energy function. Typically, the network energy function is made equivalent to a
certain objective function that needs to be minimized. The search for an energy
minimum performed by the NN network corresponds to the search for a solution
of an optimization problem. Finding an energy function relevant to a particular

optimization problem is a difficult task, and no unique and best method exists to
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identify such a function.

The suitable energy function for a continuous-time Hopfield NN has the fol-

lowing form (Zurada 1992)

1 . = o

E(x) = ~5x"Wx ~iTx+ 3G jo i z)dz. - (3.14)

= i=1
wheref;”1(z) is the inverse of the activation function f;. Note that the threshold
term of (3.13) has for simplicity been absorbed into the i"x term in (3.14), and the
third term containing the integral of the inverse of the activation function has been
introduced to account for the property of continuous activation function of neurons.
Hopfield and Tank (1985) demonstrated that the evolution of this dynamical systemn

is described by the following set of ordinary nqplizhear differential equations with

constant coefficients

duft) _

C .7 = Wv(l) - Gu(t) +1i (3.15)

v(t) = f[u(t) (3.16)
where u(t) denotes a neuron’s activation, and C and G are notations relevant to the
physical model, using electrical components, of the above set of equations, model
described in detail in Zurada (1992).

The stable states of the network are completely determined by specifying the
bias currents and the initial values of the input voltages, because one could view
the sets of differential equations as defining an initial value problem. The matrix W
defines the set of all local minima of the energy function, and the specific values of
the steady-state output voltages, obtained from the time evolution of the network,
are determined by the initial values of the input voltages, u;. The equations of

motions are deterministic i.e., the steady-state solutions are completely defined by

the initial conditions.

N

Finding an equilibrium point for the dynamic network with continuous ac-
tivation function neurons corresponds to finding 2 minimum of E(x). By having

previously chosen wy; = 0, the weight matrix W has been made neither positive
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definite nor negative definite (Zurada 1992}, which results from the assumption that
the system has no self-feedback. In fact, symmetric matrix W with zero diagonal
produces scalar-valued ehergy function of quadratic form (—1/2)x¥ Wx—iTx, which
has neither minima nor maxima since W is neither positive nor negative definite.
Thus, the energy function E(x) posesses no unconstrained minima. This, in turn,
means that in the case of limitation of the output space of the system to a (0,1)
hypercube, the constrained minima of E(x) must be located somewhere at the hyper-
cube’s boundary, on the edges or faces of the cube. If a solution of the constrained
system within the (0, 1}"cube exists, then it must be a saddle point, which does not
represent an attractor for the discussed dynamical system.

Zurada (1992) shows that the assumption of high-gain neurons results in ne-
glecting the last term of energy in (3.14), and enforces the constrained minima to be
exactly in the vertices of the (0,1) cube having a total of 2" vertices. The high-gain
network that approaches, in the lIimit case, the discrete-time system is expected to
have its energy minima in the cube corners. For the continuous-time Hopfield NN
with finite neuron gain values the minima are within the cube and are attractors of
the system. Such minima are usually desirable if they are as close to the vertices
of the hypercube as possible. They will always be within the (0,1) cube, and for
A = oo they will reach the cube corners. In order to make the weight matrix W
indefinite, and to force the output variables towards the corners of the hypercube,
Tank and Hopfield (1986) suggested the adding of additional terms to the energy

function, in which the design variables z; are substituted by Z; given by
&':j=:z:j(1 —J:j). (317)

This is especially useful when there is a need for digital solutions (0 or 1) for par-
ticular optimization problems.

In conclusion, the equilibrium points of the energy function for a Hopfield NN
always represent either the constrained minimum or saddle of the energy function.

There is, in general, more than one solution, and the actual solution reached by
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the NN is dependent on network parameters and on the initial condition within

the network. Some of the solutions produced by either disc_;ets—’é‘u:ﬁontinuous-time
B

Hopfield NNs are useful, so they will be desirable. Other solutions will be less useful

and may even be erroneous, and sometimes hard to avoid (Wilson and Pawley 1988).

3.4 Neural Networks in Construction

Neural networks have been considered as promising management supporting tools,
since they have capabilities particularly suited for analogy-based decision problems -
which are relevant at all levels of construction engineering and management (Moselhi
et al. 1991). NNs applications in construction began at the end of 1980s (Flood
1989), but already cover a wide range of topics such as, simulation of construction
activity (Flood 1989), scheduling (Kobayashi and Nonaka 1990), optimum markup
estimation (Moselhi et al. 1991}, estimating earthmoving equipment production
(Karshenas and Xin 1992), estimating the productivity of various construction ac-
tivities (Chao and Skibniewski 1994), resource leveling (Shimazaki et al. 1991;
Savin et al. 1993), generating project planning networks for construction projects
(Mawdesley and Carr 1993), and multiobjective and multiresource decision support
systems (Wei and Singh 1995). An extensive review of NNs theory and their applica-
tions in civil engineering was carried out by Flood and Kartam (1994}, who stressed
the important role of NNs in addressing the tasks of interpretation, classification,
modelling, prediction, estimation and optimization. Most of the NNs applications
in civil engineering have focused on using the feedforward NNs, while little work
has been done using feedback NNs (Flood and Kartam 1994). Garret (1992) sug-
gests that feedforward NNs should be used in civil engineering applications for those
classes of problems for which the goal state is well known for a given initial state,
especially for problems where the initial state descriptions are noisy. On the other

hand, feedback NNs (e.g., Hopfield NN) should be used for problems for which the
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solution is not known in advance. Resource leveling can be included in this class of

problems.

3},5 Summary

"\
Thh rnapter presented an introduction to neural networks, in general. Their cur-

-'cnt apphcatlons to civil and construction engineering have been briefly discussed.

It aIso contains a detailed presentation of the Hopfield NN. This NN is a single-layer
feedback NN, and it is a dynamical system evolving in time in either a continuous,
or discrete, output space. The transition (evolution) in this dynamical NN is toward
an asymptotically stable solution, that is a minimum (local or global) of a dissipated
energy function. The concept of energy function has been stressed to demonstrate
the inherent stability of the Hopfield NNs, and their suitability for producing solu-
tions of certain optimization problems. The stationary solution does not represent,
in general, a global optimum solution to the problem of energy function minimiza-
tion. This is due to the often highly complex shape of the multi-dimensional energy
function. This limitation is somewhat moderated by the fact that global solutions
of real large-scale minimization problems of energy functions are often mathemati-
cally very hard to track anyway, and for large-scale problems cannot be found with
certainty.

One of the difficult tasks facing the designers is the translation of the optimiza-
tion problem into the minimization of an energy function. Moreover, energy func-
tions specific to optimization problems are usually hard to find, and the derivation
of the weight matrix W, and of the vector 1 of external inputs, is not a straightfor-
ward task. The only energy form is the general one stated as in (3.13) or (3.14). If
high-gain neurons are used, the third term of the energy expression can be ignored.

Finally, the steps that have to be performed, to map an optimization problem

onto a Hopfield NN, can be summarized as follows:
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Choose a representation scheme which allows the outputs of the neurons to be

decoded into a solution to the problem

Find an energy function whose minimum value corresponds to "best” solutions

to the problem to be mapped

Derive the weight matrix and the external inputs vector from the energy func-

tion

Setup the network initial values, which completely determine the stable output

of the neurons Y

There is no direct method for mapping constrained optimization problems onto
a NN. However, it can be done through addition of terms in the energy function
to penalize the violation of the constraints. The Augmented Lagrangian Multiplier
(ALM) method, described in the next chapter, is one of the methods that allows for

such a transformation .
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Chapter 4

Combinatorial Optimization

Using Neural Networks

4.1 Introduction

Artificial neural networks have been recently found to be effective tools to solve
different classes of optimization problems (Cichocki and Unbehauen 1993). The
ability of analog neuron-like networks to process simultaneously a large number of
variables makes it capable of finding solutions for complex optimization problems
in a very short period of time. In fact, with the advent of analog VLSI technolo-
gies and electrooptics, it is feasible today to design programmable chips which can
solve a specific optimization problem considerably faster than by using a sequential
algorithm on a general purpose digital computer (Cichocki and Unbehauen 1993).
Many combinatorial optimization problems can be mapped onto neural net-
works by constructing a suitable energy function. This energy function is later
minimized in order to solve the associated systems of differential or difference equa-
tions. An approach commonly used for constructing an energy function suitable for
mapping a zero-one programming problem onto an ANN (Cichocki and Unbehauen

1993) is briefly reviewed in this chapter.
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4.2 Unconstrained Quadratic Zero-One

Programming Problems

Many combinatorial optimization problems can be formulated as quadratic 0-1 pro-
gramming problems. In its simplest form the quadratic 0-1 programming problem
can be formulated as follows:
minimize
1
f(x) =cTx + —2-xTQx : (4.1)

(S

[ Xe {01 l}n 1

where ¢ € R*, Q € R"*” is a symmetric n x n matrix. The components of the design
vector x can take only discrete (binary) values 0 or 1. In other words, the design

vector X is represented by an n-dimensional cube called a unit hypercube with 2"

vertices at the points
X = [xl,.xg,...,xn]'r , i €{0,1} (:=1,2,...,n).
It is to be noted that problem formulation of (4.1) can be written equivalently as
min f(x) = x7Qx, x € {0,1}", (4.2)

where Qi = ¢; + qi;/2 and §;; = q;;/2 for ¢ # j, since x;x; = x;* = %;.

In order to solve a quadratic zero-one programming problem using an analog
neural network, the discrete variables x; € {0,1} are replaced by associated contin-
uous variables v;’s (0 € v; € 1). This means that during the optimization process,
any neuron used in the system can change continuously in time its output signal v;
between 0 and 1. However, as ¢ — oo, all the neurons must be forced to achieve the
values of zero or one. In other words, the quadratic zero-one (integer) programming
will be transformed into an equivalent minimization problem of a continuous func-

tion bounded on the unit hypercube. In the simplest case, when Q is 2 symmetric
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negative semidefinite matrix, the zero-one quadratic problem is equivalent to the
global optimization problem
minirmize
E.(v)=vTQv, (4.3)

subject to

0<v; <1 (i=1,2,--':n)'

The equivalence of the two problems is based on the fact that the energy (objective)
function E.(v) is concave (Q is negative semidefinite) and therefore it attains its
global minimum at a vertex of the hypercube, ie., vi € {0,1}. In the general
case, when the matrix Q is positive definite or indefinite, an extra penalty term
must be added to the energy function to make the energy function concave, i.e.,
to force the vector v = [vy,v,,.. .,vn]'r to converge to a valid solution on the unit

hypercube corner. In general, the quadratic zero-one optimization problem (4.1)

can be transformed into the equivalent global optimization problem
minimize

E(vi=cTv+ lVTQV +ovi(e—v),

2 2
n 13 >o k&
= z Civ; + = z Z qi;Vivi + — ZV;(l - V,‘) (4.4)
i=1 2 i=1j=1 2 i=1
subject to

0<vi<1 (i=1,2,...,n).

In (4.4), x > 0 is a penalty parameter, and e = [1,1,...,1]T. The last term of the
energy function (4.4) is added in order to force the trajectories toward the corners of
the unit hypercube. The minimization of the energy function E(v) can be naturally
achieved by employing a Hcpfield neural network, whose energy function can be
written as u

E(v)= --%VTWV —tTv, (4.5)
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where W = —Q + &I, and t = —[c + (x/2)e].

It is to be noted that the quadratic function (4.4), bounded on the unit hy-
percube, may have many local minima. In fact, it is possible that all the hypercube
corners in the valid subspace are local minima if the function E(v) is concave. The
number of local minima strongly depends on the valu_/g,/cf the penalty parameter .
For example, the function E(v) will be concave if we take & > Apay > 0, where
Amax is the largest eigenvalue of the matrix Q. A large number of local minima may
severely degrade the performance of the neural network in solving the quadratic
optimization problem, since it is very likely that the network will be trapped in a
bad local minimum. One of the methods which reduces the overall likelihood that
a network will fall into a bad local minimum is to tune the penalty parameter
during the optimization process in such a way that the energy function E(v) is ini- _
tially kept as convex as possible, i.e., it contains a possibly small number of local
minima. This method is further discussed in what follows, for the specific case of
using a Hopfield neural network whose energy function is given by (4.5).

The symmetric n xn matrix W of (4.5) can be adjusted as a positive, indefinite
or negative definite matrix depending on the value of the penalty parameter s.
Taking the parameter « negative and its magnitude sufficiently large, the matrix W
will be negative definite and the energy function E(v) will then be convex, i.e., the
optimization problem has a single global minimum. If the matrix W is indefinite,
then there.will be some local minima. The number of minima will increase with
increasing the parameter « until the matrix W is positive definite, in which case the
energy function E(v) is concave and all the hypercube vertices in the valid subspace
are Jocal minima. From the above discussion, it follows that in order to avoid some
local minima, the parameter « should not be kept constant during the optimization
process, but rather, it should be gradually increased starting from some negative
value at the time ¢ = 0, and ending with a positive value & > Anax > 0, where Apux

is the largest eigenvalue of the matrix Q.
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4.3 Quadratic 0-1 Optimization with Constraints
In its most general form, a constrained 0-1 optimization problem can be stated as
minimize

f(x) =cTx + %xTQx , | (4.6)

subject to

hi(x)=0, 1=1,2,...,m, (4.7)
g(xX) <0, i=m,m+1,....M, (4.8)
x € {0,1}", (4.9)

where x is the design vector, f(x) is designated as the objective (cost) function,
Eqs. (4.7) represent linear equality constraints, and Eqs. (4.8) are linear inequality
constraints. In order to make the exposition clear and concise, only the problem of
formulating an energy function in the case of an equality-constrained optimization
problem will be discussed in the subsequent (i.e., it is assumed that there are no
constraints of the form (4.8)). It is also convenient to introduce here a matrix

notation for the linear equality constraints of (4.7), i.e.,
Ax=bh. (4.10)

The energy function corresponding to the optimization problem (4.6) and (4.7)
can be conveniently defined as the associated augmented Lagrangian (AL). Specif-
ically, in order to solve an equality-constrained 0-1 programming problem using
an ANN, the discrete variables z; € {0,1} are replaced by associated continuous
variables v;’s (0 < v; < 1), and the AL is constructed as

EL(V) = f(V) -i-i(,\,h,(v) <+ %ngh?(v)) . (4.11)

i=1
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Now, following a similar procedure as that one described in Section 4.2, the equality-

constrained 0-1 optimization problem (4.6), (4.7) can be transformed into the equiv-

alent global optimization problem

E(V) = f(V) + i (z\,‘h.‘(v) -+ %N,‘h?(v)) + '—;iv,‘(l - ) (4.12)
subject to
0<v; <1 (¢ =1,2,...,n), (4.13)

where k > 0 is a penalty parameter, and e = [1,1,...,1]T. The last term of the
energy function (4.12) is added in order to force the trajectories toward the corners of
the unit hypercube. The minimization of the energy function E{v} can be naturally
achieved by employing a suitable Hopfield neural network. It is to be noted here
that, as the design variables are mapped onto neuron outputs, which can be always
chosen to assume values between 0 and 1 only, the boundary constraints of (4.13)
are actually imposed by the physical realization.
The above discussion suggests that, under ideal circumstances, a solution
v to the optimization problem (4.6) and (4.7), could be calculated by a single
unconstrained minimization of the differentiable function E of (4.12). Unfortu-
nately, this ideal case can almost never be achieved in practice, since in general, A}
(1 =1,2,...,n) will not be available until the solution has been found. Hence, an
augmented Lagrangian method (ALM) for solving the optimization (4.6) and (4.7),
must include a procedure for estimating the Lagrange multipliers. An extensive
discussion of the problem of estimating the Lagrange multipliers associated with
ALM optimization is provided in (Gill, Murray and Wright 1993). For the purpose
of this work, a modified variable-reduction technigue, to estimate the initial values
of the Lagrange multipliers, is used. In this technique, first the constraint matrix A
of (4.10) is partitioned as:
A=[{V U], (4.14)
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where V is a non-singular m x m matrix, and m is the total number of constraints.
As a general rule for the RL problem, matrix V is constructed by taking into ac-
count at least one éutput variable for each noncritical activity. Then, the matrices
corresponding to the cost function (without taking into consideration the penalty

terms) are similarly partitioned as:

Qor =[ Qo Qox 1, (4.15)

where Qg is a non-singular m x m matrix, and
cor = [ ot | s (4.16)

where ¢y is a vector with only m components, corresponding to the selected output
variables. First-order multiplier estimates (Gill, Murray and Wright 1993) may be
used as an initial estimate of the Lagrange multipliers. Since we wish to find the
minimum of the quadratic function
1 1. Ty | O -
3V Qurv +cor v+ ; Aigi(v) , (4.17)
the initial estimates of the Lagrange multipliers can be calculated as the solution to

the following linear system:

= g . .
Eiaf})z\?” = ~ (Quv+ei) (4.18)
=1 '

It is to be noted here that the first-order derivatives of the constraints constitute

maliix 'V of (4.14). Therefore, the Lagrange multipliers can be calculated as follows:

SVENNT = = Qv+, i=1,2,...,m. (419)

i=1 .

]

During the optimization process, the multipliers are adjusted using a first-order-

difference approximation, i.e., at the iteration %,
A = A g by () (4.20)
In {(4.20), pi’s are positive scalar variables, and typically p; = 1 for all i’s.
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4.4 Summary

In this chapter, the possibility of using ANNs to solve combinatorial optimization
problems was briefly presented and discussed. It was shown that a combinatorial
optimization problem can be mapped onto an ANN by constructing a suitable energy
function, whose global minimum is in the same time a solution of the optimization
problem. In particular, for quadratic integer optimization problems with equality
constraints, the associated augmented Lagrangian can be interpreted as the energy
function of a Hopfield NN. However, in order to converge to the optimal solution, the
augmented Lagrangian method requires a good estimate of the Lagrange multipliers.
For the particular case of the RL problem, some helpful suggestions were presented

on how to choose the initial values for the Lagrange multipliers.
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Chapter 5

Proposed Neural Network Model

5.1 Introduction

Resource leveling problem (RL) can be formulated as an augmented Lagrangian mul-
tiplier (ALM) optimization with quadratic cost function and nonlinear constraints
(Shimazaki et al. 1991). An attempt to map this nonlinear ALM optimization onto
a Hopfield neural network has been reported by Shimazaki et al. (1991). Specifically,
Shimazaki et al. (1991) have interpreted the augmented Lagrangian (AL) associated
with the RL problem as the energy function of a Hopfield net. However, as shown
in Chapter 3, the energy function associated with a Hopfield neural network is a
quadratic function. Consequently, the augmented Lagrangian corresponding to a
nonlinear ALM optimization, which is not a quadratic function, cannot be mapped
directly onto the energy function of a Hopfield neural network, except for the case of
some restrictive neighborhoods of the solution to the optimization problem, where
the AL is approximately quadratic.

In this chapter, the possibility of formulating an RL problem as a zero-one

quadratic ALM (QALM) optimization is investigated!, and a neural network model

'It is to be noted that the AL associated with a zero-one quadratic ALM optimization is a
quadratic function, and as a result, it can be naturally identified with the energy function of a
Hopfield neural network
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of an architecture for construction resource leveling is developed. The derivation of
this model is based on the reformulation of the constrai{t;?]s regarding the continuity

and the precedence of activities as linear equations.

5.2 Formulation of the RL problem as a
. Nonlinear ALM Optimization

Shimazaki et al. {1991) have formulated the RL problem as an equality-constrained
optimization, in which a quadratic cost function has to be minimized, subject to

three types of constraints. They have considered the following cost function

18 K
=33 (£ ). o)

ie{l)

where the variable vj“‘) may assume values of 1 or 0, according to whether or not the
jth activity is being executed during day k, and rj represents the resource requirement
per day for the jth activity. It is to be noted that K designates the project duration
in number of days, and the set {Jx} consists of all the activities which can take place
during day k. The cost function of (5.1) has been traditionally used in solvmg R i
problems, motivated by its simplicity (Carmichael 1989; Harris 1978), as illustrated
in Figure 5.1. Denoting by yx the resource demand for day k, and designating an

average (or target) demand over the project duration as v, i.e.,

Ly
=1 Yk » (52)
K k=1

the variance of the daily resource demands is then

k l

rre

—
o
..
-

—

Therefore, minimizing the variance ¢? of (5.3) is equivalent to mlnlmwmg, ):k ) Jk,

as the other term (i.e., y?) is a constant.
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Figure 5.1: Resource piot.

The first type of constraints associated to an RL problem refers to the duration

d; of each activity j, and it can be expressed as
Ka(j) .
Y oM —d=0, j=1,2,...,J, (5.4)
k=K. ()

where J denotes the total number of activities, and K,(j) and K,(j) are given by
o A '
Ki() & EST; +1, (5.5)

Ka(j) £ EST; + d; + TF;. (5.6)

In (5.5) and (5.6), EST; and TF; designate, respectively, the earliest start time and
the total float of activity j. Let equation (5.4) be denoted by the following notation:

Kz (3}
o A 8 .
e S oM -d, j=1,2,...,J. (5.7)
k=K (i)
This notation will simplify the presentation of subsequent mathematical expressions.
The mnain assumptions regarding the activities, their resources and the project

logic, are: (1) once an activity is started, it cannot be interrrupted until it is com-

pleted; (2) the durations of the activities and the network logic are assumed fixed;
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(3) resource requirement of each activity is assumed to be constant for the duration
of the activity; and (4) the project completion date is assumed fixed.

The second constraint is related to the continuity of an activity. These con-
tinuity constraints assume that an activity cannot be further divided into smaller
units, and have been expressed as

Ka(3)—1

oMM =g o1, j=1,2,...,4. (5.8)
k=K, (j) '

A convenient notation related to (5.8) is introduced here, i.e.,
@)y B, g
4 Z oy 4+ (1=d;), i=1,2,...,J. (5.9)
k-—!\l(.l] _
The third type of constraints related to an RL problem enforces the precedence
relations among the activities within a project-network. Specifically, since for each
activity n there is a set of activities {p(n)} = {m1,...,me,...,mp} that must

complete before n can start, these precedence constraints can be expressed as

Kz {m,)
> vﬂ‘t)v,(ll‘) =0 forallm, € {p(n)},n=1,2,...,J. (5.10)
k=Ki(my)

It is again convenient to introduce a notation related to (5.10) as

@) A Ka{my) G
Glv)g 3 o i=1,2,...,1, (5.11)
k=K (my)

where I designates the total number of precedence constraints in a given project-

netﬁork, lLe.,
I=JE1)+p(2) +...+p(J)), (5.12)
and the index 1 can be defined as

£ for n=1
i= (5.13)
£+ T2 plg) for n=2,3,...,J.

Having defined the constraints associated with an RL problem as given by

(5.4), (5.8) and (5.10), and following a standard procedure of ALM optimization
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(Bertsekas, 1982), the equahty—constra.med nonlinear optimization problem (5.1),
(5.4), (5.8) and (5.10) can be solved via the unconstrained minimization of the

augmented Lagrangian

Ls(v) = f(v) + Z’\J“(l) Z“.l[ iV V)]2+

j=1 _]"'1

+Zm‘“’ + Eﬁ, A2+

3—1
+Zw“‘” + = Zv.[g.‘”(v , (5.14)
i=1 t—l

where Aj’s, t4's and »;’s denote the Lagrange multipliers, while ¢;’s, 8;’s and v’s
represent the associater). penalty parameters. Note that by constructing the AL as
given by (5.14), Shimazaki et al. (1991) did not impose the condition that v(k)’
be integer (i.e., vj“‘) € {0,1} for all j’s and k’s). However, the solutions were still
expected to be integer as a result of mapping the AL of (5.14) onto the energy
function of a Hopfield network, and then employing this network to find the solution
to the original RL problem. In this thesis, it is observed that, in fact, the operation
of mapping the AL of (5.14) onto the energy function of a Hopfield net is actually
not always possible, in view of the nonlinearity of the terms T, ﬁj[gr(z)(\.r)]2 and

P A6 (V))? of (5.14). As an example, the term [gj (V)]2 contains nonlinear

crossproducts of the form
vj(k)vj(k-I-l)vj(k')Uj(k’+l) ‘ (5'15)
In order to overcome the above mentioned drawback of the nonlinear ALM optimiza-

tion, an alternative formulation of the RL problem as a 0-1 QALM optimization is

developed in the subsequent.
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5.3 Formulation of the RL problem as a
QALM Optimization

The major drawback associated with the nonlinear ALM optimization can be elimi-
nated by deriving, when possible, linear expressions for the constraints regarding the

continuity and the precedence of the activities of a project-network. This possibility

is discussed below.

5.3.1 Derivation of a Linear Expression for the Constraint

Regarding the Continuity of an Activity

A procedure for deriving a linear expression for the constraint regarding the conti-
nuity of an activity j in the case when the total float TF; is smaller than or equal
to the duration dj is illustrated in Figure 5.2. Let us assume that the optimal start
time for the jth activity is s — 1, as shown in Figure 5.2(b). The position Ky~ | of

the jth activity on an optimal schedule can be determined as

Ki(j)-1
Ke-1= Y [1-4"], (5.16)
k=K1 (j)

where K;3(j) is a notation for K,(j) + d;, i.e.,
Koj) £ Ka(j) + d; - (5.17)

Using (5.16), and observing that Zfiﬁ)lal) 1 = dj, we can express K; as
Ka(j)-1
Ki=1+d— 3 o). (5.18)
k=K (j)

At this point, it is observed that jth activity is continuous if and only if the

following relation holds
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Figure 5.2: An illustration of the procedure for the derivation of a linear expression
for the continuity constraint in the case when TF; < d;. () The position of the jth
activity on the ESS. (b) The position of the jth activity on an optimal schedule.
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Kz(j) ;
Z I\U(k) K U(I\f)_'_(l\ + l)v(i‘\1+1)+ +(I\|‘+d ) j(!\f-i-dj-—‘l)

k=K; (3}
Ki+dj-1 . dj—-1 Kotk
=K Y. o T k{F, (5.19)
k=K, k=1

Observing that E}:’T\f ! J“‘) d;, while

dj—1 .
Yok 1424340+ (- 1), (5.20)
k=1
(5.19) becomes
Ka{i} (d — |
T ko = i+ 341 (5.21)
k=K;(j) 2

On substituting Kr as given by (5.18) into (5.21), we get

K2(j) Ka{j)-1 1
Z ]\v(k) dj(d; + 1) — Z djvj[k) + -di(d; — 1). (5.22)
k=K1{i) k=Ki (i) 2
1 1

Consequently, the continuity constraint for an activity j for which TF; £ dj can be

written as

Ka{j)—1 . Kz(j) .
Y o k+dP+ S ki - =0, (5.23)
k=K, (j) k=Ka(j)

where § £ 1d;(3d; + 1) .

The procedure described above demonstrates that it is indeed possible to re-
place the nonlinear expression of the constraint imposing the continuity of an ac-
tivity by a linear equation. However, this applies only to those activities for which
d; 2 TF;j. In the general case of a project-network which has activities with d; < TF;,

the following example illustrates a very good strategy for using the same linear equa-

tion.

Example 5.1 Let us consider the simple project-network whose diagram is illus-
trated in Figure 5.3(a). The early start schedule {ESS) and the corresponding his-
togram of required resources for the project are shown in Figures 5.3(b) and 5.3(c),

respectively. As it can be observed from Figure 5.3(b), in the case of activity A (i.e.,
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j = 1), dy = 2 while TF; = 4. While employing equation (5.23) to solve the RL
problem for this project-network through optimization, we observe that there are 5
possible outcomes for the starting point of activity A on the optimal schedule, as il-
lustrated in Figure 5.3(d). It can be easily noted that the solution to this RL problem
can be obtained by carying out the op@gygﬁiﬁg procedure for two project-schedules
of lower complexity PS, and PS; (see Figures 5.4(a) and 5.4(b)) in parallel, and
then selecting the solution that yields the minimum cost. The optimalischedule for
the project-network of Figure 5.3(2) and the corresponding histogram of required
~~===tesources are shown in Figures 5.4(c) and 5.4(d), respectively. In this example, there
is}.‘m need for the continuity constraint to be imposed for the activities B and C, as

their durations are both equal to 1.

Thus, it is possible to solve the RL problem for an arbitrary project-network, which
has activities with d; < TF;, by analyzing project-schedules of lower complexity, for
which d; 2 TF; for all j’s. As a result, only the cases of RL problems for which the

continuity constraint can be expressed in a linear form will be investigated in the

following sections.

5.3.2 Derivation of a Linear Expression for the Constraint

Regarding the Precedence of Activities

Unlike the case of the continuity constraint, deriving a linear expression related to
the precedence constraint is straightforward, as is described in what follows.

Let i denote an activity which has to be completed before the beginning of
activity j, as illustrated in Figure 5.5. The activity i precedes activity j if and only if
they do not overlap over the interval [K;(j), K2(i)]. Since the continuity constraint
for each of the activities i and j has already been imposed, the precedence constraint

can simply be expressed as

vtk <1, k=K([LKiG)+1,...,Ka(i)- (5.24)
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Figure 5.5: An illustration of the relation of precedence between two activities

An alternative expression for imposing the precedence constraint (5.24) could

be
o =0, k=Ki(),Ki(j)+1,-..,Ka(i). (5.25)

Although the expression (5.25) is nonlinear, it can still be used for the formulation of
a QALM optimization for resource leveling. Specifically, in view of the methodology

described in Section 4.3, due to the presence of the penalty term
1. ) (k k). (k ,
-2-avi( )vj( 1= )vj( N (5.26)
in the expression 4.12 of the augmented Lagrangian, the nonlinear contribution

Lol 27

of the term vi(k)vj(k) can be cancelled out by making a = a.
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5.3.3 Proposed Formulation of the RL Problem
=-as a QALM Optimization

Having introduced suitable expressions for the constraints regarding the continuity
and precedence of the activities of a project-network, we will now formulate the RL
problem as a QALM optimization. Let us first assume that, in the RL problem, the
activities which belong to a critical path of a project-network? would not introduce
additional design variables vj(k}’s. As a result, it is convenient to reformulate the
cost function f(v) of (5.1) as |
>

k=1

DO -

2
f(V) = ( Z ij}k)lﬁl"-}- z T‘j) . (5.28)

€r i seoe
In (5.28), a variable vj(k) may assume values of 1 or 8 'a'écording to whether or not the
jth activity can be executed during day k, and rj represents the resource requirement
per day for the jth activity. The project duration is denoted by K, while the notation
Jx designates a set consisting of all the noncritical activities which can take place
during day k. Similarly, 7" denotes a set which consists of all the critical activities
that can take place during day k.

Now, the first type of the constraints associated with the RL problem, which

refers to the duration dj of each activity j, can be expressed as

dlv)=0, j=12,..7, (5.29)
where
Wy a 2w :
9 (V)= z Y _dj .7:1:2:""‘], (530)
k=K1 (j)

with J denoting the total number of noncritical activities, while K; (j) and Ka(j) are

given by (5.5) and (5.6), respectively.

’Note that all the activities which belong to a critical-path of a project-network are called
critical activities. All other activities of the project-network are designated as noncritical
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Similarly, the continuity constraints associated with the RL problem can be

expressed as

#Awvy=0, j=1,2,...,], (5.31)
with
@ A Ka(j)-1 (k) Ka(j) (k)
k=K (j) k=Kal(j)

where & £ 1d;(3d; + 1), and K(j) is given by (5.17).

The constraints enforcing the precedence relations among the activities of a
project-network are expressed according to the results of Section 5.3.2 (see (5.25)).
Specifically, since for each activity j there is a set of activities P; = {1,2,.. P}
that must be completed before j can be started, the precedence relations can be
imposed as |

vl =0, (5.33)
for all k € {Ki(j),Ki(}) + 1,...,K2(p)}, p € Pj, and j = 1,2,...,J. As for the

previous types of constraints, we introduce the notation
3 A k cA . . .
g ’(v):vl(,")vj( ), i=i(,p, k), i=12,...,1, (5.34)

where | stands for the total number of precedence constraints in a given project-
network. Having defined the constraints associated with a RL problem as given by
(5.29), (5.31) and (5.33), and following a standard procedure of ALM optimization
(Bertsekas 1982, Gill et al. 1993), the equality-constrained quadratic optimization of
~ (5.28), (5.29), (5.31) and (5.33) can be replaced by the unconstrained minimization

of the augmented Lagrangian

L(v) = f(v) +ZAJ Div)+ - Za,[”(v

=1

J
+Zp, i +%§ﬁﬂg}”(v)]2+

+ZVI }(v + = Z'y,[g 3J(v (5.35)

i=1 |_.1
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where Ajs, p4s and ;s denote the Lagrange multipliers, while g5s, §;5 and ;s represent
the associated penalty parameters. "\\\\

By minimizing the augmented Lagrangian (5.35), a solution to the quadratic
programming problem (5.28), (5.29), (5.31), (5.33) is obtained. In order to derive a
Lagrangian that corresponds to the original RL problem, which is a 0-1 quadratic
optimization, it is common practice (Zurada 1992, Cichocki and Unbehauen 19935

to augment the AL of (5.35) by the following additional penalty terms:

fi _é_ 2 258, k=1,2,...,K, (5.36)
JEJk
__(1) A 1 K?(j) (k] .
h; (v)=§aj oY, j=1,2,...,7, (5.37)
k=K1(j)
o al (R 250 2.-(k)
CNMOEETN: > (k+dj) +Zk (5.38)
k=K (i) k=K3(j)
i=1,2,...,J, and
al
h(al( 2 " v“‘}v(k)(l _ U,(,k)vj(k)) , (539)

with: = 1,2,...,L In (5.36)-{3.38), the following notation has been used:
o™ = o1 - o4y (5.40)

Consequently, a solution to an RL problem can be obtained by minimizing the

AL function < ,
J 1
E=L+Y i+ M+ 5D+ 35@ (5.41)
£ k=1 Jj=1 i=1 i=1
where L can be calculated using equation (5.35). Note that in the equation (5.41),

it is implicitly assumed that all the terms are functions of the design vector v, which

is defined as

v=[(vivy...v;...v;]T, (5.42)

with
vy = [off6) 16D 0] (5.43)

69



It is also useful to introduce here some additional notations related to the augmented

Lagrangian L of equation (5.35). Specifically, let

2
filv) é% (,E o+ S r,-) , k=1,2,.. K, (5.44)
= \ieHk €Ty
ri(v) & %a,- G, i=1,2,...,7, (5.45)
BV 2 2B, J=12000, (5.46)
B9 (v) & %% GO, i=1,2...,1. (5.47)

With these additional notations, equation (5.35) can be expressed as

L = Zf +Zh(1)+zh(2)+2h(3)+

i=1

J
+3 Nt +Zu, +Zuq“’). (5.48)

j=1 j=1
The problem of mapping the QALM optimization of this section onto a Hopfield-

network-based architecture is investigated in the following section.

5.4 Mapping the QALM Optimization Onto a

Neural Network Architecture

The augmented Lagrangian E of equation (5.41) (with L given by (5.48)) can be

written in a matrix form as
E(v) = cTv + %VTQV +c, (5.49)

where C is a constant, and the unconstrained optimization problem that consists of
minimizing the augmented Lagrangian E of (5 49) can be solved by employing the
proposed ANN architecture shown in FIE""e 5.6. The proposed ANN configuration
consists of two main blocks: the Hopﬁeld NN block, and a control block for the
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computation of the weights of the Hopfield network, and for updating these weights
according to the adjustment of the Lagrange multipliers in the QALM optimization.
As discussed in Chapter 3, the dynamics of the Hopfield neural network results
in minimizing the energy function Ey(x), which is a quadratic form in the output
vector X, i.e., '

En(x) = —tTx — %xTWx. (5.50)

where t is a column vector denoting the threshold inputs to the neurons, and W
is a symmetric matrix whose entries are given by the weights of the neural net. In
view of employing a Hopfield network for miniuiizing the Lagrangian E of (5.49),
the output x of a Hopfield net is interpreted as the design vector v associated with

a given project, and the weight matrices of the neural net are represented as
t=—c, and W=-Q. (5.51)

The Hopfield NN block of the proposed model, as shown in Figure 5.6, is
iteratively lowering the energy function Ey(x) of (5.50) as it is described in the
following paragraph.

The procedure requires as inputs a CPM network in AoA form, the duration,
the resource rate and the early start schedule (ESS) values for each activity from

CPM calculations (e.g., earliest start time (EST), latest finish time (LFT) and to-

tal float (TF)). Early-start resource curve is also generated using the critical path

method (CPM), and shows the resource usage if all the activities were to begin at
their earliest dates. The procedure uses only one resource at a time. Multiple re-

scurces may be handled sequentially, or by assigning weights to individual resources

and adding them up together, as a single resource.

At the beginning of the iterative procedure, the entries of the design vector v
are initialized to certain values corresponding to the early start schedule (ESS) of

the given project-network. Let vo represents the initial status of v. The Lagrange
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multipliers are initialized with some values® as described in Chapter 4, i.e.,

A0) =2y, p(0)=py, v0)=y. (5.52)

The initial set of weights ty and Wy of the Hopfield net are calculated using equations
(5.54) and (5.55), for & = 0. Once the weight-matrices to and Wy have been
determined, the control block enables the Hopfield neural net to start updating (SU)
the design vector. As a result, the Hopfield net proceeds to the adjustment of v to
a new value v;. Now, according to whether or not the new schedule corresponding
to vy is still satisfying the constraints (5.29}, (5.31), (5.33), two types of actions are
possible. Specifically, if v,lﬁi‘s éétigfying the optimization constraints, then the control
block allows the Hopfield networlic"‘to continue in further lowering the energy Ey(x).
On the other hand, if v; does not any longer satisfy the constraints (5.29), (5.31)
and (5.33), then the control block starts updating the Lagrange parameters to A(1),
E( 1}-and p(1). Accordingly, the weight matrices of the Hopfield net are adjusted
to some new values t; and W,. The proposed neural network model continues to
iterate as above, until some ending conditions are met. Specifically, the iterative
process is stopped when both the adjustments of the output vector v as well as the
adjustments of Lagrange multipliers become lower than some small positive value ¢,
ie.,

|Av|<eg, |AA|Zg, |Apl<e, |Ar]<e. (5.53)

The decision to end the procedure is made by the control block, as shown in Fig-
ure 5.6. At each iteration k, the weight matrices of the Hopfield network are updated
by using their functional expressions in terms of the resource requirements, Lagrange
multipliers, and penalty terms in the QALM optimization, i.e.,
| _o®

dv;

3Note that in (5.52), A(0), £(0) and r(0) are column vectors";consisting of the Lagrange multi-
pliers Aj's, gj's and 14’s at the iteration k = 0.

ty(d) = (5.54)
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. . 9’E
WL’(;’J) = —av_ av_ (5'55)
t J

where E is the augmented Lagrangian of (5.41). Also the Lagrange multipliers at

the iteration k are calculated as

Nk +1) = 5(k) +pa- g (w) (5.56)
wilk +1) = pi(k) + pu - 65 (w4) | (5.57)
w(k+1) = k) + o - g2 (we) s (5.58)

for all s and i’s. In (5.56)-(5.58), p», pu and p, are positive parameters, usually

given a value of 1.-

5.5 Summary

The development process of a neural network model aimed at solving the resonrce
leveling (RL) problem in construction has been described in this chapter. T he model
has been developed by mapping a formulation of the RL problem as ir;é]uadrutic
augmented Lagrangian multiplier (QALM) optimization, onto an artificial neural
network (ANN) architecture employing a Hopfield-configuration of neural network.
It has been shown that the augmented Lagrangian (AL) associated with the RL
problem can be interpreted as the energy function of the Hopfield net. The ANN
model consists of two main blocks: the Hopfield NN block, and a control block for the
computation of the weights of the Hopfield network, and for updating these 'wcigﬁts
according to the adjustment of Lagrange multipliers in the QALM optimization.
The weights of the Hopfield network can be evaluated by employing their
functional expressions in terms of the resource requirements, Lagrange multipliers,
and penalty terms in the ALM optimization. However, these functional expressions
have to be determined by calculating the gradients and the Hessian of the AL. As a

result, the formulation of the weights using their functiona! expressions is extremely
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inconvenient for so]ving_{tﬁh\e RL problel;x for different project-networks. Specifically,
for each new project-net:i\.'ork, the corresponding set of functional expressions of the
neuron-weights has to be determined and eﬁluated, and the control block of the
ANN has to be reprogrammed accordingly. In the next chapter, a versatile approach
for the derivation of the weight-matrix of the ANN architecture, which can easily

accomodate different project-networks, is introduced.
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Chapter 6
Formulati;)n of the Weight-Matrix

6.1 Introduction

The key problem facing the mapping of the RL problem as presented in Chapter 5
onto a Hopfield neural network is associated with deriving an efficient technique for
determining the matrices ¢ and Q of (5.49). An in-depth analysis of these matrices
reveals that each pair of terms: {/fi, fi}, {h}l),fx}l)}, {hj(z),l-z}ﬂ} and {!zi(a),I.zP)}, as
well as each term: Ajgjm, ,ujgj(z), and v;g™, of the right-hand side of (5.41) (with
L given by (5.48)), contributes additively to the entries of ¢ and Q in the form of
specific template matrices. An important feature of these templates is that they
can be filled-in directly from the early start schedule (ESS) of the given project-
diagram, without the need to explicitly derive the augmented Lagrangian in the
form expressed by equation (5.41). A methodology for the formulation of cach of

these template-matrices is introduced in the subsequent sections.
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6.2 Template Matrices Corresponding
to the Cost Function

Let S, represent a set of all the pairs (j,}) of different noncritical activities which

can be performed during the same day k, i.e.,
Ské{(jvi) ]jy.']:EJk:j<j}' . (6'1)

Let us also introduce the notation S to designate a set which comprises all the pairs
of activities (j,j"), consisting of a noncritical activity j and a critical one j*, which

can be carried out during the same day k, i.e.,
SE{GI) ek, ed}. (6.2)
The partial sum E{(v) of the augmented Lagrangian E of (5.41), i.e.,
f a F
E (V) = Adv)+ Adv), (6-3)

can be written in a matrix form as

T E{(v)=[ > el

(3d-)es;

T
1 T I J;
v~.+ 5V [ ) Q(jj)]v + ¢/, (6.4)

(iDES

where C/ is a constant, and the template matrices c(fjj.) and Qii.i') are given by

I'I[vj(k)]

cl. é[ 1 ! 6.5
Gis) = 0 ... 0 -2-Tj(l"j+2rj-) 0 ... 0] ) ( . )

i) ... 0

[y} 0 iy

A i

Q{jj) ) : (6.6)

[vf] e 0

[



The operator l'I[vj(k)] used in (6.5) and (6.6), is assumed to return the row-number
of the element vj(k) of the design vector v. This is best explained in the following

example.

Example 6.1 As an example, let us consider the project-diagram of Figure 6.1, for
which the ESS is depicted in Figure 6.2. In this example, the design vector v is

given by

T
v [ 52 o o o o o) o o ], 1)
while the sets &) and S consist of the following elements:
St={(1,2)}, and S ={(1,3),(2,3)}. (6.8)

Consequently, corresponding to the day k = 1, we get

T
C{I,S) = [ %7'1(7'1 + 27‘3) 0 ... 0 ] y (()9)
f T
C(2,3) = [ 0 ... 0 ‘%7‘2(1"2 -+ 27‘3) 0 0 ] s (6]0)
[0 ... 0 rrp 0 0]
0 .0 0 00
Q(fl.zl = (6.11)
2T 0 0 00O
0 .0 0 00
| 0 ..0 0 00
The expressions (6.9)-(6.11) can be verified by observing that
Hiv)= -2-(1'11:%1} + Tzvgl) + 7"3) ) (6.12)
. 1, .. _ o
filv) = 3 (r'fvgl) + r%v;”) : (6.13)

and therefore
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El=fi+fi =
1 1 1 a
= [(Er'f +ryra) vt (§r§ + ror3) vgl)] + [—2~ (21‘11‘2 vgl)vgl})] +r3. (6.14)
Note however, that matrices (6.9)-(6.11) have been filled-in directly using the ESS
of Figure 2, and without carying out the calculations of (6.12)-(6.14).

6.3 Template Matrices Corresponding to the Con-
straints Imposing the Duration of Activities

Let 7; denote a set consisting of all the pairs of different days (k, k), during which

the activity j can take place, i.e,
TE{KE) | kke {KiG), . KaG)}, k <k} (6.15)

Each partial sum EM,j =1,2,...,J, of the augmented Lagrangian E of (5.41) (with
L given by (5.48)), with

EF(v) £ h{(v) + A(v), (6.16)
can be written in a matrix form as

Kz (i) T 1
EM(v) = [ ) cft‘} v + EVT [ > ?l:‘i)] v+ Ch (6.17)

k=K1 (3) (k.K)ET

where C*! is a constant, and the template matrices ¢! and QA ;= are given by

(k)
N[u{]
R1 A 1 T
' =10 ... 0 o5 —¢) 0 ... 0] , (6.18)
H[uj(k)] ces H[vj(ﬁ)] :
M[v*) 0 a;
T - (6.19)
n[vj(k)] Q;j 0
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Example 6.2 Referring back to the project-diagram of Figure 6.1, the matrices
Zi{:ﬁ)m cf! and C k)T Q;‘: &y corresponding to the activity j = 2, are filled-in
directly by using the ESS of Figure 6.2 as follows. It is observed that n[vg"*(z”] =7,

H[Ug{z{?))] =9,and d; =2 (i.e, 0.'2(% ~—dy) = '—%Q‘g), and therefore

Kz2(2) 3 : T )
> c{:‘=--2-az[o . 00101 1] ] (6.20)
k=Ki(2)

0 00 0 0

0 00 0 0
2 Qip = (6.21)
(kk)ETs 0 0 0 a ay

0 .0y 0

0 0 Qo G2 0 |

The structure of matrices (6.20) and (6.21) can be verified by observing-that hg])

and fag) are given by

1 2
B (v) = sea (v} +0f? 4o - o) (6.22)

- 1 . - .
h:(zl) = -2-0‘2 (Ugl) + 0'52) + Uga)) . (6'23)

It is to be noted that each term )\jgj(l) of the summation ):;Ll ,\jgjm of the L-
part of {5.41) contributes additively to the entries of the column vector ¢ of (5.49),

in the form of a template matrix

G = [0 ... 0 N 0 ... 0] . (6.24)
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6.4 Template Matrices Corresponding to the
Constraints Imposing the Continuity of
Activities

As in the previous two sectionms, it is convenient to introduce here several set-

notations. Specifically, let

4 £ {(k, &) %,k € {Ki(3), ..., Ka(G) — 1}, k < K}, (6.24)
U = {(kK) [k k™ € {Ks(3),..., Ko} k < K}, (6.25)

U £ { (k%) | ke {Ki(3), ..., Ka(i) — 1}, k"€ {Ka(i)y-.-, Ka(i)}}. (6:26)

Fach partial sum E}?, j = 1,2,...,J, with

8 (2 7(2) -
EF(v) & h(v) + AP (v) , (6.27)

can be written in a matrix form as

T 1 ) Y
EP(v)=[c}] v + §vT Q] v + ¢ | (6.28)
where
A Kn.f.il—l Kz(j)
P2 T 4+ Y o2, (6.29)
k=K, (i) k=K (i}
A2 A h h .
Q7= 3 Q?f,ﬁ) + ) Qe + 3 Qi) (6.30)
(k.k)ed; (k\k*)eis? (kk=)elér

and C* is a constant. The template matrices ci2 and ci? of (6.29) are given by

Mfv{*)

S0 Bik+d)lk+d) =] 0 ... (6.31)
[u{¥]

2. 0 gkk-d) 0 .1, (6.32)
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while the template matrices Q?if iy Q(iye), and Q(k -

] ... ™)

N[ 0 (k+d5)(k+dy)
oy = 24 ol -
e (k+d)(k+d) 0
.:HMW .HMM]:
(k}s -
v 0 kk
Q(k k*) = 51 . )
np)| Kk 0
M) )
) 0 (k + dy)k
Q(k k- ﬁ : . .
ne*) | ke(k+ ) 0

of (6.30) areéeﬁned as

(6.33)

(6.34)

(6.3

Example 6.25 Referring back to the project-diagram of Figure 6.1, and considering

activity j =

Uy ={(1,2)}, U; = @, and &; = {(1,3),(2,3)}. Therefore,

k=1

3
C2 -Zc +_Zc£2
k=3

=ﬁz[0 .. 0 =38 90 B

2
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2 of the project we have K;(2) = 1, K3(2) = 3, d, = 2, 6, = 7,

(6.36)
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Vo

.0 0 0 0
... 0 0 3:-4 3-3
.0 4-3 0 3.4
. 03-33-4 0

Q¥ =5, (6.37)

o o Lo ] o s

The structure of matrices (6.36) and (6.37) can be easily verified by observing that
hg") and fzgz) are given by

1 2
B = 2 Ba(3us” 4+ 40 4 3037 - 7)7, (6.38)

|
R = 5 B2 (323" + 475 + 3%} . (6.39)

It can be also observed that each term ,ujgj(“)) of the summation 1, g g}(Q) of
the L-part of (5.41) contributes additively to the entries of the column vector ¢ of

(5.49), in the form of two template matrices

) .
ML [0 ... 0 pl(k+d) 0 ... 0] (6.40)
M)
~ - T
MW= [0 ... 0 plk 0 .0l (6.41)
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6.5 Template Matrices Corresponding to the
Constraints Imposing the Precedence of
Activities

In the case of the constraints regarding the precedence of activities, it can be noted
that each term E*®, i= 1,2,...,1, of the AL of (5.41), with

BR() £ KO() + BIW) = 5ol (6.42)

can be written in a matrix form as

1 1
ER(v) = S EP(v) = % vT [Z Qf‘s] v+ Ch, (6.43)
. i=1

i=1

where the template matrices Q* are given by

Q¥ = qut ) (6.44)
with
] ... np®)
i 0 1
g3e : (6.45)
nfv{] 1 0

and C* is a constant.
It can also be observed that each term ug( ) of the summation S vy ) of

the L-part of {5.41), contributes additively to the entries of matrix Q of (5.49) in

the form of a template matrix

QF =+ u q® (6.46)
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6.6 Summary

A methodology for the derivation of the weight-matrix of a neural network for re-
source leveling has been introduced and described in this chapter. An in-depth
study of the matrices ¢ and Q arising from the formulation of an RL problem as a
quadratic augmented Lagrangian optimization has revealed some very useful struc-
tural properties. They have been formalized as template-matrix contributions of
different terms of the AL associated with the RL problem, to the entries of the
matrices ¢ and Q. In the case of a specific project-diagram, several examples il-
lustrating the structure of the template matrices have been provided. It has been
emphasized that the template matrices can be easily filled-in easily, using the ESS
of a project-diagram.

The theoretical framework described in this section allows for the derivation
of a computationally-efficient yet versatile algorithm, which can easily accomodate
different structures of project-networks, for the computation of the weight-matrix
of a Hopfield-based NN architecture for resource leveling. With such an algorithm,
the weight-matrix is filled-in directly using characteristic templates, without a need
to explicitly determine the functional expressions of the weights by computing the

gradients and the Hessian of the AL.
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Chapter 7

Model Validation

7.1 Introduction

The objective of this chapter is to validate the effectiveness of the proposed NN
model. The IEEE (1983) defines validation as "...the process of evaluating soft-
ware at the end of the development process to ensure compliance with software
requirements”. Verification is an area of validation, with the distinction being that
verification is concerned Wlth whether the software, or the system, operates corectly,
and validation is concerned with whether the system is correct or appropriate for
the problem to be solved. The IEEE defines verification as "... the process of de-
termining whether the };foducts of a given phase of software development meets all
the requirements established during the previous phase”.

The proposed NN model has been validated using three case examples, which

are presented next.

7.2 Case Example 1

Example 7.1 The project-diagram for the first example consists of five activitics

(J=5), A, B, C, D, and E, and the critical path runs along activities C, D, and E, as
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shown in Figure 7.1(a). The activities that comprise the project are represented by
arrows. The arrow tail and arrow head represent the start and finish of an activity,
respectively. The bar-chart, or the Early Start Schedule (ESS) for the described
project is shown in Figure 7.1(b). The project duration K=3 days.

The dashed line, following an activity, as illustrated in Figure 7.1(b), corre-
sponds to the activity’s total float. For simplicity, the position of an activity on
the bar-chart is denoted only by one index, written alongside activity’s symbol, as
illustrated in Figure 7.1(b). For example, C(3) indicates that activity C is listed
the third on the bar-chart. As a general rule, the noncritical activities, for which
the output variables exist, are listed first, followed by the critical activities. In this
example, there are two noncritical activities (J=2), A and B, each having a float of
one day, and three critical activities, C, D, and E. '

The start and finishing times for activity A(1) are : K (1) =1, and Ky(1) = 2.
Similarly, the start and finishing times for activity B(2) are: K;(2) = 2, and K»(2) = 3.

Corresponding to noncritical activities, the design vector, defined in (5.42), is
equal to

v=[vivy ]T ,
where

o= [o ]
corresponds to activity A(1), and

Vo= [0 o]
corresponds to activity B(2). Thus,

T
v = [0 of® oo ]"

The design vector could be initialized based on ESS, or with arbitrary values. For

this case example, all the output variables have been initially assigned the arbitrary
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] -
value of 3, i.e.,

1 1 1 11F
Vinitial = [U{l) =:9: N U£2)= :?- s v:(22}=§ R v§3)=§] .

By summing the resources required by the activities which occur on any given
day, one may represent the project required resources as a function of time, as shown
in Figure 7.1(c). In this example, only one type of resource is considered. It is to be
noted here that the amount of required resources varies over the project duration,
and therefore there is a need for RL.

The RL procedure, illustrated in Figure 5.6, requires as inputs the following:

o activity values: duration, resource rate (from the project’s AoA diagram), ESS

values, e.g., EST, LFT and TF (from the CPM calculations)
s the relationships among activities (from the project’s AcA diagram)
e the project duration (from the CPM calculations)
o the penalty parameters (assumed 1)
e an acceptable value for the NN error, ¢ (assumed 1072)

e initial values for the output variables, denoted by v, (either values correspond-

ing to the ESS, or arbitrary values)
e initial values for Lagrange parameters

The initial values for Lagrange parameters are determined following the proce-
dure described in Section 4.3. The total number of constraints is equal to two, since
there are only two critical activities for which the constraints regarding their dura-
tions have to be imposed. In this example, there is no need to impose constraints
regarding the continuity (i.e., all the durations are equal to 1) nor the precedence of
the noncritical activities (i.e., there is no noncritical activity which precedes another

noncritical activity). The first type of constraints specifies that the duration of a
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noncritical activity has to be equal to the number of active neurons for that activity

at any moment in time. For noncritical activities A and B the two constraints are:
v§” + v}” =1 and vg"} + v&?’ =1

or using a similar matrix notation as in expression (4.10), the constraints can be

written as:

-vgl)
1100 |V |1
001 1{{v@® |1
v
where the constraint-matrix A 1s:
|t 1roo
o011

In order to find an estimate of the Lagrange multipliers, first the constraint-matrix
A is partitioned. Specifically, for each noncritical activity one variable is selected
from the design vector, i.e., vsl) for activity A(1), and vgz) for activity B(2). Then,
the columns corresponding to v§” and vgz) from the constraint-matrix are selected,

and the non-singular decomposition V is equal to:

10
01

V=

In order to solve the linear system described by (4.19), matrices Qg and cor have
to be partitioned accordingly. The derivation of the matrices Qg and cor is based

on the objective function which, for this example, is:
2
1 (k)
HOEEDM DI sk DI B
i1 \je, i€y
where J1 = {1}, J7 = {3}, . = {1,2}, J; = {4}, = = {2}, J3 = {5}. The

resource requirements, as shown in Figure 7.1(a) and (b) are: ry =4, 7, =7, r3 = 8,
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1

r4 =4 and rs = 1. Substituting the values for the resource requirements r;, and for

the sets Jix and J7, the cost (objective) function becomes:

flv)= ‘;—[ (riof™ + r3)2 + (ool + 0 + r4)2 + (rof + rs)2 1=

1
= 5[ r2u{Mpl 4+ 22,803 4 12003 4 12,800 4 or P4

+2 (r,r;»,vfl) <+ rlr.,v?) + r2r4v£2) + rzrsvgs)) + r§ + rf -+ r§]

From the cost function, matrices Qo and cor are calculated as follows:

(22 0 0 0 (16 0 0 0
0 12 mry 0 0 16 28 0
Qor = =
0 rry rg 0 0 28 49 0
0 0 o ) |0 0o o 49]

and
Cor = [2rirs 2ri74 2rory 2rors |7 =[64 32 56 147",
Then, the columns corresponding to vgl) and v:‘f’ are selected, and the non-singular

decompositions Qg and c¢j; are:
. 16 0
QO[ = )
0 49

cy =64 56]7.

and

Finally, the linear system described by (4.19) can be solved,

ISR (MR )
01 |x 56 0 49 | | @) | )
and its solutions are:

o= —(64+160{(0)) = 64

Mo = — (56 +490{7(0) ) = 105
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for v{"(0) = 0 and véz)([]) =1.

The initialization step is done after the weight matrices cg and Qy are filled-in
directl‘y‘f‘:‘from the ESS of the project, as discussed in Chapter 6. Having determined
the initial weights of the Hopfield NN block, the proposed ANN scheme shown in
Figure 5.6 performs the leveling process until the ending conditions are met. The
convergence of the output variables is illustrated in F igure 7.2(a). Variables v{" and
vgz) have converged to zero, while variables uf"’ and vgs) have converged to one. This
means that, after leveling, the start time of activity A has been shifted to day 2 (i.c.,
o{? = ) , and the start time of activity B has been shifted to day 3 (i.e., v{¥ = 1).

The final values of the design vector v represent the output of the the RL procedure,

i.e.,

i = [0 =0, oP=1, =0, o =1]"
The value of the energy function decreased from -12 for the initial schedule, to -60
for the levelled schedule, as shown in Figure 7.2(b). The implementation of the
ANN model was carried out using Matlab. The model reached a steady state after
100 iterations, consuming 20 seconds of computer time. In this example case, the
proposed ANN model provided an optimal solution, as illustrated in Figure 7.1(d).

As it can be seen from the after leveling resource histogram, the fluctuations in the

pattern of resouice usage have been eliminated.

7.3 Case Example 2

Example 7.2 As the second example let us consider the project-diagram of Fig-
ure 7.3(a), for which the ESS is depicted in Figure 7.3(b), and the histogram of
required resources before leveling is shown in Figure 7.3(c).The project consists of
four activities (J=4), A, B, C, and D, and the critical path runs along activities
C and D.The project duration is K=6 days. In this example activities C and D

are critical, while activities A and B are noncritical, as iliustrated in Figure 7.3(b).
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The start and finishing times of activity A(1) are : K;(1) = 1, and K3(1) = 6. The
total float of activity A is two days. Similarly, the start and finishing times for
activity B(2) are: K;(2) =1, and K(2) = 3. The total float for activity B is one
day. Corresponding to noncritical activities, the design vector, defined in (5.42), is

equal to

v_[v(ll (2) (3) (4) (5) (5) vgl) vgz) v(3)]

where
[vil) v}z) vgs) v}“) v{s) U&B) ]

corresponds to activity A(1), and

[0 o o]

corresponds to activity B(2). As in the previous case example, all the output vari-
ables have been initially assigned the arbitrary value of 3. After leveling, their values

have changed as illustrated in Figure 7.4(a).
T
Vfinal = [03 0, l’ 1, 1, 1& 11 1, 0]

This means that, after leveling, the start time of activity A has been shifted to day 3

(i.e., v( ) = 1) , while the start time of activity B has not been changed compared

to ESS (i.e., v{¥ = 1). The convergence of the energy function, illustrated in
Figure 7.4(b), demonstrates the fact that the model is quite robust, since it did not
get stuck into the local minimum, and it finally reached the global minimum. Again

the proposed ANN model has reached an optimal solution, which is illustrated in

Figure 7.3(d).

7.4 Case Example 3

Example 7.3 The project-diagram of the third case example consists of five activ-

ities (J=5), A, B, C, D and E, and the critical path runs along activities D and E, as
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shown in Figure 7.5(a). The ESS is illustrated in Figure 7.5(b), and the histogram
of required resources before leveling is shown in Figure 7.5(c). The project duration
is K=5 days. In this example activities D and E are critical, while activities A, B,
and C are noncritical, as illustrated in Figure 7.5(b). The start and finish times of
activity A(1) are: K;(1) =1, and K;(1) = 4. The total float of activity A is three
days. The start and finish times of activity B(2) are: K;(2) =3, and K»(2) = 4.
The total float of activity B is one day. Finally, the start and finish times of activity
C(3) are: Ki(3) =4, and K3(3) = 5. The total float of activity C is also one day.
Corresponding to noncritical activities, the design vector, defined in (5.42), is equal

to

T
v = [0 of® o o o) of0 o8 9]

where

[ng) SOMOMO ]

correspords to activity A(1),
9]

corresponds to activity B(2), and
07

corresponds to activity C(3). As in the previous case examples, all the output
variables have been initially assigned the arbitrary value of 3. After leveling, their

values have changed as illustrated in Figure 7.6(a).

(1) (3) (1)

T
Véinal = [vi" =0, u§2’ =0, v§3) =10 =0,v; =0,v°' =1, v;(f) =0, vés) = 1] .

This means that, after leveling, the start time of activity A has been shifted to day 3
(i.e., v{® = 1), the start time of activity B has been shifted to day 4 (i.e., v{¥ = 1),
and the start time of activity C has been shifted to day 5 (i.e., v;(f" = 1). The con-
vergence of the energy function, illustrated in Figure 7.6(b), shows that the system

required more time to reach an optimal solution than in the previous two cases, i.e.,
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it needed almost 500 iterations to find its equilibrium point. In this example case,
the proposed ANN model has reached an optimal solution, which is illustrated in
Figure 7.5(d). As it is shown in the resource histogram after leveling, the required
resources are utilized in a smoother fashion than before leveling, and the fluctuations
in the pattern of resource usage have been reduced. This solution is found to be
identical to the optimum solution for minimizing daily resource variations obtained

by Easa (1989), which confirms the validity of the proposed ANN model.

Theoretically, the model can be used for any construction project, but prac-
tically it is constrained by the limits of the size of the matrices in Matlab, and .by
the choice of the Lagrange multipliers. Since there is no training involved, when
the project changes, the ANN architecture remains unchanged, and only two steps
need to be performed. The first one is straightforward: the user has to specify the
new duration, the resource rate and the ESS values for each activity from previous
CPM calculations, based on which the weight matrices are calculated. On the other
hand, the second étep is more complex: the user has to choose the initial values for
the Lagrange multipliers, since these values vary for different sizes of the project-
networks. As there is yet no methodology available as to what values the Lagrange
multipliers ought to take (Gill, Murray and Wright 1993), several runs were made,
for different sized-projects, varying the values of these multipliers. The model was
found to be quite sensitive to the initial choice of the Lagrange multipliers, and it
reached an optimal solution only when the multipliers were initialized with values
as indicated in Section 4.3. When poor values were chosen, the equilibrium point
was found to be far from an optimal solution.

The ANN formulation of the QALM optimization is a heuristic procedure
for solving the Ri, problem. Therefore, in general, the proposed model will not
necessarily find an optimal solution. Nevertheless, due to the computational speed
which can be achieved using ANNs, the possibility of solving the RL problem using

a neural network deserves further investigation.
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Chapter 8

Concluding Remarks

8.1 Conclusions

The primary contributions of this work have been the development of a new ncural
network model aimed at solving the RL problem in construction , and the derivation
of a new methodology for calculating the weight-matrix of a Hopfield NN for RL.
The ANN model has been derived by mapping a formulation of the RL problem as a
QALM optimization, onto an ANN architecture employing a Hopfield configuration
of NN. It has been shown that the augmented Lagrangian associated tc the RL
problem can be interpreted as the energy function of the Hopfield NN. The ANN
architecture consists of two main blocks: the Hopfield NN block, and a control
block for the computation of the weights of the Hopfield network and for updating
these weights according to the adjustment of Lagrange multipliers in the QALM
optimization.

The new methodology for the derivgtion of the weight-matrices of the Hopfield
NN has been developed based on the structural properties of the matrices arising
from the formulation of the RL problem as a QALM optimization. These structural
properties have been formalized as template-matrix contributions of different terms

of the AL associated with the RL problem, to the entries of the weight-matrices. In
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the case of a specific project-diagram, several examples illustrating the structure of
the template matrices have been provided. It has been emphasized that the template
matrices can be filled-in easily, using the ESS of a project.

The theoretical framework described in this thesis allows for the derivation
of a computationally-efficient yet versatile algorithm, which can easily accomodate
different structures of project-networks, for the computation of the weight-matrix
of a Hopfield-based NN architecture for resource leveling. With such an algorithm,
the weight-matrix is filled-in directly by using characteristic templates, and without
a need to explicitly determine the functional expressions of the weights.

An experimental validation of the proposed ANN model has also been carried
out, by considering three case examples, and the experimental results have demon-
strated tHe functionality of the proposed model. Further investigation is required, in

order to verify the effectiveness of the proposed ANN model, in the case of medium

and large-sized projects.

8.2 Scope for Future Study

The ANN model has only been preliminarily tested on small-sized projects. Further
investigation is required in order to verify the effectiveness of the proposed ANN
model in the case of medium and large-sized projects.

Also, a performance comparison of the proposed model versus heuristic search
and genetic algorithm approaches is required, to better evaluate the proposed me-
thodology.

In addition, the current application of the ANN model to AoA networks could
be extended to PDM networks.

Furthermore, a further research can be undertaken for finding a parallel im-

- plementation of the model.
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