INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

2-D GRAPH PLOTTER: ATOOL FOR

PLOTTING FUNCTIONS

Anh Phong Tran

A Major Report
n
The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements
For The Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

May 2000

© Anh Phong Tran, 2000

i+l

National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Weliington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada tc Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-54337-4

i+l

Canada

ABSTRACT

2-D GRAPH PLOTTER: A TOOL FOR PLOTTING FUNCTIONS

Anh Phong Tran

Sometimes a picture means a thousand words. It is hard to visualize how a graph of a
function looks like if there is no way of plotting and drawing that function. Paper graphs
are simple and reusable but there is a possibility of error. Hence, plotting and drawing a
graph manually has been a nightmare for people, especially for students who have just
started learning mathematics.

What was needed is an easy way to combine the dependability of paper graphs and the
accuracy and quickness of computer graphs. That is just what this project is about.

2-D Graph Plotter has been designed to meet not only the requirements of a plotting
device (such as the speed, reliability), but it is also very easy to use and very cost
efficient. The purposs of this report is to describe the design and the implementation
process of this tool, as well as to show how its friendly user interface allows interactive
data manipulation and graph creation. I will then point out its advantages (such as why it
works more quickly and efficiently than other off-the-shelf tools), and how the tool

should be improved and extended to maximize its benefit.

il

Acknowledgments

I would like to thank my supervisor, Dr. Peter Grogono, for all his help, advice, and ideas
during the project. In particular, Dr. Peter Grogono helped me with the parsing and
evaluating components of this project. I also would like to thank my family and my

fiancée for their love, their continuing encouragement and their support.

v

Contents

List of Figures viii
1 Introduction 1
1.1 Why Is the TOOI Needed?coererrenmnrecemeiccecenincnntneas s cncneeees 1
1.2 GOAIS eoeneeeeeeeeeeceeceeieeeceeeeeessesaseesaseesesessmsssnes et mnseessass s asemanan e e n s et et e s s s ane s e e 2
1.3 Expression Format and ASSUMPHOTL .ecoceeeimineicminiineeenaiassstseteasccennsenenes 3
1.4 The Structure of the Major REPOTLeeirieeeeeicinc e eeceee 3
2 Related Work 4
2.1 System REQUITEIMENEcocirriiemimeeentneeac et snn s nses st snees 5
2.2 FUNCHONAILY weveerereeieeeariteeronemenseeassssamme et st sesn s esns s m s na s r s e s anssnaoosasens 5
2.3 INSLAIATION cooeeeeeeeerireeeieeeeeeereeieeesesmccocessssssnestes s braneas s smesme oot sesesnssnnss e e snesee 6
2.4 SPECIAlIZAION .eeomineecmeneriieicianr ettt ettt 6
2.5 PIICE cveeeeeeemeeeeeieetessesesnsneasssnnesee st sessnserssassnsaesss e e s s s s sas s e ese s s aess st e snnnnssaes 6
2.6 Syntax examples for plotting fUNCONS ...cceeveieererneieninr et 7
2.7 CONCIUSION c.cvvrveeeeererrreemreraeeeaaeaessassmnsesrsnssresseesrssnsnresnasamsacassssssossrtansssasasasss 7
3 System Design and User Interface 9

3.1 SyStem DESIZN weuemeeriieimireeneeee ettt 9

IR B8 B 20 T, U U TR PPRPPP 10

3.1.1.1 The Gramimarccocemeeeeomieerreeieeeseeeeesrescncennseeens 10

3.1.1.2 Recursive DesCent ..o . eeeiiieeeeeeeeieeieeee e eeeens 11

3.1.2 Input Dialog -ceeeeeveemiiiiieiree e e 12

313 VIBW eooeeeceeeeeeeereeeeee s osee e cnes s ssns e e e mes s s e nan s s e e s e e s s aseesnana 12

3.1.4 Calculation DIalog .cceev et 12

3.2 USEr INEITACEenenneeciceeeccccermcre et e e e e enee s e e et e eee e s seess e rens 13
3.2.1 Getting Started ..c..ccceeviiimiermreimere et eee ettt 13

3.2.2 The Menu StrUCLUIE .cccccceuemeimriieieeeraenneenecenreesenencs s ceeeeesssnees 13

3.2.2 1 FIlE oeieeeeeeeeceeeececteeeeseer e ae e e e e 13

3.2.2.2 VIEW ceeeeeioccecieeteeciinereseseesnsesatsasnecessessamse s anenaecnneacosnnnnns 15

3.2.2.3 TOOL coeeeeieeeeeeeeeceeteneeet s e s e memese e e e see s enn e s e s eneas 16

3224 HEIP -eveeeeeiiiimiiincrennccneeeeee et cece e e 21

The Implementation 23
4.1 Implementation Of PArSETcocvormeivemmireeeeete et 23
4.2 Implementation of Input DIalog «..cceeriieeriaiiiieeee 26
4.3 Implementation 0f VIEWETcocuiimiieriieieeeeece ettt 27
4.4 Implementation of Calculation Dialogceovieeieecmieiiiiieeciieeeae 28
4.5 Problems and SOIULIONS «.cociceummmmeiimmiiiiieiiieeieieeeeeee et teee e e ceeennseesan 29
Conclusion 30
5.1 EXPEIIENCE ...eemeneeeeeeecneeeemsseesneisnn s sessrasesssnsaes st e essse st aestastsasaenesecnensasases 31
5.2 FUINEE WOTK ...oveneeeieeieemnecceeeeceotmreeamseresieeesssrnsesaessnnaas e sneessnaaasessnsnanasanenen 31

vi

Bibliography

A Class Declaration
A.1 Class declaration Of PArSETocooeormimmoieeeeee ettt
A.2 Class declaration of Common Data StucCture.........cvmmmmemmeecricenecnceeneenees
A3 Class declaration of Input DIalog «cc..eeiiiieeeccceeee
A4 Class declaration 0f VIEWET «..c.cociiiiiiiiiiiiiiiotenceiiieemmesteesceneeeesneneseseseonenes
A.S Class declaration of Calculation Di1alogcccoereecommmmeieeeeeeeececees

B Interesting pieces of codes
B.1 The Construction function of class CexprDIgmmmmmmieririiriniiieeeeee
B.2 Function OnDIaw() «.ceeeeeceeueerreraesiesiieeneinteereenasesnrerennnssssasssasesnasssssssnsnssssens

B.3 Function AddedConst() -ccceoeeereeroemieerrieniciiiecnnrenineerrescessesresteesaes s s e aens

vil

List of Figures

1 Grammar of an EXPIeSSION cc.cociceiirmirieriinerieeeeeseetne s tsreenssss s e e sessaasscsenes 10
2 The Main WINAOW .oovieieeeeceeeereeectenireiciseeseerssseeas s sasse e s csesosess s oo ssnnnssasnannasss 14
3 ThE FIlE MEMU uoeeeieeeeeeeeeececeeeeeeecste s ceessnsnnsess s s s s st nr s s s cssnanststesasrssssnnnnsanssns 14
4 THE VIEW MEMU ...eeeeeiieeeeececececeerseeeereeeeeececcs e srss e ens s ssassnesssasesnsatsssnnessnasssnsses 15
S ThE TOOLBATeeeeeeeeeeeeeeeeceeeeeceeessnentesiesensr e et eene s e ssese s e s s snonssssnssass s nnannanaaens 16
6 The TOOIIMENU ...oooiemiieeeccceeceeeereceeenteeenees e s ssssnnsessesesssnsassssessenntssssasesssssnsnesanaas 17
7 The INput DIAlOg ..coemeeeiriiiiieieiee ettt n e e seenne 18
8 The Calculation Dialogcceeverviiimiimieecee e et te st seees 19
QO The MESSAZE BOX..euiciruiieiieaiieiernreeeiee s caae e sssece s ot st e s a s n s s n e s s n e 20
10 The Color DIalOgcoveeeueeeerenreieereeiiemtesr et ernnsssessssssesssasesssessasssessnssssnsrnessassssane 21
11 The Help MENU ..ottt etee st e e st et e s e s 22
12 The ABoUt DIialog - cceoceerireeemiiniiree ettt sreeeese ot s ses b s as s e n e s ae s ane 22

viii

Chapter 1

Introduction

In this chapter, I will first explain the needs to have a simple plotting device to graph
functions quickly and efficiently. I will also state the goals of this project and then

I will summarize the main features of this tool.

1.1 Why is a tool needed?

Computers nowadays are used everywhere in our daily life. Modemn computers can
provide both a very fast CPU, and a high-resolution color monitor with rapid refresh
rates. A standard computer system right now has a CPU running at a speed of at least 200
MHz and a color monitor with rate of over 75 MHz. Hence, they can support fast,
interactive plotting programs without any other special devices.

Obviously, sometimes it is easy to visualize a function's graph without having to draw it
out. However, for complicated functions, it is tedious to draw their graphs manuaily on

paper, let alone to visualize them. Such cases require a special plotting tool. The tool will

draw the graphs automatically, making these complicated functions more clearly and
much easier to understand.

Even though there are many programs out in the market (see Chapter 2) that provide
plotting features, they are either too complicated to use, or too expensive or too large
(with respect to memory and disk space), or too professional. A small, easy-to-use tool
for plotting functions quickly and efficiently is suitable for people who do not have much
computer experience; or for those who just need a tool for plotting functions only; or for
those who need a tool to work on something related to mathematics but do not want to

spend much time to learn the tool.

1.2 Goals

There are there goals in this project:

Goal of the desien: the design is object-oriented. This is mainly because object-oriented

design aims for more robust software that can be easily reused, modified, maintained and
extended. The greatest strength of this approach is that it offers a mechanism that
captures a model of real world, which leads to greatly improved understandability and
maintainability of the application.

There are several languages that could be used to implement object oriented design. In
this project, C++ was chosen because it is a language that provides the maximum benefits
to programmers. It has all the features of object oriented design: identity, classification,
polymorphism, and inheritance.

Goal of the interface: very user-friendly, easy to use, needs almost no time to learn.

The tool for graphical interface development is Visual C++ because Visual C++ provides
very good interface and C++ is a language that supports object-oriented design.

Goal of the tool: a tool to plot simple functions quickly and efficiently.

1.3 Expression format and assumptions
An expression consists of one independent variable, one parameter, and several constants.
An example of an expression Is:
Y = k*sin(A*x) + Pi,
where x is the independent variable, k is a parameter and Pi and 4 are constants.
The independent variable, the parameter and the constants are assumed to have value of 0
if they are not set when evaluating the expression.
Multiple graphs could be plotted on the same View, depending on values of the

parameter.

1.4 The structure of the major report

The rest of the major report is presented in four chapters. Chapter 2 briefly introduces
four off-the-shelf software packages that also provide plotting features and discusses their
disadvantages. The goal and design of the project is presented in Chapter 3. Chapter 4 is
to explain the implementation of the program and to discuss briefly the problems
encounters when developing the tool and their solutions. In Chapter 5, the project is
discussed in length. It explains how the program meets the design goals, what technical
difficulties were encountered and solved, and how the project can be improved or

extended in the future.

Chapter 2

Related Work

In the market nowadays, there are several programs that provide plotting features. Why
not use them?

Here are some of the reasons:

- They are expensive (Macsyma, Mathematica, Matlab).

- Their notation is hard to learn (Macsyma, Mathematica, Maple).

- They are too specialized (various programs for design of circuits, motors, antennas, etc).
- They are too large (most require lots of memory and disk space).

In this chapter, [will present four software packages: MacSyma(l)], Mathematica[2},
Maple[3] and MatLab[4] that support graph-plotting capability.

As mentioned above, the disadvantages of these programs can not be ignored. I will
discuss the system requirements, functionality, installation, specialization, and prices of

these software programs to illustrate these disadvantages.

I will also provide some syntax examples for plotting functions of these programs to

show their complexity and the level of difficulty to graph a simple function.

2.1 System requirements

- MacSyma: under Windows operating system for Intel based Pentium 90 (or better). It
requires a minimum of 12MB of main memory, with at least 16MB of hard disk [5].

- Mathematica: under Windows operating system at least 90 MHz. It requires a
minimum of 16MB of main memory, with at least 15SMB of hard disk [6].

- Maple: under Windows operating system for Intel base Pentium 90 (or better). It
requires a minimum of 32MB of main memory, with at least 60MB of hard disk [7].

- Matlab: under Windows operating system with Intel based Pentium. It requires a

minimum of 16MB of main memory, with at least 145MB of hard disk.

2.2 Functionality

- MacSyma: provides basic mathematical capabilities; predefined functions, data
analysis; algebraic operations; calculus; linear algebra; vector and tensor analysis.

- Mathematica: this is an all-purpose computer algebra software that uses a high-level
programming languages such as numerical analysis, algebra, trigonometry, calculus,
equations, matrices, and special functions.

- Maple: provides basic mathematical capabilities: this is an all-purpose computer
algebra software that uses a high-level programming languages.

- Matlab: supports computation, algorithm development, modeling, simulation, signal

processing and engineering graphics.

2.3 Installation

- MacSvma: requires an installation program to install MacSyma under Windows
operating system.

- Mathematica: requires an installation program. A full installation takes up over
150MB of hard disk.

- Maple: requires an installation program to install Maple under Windows operating
system.

- Matlab: requires an installation program to install Matlab under Windows operating

system.

2.4. Specialization

- MacSyma: specializes in mathematics, engineering, and statistics.

- Mathematica: specializes in mathematics, physical science, biology, and engineering.

- Maple: specializes in optimal design of circuit, modeling a thermal system, and
modeling of an electrical system.

- Matlab: specializes in mathematics, engineering and science.

2.5 Price

- MacSyma: $300 USD for version 2.4 for window 95 /98/ NT.
- Mathematica: $139.95 USD for a student version.

- Maple: $129.00 USD.

- Matlab: $1,900 USD for a basic version.

2.6 Syntax examples for plotting functions
- MacSyma: example for plotting 2-D:
plot(curve, x, %pi, "X, ”Y”, “Sine wave with Gaussian Envelope,low resolution™)$
- Mathematica: example of plotting 2-D.
plot [(x-2)*2, {x, 0,1}] x in a range from 0 to 1 for equation (x-2)"2
- Maple: example for plotting 2d with gridlines:
with(plots):
mygrid = coordplot(cartersian , labelling = middle, view= [-6..6, -6 ..6]):
p = plot(4*sin(x) , x=-6 ..6):
display ([p, mygrid));
- Matlab: use matlab language. Example for plotting 2-D:
t = 0:pi/100:2%*pi;
y = sin(t);

plot(t,y);

2.7 Conclusion

Through the facts presented above, it is fairly obvious to see why these software
packages are not a preferred choice for plotting and graphing simple functions. Compared
to my plotting tool, they are too expensive, too professional and especially, too hard to

use. My tool is simple, requires very few memory space and easy to use. It does not

require much computer experience from users to use this program and it provides all the

necessary functionality of a plotting tool.

Chapter 3

System Design and User Interface

3.1 System Design

The main feature of this 2-D Graph Plotter is to plot simple algebraic expression quickly

and efficiently, and to evaluate the value of an expression given a valid value of

independent variable to which the expression is plotted. The sequence of operations is as
follow:

e An expression is entered and parsed.

o Ifthe expression is syntactically correct, then the variable name, the value of the
parameter and constants are entered by the user. A number of points are generated
and plotted into the View. Otherwise an error is reported.

e A Calculation Dialog is provided so that the user can compute the value of an
expression plotted in the View when a value of variable is given.

Based on this, we can divide the functionality of the tool into four service modules:

- A parser/evaluator to parse an expression, set the value of the constants, and the
parameter, and give back a value of an expression.

- An Input Dialog to enter the expression, variable name, value of constants parameter.

- A View to display the corresponding graph of an expression.

- A Calculation Dialog to compute a value of an expression with corresponding value

of a variable.

3.1.1 Parser
3.1.1.1 The grammar
An expression is parsed correctly if it follows the grammar in figure 1.
Expr->["-"]Term {('+'| ") Term }.
Term -> Factor { ('*'| /') Factor }.
Factor -> Primary ["™ Primary J.
Primary -> NUM | VAR ['(" Expr)'] | '(" Expr)".

Figure 1: Grammar of an expression.

Things of the form [X] means that X may appear or not. Things of the form (X1 | X2)
indicates that one of the Xi must appear once.

The parser was a starting point of this project. Because the parser is the core of the whole
system, its design must be conducted carefully. Besides the basic functionality of a parser
that parses something into a defined structure based on a grammar, the parser in this
project, is designed to have two more operations: assigning a value to a node in the

parsing tree and evaluating the whole parsing tree. There are a lot of methods to design a

10

parser such as recursive descent, LR-Parsing, and simple precedence [8]. Each has its
own advantages and disadvantages. However in this project, recursive descent method is
used because of the following reasons:

e The grammar in Figure 1 is unambiguous.

e There is no left recursion in the grammar.

e Itis easily implemented using object-oriented languages such as C++ that supports

recursion.

3.1.1.2 Recursive descent

The recursive descent method is often used for grammars that are unambiguous and not
left-recursive. Starting at the root, the parsing tree is built from the sequence of tokens in
input (from left to right) according to the rules in the grammar (see page 167 to 174 of
[9D)-

For each non-terminal in the grammar, there exists a corresponding procedure.

These procedures call on each other when appropriate (see page 36 of [10]). This method
needs to know which right hand side to choose. If all the right hand side begins with
terminal symbols, the choice is straightforward. If some right hand sides begin with a
non-terminal, the parser must know what token can begin the sequence generated by this
non-terminal.

The parser was designed to do the following tasks:

¢ Build a parsing tree when a given expression is syntactically correct.

e Report an error if expression is not correct.

e Assign values to nodes in the parsing tree.

11

e Return the value of the whole parsing tree.

3.1.2 Input Dialog

Input Dialog is designed as a Windows modeless dialog [11]. Modeless mode allows the
user to switch back and forth between the main window and the Input Dialog.

The purpose of the Input Dialog is to get the input expression, the independent variable
name, and the values of parameter and constants, to validate the inputs and to generate
the points in order for the View to plot.

Generally, Input Dialog is designed to connect the parser and the View. It gets the inputs,

passes the inputs to parser and then gets the value from the parser to pass to the View.

3.1.3 View

The main role of the View is to plot data that was passed from the Input Dialog.
Furthermore, it handles the functionality of the main menu and responds to any events
that affect the main window. An example of something that affects the main window is
the event when main window is resized or overlapped.

Since the Fiew is interacting with other modules, The View object is passed into other

modules so that other modules can use the View’s services.

3.1.4 Calculation Dialog
Calculation Dialog is designed as a Windows modal dialog. This means that the user
cannot switch to another Window until this dialog is closed. The purpose of designing

this dialog as modal is because the Calculation Dialog needs to know in advance how

12

many graphs are already plotted so that it can display a list of graphs for the users to

choose.
The Calculation Dialog is simply a tool for users to compute the value of a plotted

expression in the View when a value of independent variable is given.

3.2 User Interface
The goal of a user interface design is to give users a simple, easy to use and user- friendly
interface. The interface designed is based on today standard guidelines for software

development [12].

3.2.1 Getting Started

To start the 2-D Graph Plotter, the user types in 2DPlotter at the DOS prompt or click on
2-D Graph Plotter shortcut under window environment.

The main 2-D Graph Plotter interface then appears on the screen as shown in Figure 2.
The interface is quite simple. It consists of a main window, a menu bar at the top of the
interface, and a toolbar that contains shortcuts to some menu bar items.

The 2-D Graph Plotter interface starts with a white background and red XY axes.
However, the color background and axes could be changed. This will be discussed later

on.

3.2.2 The Menu Structure

3.3.2.1 File

Clicking on FILE with the left mouse button displays a pull down menu (Figure 3).

13

TR A Tt =
& = > . N
. Y
AN
i i
N Y
N)
? X
St

Figure 3: The File Menu.

14

Exit
If this submenu is clicked, the 2D Graph Plotter will be closed. All opened dialogs will

also be closed.

3.3.2.2 View

Clicking on View with the left mouse button displays the View’s pull down menu (Figure

4).

Figure 4: The View Menu

Status Bar

Clicking on Status Bar will switch the status bar’s mode on or off. If the Status Bar is on,
a check appears next to it.

There are two parts in the Status bar:

Tool Tip part: Display the tool tip when mouse cursor is on the shortcut menu or on the
submenu.

Status Part: Display the status of NumLock, CapsLock and ScrollLock key.

Toolbar

Similarly, clicking on Toolbar as in figure 5 will switch the Toolbar’s mode on or off. If

the Toolbar is on, the checkbox next to it will be checked.

15

The Toolbar consists of three icons that relate to three shortcut menus:
Exit icon is a shortcut to the Exit submenu under the File Menu.
Input Dialog icon is a shortcut to the Input Dialog submenu under the Tool Menu.

Calculation icon is a shortcut to the Calculation Dialog submenu under the Tool Menu.

Figure 5: The Tool Bar
Clear all Graphs
By default, the Clear all Graphs submenu is disabled. It is only enabled if there is any
graph plotted in the View. By clicking on this submenu, all the graphs plotted in the View
will be erased.

Clear all Values
By default, the Clear All Values item is disabled. It is only enabled if there is any

coordinate drawn in the View. By clicking on this submenu, all the coordinates drawn in

the View will be erased.

3.3.2.3 Tool

Clicking on Tool with the left mouse button displays the Too!’s pull down menu (Figure

6).

16

Figure 6: The Tool Menu

Input Dialog
Clicking on the Input Dialog displays the dialog as shown in Figure 7.
The Input Dialog consists of four sections:
Expression Section: This section includes an Edit box for users to enter the expression
and the Checking Expression Syntax button for users to check if the expression entered is
syntactically correct or not.
Setting Section: This section let the users enter a parameter name if there is any in the
expression entered, the start value and the finished value and the step by which that
parameter value can increase. For example, if the equation is y = ax whereais a
parameter, starting value of a is 1, the finishing value of a is 3 and step value is 1, then,
we will have three different equations. They are:

Y=xwherea=1

Y= 2x wherea =2 and

Y= 3xwherea=3

17

2 v

L3 < SR
S SN S e T S e

Figure 7: The Input Dialog.

Similarly, this section let users enter the variable name, the start value and the finishing
value. The starting value and the finishing value defines the input range. It is required to
enter the variable name before plotting any function.

Constant Section: This section let users enter constant names and their values. As
mention in Chapter 1, there could be more than 1 constant in the expression. Hence, the

Set button must be clicked to set the constant value for each constant name.

18

Action Section: This section includes two push buttons.

e The Plot push button is to plot the current expression into the View. By default, this
button is disabled. It is enabled only if the expression entered is syntactically correct.

e The Clear push button is to clear all the plots in the View.

Calculate Dialog

This submenu item is grayed out if there is no graph plotted in the View. Otherwise, by

clicking on this submenu, a Calculation Dialog will appear (Figure 8).

| Calculation Dialog

Figure 8: The Calculation Dialog

Graph number: depending on how many expressions are plotted in the View, the users
can select one of them in the list to view. Each graph corresponds to an expression.
Variable Value: This edit box allows user to enter the value of the variable corresponding
to the expression that was chosen in Graph Number box. If the value is in the input range,

the coordinate is drawn in the View. Otherwise, an error message is displayed (Figure 9).

19

Figure 9: The Message Box

Result: This box displays the value of the expression corresponding to the variable value
entered by the user in the Variable Value box.

There are two push buttons in this dialog. The Clear push button clears all coordinates in
the View and the Close push button closes this dialog.

Background Color

This option is to change the background color of the View.

User clicks on Background Coior submenu to display the color dialog in Figure 10.

20

Figure 10: The Color Dialog

Select one of the colors in the box and then press the OK button, the background color
will be changed to the color that the user has chosen.

If Cancel button is pressed, the background color stays unchanged.

Axes Color

This option is to change the axes color of the View.

Clicking on Axes Color submenu will display the color dialog in Figure 10.

Select one of the colors and press the OK button, the axes color will be changed to the
color that the user has chosen.

If Cancel button is pressed, the axes’ color stays unchanged.

3.3.2.4 Help
Since this tool is so simple to use, a help file is not provided. However, in the future, if

help is necessary, it can be placed under this menu.

21

For now, clicking on the Help menu with the left mouse button will display Help’s pull

down menu (Figure 11).

Project - 2D Graph

Figurell: The Help Menu

Clicking on the 2D-Plotter will pop up the About Dialog (Figure 12).

1 About 2D Plotter

> 2

Figure 12: The About Dialog

22

Chapter 4

The implementation

The parser was written in C++. C++, MFC (Microsoft foundation class) and Visual C++
of Microsoft were chosen to implement the Viewer, the Calculation Dialog, the Input
Dialog and the user interface for the window operating system. The tool has been
designed, implemented and tested with several test cases. It is, nevertheless, necessary to
be tested more by the end-users and further work will be required to obtain a production
quality version so that this plotting tool can be widely used (see Chapter 5). The full

declaration of each class can be found in Appendix A.

4.1 Implementation of Parser

The parser module consists of three parts:

- A scanner to scan the input expression into a token and return token type.

23

- A parser which uses the token to check the syntax of the input expression and report
errors if there are any.

- A constructor which works inside the parser to build up expression tree.

The main classes that build up a Parser includes:

Class Parseval: gets the input expression and builds up the starting point of parse tree.

Since recursive descent parsing method was used, there is one method corresponding to

each non-terminal in the grammar in the figure 1. They are:

parseExpr() is for a non-terminal Expr.

parseTerm() is for a non-terminal Term.

parseFactor() is for a non-terminal Factor.

e parsePrimary() is for a non-terminal Primary.

Class Scanner: scan the input expression into a token and return the token type. It uses a
look ahead method to figure out the next token.

Class Entry: is a node in the expression tree with right and left pointer that points to
another entry.

Class Error: report the error.

The main techniques used to implement the parser

Inheritance: Inheritance imposes a hierarchical relationship among classes in which a
child class inherits data and behavior from its parent (see page 27 of [13]).

When building classes for the parser, we recognize that those function classes such as the
class Sin, and the class Cos need the same method store() to store the function name.
Hence, we build the class Absfun that contains the method store() as a base class, so that

the function classes such as class Sin, and class Cos could inherit from class Absfun.

24

Furthermore, by building some base classes with abstract methods for inheritance, we
still can benefit by writing code that does not depend on a specific type.

The inheritance can extend a program easily by deriving new subtypes and it greatly
improves designs while reducing the cost of software maintenance.

Dynamic binding: Dynamic binding is a process of matching an operation on an object to
a specific method (see page 453 of [14]). This method is quite advantageous since it
simplifies the syntax of performing the same operation with a hierarchy of classes. It
means that we can call a method declared as virtual in the base class without worrying
about the exact type. In the run time, depending on the type, the exact code of a function
in the inherited class will be executed.

For instance, in the parser, we declare eval() as a virtual method in the base class Node.
We implement eval() method for inherited class Variable and one for class Number .
However, when we need to call eval(), we just issue the method call eval() without
worrying which eval() method will be fired, since in the run time, the exact call to
specific type is solved by dynamic binding.

Similarly, base class Absfun also does the same job as class Node. That is, we declare a
virtual method eval() in the base class Absfun, and for each class which inherits from
class Absfun such as class Sin, class Cos, a corresponding eval() method is redefined for
its own use. As the eval() method of the base class is invoked at the execution time, the
program will determine dynamically which derived class eval() method to use. This
process provides efficient function evaluation because we do not have to know in

advance which eval() method to call.

25

Furthermore, thanks to dynamic binding, it is easy to add new functions into program by
simply declaring new classes inherited from the base class Absfun. And in each inherited

class, an eval() method is redefined for its own use.

4.2 Implementation of Input Dialog

The Input Dialog was implemented by class CExprDlg.

Data Structures and their usage

The class CExprDlg uses CEdit, CButton and CString classes of MFC. CEdit is used to
create edit boxes for users to enter information. CButron is used to create buttons that
perform some funtionalities. CString class is used to keep expressions, variable names,
constants and parameter names.

The main methods of class CExprDlg.

CExprDlg(CParsewndView * pView) :

The Input Dialog Class CExprDlg is inherited from CDialog Class of MFC. When
constructed, the CParsewndView object is passed so that it can use data members and
methods of CParsewndView Class. Please refer to the class definition in Appendix B for
more information.

OnlnitDialog():

When the Input Dialog is initialized, only the expression Edit box is enable. Others are
disabled until the parser return TRUE on checking the expression.

OnExpcheck():

26

An expression is passed into the parser to perform syntax checking. If the syntax is
correct, other controls will be enabled so that the user can enter more information. If the
expression is syntactically incorrect, an error message is displayed on the screen.
OnPlot():

Data is validated before points are generated and passed into the View to plot. For each
value of parameter, a new expression is generated. For example, if y = a*x, where a isa
parameter from 1 to 3, then the three expressions: y =x, y = 2*x and y = 3*x will be
generated.

For each expression, the variable name and a list of constant values are kept for

calculating the expression value later on in the Calculation Dialog.

4.3 Implementation of Viewer

The View was implemented by class CParsewndView.

Data Structures and their usage.

The class CParsewndView uses CStringList, CObList of MFC.

CStringList is used to keep a list of variable names of an expression and a list of
expressions.

CObList is used to keep a list of constants associated with an expression.

CconstValue class, which inherits from CObject of MFC, is used to keep constant names,
constant values, and constant IDs of an expression.

CPointArray is used to keep an array of points of a graph whose member type is double.
This class is defined to override CPoint class of MFC whose member type is long.

The main methods of class CParsewndView

27

OnDraw() : gets called by the framework every time the view window need to be
repainted. Window needs to be repainted if user resizes the window, or reveals a previous
hidden part of the window, or if the application changes the window data (see page 32to
34 of [15].

This method is used to draw the axes and all the graphs that are on the window. Please
refer to Appendix B for the actual implementation of this method.

OnEraseBkgnd(): changes the background color by filling the window with new brush
with a color that the user has chosen.

OnViewAxescolor(): changes axes color by replacing the color used to draw the axes with
a color that the user has chosen.

OnViewCleargraph(): clears all the graphs.

OnViewCalcdlg(): opens the Calculation Dialog.

OnViewInputdialog(): opens the Input Dialog.

4.4 Implementation of Calculation Dialog

The Input Dialog was implemented by the class CdigCal.

Data Structures and their usage.

The cléss CDIgCal uses CEdit and CButton classes of MFC.

CEdit is used to create edit boxes for users to enter information.

CButton is used to create buttons that perform some funtionalities.

The main methods of CExprDlg:

Onlnitialize(): gets number of graphs from CView and presents them in a list for user to

choose which graph they want to compute the value.

28

OnCalCheck(): checks if the value of variable entered is in the domain. If it is, then
calculates the value and passes the information to the View to display. If it is not, then
just calculates the value and not displaying.

OnBcalClear(): clears all drawing from View.

4.5 Problems and solutions

When implementing 2D Graph Plotter, I encountered two tricky problems that I had to
spend a lot of time to find solutions.

Problem 1: How can a list of constant values of an expression be kept so that they could
be used in the evaluation of that expression later on?

Solution: each constant value of an expression needs a unique ID attached to it. The ID is
the expression number. When the user chooses an expression from a list, the ID can be
retrieved. This ID will be used to find the constant values that the users set when drawing
it. Please refer to Appendix B for the implementation.

Problem 2: How could multiple expressions be plotted on the same view?

Solution: a variable that could keep a list of points was introduced to solve this problem.
In the View, this list will be traversed and points will be retrieved to plot on the same
View. This list is updated whenever there is a new expression. It is deleted when user

chooses to clear up.

29

Chapter S

Conclusion

In this report, I have presented a plotting tool to draw simple functions quickly and
efficiently.

A natural, carefully defined user interface and the simple notations used were developed
as part of the tool and as the media for human interaction with function modules of the
tool. Furthermore, the tool's size is quite small. Therefore it should be fast to run in any
normal computer system.

The design and the implementation of the tool were also presented in this report.

The technique of building a recursive descent parser was discussed. Object oriented
design and implementation were also presented. Functional modules of parser, viewer,
input dialog and calculation dialog were built based on the analysis of the tool and
experiences.

The tool was tested thoroughly and is working well. With the ease of use of the tool, I

hope it may be used widely in schools someday.

30

5.1 Experience
While working on this project, I have learned a lot about Visual C++ and the
programming language C++. I have also gained insight into the object-oriented design

and implementation. Especially, now I understand more about building a parser.

5.2 Further work

The project should be considered as a first version of a plotting tool. Its limitation of

functionality and capability therefore is unavoidable. The tool should be improved and

extended in times. The following are some suggestions for future work.

1. Interface:

The interface should be clearer:

- The calculation dialog should display the list of expressions and associated with each
expression is the list of constant values and parameter value.

- Multiple document window should be implemented so that users can plot each
expression in each window.

- The resolution of the graph should be controlled by user.

- Help menu should be implemented as a complex product.

2. Functionality:

- Plotting 3-D functions such as Bezier curve should be implemented.

- 3-D interface should be developed.

- The grammar defining an expression should be improved to cover more complex

expressions.

31

- The parser should be improved to cover complex functions. Mouse movement should

be added so that it can display the value of x and y when mouse is dragging over any

graph.

- Print and Print Preview options should be implemented to make the product more

useful.

32

Bibliography

[1]

(2]

(3]

(4]

(5]

(6]
[7]

[8]

http://www.masyma.com. The official homepage of Macsyma software. It

consists of information about Macsyma software.

http://www.wolfram.com.The official homepage of Mathematica software. It

consists of information about Mathematica software.

http://www.maplesoft . com. The official homepage of Maple software. It

consists of information about Maple software.

http://www.mathworks .com. The official homepage of Matlab software. It

consists of information about Matlab software

P. Steward. Review of Macsyma 2.3. Maths & Stats, CTI Mathematics August
1998.

Nigel Blackhouse. Review of Mathematica 4. University of Liverpool.
Corless,R . Essential Maple: An introduction for scientific programmers.
Springer-Verlag, 1995.

P.M.Lewis I1, D.J Rosenkrantz, R.E. Steamns. The System programming series

Compiler Design Theory. Addison-Wesley Publishing company, 1976.

33

[9]

[10]

[11]

[12]

[13]

[14]

[15]

William A. Barrett, Rodney M.Bates, David A.Gustafson, John D.Couch.
Compiler Construction: Theory and Practice. Science Research Associate Inc,
1979.

B. Pyster, Phd. Compiler Design and Construction.Van Nostrand Reinhold
Electrical/Computer Science and Engineering Series, 1980.
Nancy Winnick Cluts. Progamming The Windows 95 User Interface. Microsoft
Press, 1995.

Microsoft Corporation. The window interface guidelines for software design.
Microsoft Press, 1995.

Gao Junming. GAP: 4 tool for transforming from VDM specification into object
oriented desgin. Master of Computer Science, 1992.

Bruce Eckel, Thinking in C++. Prentice Hall Printting. 1999.

David J.Kruglinski. /nside Visual C++. Microsoft Press , 1993.

34

APPENDIX A

CLASS DECLARARION

A.1 Class declaration of Parser

class Entry {
public:

Entry (char *iname) ;
~Entry ();
double eval () { return value; }
char *getName () { return name; }
void set (double ivalue) { value = ivalue; }
Entry *left;

Entry *right;

private:
char *name; // Variable name.
double value; // Value.

}:

35

class Error (
public:
Error (char *iname, double ival)
{
name = iname;
value = ival;
}
void report();
private:
char *name;

double value;

class Node {
public:
virtual -Node() {}:

virtual double eval () = 0;

class Number : public Node

{

public:
Number (double ivalue) { value = ivalue; }
double eval () { return value; }

private:

double value;

36

class Variable : public Node {
public:
Variable (Entry *ientry) { entry = ientry; }
double eval () { return entry-seval(); }
private:
Entry *entry-
}z
class Absfun {
public:
virtual double eval (double x) = 0;
virtual ~Absfun{);
void store (char *iName);
public:

char *name;

class Scanner {
public:
enum KIND

{

BaD, EOS, VAR, NUM, ADD, SUB,

MUL, DIV, EXP, LP, RP, 2ABS
}:
enum { BUFLEN = 120 }; // Size of temporary buffer.
Scanner(char *itext);

~Scanner ()

{

delete root;

37

void next () ;

KIND getKind () { returm kind; }

Entry *getEntry () { return entry; }

double getvValue () { return numval; }

void set (char *name, double wvalue)

{

helpSet (name, value, root);
}
void error (char *message);
bool ok (void) { return success;}

private:

Entry *enter (char *name,

Entry * & root);

void helpSet (char *name,

Entry *root;

KIND kind;

Entry *entry:

double numval;

char *text;

char *pcb;

char buffer [BUFLEN] ;

bool success;

class Parseval ({
public:
Parseval ();

~Parseval ();

//
//
//
//
/!
//
//
//

double value, Entry *root) ;

Symbeol table.

symbol type.

Symbol table entry of variable.
Value if number.

Text to scan.

Current character.

For variables and numbers.

No errors have occurred.

void parse (char *expression, bool & ok);

double eval ();

38

void set (char *name, double value) { psc->set(name, value); }
private:

Node *parseExpr (Scanner *psc);

Node *parseTerm (Scanner *psc);

Node *parseFactor (Scanner *psc);

Node *parsePrimary (Scanner *psc);

Scanner *psc;

Node *expr;
}i

extern Absfun *functions[] ;

A.2 Class declaration of common data structure

typedef struct tagPAN Point
double xX;
double Y;

} PAN Point;

class CDPoint : public tagPAN Point
public:

cppoint () {};:

class CPointArray : public Cobject
public:
CPointArray () {}:
// series of connected points

CArray<CDPoint,CDPoint> m_pointArray;

——
~e

39

class CConstValue: public Cobject {
public:

CConstvalue() {m_Id = 0;};

int m_Id ;
CString m_Name;
double m_Value;

A.3 Class declaration of Input Dialog

class CExprDlg : public Cdialog
public:
CExprDlg{(CWnd* pParent = NULL) ; // standard constructor
CExprDlg(CParsewndView * pView) ;
BOOL CreateDlg();
double m_VarX[1000];
double m_Var¥Y({1000];

enum { IDD = IDD_EXPR };

CString m_Expression;
CString m_paraEdit;
int m_paraStart;
int m_paraStep;
int m_paraDone;
double m_varDone;
CString m_varEdit;
double m_varStart;
double m_constValue;
Cstring m_constEdit;

40

CString
public:
virtual

virtual

protected:

virtual

support

virtual

protected:

m_ExpCal;

BOOL

BOOL

void

void

Create() ;

DestroyWindow() ;

DPoDataExchange (CDataExchange* pDX);// DDX/DDV

PostNcDhestroy() ;

void AddedConst (CString ConstName, double ConstValue);

CParsewndView* m_pView;

bool m_fOK;

Parseval *m_ pEXpr;

void GetMaxMin () ;

CString GetCalExp (CString InputString, CString RepStr, int

value) ;

BOOL ScanString(CString InputString) ;

virtual
virtual
virtual
afx_msg
afx _msg
afx msg
afx msg
afx msg
afx_msg

afx msg

void

void

BOOL

void

void

void

void

void

void

void

OonoK () ;

OonCancel () ;

onInitDialog{) ;
OnChangeExpression() ;
OnExpcheck () ;

onPlot () ;

onUpdatePlot (CCmdUI* pCmdUI) ;
OnConstset () ;

OnUpdateClear (CCmdUI* pCmdUI) ;

OnClear() ;

41

A.4 Class declaration of Viewer

class CParsewndView : public Cview {

protected:
CParsewndView() ;

public:
CParsewndDoc* GetDocument () ;
CExprDlg *Expr;
void DeleteDlg() ;
CTypedPtrList<CObList, CPointArray*> m_GraphPointList;
CDPoint m_PointList [50];
int m_PtListIndex;
double m_xMax;
double m_xMin;
double m_yMax;
double m_yMin;
int m_fPlot;
BOOL fNotMinMax;
void DrawXYAxes (RECT rect, CDC* pDQC);
CStringList m_ExpList;
CstringhList m_VarList;
CObList™* m_pConstList;
int m_TIden;
void DeleteConstList();
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow (CREATESTRUCT& cs);
virtual ~CParsewndView() ;

protected:

42

COLORREF m_AxesRGBColor;

COLORREF m_bkRGBColor;

afx_msg void OnViewInputdialog();

afx_msg void oOnUpdateViewInputdialog(CCmdUI* pCmdUTI) ;
afx_msg void OnSize (UINT nType, int cx, int cy);
afx_msg void OnViewSetbackgroundcolor () ;

afx_msg void OnUpdateViewSetbackgroundcolor (CCmdUI* pCmdUTI) ;
afx_msg BOOL OnEraseBkgnd (CDC* pDC) ;

afx _msg void OnViewBAxescolor() ;

afx msg void oOnvViewCalcdlg();

afx_msg void OnUpdateViewCalcdlg (CCmdUI* pCmdUI) ;
afx_msg void OnUpdateViewClearcal (CCmdUI* pCmdUI) ;
afx_msg void OnvViewClearcal() ;

afx_msg void onViewCleargraph();

afx_msg void OnUpdateViewCleargraph (CCmdUI* pCmdUT) ;

A.5 Class declaration of Calculation Dialog

class CDlgCal : public Cdialog {

public:
CDhlgCal (CParsewndView* pParent); // standard constructor
enum { IDD = IDD_CALDLG };
double m_Variable;

protected:
virtual void DoDataExchange (CDataExchange* pDX);
CParsewndView *m_pView;
virtual BOOL OnInitDialog();

afx_msg void onCalCheck() ;

43

e

virtual void OnOK();
afx _msg void OnBcalClear():;

afx_msg void OnChangeEditvar();

44

APPENDIX B

INTERESTING PIECES OF CODE

B.1 The Construction function of class CExprDlg
This piece of code is to illustrate how class CParsewndView can be passed into class
CExprDIg so that members and methods of class CParsewndView can be used by class

CExprDlg

CExprDlg: :CExprDlg (CParsewndView * pView)

{

m_pView = pView;

i
o

m_paraStart

1]
o
~

m_paraStep

]
o
~

m_parabDone
m_varDone = 0.0;

m_varStart

]
o
'
o

m_constValue = 0.0;

45

memset (m_VarX, 0 , sizeof (double)*1000) ;

memset (m_VarY, 0 , sizeof (double) *1000) ;

B.2 Function OnDraw

This piece of code shows how each elements of a graph such as the axes, the points
are plotted on the screen by using window device context. It is mentioned here

because this function is a core of whole program.

void CParsewndView: :OnDraw (CDC* pDC)
{
CParsewndDoc* pDoc = GetDocument () ;
ASSERT_VALID (pDoc) ;
RECT rcWindow;
GetClientRect (&rcWindow) ;
DrawXYAxes (rcWindow, pDC); // Draw X and Y axe
POINT pt[1000];
POSITION pos = m_GraphPointList.GetHeadPosition() ;

// Set up the border

double 1b = rcWindow.left + LEFT_BORDER;

double rb = rcWindow.right - ACTUAL_RIGHTBORDER;
double tb = rcWindow.top + ACTUAL_TOPBORDER;
double bb = rcWindow.bottom - BOTTOM_BORDER;

double coefx (double) (rb -1b)/ (m_xMax - m_xMin);

double coefy = (double) (bb -tb)/(m_yMax - m_yMin);
// Draw list of graphs

while (pos != NULL)

46

CPointArray* pWorldGraph = m_GraphPointList.GetNext (pos) ;
for (int i =0 ;i< NUMPOINT; i++) {
ptli] .x =
(long)lb + (int) (coefx* (pWorldGraph->
m_pointArray.GetAt (i) .x - m_xMin));
ptiil.y =
(long)bb - (int) (coefy* (pWorldGraph->
m_pointArray.GetAt (i) .y - m_yMin));
}
pDC->Polyline (pt, 500);
}
//Draw coordinate of a point
int k = 0;
POINT ptt, pttl , ptt2;
HPEN hPen = 0;
HPEN holdPen = 0;
hPen = CreatePen(PS_SOLID, 2, RGB(0,0 ,255));
hOldPen = (HPEN) pDC->SelectObject ((HGDIOBJ)hPen);

while ((k < m_PtListIndex) && !m_ExpList.IsEmpty()) {

ptt.x = (long)lb + (int) (coefx* (m_PointList [k].x -
m_xMin)) ;
ptt.y = (long)bb - (int) (coefy* (m_PointList (k] .y -
m_yMin)) ;

pttl.x = ptt.x:;

pttl.y (long) bb ;

ptt2.x (long) 1b;
ptt2.y = ptt.y;

pbC->MoveTo (pttl) ;

47

pDC->LineTo (ptt) ;
pDC->LineTo (ptt2) ;
k++;

}

pDC->SelectObject (&hOldPen) ;

DeleteObject (hPen) ;

B.3 Function AddedConst

The code below is to illustrate a solution of a problem that I got while implementing this

project. That is, how to keep value of a set of constants for each expression so that later it

can be used to evaluate expression.

void

//
//

CExprDlg: :AddedConst (CString ConstName, double ConstValue)

CConstValue* pConstValue = NULL;

Add an entry to constant list if there is no entry in

the constant list

if (m_pView->m_pConstList->IsEmpty ()) {
pConstValue = new CConstValue;
pConstValue->m Name = m_constEdit;
pConstValue->m Value = m_constValue;
m_pView->m_pConstList->AddTail (pConstValue) ;

} else {
// Check if there exist an constant entry.
POSITION pos ;

pos = m_pView->m pConstList->GetHeadPosition() ;

48

)

while (pos != NULL) {
pConstValue =
(CConstValue*) m_pView->m_pConstList->GetNext (pos) ;
if (pConstvValue->m_Id == 0 && pConstValue->m Name ==
m_constEdit) {
pConstValue~>m Value = m_constValue;

return;

}

pConstValue = new CConstValue;
pConstValue->m Name = m_constEdit;
pConstValue->m Value = m_constValue;

m_pView->m_pConstList->AddTail (pConstValue) ;

49

