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Abstract

Algorithms for Random Ranking Generation
Liqun Xu

Given a ranking of size n, most of the existing ranking models have relatively
small numbers of parameters (around n, or less). Having a small number of
parameters do help facilitate the application of a ranking model. But on
the other hand, it restricts the capacity for the model to describe the innate
structure of a ranking population.

In this report, we suggest a random ranking generator with (n — 1)2
parameters. The increased number of parameters enables the generator to
simulate ranking populations with greater flexibility. We also suggest the use
of a n xn probability matrix (P-matrix) as a device for specifying the targeted
ranking population. In the P-matrix, each cell is the probability of an item
being assigned a certain rank. We provide an algorithm that estimates, from
a given P-matrix, the parameters for the generator. Numerical examples
show that using the P-matrix based parameter estimation algorithm, the

proposed generator provides better simulation to the targeted rank data.
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Chapter 1

Introduction

Humans seem to be unable to avoid ranking things. Top Ten, Top Twenty,
or even Top Hundred lists abound everywhere. We have the Funniest Home
Videos, the Best Sellers’ lists, the Richest Men, and, of course, the Most
Wanted Criminals.

Rankings have very serious uses as well. Companies need to know what
products consumers prefer. Social and political leaders need to know what
the society values. Prospective students need to be assessed. Data consisting
of rankings appear in psychology, educational testing, sociology, economics,
and biology. Nonparametric statistical analysis was initially based mainly on
ranks.

Ranking has always been an integral part of statistics, both in nonpara-

metric analysis and in the analysis of people’s judgement of objects. Our



interest here is on the latter. We will discuss how to describe the popula-
tions of ranking data. Our work intends to use computing techniques to find
a better way for generating ranking data.

A ranking 7w = (4; ...%,) of size n is a permutation of the first n positive
integers. In applications, # may represent either a rank-sequence or an item-
sequence. Accordingly, ix(k = 1,...,n) may denote either the rank assigned
to the k-th item or the item being assigned rank .

Let us see an example. The Graduate Record Examination Board asked
98 college students to rank five words according to their strength of associa-
tion with a target word [3]. For the target word ‘song’ the five choices were
(1) ‘score’, (2) ‘instrument’, (3) ‘solo’, (4) ‘benediction’, and (5) ‘suit’. The
observed rankings and their frequencies are listed in Table 1.1.

As we all know, in statistics, the word population stands for a set of ran-
dom data, and a model is a mathematical description of a population. The-
oretically, a multinomial model on all permutations can specify any ranking
population. However, this enumerative approach provides little insight into
the population, and the large number of parameters (n!) is difficult to han-

dle. It is necessary to {ind some way to specify a population with a tractable

number of parameters [9].

[SV]



Table 1.1: Observed Word Ranking Frequencies

Rankings Frequencies
(32145) 19
(3124 5) 10
(13245)
(3241 5)
(12345)
(32154)
(23145)
(32451)
(213453)
(31425)
)
)

32541
(34215
(234153)
15 rankings 1 each
92 rankings 0 each

NN WK GOy OY = 00 O

Compared with other forms of random data, ranking has probably the
most structured format, and this makes the description of random ranking
population difficult. Most existing ranking models have relatively small num-
bers of parameters, around n. These models are one-dimensional in nature.
They assume, explicitly or implicitly, a dominant modal ranking and de-
scribe some relatively simple patterns in which the rankings of a population
distribute around that modal ranking.

We try to go beyond that. We will see that the complexity introduced

by our attempt cannot be handled by mathematical analysis tools. Qur new



description method depends on computer algorithms for its practical usage.

In this report, we briefly review the existing ranking theory in Chapter
2. We then proceed in Chapter 3 to elaborate a new (n — 1)2 parameter,
multistage ranking model. We suggest that the n x n item-rank relative
frequency matrix (the “P-matrix”) be used as a device for summarising a set
of rankings. For the proposed model we provide an algorithm that estimates
the parameters from the P-matrix. Illustrative numerical examples are given
in Chapter 4. In Chapter 5. the P-matrix is further discussed, and we show
some special P-matrix patterns possessed by the some well-known ranking
models. The proposed random ranking generation method is discussed in

Chapter 6.



Chapter 2

Review of Ranking Theory

Given a set of ranking data, the first thing we can do is to measure how
consistent are the rankings. Kendall’s tau [8] and Spearman’s Tho [14] are
designed as measures of the correlation between two rankings. Their proba-
bility distributions have been deliberated under the null assumption that all
possible rankings have the same probability of being observed. So, we can
test the significance of the observed coincidence between two rankings and
determine how likely the observed coincidence occurs purely by chance.

For m rankings, Kendall’s 17, the coefficient of concordance, is defined

as

Zn_(n_-i-_}_)_]" (2.1)

W= D3 [ :

m2(n2
where S; is the sum of all ranks itemn 7 gets. W™ varies between 0 and 1. When
there is a perfect concordance, ¥ equals 1; when rankings are “perfectly”

)



random (all rankings have equal chance of being observed), W’ equals 0.
To test the significance, the following approximation, based on Fisher’s z-

distribution, can be used.

(m —1)W

1
2= — 2.2
2= gloge (2:2)
=n—1— = 2.
(3 n m’ ( 3)
vy = (m — 1)ui, (2.4)

where v, vy are the degrees of freedom. When n is larger than 7, we have a

Chi-square approximation

X2 =m(n — )W, (2.5)

where 7 = n — 1 is the degree of freedom. The average of Spearman’s rho
between all possible ranking pairs can also be used to measure the concor-
dance.

Now, let us see some examples of the ranking models. For a brief survey on
ranking models, see [3]. Probability ranking models so far proposed fall into
four categorics — Thurstonian models, models induced by paired comparisons,

distance-based models, and multistage models.



2.1 Thurstonian models

The Thurstonian models [15][12][4] extend Thurstone’s theory of paired
comparison to the full ordering of n items. Suppose that the discriminate
processes corresponding to n items take the form Z; +uy,....Z, +u,, where

Z\,...,Z, are independent identically distributed continuous random vari-

ables, and u,,...,u, are some constants. Let X; = Z; + u;; then the dis-
tribution of X; has the form F;(z) = F(z — vu;), where F is some continu-
ous distribution. Define the random ranking 7 by setting its k-th element

equal to ix, where X, is ranked k& among {X|,..., X;}. Then, the ranking

m = (?1...1,) has the probability
P(m)=P(\;, <X, <...< X)) (2.6)

Thurstone’s paired comparison theory discusses a special case of this model

in which n = 2 and F' is the normal distribution.
2.2 Multistage models

Multistage models split the ranking process into n — 1 stages. Starting with
the full set of n items, at the first stage, one item is selected and assigned
rank 1: at the second stage, another item is selected from: the remaining items

T



and assigned rank 2; and so on. The last remaining item is assigned rank n
by default.

Fligner and Verducci [6] proposed a multistage model. At each stage,
the probability of an item being chosen is related to a principal ranking .
Let {p(m,r) :m =0,..., n — r} denote the fixed set of choice probabilities

at stage r,r = 1,...,n — 1. These probabilities are assigned to the stimuli
indexed in the remaining subset B, by assessing the correctness of the choice
made at stage 7, with respect to mp. Specifically, let s, = m if, at stage r,
the (m+ 1)st best of the items in B, (according to wyg) is selected. In fact, m
may be thought of as the number of mistakes made at stage r. For example,
if 7y and 7 correspond to the orderings (3 1 2 4) and (3 4 2 1), respectively,
then s; = 0 since the best item (item 3) is selected at the first stage; s, = 2
since the third best (item 4) of the three remaining items is selected at the
second stage; and s; = 1 since the second best (item 2) of the two remaining

items is selected at the last stage. Then p(m,r) = p(s, = m) and the model

is a C(n;2) parameter model given by

k—1
p(m) = [ p(sr. 7). (2.7)
r=1
Notice that for any #, the corresponding vector s = (si,.-., $,~1) is related



to Kendall’s tau between 7 and wg by
k-1
T(w,m0) = »_ S (2.8)
r=1

Another multistage model is based on Luce’s choice axiom and rank postulate
[10]. Suppose that T = {1,...,n} is a set of items, and p; is the choice
probability that item 7 is selected as the best in 7. Luce proved that if

the choice probabilities satisfy the choice axiom then the existence theorem

holds:

Theorem 1 For any B C T.i € B, the probability that t is selected as the

best in B 1is

pa(i) = pr (2.9)

jeB

Luce’s rank postulate supposes ranking is obtained by repeated selections

of the best item and that the probability of the ranking # = (4, ...14,) is
P(W) = PTl(il)PTz(i'l)"'PTn-l(in—l)r (210)

where T\ =T, 15 =T, — {i1}, ... Ta—1 = Ty—2 — {in-2}. The sclection prob-
abilities in (2.10) are derived from (2.9), and they are based on a common
set of choice probabilities. It has been found that in a Thurstonian model,
if F'(z) is a distribution function of the double exponential type, then this

9



model is equivalent to Luce model [16]. For Luce model, the ranking prob-
ability can be easily calculated. But for Thurstonian models using other
distributions, such as the normal distribution, the calculation of the exact

ranking probabilities may be difficult because it involves a multiple integral.
2.3 Models induced from paired comparisons

Babington Smith [1] suggested inducing a ranking model from a set of arbi-
trary paired comparison probabilities. This model has n(n—1)/2 parameters.
For each pair of items 7 < j. let p;; be the probability that item 7 is preferred
to item j, that is ¢ — 7. Imagine a tournament in which all possible paired
comparisons are made independently. If the results contain no circular tri-
ads, like (h — ¢ — j — h). then the tournament corresponds to a unique
ranking 7; otherwise the entire tournament is repeated until a unique rank-
ing is obtained. The probability of resulting in the neat ranking 7 from the

tournament is

p(m)=C ]I Pij, (2.11)

{(L3)= (D) <m(5)}

where C is a constant whose value is chosen such that all P(#x) sum to 1.
These probabilities form a ranking distribution. It is tedious to calculate
the sum of P(m) which covers all n! rankings. This model has n(n - 1)/2

10



parameters and is difficult to use for generating random rankings. To reduce
the number of parameters in the Babington Smith model, Bradley and Terry

[2] introduced the condition that the paired comparison probabilities have

the form
dij
Dy = —2— (2.12)
T+t g
for some nonnegative parameters q, . . . , ¢,. Substituting Bradley-Terry prob-

abilities into the Babington Smith model [11] leads to the well-known Mallows-

Bradley-Terry (MBT) model, for which the probability of the ranking = =

(i15--.,12n) is

p(7) = C(q) Ti:I:(Qz,)”" (2.13)
where ¢ = (g1.....¢n) and C(q) is chosen to make the probabilities sum to
1.

2.4 Distance-based models

Distance-based model was first suggested by Mallows [11]. This type of
models are based on the assumption that there is a modal ranking 7 in the
population, and that rankings which are at the same distance from the modal

ranking have the same probability. The two matrices Mallows used for the

11



distance are

T(w,m) = Y_ I{[x (i) — w(§)][mo(z) — mo(5)] < O}, (2.14)

i<j

where 7(z) and 7o (2) are the ith elements in the rankings, I(.) is the indicator

function: I(A) is 1, if the event A occurs, 0 otherwise; and
B2 (m. m0) = 3 [ (3) — mo()]- (2.15)
=1

Metrics T and R? are related to the concordance measures, Kendall’s tau

and Spearman’s rho, respectively. Mallows’ model has the form
p(7|0, ¢, m) = C(6, 3)gR (770) gT(wmo) (2.16)

where 6.9 > 0, and C(6, @) is a constant chosen to make the probabilities
sum to 1. This model has only two parameters. If ¢ is equal to 1, or 8 is
equal to 1, then we obtain, respectively, the famous #-model or the ¢-model.

The ¢-model can be written as
(7| A, wo) = C(N)exp[—AT (7, mp)]. (2.17)

Fligner and Verducci [6] found that the ¢-model is a special case of a mul-
tistage model which they called “¢-component”. Diaconis [5] generalised

(2.17) into a class of distance-based models

p(7w|A. 7o) = C(N)exp[—Ad(x, 7g)], (2.18)

12



where d is an arbitrary distance metric defined on all permutations. In ad-
dition to Kendall’s tau and Spearman’s rho, Diaconis considered the follow-
ing metrics as among the most frequently used in applications: Spearman’s

footrule metric

F(r.m) = 3 |m(i) = mo(d), (2.19)

generalised Spearman’s footrule metric
Fy(m,m0) = >_ |h(m(d)) — h(mo(2))], (2.20)
where h : {1,....k} — R is a strictly increasing function that re-scales the

ranks: and Hamming’s metric

H(m,mo) = S I{n(i) # mo(i)}. (2.21)

i
In the above, the Luce’s model, the Thurstonian models, and the distance-
based models either explicitly postulate a modal ranking or imply its exis-
tence. All the models that found practical use have relatively small numbers
of parameters. Having a small number of parameters help facilitating the
application. But on the other hand, it restricts the model’s capacity to de-
scribe a ranking population’s innate structures. It would be difficult to use
these models to generate random ranking for a population, if the population

does not have a clear modal ranking.

13



Chapter 3

Random Ranking Generation

3.1 The description of ranking population

To generate random rankings we have to describe what kind of ranking pop-
ulation is desired. A natural way to summarise a ranking data set is to use a
relative frequency matrix P = (p;;), where p;; is the relative frequency that
number ¢ is assigned to the jth position. So, each column of P stands for a

position and each row for a number, and

Db = Py =1 (3.1)
i=1 j=t

Let us call this matrix the P-matrix. For a finite ranking data set, the
P-matrix provides a description of the distribution of the numbers over the
positions in the rankings. If we view the ranking set as a population, the

element p;; is the probability that number ¢ is assigned to position 7 in this

14



population. For an infinite ranking data set, we can replace the element of
the P-matrix with the probabilities that number 7 be assigned to position j,
and thus use the P-matrix to describe the population.

In general, with probabilities as its elements, P-matrix can describe the
ranking population we want. For a ranking data set or a ranking population,
the P-matrix provides an overview of the distribution of the numbers over
the positions. Given a P-matrix, our proposed random ranking generator
will produce random rankings in such a way that the number-position rel-
ative frequencies of the generated rankings are as close as possible to the

corresponding elements of the given P-matrix.
3.2 The ranking generator

The proposed ranking generator uses a multistage procedure. At cach stage,
the random selection of the number is controlled by n nonnegative weights.

Putting the weights of stage j in a vector we have

Cij
c=|"1. (3.2)
Cnj
where j =1.2,...,n — 1, and ¢;; > 0 is the weight of number i at the jth

stage. The weights of cach stage are scaled to Lave a sum equals to 1. We

15



call the n x (n — 1) matrix
C=(C:C,...Cy_1) (3.3)

the control matrix of the generator, or the C-matrix,

Algorithm 1 describes the process of random ranking generation. In
which, j is the current stage, that is, we are selecting a number for the
Jth position in the ranking; B is the set of the numbers eligible for the cur-
rent stage; cgj is the set {¢;;}. “rjhere 1 € B. At the starting point, j = 1 and

B contains all n» numbers.
Algorithm 1

1. Randomly select a number from B. The probability of number ¢ being

chosen is:
Cij

oy

reB

Say, k is selected, assign number & to the jth position, remove k from

B, and increase j by 1.

[CV]

IF j < n, repeat Step 1; ELSE assign the number in B to the nth

position and STOP.

16



It is easy to see that for any two numbers, say [ and k, as long as they
are both eligible at the jth stage, the ratio of the probability that number
[ being selected and the probability that number k& being selected is always
equal to ¢;j/ckj, no matter what are the other eligible numbers.

Given the C-matrix, for the ranking population specified by Algorithm 1,

we have the follows.

Lemma 1. For a partial ranking # = (rira...7;), where j < n, the
probability of w is
J
Cry .k ,
p(7) =[] —=&—. (3.4)
k=1 1— z crm,k
m=1

We know that p(7) equals to the probability that r; is selected at stage
1 and 7, is selected at stage 2, .... and r; is selected at stage j. From
Algorithm 1, it is easy to see that the probability of r; being selected at the

first stage is ¢;,,;. Then, at the second stage, the probability of r, being

element c,, 5 is removed because the number 7| is no longer eligible. Similarly,
at the third stage, the probability of r3 being selected from the remaining

set {1.2,....n} —{ri,r2} is ¢ry3/(1 — ¢+, 3 — Cr,3). and so on. Thus, we have

17



(3.4).
Following similar arguments, it is not difficult to see the probability that
number ¢ is assigned to the first position is ¢;;. That is. p;; = ¢;;. The

probability that number ¢ is assigned to the second position is

Ck1 X Ci» =
0 = —_— 3-
Pia = 1—cm (3-5)

ki 2

The probability that number 7 is assigned to the third position is

Ckr X Cig X C3
Dis = : 3.6
3 k;;i_;.k# (1 — ce2)(1 — cr3 — ci3) (36)

In general, we have

Lemma 2. The probability that number i is assigned to the jth position

1S
! Cri ke
k- -
pi= > |l ——|. (3.7)
(r1...rj) k=1 1 _ Z
Crom,k
m=1

where the summation extends over all possible (ry ...7;_y7;), in which (ry . .. Tj—1)

is a permutation of the numbers from {1,2,...,i—1,i+1,...,n}, and r; = i.
Now, the problem is to find a C-matrix with which the generator produces

a ranking population that has the desired P-matrix, or a similar one. For

convenience, if P is the P-matrix of the ranking population induced from the

C-matrix C, then we say “C produces P”.

18



It is easy to see that there is not always a C-matrix which produces a

given P-matrix P. For example, consider P-matrix
pu piz O

P=|pu pn ps|. (3.8)
P31 D32 P33

where 0 < p1; < 1,0 < pao+po3 and pja = 1—py;. Suppose that the C-matrix

Ci1 Ci12
C=|cy cm (3-9)
C31 C32

produces P’ = (pi»j). If P’=P then, on the one hand, ¢;» must be 1 so that
DPla = P21 + P31 =1 — p1; = p1a. Therefore, cso and c¢3» must both be 0. On
the other hand, since 0 < pss + P32, the clements ¢y, and c30 cannot both be
0. Therefore, there is no C-matrix that produces P.

However, it is worth considering whether the following is true.

Conjecture 1. If all the elements of a P-matriz P are larger than zero,

then there must be a C-matriz C such that C produces P.

We shall see the significance of this Conjecture later. On the other hand, we

can prove

Theorem 2 Different C-malrices will produce different P-matrices.

19



Proof

In fact, suppose C = (c¢;;) and C* = (c};) are two C-matrices and P =
(pij) and P’ = (p;) are the two corresponding P-matrices. If the first columns
of the two C-matrices are not equal then the first columns of the two P-
matrices are not equal. Assume that the first 7 — 1 columns of the two

C-matrices are the same, and that their jth columns are not equal, that is

Cij C,Ij
Caj Co;

T (3.10)
Cnj c’nj

then, we can always find an ¢ such that for all k£ # <,

P
S > k1 (3.11)
Cij  Ckj

Let ¢j; = (1 + 6;)ci; and c; = (1 + 6i)cyj then

<1 3.12

1+6; — ( )

Now, let (r,...r;_;) be any permutation of numbers from{1.2,...,7—1,i+
1,...,n};let r; = ¢ and

{Tj’rj-i-l’ . T,,} = {1 ey 71} - {7'1, .o ,Tj-[}. (313)

Let P{(r(...7j-1)} denote the probability that r\,...,7r;_; arc assigned to

20



the first j — 1 positions, that is

= Cry. k
P((T’l,rg,...,'l”]'_l)) = H _k_k{*. (3.14)
k=1 1 — Z Crok
m=1

Then, the (ij) elements in the corresponding P-matrices are

Cr;

J . (315)

Py = P((ri.72: .. 75-1))
s= > P ) e

(T14eerjo1)
and
pi= S P((rirae....rio1)) P (3.16)
7 {(P1oeeeeTjm1) CE c;‘aj—*_c;) Ij+"'+c;'n:]' .

= Z P((rlrrzf""rj_l)) n ch_f-eTA)-

(riyeeemjm1) E Cre i
k+J
k=j L+ 07'1

If the jth columns of the two C-matrices are different, as shown in (3.10), then
there must exist some k such that the strict inequalities in (3.11) and (3.12)

become true. Therefore, from (3.15) and (3.16), we have
Py > Pij- (3.17)

Thus, we have proved that there is at most one C-matrix that can produce

a given P-matrix.



3.3 The algorithm for parameter estimation

Given a P-matrix, the corresponding C-matrix is determined by the equa-
tion system represented by (3.7). This is a multivariate high-degree system.
Mathematical theories currently available cannot solve this type of system.
The C-matrix has to be estimated through an iterative algorithm. The goal
is to find the C-matrix that produces a P-matrix as similar as possible to the
target P-matrix.

In the following algorithm, C is the C-matrix being estimated; T is the
target P-matrix; P is the P-matrix produced by C; j is the current col-
umn number; s > 0 is the precision criterion; column_error is the sum
of squares of the differences between the corresponding elements of the jth
columns of T and P; prec_obtain is a variable keeping the previously obtained

column_error.

Algorithm 2

—

. Copy TtoC;let j =2

N

. Calculate the jth column of P from the first j columns of C

W

. Calculate the column_error between the jth columns of T and P

22



4. IF (column_error < s OR column_error > prec_obtain) THEN
=7+1
IF § = n THEN calculate the nth column of P and STOP

ELSE GOTO 2

5. ELSE let prec_obtain = column_error adjust the elements in the

jth column of C, GOTO 2

In Step 1, we use T as the initial value of C. Step 2 calculates the elements
of P. This can be implemented by a recursive procedure.

In Step 3, the strategy used for adjusting the elements of C’s jth column
is rather simple. If the element p;; of P is larger than the corresponding
element ¢;; of T, then we decrease the ¢;; of C; if p;; is smaller than ¢;;, then

we increase c;;. Specifically,
Ci‘j = ¢ij + a(ti; — pij). (3.18)

where 0 < a < 1 is a tuning ratio. This ratio should be small enough so that

0 < c};- Apply (3.18) to (3.16), we have

!

— ; - r’j )
pp= 2 Plrore...risd)g -+ J+...+C’r,.,j (319

(r[....,r_,—_l) Tjsd r_]+laj

C

23



Crjj + 0t j — Pr; )

= Z P((ry.r9....,7j—1)) = :
(r1eeamjo1) Z[Crk,j‘{"a(trk,j_prkxj)]

k=3
The adjusting process stops whenever the current adjustment leads to an
increase of the column-error, or when the required precision is reached.
This algorithm has been implemented in the C programming language.

A pseudo code program showing the implementation details can be found in

the Appendix.



Chapter 4

Examples

Now, let us demonstrate the application of our algorithms in two cases.
4.1 A Thurstonian ranking model

Define a Thurstonian ranking model: Let X, be normal variates with distri-
butions N, = N(0.3¢,1), where t = 1,...,10. A random ranking = is defined
by setting the kth element w(k) equal to i, where X is ranked i#; among
{X1....,X10}. Here, the probability P(z) = P{X; < ... < X;,,} and its
exact value is difficult to obtain.

Using 1000 random rankings generated by the Thurstonian model we
obtained the following 10 x 10 target P-matrix. From it, we estimnated the

C-matrix. with s = 107, and we calculated the corresponding P-matrix from

this C-matrix. The target P-matrix is

N
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r0.355
0.295
0.095
0.140
0.065
0.030
0.015
0.005
L 0.000

0.200
0.210
0.250
0.110
0.110
0.040
0.035
0.025
0.010

0.185 0.130
0.195 0.105
0.185 0.150
0.180 0.105
0.105 0.135
0.045 0.120
0.060 0.080
0.025 0.085
0.020 0.045

The estimated C-matrix is

[ 0.355
0.295
0.095
0.140
0.065
0.030
0.015
0.005
0.000
| 0.000

0.251
0.240
0.220
0.100
0.093
0.033
0.028
0.020
0.008
0.008

0.271 0.303
0.255 0.183
0.167 0.159
0.140 0.082
0.073 0.085
0.028 0.063
0.037 0.041
0.015 0.042
0.012 0.022
0.000 0.021

The obtained P-matrix from the

[ 0.355
0.295
0.095
0.140
0.065
0.030
0.015
0.005
0.000
| 0.000

0.198
0.210
0.251
0.110
0.110
0.040
0.035
0.025
0.010
0.010

0.182 0.127
0.195 0.106
0.186 0.151
0.181 0.105
0.105 0.135
0.045 0.120
0.060 0.080
0.025 0.085
0.020 0.045
0.000 0.045

0.035
0.060
0.095
0.100
0.155
0.180
0.145
0.075
0.075

0.117
0.160
0.160
0.105
0.133
0.116
0.087
0.042
0.039
0.041

0.045
0.050
0.075
0.180
0.150
0.115
0.095
0.130
0.100

0.163
0.137
0.125
0.220
0.127
0.064
0.046
0.055
0.039
0.023

0.045
0.035
0.070
0.095
0.105
0.145
0.155
0.145
0.135

0.301
0.100
0.135
0.157
0.087
0.065
0.056
0.045
0.037
0.018

above C-matrix is

0.033
0.059
0.096
0.101
0.156
0.181
0.145
0.075
0.075
0.080
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0.042
0.050
0.076
0.181
0.150
0.115
0.095
0.130
0.100
0.060

0.042
0.035
0.071
0.096
0.105
0.145
0.155
0.145
0.135
0.070

0.000
0.030
0.045
0.050
0.100
0.145
0.180
0.140
0.190

0.000
0.150
0.177
0.171
0.173
0.098
0.092
0.050
0.039
0.031

0.000
0.028
0.044
0.050
0.102
0.146
0.181
0.140
0.190
0.120

0.005
0.010
0.025
0.015
0.035
0.130
0.140
0.190
0.225

0.026
0.057
0.164
0.060
0.088
0.232
0.128
0.090
0.095
0.061

0.005
0.009
0.020
0.015
0.036
0.132
0.141
0.191
0.226
0.226

0.000 1
0.010
0.010
0.025
0.040
0.050
0.095
0.180
0.200 |

0.000
0.010
0.010
0.025
0.040
0.050
0.095
0.180
0.200
0.390

0.015
0.014
0.011
0.021
0.035
0.046
0.092
0.178
0.198
0.389 |




Using this C-matrix with Algorithm 1 to simulate the Thurstonian rankings,
we reproduced the exact P-matrix and the probabilities of individual rankings

are easy to calculate.
4.2 The GRE word rankings

Consider again the 98 word rankings example from The Graduate Record
Examination Board. As mentioned in Chapter 1. in this case, 98 college
students were asked to rank five words according to their strength of associ-
ation with the target word "song’. The five given words are (1) ‘score’, (2)
‘instrument’, (3) ‘solo’, (4) ‘benediction’, and (5) ‘suit’. The observed rank-
ings, their frequencies, and the fitted frequencies given by various models are
listed in Table 4.1. The fitted frequencies given by our new model are in the
last column of Table 4.1. The P-matrix of this ranking sample (a relative

frequency matrix) is

204 204 357 .133 .102
163 510 245 .061 .020

F=| 602 .224 .143 .031 .000 |. (4.1)
031 .051 214 .582 .122
000 .010 .041 .194 .755

(]
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Table 4.1: Observed and Fitted Frequencies

Six Models
Obs. Fitted Freq. Fitted
Rankings Freq. Luce MBT ¢ F F, ¢Comp Freq.
(321 45) 19 161 144 216 252 246 22.7 21.6
(31245) 10 96 105 7.5 71 9.8 7.31 0.4
(132453) 9 49 46 26 2.0 3.6 4.0 6.5
(324153) 8 7.3 75 7S5 71 49 6.4 74
(12345) 7 2.6 27 09 2. 3.6 1.3 6.6
(32154 6 4.5 52 75 7.1 5.0 6.2 4.1
(23145) 6 9.7 85 7.5 7. 8.9 9.6 5.9
(32451) 5 0.8 14 26 20 1.0 1.8 4.3
(21345) 4 3.0 3.7 26 20 3.6 3.1 2.9
(314253) 3 2.3 41 26 20 1.9 2.1 2.2
32541) 2 0.6 05 09 20 1.0 0.5 1.6
(342153) 2 3.5 29 26 20 19 2.3 1.4
(234159 2 4.4 44 26 20 1.8 2.7 2.0
15 rankings 1each 14.3 178 14.3 12.7 119 12.8 11.3
92 rankings 0O each 14.4 9.8 14.7 15.7 14.5 15.2 9.8

Using F as the target matrix, the C-matrix is estimated, with s = 1073, to

be
204 .155 .154 .091

163 396 331 .272

C=| .602 .408 433 .302 |, (4.2)
.031 .033 .070 .282
.000 .006 .013 .054

and the corresponding P-matrix is

204 204 .357 .133 .101
163 512 .247 .061 .017

P=|.602 222 141 .028 .007 |. (4.3)
031 .051 214 .584 .129
[.ooo 010 .041 .194 .755



It is noted that rankings (132 4 5) and (1 2 3 4 5) are most adequately
accounted for by the proposed model. Other models leave unexplained the
pattern that item 1 tends to be ranked first when items 4 and 5 are ranked
fourth and fifth. That is what we mean by saying that the new model goes
bevond the one-dimensional model category.

The given likelihood estimates by Luce model [3] are as follows: p; =
127, p = 257,p3 = .352,py = .050, and p; = .014. The corresponding

P-matrix is

JA27 .209 381 .239 .044

257 371 .269 .093 .010

.552 .308 .117 .022 .001 }. (4.4)
.050 .087 .180 .489 .194

014 .025 .055 .157 .751

Obviously, (4.3) looks more similar to (4.1) than (4.4) does.
To measure the fit between the expected and the observed ranking fre-

quencies for the models listed in Table 4.1, we calculate Pearson’s metric
k 2
2 i — O -
N2 = Z (L___)_’ (4.5)
i=1 LS

where n; is the expected frequency in category i, o; is the observed frequency,
and k is the number of categories. We use the 15 ranking categories given in
Table 4.1. The results are listed in Table 4.2.

With 16 parameters, the proposed model secmingly improved the overall
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Table 4.2: Measures of Fitting

Model X2
Luce 535.644
MBT 39.347
¢ 78.264
F 63.281
Fy, 48.712
¢ -Com 61.235
new 14.436

fit between the expected and the observed frequencies in this case.
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Chapter 5

More Discussion on P-matrix

Two features of the P-matrix are worth further discussion.
5.1 P-matrix and ranking indices

First, the P-matrix summarises information in the given rankings, and impor-
tant statistics of a ranking data set can be calculated from it. For example,
the rank concordance measures, like Kendall’s W, can be calculated from the

P-matrix. In fact,

|2 L2 3 S, L 1 i 5.1
= 5 g )] &1

where m is the number of rankings and S; is the sum of all ranks assigned

to item 7. Given the P-matrix, we have

2
12 LI L 1
We=-— "= jmpy; — = 1 5.
T ?;1 [;Jmpj 2mn(n + )} (5.2)
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2
12 LI 1
=———3 n|Yy jps—zn(n+1)
(nd —n) = L=1 2
The other two ranking concordance measures are the average of Spearman’s

Pav [14] and Friedman’s x? . They can be written as

mW —1

Pav = m— 1

and

X2 =Wm(n—1). (5.4)

From (5.1), these measures can also be calculated from the P-matrix.
To measure the agreement of two ranking data sets S and T, we may use
Schucany’s [13]

£=> ST (5.5)

=i

where S; and T; are the sums of ranks for item 7 in data set S and data set

T, respectively. In terms of the P-matrix,

£ =

Py

ST=3 [(Z_: jmp;;-) (g jmpf,—” . (5.6)

J /
5.2 P-matrix patterns
Secondly, the P-matrix of a ranking data set may reveal the pattern of the

distributions of ranks over items. Let us consider the P-matrices of the
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distance-based models and the Thurstonian models. Many distance-based
models use distance metrics which have a symmetric property. For them, we

have

Theorem 3 Given a distance-based ranking model, if for every ranking = =

(717a - - . 7n)

(]
~1
~—

d(w, mo) = d(r, 7o), (3.
where v = (rira... 1) = (07,60z._,---0x,) and 6; = n + 1 — 2, then in the
corresponding P-matriz of this model

Pij = Pn+l—i, n+l—j- (5.8)
Proof

Consider any ranking m = (772 . .. 7,) that contributes to the p;; element

of the P-matrix, that is the probability of “item 7 being assigned rank j”.

When the ¢th element in # is #; = j, in the corresponding ranking r =
(07,.0x,_, ---0z,), the (n+1 —¢)th rank is

b =n+1—m=n+1-—j. (5.9)

Hence ranking r contributes to the p,41—;, n+1—; element of the P-matrix.

Since d(w,7) = d(r.mg), by (2.18), ranking = and r have the same prob-

ability in this model. Thus, #'s contribution to p;; and r's contribution
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t0 Pp+1-i, n+1—; are equal. Since (w,7) is an one-to-one mapping (e.g., for
T = (13 245) the corresponding r = (1243 35)), we have p;j; = Pni1—i, nt1—j-

Equation (5.8) indicates a symmetric structure in the P-matrix. Many
distance-based models have this property. Without loss of generality, let
o = (1 2...n). We have the follows:

Kendall’s tau metric

T(‘/T, 7T0) = Z I{(ﬁ’i - 'ITJ)(Z — j) < 0}

i<y

= > Hn+l-m)—(n+1—m)](i—j) <0}

i<j

= ZI{(QTJ - 97’;)(1 -0 < O}

i<j

= ZI{(rn+1_j — Tnt1-))[(n+1—7) = (n+1-1)] <0}

= > I{(ri—r;)(i —j) <0}

i<y

= T(T‘, ’/To).

Spearman’s rho metric

2
R(w,m) = (Z(m— — z)2>
= <Z(rn+1_i —(n+1- '[))2>

= R(r,70)-

b
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Spearman’s footrule metric

F(’/T,ﬂ'o) = ZI’/T,—Z[
= ern+l—i_(n+1_i)|

= F(r,m).

It is easy to see that the Hamming metric also meets condition (5.7), although
the generalised Spearman’s footrule metric does not.

Now, let us consider the Thurstonian models. Without loss of generality,
we assume that the shifts in the model definition are in the order u; < ... <
Up,. Let us use the Luce model example in Section 4, but with the items re-
ordered. For the model with choice probabilities (.552 .257 .127 .050 .014),

the P-matrix is found to be

2 308 .117 .022 .001

7 371 .269 .093 .010

P = .127 .209 .381 .239 .044 |. (5.10)
.050 .087 .180 .489 .194
.014 .025 .053 .157 .751

In this P-matrix, a diagonal element is always the largest element in the
corresponding row and column. The farther an element’s position is from the
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diagonal, either along a row or column, the smaller is its magnitude. This

pattern has a straightforward explanation.

.5
0.4 -
N TN
0.3 - P N A
! L ;
0.2 S S S U G
- s / ; \ LN K
L U Y
7 _/ / ’ X
_/ >
c.0 : ’/ . . — :
-6 -4 -2 (o] 2 -3 [S] 8

Figure 5.1: The Probability Distributions in a Thurstonian Model

Figure 5.1 shows the probability distributions of three random variables
in a Thurstonian model. The density functions for these random variables
are Fi(z) = F(z — u;) = N(u;, 1), where u; = 0,up = 1,u3 = 2, and N(u, 1)
is the normal distribution.

From Figure 5.1, it is clear that the random variable X is most likely
to be ranked 1, less likely to be ranked 2, and even less likely to be ranked
3. Variable X, has the best chance to be ranked 2, and less chance to be
ranked 1 or 3. Variable X3 has the best chance to be ranked 3, less chance
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to be ranked 2 and even less chance to be ranked 1. The general rule is:
variable X; are more likely to be assigned ranks closer to 7, and less likely to
be assigned ranks larger or smaller than 7. The smaller the difference between
ranks j and 7, the greater the chance that j is assigned to X;. Rank 7 has
the largest chance being assigned to X;. This regularity is to be expected in
all the Thurstonian models. The reflection of this regularity is the pattern

seen in the P-matrix (5.10).



Chapter 6

Concluding remarks

Given the P-matrix, we can calculate important numerical indices for the
ranking population, such as Kendall’s rank correlation coefficient [8], the
average of Spearman’s x [14], and Schucany’s coefficient of concordance be-
tween two groups of rankings [13]. Thercfore, it is meaningful to use a
P-matrix to simulate a ranking population.

As shown in the first example, the proposed generator can be used to
generate simulating rankings for another ranking model, so that the exact
probabilities of the rankings can be calculated. As shown in the second
example, though the parameter estimation for the generator is only aimed to
reproduce the P-matrix, the resulting goodness of fit, in the sense of ranking
frequencies, can compete with that of many well-known ranking models.

In the format, the proposed ranking generator is a generalisation of the
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Luce’s model [10], in which, the same set of weights is used at all stages.

To estimate a C-matrix for a case where the ranking size is 10 requires
approximately 15 minutes on a personal computer. The computing time
increases exponentially with the ranking size. More efficient algorithms is
needed if this approach is to be used for cases of larger ranking size.

In general, there is not always a C-matrix producing a given P-matrix P.
However, we speculate that Conjecture 1 is true. That is, when P has no zero
element, there is a C-matrix C such that C produces P. If Conjecture 1 is
true, then the proposed generator appears more likely to fit a wider range of
ranking data sets than the Thurstonian models and distance-based models.
Because, as we have shown in last section, ranking data described by these
models possess special patterns in their P-matrices. It would be difficult for
these models to describe a ranking data set whose P-matrix does not have

those patterns. Further investigation of this issue is required.
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Appendix

The estimation algorithm

In the follows, we present the details of the estimation algorithm with pseudo
code. Procedure ‘Main’ shows the main body of Algorithm 2. Procedure

‘Calc’ calculates the expected probability for number ¢ being assigned to

position j.

Main {

//-——input---

int rnk_sz; // size of ranking

double precision; // desired precision of estimation

double tm[ J[ J; // target P-matrix

//-—-output-—-—

double cm[ 1[ J; // estimated C-matrix

double pm[ I1[ 1; // P-matrix induced from ’cm’

double prec_obtain; // precision reached

//--- variables ---

int i; // row index

int js // column index

int k; // loop index

int r_rnk[ ]1; // list of eligible numbers

int u_rnk[ J; // list of selected numbers

double cm_keeper[ ]1; // C-matrix column before latest adjustion
double expct; // sum of probabilities of partial rankings
double error([ ]; // error btwn col. elements of pm and tm
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double err_sum; // sum of positive errors for a column
double adj_tmp[ 1; // temperary storage of adjusted cm element
double t_ratio; // tuning ratio

begin

tm[*] [*]; // initialise the C-matrix
tm[*] [1]; // £ill up the 1st column of the P-matrix

cm[*] [*]
pm[*][1]

for(j=2 to rnk_sz-1) // estimation starts from the 2nd column

prec_obtain=1; // initialise the precision reached
try:;
for(i=1 to rnk_sz) // every element of jth column of pm{ ]
expct=0; // initialising
if(ecm[i] [j1>0) // if tm[i][j] = 0, then cm[i][j] = O

for(k=1 to 1i-1) // initialise eligible number list
r_rnk([k]=k;
endfor;

for(k=i to rnk_sz-1) // i has been placed at pos j,
r_ronk[k]=k+1; // no longer eligible for other pos

endfor;

Calc(i, j, 1, r_rnk, u_rnk, 1); // calculate ’expct’
endif;

pm[i]l [j] = expct; // probability of i placed at pos j
endfor;

// determine the error between the columns
// of pm[*]1[j] and the tm[*][j]

err_sum=0;

for(i=1 to rnk_sz)
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error[il=pm[i] [j1-tm[i]l [j];
err_sum=err_sum+error [i]*error[i];
endfor;
// decide whether further adjustment is needed
if (err_sum<precision) // if precision requirement met
goto next_col;
endif;
if (err_sum>prec_obtain) // if error enlarged
goto next_col;
endif;
prec_obtain=err_sum;

// adjusting the current column of cm[ ]

t_ratio=0.5; // tuning ratio starts from 0.5

adj_try:;

for(i=1 to rmnk_sz)

if((adj_tmp[il=cm{i] [j]-error[il*t_ratio)<0) // over adjusted

t_ratio=t_ratio*0.4; // reduce the tuning ratio
goto adj_try;
endif;

endfor;

cm{*][j] = adj_tmp[*]; // newly adjusted C-matrix column

goto try; // re-estimate the pm column

next_col: // go to the next pm column
endfor;
end

}



Calc {

//---input---

int i; // row number of the P-matrix element
int js // column number of the P-matrix element
int ck; // the current position, ck<=j

int rmf 1; // list of eligible numbers

int us[ 1; // list of selected numbers

double ppr; // probability of a partial ranking

//-—-output---
// Procedure Calc update variable ’expct’ -
// the sum of probabilities of partial rankings

//-—-local variables——-

int k, 1; // loop index
int rmd[ ], usd[ ]; // lists of eligible and selected numbers
double c_col_usd; // weight sum of the selected numbers
double pr; // probability of a partial ranking
begin

if (ck < j)

for(k=1 to «rmk_sz-ck) // this loop and the recursive
// call below will result in all
// size ck partial rankings (permutations made from
// numbers of {1, 2, ..., i-1, i+1i, ..., n})

if(cm[rm[k]] [ck]>0) // weight > 0
c_col_usd=0;

for(1=1 to <ck-1) // for all previously selected numbers
c_col_usd=c_col_usd+cm[us[11] [ck];
endfor;

pr=ppr*cm[rm[k]] [ck]/(1-c_col_usd);
// calculate probability of current
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// partial ranking (size ck).

for(1=1 to k-1) // delete rm[k] from eligible list rmd[]
rmd [1]=rm[1];
endfor;

for(l=k to rnk_sz-1)
rmd [1]=rm[1+1];
endfor;

for(l=1 to ck-1) // put rm[k] into selected list usd[]
usd[1]=us[1];
endfor;

usd[ckl=rm(k] ;

Calc(i, j, ck+1, rmd, usd, pr); // recursive calling
endif;
endfor;
endif
else // ck equal to j
c_col_usd=0;

for(l=1 to ck-1)
c_col_usd=c_col_usd+cm[us[1]] [ck];
endfor;

expct=expct+ppr*cm[i] [ck]/(1-c_col_usd);
// add the probability of a size j partial
// ranking to (i,j) element of P
endelse;
end
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