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ABSTRACT
The Role of the Elementary Perceiver and Memorizer (EFAM)
in Optical Character Recognition (OCR)

Siasb Radvar-Zanganeh

Elementary Perceiver And Memorizer (EPAM) is one of the few existing
general models of human perception. It has been successful in simulating and
describing many human cognition phenomena. In this thesis, the role of EPAM
is studied in terms of an OCR machine. The model is described in some detail.
Its strengths and shortcomings have been pointed out. Some suggestions are
provided for its shortcomings. Two of the suggestions are implemented and tested
in this thesis. In EPAM, objects of any complexity level could be described. In this
experiment the primitive objects of the EPAM model are defined as characters,
and words of the English language are defined as the upper bound on the
complexity of the objects. In this way the model is tested under: 1) One level of
object complexity. 2) A large base of objects with a variable length feature set. As
such, to test the modification’s effect on the behaviour of the model, EPAM is
used as a postprocess to a character segmentation and recognition subsystem. The
experiment is tested with 30 fonts of different typefaces with sizes ranging
between 7 points to 12 points. For the segmentation subsystem a line, word, and
character segmenter is provided. A Feature extraction methodology and a
recognition model are also provided for the character recognition subsystem.

EPAM is trained with 23692 words and tested with the results of the character

iii



recognition subsystem that recognizes characters within words written in the

testing font set.
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Epigram

Things which we see are not by themselves
what we see ... it remains completely
unknown to us what the objects may be by themselves
and apart from the receptivity of our senses.
We know nothing but our manner of perceiving them ...

Immanuel Kant
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1. Introduction

1.1 Why ErAM

During the eight years that I have been studying in the field of pattern
recognition, I have seen many different methodologies and endless applications
of the methodologies. However, none has interested me more than the Elementary
Perceiver And Memorizer (EPAM) theory. It has successfully exhibited many human
recognition phenomena, from serial position effect in verbal learning to
explanation of intuition [1]. The most interesting aspect of EPAM that has
attracted me to experiment with this theory was its notion of homogeneous
knowledge representation. It represents the "external” knowledge, stored "internal”
knowledge, and the mechanism of access’ in the same format. The unit of
knowledge is an object. Objects are defined as complex objects having an ordered

list of subobjects or a set of properties?, all of which could be called features. This

IThe mccess is not modeled as such by the originators, although it could very well he, as it
is described in the end of the section 2.2.2.2.

Ithis description is similar but not as expressive to the one given by F. Bancilhon and S.
Xhoshafian in "A calculus for complex objects" [2].

1



powerful and generic representation, free from physical constraints’, is a strong
candidate to be used in different applications of pattern recognition.

The access mechanism is a self organizing network of objects, which
discriminate the stimulus object and recognize it as familiar chunks of objects. The
stimulus object is first recognized as whole, if unsuccessful, then the process
follows by trying to recognize the stimulus object as chunks of familiar objects.
Similar chucking process was also used in a very interesting model: Recognition-
by-components (RBC) in [4] for recognition of objects from images by humans.

The current implementation of the access network is similar to a
discrimination tree, where local decisions will sort the object to a certain category
uniquely describing the stimulus; with the extension, that it might recognize the
object as a set of categories, which collectively describe the stimulus object.

A comprehensive account of discriminating decision trees is given in a
doctoral thesis by Wang in [5] where decision trees are successfully applied to
classifiy objects in a large set of classes. However, a note must be made about the
difference between classification and recognition. People may not recognize an
object, however they may be able to classify it. This is the case with new objects
that have not been seen before, which may be recognized as a collection of

previously known objects, each of which could be a generalization (a class) of a

3This is not the cace with neural networks. The physical constraint may limit an explanation
of phenomena where otherwise is expressible. an example is given in a book by J. R. Anderson (chapter
4 pp. 144) (3] on the PDP mocdel. More reasons are also included in the section 2.4. of this thesis.

2



set of objects’.

The expressive representation, and a successful explanation of human
reading phenomena by EPAM, and the good capabilities of decision trees shown
by Wang, interested me to study this model further and experiment with it in an
application such as Optical Character Recognition (OCR). EPAM is a theory, and
like other theories it is subject to change and evolution. In this thesis, I set out to
experiment with this model and bring out its applicability, and provide some
possible methods to overcome the shortcomings.

In the recursive architecture of EPAM one can define the objects of the
network to be of any complexity. I choose the primitives to be characters and the
upper bound on the complexity of the objects to be the words in the English
language; primarily because the system is easier to study and modify, and
secondly to test its capabilities as a word recognizing assistant in an OCR
machine, and thirdly to test it in a large base of possible objects. However, this
was purely a choice and nothing inhabited me from defining the primitives to be
features of the characters, or the upper bound to be phrases, sentences, or

concepts.

‘Note that the collection could be of one or many cbjects, which each could be an obiject
representing a class {a generalization) of other objects. For example, if the stimulus object is:
{car, porchse, pink, doors), it will most probably be reccgnized as three objects: (car, porchse),

(pink).

and (door).

3



1.2 Overview

Chapter 2 describes the EPAM model, its structure, processes, and
evolution. It also gives positive evidence for the model as well as its short
comings. Some suggestions are given at the end of the chapter for further
enhancements to the model and its processes. In chapter 3, a general structure of
an OCR system is described along with EPAM’s role as part of it in the
experiments performed for this thesis. Chapter 4, describes the processes and data
involved in the experiments of this thesis. Chapter 5, provides conclusion taken

from the experiments and possible future directions for enhancements.

e



2. The EPAM model _
1
2.1 History

The Elementary Perceiver And Memorizer (EPAM) model was first introduced
around 1960 by Edward A. Feigenbaum [6, 7]. It later flourished by him and
Herbert A. Simon[8, 9, 10]. The original model was based on a binary tree
architecture, which did not simulate some aspects of human verbal learning
behaviour. Authors introduced EPAM III between 1962-1964 [11, 12] which
possessed an n-ary tree architecture. Between the late 1960s and the early 1970s
Simon et al. have used EPAM in conjunction with describing perceptual processes
in problem solving, and perception in chess and its required memory [13, 14, 15].
In 1984, Simon and Feigenbaum published a paper [16] to shed some light on the
misunderstood properties of their model, in which a new branch was introduced
as Not Elsewhere Classified (NEC) branch. This branch allowed the objects to be
sorted at a test-node, although, the object was either missing the feature that is

being tested or has a form of the feature that has not been seen before. In 1984,

Howard B. Richman and Simon published a paper [17] comparing EPAMIIIA to



the connectionist Interactive Activation Model (IAM) of McClelland & Rumelhart
[18, 19]°. In that paper, they have redemonstrated the capabilities of EPAMIIIA
in simulating many human perception phenomena in reading of words, which
IAM has also simulated. Both systems performed well. The success of IAM was
attributed to its top-down feedback of information from larger chunks to smaller
ones (back-propagation), particularly from words to letters. The success of EPAM
was attributed.to both perceiving the whole words as chunks and subwords
sequence of letters as chunks. Both, the top-dowr. feedback of IAM and the
chunking of EPAM, allow the respective models to incorporate subwords into
larger words. However, in some aspects, EPAMIIIA data matched much closer to
the human data than did IAM®. The close fit of data according to the authors was
the result of the system trying to recognize the whole word as a chunk first, but
failing that, it tried to recognize parts of the word as chunks. EPAM, solely or in
conjunction with other subsystems, has been used to describe or show many
human cognition phenomena, such as Insight and intuition, "AHA" phenomena,

understanding, problem solving, and scientific discovery [1, 17, 21, 22, 23).

Smiis model is more comprehensively explained in the two books wparallel Distributed Precessing”
(PDP) [20].

fThe close fit of a model te human data is not a sufficient or necussarily proper way of
comparing theories as explained in the section "Testing theories* in [17].
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2.2 The model’

2.2.1 Introduction

EPAM was one of the first computer models of human information

processing. It regards people as manipulators of chunks of information. EPAM

undertakes to model a major portion of the system that allows humans to

recognize and to learn to recognize stimuli, and thereby to gain access to

information related to these stimuli that are stored in the long-term memory. The

use of the term "portion" is due to EPAM modelling of only a component of the

entire system, although a principal one. EPAM is taken as the middle subsystem

between the sensory subsystem and the semantic long-term memiory (See Fig. 2.1).

Fig. 2.1 The EPAM architucture.

"The information in this section was mostly extracted from the two papers [16,

171.
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It assumes a feature set provided by the sensory system (the front end) that is
extracted from a stimulus. Then, it attempts to recognize the stimulus using the
extracted features. A set of symbols is then put in the short-term memory that
points to or accesses the relevant information in the long-term memory. The long-
term memory is the accumulation of associated information that has been
discriminated and have been learned. There has been no attempt by EPAM to
mpdel the sensory system, nor the whole structure of the semantic long-term
mémory and its associations. The model of short-term memory is also elementary.
EPAM mostly deals - .ith the discrimination net, stored images of learned stimuli,
and the access process. The learning component of the model is also restricted to
the modification of the discrimination net and the stored images of the stimuli.
In short, according to Feigenbaum and Simon the semantic long-term memory is
viewed as the "encyclopedia” in which most of the knowledge acquired by the
learning system is stored; the discrimination net as the "index" to this
"encyclopedia" a recognition memory; and the short-term memory as a small

working memory needed by learning processes.

2.2.2 Discrimination Net and Recognition Process
2.2.2.1 knowledge Representation

EPAM uses an object-oriented methodology to represent the knowledge.
This representation is homogeneously done throughout the model. Which implies,

the knowledge that it learns and access has the same representation, namely the



object. The same object representation is used for external objects, stimuli, and
internal objects, images. An object is an ordered list of parts called subobjects or
a set of properties, all of which could be called features. The object itself can have
properties of its own that are different from the properties of its subobjects. This
representation is recursively defined, i.e., a subobject has the same representation.
During learning, the image that is built may contain some but not all of the
information present in the stimulus object; however, the representation is still kept
the same. For example: once people have seen a person for the first time, they
may remember few features of the person. However, as they see the person more
often they become more familiar with that person’s features. Note that even
though they may know the presence of the features of the person, they may not

know their specificities.

2.2.2.2 The Net

The discrimination net is an n-ary tree. The leaves of the tree are the stored
images. All other nodes of the tree are test-nodes; at which are stored tests to be
performed by the recognition process on the stimulus object’s features. On each
testing-node a feature is tested, therefore the tests are subobject tests or property
tests. The branches that lead to the next level in the tree are accordingly labelled
with either the (internal) name of an object or the value of a property (See Fig.

2.2,23,and 24).



Testing
node
NEC
YELLOW
Next nodes
in the net
Fig. 2.2 A node testing a property.
test fourth
subobject
Testing
node

Next nodes
in the net 4

Fig. 2.3 A node testing a subobject.
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Fig. 2.4 A discrimination net for letters and words.

(The atomic features 0, and 1 are as in [18, 19])
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Formally, each test node poses a one-to-one relation, A R B. Let the tuple (branch)

<3,b> € R such that:

Each element of the domain of the relation R, "a", is:

(1) A value of a property for a property test.

Or

(2) A complex object’s internal name (a pointer value) for a subobject test.
Or

(3) An atomic object for a subobject test.

Each element of the range of the relation R, "b", is:

(1) An addresc ( a pointer ) to the next testing node.

Also included as one of the branches (elements of the relation R) at a test node
is the tuple <NEC, b>. When a feature is not found in the domain of the relation,

then the Not Elsewhere Classified (NEC) branch (tuple) is used.

It should be noted that when a {eature is searched for in the domain of the
relation, if the value of the domain variable is a pointer to a complex object, then
the object pointed by that pointer is used for comparison with the feature in
question. Alternately, a copy of the object could have been stored at the test node

during learning which then a direct comparison would have been done. Evidently
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the object pointed to should be completely familiar, where otherwise the
previously stored objects via the given branch may not be reachable upon further
familiarization (See Section 2.2.3.1) of the pointed object. Of course, this is valid
in the current model since the features of the familiar objects are not replaced by
fiiher familiarization. I will describe a scheme in section 2.5.2 to compensate for
the possibility of feature evolution.

It should be noted that the nodes of the tree are objects (in an object-
oriented sense) having a property (behaviour) of testing a feature of the inputted

stimuli®.

2.2.2.3 The Recognition Process

The recognition process is used to determine if the } -esented stimulus is
already familiar. The process uses the recursive definition of the stimulus object
to recognize it. The object O is presented. The first test node is the root node of
the tree. If the test is a property test, it is applied to the appropriate property
being tested and its value determined. Its value is used to branch to the next test
node using the relation available at the test node between the vélues and the next
test nodes to be followed (See Section 2.2.2.2). A measure of similarity (distance)
is used to follow the branch where the element of the domain is the closest. If a
close match is not found (determined by a local and/or a global threshold) the

NEC branch is followed. If the test is a subobject test, the subobject is accessed.

*This is not modeled by Simon and Feigenbaum as such.
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If the subobject is a primitive, then it is used to branch to the next test node using
the relation present at the test node. If the subobject is not a primitive, then the
recognition of the object is temporarily suspended until the particular subobject
is recognized so the process can continue to the next test node. The subobject
itself is an object, hence the recognition starts from the root nede for the subobject
itself until it is recognized. This is a homogeneous process, i.e. the recognition of
the subobject may be suspended until its subobjects are recognized. Again, note
that the NEC branch could exist at any test node. Eventually the recognition of
primitives will terminate all levels of the recursion. If an image of subobject is
found, its internal name (a pointer) is used to branch to the next test node using
the relation present at the test node (See Section 2.2.2.2).

There is also a tracking list kept (a stack) for the test nodes visited. This
tracking list is used when a comparison is done between the object and the stored
image. If the image has more subobjects than the stimuli object, then the
recognition process continues by backtracking to the last test node visited and
continuing by following the NEC branch from that test node. Also, if the process
needs to branch via a NEC branch at a test node and there is none, the process
continues by backtracking to the previous node visited and tries to branch using
the previous node’s NEC branch. This continues until an image is found or the
tracking list is empty. This backtracking and following the NEC branch, provides
for the chunking capability of EPAM.

The recognition process is not just finding some images, but ones that
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match mostly to the extent of features available to the stimulus object. The match
may succeed if some features of the stored images are unknown, but it will fail
if features are different between the stimulus object and the images. This
difference is exploited by the learning process to allow for new objects.

In EPAMIIIA, first, the whole object is sorted. If unsuccessful in finding a
single image that matches the stimulus object, the process foliows by first trying
to recognize the left most chunks and then the right most chunks. If unsuccessful
it does the reverse by first trying the left most chunks and then the right most

chunks. A more comprehensive algorithm is provided in [17].

2.2.3 Learning Processes

EPAM Il has two learning processes: FAMILIARIZE, and DISCRIMINATE.
FAMILIARIZE is the memorization process by which the images of stored objects
are gradually built up by adding features (clarifying them). DISCRIMINATE is
a discrimination leamning process by which the discrimination net is augmented
(test nodes and branches added) to allow recognition as the number of learned
items grows.

When the stimulus object becomes present to the EPAM, a search in the net
is done to find the image of the stimulus object (to recognize it). Depending upon
the results of the recognition, i.e., a single chunk was found or many, and the
whole word parameter, and the anchor-point assumption the DISCRIMINATE

process is activated with a combination of the chunks retrieved. The
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FAMILIARIZE process is activated, either when a single chunk is retrieved during
initial recognition and needs to be elaborated or through DISCRIMINATE process
when an image is not found and a new leaf node needs to be created.

For more details of different cases for activating the DISCRIMINATE

precoess refer to [17].

2.2.3.1 Familiarization

Familiarization starts after an object is searched for in the net (see the

parent section).

- If no image is found, an initial image is created which gets a copy of the
features of the stimulus object. The features are copied to image governed by a
familiarization parameter, a measure of attention and learning capability. Going
from first, to the last feature, this parameter is used in learning (copying) the
features. For each feature, a random number is generated and tested against the
familiarization parameter. A feature is copied to image if a random number
generated is above this parameter. If a random number is found below this
parameter the rest of the features are marked not noticed except the last feature,
which is tested against a new random number for it to be learned (copied onto
the image).

- If an image is found, the number of features is compared. If they are not
the same the process is exited. If they are the same, for each feature that are

marked not noticed, a random number is compared against the familiarization
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parameter to determine learning (copying the feature onto the image). If a
random number is below the familiarization parameter, then the process
continues by finding the next familiar feature on the image and processes the
previous feature to that one’. This continues until no more features are left to
process. Note that after many sessions of familiarization, the learning of an object
is more likely to complete. Also note that, the completion of familiarity with

objects is dependent on the familiarization parameter as well.

2.2.3.2 Discrimination
Discrimination learning is done by first searching for the object through the
net™. This search is different from the search for recognition in that it does not

follow the NEC branch unless the object has fewer features than the test is

expecting. If the search terminates at a test node, a new leaf node is created. The
object is familiarized as an image on a newly created leaf node. The leaf node is
then attached to the test node via a new branch (see Fig. 2.5). This branch (tuple)

is added to the test node to represent the new value of the feature tested. If the

search terminates at a leaf node, the object and the image are compared at that
leaf node to modify the discrimination net. If a difference is found between the

object and the image, the differentiating feature is used as the testing feature. A

*The process looks for an anchor point, either by passing the end of the image or by finding
a familiarized subobject on the image. When an anchor point is found, the previous position is taken
as the place where the process continues.

1ONote that this object may not be the same as the one presented to EPAM originally but a
combination of the chunks extracted during initial recognitiomn.

17



test node is created which tests that feature. This test node will replace the leaf
node. A new leaf node is created, and is familiarized to contain the image of the
object. This new leaf node and the one compared are then attached to two
different branches from the created test-node. The test-node is then attached to
where the compared leaf node was attached previously (See Fig. 2.6). If the
compared image and the object did not have the same number of features, then
the one with fewer features will be attached to the NEC branch of the new test-
node and the one with more features to a regular branch. In this case, the test
node will be testing for the last feature of the object attached to the regular
branch (See Fig. 2.7). For more details of different cases in comparison of object
and image, and action in each case, refer to [17}.

Since most differences are due to different values of features, the growth

of the net is biased toward breath, rather than depth.
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Fig. 2.5 Addition of a new branch at a test node (breath growth).
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Fig. 2.6 Addition of a new test node (depth growth).
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Fig. 2.7 Net growth on the NEC branch.
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2.2.3.3 Noticing order

In EPAMITIA and this thesis the stimuli being tested are the English words.
Therefore, the noticing order is modeled through anchor-point assumption. The
serial-position phenomenon [17, 24] is used as the basis for the anchor point
assumption. The serial-position phenomenon institutes that people learn objects
from outside points inwards. This behaviour is implemented in different processes
of EPAM. The anchor point assumption is used in familiarization process which
is used when an image is created or elaborated. Also, it used as a noticing order
when an image and an object are being compared to find a difference. Further,
it is exploited during learning, after the initial recognition, to determine the chunk

combination that is sent to the discrimination process.

2.2.3.4 Semantic memory
EPAM does not address the issue of associations between images, nor any
groups of them. An example was attempted in [3]. EPAM primarily focuses on

the memorization and discrimination among images.

2.3 The evidence for and against

There are seven main evidences for EPAM among many others that
support its architecture and processes. These evidences are the corner stone of the
EPAM theory. The biggest critique of the EPAM theory came in the paper by L.

W. Barsalou and G. H. Bower [25]. In the following subsections the two facets of
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the model are reiterated. For more information and references see [16, 25].

2.3.1 The evidence for EPAM

The following are the main evidences for the EPAM theory.

2.3.1.1 The serial position effect

The serial position effect was reported by McCrary and Hunter [26] and
further elaborated by Feigenbaum and Sinion in [21]. It has also been studied by
many others including J. C. Johnston in his first of the two experiments [27, 28,
29].

This serial position effect exhibited by EPAM is due to three factors:

1) The attention strategy.

2) The anchor-point assumption.

3) The approximate constancy of the aggregate set of processes to

recognize and to learn a new chunk in memory.

In verbal learning, any system that learns one object at a time, works from

outer ends of the object (list) toward the middle of it, and requires about the same

amount of work to learn an object, would exhibit this property.

2.3.1.2 Constant fixation time
The amount of fixation that is done for each new object is a function of

growing the discrimination net and storing the image of the object. Total fixation
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time is independent of number of trials or the time of exposure per trial. This

constancy was first explicitly addressed and confirmed by B. R. Bugelski [30].

2.3.1.3 One-trial versus continuous learning

The ability of learning an object in one trial is dependent on the object’s
complexity. This complexity is determined by the organization of the
discrimination net and the previously stored images of objects. This is possible in
EPAM since the images of objects are built recursively in an organized fashion
from the existing images of complex objects. This phenomenon would not be

easily reproducible in a system that didn’t possess such recursive organization.

2.3.1.4 Oscillation and retroactive inhibition

The oscillation and retroactive inhibition are also exhibited by EPAM.
Oscillation, the forgetting and remembering of objects, is exhibited by EPAM due to
modification of discrimination net. Objects correctly sorted may be misidentified
or not identified due to further learning of objects with high similarity. This object
may be remembered again upon representation and relearning. Oscillation is more
evident in EPAM with redundant paths, as previously forgotten objects could be
remembered if a different path from an inhibited access path is traversed upon
noticing of the features in question (See section 2.5.1).

Retractive inhibition the interference of the newly learned object with the

previously learned one is also exhibited in EPAM in the same way as the
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oscillation is caused.

2.3.1.5 Effects of familiarity and meaningfulness

It has been found that it takes much less time to learn a meaningful object
as opposed to a low meaning object. Actually it has been shown that this time is
proportional to the number of familiar chunks that are associated in learning [31].
This phenomenon is exhibited in EPAM via its recursive building of complex
images from other complex images previously learned. For example, 2 unicorn
could be quickly learned simply as a horse with a horn, or, 2 mermaid as a
woman with a fish tail. This process is dependent on the architecture of the
discrimination net. For more discussion on familiarity and.meaningfuh"less see [16,

17, 19].

2.3.1.6 Effects of similarity

It has been shown in experiments [27, 28, 29] that in 15% of the cases
where the correct word was not recognized by human subjects, another word was
named sharing three letters. In accordance, this statistic was calculated for EPAM
as 10% of cases reporting another word sharing three similar letters [17]. Also,
EPAM has shown with good qualitative agreement the effects of intralist and

interlist stimulus and response similarity [19].
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2.3.1.7 Expert pattern perception

Using EPAM and PERCEIVER [13], Simon and K. Gilmartin constructed
Memory Aided Pattern Perceiver (MAPP) [15] which was able to simulate as well
as explain the performance of a good chess player vs. a novice one. Experts not
only have learned much more patterns than novice people, but also these patterns
tend to be i complex compound patterns. This is provided in EPAM via its
capability to store complex patterns and to store a iot of them while being able
to retrieve these patterns very fast. The issue of time latencies of experts vs.
novice people is also attributed to:

1) Experts possess and can find complex objects in one search, whereas
novices have to retrieve the object as a collation of many simpler known objects.

2) By providing shortcut redundant-paths (See Scction 2.5) to an object,
an expert may be able to retrieve an object much faster than a novice not
possessing such an access path.

3) If the recognition is accomplished via an indirect association in the
long-term memory, then experts may possess shorter paths to an object than

novices.
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2.3.1.8 Other phenomena

Word-Superiority effect

This phenomenon that was first discovered by Cattel [32] basically states
that more letters could be identified within words than in isolation. EPAM has

exhibited this property very well [17].

Ineffectiveness of Letter Constraints

Johnston showed [27, 28, 29] that contrary to previous belief, people do not
recognize the letters in words better when there are fewer possible choices for
that letter in the existing words of the target language. For example, the S in
SINK with many similar possibilities (wink, rink, link, kink, . . .) was not harder

to recognize than the S in SHIP with two other possibilities (whip, chip).

Word-Letter effect

This phenomenon that was discovered by Reicher [33], states that under
some conditions letters in words are perceived better than in isolation. This effect
was simulated by EPAM and the results matched closely to the Johnstons human

data [17].
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2.3.2 The evidence against EPAM

The most elaborate critique of EPAM model and similar systems came in
the paper by L. W. Barsalou and G. H. Bower [25]. Most of the issues were
answered back in the same journal by Feigenbaum and Simon [16]. Most
concerning issues were with the older version of EPAM (EPAMII). And the issues
did not hold any longer with the new architecture. However, there were few

issues that were central or valid which should be mentioned.

2.3.2.1 Sensitivity to discriminativeness of features

It was argued that in the discrimination nets, tests are built not necessarily
using the most discriminating features of the stimuli but using some arbitrary
order. As a result, in learning, the most discriminating features of an object may
not be used for a test. Hence, during the search, the most prominent features of
an object may not be tested at all. Further, the organization of these tests does not
change upon new evidence (some new features that are more discriminating that
were not detected originally or values of some features which upon closer
investigation are found different from the original). There are few answers to this
issue. 1) The noticing order of reading of words has been found to follow the
properties of the serial-position effect (See Section 2.3.1.1). 2) Redundant paths to-
objects overcome this issue. The best work in this regard has been by Janet L.
Kolodner [34). Redundant paths facilitate different access and test sequence to get

to an object. It should be noted that one does not remember an object necessarily
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in one way, be it the least efficient or the most efficient way. EPAMIIIA has
. ~candancy in the form of the NEC paths. This redundancy has shown promising
features; however, I believe there can be better results if we use a hybrid of the
two models put forward by Ms. Kolodner and EPAM. 3) It is not guaranteed in
human (or for that mattér anything else in life) things to be optimized. A human
may not pick up an “obvious" distinctive feature that would discriminate that
object from others in his memory and a recognition path may be built upon the
information at hand. The same object may be remembered through this path until
a new discriminating feature that has been detected (noticed) and can
discriminate that object in another way. This path, a new way of remembering
that object may be used if this feature of the object is noticed again. This new
path may become more prominent than the others depending upon repeated

traversal and attention strategy.

2.3.2.2 Sensitivity to missing or incorrect properties

If a feature is missing or has a wrong value the search may not converge
to the object in question. In EPAMIIA the effect is that the obi'ect is segmented
into smaller familiar objects. Also, since tests and decisions are done locally on
features and the next testing node is dependent on that test, direction of the
search may be altered due to following a wrong path. This is true of any Hill-
Climbing search algorithm where moving toward local maxima may not lead to

the global maxima. Generally this problem could be avoided with the
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introduction of redundant paths. Wang, in his doctoral thesis [5], has put forward
a method of search, which is not only driven by local decisions but also global

optimization is taken in count to drive the search.

2.3.2.3 Multiple knowledge domains and network growth

It has been argued by Barsalou and Bower that the nodes of the decision
tree will grow exponentially as more knowledge domains are introduced. There
are two answers to this point. 1) Since EPAM uses a recursive architecture and
process to represent and handle knowledge, there are no duplicate redundant
tests for any subobject. 2) In an EPAM net the total number of nodes grows
linearly with the number of objects discriminated. In the worst case, the binary
net, the total number of nodes is twice the total number of objects discriminated.
In an n-ary net the total number of nodes is n/(n-1) times the number of objects.
If there are k redundant paths to #n object, then this total would come to k*(n/(n-

1))*number of objects. This equation is certainly of a linear order.

2.3.2.4 Time latencies

It has been argued that as people learn more, it will take longer time to
recognize an object using the EPAM net. This comes from the assumption that net
will grow in depth, and as there will be more levels, it will take longer time to
reach the end of the net. I will quote the example given by Feigenbaum and

Simon [16], which goes as this: "Suppose that n=8 (there are eight branches, on
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average, at each node), and that each test takes 10 ms. Then seven tests (taking
a total of 70 ms) will discriminate among two million stimuli (8 = 2,097,152). In
the net 10 tests deep (100 ms), over 1 billion objects can be discriminated. There
is no evidence of recognition speeds of experts faster than these, nor any evidence
that experts can discriminate among billions of different things. Even a binary net
can discriminate among a million stimuli in 200 ms." Of course, the time would
be shorter if there are more direct redundant paths to the object, which experts
may possess. Also, as mentioned in section 2.3.1.7 indirect recognitions through
long-term memory could also be shorter for experts, which may possess shorter
paths to objects than novices. I should note that in Wang's thesis [5], he found
that the optimal number of branches, in terms of access speed and memory
utilization, at each test node in his system is 4. This value was for recognizing

Chinese characters.

2.4 Other models of cognition

There are a few other theories of cognition that possess such generality:
Connectionist model of McClelland and Rumelhart [18, 19, 20], John Anderson’s
ACT* {3}, and Rosenbloom and Newell’s SOAR [35, 36, 37]. The connectionist
model describes thinking without using symbols, but as patterns of activation in
a network of connected structures. The model does not account for the initial
feature detection phase. It has been used in many, simple to complex cognitive

tasks. In the connectionist model each object is represented as a node in a
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network of interconnected nodes. Basically each node is evaluated against the
features of the stimulus for a measure of goodness of fit. This is provided by
inhibitory and excitatory connections between the primitive nodes and the more
complex nodes, and connections from complex nodes to primitive nodes. There
are also connections between nodes at the same complexity level. Features of the
stimulus activate the primitive nodes of the network which in turn activate the
more complex nodes to which they are connected. This process is generally called
propagation. Further, a back-propagation from the more complex nodes to
primitive nodes is devised to incorporate the contextual effect of inclusion of the
primitive features in the more complex nodes. This forward and back-propagation
are generally performed for several cycles until the change in the system has
"settled down". The node with the highest activation level is taken as a
recognition of the stimulus. The recognition improvement (learning) is done
through strengthening of the connections. To allow such system to learn new
discriminations, it must distinguish between selecting the wrong node for a
stimulus and selecting the same node for two or more distinct classes of stimuli.
The implementation of this learning process is still unclear. ACT* has features
similar to both EPAM and IAM. It employs a discrimination net that permits the
search to be performed in several paths in parallel. Further, it associates weights
to these paths so not al the paths are followed during the search. Generally
looking at the ACT* it could be looked at as an EPAM-like system with

redundant paths. ACT*s emphasis has been on the structure and operations of the
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semantic memory and particularly on the spreading of activation in performance
and learning. ACT* does not provide detailed account of perception phenomena.
SOAR claims the most general of all the above theories; however, it has been

mainly applied in complex cognitive tasks.

2.5 Suggested Extensions
2.5.1 The redundant paths

In section 2.3.2 the need for redundant paths in the architecture of EPAM
is shown. The current model of EPAM incorporates redundant paths in the form
of the NEC branch. The idea basically is that if an object is not recognizable as is,
the search continues by going to a node that describes that object in the more
general form. This process is intuitive since if an object is not recognized we tend
to recognize it as a set of more generalized objects. This form of redundant path
is certainly needed in future architectures. However, the system lacks alternate
paths to objects. These alternate paths could be in the form given by Ms.
Kolodner in [34]. Instead of one test at a test node, multiple tests with multiple
relations could be devised. Each test, would check a different set of features of the
stimulus. The features to be tested could be. determined dynamically from the
commonality of the feature of the stimuli. Each test then, determines the
difference within those common features for different stimuli. Alternate nodes as
well as the NEC branch are kept in the backtracking list. The next node to follow

from a test node depends upon the noticing order and frequency of activation of
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a given path between two nodes. Further, instead of a single path determined by
a test, multiple paths could be taken as the tests would determine sets of values
instead of single results. This behaviour is evident in humans reading of written
scripts, as alternate choices similar to an ambiguous character in question is
postulated to arrive to recognition. Additionaly, In EPAM an image is retrieved
without further comparison of other features that did not get tested during the
search. If a complete comparison is done between the image and the equivalent
»art of the stimulus object a more selective response could be made. The latter
two modifications are tested together in this thesis and explained in the section

454,

2.5.2 The generalisations and their use in the architecture

Each node currently possesses tests and a relation specifying the next node
to follow. Further modifications explained in the previous section brings the
notion of generalization of objects. Each testing node could be looked at as the
generalization of the objects that is accessed via that node. General information
could be in terms of common features and level of their activation.

Further, upon creation of new nodes not only the subobjects are copied to
the image, but also a pointer is kept to the generalization (class) of the subobject
being copied. This would allow acknowledgement of inheritance. Further it would

allow noticing of contradiction upon evolution of both the instance and the class.
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2.5.3 A physiological look at the network

The method of access, as mentioned, is a network of interconnected objects.
Such representation could be implemented symbolically or physically as any
complex mechanism including neural nets, where an object is either a neuron or

a network of them.
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3. EPAM in an OCR system

3.1 An OCR systzm

Document handling applications such as wordprocessors, desktop
publishing systems, Computer Aided Design systems (CAD), and databases are
now in a wide spread usage by people. To enter the printed or written documents
automatically users must resort to an Optical Character Recognition (OCR) system.
A scanner is used to input a raster image of the document. This image can be
entered and stored in most of the mentioned applications. However, to extract the
symbolic information in the image (text, lines, curves, . . .) and to manipulate
+" z=2 symbols an OCR system is required. There are many methods of extracting
these symbols from the document, such as the ones given in [38, 39, 40]. Text is
generally extracted as collinear stripes of small components. Further, these text
components could be processed to extract letters and words from them. A review
of available methods for extraction and analysis of text could be found in [41]. A

general process of text recognition is given as a flow chart in Fig. 3.1.
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Fig 3.1 A general text recognition flow chart.
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Each general process is briefly explained in the following sections. References are

provided for further study.

3.1.1 Text segmentation
As mentioned in the parent of this section, text lines must be extracted
from the documents in order to be further processed. Some working methods are

presented in [38, 39, 40, 41].

3.1.2 Character segmentation

Most OCR systems recognize the words in the text from extracted
characters present in the text. Therefore, these characters must be extracted
through segmentation. A survey of character segmentation techniques is given in
[42]. Segmentation of characiers is performed either before recognizing those
characters or in a collaboration with the recognition system. Some of the
interesting works in segmenting the characters before recognition are given in [43,
44, 45, 46]. An example of interactive segmentation could be found in [47]. A
preprocessing to segmentation can be applied to remove noise from the image
containing the characters. This preprocessing could be in the form of a filter.
Various filters and their effects are reported in [48]. Depending on segmentation

technique it may require some preprocessing.
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3.1.3 Word formation

Word boundaries need to be determined in order to apply contextual
verification. This boundary could be determined from inter-character and inter-
word spacing. Such relation can be detected much better after the characters pitch

has been determined [49].

3.1.4 Character recognition
Character recognition techniques have been extensively reviewed in [50, 51,

52, 53].

3.1.5 Contextual verification

A word determined by its boundary (See Section 3.1.3), and the recognized
characters, forms a string, which can be verified for error incurred during the
recognition and segmentation phase. There are three approaches to verification

of these generated strings.

3.1.5.1) Markov methods

These methods model the text in a given language (e.g., English) as a
Markov process. As such, transition probabilities could be assigned to various
letter combinations called n-grams. These transition probabilities are calculated
from n-grams in a valid dictionary or from a collection of journals or books that

are diversely variable in their subjects. Alternatively these probabilities could be
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extracted dynamically as the text is being processed. A whole account of n-grams
statistics is given by Suen [54]. Generally as the order of n-grams increases, the
performance of the result is better. These statistics are generally domain
_ dependent. As the context of text changes the results may not be as good. Several
methods have been proposed that used these statistics to determine the most
likely transition probabilities that would fit the string in hand, by maximizing the
probability of the string. Among these methods is the Viterbi Algorithm [55, 56,
57, 58], the Recursive Bayes Algorithm [59, 60], and the probabilistic relaxation [61].
One of the problems of these techniques was the fact that once an error was
present it compounded itself. This problem was remedied by using binary n-

grams that took only two values, 1 if it’s a legal n-gram, 0 otherwise.

3.1.5.2) Dictionary look-up techniques

The dictionary look-up techniques basically check the given string against
the available dictionary. Simplest form of this technique checks whether the string
exists as a word in the dictionary or not. In the more advanced form, it will try
to find the closest possible words in the dictionary to the given string using some
kind of similarity measure. The complexity of these methods is not only
dependent on their algorithm but also on the storage structure of the dictionary.
It was shown by Damerau [62] that most (80%) spelling errors are of the form,
one letter wrong, one letter missing, one letter inserted extra, and/or two letters

transposed. These are generally known as substitution, deletion, insertion, and
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transposition errors respectively. Errors introduced during recognitior and
segmentation are basically the same as these errors. Most methods proposed
assumes a subset of these errors that could have happened in the input string.
There are generally two approaches to string verification: one is to measure the
number of edits that is required to obtain a dictionary word from the inputted
string. The other is to obtain probabilities that the input string is a dictionary
word. The most known edit method is the Levenshtein distance method, which
defines the similarity of the input string to the dictionary based on the total
number of edits required to obtain a dictionary word from the input string [63].
This method was later modified by adding weights to edit cperations to allow
distances to ke varied according to different applications [64, 65, 66, 67, 68].
Probabilistic methods measure the likelihood of a string to be a word in the
dictionary. Among the probabilistic methods presented are the works by Hall and
Dowling [69] and Kashyap and Oommen [70). Most of the computations are done
recursively which result in a much less order of operation and a faster process.
An order of O(Im + In) has been claimed where ! is the length of the dictionary,
m the average dictionary word length, and n the length of the input string. One
of the big issues in dictionary look-up techniques is the structure of the dictionary
used in search. Many methods and architectures have been proposed, which
narrow the search space. Among these are trie memory structures [71, 72, 73],

frequency ordering [74, 75], and redundant hash addressing [76, 77].
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3.1.5.3) Hybrid methods

Hybrid methods {78, 79, 80, 81, 82] use both Markov methods and
dictionary look-up techniques’ advantages. Usually a form of the Veterbi
Algorithm is used to generate several possible hypotheses for the input string.
Then these generated hypotheses (strings) are searched for in the dictionary to
find them as words. If these words are not found in the dictionary, then Markov
techniques are used to obtain the most probable results. These techniques allow
exclusions of the high-order Markov dependencies due to verification with the

dictionary, which in turn reduces the computational complexity of the process.

3.2 Use of EPAM as a contextual verifier

When ! first saw the paper comparing the two theories, EPAM and IAM
[17], and the phenomena explained by the two models, I got very interested to
find out what makes EPAM tick'. The fact that the two models tried to simulate
a word recognition process to show their capabilities provoked me since I already
was active in the field of character and text recognition. I set out to find the
virtues of the EPAM theory. Maybe, use its feature in other models, or use other
models and methods in EPAM for its shortcomings, if any. EPAM as mentioned
earlier, possess recursive architecture; therefore, objects of any complexity could
be described in this model. However, for me to find the model’s virtues and short

comings, it was necessary to simplify the objects being represented for the tests.

nI already was familiar with the IAM model and theory.
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As such, I choose the primitive objects of the system to be characters, and the
more complex objects to be the words in the English language'. With this
constraint, the model essentially turned to a contextual verifier for words that

have been generated by some character recognition system.

lzThe words in this simulation are chosen as the upper bound. However, there is no
restriction in the model for this, as the objects could be phrases or sentences of the English
language.
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4. An example OCR system
o

4.1 The purpbse
To test the EPAM model as mentioned in the section 3.2, I needed to:

1) Implement the EPAM model, preferably in C, where I could have more control
over the modification of the structures and the processes™. It should be noted
that this year I contacted Dr. Simon, who offered a lisp version of the model on
the MAC for me to test (I ask for a PC version, which they didn’t have ready).
However, I already had implemented the model. Furthermore, as I expected, it
was better to implement the model in order to gain a deeper understanding of it.
2) Implement a scrambled word generator module that would provide data for
testing the EPAM model. Since the output of such generator would nof represent
a real data, [ tried to find a commercial OCR system that I could use to generate
the data. Most OCR systems that I tried, did very poor on single characters of

multi-font nature. Further, I had little control on the format or generation of

131 have more experience in C than Lisp that EPAM is implemented in.

44



statistics that I needed. Alternatively, I should have implemented tools to extract
such information from the output of those OCR systems.

Further, I wanted to have a character feature extractor, in case that I would
want to test the EPAM net, to recognize characters only or words as a list of
character features. As such, I decided to implement my own character recognition

module.

4.2 The experiment

The basic processes in this experiment are shown in Fig. 4.1 and 4.2.
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Fig 4.1 The Character Recognition Subsystem.
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Fig 4.2 The EPAM Subsystem.

47



(1) A database of 30 fonts of six different sizes in individual files in a raster
format (PCX files) has been created (See the following section for details).

(2)  The data gathered in the step (1) are then segmented to extract the lines,
words and characters in each raster file. For each file an ASCII version is
generated which contains delimiters for lines and words, and for each character
a matrix of Xs and " "s.

(3) The data generated in step (2) are then processed in different combinations of
training and testing by the character recognition subsystem.

(4) Since it would take a great amount of time and resources to capture a
database of words in a dictionary for each font size, a map could be generated by
the character recognition subsystem that captures the recognition results for each
font under different training conditions. This file, which is small could be used
by a mapping module to generate a file that contains a simulated version of
recognition of the words in the dictionary by the character recognition subsystem.
(5) The mapped dictionary for testing and the original dictionary for training is
then passed to the EPAM subsystem for word recognition and gathering of

statistics.

4.3 The generation of data processed
4.3.1 Fonts used
Table 4.1 gives the list and type of each font. A sample of each font in 12

points is given in appendix A.
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Font # Font Name Serif /San-Serif Font Class
1 Aero San-Serif Decorative
2 Arial San-Serif Text
3 Avant Guard San-Serif Headline
4 Baskerton Serif Text
5 Buckingham Serif Headline
6 Capelli Serif Text
7 Carnegie Serif Text
8 Century Serif Text
9 Classic Typewriter Serif Text
10 Corporate Condensed | San-Serif Text
11 Dateline Serif Text
12 Eterna San-Serif Headline
13 Futuri San-Serif Text
14 Garamand Serif Text
15 Gazette Serif Decorative
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16 Gettysburg Serif Text

17 Gibraltar San-Serif Headline

18 Jewel Serif Decorative
19 Joulliard Serif Text

20 Katrina Serif Text

21 Letter Gothic San-Serif Fixed width
22 Obelisk San-Serif Text

23 Oxford Serif Text

24 Padua Serif Text

25 Pica Serif Fixed width
26 Prestige Serif Fixed width
27 Rockland Serif Headline

28 Souvienne San-Serif Text

29 Times Serif Text

30 Top Hat Serif Decorative

Table 4.1 The fonts used in the experiment.
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Table 4.2 shows the distribution of the fonts used, depending on their types.

Serif San- Text Deco- | Head- | Fixed
Serif rative line width
Font numbers 6 9 10 2 3 0
(1-15)
Font numbers 4 11 8 2 2 3
(16-30)
Total 10 20 18 4 5 3

Table 4.2 Distribution of the fonts used.

4.3.2 Generation of raster images of the fonts

The data are generated on a PC compatible using the paintbrush™ program
within the Windows® environment. I attained a font package (Typecase™)
containing many frequently used text typefaces, which I used within the
paintbrush™ program to generate the raster image of the fonts. For each font and
font size a PCX file was saved which contained all the alphanumeric characters
in that font size. A space was inserted between each character to help further
segmentation. This was done to simplify the character segmentation and further

recognition of character and words, therefore, limiting the scope of the thesis.
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Font sizes of 7 points to 12 points were captured. Each file was captured under

a numeric name signifying the font, font size, and font style. An example of a

PCX file’s content is shown in Fig 4.3

ABCDEFGH
IJKLMNOPQ
RSTUVWXY?Z
abcdefgh
ijklmnopgqr
stuvwxyz01
23456789

Fig. 4.3 Content of a Raster File (Times Font).

4.3.3 Segmentation of Lines, words, and characters and generation of an ASCII
representation file for each font’s raster file

A program is written which scans the raster image (a PCX file) from the
top to bottom and left to right. The white pixels are taken as the background (0),
and the black pixels as the foreground (1). The foreground pixels are assumed to

represent lines, words, and characters. Connected components [83] are extracted
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in individual lists (See Fig 4.4). The minimax box [84] for each connected
component was computed (See Fig. 4.5). Going down from top of the page to the
bottom, lines were segmented based on the transitions between connected
components (See Fig 4.6). Dots on "i"s and "j's may form a line if there were no
ascender characters or a ca};ital letter in a given line (See Fig 4.7). Inter-line
spacing, as well as the size and position of the connected components (dots)
relative to other lines connected components (the body of i and j) were used to
merge the two lines connected components together. The algorithm written,
works also for italic letters; although, to limit the scope of the thesis I did not
generate the fonts in an italic format. Further, inter connected component spacing
was used to determine the words’ boundaries. Characters (connected components)
are then saved in an ASCII file in a matrix format consisting of "X"s for
foreground pixels and " "s for background pixels. These matrices are separated
by string of "$" as markers, defining the boundaries of characters, words, and
lines. For this experiment, since there were no words in the sample data, only

characters, the ASCII files contain only markers for the end of characters and lines

(See Fig. 4.8).
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Fig. 4.5 A Minmax box.
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Fig. 4.6 Line determination (Transition between connected components).
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Fig. 4.8 A portion of the content of an ASCII segmented file (Aero 7 point).
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4.3.4 Generation of recognition map files

In order to test the system properly I should have generated a bitmap of
all the words in the dictionary in all fonts and all sizes. This would have taken
much resources and time. Further, I did not take in to account in my
segmentation and recognition the touching characters nor the disjoint ones. As a
result, it was logical to record the recognition of characters for different set of
data (training-testing) for each font under a map file. This map file is used later
in conjunction with the dictionary to simulate as if the words in the dictionary
were passed through the recognition machine (See Section 4.3.6). The structure for
each map file contains several lines where each line corresponds to an
alphanumeric character class. On each line, recognition results for that character
of the given font is put in an order from the most likely to the least likely
possibilities for a given character. Next to each possibility, a relative distance to
the most likely choice is also included to be used as a potential by the EPAM

subsystem (See Fig. 4.9).
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w 0.9442 p D.93B3 n 0.8741 U 0.8495 g 0.8133 s 00,8133 o 0.7855 9 0.7757 5 0,7595

Fig. 4.9 Content of a map file.
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4.3.5 The dictionary

The dictionary used in this experiment was taken from the Unix operating
systems utility’s file (/usr/lib/dict/words) on a SGI workstation. This file
contains 23788 words, including words starting with Capital letters. For this
experiment, words containing "’ *, and " & " were removed leaving 23692 words.
Each word is individually put on a sing!< line in this ASCII file. This dictionary
is used to train the EPAM model as well as to generate a mapped dictionary (See
Section 4.3.6) in conjunction with the map file generated by the recognition

subsystem.

4.3.6 Generation of mapped dictionary

As mentioned in the section 4.3.4 a map file is generated by the recognition
subsystem, which is used to generate a simulated recognition of the dictionary in
a given font. The dictionary (See Section 4.3.5) is used with each map file to
generate a file that contains a record for each word in the dictionary. The first
element of the record is the word itself ( in a single line ) to be compared with
the results from EPAM for statistic verification. Each of the subsequent elements
(lines) of the record contains recognition results for a single character of a word.
The recognition result are taken from the map file. Each line contains a sequence
of possible choices for a given character. The choices are from the most likely
choice to the least likely with relative distances from the most likely choice (See

Fig. 4.10).
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10ch

1 1.0000 i 0.7793 I 0.7460 t D.S051 1 0.3780 £ 0.3735 j ©.3386 J 0.3141 r 0.2963 7 0.2224
n 1.0000 D G.8877 u 0.8489 o 0.B118 U C.7796 0 ©.7442 p ©.7132 r 0.6620 s 0.6177 O 0.6171
£ 1.0000 1 0.7815 I 0.664% £ 0.6110 1 0.5315 i 0,5046 7 0.3732 r 0.3615 ¥ 0.3551 T 0.3485
h 1.0000 k 0.9429 b 0.6976 x 0.4815 L D.4640 K 0.4613 v 0.4606 a 0.4338 u 0.4267 A 0.4068

l1st

1 1.0000 1 0.779% I G.7460 & 0,5051 1

k=]

,3780 £ 0.3735 j 0.3386 J ©.3141 r 0.2963 7 0.2924

[=]

s 1.0000 5 0.7043 z 0,5932 F 0.5828 r 0.5773 3 0.5424 5 0.5405 p 0.5184 g 0.5088 ¢ 0.5057
£ 1.0000 1 0.7515 I 0.6649 £ 0.6110 1 0.5315 i 0.5046 7 0.3732 r 0.3615 y 0.3551 T 0.3485
2nd

{1 1.6000 1 ©.9621 1 0.9256 1 ©.9C65 3 0.8849 J 0,872% 2 0.8603 t 0.8520 7 0.8486 3 0.7226
n 1.0000 x D.6730 a 0.5737 q 0.5707 h 0.5662 u 0,5461 D 0.5440 r 0.5409 X 0.5299 0 0,3295
4 1.0000 ¢ 0.9262 a 0.8198 A 0.6786 t 0.6036 R 0.5954 v 0.5913 x 0.5876 i 0.5838 g 0.5730C

J 1.0000 3 0.9838 1 0.9736 .9658 1 0.9363 1 0.9273 I 0.9273 7 0.8664 2 0.8436 t 0.B3935

[u)
o

t 1.0000 £ 0.7351 I 0.6152 y 0.5792 r 0.5764 1 C.5610 7 0.5522 ¥ 0.5240 1 0.4784 T 0.4553
4 1.0000 d 0.9262 a 0.8198 A 0.6786 £ 0.6036 R 0.5%54 v 0.5%13 x 0.5876 i 0.5838 g 0.5730

Fig 4.10 A mapped dictionary’s records. See Fig. 4.9 for correlation.
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4.4 The character recognition subsystem
4.4.1 The feature extraction

The features are extracted via the character crossings taken at 9 points
(zones) on the character matrix (See Fig. 4.11). At each point (zone) the character
matrix is scanned in 8 directions, North, North-East, East, South-East, South,
South-West, West, North-West. The number of crossings for each direction of each
zone is saved as i:arts of the feature vector. If the count is above 4 the count is
set to 4 and a flag is raised for possible further segmentation. The feature vector

comprises cross counts in all the 8 directions for all the zones.

', P omescax
. T XN X
Zone 1 of the faature xx X

veclor is:

]
N NE E SE S SW W NW Y? ;ﬂ
(0, 0.1,2, 1,0, 0 0) \

Fig. 411 A character’s features.
It can be seen that due to symmetry not all the paths need to be scanned.
However, first, the computational cost is not that much for a small matrix, and

second, multiple representation of a feature reinforces the existence of that
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feature. Generally a linear factor does not help in determination of a given class.
However, due to a digital grid in the existing images, the path from one zone to
another may be different in the other direction, generally different by one pixel.
This difference in a small matrix could be a factor in crossing counts. Note that
this feature extraction method is insensitive to character size, however, it is
sensitive to the rotation of the character. It is possible to transform the feature
vector to compensate for rotation of the character, and then compare the
transformed vector with the stored model of the existing classes.

One interesting finding that was reported by Miller [31] and elaborated by
Simon [85], determines a chunk as having 7 features plus or minus 2. This could
suggest that the number of features extracted by humans for an object at their
most complex form be around 7. If there were ample resolution and all the
redundant crossings were removed, the feature vector described for the characters

would contain crossings for 16 paths. (see Fig. 4.12).

Fig. 4.12 Simplification of feature space.
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4.4.2 The training

Several methods were tested to capture a model for each character class.
These models were captured over the training sample data as vectors themselves.

1) Taking a mean of all the feature vectors in a given class.

2) Taking a median of all the feature vectors in a given class.
3) Taking a mean and standard deviation of all the feature vectors in a given
class.
The model vectors are similar to the feature vectors except that each field of the
vector possess the appropriate statistic that is extracted. The unknown feature
vectors were then compared against these models for the best match (See Section
4.4.3). In this research project, the best resuits were found using the first method,

i.e., taking the mean of all the feature vectors in a given class.

4.4.3 The recognition

The recognition was performed via finding the smallest distance between
the feature vector for the unknown character and the existing models vectors.
(1) For the case of mean, the distance was computed as the following;:

I X-u)li

where X is the unknown feature vector, and u the mean of the training vectors of
a sample space for a given class.
(2) The same computation was done with the median instead of the mean.

(3) For the case of standard deviation, a covariance matrix with O for the off
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diagonal was assumed, i.e., no interdependence between cross counts in different
directions. This however, may not be true in reality, although it’s a reasonable
assumption. Only the variance in cross counts in each direction was computed
and stored as the diagonals of the matrix. The distance therefore was computed
as the following:
| (X-u) X7 |

where X is the unknown feature vector, and u the mean of the training vectors of
a sample space for a given class, and X the covariance matrix, a diagonal matrix,
where the entries on the diagonal of the matrix are variances (squared standard
deviations) that are extracted during training. The aim of the covariance matrix
was to normalize the dimensional distances computed between the unknown
feature vector and the mean feature vector of a given class.

It was found that using the mean difference (1) and a filter during distance
computation much better results could be achieved. This filter did not add inter-
vector differences of items if the items’ difference was below 0.5. This came from
the logic that due to the digital grid's property, a crossing may fall in a path in
one sample and it may not in another. The average of the two cases taking 1 for

one and 0 for the other is 0.5.
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4.5 The EPAM model as a contextual verifier
4.5.1 Implementation

The algorithm for EPAMINA is given in [17]. The algorithm was
implemented in C on an IBM® PC compatible. The implementation structure was
kept the same as the algorithm in the reference, for correspondence and
verification. Modifications and additions of modules were implemented consistent
with the original architecture and methodology. Although the semantics of the
algorithm looked difficult to be understood at first, by implementing and
debugging the system, it proved very simple in nature. The simplicity comes from
the recursiveness and local processing. Fig. 4.13 show a flow diagram for

components of the EPAM subsystem.
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nit Select and perform
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Determine input Determine input
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Sort objectinto

a st of familiar Leam f:om

chunks samples
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Test value Sim
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existing image

Famillarize
naw Image

Fig. 4.13 A flow diagram for the EPAM processes.
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4.5.2 Training

To accelerate learning, the familiarization parameter was set to 1.0, i.e.,
every word would be learned in one trial. Further, the whole word parameter was
set to 1.0, i.e., words would be learned as a whole or not at all. By doing this, the
effect is similar to learning all of the dictionary without any partial learning of
any word. Therefore, the system would look like a dictionary look-up system. The
dictionary mentioned in section 4.3.5 was used as an input to train the system

with the above mentioned settings of parameters.

4.5.3 EPAM search behaviour

EPAM takes the inputted string and performs the search explained in the
section 2.2.2.3. The result is:
1) If a word (a leaf node) is found through the search that has the same number
of features as the inputted stimulus, then that word is outputted as the response
of the EPAM. Note that the response is similar to the stimulus to the extent of the
tests performed along the search path. Differences with the word retrisved and
the stimulus is further exploited in learning processes (See Section 2.2.3).
2) If a word (a leaf node) is found through the search that has a fewer number
of features than the stimulus, then that word is stored in the short-term memory-
and other features of the stimulus are searched for in the net to find other
terminal nodes that would match those features (the rest of the stimulus). The set

of chunks found is the response of the EPAM. This kind of recognition has an
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effect of segmenting the stimulus object into many smaller familiar objects. This
by itself is a promising model for segmentation by recognition as mentioned in
section 3.1.2. To test this property, EPAM was provided with concatenated strings
of words as one word (See Fig. 4.14). Most of the time, the effect was
segmentation of words that were concatenated (See Fig. 4.14a). The errors
generally fell into the categories of over lumping or fragmentation. If two chunks
(words) made a familiar meaningful word it would be lumped into one word,
although they "meant" to be separate. Also, there could be some chunks left that
lost their features due to lumping of those features with other words; and as a

result, do not make any single word (See Fig. 4.14b, and Fig. 4.14c).

14.a 1staboutapple

(1st)(about)(apple)

14b appleaboutlst

(adolescent)(1st)

l4.c aboutlstapple

(arbutus)(t)(apple)

Fig. 4.14 Behiviour of EPAM under concatenated words.

Note also that each chunk found in the response is similar to the stimulus
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to the extent of the tests performed along the search path. As a result, most
erroneous lumping of chunks, were lumped chunks that were only similar to the
extent of the tests performed along the search path. For errors, on average, the
concatenation of response chunks were not that similar to the concatenation of the
original words. This could have been deducted from the earlier studies of EPAM
(See Section 2.3.1.6) showing at least three similar characters in words when a
correct one was not responded. This similarity ratio will certainly be more
jeopardized as only three characters are similar in a larger chunk. Of course, this
dissimilarity could be used during the search to produce response chunks that are
closer to the stimulus when concatenated. This would solve most errors due
to over lumping and fragmentation of chunks. For the cases that can’t be solved
by this methodology the system needs higher contextual information such as
phrase objects, sentence objects, and so on to determine the segmentation of the
chunks.
4.5.4 The modified search algorithm

One of the first problems encountered with the EPAM was its sensitivity
to the values of the features of the presented stimulus. As mentioned in the
section 2.3.2.2, the search may not lead to the "correct” object if the value of a
feature has been extracted "wrong”. This may also happen if there is noise in the

stimulus. One reason for arriving at a wrong response is following only one path

“In EPAM an image is retrieved without further comparison of other features that did not
get tested during the search. If a complete comparison is done between the image &nd the
ecquivalent part of the stimulus cbject, a more selective response could be made. This of the
course is relative to other possible responses that could be made {(See the following section
4.5.4 for more details).
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from a test node to another via the branch that its domain item is specified as the
closest possible match to the feature in question (See Section 2.3.2.2). Of course,
the search would continue by going through the NEC branch if there is not a
close match. However, alternate paths having close similarity with the given
feature are not explored. Exploring those alternate paths would in effect simulate
a form of redundant path access. Those alternate paths could be determined via
some form of similarity measure (See Fig. 4.15). In this experiment the alternate
paths where characters, therefore, alternate character possibilities with
accompanying distances generated from the character recognition subsystem were
used to decide these alternate paths. The 10 closest distances were chosen as the
basis for alternate paths. Alternatively, the number of alternate paths could be

determined by some local and/or global threshold acting on the distances.

testfirst
subobject
1tem

stimulus

By foliowing other paths that are similarto "1*, the search may lead to the coriectimage.

Fig. 4.15 The alternate paths from a test node
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Furthermore, all nodes reached via all the paths, are subject to closeness
evaluation to the stimulus. The closest image to the stimulus is the response of
the system. This closeness could be determined by some form of similarity
measure. In this experiment, the provided distances of characters to the closest
match were used as potentials to compute the distance between an image and the
stimulus. The computation of an image’s potential at a leaf node is done as

follows:

m

P, = [ pt)

j=1

where P;(i) is the total potential of an image at a leaf node i, m the length of the
image at the leaf node, p(j) the potential of feature j. Each p(j) is determined by
searching for that feature (character) of the stimulus in the alternate character list.
Corresponding potential of the found character is then applied to computation of
the total potential for the image. If the corresponding character is riot found in the
alternate list, a balanced potential (0.5) is applied to the computation.

In this experiment to test the algorithum described above in a controlled
setting, the recall of a single chunk was encouraged, i.e., for each feature that is
lacking in the image, a low potential (0.0001) is applied to the total potential of
the image, making it very lv. The images with potential below a threshold are
not considered for competition with other images found throughout the search.

The image with the highest potential is the first immediate response of the
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system with other choices as alternate responses depending upon their potential

difference to the image with the highest potential.

4.6 The results
4.6.1 Results of the character recognition subsystem
4.6.1.1 Tests scenarios (cases)
The fonts used in this experiment were divided into three sets:
set_1: { font #1, ... font #15 }
set_2 : { font #16,...font #30 }
set_3: | font #1, ... font #30 }
Each font as described in the sections 4.2 and 4.3, consists of a set of six different
font sizes from 7 to 12 points. Each font size consists of alphanumeric characters
including both upper and lower case characters.

Five cases were tested for character recognition sybsystem.

case Training set Testing set
case_1 set_3 set_3
case_2 set_1 set_1
case_3 set_2 set_2
case_4 set_1 set_2
case_d set_2 set_1

Table 4.3 Test cases for character recognition subsystem.
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In each case, three types of statistics were taken for six different conditions as

follows: (The three types of statistics [mean, median, and standard deviation] are

described in the section 4.4.2)

cond_1:

cond_2:

cond_3:

cond_4 :

cond_b5:

cond_6 :

Recognition results for the first choice.
Recognition results for the first choice not

differentiating between the upper and the lower case characters.

Recognition results for the top five choices.
Recognition results for the top five choices not

differentiating between the upper and the lower case characters.

Recognition results for the top ten choices.
Recognition results for the top ten choices not

differentiating between the upper and the lower case characters.

Tables 4.4 - 4.37 present the recognition results for the "mean” statistic. A

brief description of each case and condition tested is given under each table. For

the "median" and the "standard deviation", only ({case_1, cond_1) and (case_l,

cond_5)) is reported for comparison with the "mean”, since these two statistics did

not do as well as the "mean" did.
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4.6.1.2 Results of the cases where training and testing sets were the same (Using

the "mean" statistic)
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font 7 8 9 10 11 12 Average
size

font
1 0.4677 0.4516 0.5000 | D.5484 0.6613 0.4839 0.5188
2 0.5161 | 0.5806 { 0.7097 0.6774 | 0.7903 0.8065 0.6801
3 0.4839 0.4677 0.5968 0.5806 0,.6774 0.6290 0.5726
4 0.5000 C.6452 0.7419 0.7419 0.7581 0.8226 C.7016
5 0.5000 0.5323 0.5645 | 0.6452 0.5323 0.4677 0.5403
6 0.4355 | 0.5484 | 0.8548 | 0.8387 | 0.8226 | 0.7903 0.7151
7 0.4194 0.5323 0.6774 0.B065 0.7742 0.7419 0.658B6
a 0.7581 0.7742 0.5645 0.7258 0.7903 0.6935 0.71717
g 0.7419 0.7903 0.7742 0.6613 0.8387 0.6774 0.7473
10 0.3710 0.4677 0.5806 0.6774 | 0.6129 0.6129 0.5338
11 0.4032 | 0.5645 0.5484 0.5484 C.5806 0.5645 0.5349
12 0.4516 0.6290 | 0,7097 | 0.7097 | 0.6613 0.7742 0.6559
13 0.6129 0.4839 0.6290 0.6452 0.6774 0.7097 0.6263
14 0.629%0 0,7258 0.6129 0.7258 0.6935 0.7097 0.6828
15 0.7097 0.5484 0.6290 0.8226 0.5484 0.6452 D.6505
16 0.5161 0.5484 0.5484 0.5000 0.4516 0.4194 0.4973
17 0.5323 0.6613 D.7581 0.58B06 0.6935 0.7903 0.6694
18 0.4194 0.4355 0.6613 0.6452 0.629%0 0.5968 0.5645
19 0.5645 0.7097 0.7503 0.7581 0.8065 0.7419 0.7285
20 0.5484 0.7419 0.7581 0.7581 G.7258 0.7903 G.7204
21 0.3548 | 0.4194 | 0.6613 | 0.6935 | 0.6128% 0.6290 0.5618
22 0.7097 0.6452 0.6774 | 0.6452 | 0.7503 0.7742 0.7070
23 0.5161 0.6774 0.7581 0.8710 | 0.9032 0.7903 0.7527
24 0.6290 | 0.8226 | 0.7903 | 0.7742 | 0.7581 | 0.7742 0.7581
25 0.3226 | 0.4839 | 0.6220 | 0.7742 | 0.7097 0.7087 0.6048
26 0.5161 0.5968 0.7581 0.7097 0.6129 0.6129 0.6344
27 0.6935 0.7581 0.B8226 | 0.6290 | 0,5323 0.6129 0.6747
28 0.6613 0.7419 0.7%03 0.B226 0.7581 0.B548 0.7715
29 0.5806 0.6452 0.7581 0.75B1 0.7742 0.8226 0.7231
30 0.5161 | 0.5968 0.6290 | 0.6452 | 00,7258 | 0.7037 0.6371
Aver 0.5360 | 0.6075 | 0.6828 | 0.6973 | C.6968 | 0.6919 0.6521

age
Table 4.4 case_i, cond_.l
Trained with {font #i,..,font #30).

Tested with (font #1,..,font #30).

Recognition results for the first choice.
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font b B 9 i0 11 12 Average
size

font
1 0.6290 0.5323 0.5968 0.6452 0.7097 0.5645 0.63129
2 0.5968 0.6774 0.7903 0.7581 0.8226 0.8226 0.7446
3 0.6290 | 0.6129 | 0.7097 | 0.6935 | 0.7742 | 0.7258 0.6209
q 0.5806 0.7419 0.8387 0.7742 0.7903 0.8871 0.7688
5 0.5806 | 0.6290 | 0.6613 | 0.7258 | 0.5968 | 0.5323 0.6210
6 0.5161 | 0.5645 | 0.8710 | 0.8871 | 0.8710 | 0.8548 0.7608
7 0.5161 0.5645 0.7903 0.8226 | 0.8548 0.8387 0.7312
8 0.7%03 0.8226 0.5968 0.7258 0.7903 0.8065 0.7554
9 0.8226 0.8710 0.8548 0.7258 0.8871 0.7503 0.8253
10 0.4839 0.5484 0.6452 0.7581 0.7581 0.6613 0.6425
11 0.4677 | 0.5968 | 0.5968 | 0.6129 | 0.6774 | 0.6452 0,5995
12 0.5968 0.7258 0.8710 0.7903 0.7742 0.8387 0.7661
13 6.7097 | 0.5968 | 0.7419 | 0.6935 | 0.7419 | 0.7742 0.7097
14 0.7258 | 0.8548 | 0.6935 | 0.8226 | 0.7%03 | 0.8387 0.7876
15 0.7581 0.6452 0.7581 0.8710 0.6290 0.6774 0.7231
16 p.5484 | 0.5645 | 0.5806 [ 0.5806 | 0,5000 | 0.5000 0.5457
17 0.6613 | 0.7742 | 0.8871 | ¢.7097 | 0.7903 [ C.B387 0.7769
18 0.4839 0.4B39 0.7087 0.7258 C.6774 0.6935 0.6290
19 0.6452 | 0.7581 | 0.8387 | 0.7503 | 0.8387 | 0.8387 0.7849
20 0.6452 | 0.8B387 | 0.8548 | 0.7903 | 0.7742 | 0.8710 0.7957
21 0.3871 0.4677 0.7258 0.7419 0.6452 0.6935 0.6102
22 0.7903 | 0.7258 | 0.8226 | 0.7258 | 0.8226 | 0.8387 0.7876
23 0.5645 0.7419 0.8226 0.8871 0.9516 0.8226 0.7984
24 0.7097 0.9032 0.%032 0.8548 0.8548 0.8871 0.8522
25 0.3710 | 0.5484 | 0.6774 | 0.8065 | 0.7581 | 0.8065 0.6613
26 0.6452 | 0.6613 { 0.8065 | 0.7742 | 0.6935 | 0.6613 0.7070
27 0.8065 | 0.8387 | 0¢.9032 | 0.6613 | 0.5806 | 0.62%0 0.7366
28 0.7581 | 0.8065 | 0.8387 | 0.8226 §{ 0.7903 | 0.8032 0.8199
29 0.6129 | 0.6774 | 0.8065 | 0.8710 | 0.8226 | 0.8871 0.7796
30 0.5645 | 0.6452 | 0.6774 | 0.6935 | 0.7742 | 0.7742 0.6882
Aver 0.5199 | 0.6806 | 0.7624 | ©.7581 | 0.7581 | 0.7634 0.7237

age
Table 4.5 case_l, cond_2
Trained with {font #1,..,font #30).

not differentiating between upper and lower case characters.

Tested with {font #1,..,font #30}.
Recognition results for the first choice
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f9nt 7 8 g 10 11 12 Average
size

font
1 0.B8387 0.8226 0.9032 0.8871 | 0.9032 0.8387 0.B656
2 0.8B7L | 0.9194 | 0.5355 | 0.9355 | 0.9839 | 0.8677 0.9382
3 0.8710 0.91%4 0.9677 0.9355 0.5677 0.9516 0.9355
4 0.8871 0.9194 1.0000 | 0.983% | D.9516 0.9516 0.9489
5 0.8548 | 6.8871 | 0.91%4 | 0.8871 | 0.8871 | 0.8548 0.8817
6 0.7419 0.8065 | 0.9677 0.9839 1.0000 1.00C0 0.9167
7 0.7258 0.8225 0.9194 | 0.9677 0.9677 1.0000 0.9005
B 0.9355 | 0.9516 | 0.8871 | 0.8871 [ 0.9516 | 0.9516 0.9274
9 0.9355 | 0.9677 | 0.9355 [ 0.9839 | 0.9839 | 0.5194 0.9543
10 0.8710 0.8548 0.9516 | 0.9516 0.9516 0.8710 0.5086
11 0.8226 | 0.5032 | 0.91%4 | 0.9516 | 0.8871 | 0,9032 0.8978
i2 0.9032 0.9516 | 1.0000 0.9839 0.9839 1.0Q000 0.9704
13 0.9355 | ©0.B548 { 0.9194 | 0.9194 | 0.9677 | 0.9516 0.9247
14 0.9516 | 0.9839 | 0.9355 | 0.9677 | 0.9677 | 0.9839 0.9651
15 0.9516 0.9194 0.9355 0.9516 | 0.983%9 0.9839 0.9543
16 0.8387 | ©0.8387 | 0.8871 | 0.8065 | 0.7742 [ 0.7903 0.8226
17 0.9032 0.9032 0.9677 0.9677 0.9839 1,0000 0.9543
18 0.9032 0.7903 0.9032 0,8871 0.8387 0.8871 0.B6B3
19 0.8548 | ©.8871 | 0.9677 | 0.96%77 | ©.9677 [ 0.9677 0.9355
20 0.8871 | 0.9677 | 0.9677 | 0.9677 | 0.9677 | 0.9839 0.9570
21 0.6129 | 0.8065 | 0.9355 | 0.9677 | 0.9355 | 0.9%194 0.8629
22 0.9194 | 0.9355 | 0.9516 | 0.9355 | 0.9832 | 0.9839 0.9516
23 0.8710 0.9194 0.9839 1.0000 1.0000 0.9516 0.9543
24 0.9194 | 0.9677 | 0.9677 | 0.9677 | 0.9835% | 0.53677 0.9624
25 0.7419 | 0.8226 | 0.9194 | 0.9355 | 0.9516 | 0.9516 0.8B71
26 0.8548 0.8871 0.9677 0.9516 0.9194 C.B710 0.9086
27 0.9839 | 0.9839 | 0.9677 | 0.9516 | 0.9194 [ 0.9355 0.9570
28 0.9032 | 0.9516 | 0.9839 | 0.9677 | 0.9839 | 1.0000 0.9651
29 0.8226 0.8871 0.9194 1.0G60C | 0.9677 0.9839 0.9301
30 0.8065 | 0.8226 | 0.9194 | 0.9516 | 0.9677 | 0.983%9 0.90B6
Aver 0.8645 | 0.8952 | 0.9435 | 0.9468 | 0.9495 | £.9435 0.%238

age
Table 4.6 case_l, cond_3
Trained with {font #1,..,font #30}.

Tested with (font #1,..,font #30).

Recognition results for the
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top five cheices.




fgnt 7 8 9 10 11 12 Average
size
font
1 0.8548 | 0.8548 | 0.9032 [ 0.5032 | 0,9194 | 0.8387 0.879%0
2 0.8871 0.9194 0.9355 6.9355 0.9839 0.9677 Q0.9382
3 0.8710 0.91%4 0.98B39 0.9516 0.5677 0.9516 0.9409
4 0.887%1 | 0.9355 | 1.0000 { 0.883% [ 0.9677 | 0.9516 0.9543
5 0.8710 | 0.9194 | 0.9355 | 0.8871 | 0.9032 | 0.8871 0.2005
6 0D.7742 | 0.8065 | 0.9677 | 0.983% | 1.0000 | 1.0000 0.5220
7 9.7419 0.8226 | 0.9194 0.9677 0.983% 1.0000 0.9059
B 0.9355 | 0.9677 | 0.8871 | 0.8871 | 0.9677 {1 1.0000 0.9409
g 0.9355 | 0.9677 | 0.9355 | 0.9839 | 0.983% | 0.9194 0.9543
10 0.8871 0.B548 0.9516 0.9516 0.983%8 0.%032 0.9220
11 0.8226 | 0.9355 | 0.9355 | ©.9677 | 0.9194 | 0.9355 0.9154
12 0.9355 | 0.9516 | 1.0000 | 0.9839 | 0.983% | 1.0000 0.9758
13 0.9355 | 0.8548 | 0.9355 | 0.9194 | 0.9677 | 0.8677 0.58301
14 0.9677 0.8839 0.9516 0.9677 0.9677 0.9839 0.9704
i5 0.9516 0.9194 0.9516 0.9677 1.0000 1.0000 0.9651
16 00,8710 | 0.8387 | 0.8871 | D.B548 [ 1.8226 | 0.8065 0.8468
17 0.9032 0.9154 0.9677 0.9839 0.9839 1.0000 0.9597
18 0.9032 0.8065 0.9032 0.9194 0.887% 0.9355 0.8925
19 6.8548 | 0.%032 | 0.9677 | 0.9677 | 0,9839 | 0.9839 0.9435
20 0.8871 | 0.9677 | 0.9677 | 0.9839 [ 0.9839 | 0.983%8 0.9624
21 0.6774 0.9032 0.9677 0.9839 0.9355 0.9194 0.8578
22 ©.9194 | 0.9355 | 0.9516 | 0.9355 [ 0.9839 { 0.9839 0.9516
23 0.8710 0.9355 0.9839 1.0000 1.0000 0.9516 0.9570
24 0.9154 0.9677 G.9677 0.5677 0.9839 0.95839% 0.9651
25 0.7903 0.8387 0.9516 0.9839 0.9839 0.9677 0.9154
26 0.9032 0.2194 0.9839 0.983% 0.8355 0.8710 0.9328
27 0.9839 | 0.9839 | 0.9677 | 0.9677 | 0.9355 | 0.8355 0.9624
28 0.9194 | 0.9516 | 0.9839 | 0.9677 | 0.9839 | 1.0C00 0.9677
29 0.8387 0.8871 0.91594 1.0000 0.9677 0.9839 0.9328
30 0.8063 0.8387 0.9194 G¢.9516 0.9677 G.9839 0.9113
Aver 0.8769 | 0.9070 | 0.94%5 | 0.9565 | 0.9613 | 0.9532 0.9341
age
Table 4.7 case_l, cond_4
Trained with (font #1i,..,font #30).
Tested with {font #1,..,font #30}.

. Recoggition results fuor the top five choices
not differentiating between upper and lower case characters.
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font 7 8 9 10 11 12 Average
size

font
1 0.9516 | 0.8871 0.2677 0.9677 0.9516 0.9032 0.9382
2 0.9677 | 0.9677 | 0.9839 | ©.9839 | 1.0000 | 1.0000 0.9839
3 0.9839 0.9839 0.9839 0.9677 D.9839 0.9839 0.9812
4 0.9516 1.0000 1.0000 1.0000 | 0.9838 0.9839 0.9B66
5 0.9516 0.9677 0.9839 90,9355 0.9516 | 0.9355 0.9543
5 0.8710 0.9194 1.0000 1.0000 | 1.0000 1.0000 0.9651
7 0.8710 | 0.8%677 1.0000 | 1.0000 1.0000 1.0000 0.9731
8 0.9839 | 1.0000 [ 0.8516 | 0.9839 | 1.0000 | 1.0000 0.%666
9 0.9677 0.9839 1.0000 1.0800 | 1.0000 0.9516 0.9839
10 0.9516 | 0.9194 0.9677 1.0000 1.0000 0.9677 0.9677
11 0.95194 0.9677 1.0000 0.9677 0.9516 0.9839 0.9651
12 0.9677 0.9677 1.0000 | 0.9839 1.0000 1.0000 0.5866
13 0.9839 0.9516 0.9194 0.9677 0.9677 0.9677 0.9597
14 1.0000 1.000C | 0.967%7 1.0000 | 1.0000 1.0000 0.9946
15 G.983% 0.9677 0.9839 0.9839 | 1.0000 1.0000 0.9866
16 0.9677 0.9%677 0.8677 0.9677 0.9194 0.9032 0.9489
17 0.9839 0.9839 0.9839 1.0000 1,0000 1.0000 0.9919
18 0.9839 0.9194 0.9516 0.9839 0.9516 | 0.9516 0.9570
19 0.9839 | 0.9677 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.9919
20 6.9516 | 1.0000 | 1.0000 | 1.0000 [ 0,983% | 1.0000 0.98592
21 0.7581 | 0.%032 0.9839 0.9839 0.9839 0.3677 0.9301
22 0.9516 0.9839 1.0000 1.0000 0.9839 0.9839 0.9B39
23 0.9677 | 0.9839 | 1.0000 | 1.0000 | 1.0000 | C.9833 0.9892
24 0.9677 0.9839 1.0000 0.983% | 0.5839 1.0000 00,9866
25 0.8387 | 0.9194 | 0.9355 | 0.9839 | 0.9839 [ 0.9B839 0.9409
26 0.9355 0.9355 1.0000 0.98339 0.9677 0.9355 0.9597
27 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9677 | 0.9516 0.9866
28 0.9677 | 0.9839 | 1.0000 { 0.983% | 1.0000 | 1.0000 0.9892
29 1.0000 | 1.0000 | 0.9839 ] 1.0000 | 1.000C | 1,0000 0.9973
3c 0.8871 | 0.8710 | 0.9516 | 0.9677 [ 1.0000 [ 1.0000 0.9462
Aver 0.9484 0.9618 | 0.9823 0.9860 0.9839 0.9780 0.9734

age
Table 4.8 case_l, cond 5
Trained with {font #1,..,font #30}.
Tested with (font #1,..,font #30}.

Recognition results for the
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top ten choices.




Recogpiqion results for the top ten choices
not differentiating between upper and lower case characters.
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fqnt 7 B 9 10 11 12 Average
size _

font
1 0.9516 | 0.9032 | 0.9677 | 06.9677 | 0.9516 | 0.9032 0.9408
2 0.9677 | 0.9677 | 0,9839 | 0.9839 | 1.0000 | 1.0000 0.9839
3 0,9839 | 0.9839 | 0.9839 [ 0.9677 | 0.3..39 | 0.9835 0.9812
4 0.9516 1.0000 1.0000 1.0000 |} 0.5839 0.9839 D.8866
5 0.9516 | 0.9677 | 0.9839 | 0.9516 | 0.9516 | 0.9516 0.9597
6 0.8871 | 0.9194 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.9677
7 0.8710 0.9677 1.0000 1.0000 1.0000 1.0000 0.9731
8 ©.9839 { 1.0000 | 0.9677 | 0.9839 | 1.0000 | 1.00C00 0.9892
9 0.9677 0.9839 1.0000 1.0000 1.0000 0.9677 0.9866
10 0.9677 0.9154 0.9677 1.0000 | 1.0000 0.9677 0.9704
11 0.9355 | 0.2677 | 1.0000 | 0.983% | 0.9839 | 0.9839 0.9758
12 0.9877 0.9677 1.0000 0.9839 1.0000 1,0000 0.9866
13 0.9839 | ¢.%677 | 0.9516 | 0.9839 ; 0.9839 | 0.9838 0.9758
14 2.0000 | 1.0000 | 0.9839 | 1.0000 } 1.0000 [ 1.0000 0.9973
15 0.983% 0.9839 0.9839 0.9838 1.0000 | 1.00Q00 0.9892
16 0.9677 0.9839 0.9677 0.9677 0.9355 0.9194 0.9570Q
17 0.9839 0.9839 0.9839 1.0000 1.0000 1.0000 0.9919
18 0.9839 0.9194 0.9516 1.0000 0.9677 0.9839 0.9677
19 0.9829 | 0.9839 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.9946
20 0.9516 | 1.0000 | 1.0000 | 2.0000 } 0.9839 | 1.0000 0.9892
21 0.8871 0.9677 0.9839 1.0000 | 0.983% 0.9839 0.9677
22 0.9516 | 0.983% |} 1.0000 | 1.0000 | 0.5835 | 0.9839 0.9839
23 0.9677 | 0.983% | 1.0000 | 1.0000 | 1.0000 | 0.9839 0.9892
24 0.9677 0.9839 1.0000 0.9839 0.9839 1.0000 0.9866
25 0.8871 | 0.9355 | 0.9677 | 1.0000 | C¢.9839 | 0.983% 0.9597
26 0.5516 0.9677 1.0000 1,0000 1.0000 0.9516 0.9785
27 1.0000 | 1.0000 | 1.0000 { 1.0000 § 0.9677 | 0.9516 0.9866
28 0.5839 | 0.9839 | 1.0000 j 0.9839 | 1.0000 | 1.00340 0.9919
29 1.0000 1.0000 1.0000 1.0000 1.,0000 1.0000 1.0000
30 0.8871 | 0.871¢ | 0.9516 | 0.9677 | 1.000C¢ | 1.0000 0.9462
hver 0.9570 | 0.9683 | 0.98B60 { 0.9898 | 0.9876 | 0.9823 0.9785

age
Table 4.9 case.l, cond_ 6
Trained with {font #1,..,font #30).
Tested with (font #1,..,font #30}.




f?nc 7 8 9 10 11 12 werage
size

font
1 0.5323 | 0.4355 § 0.5161 | 0.5806 L6452 | 0.5323 0.5403
2 0.5806 | 0.6452 | 0.6935 | 0.7581 L7903 | 0.7742 0.7070
3 0.5000 | 0.5484 | 0.6774 | 0.6613 .6935 | 0.6935 0.6290C
4 0.4677 | 0.6125 | 0.7742 | 0.6774 .7581 | 0.8065 0.6828
5 0.4516 | 0.5000 | 0.6280 [ 0.5806 .5645 | 00,4839 0.5349
& 0.4516 | 0.4839 | 0.8387 | 0.8065 .B065 | 0.7903 0.6962
7 0.4516 | ¢.5806 | 0.6613 | 0,7503 .6774 | 0.7097 0.6452
8 0.7258 | 0.7581 ) 0.5000 [ 0.693= .6935 | 0,7097 0.6801
g 0.6774 | 0.7581 | 0.7742 | 0.6935 .B065 | 0.6774 0.7312
10 0.4355 | 0.5484 | 0.6452 | 0.6613 .6935 | 0.6250 0.6022
11 0.4516 | 0.4516 | 0.5645 | 0.5323 ,5806 | ©.5484 0.5215
12 0.5806 | 0.7097 | 0.7087 | 0.7258 L6774 | 0.6935 0.6828
13 0.6613 | 0.4516 | 0.5645 | 0.6129 .64%52 | D.6452 0.5968
14 0.6774 | 0.7258 | 0.5645 | 0.7258 .7258 | 0./742 0.6989
15 0.6774 | 0.5161 | 0.6250Q | C0.7581 .6452 | 0.6613 0.6478
Aver 0.5548 | 0.%817 | 0.6455 | 0.6839 .6935 | 0.6753 0.56398

age

Table 4.10 case_2, cond_1

Trained with {font #1,..,font #15).
Tested with (font #1,.. font #15).

Recognition results for the first choice.
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font 7 8 9 10 11 12 Average
s1ze
font

1 0.6774 0.5323 0.5968 D.6613 0.7097 0.5568 00,6250
2 G.6452 0.7097 0.8226 | 0.8387 0.8063 0.B8065 0.7715
3 0.6290 | 0.6613 0.7742 0.7581 0.8065 0.7742 0.7339
4 0.5323 0.6235 0.8548 | 0.7097 0.7742 0.B8548 0.7366
3 0.5806 0.6129 0.7258 ( 0.6774 n, 6129 0.5323 0.6237
6 0.5161 0.5323 0.8387 0.6710 | 0.8548 0.B387 0.7419
7 0.5000 0.6250 | 0.7419 0.B226 0.7742 0.8065 0.7124
8 0.7418 0.8065 0.5484 0.6935 | 0.7097 0.7742 0.7124
9 0.7803 0.8226 0.8548 0.7419 0.8387 0.7419 0.7984
10 0.5484 0.5968 0.7097 0.7419 0.7742 0.6774 0.6747
11 0.5161 0.5161 0.5968 0.5968 0.6613 0.6129 0.5833
12 0.6774 0.7903 0.8710 0.7903 0.8065 0.7742 0.7849
13 0.7581 0.5968 0.6935 0.6774 0.7258 0.7581 0.7016
14 0.7581 0.8548 0.6935 0.8065 0.7742 (.8387 0.7876
15 0.7419 0.6129 0.7258 | 0.8065 0.7258 0.7258 0.7231
Aver 0.6409 | 0.6645 | 0.7366 | 0.7462 | 0.7570 [ 0.7409 0.7143

age

Table 4.11 case_2, cond_2

Trained with {font #1,..font #15).
Tested with (font #1,..font #15).

Recognition results for the first choice

not differentiating between upper and lower case characters.
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font 7 B 9 10 11 12 Average
size

font
1 o.8871 | 0.8710 | 0.8871 | 0.9032 | 0.9355 [ 0.B226 0.8844
2 0.9032 | 0.9355 | 0.9518 | 0.9677 | 0.9839 | 0.9677 0.9516
3 0.9194 0.92F5 0.9839 6.9516 | 0.9677 0.9677 0.9543
4 0.8387 | 0.9194 | 1.0000 | 0.983% { 0.9516 | 0.9677 0.9435
5 0.8710 | 0.9032 0.9194 0.9032 | 0.8710 0.8871 0.88925
6 0.7419 0.7203 0.9839 | 0.9839 1.0000 1.0000 0.9167
7 0.7419 0.8226 0.9194 0.9677 0.9677 1.0000 0.2032
8 0.9355 0.9677 0.9194 0.£871 0.9516 0.9355 0.95328
g 0.9032 0.9677 0.9194 0.9677 0.9677 0.8710 0.9328
10 0.8871 | 0.9032 | 0.9516 | 0.9355 | 0.9677 | 0.8871 0.9220
il 0.7581 | 0.9032 | 0.9516 | 0.9355 | 0.%032 { 0.915%4 0.8952
12 0.8871 0.9194 1.0000 | 0.9839 0.9839 1.0000 0.9624
13 0.9677 0.8387 6.9194 0.9516 0.9677 0.9677 0.9355
14 0.72,5 | 0.9835 | 0.9194 | 0.9516 | 0.9677 | 0.983% 0.9570
15 0.9355 0.9032 0.9355 | 0.9516 | 0.9677 0.9677 0.9435
Aver 0.8742 { 0.9043 | 0.9441 | 0.94B4 | 0.9570 | 0.9430 0.9285

age

Recognition results for the top five choices.

Table 4.12 case_2, cond_3

Trained with {font #1,..,font #15).
Tested with (font #1,.. font #15).
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font 7 8 9 10 11 12 Average
size
font

1 0.9032 0.9032 0.B871 0.9355 0.9355 0.8548 0.29032
2 0.9032 | 0.9355 | 0.9516 | 0.9677 | 0.9835 | 0.9677 0.9516
3 0.95194 | 0.9355 | 0.983% | 0.9516 | 0.9677 | 0.8677 0.9543
4 0.8387 0.9355 1.0000 0.9839 0.9516 0.9677 0.9462
5 0.8871 0.9385 0.9194 0.9032 0.8871 0.9032 0.9059
6 0.7742 0.BC65 0.98398 0.9839 1.0000 1.0000 0.9247
7 0.7429 | 0.82256 | 0.9194 | 0.9677 | 0.983% | 1.0000 0.9059
8 0.9355 0.9677 0.91%4 0.8871 | 0.9677 0.9677 0.9409
kS 0.9032 0.9677 0.9194 0.9677 0.9839 0.9032 0.9409
19 0.9032 | 0.9032 | 0.9516 | 0.9516 | 0.883% | 0.9194 0.9355
11 0.7581 | 0.9194 0.9677 0.9677 0.9355 0.9355 0.9140
12 0.919%4 0.9194 1.0000 0.9839 | 0.98389 1.0000 0.9677
13 0.9677 | 0.8387 | 0.9355 | ©.9516 | 0.8677 | ©.9677 0.9382
14 ¢.9355 | 0.9839 | 0,9355 | 0.9516 | 0.9677 | 0.9839 D.9597
13 0.9516 | ©0.9032 | 0.9355 | 0.9677 | 0.9835% | 1.0000 0.9570
Aver 0.8828 0.9118 | 0.9473 0.9548 | 0.9656 0.9559 0.9364

age

Table 4.13 case_2, cond_4

Trained with {font #1,.. font #15).
Tested with (font #1,.. font #15).
Recognition results for the top five choices
not differentiating between upper and lower case characters.
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font 7 8 9 10 11 12 Average
size

font
1 00,9516 0.9194 0.983% 0.9677 0.9677 0.91924 0.9516
2 0.9677 | 0.9839 | 0.5839 | 1.0000 | 1.0000 1.0000 0.9892
3 0.9839 0.98390 0.2839 0.9839 0.9839 0.9839 0.9839
4 ©.9355 | 1.0000 | 1.0000 | 1.0000 | 0.9839 | 0.9833 0.9839
5 0.9677 | 1.0000 | 0,9677 | ©.9516 | 0.9677 | 0.9516 0.9677
0.8548 | 0.8032 1,0000 1.0000 1.0000 1.0000 0.9597
7 0.8871 0.9516 0.9839 1.0000 | 1.0000 1.0000 0.9704
8 0.9677 1.0000 0.9516 0.9677 1.0000 1.0000 0.9812
9 0.9677 1.0000 1.0000 1.0000 1.0000 0.9516 0.9866
10 0.9516 | 0.9516 | 0.9839 | 1.000C | 1.0000 | 0.5839 0.9785
11 0.9194 | 0.9677 | 1.0000 | 0.9677 | 0.9677 | 1.0000 0.9704
12 0.9677 0.9677 1.0000 1.0000 1.0000 1.0000 0.9892
13 ©0.9839 | ©.9355 | 0.9194 [ 0.9677 | 0.9677 | 0.9677 0.3570
14 0.9677 0.9839 0.9677 1.0006 0.9677 1.0000 0.9812
15 1.0000 | 0.9355 | 0.983% | 0.9839 | 0.983% | 1,0000 0.9812
Aver 0.9516 D.9656 G.9806 0.9860 G.9860 0.9828 0.9754

age

Recognition results for the tcp ten choices.

Table 4.14 case_2, cond_5

Trained with {font #1,...font #15).
Tested with (font #1,..,font #15).
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fgnt 7 8 9 10 11 12 Average
size
font

1 0.9516 0.9194 0.9839 0.9677 0.9677 0.9194 0.9516
2 0.9677 | 0.9839 { 0.983% | 1.0000 | 1.0000 | 1.0C00 0.9892
3 0.9839 | 0.9839 | 0.9839 | 0.9839 | 0.9835 | 0.9839 0.9839
4 0.9355 1.0000 1.0000 { 1.0000 | ©.983% 0.5839 0.9839
5 0.9677 | 1.0000 | 0.9839 | 0.9516 | 0.9677 | 0.9677 0.9731
6 0.8548 0.9032 1.0000 1.0000 § 1.0000 1.0000 0.95%7
7 0.8871 | 0.9516 1.0000 1.0000 | 1.0000 1.0000 0.9731
8 0.9677 1.0000 0.9677 0.9677 1.0000 1.0000 0.9839
9 0.9677 1.0000 1.0000 1.0000 1.0000 | 0.9677 0.9892
10 0.9677 0.9516 0.9839 1.0000 1.0000 | 0.9835 0.9812
11l 0.9194 0.9677 1.0000 0.9839 0.3839 1.0000 0.9758
12 0.9677 0.9677 1.0000 1.0000C | 1.000C 1.0000 0.9892
13 0.9839 0.9677 0.9516 0.9839 6.983% 0.9839 0.9758
14 1.0000 | 0.9839 | 0.9835 { 1.0000 | 0.9677 | 1.0000 D.9892
15 1.0000 0.9516 0.9839 0.9838 1.0000 1.0000 0.9B66
Aver 0.9548 | 0.9688 | 0.9871 | 0.9882 | 0.9852 | 0.9860C 0.9790

age

Recognition results for the top ten choices

Table 4.15 case_2, cond_6

Trained with {font #1,..,font #15).
Tested with (font #1,...font #15).

not differentiating between upper and lower case characters.
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fgnt 7 8 9 10 11 12 Average
size
font
16 ©.5000 | 0.5484 | 0.5323 | 0.5323 | 0.4835 | ©.4516 0.5081
17 0.5645 | 0.6774 | ©¢.6774 | 0.5000 { 0.6935 | 0.7419 0.6425
18 0.4516 | 0.4677 | 0.6774 | 0.6290 | 0.6129 | 0.6129 0.5753
19 o0.5806 | 0.7097 | 0.7742 | D.7258 | 0.7903 | 0.7419 0.7204
20 0.5645 | 0.6774 | 0.6935 | 0.7419 | 0.6935 | 0.7581 0.6882
21 0.3710 | 0.3710 | 0.6452 | 0.5968 | 0.5968 | 0.6129 0.5323
22 0.6774 | 0.5645 | 0.5968 | 0.5645 { 0.7097 | 0.7238 0.6398
23 o0.5000¢ | 0.6774 | 0.7581 | 0.8710 | 0.8871 | 0.8065 0.750C
24 0.6129 | 0.7742 | 0.7742 | 0.758% { 0.7742 | 0.7742 0.7446
25 0.3710¢ | 0.5000 | 0.7097 | 0.7903 | 0.7742 | 0.7097 0.6425
26 0.5000 | 0.6452 | 0.7419 | 0.741% | 0.6774 | 0.6250 C.6559
27 0.6774 { 0.7742 | 0.8065 | 0.6129 | 0.5484 | 0.6129 0.6720
28 0.64%2 { 0.7258 | 0.8226 | 0.8548 | 0.B226 | 0.8548 0.7876
29 0.6452 | 0.6452 | 0.7581 | ©0.8387 | 0,7903 | 0.7903 0.7446
30 0.5484 | 0.6129 | 0.6935 | 0.7097 | 0.7419 | 0.7742 0.6801
Aver 0.5473 | 0.6247 | 0.7108 | 0.6978 | 0,7G65 | 0.70865 C.6656
age

Table 4.16 case_3, cond_1

Trained with {font #16,..,font #30).
Tested with (font #16,...font #30).

Recognition results for the first choice.
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font

: 8 9 10 11 12 Average
s1ze
font
16 0.5484 0.5806 | 0.5968 0.5806 0.5161 0.5161 0.5565
17 0.6935 0.7502 0.8548 0.6452 0.7903 0.7903 0.7608
18 0.5161 0.5161 | 0.7258 0.7258 0.6774 0.7087 0.6452
19 0.6613 | 0.7419 | 0.8387 | 0.7742 | 0.8387 | 0.8548 0.78B49
20 0.6613 0.7581 | 0.7903 0.7742 0.7419 0.8548 0.7634
21 0.4194 | 0.4194 | 0.7258 | 0.7258 | 0.6613 | 0.6535 0.6075
22 0.7742 | 0.6452 | 0.7903 | 0.6452 | 0.7581 | 0.8065 0.7366
23 0.5161 | 0.7258 0.8226 0.9032 0.9355 0.8387 0.7903
24 0.6935 0.8710 0.8871 0.8387 0.9032 0.5032 0.8495
25 0.4355 0.5806 0.7419 0.8065 0.8226 0.8226 0.7016
26 0.6452 0.6935 0.7502 0.7903 0.7581 0.7097 0.7312
27 0.7903 0.8387 0.8548 0.6613 0.5968 0.6290 0.7285
28 0.7419 1 0.8065 | 0.8871 | 0.8548 | 0.Bf48 | ©.3032 0.8414
29 0.6613 0.6774 0.8065 0.9032 0.B387 0.8710 0.7930
0 0.5806 | 0.6452 0.7419 0.7581 0.8065 0.8226 0.7258
Aver 0.6226 C.6860 C.7903 0.7591 G.7667 0.7817 0.7344
age

Table 4.17 case_3, cond_2

Trained with {font #16,..,font #30).
Tested with (font #16,...font #30).

Recognition results for the first choice

not differentiating between upper and lower case characters.
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fgnt 7 8 g 10 11 12 Average
size

font
16 n.8871 | ©.9032 | 0.5032 | 0.8387 | 0.8387 | 0.7903 0.8602
17 0.8548 | 0.9032 | 0.9677 | 0.,9839 | 1.0000 | 1.0000 0.9516
18 0.9194 0.8548 0.9032 0.9032 0.8710 0.9032 0.8925
19 0.8710 | 0.9677 } 1.Q000 | 1.0000 | 1.0000 j 0.9839 0.9704
20 0.9032 | 0.9677 | 0.9677 | ©0.9677 | 0.9677 | 1.0000 0.9624
21 0.6452 0.8065 0.9516 | 0.9516 0.9355 0.9516 0.8737
22 0.9355 | 0.8871 | ¢.9516 | 0.9194 | 0.983% | 0.9677 0.9409
L 23 0.8710 0.9134 1.0000 1.0000 | 1.0000 0.9839 0.9624
24 0.9355 0.9677 0.9839 0.9B39 0.9839 0.9677 0.9704
25 0.7419 | 0.8387 | 0.9194 | 0.9516 | 0.9516 | 0.9516 0.8925
26 0.8710 0.9355 | 0.9839 0.9B39 0.9194 0.9194 0.9355
27 0.9677 | 0.9839 | 0.9839 ! 0.9677 | 0.9355 | 0.9355 0.9624
28 0.5154 | 0.9839 | 1.0000 | 0.9839 | 0.9839 | 1.0000 0.9785
29 0.8226 | 0.8871 | 0.9516 | 1.0000 | 0.9839 | 1.0000 0.9409
30 0.B226 | 0.8065 | 0.9355 | 0.9516 | 0.9839 | 0.9839 0.9140
Aver 0.8645 0.9075 0.9602 0.9591 0.955% 0.9559 0.9339

age

Table 4.18 case_3, cond_3

Trained with {font #16,..,font #30).
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Tested with (font #16,.. font #30).
Recognition results for the top five choices.




font 7 g 9 10 11 12 Average
size
font
16 0.9032 0,9194 0.9032 0.8710 0.8710 D.B065S 0.8790
17 0.8548 0.9194 0.5677 1.0000 1.0000 1.0000 0.9570
18 0.9154 0.8548 0.9032 0.9032 0.8871 0.9194 0.8378
1% 0.8710 0.983% 1.0000 | 1.0000 1.0000 0.9839 0.9731
20 0.9032 6.9677 0.9677 0.9839 0.9677 1.0000 0.9651
21 C.7097 0.9032 0.9€677 0.9677 0.9516 0.9516 0.9086
22 0.9355 0.9032 0.9516 | 0.9355 | 0.9839 0.9677 0.9462
23 0.8710 0.9355 1.0000 1.0000 | 1.0000 | 0.983% 0.9651
24 '0.9355 0.9677 0.9839 ; 0.583% 0.9839 0.9677 0.9704
25 0.8226 0.B871 0.9516 | 0.983%9 0.9839 0.9677 0.9328
26 0.9154 0.9516 0.9839% 1.0000 | 0.9516 0.5194 0.9543
27 0.9677 | 0.9839 | 0.9839 | 0.9677 | 0.9516 | 0.8355 0.9651
28 0.9355 | 0.9839 [ 1.,0000 | 0.9839 | 0.983%9 | 1.0000 0.9812
29 0.8387 | 0.8871 | 0.9516 | 1.0000 | 0.9839 | 1.0000 0.9435
30 0.8226 0.8387 0.9355 0.9516 0.9839 0.9839 0.9154
Aver 0.8806 0.9258 0.9634 0.9688 | 0.9656 | 0.9591 0.9439
age

Recognition results for the top five choices

Table 4.19 case_3, cond_4

Trained with (font #16,..,font #30).
Tested with (font #16,..,.font #30).

not differentiating between upper and lower case characters.
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fqnt 7 8 9 10 11 12 [ Average “
size

font
16 0.9677 | 1.0000 | 0.9677 { 0.9677 | 0,9355 | 0.8710 0.55186
17 1.0000 | 0.5339 1 1.0000 | 1.0000 | 1.0000 | 1.0000 0.9973
18 1.0000 | 0.9194 | 0.9355 | 0.9839 | 0.9516 | 0.9677 0.9587
19 1.0000 | 0.9839 | 1.0000 | 1.0000 [ 1.0C00 ! 1.0000 0.9973
20 6.9677 | 1.0000 | 1.0000 | 1.0000 | 1.00C0 | 1.0000 0.9246
21 0.7258 | 0.91%94 | 0.983% | 0.983% | 0.9839 | 0.9677 0.9274
22 0.9677 | 1.0000 | 0.9839 | 0.9677 | 0.9839 | 0.9839 0.9812
23 0.9677 | 1.0600 | 1.0000 | 1.0000 | 1.0000 | 0.9838 0.9919
24 0.9677 | 1.0000 | 1.0000 [ 1.0000 j 1.0000 | 1.00C0 0.99246
25 0.8387 | 0.9194 | 0.9516 | 1.0000 | 0.9839 ! 1,0000 0.9489
26 ©.9516 | 0,9677 | 1.0000 | 1.0000 | 0.9677 | 0.9516 0.5731
27 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9839 | 0.9839 0.9946
28 0.9839 | 0.9839 | 1.0000 | 0.983% | 1.0000 | 1.0000 0.991%
29 1.0000 | 1.0006 | 1.000C | 1.0000 [ 1.0000 | 1.0000 1,0000
30 0.8871 | 0.8548 | 0.9839 [ 1.0000 | 1.0000 | 1.0000 0.9543

Aver £.9484 | 0.9688 | 0.9871 | 0.9925 [ 0.9860 | 0.9806 0.9772

age

Table 4.20 case_3, cond_5
Trained with {font #16,..,font #30).

Tested with (font #16,.. font #30).
Recognition results for the top ten choices.
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font 7 8 9 10 31 12 Average
size
font
16 0.9677 1.0000 | 0.9839 0.5677 0.9355 0.9355 0.9651
17 1.0000 0.983% 1.0000 1.0000 1.0000 1.0000 0.99713
18 1.0000 0.9194 0.%355 1.0000 0.5677 0.9839 0.9677
19 1.0000 1.000v 1.0000 1,0000 1.0000 1.0000 1.0000
20 0.9%677 1,0000 1.00C0 1.0000 1.0000 1.0000 0.9946
21 0.8226 0.9677 0.9839 1.0000 0.9839 0.9677 0.9543
22 0.9839 1.0000 0.9839 0.9677 0.9839 0.9839 0.9839
23 0.9677 1.0000 1.0000 1.0000 1.0000 G.9839 0.9918
24 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000 0.9946
25 ¢.8710 D.9355 | 0.9839 1.0000 1.0000 1.0000 0.9651
26 0.9516 0.9839 1.0000 | 1.0000 0.9839 0.9839 0.9839
27 1.0000 1.0000 1.0000 1.0000 0.9839 0.92839 0.9946
28 0.9839 0.9839 1.0000 | ©.9839 1,0000 1.06000 0.9919
29 1,0000 [ 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 1,0000
30 0.B871 0.8548 0.9839 1.0000 1.0000 1.0000 0.9543
Aver 0.95B1 0.9753 0.9903 0.994¢6 0.9892 0.5882 G.Dazf
age

Table 4.21 case_3, cond_6

Trained with {font #16,..,font #30).
Tested with (font #16,..,font #30).
Recognition results for the top ten choices
not differentiating between upper and low=r case characters.
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4.6.1.3 Results of the cases where training and testing cets were two different

sets (Using the "mean" statistic)
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fqnt 7 3 9 10 11 12 Average
size
font
16 0.4839 0.4677 0.4355 0.4677 0.4516 0.4194 0.4543
17 0.5645 0.6452 0.7258 | 0.5323 0.7581 0.7903 0,.6694
18 0.3387 0.3871 | 0.5484 0.6290 0.5968 0.5645 0.5108
19 0.5323 | 0.6452 | 0.7097 | 0.6613 | ¢.7742 | 0.7097 7 0.6720
20 0.5645 0.6613 0.7097 0.741% 0.7258 0.7903 0.6589
21 0.3065 0.4355 | 0.6290 0.7419 0.6774 0.5645 0.5591
22 0.7419 0.6613 0.7258 0.6774 0.7419 0.7258 0.7124
23 0.5484 G.6290 | 0.8B065 0.8226 0.9194 0.7258 0.7419
24 0.6129 0.7581 | 0.7503 0.7742 0.7087 0.6935 0.7231
25 0.3226 0.4032 0.6129 0.6774 0.6774 0.6613 0,5591
26 0.5000 0.6129 0.7419 0.6613 0.5968 0.5484 0.6102
27 0.6774 0.7419 0.8065 0.7097 0.5161 0.5645 0.66%4
28 0.62%0 0.7258 0.7742 0.8065 0.8226 0.8548 0.7688
29 0D.5323 | 0.5968 [ 0,7258 | 0.7258 | 0.7258 | 0.7097 0.6694
30 0.4677 0.5323 0.5645 0.6613 0.7097 0.7097 0.6075
Aver 0.5215 0.5935 0.6871 0.6860 0.6935 D.6688 0.6418
age

Table 4.22 case_4, cond_1
Trained with {font #1,..,font #15).

Tested with (font #16,..,font #30).
Recognition results for the first choice.
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fgnt 7 8 9 10 11 i2 Average
size
font
16 0.5161 | 0.5000 | 0.5000 | ¢.5645 | 0.5323 | 0.4839 0.5161
17 ¢.6935 | 0.7742 | 0.8871 | 0.6613 | 0.8226 | 0.8387 0.7796
18 0.4194 | 0.4677 | 0.5968 | 0.6613 | 0.6452 | 0.6774 0.5780
19 0.5968 | 0.7097 | 0.,7903 | 0.7258 | 0.8065 | 0.8065 0.7392
20 0.6613 | 0.7415 | 0.8065 | 0.8065 | 0.7742 | 0.8871 0.7796
21 0.3548 | 0.4677 | 0.6613 | 0.B065 | 0.741% | 0.6774 0.6183
22 0.8065 | 0.7419 | 0.8387 | 0.7258 | 0.8065 | 0.8065 0.7876
23 0.5806 | 0.7097 | 0.8387 | 0.8387 | 0.9677 | 0.7742 G.7849
24 0.6935 | 0.8387 | 0.8871 | 0.8226 | 0.8226 | 0.7903 0.8091
25 0.3871 | 0.5161 | 0.6613 | 0.7097 | 0.7258 | 0.741% 0.6237
26 0.5806 | 0.6935 0.5665 0.7097 | 0.6935 | 0.6129 0.6828
27 0.7903 | 0.8548 | 0.8710 | 0.7429 | 0.5645 | 0.5568 0.7366
28 0.7258 | 0.7742 | 0.8387 | 0.8226 | 0.8548 | 0.5032 0.8199
29 0.5806 | u.8613 | D.8065 | 0.B387 | 0.7742 | 0.7303 0.741%
30 0.5323 | 0.5806 | 0.6290 { 0.7097 | 0.7419 | 0.7903 0.6640
Aver 0.5946 | 0.6688 | 0.7613 | 0.7430 | 0.7516 0.7452 0.7108
age

Table 4.23 case_4, cond_2

Trained with {font #1,..font #15).
Tested with (font #16,...font #30).
Recognition results for the first choice

not differentiating between upper and lower case characters.
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fgnt 7 B8 9 i0 11 12 Rverage
size
font
16 0.7742 0.8710 0.8710 | 0.7903 0.7419 0,7742 0.8038
17 0.9032 0.9355 0.9677 0.9819 1.0000 1.0000 0.9651
18 0.8387 0.8226 0.9032 0.8871 0.8871 0.8387 0.8629
19 0.8548 0.8548 0.9839 0.9516 | 0.9677 0.9516 0.9274
20 0.871C "9.9677 0.9839 | 0.9838 | 0.983%9 0.9839 0.9624
21 D.5484 | 0.7581 | 0.9194 | 0.9516 | 0.9355 [ 0.9032 0.8360
22 0.9194 | 0.9516 | 0.9839 | 0.9355 | 0.9839 | 0.983% 0.9597
23 0.8710 0.5194 0.9677 0.9839 1.0000 0.9355 0.9462
24 0.9194 0.9516 0.9677 0.9677 0.9677 D.9516 0.9543
25 0.6774 | 0.7903 | 0.9032 | 0.9194 | 0.9677 | 0.9516 0.8683
26 0.B0ES | D.B548 [ 0.9677 | 0.9677 | 0.9355 | 0.8548 N.8978
27 0.9516 0.9839 0.9677 0.9516 0.93155 0,8871 0.9462
28 0.9194 | ©.9516 | 0.9677 | 0.9677 | 0.9839 [ 1.0000 0.9651
208 0.8226 | 0.8710 | 0.9194 1.0000 | 0.9516 0.9677 0.9220
30 0.7903 0.8226 0.9194 0.9355 | 0.9355 | 0,9516 0.8925
Aver 0.8312 | 0.8871 | 0.9462 | 0.9452 | 0.9452 | 0.9280 0.9140
age

Recognition results for the top five choices.

Table 4.24 case_4, cond_3

Trained with {font #1,...font #15).
Tested with (font #16,..,font #30).
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font 7 B 9 10 11 12 Average
size

font
16 0.8065 | 0.8710 ¢c.8710 | 0.8065 | 0.7742 0.7903 0.8199
17 0.9032 | 0.9516 | ©.9839 | 1.0000 | 1.0000 [ 1.0000 0.9731
18 0.8548 0.8387 0.5032 0.9194 0.9194 G.BB71 0.8871
19 0.8548 | 0.8710 | 0.9838 | 0.9516 | 0.9839 | 0.9677 0.9355
20 0.8710 0.9677 00,9839 0.9839 0.9839 0.9839 0.5624
21 0.6290 | 0.8548 0.9516 | 0.9677 0.9516 0.5194 0.8790
22 0.9355 | 0.9516 | ¢.983% | 0.9355 | 0.9839 | 0.9839 0.9624
23 0.8710 | 0.9355 | 0.9677 | 0.983% | 1.0000 | 0.9335 0.9489
24 0.9355 | 0.951¢6 | 0.9677 | 0.9677 | 0.9677 | 0.9B39 0.9624
25 0.7258 | 0.8387 | 0.9355 | €.9839 | 0.9839 | 0.9677 0.905%
26 0.8871 0.8871 0,9839 0.9839 0.92516 0.8548 0.9247
27 0.9516 | 0.9839 | ¢.9839 | 0.9677 | 0.9355 ; 0.8871 0.9516
28 0.9355 0.9516 | 0.9677 ¢.5677 0.9839 1.0000 0.9677
29 0.8387 0.8710 0.9194 1.0000 0.951¢ 0.3677 0.9247
30 0.7903 | 0.8387 | 0.9194 | 0.9355 [ ©0.9355 | 0.9677 0.8978
Aver 0.8527 | 0.9043 { 0.9538 | 0.9570 | 0.9538 | 0.9398 0.9269

age

Table 4.25 case_4, cond_4

Trained with {font #1,...font #15).
Tested with (font #16,.., font #30).
Recognition results for the top five choices

not differentiating between upper and lower case characters.
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font 7 B 9 10 11 12 Avrorage
size
font
16 00,9677 0.9516 0.9677 0.9355 | 0.9194 0.8871 0.9382
17 0.9839 0.9839 0.9839 1.0000 | 1.0000 1.0000 0.9919
18 0.9516 | 0.9194 | 0.9516 | 0.5839 | 0.9677 | 0.3677 0.9570
18 0.9032 { 0.9355 | 1.000C | 1.0000 | D.9839 | 0.9839 0.9677
20 0.9677 | 1.0000 { 1.0000 | ©.9839 | ©.983% | 1.0000 0.9892
21 0.7418 0.9032 0,9839 0.9839 1.0000 0.9516 0.9274
22 0.9677 0.9839 1.0000 | 0.9839 0.9839 0.9839 0.9839
23 0.9677 | 0.9516 { 1.0000 | 1.0000 | 1.0000 | 0.9677 0.9812
24 0.9677 | 0.9839 [ 1.0000 | 0.5839 | 0.9839 | 0.8839 0.9839
25 0.8548 | 0.8871 | 0.9032 | 0.9516 | 0.9839 [ 0.9833% 0.9274
26 0.9194 | 0.9194 | 1.0000 | 0.9677 | 0.9355 | 0.5355 0.9462
27 1.0000 1.0000 | 1.0000 1.0000 | 0.9677 0.9355 0.9839
28 0.9677 | 0.983% | 1.0000 | 0.9677 | 1.0000 | 1.0000 D.9866
29 0.9516 0.9516 | 0.983% 1.0000 0.9677 0.9839 0.9731
30 (;.8871 0.8548 0.9355 0.9516 | 0.9829 0.9839 0,.9328
Aver 0.9333 0.9473 C.9806 0.97%6 0.9774 0.9699 0.9647
age

Recognition results for the top ten choices.

Table 4.26 case_4, cond_5

Trained with {font #1,..,font #15).
Tested with (font #16,...font #30).
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fgnt 7 8 [} 10 11 12 Average
size
font
16 0.9677 0.9677 0.9677 0.9516 | 0.9355 0.9032 0.9489
17 0.98392 0.9839 1.0000 | 1.0000 1.0000 1.0000 0.9946
18 0.9516 0.9194 0.8516 1.0000 0.9839 0.9839 0.9651
19 0.9032 0.9516 1.0000 1.0000 0.9838 0.9839 0.9704
20 0.9677 | 1.0000 | 1.0000 | 0.9835 | 0.9839 | 1.0000 0.9892
21 0.8387 0.9516 | 0.983% 1.0000 1.0000 0.9516 0.9543
22 0,%677 0.9839 1.0000 | 0.9839 0.9839 0.9839 0.9839
23 0.9677 | 0.96%7 | 1.0000 | 1.0000 | 1.0000 | 0.9677 0.983%
24 0.9677 | 0.9839 | 1.0000 | 0.983% [ ©.9839 | 0.983% (.9839
25 0.9032 | 0.8871 | 0.9355 | 0.9839 | 0.983% | 1.000C 0.9489
26 0.9516 0.9516 1.0000 | 0.,983% 0.9677 0.9516 0.9677
27 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9677 | 0.53535 0.983%
28 0.9839 | 0.9839 { 1.0000 | 0.9677 | 1.0000 | 1.C000 0.9892
29 0.9516 0.9516 1.0000 | 1.0000 | 0.9677 0.9839 0.9758
30 0.8871 | 0.8548 | 0.9355 | 0.9516 | 0.9839 | 0.5839 0.9328
Aver 0.9462 | 0.9559 | 0.9849 | 0.9860 | ©.9817 | 0.9742 0.9715
age

Table 4.27 case_4, cond_6

Trained with {font #1,.. font #15).
Tested with (font #16,...font #30).
Recognition results for the top ten choices

not differentiating between upper and lower case characters.
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font 7 ] 9 10 11 12 Average
size
font

1 0.4677 | 0.4355 | 0.4516 | ©.5000 | 0O.5806 | 0.4194 0.4758
2 0.4677 0.5323 0.62%0 0.5968 0.6452 0.6774 0.5914
3 0.4355 0.4032 0.5484 0.5323 0.6129 0.5968 0.521%
[ 0.5000 0.6290 0.7258 0.6935 | 0.6935 0.7742 0.6694
5 0.5161 0.5161 0.5323 0.5645 | 0.5000 0.4194 0.5081
6 0.3871 | 0.5484 | 0.8226 | 0.7903 | 0.8548 | 0.7419 0.6909
7 0.4194 | 0.5323 | 0.6774 | 0.8226 | 0.7742 | 0.7087 0.6559
8 0.7258 0.6935 0.6129 0.7258 0.8065 0.6935 0.7097
9 0.7419 | 0.8065 | 0.7742 | 0.6452 | 0.8226 | 0.6774 0.7446
10 0.3387 0.4516 0.5645 0.5968 0.5161 0.5484 0.5027
11 0.4355 0.5645 0.6129 0.5161 0.5000 0.5161 0.5242
12 0.4355 | 0.5968 | 0.6613 | 0.5968 | 0.5645 | 0.6774 0.5887
13 0.5806 0.4355 0.5000 0.5323 0.5484 0.6250 0.537¢&
14 0.6774 0.7258 0.5645 0.6613 0.6452 0.6935 0.6613
15 0.7097 | 0.s645 | 0.6452 | 0.7097 | 0.5484 | 0.596% 0.6280
Aver 0.5226 | 0.5624 | 0.6215 | 0.6323 | 0.6409 | 0.6247 0.6007

age

Table 4.28 case_5, cond 1

Trained with {font #16,...font #30).
Tested with (font #1,.. font #15).

Recognition results for the first choice.
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fgnt 7 8 9 10 11 12 Average
size

font
1 0.5968 0.5645 0.5484 0.5968 0.6290 0.5000 0.5726
2 0.5968 0.6452 0.7258 0.7097 0.6935 0.7097 0.6801
3 0.5484 | 0.5484 | 0.6774 | €.6935 | 0.7418 | 0.6935 0.6505
4 0.5806 | 0.7258 | 0.8226 | 0.7581 | 0.7581 | 0.8548 0.7500
5 0.6129 | 0.5968 | 0.6452 | 0.6774 | 0.5645 | 0.483% 0.5968
6 0.4677 0.5484 0.B8387 0.8387 0.8871 0.8226 0.7339
7 0.5161 | 0.5806 | 0.7903 | 0.8226 | 0.8387 | 0.B387 0.7312
8 0.7418 0.75B1 .6452 0.7419 0.8226 | 0.8226 0.7554
9 0.8065 | 0.8548 | 0.8548 | 0,7419 | 0.9032 | 0.7903 0.8253
10 0.4677 | 0.5645 | 0.6774 | 0.6935 | 0.6935 | 0.6452 0.6237
11 0.5000 | 0.6129 | 0.6452 | 0.5968 | 0.5968 | 0.6129 0.5541
12 0.5806 0.7258 0.8226 0.7419 0.7097 0D.7581 0.7231
13 0.6935 0.5645 0.5968 0.6129 0.6613 0.7258 0.6425
14 0,7581 0.B710 | 0.6290 0.8065 0.7581 0.B226 0.7742
15 0.7581 0.6613 0.7742 0.7742 0.6129 0.6452 0.7043
Aver 0.6151 0.6548 0.7129 0.7204 0.7247 0.7152 C.6905

age

Table 4.29 case_5, cond_2

Trained with {font #16,..,font #30).
Tested with (font #1,.. font #15).

Recognition results for the first choice

not differentiating between upper and lower case characters.

102




font

: 9 10 11 12 hverage
size
font
1 0.8065 | 0.8387 | 6.8871 | 0.8548 | 0.9032 | 0.8065 0.8495
2 0.8710 | 0.8710 | 0.9355 | 0.9194 | 0.9839 | 0.59677 0.9247
3 0.8226 | 0.B548 | 0.9355 | 0.8871 | 0.9516 | 0.9355 0.8578
4 0.8387 | ©.9032 | 1.0000 | 0.9839 | 0.9677 | 0.9839 0.9462
5 0.8548 | 0.8548 | 0.5032 | 0.8710 | C.8548 | 0.B226 0.8602
3 0.7258 § 0.8065 | ¢.9877 | 1.0000 | 1.0000 | 1.0000C 0,9167
7 0.7258 | 0.8226 | 0.9194 | 0.983% | 0.9677 | 1.0000 0.9032
B 0.9355 | 0.9355 | 0.9355 | 0.9184 | 0.9516 | 0.9677 0.5409
9 0.9355 | 0.9677 | 0.9516 | 0.9516 | 0.9839 1 0.9194 0.9516
10 0.8387 | 0.8387 | 0.95032 | 0.9032 | 0.9194 | 0.8710 0.879¢
11 0.8065 | 0.8871 | ¢.91%94 | ¢.8871 | 0.9032 | 0.8548 ¢.8763
12 0.9194 | 0,9355 | 1.0000 | 0.9677 | ©.9833 | 1.0000 0.9677
13 0.9355 | ©0.8226 | 0.8871 | 0.9032 | 0.9355 | 0.9516 0.9059
14 0.9839 | 1.0000 { 0.9194 | 0.9677 | 0.8677 | 1.0000 0.9731
15 0.9516 | 0.9032 | 0.9516 | 0.9355 [ 0.9677 | D.9839 0.9488%
Aver 0.8634 | 0.8828 | 0.9344 | 0.9290 | 0.9495 | 0.9376 0.9161
age

Recognition results for the top five choices.

Table 4.30 case_5, cond_3

Trained with {font #16,..,font #30).
Tested with (font #1,..font #15).
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£9nt 7 8 g 10 11 i2 Average
size

font
1 0.8387 | 0.8548 | 0.8871 | 0.8710 | 0.9194 | 0.8226 0.8656
2 0.8710 0.8710 0.9355 0.91594 0.9839 0,9677 0.9247
3 0.8387 | 0.8548 | 0.9355 | 0.9032 | 0.9516 | 0.9516 0.9059
4 0.8387 0.9194 1.0000 1.0000 | 0.983% G.9839 0.9543
5 0.8710 { 0.8871 | 0.9194 | 0.8710 | 0.8871 | 0.8387 0.8790
[ 0.7581 | 0.8065 | 0,9677 | 1.0000 | 1.0000 | 1.0000 0.9220
ki 0.7419 0.8387 0.9194 .98339 0.9839 1.0000 0.9113
8 0.9355 0.9516 0.9516 | 0.9355 G.9677 1.0000 0.9570
9 0.9355 | 0.9677 | 0.9516 | 0.9677 | 0.9839 | 0.9194 0.9543
10 0.8548 | o.8548 | 0.9194 | 0.9194 | 0.9677 | 0.3032 0.9032
11 0.8065 0.98355 0.9516 0.9355 0.9516 0.9355 0.9194
12 0.9516 | 0.9355 | 1.0000 | ©.983% | 0.9839 | 1.0000 0.9758
13 0.9355 | 0.8387 | 0.9355 | 0.9194 | 0.9677 | 0.9839 0.9301
14 1.0000 | 1.0000 | 0.9516 | 0.983% | 0.9839 | 1.0000 0.9866
15 0.9516 0.9032 0.9677 0.9677 0.5839 1.0000 0.9624
Aver 0.8753 | 0.8946 | 0.9462 | 0.9441 | 0.9667 | 0.9538 0.9301

age

Recognition results for the top five choices

Table 4.31 case_5, cond_4

Trained with {font #16,..font #30).
Tested with (font #1,..,font #15).

rot differentiating between upper and lower case characters.
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font

: 9 10 11 12 Average
size
font
1 0.91%4 | 0.5032 | 0.9839 | 0.9677 .9355 | 0.9032 0.9355%
2 0.9355 0.9516 0.9677 0.9839 .0000 1.0000 0.9731
3 0.983% Q.9677 0.9839 0.9677 L9839 0.9839 0.9785
4 0.9355 1.0000 | 1.0000 1.0000 .9839 0.9839 0.9839
5 0.9677 0.9516 0.9516 0.9355 L9839 0.9355 0.9543
[ 0.9032 | ¢.9032 { 1.0000 | 1.0000 L0000 | 1.000C 0.9677
7 0.8871 | 0.9355 | 1.0000 1.0000 . 0000 1.0000 0.9704
8 0.9839 1.0000 | 0.9677 0.9839 L0000 1.0000 0.9892
9 0.9677 | 0.9839 | 0.9839 [ 1.0000 L0000 | 0.9516 0.9812
10 0.9516 | 0.9032 | 0.9677 | 1.0CC0 .9839 | 0.9677 0.9624
11 0.9032 0.9355 1.0000 0.9677 .9677 0.9677 0.9570
12 0.9677 | 0.9677 | 1.0000 | 0.9838 L0000 | 1.0000 0.9866
13 0.9839 0.9516 | 0.9516 0.9516 L9671 0.9516 0.9597
14 1.0000 | 1.0000 | 0.9516 1.0000 .0000 1.0000 0.991%
15 0.9839 | 0.9677 | 0.9677 | ©.9839 L0000 | 1.0000 0.9839
Aver 0.9516 0.9548 | ©.9785 0.9817 .9871 0.9763 0.9717
age

Recognition results for the top ten choices.

Table 4.32 case_5, cond_5

Trained with {font #16,.. font #30).
Tested with (font #1,..,font #15).
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iqnt 7 ] ] 10 11 12 Average
size

font
1 0.9194 0.9032 0.9839 0.9677 0.9355 0.9032 0.935%
2 0.9355 | 90,9516 | 0.983% | 0.9839 | 1.0000 | 1.0000 0.9758
3 0.9839% | 0.9677 | 0.9839 | 0.9677 | 0.983%9 | 0.9833 0.9785
4 0.9516 1.0000 1.0000 | 1.0000 0.9839 0.9839 0.9866
5 0.9677 | 0.9677 | 0.9677 | 0.%355 | 0.983% | 0.9516 0.9624
6 0.9032 | 0.9032 | 1.0000 | 1.0000 | 1.2000 | 1.0000 0.9677
7 0.8871 0.9516 1.0000 | 1.0000 1.0600 1.0000 0.9731
0.9839 | 1.0000 | 0.9677 | 0.9839 ; 1.0000 | 1.0000 0.9892
9 0.9677 | 0.9839 | 0.9839 | 1.0000 ] 1.0000 | 0.9677 0.9839
10 0.9677 0.9194 0.9677 1.0000 0,9839 0.9677 0.9677
11 0.9516 | 0.9677 | 1.0000 | 0.9839 | 1.0000 | 0.9839 0.9812
12 0.9677 0.9677 1.0000 0.9838% 1.0000 1.0000 0.9866
13 0.9839 | 0.9677 | 0.9677 | 0.9838 | 0.9839 | 0.983% 0.9785
14 1.0000 | 1.0000 | 0.9839 | 1.0000 ; 1.0000 | 1.0000 0.9973
15 0.9839 | 0.9839 | 0.9835 | 0.9839 § 1.0000 | 1.0000 0.9892
Aver 0.9570 | 0.9624 | 0.9849 | 0.9849 | 0.9903 | 0.9817 0.9769

age

Recognition results for the top ten choices

Table 4.33 case_b, cond_6

Trained with {font #16,..,font #30).
Tested with (font #1,.. font #15).

not differentiating between upper and lower case characters.
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4.6.1.4 Results of the cases where training and testing sets were the same (Using

the "median or the "standard deviation" statistics)
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font 7 8 9 10 11 12 Average
s5ize
font
1 0.4516 0.4355 0.4194 0.4516 0.4355 0.4032 0.4328
2 0.4516 | 0.5161 | 0.5484 | 0.5000 | 0.5968 | 0.6280 0.5403
3 0.4032 | 0.3710 | 0.5323 | 0.4677 [ 0.5968 | 0.5484 0.4866
4 0.5323 0.6129 0.7097 0.7258 0.72E8 0.7581 0.6774
5 0.4677 | 0.4839 | 0.5323 0.4839 | 0.3226 | 0.3710 0.4435
6 0.4032 | 0.5161 | D.B226 | 0.7742 0.7581 | 0.6613 0.6559
7 0.3710 0.4194 0.5806 0.7097 0.6774 0.6452 0.5672
8 0.7097 0.69235 D.4516 | 0.6774 0.6452 0.6452 0.6371
9 0.5968 | 0.6774 | 0.7419 | 0.5968 | 0.6613 0.6452 0.6532
10 0.3548 0.4839 0.5323 0.5161 0.5000 0.4839 0.4785
11 0.4355 | 0.5000 | 0.4839 | 0.5000 [ 0.3871 | 0.3871 0.4489
12 0.5000 | 0.5323 | 0.6935 | 0.6613 | 0.5323 0.5484 0.5780
13 0.5323 | 0.4032 | 0.5484 | 0.4839 | 0.5161 [ 0.5968 0.5134
14 0.6613 | 0.7903 | 0.5484 | 0.6774 | 0.6452 0.6250 0.6586
15 0.5806 | 0.5161 | 0.6125 | 0.6513 | 0.4355 0.3710 0.5296
16 0.5484 0.5645 0.4839 0.4355 0.4355 0.4032 0.4785
17 0.5645 | 0.6129 | 0.5968 | 0.4516 | 0.5000 0.6290 0,5531
18 p.,3710 | 0.3871 | 0.5000 | 0.5323 | 0.5484 0.4516 0.4651
19 0.5161 0.6452 0.7097 0.5484 0.6613 0,6129 0.6156
20 0.5161 | 0.5484 0.7258 | 0.6129 | 0.5806 | 0.6290 0.6022
21 0.3226 | 0.3871 | 0.6129 0.5323 | 0.4355 ] 0.5323 0.4704
22 0.6452 0.s5000 | 0.612% | ©.4677 | 0.5968 0.6452 0.5780
23 0.4677 0.6290 0.7097 0.7581 | 0.8226 | 0.6290 0.6694
24 0.6452 { 0.7419 | 0.7742 | 0.5645 | 0.6774 0.7258 0.6882
25 0.2903 0.4839 0.5161 0.6129 0.7097 0.5484 0.5269
26 0.4677 0.5484 | 0.6935 | 0.6129 | 0.5161 | 0.5161 0.5591
27 0.6129 | 0.6:29 | 0.7742 | 0.5806 | 0.5000 | 0.4833 0.5941
28 0.6129 0.6935 | 0.7742 | 0.7097 | 0.6613 0.6452 0.6828
29 0.5645 | 0.6452 | 0.8065 | 0.6935 | 0.6774 | 0.6452 0.6720
30 0.4516 | 0.4839 | 0.5161 | 0.5161 | 0.6129 0.5806 0.5263
Aver 0.5016 | 0.5478 | 0.6188 | 0.5839 | 0,5790 | 0.5667 0.5663
age
Table 4.34 case_l, cond_1 (Median)
Trained with {font #1,..,font #30).
Tested with (font #1,..,font #30).

Recognition results for the first choice.
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font 7 8 9 10 11 12 Average
size
font

1 0.9355 | 0.8548 | 0.9355 | 0.9677 | 0.9355 | 0.8710 0.9167
2 ©.9516 | 0.9355 | 0.9B39 | 0.9516 | 1.0000 | 1.0000 0.9704
3 0.9839 | 0.9677 | 0.9677 | 0.9677 | 0.9839 | 0.583% 0.9758
4 0.8871 | 1.0000 | 1.0000 | 1.0000 | 0.9B39 | 0.9B3% 0.9758
5 0.9355 | 0.9194 | 0.9516 | 0.9194 | 0.8710 | 0.8710 0.9113
6 0.8226 | 0.8871 | 1.0000 | 1.0000 | 1.0000 | 0.5839 0.9489
7 0.8548 | 0.9194 | 0.9677 | 0.9835 | 0.9839 | 1.0000 0.9516
8 0.9677 | 1.0000 | 0.9516 | 0.9677 | 0.9677 | 0.983% 0.9731
9 0.9677 | 0.9839 | 0.,9677 | 1.0000 | 1.0000 | 0.9516 0,9785
10 ¢.9516 | 0.8871 | 0.9677 | 1.0000 | 0.9839 | 0.9355 0.9543
11 0.8548 | 0.9516 | 0.9839 | 0.9355 | 0.9516 | 0.5194 0.9328
12 0.9516 | 0.9677 | 1.0000 | 0.9677 | 1.0000 | 1.0000 0.9812
13 0.9677 | 0.9516 | 00,9194 | 0.9516 | 0.9677 | 0.9677 0.9543
14 ©.9839 | 1.0000 | 0.9516 | 0.983% | 1.0000 | 1.0000 0.9866
15 0.9677 | 0.9355 | ©.9677 | 0.9677 j 0.9839 | 0.9839 0.9677
16 0.8710 | 0.9355 | 0.9355 | 0.9355 | 0.8710 | 0.7903 0.8898
17 0.9355 | 0 139 | 0.2839 , $.5839 1.0000 | 1.0000 0.9812
18 p.9194 | o0.8871 | 0.%032 | 0.9516 | 0.9032 | 0.9516 0.9194
15 0.9355 | 0.9839 | 1.0000 | 1.0000 | 1.0000 | 0.9839 0.9839
20 0.9516 | 1.0000 | 0.983% | 0.9516 | 0.9839 | 1.0000 0.9785
21 0.7419 | 0.8871 | 0.9677 | 0.5516 | ©.9194 | 0.3032 0.8952
22 0.9677 | 0.9516 | 0.9677 | 0.9839 | 0.9839 | 0.9677 0.9704
23 0.9194 | 0.9536 | ©.9835 | 1.000C | 1.0000 | 0.9839 0.9731
24 0.9677 | 0.9839 | 1.0000 | 0.9677 | 0.9833 | ©.9839 0.9812
25 0.8226 ! 0.8548 | 0.9194 | 0.9516 | 0.9839 [ 0.9677 0.9167
26 0.9194 | 0.9355 | 1.0000 | 0.9839 | 0.9355 | 0.9194 0.9488
27 1.0000 | 1.0000 | 0.983% | 0.9516 | 0.9677 | 0.9516 00,9758
28 0.9516 | 0.9677 | 1.0000 | 0.9839 | 0.9839 | 1.0000 0.9812
29 ©.9677 | 0.9677 | 0.9839 | 1.0000 | 0.9839 | 1.0000 0.9839
0 0.8548 | 0.8548 | 0.9355 | 0.9516 | 0.9839 | 0.9677 0.9247
Aver 0.9237 { 0.9435 | 0.9688 | 0.9704 | 0.969% | 0.9602 0.9561

age

not differentiating between upper and lower case characters.

Table 4.35 case_l, cond_5 (Median)
Trained with {font #1,..,font #30},

Tested with {(font #1,..,font #30}.
Recognition results for the top ten choices
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fgnt 7 8 9 10 11 12 hverage
gize

fontc
1 0.1935 0.1935 0.2419% 0.1290 ] 0.1774 0.1452 0.1801
2 0.3548 | 0.4032 | 0.2903 | 0.2581 | 0.1452 | 0.2418 D.2823
3 5.3226 | 0.258% | 0.3871 | 0.3065 | 0.2303 | 0.2419 0.3011
4 0.3871 | 0.5000 | ¢.4355 | 0.3387 | 0.3065 | 0.4355 0.4005
S 0.2903 0.4032 0.2903 0.2258 0.2097 0.1452 0.2608
6 £.3226 | 0.3710 | 0.5484 | 0.5000 | 0.3710 | ©.3871 0.4167
7 0.2419 | 0.3710 | 0.4677 | 0.3710 | 0.3548 | 0.3871 0.3656
8 0.5484 | 0.5323 | 0.3548 | 0.2903 | 0.2581 | 0.3548 0.3898
9 0.4677 0.5323 0.483% 0.3387 0.2581 | 90,2742 0.3925
10 0.3387 0.3387 0.3871 0.2581 0.2258 0.2742 0.3038
11 0.2258 | 0.2581 | 0.2742 | 0.2742 | 0.1774 | 0.1613 0.2285
12 0.3871 0.3548 { 0.3871 0.3710 | 0.3065 0.3226 0.3548
13 0.3871 | 0.2581 | 0.241% [ 0.2413 | 0.1935 | 0.306% 0.2715
14 0.4829 | 0.4677 | 0.2742 | 0.3710 | 0.4516 | G.4032 0.4086
15 0.4516 0.3387 0.4032 0.4516 0.1774 0.1613 0.3306
16 0.3548 | 0.3871 | 0.2258 | 0.25B1 | 0.2097 | 0.1935 0.2715
17 0.3226 | 0.4032 | 0.4032 | 0.2581 | 0.2581 | 0.3710 0.3360
18 0.2903 | 0.3065 | 0.3548 | 0.2742 | 0.2903 | 0.2419 0.2930
19 0.3871 0.4516 | 0.3871 0,.2581 | 0.3065 0.3710 0.3602
20 0.3710 | 0.4032 | 0.4032 | 0.3710 [ 0.3387 | 0.3387 0.3710
21 0.3065 | 0.3387 | 0.3710 | 0.3387 | ©.241% | 0.3387 0.3226
22 0.3710 0.3710 | ©.4032 0.3065 0.2742 0.3065 0.3387
23 £0.3710 | 0.4194 | 0.3871 | 0.5000 | 0.4355 | 0.3710 0.4140
24 0.4677 | 0.6129 | 0.4294 | 0.2581 | 0.3226 | 0.3226 0.4005
25 0.1774 0.2742 0.3387 0.3065 0.3387 0.1935 0.2715
26 0.3387 0.4032 0.4516 0.1935 | 0.2419 0.2419 0.3118
27 ©.3871 | 0.5000 | 0.4194 | 0.2258 | 0.1774 | 0.2258 0.3226
28 0.4839 | 0.4516 | 0.4677 | 0.4194 | 0.3065 | 0.3226 0.40886
29 0.435% | 0.4677 | 0.5000 | 0.4194 | 0.2903 | 0.4194 0.4220
30 0.3065 | 0.3548 | 0.2742 0.2903 | 0.3065 | 0.3710 0.3172
Aver 0.3591 | 0.3909 | 0.3758 | 0.3134 | 0.2747 | 0.2957 0.3349

age

Table 4.36 case_1, cond_1 (Standard deviation)

Trained with {font #1,.
Tested with (font #1,..,font #30}.

., font #30).

Recognition results for the first choice.
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font 7 8 9 10 11 12 Average
size
font

1 ¢.7742 | 0.6774 | 0.7097 | 0.7581 { 0.7097 | 0.6535 0.7204
2 0.8387 | 0.8710 | 0.8548 | 0.8226 | 0.8710 | 0.8226 0.8468
3 0.8065 | 0.8548 | 0.8548 | 0.8226 | 0.B548 | 0.8226 0.8360
4 0.8710 { 0.8387 | 0.8226 | 0.8548 | 0.8710 | 0.B548 0.8522
5 0.7097 | 0.7419 | ©0.7258 | 0.7097 | 0.7097 | 0.741% 0.7231
3 0.B226 | 0.7903 | 0.9355 | 0.9194 | 0.8710 | 0.8387 0.8629
7 0.7258 | 0.7258 | 0.8226 | 0.8226 | 0.8387 | 0.8065 0.7903
8 0.8710 | 0.8548 | 0.6935 | 0.7097 | 0.8226 | 0.7742 0.7876
9 0.8871 | 0.9032 | 0.8871 | 0.8871 | 0.7412 | 0.7742 0.8468
10 0.8065 | 0.7581 | ©0.8871 | 0.8226 | 0.8710 | 0.7415 0.B145
11 0.6290 | 0.6613 | 0.6452 | 0.629C | 0.5968 | 0.5968 0.6263
12 0.8065 | 0.8710 | 0.8871 | 0.8871 | 0.8710 | 0.8226 0.8575
13 0.7581 | 0.7258 | 0,7903 | 0.7419 | 0.7581 | 0.8065 0.7634
14 0.8387 | 0.9194 | 0.8226 | 0.7903 | 0.8548 | 0.7303 0.8360
15 0.8710 | 0.7903 | ©.8065 | 0.B065 | 0.7742 | 0.7742 0.8038
16 0.6774 | 0.6774 | 0.6774 | 0.6774 | 0.5968 | 0.5968 0.6505
17 0.8548 | 0.8387 | 0.8710 | 0.B065 | 0.BO6S | 0.7903 0.8280
18 0.7097 | 0.6935 | 0.7581 | 0.6935 | 0.6125 | 0.6774 0.6905
19 0.8226 | 0.8226 | 0.8387 | 0.8387 | ©.8710 | 0.8548 0.8414
20 0.8226 | 0.9032 | 0.9194 | 0.8226 | 0.8548 | 0.8387 0.8602
21 0.6935 | 0.7258 | 0.8710 | 0.8548 | 0.8065 | 0.8387 0.7984
22 0.8387 | 0.8548 | 0.8387 | 0.8226 | 0.8710 | 0.8387 0.8441
23 0.8065 | 0.8548 | 0.8226 | 0.9194 | 0.9355 | 0.8710 0.8683
24 0.8871 | 0.8548 | 0.8387 | 0.8065 0.8548. 0.7903 0.8387
25 0.6613 | 0.7097 | 0.7903 | 0.B065 | 0.78%03 | 0.7419 0.7500
26 0.7581 | 0.8065 | 0.8065 | 0.7419 | 0,7581 | 0.6452 0.7527
27 0.9022 | 0.9355 | 0.8710 | 0.7903 | 0.7097 | 0.741% 0.8253
28 0.8548 | 0.8548 | 0.9032 | 0.8548 | 0.8710 | 0.8548 0.8656
29 0.8871 | 0.9032 | ©.9194 | 0.8387 | 0.8710 | 0.9032 0.8871
30 0.8226 | 0.7903 | 0.7258 | 0.6935 | 0.B226 | 0.7903 0.7742
Aver 0.8005 | 0.8070 | ¢.8199 | 0.7984 | ©.8016 | 0.7812 0.8014

age

Table 4.37 case_l, cond_5 {Standard deviation)

Trained with {font #1,.
Tested with (font #1,..
Recognition results for the top ten choices
not differentiating between upper and lower case characters.
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4.6.1.5 Analysis of the results of the character recognition subsystem

There are several points as well as many others that can be deducted from
the generated results:
1) The first choice statistics shows a promising feature extraction
methodology.
2) The top five and top ten statistic show a promising character recognition
methodology that could be coupled with a contextual verification method
mentioned in the section 3.1.5 within an application.
3) Although generally the recognition results get better as the font size gets
bigger, sometimes this was not the case between two consecutive intermediate
font sizes. This probably happens due to the property of the digital grid where
the features are extracted from.
4) The bullring effect inherent in models that average a data is not apparent
in these results {(case_1, cond_1), (case_2, cond_1), and (case3, cond_1)). On
average, it actually performs better as more data are introduced. This could be the
effect of the filter introduced during the distance computation of an unknown
sample from a model (See section 4.4.3). New samples strengthen the features of
a model and the filter would take out the variances of those features. However,
the results are reversed slowly as more possibilities are considered as part of
solution (five or ten possibility conditions). This could be the result of
introduction of far alternate distances in the process of selecting five or ten best

choices.
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4.6.2 Results of the modified EPAM werd search

It was sufficient to test the modified search algorithm with a sample font
under case_1 with cond_5 (training set:{font #1,...font #30}, testing set:{font #1,..,
font #30}, cond_5:Recognition results for the top ten choices). I chose font #30 for
this experiment. Under the specified settings the range of the recognition results
varies wide enough to observe the behaviour of the modified search algorithm.

Total number of words tested was 23692.

Font Character First choice Word Did not
size recognition rate word recognized recognize at all
recognized within alternate
choices

7 point 88.7% 3040 (12.8%) 2103 (8.9%) 18549 (78%})
8 point 87.1% 3321 (14%) 1142 (4.8%) 19229 (81.2%)
9 point 95.2% 14865 (62.7%) 1425 (6%) 7402 (31.2%)
10 point 96.8% 22440 (94.7%) 900 (3.8%) 352 (1.5%)
11 point 100% 23359 (98.60%) 333 (14%) 0
12 point 100% 22997 (97%) 695 (3%) 0

Table 4.38 Recognition results for the modified search algorithm.

(Percentage values are approximate)
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4.6.2.1 Analysis of the results of the modified search

The results for the modified search algorithm indicate:
1) If the features are detectable to some threshold (in this thesis top ten choices),
then there is a high probability the objects consisting of those features will be
recognizable.
2) Most of the alternate responses of the system on the larger font sizes (two last
rows of the table) were correct on the second choice. The difference between the
first choice and the second choice usually was only one character, where that
character was very similar to the one mistaken. The mistake originally came from
the character recognition subsystem that determines the order of hypothesises that
are made about the class of a given character. In words that some characters are
very similar in shape (features), it is very likely that the two words could be
mistaken without any further contextual constraint. This phenomenon that is
evident for humans could happen under conditions where the character in
question (feature) is degraded enough to be mistaken for another character and
therefore the word that contains it is recognized for another similar word.
3) As can be seen, the results could be very good if all the leaf nodes similar to
the stimulus object are reached and tested as a hypothesis (the last two rows of
the table). The completeness of the nodes reached could be determined from the
recognition results of the character recognition subsystem. It can be seen that the
two samples (two last rows of the table) possess a 100% character recognition rate

for the top 10 choices, which implies that the access path to the most optimal leaf
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node in the EPAM net is explored. For the other cases (the first three rows of the
table) the results diminish very fast, as the possibility of not reaching the most
optimal node is increased. This result definitely shows the need for redundant
access paths (See section 2.5). A combination of redundant path and alternate path

access would make this model a formidable one for recognition.
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5. Conclusion

The results obtained in the section 4.6 show a modified EPAM model has
a great potential for a recognition system. Coupled with its segmentation
capability via the chunking mechanism, this model could be used in many text
recognition applications. The modifications proposed or tested are not confined
to an OCR machine as the modifications are generic as the model itself is. It
would be interesting to implement the redundant paths described in the section
2.5 and determine its effect on the recognition results. Further, the segmentation
capability of the modified model should prove very interesting to test. Also, the
system should be tried with words where its characters inputted as complex
object consist of a list of features themselves. Subsequently, the system should be
tested with lines of text inputted which contains a nested list of words, characters,
and character features. Alternatively, lines of text consisting of character features
could be inputted and the system tested for its integrated segmentation of
characters and words from the inputted lines.

The feature extraction described in this thesis has also shown promising
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results that could be used with the modified EPAM model or other post
processing methods described in section 3.1.5.

I extremely enjoyed the study of the EPAM model and similar systems as
their generality reaches many aspects and fields in science. The quest for
modelling human perception and intelligence has been very interesting in the past
decades as few general models and architectures have been proposed. Most
models fall into one of the two groups of symbolic models or connectionist
models with few others some kind in between. Most of the arguments have been
on the parallelism or serialism of the processes involved in cognition. Although
the consensus is that a mix of the two is needed in different "levels" of abstraction
in the mind'’s architecture. In EPAM the process is assumed serial in nature. The
objects’ features are processed serially in recognition and learning. These
processes require attention that is serial in nature. Alternate paths devised in this
thesis may be followed in parallel for a single feature, however, the processing
of different features is done serially. The redundant paths are explored serially
from a test node as following each redundant path would be the result of testing
a different set of features.

The modified search algorithm was devised on the "Intelligence” notion
where search of all the possible paths is not done but only few possibly optimal
ones. This concept has been carried over from the Al field. Indeed, the modified
search algorithm is similar to many existing search algorithms in that field.

EPAM IV is currently under construction in Carnegie-Mellon University
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where efforts are being made to introduce redundant paths into its architecture.
I shall end with the notion that many nodes have been traversed an- there

are interesting nodes to go to next in this knowledge space! .
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Appendix A (The fonts used in the experiment)

N
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ABCDEFGHIJKLMNOPOQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

022456789

This Is an example of the font Azro in 2 points.

ABCDEFGHIVKLMNOPQR3ITUVWXYZ
abcdefghijkimnopgrstuvwxyz

0123456789

This is an example of the font arial in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghikimnoparstuvwxyz

0123456789

This is an example of the font Avant Guard in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

0123456789

This is an example of the font Baskerton in 12 points.

ABCDEFGHIJRLMNOPQRSTUVWXYZ
abecdelghijklmnopqrstuvwxyz

0123456789

Thisis an example of the font Buckingham in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

0123456789

This is an example of the foni Capelli in 12 points.

130




ABCDEFGHIKLMNOPQRSTUVWXYZ
abedefghijklmnopgrstuvwxyz

0123456789

This is an example of the font Carnegie in 12 points.

ABCDEFCGHIJKLMNOPCRSTUVWXYZ
abedefghijklmnoparstuvwxyz

01234566789

This is an example of the font Centuryin 12 points.

ABCDEFGHIJKLMNOPORSTUVWXYZ
abcdefghijklmnopgistuvwxyz

0123456789

This is an example of the font Classic Typewriter in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

0123456789

This is an example of the font Corporate Gondensed in 12 points.

ABCDEFPGHIJELMNOPQRETUVWIYZ
abodefghi R mnopqretuvwIyz
01234867892

This is an example of the font Datelineg in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwixyz

0723456789

This is an example of the font Eterna in 72 points.
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ABCDEFGHIJKLMNOPQRSTUYWXYZ
abcdefghijkimnopgrstuvwxyz

0123456789

This is an example of thefontFuturiin 12 points.

ABCDEFGHIJXLMNOPQRSTUVWXYZ
abedefghijklmnopqrstuvwxyz

0123456789

'This is an example of the font Garamand in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopgqrstuvwxyz

0123456789

This is an example of the font Gazette in 12 points.

ABCDEFCGHIJKLMNOPQRETUVWXYZ
abodefghijklmnopgretuvwxyz

0123458789

This is an example of the font Gettysburg in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

0123456789

This is an example of the font Gibraltar in |12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijkimnopgrstuvwzyz
0123456789

This is an example of the font Jewel in 12 points.
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ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvywxyz

0123456789

This is an examplke of the font Joulliard in 12 points.

ABCDEFGHUKILMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwxyz

0123456789

This is an example of the font Katrina in 12 points.

ABCDEFGHIJKLMNOPQRSTUYWXYZ

abcdefghijkimnopgrstuywxyz

0123456789

This is an example of the font Letter Gothic in 12 points,

ABCDEFGHIJKLMNOPQRSTUYWXYZ
abcdefghijkimnoparstuvwxyz

0123456789 ‘

This is an example of the font Obelisk in 12 points.-

ABCDEFGHIJKLMNOPQRSTUYWXYZ
abcdefghijklmnoparstuvwiyz

0123456789

This is an example of the font Oxford in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklimnopqrstuvwxyz

0123456789

This is an example of the font Padua in 12 points.
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ABCDEPGHIJKLMNOPQRSTOVWXYZ

abedefghi JRimnoparstuvwiyz

0123456789

This 1s an example of the font Pica in 12 points.

ABCDEFGHLJKLMNOPQRSTUVWXYZ
abcdefghijklmopqrstuvvxy2

0123456789

This is an example of the font Prestige in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWIXYZ
abedeighijkimnopgrsuvwxyz

0123486789

This is an example of the font Rocldand in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqrstuvwxyz

0123456789

This is an example of the font Souvienne in 12 points.

ABCDEFGHIKLMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwixyz

0123456789

This is an example of the font Times in 12 points.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abc&efghij]elmnopq:stumm

0123456789

This is an example of the font Top Hat m 12 points.
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