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ABSTRACT

Circumferential propagation of acoustic pulses in partially-filled cylindrical
shells

Kevin Shannon

We investigate the circumferential propagation of acoustic pulses in partiailly water-filled
aluminum and stainless steel thin-walled cylindrical shelis in the frequency x thickness
(fd) region 0.64 MHz mm < fd < 0.96 MHz mm. In pulse-echo experiments, a multiplicity
of periodic echoes were received when a single input pulse was applied to the outer
surface of the shell. The periodic behaviour suggests that the pulses take different
paths within the system, and that these paths depend upon the height of the liquid filler.
Computer simulation and obstruction experiments are used to determine the nature of
these paths, and identify, in particular, which modes propagate within the water-loaded
portions of the shells. This work suggests that the Aq Lamb-like wave predominates in

the loaded shell. The application to liquid-level sensing is investigated.
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1. INTRODUCTION

In 1994, the Concordia University Sensor Group undertook research on circumferential
modes in fluid-loaded structures. The research was motivated by the suggestion that
circumferential waves could perhaps be used as a non-intrusive means of detecting
liquid levels inside pipes and tubing. Such a detection technique has been researched
and reported upon for level detection in upright cylinders and tanks [1]. Few results
have been published, however, on the use of circumferential waves for level detection

in cylindrical shells with a horizontal main axis.

A novel method of generating circumferential waves was developed at Concordia [2 -
4]. The approach used an interdigital transducer (IDT) permanently coupled to the
shell's outer surface to generate and receive the circumferential acoustic pulses. This
technique effectively generated coupled modes in the fully-filled stainless steel shell as
predicted by Veksler et al [S] and Maze [6]. The close match between theory and

experiment is reported in the recent doctoral dissertation by X. Li [7].

While the shell mounted IDT is a brilliant bit of technology, its application is limited to
shells of small radius. It was found that, altemately, a common longitudinal bulk
transducer could produce and receive the desired circumferential modes if it were
coupled to the tube in a particular manner. This bulk transducer method is much less

difficult to setup, and is more suited to field application.

When the bulk transducer produced a single puise on a shell that was partially filled
with liquid, multiple echoes were observed. The waveforms acquired at different liquid-

levels exhibited different patterns of echoes. Each level, in effect, had a unique or



“signature” echo pattern. The obvious problem was to determine what causes this
multiplicity of echoes. The implication is that perhaps this pattern might be used to

determine the liquid level inside the shell.

To determine the liquid level using circumferential waves, we would need to have some
prior idea of the echo pattern associated with each level for any liquid and shell tested.
This could be accomplished using a neural network (NN) approach if there were the
opportunity to train the NN on the shell beforehand. Such prior testing could well be
impractical in many field applications. Altemately, we could endeavor to predict the

echo pattem using our knowledge of acoustics and of the shell parameters.

This research presents the basis for the second approach. Specifically, we present the
acoustic theory necessary to explain the echo patterns. We also test the theories for

partially water-filled aluminum and stainless steel shells.

Because the acoustics of the system is not fully understood, especially when it comes
to predicting which mode propagates along the portion of the shell that is coupled to
the liquid, we must consider two competing theories, i.e. propagation of Lamb-like
modes and propagation of “coupled modes”'. Lamb-like waves are surface waves that
propagate along a thin plate loaded by liquid on one or both of its surfaces. Lamb-like
modes can also be said to exist on slightly curved surfaces such as a circular shell
made to vibrate at sufficiently high acoustic frequencies. Coupled modes, on the other
hand, exist only in shells containing liquid, where there is coupling of acoustic modes in

the shell and modes in the internal liquid [5].



Lamb-like modes are /eaky, whereas coupled modes are not. As a resuit, the two types
of modes take significantly different paths through the system, and cause very different
echo pattemns in the acquired waveform. In our efforts to understand the origin of the
observed echo pattemns, therefore, much attention will be given to a pulse’s path

through the system.

This document is divided into five chapters. Following this chapter is Chapter 2,
“Theory”, which establishes the acoustic theory needed to understand the echo
patterns. Chapter 3, “Experiment”, describes the experimental setup, techniques, and
samples tested. Chapter 4, “Results and Analysis”, isolates the time periods associated
with each observed pattern, and compares these periods to theoretical flight times for
various paths. In this way, we will endeavor to explain the observed patterns in terms of
the modes in the system. Chapter 5, “Conclusion”, highlights the main resulits of this

research.

! In the absence of a standard nomenclature for these modes, we use the term “coupled” to refer
to the modes identified in the literature variously as SWG [5] and WT {6l.

3



2. THEORY

This chapter presents the acoustic principles for propagation of a pulse through the
system. The system, shown in Figure 2.1, is a hollow cylindrical shell partially filled with

liquid. We can distinguish four points in the system where unique phenomena occur:

(@) Propagation in the unloaded portion of the cylinder. We must know the group

velocity, vy, for the puise here (section 2.1.1),
(b) Action at an air-liquid interface (section 2.1.5),

() Propagation in the liquid-loaded portion of the cylinder. We must know a pulse’s
group velocity, vg", phase velocity, v,", and attenuation. Because we do not know a
priori which modes propagate around the liquid-loaded portion of the shell, we
present the theory for the most likely candidates: the lowest order Lamb-like
modes Ao" and S, ", and the coupled modes described in section 2.2 (why these
modes are most likely wi-II be made clear later). We must also understand whether

these modes leak into the liquid filler, and if so, then in which direction,

(d) Bulk wave reflection and refraction at the cylinder wall (section 2.1.4),

Figure 2.1
Physical phenomena described in this

research




It has been the trend in the literature to compare the modes in fiuid-loaded shells with
those of a fluid-loaded plate. The close correspondence between the modes in the two
systems is so well established that a single notation is usually used to refer to the
modes in both systems [8 - 11]. The similarity is a fortunate one; we can use the
simpler mathematics of the flat plate to derive the behavior of modes in the curved
shell. This will be our method throughout this chapter: we will discuss the acoustics of

the plate with the implication that the results are also true for the shell.
2.1 Plate modes

H. Lamb was first to report solutions to the wave equation describing the propagation of
acoustic modes down an infinite plate in vacuum [12]. Osborne & Hart later applied
Lamb’s method to a plate immersed in a liquid [13]. Osborne & Hart's immersed modes
were found to be analogous to the Lamb modes, except for the additioﬁ of an
imaginary component to the wave vectors. Osborne & Hart referred to their immersed
modes as “Lamb-like”. Osbome & Hart also found an additional real solution to the
wave equation. This real solution was shown to represent an evanescent wave
propagating mostly in the liquid along the plate surface similar to the surface wave
found by Stoneley. Grabowska extended the Osborne & Hart analysis to a plate
separating a liquid from vacuum [14]. Talmant later solved the more general equation

for Lamb-iike modes in an infinite plate between two different liquids [15].



In the next section, we derive the equation for a wave travelling down an infinite plate
under general loading conditions. The derivations are based on the work by Talmant
[15]. The solutions to this equation provide us with valuable insight into the behavior of

Lamb and Lamb-like modes.

2.1.1_Solutions to the wave equation

The general case of an infinite plate surrounded by two different liquids is shown in
Figure 2.2. We shall use p1, v1, p2, V> to denote the liquid density and sound velocity in
liquids 1 and 2, respectively, and p, v, vt to denote the density, longitudinal and
transverse velocities in the plate. The system has continuity of pressure and particle

displacement normal to the plate at both surfaces, z = + e = + d/2.

Liquid 1 (p,, v,)

vx

Plate (p,v,, v;) Te

v

Liquid 2 (p., v,)

Figure 2.2 Plate configuration

We start with the general equation for a harmonic wave propagating with wave vector

k in the positive x direction in an arbitrary homogeneous isotropic solid or

homogeneous liquid:



\ viot
' ~2
1
v? V—Z%—)wi =0 fori=1,2
\ i

(Egn. 2.1)

where o, ¥ are the scalar and vector potentials describing particle displacements, E,

in the solid; ¢; and ¢. are the scalar potentials in liquids 1 and 2. That is,

u=Vo+VxW¥
u; = Vo, fori=1,2
We are interested in steady state solutions that are invariant in y so that

Egns. 2.1 become,

8x2+6zz —kie=0

ok a4

—+——5-kiI¥=0

cX CZ

~2 ~2

co; Co; .

P +?—k§(pi=0 fori=1,2

(Eqn. 2.2)

¥ =y,=

(Egn. 2.3)

where k. = o/v, kr = ofvr, ki = ofviand o = 2=f (f is the common frequency of the waves

in the system). Solutions to Equation 2.3 can be written in the form



o(x,z) = [A cosh(R,z) +B Sinh(RLz)]ei(kx—mt)
¥(x,z) = [Ccosh(R,2) + D sinh(R ;2) Je ™ Ean. 2.4
¢, (x,2) = Ee Mgl

@, (x,z) = FeRel=V

where A, B, C, D, E, F are arbitrary constants, and where [15]

172
1 1
R, =2 ——;—7-) ,forRe(R)>0fory=L,T,1,2 (Eqn. 2.5)
VP .

For brevity, the factor e is omitted from the remaining derivation.

Now there is continuity of pressure and particle displacement normal to both piate
surfaces, and zero shear stresses in the (non-viscous) liquids parallel to each surface.

These boundary conditions are

P.=(p,); fori=1,2atz=z+e,
u,=(u,), fori=1,2atz=+e, (Eqn. 2.6)
(p,);=0fori=1,2atz=+e.

where




and where A and p are Lamé constants. By substituting Equations 2.4 into Equations

2.2 and Equations 2.2 into Equations 2.6, we obtain six equations in the six unknowns

A, B, C, D, E and F. These equations can be expressed in matrix form as

where

a, =R, sinh(R,e),

a, = (R} +k?)cosh(Re€),
a, = 2ikR; sinh(R;e),

b, =R cosh(R,e),

b, =(R: +k?)sinh(R, e),
b, = 2ikR,; cosh(R,e),

e, =—R,exp(-R,e),

e, = —%ki exp(-R,e),

oM™ o

o o

mMmgooOw P

=0 (Egn. 2.7)

¢, = —ikcosh(Re),

¢, = —2ikR sinh(Re),

¢, =(R} +k*)cosh(R.e),
d, = —iksinh(R e),

d, = -2ikR; cosh(Re),
d, = (R: +k?)sinh(Re),

f, =R, exp(-R,e)

f, = —ﬁ:)—zké exp(—R,e).

and e = d /2 is half the thickness of the plate. Solutions for the matrix A exist when the

determinant of H equals zero (i.e. |H| = 0). For the case of a plate in vacuum, we have

A1 = p2 = 0. We can then reduce |H (1= p2 = 0)| to a product of two determinant |Hs|

and |Ha| so that Equation 2.7 becomes



[H(p, =p, = 0)| =|H,[H,|=0 (Eqn. 2.8)

d
dz and IHA, =

b, ¢,
b

a,
where lel =

a; 3 C3
Equation 2.8 means that there are two independent solution spaces for Equation 2.7
where, respectively, |[Hs{ = 0 and [H,| = 0. These two conditions expand into the
characteristic equations for symmetric and antisymmetric motion of a piate first

discovered by Lamb:
(R2 +k?)? tanh(R.d/2) —4k’R(R, tanh(R,d/2)=0 (Eqn. 2.9 a)
(R} +k?*)* coth(Rd /2) — 4k*R R, coth(R,d/2) =0 (Eqn. 2.9 b)

Equations 2.9 (a) and 2.9 (b) describe two sets of solutions, or two sets of modes of
propagation on a plate in vacuum; specifically, the symmetric (compressional) and
antisymmetric (flexural) Lamb modes, respectively. The names "symmetric” and
"antisymmetric" refer to the symmetry of particle displacement across the z = 0 plane

(see Figure 2.6) [16].

For the case of a plate immersed in a liquid, equations exist that are equivalent to
Equations 2.9, except for the addition of a third, perturbation term on the left hand side
that arises from the presence the fluid. In the case of a plate in contact with different
liquids on each of its surfaces, or for a plate with liquid on one side and air on the other
such as in our case, the determinant |H| is no longer separable into a product of two

independent determinants. Now, [H]| is given by (see derivation in Appendix A):

10



L L L,L
[H(p, =0)|= (IHSI —TSP-)OHAI ——f—) — =<0 (Eqn. 2.10)

where Lgr and Le are the perturbation terms to the symmetric and antisymmetric
equations mentioned above for a plate immersed in a liquid. Were it not for the last
term in this equation, the solutions would be separable. In fact, the last term is
proportional to the square of the density ratio p4p, and can be ignored for relatively light
liquids. In ignoring the final term of Equation 2.10, we have separable solutions for H|
that are equivalent to those for a plate fully immersed in a liquid with density p1/2. The
resulting approximate characteristic symmetric and antisymmetric equations are
Equations 2.11 (a) and (b) respectively:

p:iRL
2pR,

(R} +k?)? tanh(R,d / 2) — 4k>R R, tanh(R,d/2) — k* sinh(R,d/2)sinh(Rd/2) =0
T L L

R
(RT +k*) coth(R;d /2) —4k’R. R, coth(R,d/2)— Pife ps cosh(R;d/2)cosh(R,d/2) =0

2pR,;

Equation 2.11 (b) has one real and, in general, many complex solutions for Vp. These
solutions must be solved numerically for some pair of values for f and d. Solutions have
been found by systematically calculating the generally compiex [Hag| = [Har|” + ijHae]”
over a span of discrete values of v’ and v,”, where v,’ and v," are the real and complex
parts of v; (i.e. v; = v,/ + iv,"). The solution to Equation 2.11 (b) lies at those values of
(Vp', vp") where [Ha]' = 0 and |Ha|” = 0. The above analysis is also true for symmetric
modes where we instead solve Equation 2.11 (a) and search for solutions to [Hse| =

IHSFI' + iIHSF'"-

1



Figures 2.3 (a) and 2.4 (a) show the dispersion curves (|v,| vs. fd) for the modes in
aluminum and stainless steel plates, respectively. The “A” curves represent Stoneley’s
real antisymmetric solutions to Equation 2.11 (b) which only exist when the plate is
liquid-loaded. The “Sy” and “Ag” curves are the lowest order symmetric and
antisymmetric modes in the plate in vacuum, and the “Sy™” and “A,~> modes are the
lowest order symmetric and antisymmetric solution in the plate loaded on one surface
by water (the “L” stands for “loaded”). Figures 2.3 (b) and 2.4 (b) show the related
group velocities, and Figure 2.5 shows the ratio v;"/v,’ for the Ao- mode in stainless
steel and aluminum plates with water-loading on one side. The values of v,"/v,’ for the
So- mode are essentially equal to zero for values of fd < 1.1 MHz mm. This is
equivalent to stating that these modes are not very sensitive to the presence of liquid-
loading [5]. Only the supersonic portion (where v, > v;) of the Ag" curve is given due to

a limitation in the method of solving Equation 2.11 (b) [15]. ~

12
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Figure 2.3 Phase and group velocities of lower order Lamb modes in an aluminum
plate. The free plate modes Ao and S, are given by dotted lines. The
Lamb-like modes A, S¢" and Aq" are for the plate loaded by water on one
side and vacuum on the other.
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Figure 2.5 Ratio v,"/v;' for the As" Lamb-like mode in aluminum and stainless steel

plates.

Table 2.1 contains values from these graphs that will be needed when we analyze our

experimental data. Notice that the A; and A," velocities are treated as equal, as are the

So and S," velocities.

Aluminum

Stainless steel

fd (MHz mm)

Ag & Ag" phase velocity (m/s)
So & So" phase velocity (m/s)
Ao & Ao" group velocity (m/s)
So & So* group velocity (m/s)

Vp"Ivy' for A"

0.80

2174
5114
3103
5114
0.027

0.64 0.80 0.96
2052 2186 2292
5134 5093 5035
3017 3075 3119
5134 5093 5035
0.011 0.0089 0.0083

Table 2.1 Useful values of the phase velocity, group velocity and imaginary
components of Lamb modes in aluminum and stainless steel shells.
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2.1.2 Particle displacements

Equations 2.2 and 2.4 give us the components of particle displacements in the plate
and in the liquid due to both symmetric and antisymmetric modes. In many situations
including our pulsed experiments, however, only one mode such as the Ag"- or So* will
exist at any one location at any one time. We are therefore only interested in the
particle motions due to the partial, mode-dependent solutions in the plate. The particle
motions are plotted in Figure 2.6. Equations for these motions are given in Appendix A.
Figure 2.6 clearly shows the symmetric and antisymmetric nature of these modes —
notice that the symmetric mode is a mirror image about the z = 0 plane, and the
antisymmetric mode have diametrically opposite motions across the z = 0 plane. Also

notice the compressional waves that radiate off into the liquid at specific angles (0so

and Bao, respectively) to the plates.
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2.1.3 Attenuation and energy leakage

The attenuation of a wave over some distance, x, is simply the ratio of its final
pressure, Aq, to its initial pressure, A;. Attenuation is an exponential phenomenon, so

that

where a is the aftenuation coefficient [Nepers/m] . « is given by the imaginary

component k” of the wave number k = k' + ik” [15]. k” is a function of v,"/v,’ such that

Vo
k"=2nf—
Vp

(Ean. 2.12)

Attenuation of Lamb-like waves in a liquid-loaded plate arises mainly due to radiation of
acoustic energy into the liquid [17, 18]. Lamb-like modes are, therefore, often referred

to as a “leaky” modes.

Energy leaked from the Aq" and S,- Lamb waves do so at a specific angles, 6 and

Oso, respectively, to the plate normal according to Snell's law [19],

=T _‘;L i=Ag", So- (Eqn. 2.13)

where v, is the speed of sound in the liquid. Notice that in the subsonic regime where
VaoL < V1, Bao is not purely real. The A" mode therefore can not leak into the ambient

liquid in this regime, nor can an incident wave generate the A" mode in the plate [20].
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Table 2.2 lists some results that will be needed for our analysis of the experimental
data. The attenuation distance listed in Table 2.2 provides us with a measure of the
effective beam width of the leaked energy. Some measure of beam width is needed for
comparison with the dimensions of the system so that it can be determined whether the
approximation of ray acoustics is valid. Ray acoustics can be used in our case only
where the beam width is small with respect to the geometry of the system. This will be

discussed in greater detail in Chapter 4.

Aluminum Stainless Steel
fd (MHz mm) 0.8 0.64 0.8 0.96
Aq" attenuation coef. (Neper/m) 78.0 26.9 256 27.3
Ag" attenuation distance (-20dB) 29.5 85.5 89.8 842
(mm)
Ao" leaky angle 43.0° 46.3° 44.1° 40.3°

Table 2.2 Parameters related to the attenuation of Lamb modes in aluminum and
stainless steel plates.

2.1.4 Reflection and reemission of bulk waves

The ratio of reflected pressure to incident pressure for a wave incident upon an liquid-
solid interface is given by the reflection coefficient, V. Brekhovskikh [21] defines V for a
boundiess plane wave incident in liquid upon a plate with vacuum (air) on the other side
(Equation 2.14). Figure 2.7 shows the reflection coefficient versus angle of incidence

for a water/aluminum/vacuum system.
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V =¢e™ where (Eqn. 2.14)

¢ =2arctan[(MZ,)Z,]/[(MZ,)* - (NZ,)],

MZ, =Z, cos® 2y, cot(k,d cos8,) +(Z,, / Z,)sin® 2y, cot(k,d cosy,)

NZ, =Z, cos’ 2y, / sin(k,d cos®,) + Z, sin®2y, /sin(x,dcosy,)

Z, =

p,vy /cos®,, Z, =p,v,/cosy, and Z, =p,v, /cos@,

and where 8; is the angle of incidence; k, and 6, (resp. x, and v2) are the wavenumbers

and refraction angles of the longitudinal (resp. transverse) wave in the solid: and d is

the thickness of the plate.

Figure 2.7
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Reflection coefficient vs. angle of incidence for a plane wave incident in
water upon an aluminum plate at fd = 0.8 MHz mm.

While V is essentially equal to 1 at all angles, there is an interesting small dip at the

angle where, by Snell's law (Equation 2.13), the refracted wave would travel down the

plate with veloctiy vp = vaoL = 2174 m/s. This is no accident, say Chimenti et a/, who

make the connection between the minimum in the reflection coefficient and the lowest
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order flexural Lamb-like mode in an aluminum plate immersed in water [22]. Mott
identified a similar minimum at the Rayleigh angle for a plane wave incident in water

onto the surface of a semiinfinite solid (steel) [23].

The reflection coefficient generally provides a good indication of the amount of energy
that is scattered from a surface. This is not the case, however, for a plate where Lamb-
like waves are generated by the incident wave. This is because Lamb-like waves leak
into the liquid = out of phase with and at the same angle as the reflected wave, causing
destructive interference [17, 23]. In 1952, Schoch observed this reflected / reemitted
beam, which he misinterpreted as a “lateral displacment” of the reflected beam
originating from a solid half-space [24]. Deighton ef a/ derived an equation for the
conversion efficiency for a plane wave incident in liquid at the critical angle onto a plate

over a distance ‘a’ [17]:

Poaw _2(1-e™)’
P, aa

The efficiency n = (Egn. 2.15)

where P; is the total power of incident wave and Psay is the total power of the Lamb-like

wave that is generated. The remaining power is reflected / reemitted so that [17]

2(1-e™™)?

=l-nn=1 (Egn. 2.16)

is the proportion of the energy returned to the liquid over the distance ‘a’. The effective
pressure transmission coefficient and pressure reflection / reemission coefficient are

proportional to the square root of 7 and 1- 7, respecitvely.
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We can apply Deighton’s resuits to our curved system when we make the conceptual
transformation shown in Figure 2.8. In our system, the cylinder wall acts as both emitter
and receiver of bulk waves in the liquid. Figure 2.8 (a) shows that waves are always
emitted and recei\;ed at the critical angle (6., if emitted from the Ao mode), and that
this condition is respected by the “flattened” system shown in Figure 2.8 (b). Both

plates 1 and 2 are similar to Deighton’s flat plate.

tube
air

water leve!

leaky rays

air

air @) (b)

Figure 2.8 "Flattening” of shell wall (a) to two paralie! plates (b)

2.1.5 Action at a loading interface

Here we are interested in knowing the amount of reflection and transmission of a Lamb

wave as it makes the transition past an air-liquid boundary.

Feit et al [25] calculated the two dimensional near-field response of a steel plate loaded
by water on one of its surfaces and by air on the other and driven by a uniform line

source set perpendicular to the saggital plane. These calculations were performed in
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both the subsonic and supersonic regimes. In the subsonic regime, the source was
found to cause two distinct waves: an evanescent wave that travels without attenuation
in the water along the plate surface, and a cylindrically spreading bulk wave in the
water emanating from the line source. Similarly, the supersonic regime saw to the
generation of a (non leaky) interface wave and the cylindrically spreading wave. It was
shown that the supersonic leaky wave diminished significantly in amplitude as it
traveled down the plate. The leakage of this interface wave interferes destructively with
the cylindrically spreading wave, causing pressure lobes along a line that extends out

from the plate at 45° to its surface.

Matula ef al [26] experimentally confirmed Feit’s findings for the subsonic regime using
an aluminum plate that was partially immersed in water. A pulse of subsonic (relative to
the sound velocity in water) A, Lamb wave was generated in the free portion of the
plate. This wave traveled down the plate into the water, where near field scattering was
observed. An important result is that no significant reflection of the pulse from the

water’s surface was observed.
2.2 Circumferential modes

We now consider modes that only exist in shells containing a liquid core. These modes
are characterized by the coupling of the modes in the two subsystems shown in Figure
2.9: (a) the Ao Lamb mode in an empty cylindrical shell and (b) whispering gallery
modes in the internal water column. Whispering gallery modes were first reported by
Lord Rayleigh [27]). Veksler ef al note the rather important result that the whispering
gallery modes propagate without attenuation [5]. This implies that they do not leak into

the liquid core.
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Lamb modes whispering coupled modes
gallery modes '

Figure 2.9  Curved subsystems and the modes they support.

It would happen that at certain values of fd, the velocities of some Lamb modes in the
shell would equal the velocities of whispering galiery modes in the adjacent water
column. In the coupled system, the modes in the two subsystems exhibit mode
repulsion. Figure 2.10 illustrates mode repulsion in a water-filled stainless steel shell
[28]. We see there that the dispersion curves for the modes of the coupled system, C1
and C2, do not cross, rather veer away from one another to follow the velocity curves of

the subsystems when these are sufficiently different from one another.

While the phase velocities of the coupied modes do not differ much from v, in the
coincidence regions, their group velocities do. Figure 2.11 show the group velocities for
the modes shown in Figure 2.10. The curves in Figure 2.11 were confirmed by Cheeke
et al who observed the coupled mode group velocities where they plateau, i.e. where
0.21 MHz mm < fd < 0.6 MHz mm [29]. Clear echoes could not be obtained outside this
fd region. Talmant was also unable to observe clear echoes for Lamb-like modes in

submerged plates [30].
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We can see that the group velocities of Figure 2.11 differ considerably from those of
the Lamb-like modes of Figure 2.3. Because of this difference, a pulse’s total flight
time back to the transducer will be significantly different depending on whether it
propagates in the loaded portion of the shell as a coupled mode or as a Lamb-like
mode. We must consider both flight times when, in Chapter 4, we compare the

theoretical flight times with experimental times.

Figure 2.11 does not provide us with the group velocities at our experimental values of
fd = 0.64, 0.8 and 0.96. If indeed coherent pulses do exist at these upper regions of fd,
we assume that the group velocities would be similar to the plateau velocities of 2400
m/s shown in Figure 2.11. Values for the velocities in a water-filled aluminum shell

could not be found in the literature.
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Figure 2.10 Theoretical phase velocities of modes in a water-filled stainless steel shell
and its subsystems: A, is a Lamb mode in empty shell; C1 and C2 are first
two coupled modes of water-filled shell; WG1 and WG2 are first two
modes in water column. Shell outer radius = 9.8 mm, wall thickness =
0.254 mm [28].
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Figure 2.11 Theoretical group velocities of modes in a water-filled stainless steel shell
and its subsystems. A, is lowest order Lamb mode in empty shell; C1 and
C2 are first two coupled modes of water-filled shell; WG1 and WG2 are
first two modes in water column. Shell outer radius = 9.8 mm, wall

thickness = 0.254 mm [28].
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3. EXPERIMENT

We performed three types of experiments in this research. The main experiment of
course was (a) the pulse-echo experiment where multiple echoes were received when a
single pulse was input to the system. The other two experiments were designed to

determine which modes propagate in the shells:

(b) Phase velocity experiment: A pseudo-continuous acoustic wave was input to the
system instead of an acoustic pulse. This experiment used interference effects to

measure the phase velocity of the A; mode in the empty shells.

(c) Obstruction experiments: Objects were placed in the system so as to obstruct
specific acoustic pathways. These experiments consisted of hanging objects inside
the liquid filler, and placing objects in contact with the outer surface of the cylinder
below the water line in order to dampen any modes that may be propagating in the

cylinder wall.

3.1 Shells and frequencies

One aluminum and one stainless steel shell were tested, with the aluminum shell being
tested at one frequency and the stainless steel shell tested at three frequencies. Shell

sizes and frequencies are listed in Table 3.1.
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Aluminum Stainless Steel
inner radius (mm) 45.1 14.85
Outer radius (mm) 45.9 15.25
Shell Circumference (mm) 285 946
Wall thickness, d (mm) 0.8 0.8
Frequency, f (MHz) 1.0 0.8, 1.0, 1.2
fd (MHz mm) 0.8 0.64, 0.8, 0.96

Table 3.1 Shell parameters

For the experiment to yield meaningful results, the pulse parameters must be suited to
the size of the system. For instance, to distinguish between leaky and non-leaky
modes, the attenuation distance of the leaky modes must be considerably smaller than
the total submerged portion of the shell. That is, the leaky mode must have enough

water-loaded shell in which to leak. Table 3.2 compares key shell and pulse distances.

Aluminum Stainless Steel

fd (MHz mm) 0.8 064 | 0.8 | 0.96
Cycles / burst 13 13 13 13

Pulse duration (us) 13 16.3 13 10.8
Ao & A" wavelength (mm) 22 26 2.2 1.9
So and Sg" wavelength (mm) 5.1 6.4 5.1 43
Lowest coupled mode wavelength (mm) 1.8 23 1.8 1.5
-20 dB Aq" leaky distance (mm) 29.5 855 | 89.8 | 84.2

Table 3.1 Pulse parameters
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All experimental points are in the supersonic regime for the Aq, Ao", So, So" and

whispering gallery modes.
3.2 Experimental configuration

Except perhaps for transducer placement and coupling, this research uses an
experimental configuration (shown in Figure 3.1) that is basic to applications in
nondestructive testing (NDT) of materials and structures by contact ultrasonic and
pulse-echo techniques [31]. A Ritec RAM-10000 pulser-receiver system was used to
generate and receive the puises. The Ritec amplified the received signals, and fed
them to a digital oscilloscope for display and time averaging. The oscilloscope was

connected via GPIB bus to a computer for signal acquisition and recording.
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Figure 3.1 Experimental setup
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In each experiment, the transducer was placed atop the shell’s outer wall. Two different
transducers were used: a 0.5” diameter 1.0 MHz narrowband immersion transducer
(Panametrics® Model A303-5) was used on the aluminum shell. A 1.0” diameter 1.0
MHz wideband (0.6 MHz bandwidth) was used on the stainless steel she-.ll (Matec®
Mode! 1LO108HR). In each case, the transducer was coupled to the cylinder by a thin
line of Sonotrace 30® ultrasonic couplant carefully deposited parallel the cylinder's
main axes. Waves were emitted from this coupling mainly in the circumferential

directions.
3.3 Pulse-echo experiment

The pulse-echo experiments were performed in the following steps.
1. The Ritec was configured to the appropriate frequency, and voltage.

2. The transducer was coupled to the empty tube so as to produce the A, mode. The
transducer never touched the shell. The height of couplant (the distance between
the transducer and cylinder) could be adjusted by means of the adjustable bench
shown in Figure 3.1. It was found that different echo patterns were obtained by
changing the coupling height while the Ritec was in operation, and that the A,
mode, in particular, could be preferentially generated and received in the empty
tube at a particular coupling height. That the A; mode was indeed being generated
was verified by (i) measuring the time delay, At, between echoes using cursors on
the oscilloscope, (ji) calculating the group velocity for circumferential propagation Vg
= 2nr/At, where ris the average radius of the shell, and (jii) comparing this

experimental velocity with the theoretical velocities for the Ag and S, modes.
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3. Waveforms were acquired in the empty and partially water-filled cylinder. Water
was first added to the cylinder to a height of 4/18 of the cylinder inner diameter.
Below this level, most echoes were hidden in noise. Great care was taken not to
modify the couplant when adding the water so that the A, mode would continue to
be generated when the shell contained water. The water was then added in steps
of 1/18" or 1/36™ of the cylinder diameter (in the stainless steel and aluminum
cases, respectively) to a maximum height of 17/18 in the stainless steel shell and

35/36 in the aluminum shell. A waveform was acquired at each fill height.

4. The signals were filtered. The poor impedance match of the immersion transducers
to the thin line couplant is marked by the presence of considerable harmonics in the
received signal as shown in Figure 3.3 (a). The signals were therefore filtered using

Labview’'s® bandpass filters with 0.2 MHz bandwidth.
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Figure 3.2 Typical waveform spectrum: (a) unprocessed and (b) after 0.2 MHz
bandpass filter.
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5. Peaks in the signal were identified. A program was written in Matiab® to find the
points of maximum amplitude in the filtered signals using an 8 us [800 sample pts.]
moving window, with the results being written to a database. The program could

identify maxima separated by at least 8 us.
3.4 Phase velocity experiment

We were able to measure the phase velocity of the mode generated in the empty

cylinder by:
1. Producing pulses of the A, mode at as described above in step 2 of Section 1.3.

2. Increasing the cycles per burst (CPB) until there was significant overlap in the

puises, and acquire a waveform.

3. We repeated step 2 at 10 frequencies spaced in small increments Af = 0.005 MHz

about the center frequency.
4. We plotted the average power of the signals taken at each frequency.

The average power passes through a series of local maxima and minima over the
tested frequency range. The minima correspond to frequencies at which signals
propagating around the shell interfere most destructively with the signal being
generated by the transducer, i.e. differ in phase by nA/2 so that n\ / 2 = 27r where A is
the wavelength of the A; mode, n = is an odd integer, r is the shell radius and 2x=r is the
path difference of wavecrests under the transducer. It follows that adjacent minima

correspond to adjacent n’s, i.e. niq = n; + 2, and that adjacent frequencies differ by
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Vo Y, I/n-*-l nY Vv,

. =f —f=———= - = Eqn. 3.1

Ao =fir —F; A A Ve\2nr  2m/ | 2mr (Ean.3.)
Therefore,

v, = 2mAf, (Eqn. 3.2)

3.5 Obstruction experiments

The aim of the obstruction experiments was to specifically test which paths were taken
by the acoustic energy through the system. This was done By obstructing the paths
through the water or along the shell wall, and comparing the waveforms acquired from

shells with and without the obstructions. The obstructions tested for the presence of:

e Through transmission: “Through transmission” refers to the transmission of acoustic
energy straight through the interior of the shell. This energy reflects off the bottom
shell wall back to the transducer. The aim of this test was to determine whether
there was direct transmission from transducer to the liquid when a shell is fully filled
with water. With the Ritec active, a flat plate was placed in the full shell and moved
to various positions and orientations, while the oscilloscope was monitored for any

changes in waveform.

* Leaky modes: Leaky modes would be marked by the radiation of acoustic energy
off the internal shell wall. Among the modes considered in this research, only the
Aq" would theoretically be leaky in our experimental fd region. Leaky modes would

then be marked by the presence of bulk waves in the liquid interior, and could be
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identified indirectly by observing these bulk waves. Objects such as paper clips and
razor blades were therefore hung inside the shell so that they came near but did not
touch the shell wall. With these obstructions in place, the pulse-echo experiment
was performed at a number of fill levels. The waveforms so produced were
compared to those from the non-obstructed shell. Differences from the non-
obstructed waveform would mean that the acoustic path does include a trip through

the liquid, and that leaky modes exist in the shell.

Circumferential modes: “Circumferential modes” refer to those modes that travel
exclusively around the shell wall. These modes would include the So- and coupled
modes. To detect circumferential modes, the external wall of the stainless steel
shell was touched with different objects at various points far below the water line.
Objects included a rubber band, a wet cotton swab, a finger, water droplets and

(ahem) a large lump of peanut butter.
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4. RESULTS AND ANALYSIS

This chapter presents the resuits of the experiments described in Chapter 3 and
develops the steps taken to identify the paths of the acoustic pulses through the
system. The aluminum and stainless steel shells will be analyzed in turn. For each
shell, we first inspect the waveforms from the empty shell to ensure that we are
generating the Ao mode. We then analyze the data for the partially-filled shell by (a)
identifying the time spacing for periodically occurring echoes, (b) comparing these
experimental periods to theoretical flight times for various paths in order to match
periods with flight paths. We thus aim to identify the path taken through the system.

Any conclusions are checked with the results of the obstruction experiment.
4.1 Aluminum shell

In this section we describe resuilts of the pulse-echo experiment and supporting
experiments on the aluminum shell at 1.0 MHz. The experiments themselves, including

any signal processing, were described in Chapter 3.

Figur_e 4.1 is a waterfall plot of the experimental data gathered from the aiuminum shell.
The plot shows all thirty six (rectified) waveforms acquired from the aluminum shell.
Each waveform corresponds to a different fill level, with ‘0’ referring to the empty shell,
and ‘3%’ referring to the (almost) full shell (note that a waveform was not acquired for
the full tube due to strong through transmission). Figure 4.1 seems to exhibit at least
one family of echoes whose period increases with the liquid height. Unfortunately,

things aren’t that simple. Inspection of the individual waveforms will show that these
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echoes do not increase monotonically in period with liquid height, and actually take a

number of different paths around the system.

We proceed next to examine the waveforms for the empty shell and some exemplary

waveforms taken when the shell was partially-filled with water.

rm<mre rrr—m

104 seconds

Figure 4.1 Waterfall plot for the 36 waveforms acquired on the partially water-filled
aluminum shell

4.1.1 Empty shell group velocity

Figure 4.2 shows the waveform acquired when the shell was empty. Here we can see a
clear echo train with a constant period of 92.3 us between adjacent echoes,

corresponding to a group velocity of 3096.9 m/s around the circumference of the shell.
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Figure 4.2 Filtered waveform for the empty aluminum shell

4.1.2 Empty shell phase velocity

We obtained rather curious results from this experiment. The experiment was
performed a number of times, and every time produced a frequency spacing, Afmi, in
Equation 3.1, equal to 0.02 MHz. This provides us with an experimental value for the
phase velocity v, in Equation 3.2 equal to 3192 m/s. This experimental value actually
equals the theoretical group velocity. It seems that we have unwillingly measured the
group velocity. Details of the experiment and analysis of resulits for both the aluminum

and stainless steel shells can be found in Appendix B.

4.1.3 Partially-filled shell

Distinct echoes can be seen in all the waveforms acquired when the water was above
the height of 4/36D, where D is the shell’s inner diameter. These echoes often exhibit

patterns in which three or more echoes are separated from one another by the same
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amount of time. We assume that such a pattern is not accidental, and that it most likely
results from a pulse repeatedly circumnavigating the system, producing an echo each

time it passes under the transducer.

Our aim is to identify the origin of the patterns in terms of specific paths taken through
the system. Using a computer simulation to aid with the tedious task of tracking a
hypothetical pulse through the system, the path for approximately 70% of all the
echoes observed in the aluminum shell have been identified. lilustration of the paths for
every pattem would be unnecessarily heavy. Instead, we limit our explanation to the
patterns at three fill levels. The waveforms acquired at fill levels 14D, %D and 25/36D
are shown in Figures 4.3, 4.4 and 4.5. Table 4.1 lists the periods of the patterns

identified in the figures.

amplitude (volts)

-0.08
-0.10 1

: ' Y . T . '
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
time (sec)

Figure 4.3 Waveform acquired at 1.0 Mhz from the aluminum shell % full of water.
Four repetitive pattens are identified and labeled S, 1, 2, and 1+2. These
arise from three periods (horizontal arrows) S, 1 and 2.
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Figure 4.4 Waveform acquired at 1.0 MHz when aluminum shell was % full of water.
Periods 3, 4 and 5 are identified.
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Figure 4.5 Waveform acquired at .1.0 MHz when aluminum shell was filled with water
to a height of 25/36 of the shell diameter (approximately 2/3™ full)
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Ya Fill Y2 Fill 25/36 Fill

Pattern Period (us) Pattern Period (us) Pattemn | Period (us)
1 11177 £ 1.1 3 130.5+1.3 6 133.4+£0.5
2 163.3+£0.3 4 197.5+1.5
Sy 56.1* 5 84.1+08

Table 4.1 Periods of the echoes acquired from the aluminum shell at 1.0 MHz when %,
%2 and 25/36 filled with water. (* only one echo evident)

To identify the path that causes each pattern, we compare the observed periods with
the flight times calculated for the most likely paths through the system. We specifically
consider the paths of through transmission, continuous circumferential propagation
(around the cylinder wall), reflection from the liquid-loading interface and leaky paths
that include conversion to bulk waves in the liquid. The paths of through transmission,
circumferential propagation and reflection from the loading interface are show in Figure
4.6 (a) while Figure 4.6 (b), (c) and (d) show leaky paths. The nature of these paths are

described next. Many of these paths were identified by Shannon et a/ [32].
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Figure 4.6 lllustration of paths through the water-loaded aluminum shell (a) paths in
all levels: through transmission (T), circumferential (C;) and reflected (R)
paths, (b) % filled shell, (c) % filled shell, (d) 2/3 filled shell.

Recall that “through transmission” refers to the direct acoustic path from the transducer
straight down through the interior of the shell to its bottom wall, and directly back to the

transducer. We calculate the time for this round trip at all fill levels.

“Circumferential propagation” refers to the circular propagation of an acoustic pulse
along the shell wall. When considering circumferential propagation, we are not sure a

priori whether the loaded portion of the shell primarily supports the A¢", St or a
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coupled mode. We therefore calculate the flight times for these three cases. That is, we

calculate the flight times for circumferential propagation of

(@) the A and Ag" modes in the unloaded and loaded portions of the shell, respectively.

We refer to this case as the circumferential path C (A¢/Ao"),

(b) the Sp and S," modes in the unloaded and loaded portions of the shell, respectively

(circumferential path C (So/So")),
(c) the Ag and coupled mode (circumferential path C (Ao, coupled).

The leaky paths are a little more complicated. Path 1 (shown in Figure 4.6), for
example, begins as an A, mode that is produced in the unloaded shell continues down
into the loaded portion of the shell as the A," mode where it is converted (leaked) to a
bulk wave in the liquid. After travelling through the water for some distance, the bulk

wave is reconverted to the A," mode in the shell, and returmns to the transducer.

Path 2 is similar to path 1 up until where the leaked energy strikes the shell wall. In path
2, we follow the energy reflected from the wall. This reflected energy bounces off the
water's surface and is directed back to the transducer along the path from which it

came.

Paths 3, 4 and 5 share common path elements. Path 3 is similar to path 2 up until
where it strikes the water surface. If we take beam width into consideration, we find that
part of the energy in path 3 strikes the shell just below the liquid surface, where it is
converted to an Ag" wave and travels back to the transducer. The portion reflected by

the liquid surface travels along path 4. Path 5 is the same as path 4 up until the point
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where the bulk energy in path 4 is reconverted into the A, mode in the shell. Path 5

tracks the energy reflected from this point onward.

The theoretical flight times for the paths shown in Figure 4.6 are listed in Tabie 4.2,
where they are also compared to the experimental flight times. Table 4.2 clearly shows
that none of the times for the through transmission or circumferential paths match the

experimental periods, while the leaky paths match the experimental periods quite well.



Fill level Path Theoretical Experimental | % Difference
flight times (us) | periods (us)

1/4 Through 4240 - -
C(Ad/Ac") 93.5 - -

C(S¢/So") 55.9 56.1 0.36
C(Ao/coupled) 110.12 - -
Reflected 624 - -

1 112.3 111.8 +1.1 0.40
2 163.0 163.0+0.3 0
1/2 Through 323.0 - -
C(AJ/AS") 93.5 - -
C(So/Sc") 55.9 - -
C(A¢/coupled) 112.4 - -
Reflected 46.1 - -

3 132.9 130.5+1.3 1.84

4 192.4 197.5+1.5 2.58

5 86.6 84.1+0.8 2.97
25/36 Through 2450 - -
C(Ad/Ao") 93.5 - -
C(Sv/So") 55.9 - -
C(Aod/coupled) 114.1 - -
Reflected 345 - -

6 132.9 133.4 +0.5 0.37

Table 4.2 Flight times for the paths shown in Figure 4.6 compared to experimentally

observed periods
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The comparisons in Table 4.2 strongly suggest that acoustic energy travels along the

paths 1 through 6. These paths all include leakage of the A,- mode into the liquid.

That the puise travels for a stint as a bulk wave through the liquid was confirmed when
objects were placed inside the liquid so as to bisect these paths; the signals from the

obstructed shell were found to differ from the signals in the unobstructed shell.
4.2 Stainless steel shell

Pulse-echo experiments were performed on the stainless steel shell at fd = 0.64, 0.80,
0.96 MHz mm. Alternately, since a single stainless steel shell was tested, one can think

of the experiments as being performed at three frequencies, f = 0.8, 1.0, 1.2 MHz.

The waveforms were found to differ significantly at different liquid heights, but not at
different frequencies so that the waveforms acquired at ¥ fill at 0.8 MHz and 1.0 MHz

were very similar.

4.2.1 Empty shell group velocity

Figure 4.9 shows the waveform for the empty stainless steel shell at fd = 0.64 MHz mm.
The waveforms in the empty shell at fd = 0.8 and 0.96 MHz mm are almost identical to
the one shown in Figure 4.9. The echoes in Figure 4.9 are separated by 29.08 us,
corresponding to a group velocity of 3208.6 m/s around the circumference of the shell.
This matches the theoretical value of group velocity for the A mode shown in Figure
2.4. We can see that the amplitudes of the echoes do not decrease monotonically in
time. It is thought that this modulation is caused by the edge effects of the (narrow)

stainless steel sheli.
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Figure 4.7 Waveform acquired at 0.8 MHz (fd = 0.64 MHz mm) from the empty
stainless steel shell.

4.2.2 Empty shell phase velocity

The results for this experiment were similar to those for the aluminum shell in that the
group velocity was inadvertently measured. Details of the experiment and analysis can

be found in Appendix B.

4.2.3 Partially-filled shell

When the shell is partially filled with water, we observe a great myriad of echoes that,
due to the small radius of the stainless steel shell, are closer together than the echoes
observed in the aluminum shell. These echoes interfere with one another soon after the

initial pulse, possibly ampilifying minor echoes and removing significant echoes where
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constructive and destructive interference, respectively, occurs. It is therefore difficuit to
piece together families of echoes as we did for the aluminum shell. Indeed, the
simulation that worked somewhat well for the aluminum shell finds a limit to its

applicability here.

One family of echoes does emerge, however, at each value of fd. The average periods
for each family is listed in Table 4.3, along with the number of significant (large) echoes
in the waveform contributing to the average period. Figure 4.12 shows the family when

the shell is 7/18 full at 1.0 MHz (fd = 0.8 MHz mm).

Fill 0.64 MHz mm 0.8 MHz mm 0.96 MHz mm
(x/18) Period (us) | # Echoes | Period (us) | # Echoes | Period (us) | # Echoes
0 30.04 16 28.91 - 0
2 - 0] 32.73 4 - 0
3 - 0 30.15 5 - 0
4 35.59 5 32.51 8 - 0
5 36.61 5 - 0 - 0]
6 36.91 6 35.85 13 - 0
7 36.82 6 3597 11 - 0
8 37.62 13 35.86 5 35.20 9
9 37.34 17 35.75 9 - 0
10 37.19 6 36.18 9 34.47 11
11 37.86 13 3593 6 34.18 9
12 37.53 17 36.23 7 35.45 3
13 38.79 12 36.06 11 - 0
14 36.91 6 36.85 9 - 0
15 43.40 4 40.42 4 35.51 4
16 43.40 4 4042 4 - o

Table 4.3 Observed periods for echoes at all water fill levels in the stainless steel shell
for the three values of fd tested. The fill column refers to the proportion of
the tube filled (e.g. 0/18 is empty and 9/18 is half full). Dash marks indicate
that no echo patterns were found.
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Figure 4.8 Waveform acquired with stainless steel shell 7/18 full of water at 1.0 MHz
(fd = 0.8 MHz mm)

As we did for the aluminum shell, we compared the periods observed to the theoretical
flight times for the paths of through transmission (T), circumferential (C) and leaky (L)

waves at fd = 0.64, 0.8 and 0.96 MHz mm (Figure 4.12).

<

~X—y"

Figure 4.9 Through transmission (T), circumferential (C), and leaky (L) paths in the
partially filled stainless steel shell.
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The theoretical and observed flight times at fd = 0.64, 0.8 and 0.96 MHz mm are listed
in Table 4.4. We can immediately see from Table 4.4 that the times for through
transmission do not match the experimental times. The flight times for the other modes
are graphed in Figures 4.13. Except for at fills 15/18 and 16/18 in Figure 4.13 (a) and

(b), there is a very close match between the theoretical leaky times (curve ‘L’) and

experiment.

Fill T C (AJAOL) C (AO0/coupled) L Experiment
4 71.1 294 32 36.1 325
5 67.5 294 324 36.1
6 63.9 29.5 328 36.2 35.8
7 60.3 29.5 33.2 36.3 36
8 56.8 296 335 36.3 359
9 53.2 29.6 339 36.4 358

10 49.6 29.7 342 36.4 36.2

11 46 29.7 346 36.5 35.9

12 42.4 29.8 35 36.5 36.2

13 38.8 29.9 354 36.6 36.1

14 35.2 29.9 35.8 36.6 36.9

15 31.7 30 36.2 36.7 404

16 28.1 30.1 36.7 36.8 404

Table 4.4 Theoretical times of flight for pulses along the paths shown in Figure 4.12; T
for the path of through transmission; C (Ao/Aq") for the Ag & A, modes
around the cylinder wall; C (Ao/coupled) for the A, & coupled modes around
the cylinder wall; L is the leaky path; ‘Experiment’ are the observed periods

50



0.000041 -
4 A—aA
0.000040
] Experiment
0.000039 P
0.000038
0.000037 ~
S 0.000036 Leaky__g:=‘=t:‘7‘\‘—' & j
o 0. - —g— A
o 1 - e
L 0.000035
@ .
£ 0.000034 -
F ooco03z4 4
0.000032 C(A,/coupled)
0.000031
b L o—0— ®
0.000030 C(APIAQ) o—o—0—0—0—@
0.000028 +—-pbp—-s—pp-—&——1r—r—pr—-—"r—--r—-"r—vpb-—o—p--r—1—
4 6 8 10 12 14 16

Figure 4.10 (a) Comparison of theoretical and experiment flight times at all fill levels
in the stainless steel shell at fd = 0.64 MHz mm
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Figure 4.10 (b), (c) Comparison of theoretical and experiment flight times at all fill

levels in the stainless steel shell at (b) fd = 0.8 MHz mm, (c) 0.96

MHz mm.

4.3 Discussion

We have the result that both the aluminum and the stainless steel shells seem to

preferentially support the leaky A" mode in the loaded portion of the shells. Why aren’t

the coupled modes supported? While an exact answer to this question is not given

here, we note that it would seem reasonable for the A" mode to be produced in the

loaded portion of the shell since this mode is the natural continuation of the A, mode

from the unloaded portion of the shell.

52



shell / water / air
water level i

Figure 4.11 The splitting of the bulk wave in the liquid filler of the stainless steel shell.

Due to the rather messy nature of the echoes gathered from the stainless steel shell,
we found that we could not use the simulation to successfully track the energy in the
this shell. It is believed that this limitation results from the shell radius being comparable
to the beam width in the stainless steel shell. Recall that stainless steel has a lower
attenuation coefficient, so that the acoustic energy leaks from the Aq" at a slower rate
than it does in the aluminum shell. This causes the beam in the liquid to be wider
(Figure 4.11). There is now more chance that the beam, after redirection with the shell
wall, will be split by its encounter with the shell/liquid/air intersection. This splitting
breaks a beam into two new beam that reflect off in different directions. The

simulation’s representation of the beam by a single ray is no longer valid in this case.
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5. CONCLUSION

In this research, we have presented the theory of Lamb mode propagation, attenuation,
leakage and particle displacément in free and liquid-loaded plates. We have reviewed
the theory of reflection and transmission of a bounded beam at a the surface of a plate.
We have analyzed the effects of transmission of the Ao Lamb mode across a loading
discontinuity, and considered its possible conversion to a coupled mode in the loaded

portion of the shell.

Experimental work was performed to identify the paths taken by the acoustic energy
through aluminum and stainless steel shells containing water. A simulation was written
that successfully identified the path for 70% of the major echoes taken from the

partially-filled aluminum shell.

The simulation was unsuccessful for the most part in identifying the source of the
echoes in the stainless steel shell. it is hypothesized that the smaller dimension of this
shell combined with the greater leaky distance for the At mode conspire to limit the
applicability of the simulation’s use of acoustic rays to represent bulk waves in the
liquid. One major family was, however, identified in most of the waveforms acquired
from the stainless steel shell. It was shown that the path associated with this family

most likely includes leakage of the A" mode into the water filler.

We have the experimental result that both the partially-filied aluminum and stainless
steel shells support the Ag" rather than a coupled mode along the liquid-loaded shell
wall. This result seems reasonable given that the shell mode below the liquid surface is

produced by an A; mode travelling down the shell wall across the loading boundary.
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The stainless steel experiments would most likely yield better resuits if they were
performed on larger shells. This would require a robust contact transducer that could
withstand the increased input voltage that would be needed to receive a signal. Further
work could also be done to improve the impedance match of the transducer coupling.
Currently, the poor match of the thin line of couplant limits to the amount of energy that

can safely be fed to the transducer.

The simulation was somewhat successful in predicting echo times in the aluminum
shell. There will always be the limitation, however, that the acoustic beam formed in the
liquid will be split in two, possibly causing additional echoes to appear at the
transducer. The first improvement to the simulation would be to somehow account for

beam width.

As for the feasibility of using circumferential modes for non-intrusive level sensing,
there is no sweeping conclusion to this issue. Circumferential mode sensors have
promise for relatively large thin-walled structures, where leaky distances are small
compared to shell radii. Other shells would be ill-suited to this type of sensing either

because of their small attenuation or difficult geometry.
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APPENDIX A

A.1  Characteristic equations for fluid-loaded plate

Here we derive the characteristic equation for a plate that is fully immersed in a liquid,
and a plate that that is in contact with a liquid on one surface and with air on the other

(Eqn. 2.11). The symbols in this appendix are the same as those used in the text.

We start with a plate immersed in liquid. We have p{ = p, and v; = v, so that f; = - e,

and f; = e,. Equation 2.7 becomes

}—al b, ¢ d, e 0TAl la, d, ¢, 0 0 0TAT
[—a, b, ¢, —-d, 0 -e B a, d, e, 0 0 OB
HA{aZ b, ¢ d, e o0 lC a3d30000C0
ja, -b, -¢, d, O e [D| [0 O O b, ¢ e |D|
Ila3 by o d; 0 olEllo 0 0 b, ¢, olE
|—a; b, ¢c; -d; 0 0 yFj |0 0 0 b, ¢c; O0)F]

(Egn. A.1)
Solutions to Equation A.1 exist when [H] =0, i.e, when
|H| = [H[H | = 0 where (Eqn. A.2)
a, d, e
a d e, |a d
IHSF|= a, d, e,f= az dz __zal dlllesl—Lsx-' =0
a. d 0 3 3 € ]as 3
3 3
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bz C, :eibx ¢
b, ¢,

H.|=b, ¢, &= =H,|-Ls=0

b; ¢c; 0

bl cl el ,

b, c;| e

These lead to the characteristic equations for the symmetric and antisymmetric modes

in a plate immersed in a liquid:

R
(R? +k’)” tanh(R e) — 4k’R ;R tanh(R  e) — ‘;))IR =k* sinh(R, e) sinh(R€) = 0
L
(Egn. A3 a)
2 R
(R7 +k*)* coth(Re) —4k*R R, coth(R, e) — F:)lR =k* cosh(R, e) cosh(R .e) = 0
L

(Eqn. A.3 b)

A plate that is in contact with water on one surface and with air (vacuum) on the other

has the five boundary conditions

(a) Uz = (uz); atz = e/2, (d) pzz=0atz=e/2, (Egqn. A4)
(b) Pxz=0atz=e/2, (e) pzz=0atz=-e/2,

(© pxz=0atz=-e/2

We have that |H(p, = 0)] = 0. Equation 2.7 becomes

a, b, c, d, el [a, d, e, b, ¢
-a, b, ¢, -d, Of la, d, e,/2
IH(PZ =0)l= a, =b, -c, d, ef=fa; d; 0 0] (Eqn. A.5)
a, b, C3 d, 0 0 0 -e,/2 b, ¢,

0 b
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a, d,[b, ¢ r b, ¢ b, ¢} e,/ Ib, ¢ b, ¢
e, 2 22 z_e_zlald3 2 2—a3d1 2 2,_ 2|a2d3 1 ]-a3d2 1 ll
a; dyfb; c;f 2\ b, ¢, b, ¢ \ b, b, «¢;
—e a, d,jb, c, €, b, «¢,ja, d; e_zbl c,ffa, d,
~ ey dyfby el 20b, cyflay di|T 21(b, cula, d,

So,
H(p, =0) L Ly ! L\ L.\ Lg L
P =0 o, |- g = ) - B
(Egn. A.6)
And the characteristic equation becomes
! LY/ L) LgL
e e o Ean. A7

A.2 Particle displacements

We derive the particle motions for the symmetric modes and antisymmetric modes next.
For brevity, we have omitted the factor e™ from the expressions below. The variables A
to F can be determined by simple substitutions in the matrix of Equation A.1 for the
plate in vacuum or Equation A.5 for the plate with one side water loading. In particular,

we have,
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_ — (R} +k?)sinh(R€) B (R% +k*)cosh(R€)
~ 2ikR, sing(Re) "7 2ikR, cosh(R,e)

C, and (Eqn. A.8)

z eRid

E= (D sinh(R.d) + C cosh(R.d)).

Symmetric mode: We have ¢ = A cosh(R z)e™, W = Dsinh(R,z)e™, and

50 OF
Uy (x,2,D) = —Oa% +——= Aikcosh(R  2) + DR cosh(R ;2) (Eqn. A.9 a)

IF—(Ri +k?)sinh(R e)
| 2RLsinh(R e)

1 ikx
cosh(R; z) + R cosh(R;z) |e
J

cp oY
u,(x,z,D) = & o AR, sinh(R, z) - Dik sinh(R ; z) (Eqn. A.9 b)
IF i(R2 +k?)sinh(Re) hR o 2) — ik sinh(R TI i
] 2k sinh(R,e) sinh(R;z) — ik sinh( Tz)Je
®l —Rz ikx k%' R,(d-z)_ikx _-
Uys{Xx,z,D) = — = ikEe™ =D e " "e™ sinh(Rd) (Eqn. A.9 ¢)
ox 2R,
a‘b] ~R,z_ ikx iki‘ R (d~2) ikx _:
u,,s(x,z,D) = 2 = —R,Ee %™ = Dz—k-e 1% e™ sinh(Rd) (Eqn. A.9 d)
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Antisymmetric mode: We have ¢ = Bsinh(R z)e™, ¥ = Ccosh(R,z)e™, and

Uy, (x,2,C) = % % = Biksinh(R,, ) + CR , sinh(Rz) (Eqn. A.10 a)
[—(R2 +Kk?)cosh(R€) 1
i R sinh o
C|L 2R, cosh(R. ¢) sinh(R, z) + R sinh(R . 2) Jle
u,, (x,z,C) = _?Z_p - %% = BR cosh(R, z) — Cik cosh(R2) (Egn. A.10b)
[i(R2 +k?)cosh(R e) . 1 e
ll_ 2kcosh(R,e) osh(R | z) — ik cosh(R,z) J{e
Uxa (X,2,D) = % _ ikEe %™ = C—kz—ek“d “e™ cosh(Rd) (Eqn. A.10¢)
ax 2R,
U, (x,z,D) = % _ —R,Ee ?%e™ = Cﬁ Ri(d-2)e®* oosh(R.d) (Eqn. A.10 d)
1ZS ] - az - 1 - 21( e € COS T q . -

The variables C and D serve as the amplitude of the two waves. in the equation for uz
we can see that the A and D terms in equation A.9 (b) both have hyperbolic cosine
factors. These odd factors account for the symmetric mode’s equal and opposite
displacement u; across the z = 0 plane, i.e. for its symmetric nature. The B and C terms
of uz in Equation A.10 (b) have (even) hyperbolic sine factors, which are antisymmetric

with respectto z=0.
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APPENDIX B

This appendix describes the resuits of the phase velocity experiments that were

performed on an aluminum shell and the stainless steel shell.

For technical reasons, the aluminum shell tested in the phase velocity experiment was
not the same as the one tested in the partial-fill experiments described in the main body
of this thesis. The aluminum shell here had an outer radius of 1” (25.4 mm) and a wall

thickness of 0.28” (0.71 mm).

The experiment itself was outlined in Section 3.4. Below are specific parameters used

in the experiment on the aluminum sheli

Repetition rate = 500 Hz

Time between input puises =2ms

Puise length = 90 us (kept constant at all frequencies)
Time for circumference of a pulse =499 us

Figure B.1 illustrates key periods in a typical waveform. The horizontal lines at the top
of the figure indicate the periods for the arrival of the input pulse after having
circumnavigated the shell ‘x number of times (e.g. ‘3™ ¢.’ refers to the reception of the
third circumnavigation). Notice that each line is 90 us long and one line starts every
49.9 us. Again, this means that every circumnavigation lasts for 90 us and it takes 49.9
us for the leading edge of the pulse to reappear at the transducer. Notice that

consecutive lines overiap (i.e. interfere with) one another in the regions marked ‘int’ at
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the bottom of the figure.

The signal was acquired between 90 us and 290 us. The delay of 90 us was set so that

we could inspect more of the overlapping (later) portion of the signal.

- 1%e. 3%e.
0.20 -

input pulse

0.15 ~
0.10
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. - v Y
0.00000 0.00005 0.00010
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Figure B.1 Waveform from phase velocity experiment taken at f = 0.95 MHz

As the frequency is varied, the wavelength of the pulse is varied proportional to this
frequency variation, and the two waves in an ‘int’ region interfere with one another in a
constructive or destructive manner. A measure of this interference is given in the

average amplitude of the rectified signal.

Figure B.2 shows the average rectified signal at various frequencies close to 1 MHz.

The average frequency difference, Afmin, between the local minima in this figure is
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0.020 MHz. According to Equation 3.1

vy =2nrAf (Eqn. 3.1)

Afmin cOrresponds to a phase velocity of 3191.9 m/s. This value is almost perfectly equal
to the group velocity for aluminum at the fd = 1 MHz x 0.7 mm = 0.7 MHz mm. The

phase velocity is equal to 1900 m/s at this point on the dispersion curve.
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Figure B.2 Average amplitude vs. frequency around 1.0 MHz in empty aluminum shell

Figure B.3 shows the results of the phase velocity experiment at fd = 0.64 MHz mm on
the empty stainless steel shell. The average separation, Af.i,, between the local minima
in this figure is 0.016 MHz. According to Equation. 3.1, Afyi, corresponds to a phase
velocity of 3066 m/s. Like the experiment on aluminum, this value is much closer to the

group velocity than it is the phase velocity.
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Figure B.3 Average amplitude vs. frequency around 0.8 MHz (fd = 0.64 MHz mm) in
empty stainless steel shell
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