INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

Corba Version of Concordia Parallel Programming
Environment (CPPE)

Shiyi Wu

A Major Report
In

The Department of Computer Science

For the Degree of Master
Concordia University
Montreal, Quebec, Canada

September, 2000

© Shiyi Wu, 2000

B+l

National Library
of Canada

Acquisitions and
Bibliographic Services

385 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
sermvices bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your Sie Votre rékirence

Our Sle Notre ritérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent &tre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59356-8

Canada

Abstract

Corba Version of Concordia Parallel Programming
Environment (CPPE)

Shiyi Wu

In this major report, we present the design and implementation of the Corba Version of
the Concordia Parallel Programming Environment (CPPE), a client-server-based
simulator for parallel programming environment. The purpose of the client/server version

is to provide services and a rich set of graphical user interfaces for remote clients.

The challenge in the design of client/server version is to reuse the existing C/C++ code.
To solve the problem, we use Corba's delegation technique to wrap the existing C/C++
application into a standard Corba object, and then we create an IDL interface for it. From
the IDL interface specification, we create a Java standalone application wrapped in Corba

objects that runs at client site and communicates with the server.
We design and implement client site GUIs for the application in Java/Swing.

This Corba Version of CPPE is very portable since the client site application can be

installed and run in any platform. The server supports multiple users.

Acknowledgements

I would like to express my cordial gratitude to Dr. Lixin Tao. By taking Dr. Tao's
courses, I learned more computer concepts and skills that were the newest and broadly
used in industry . So I hoped that Dr. Tao could supervise me for my major report, and [
was a lucky student. During the study of major report, Dr. Tao gave me the most practice
support. He always gave a quick answer to my question in detail. They were absolute
helpful. When I needed to see him to discuss, he scheduled an appointment as early as

possible. His advice, encouragement and kindness gave me a lot of help.

I am grateful to the professors and administrative stuffs in the department of Computer
Science, especially Dr. Lixin Tao, who gave the lectures in "Computer system Design”
and "Distributing Process With Object Technology”, Dr. H.F. Li, who taught a course in
"Computer Architecture”, Dr. Peter Grogono, who gave the lecture in "Advanced
Computer Graphics”, and Ms. Halina Monkiewicz, her friendliness and administrative

support made my student’s life much easier and pleasant.

I also have a very supportive family that backs me up. My wife, Cuilan Li, supported me
with her love, sharing and inspiration throughout my study. I am also grateful to my

parents for their encouragement.

Contents

1 Introduction . |
1.1 MIOHIVALIONS «..evreververnssemseesssesessssnssase s sses s s s 1
1.2 PIOBIEIML.ooooeooeceseeaesemseesse s eaesmesas s s s 2
TN e MR 2
1.4 SOIUON DESCIIPLOMevveeeeerrrerssesssesenmress s s 2

2 Survey 0f TeChNIQUES....cecvcreeseresssassssusssasansnseasessssasensenees vesessssesassnses R
2 1 Available TECRIIGUESccevmevrrmrmremsrmemecsisssesss e 4

D 1.1 COTDArrrereseeeeeeessessssensssescsesssa e S 4
2 1.2 SOCKEL. o.voeeeeeeerecresseesasseseseseasae s e s s 4
D 13 HTTPICG oo oo eeseee st s 5
D 1.8 SEIVIEE cooeoveeeeereeeeeeeeeeeeeerss e s b s 5
D LS RIMI oo eeeeeeaeeses s sesesss e e s e s s 5
D 16 DCOM.cieooeoeeeeeeeeree s s e ses et e S 6
2.2 Comparing of the Available TECAIQUEScoovevmmrivireeinierrrnsen e 6
2.3 Why We ChoOSE COTBacoevrermreemmimiimesssenms st 7

3 Corba Version of CPPE . 9
3.1 Brief Description 0f CPPE FUNCHOMo.ucvmiinrieieiensiiicinis e 9
3.2 Client/SErver DESIZN........covuveurmrrritereesses sttt 11

3.2.1 Corba TEChNOIOZYoovrvevreeiremrimesesesees s i1
3.2.2 Corba Method INVOCRHONc.cevrmeruemmerminssssessensssensnssse st 12
3.2.3 Mapping Corba IDL t0 Cru e 13
3.2.4 Mapping Corba IDL 10 JAVA.....cucueuriiiieiniensi st I5
3.2.5 Mapping Corba IDL t0 C++and JAVAoocvrmiricininisisinences e 16
3.3 Client/Server IMplementationccoveeurmirmrmmesesnsisisesic e 18
£k I 0 1) TRUUTUT R T OO U U T U UURURUR SRR 18
3.3 2 File SUIUCIUIEeoveeeeeeeeeeeeereeseessesmeeesseserseres s s e en e e e 19
3.3.3 OPEIAHONSoerurecmmsecmsressrssresessesssesass s 20

4 Java GUI Design 23
4.1 DESIGN ODJECLIVES....ovcrvemmrrrmrersrsrsensseissessessr st 23
4.2 MAIN FTAMIE o..ooeoeeeeeeeeeeeeeeeeemeseenssesesensemsssms st st b sr st st 24
4.3 Open and Save SHellS ...t 27
4.4 SOUTCE COdE SHEIlovoeoeeeeieieieieieeeec e 29
4.5 SEEP SHEILooocoeemeereermmarenussres s emss e 31
4.6 Step PrOCeSS DIAlOZcouevreeusruseemsremmsssseemssss e 32
4.7 Trace DIalog WIAOWc.couourmriueeresrcmeenieresresssstst s 33
4.8 Show Variable DIalog WIlAOWcccoeemermcuririimmsesnss s 34
4.9 Alarm Dialog WINAOWcco.comomemmemeresrcasemnsssessssssstscs it 35

4.10 Profile Dialog WINdOW...........c.coiiiieieeeee e 36
4.11 Status Dialog WINAOW.........c.cueureeueueceeieeeeee e 37
4.12 Utilization Dialog WINAOW..........covrvemememeemeeneieceieieeeeeeee e eee e 38
413 Code SRelL..........oo et e 39
4.14 Stack Dialog WINAOW.........coceuemeirireeteeeereee ettt 41
4.15 Class RelationShipcceeeeeeerieieeireeeeeeeeeee e 42

S User Manual 44
5.1 Account Management and LOGincoooeeemieemeiiiiiceceeeeee . 44
5.1.1 Account Managementco.eeoveiereiiieceee e 44

S L2 LOIN oottt et 45

5.2 Create Application Program Source File.....................ocooooiiiiii. 45
5.3 Compile Application Program Source File...............coooooiiiiiiiiicee, 46
5.3.10pen Source Files.........ooomimmiiieeece e 46
5.3.2 Compile Source Files..........oouooieeiiiiieeeeeeeeee e 46
5.3.30pen VCOdE Filescoomeememeieeieeeeete et 46

5.4 Execution and Debugging..............cccereereririiienienieee et 47
5S4 T EXCCULION. ...ttt a s bbb ene 47
5.4.2 Viewing Source Code and vCode..........ccooevmvmieieeiniiiiieeeeicceeeeeevee 47
5.4.3 Setting Breakpoints..........cccecvruieeeimeriireeriencrteeee e et s 47
5.4.4 Stepping Through PrOCESS...........cocvuerererieriinieieict et 48
5.4.5 Tracing Variables..............ccoooeeereeiiiieeee e 49
SAA6 AIAIII ..ottt 49

5.5 Network Architectures and Mappingcccocoeoeeiiiieiniiiceee e 50
5.5.1 Specifying ArCRItECIUTEc.coiieeierieieiece e 50
5.5.2 Virtual-to-Physical Architecture Mapping............cccccoreeieneiieieeeneeieeneennn 50
5.5.3 Network Routing TyPe.........cooeerieiceccteteeee et 51
5.5.4 Program Performance StatiStiCscccoveriiieeeiieeieeeeieee e 51
5.5.5 EXECULION TiMe.....c.ooviniieiiieieee ettt et 51

S5 THME ...ttt st b ettt et 52
5.5. T UtHZAON. ..ottt et et et 52
5.5.8 Program Performance Profile..............cooooiiiiiiiini e 52

6 Build and Installation Manual 53
6.1 Build and Installation Server on Windows NT...........ccccovecimiinnenreencercncceenne 53
6.2 Build and Installation Server on Windows 95/98 54
6.3 Build and Installation CHEDtcccconiiiiiieeteeec et 55

7 Conclusion and Future Work 57
T 1 AQVADIAEES.......c.oooeevienieeeeieeerieeerteeeeeeeeeeee s e e e s et ee e te s asesaesnaesseesemeeeemeesesseeeaneas 57
T2 FUIIIE WOTK ..ot et ee e e e e s 57
Bibliography 59

List of Figures

Figure 1: General structure of the CPPE ..o 10
Figure 2: Corba IDL language bindings provide client/server interoperability 12
Figure 3 : Defining services: from IDL to interface stubs.............c..ccoeinnn 13
Figure 4 : The C++ files generated by the idI2cpp compiler.................... 14
Figure 5 : The Java classes generated by the idIZjava compiler...................cocoevriinnn 13
Figure 6 : The Java codes in client side and C++ codes in server side...........c..ccccoeenne 17
FIGUIE 7 i OPCM ...t s 21
Figure 8 : Compilec.ovoemrieeeerieeece e e 21
FIGUIE 9 i EXECULEooeovreneenece ettt s e 22
FIGUIE 10 SAVE ...ovvieiieiieeecee et e 22
Figure 11 : Main frame...........ooooeoieiiiiiiieiceeeec s 25
Figure 12 : Menu in main frameccoooiiime e 26
Figure 13 : Open WindOW ..ottt 27
Figure 14 : Save WINAOW........ccoouiiiiiiiii e 28
Figure 15 : Source code shell..........co.oooemiiii 30
Figure 16 : Step shell.........oooomiieieeeee e 31
Figure 17 : Step process dialog WindoWccooeirimmiiiiiee 32
Figure 18 : Trace dialog WindOW ..o 33
Figure 19 : Show variable dialog Window.............ccoueiiiiii 34
Figure 20 : Alarm dialog WindOW............ooommieii e 35
Figure 21 : Profile dialog WindOWcouomrmimmmime s 36
Figure 22 : Status dialog WindOWccooveurmicmiieiie e 37
Figure 23 : Utilization dialog Windowcouimmimoii e 38
Figure 24 : Code Shell.............oouiioiieececce s 40
Figure 25 : Stack dialog WIRAOWoomemmimmcee e 41
Figure 26 : Relationship of client side classes. ..o 43
Figure 27 : AdminiStrator WiNAOWc.cococevoimmireeieiciee e 45
Figure 28 : Login WINAOWcoceoumimirciienceeeee ettt 45

List of Tables

Table 1: Comparing Corba and their COMPELILOLScccoeruiricncrnenieee e eeeees 8
Table 2: The Corba C++ to [DL mapping and Corba IDL to Java mapping.................... 19

Chapter 1

1 Introduction

1.1 Motivations

Parallel computers can be classified into two categories: shared-memory multi-processor
and message-passing multicomputer. With the advantage of hardware technology, high-
speed networks and efficient routing techniques have made message-passing
multicomputer to be the developing trend for parallel computing, because it is more

scalable due to the distributed nature of local memories.

Because of the limitations of the real machines, many studies of parallel

algorithms have been conducted on an analytical basis — the analytical modeling.
Performance aspects of a parallel program under specific conditions may be estimated
using mathematical formulation. However, this approach is suitable only for simple
applications and small computer systems. Parallel computer systems and their
applications are sufficiently complex to make analytical modeling very difficult and

inaccurate.

Because of the difficulty of using real parallel computers and analytical modeling, several
research groups have studied the simulation approach. CPPE is one of the projects of that
kind. CPPE provides a parallel system simulator called CPSS (Concordia Parallel System

Simulator) which runs sequential software on a uniprocessor to emulate program
execution on a real parallel computer. Its objective is to provide a parallel programming
environment that allows users to study impacts of system and software factors on

program performance, and locate performance bottlenecks in the program.

1.2 Problem

The Concordia CPPE team has developed the project of simulation system of Concordia
Parallel Programming Environment (CPPE). It is implemented in language C and
language C++ with GUIs of MFC and Motif. It runs as standalone application.

We plan to implement client/server version of CPPE. It can run locally and run through

Internet remotely. We use Corba and Java to implement client/server communication and

graphic user interface.
1.3 Approach

Java client objects communicate with C/C++ server object through Internet by using

Corba technique.
We design and implement Java/Swing GUIs for the application.
We use Corba delegation technique to wrap the existing C/C++ application into a

standard Corba object that runs at a server. Java standalone application can be wrapped in

Corba objects on client site and communicates with the server.
1.4 Solution Description

Basically, CPPE will be wrapped in a Corba (server) object. An IDL interface will be

written for it. This object should be run first on a web server before remote users can use

(]

it. A standalone GUI will be implemented in Java. It will communicate with CPPE Corba
objects.

From the IDL specification, we use idl2c++ to generate C++ implementation skeleton,
and use delegation approach to the methods in this skeleton to call real existing

implementation in C/C++. This will wrap up CPPE as standard Corba objects.

Then we compile the same IDL file with idl2java and generate stub Java codes for CPPE.

These codes will be used in Java to communicate with the Corba server CPPE.

Chapter 2

2 Survey of Techniques

2.1 Available Techniques

To solve the problem presented in section 1.2, we compared the following available
techniques and finally chose CORBA to solve the problem.

2.1.1 Corba

Corba (Common Object Request Broker Architecture) is a set of standard definitions by
which objects can interact with each other. The Object Management Group (OMG) -- that
includes over 800 companies, created Corba. Corba defines a standard for a layer of
middleware called the ORB (Object Request Broker). The way that components interact
with other components is specified by IDL (Interface Definition Language). This allows
client-server computing where the clients don't need to have any knowledge of the
specific operation of the component they are interacting with. For example, the client
doesn't need to know the language in which the component was written; it only needs to

know the IDL specification of how the component interacts.

2.1.2 Socket

Socket was introduced in 1981. Today, Socket is supported on virtually every operating

system. A socket is a peer-to-peer communication endpoint -- it has a name and network

address. From a programmer’s perspective, a socket hides the details of the network.
Typically, socket come in three flavors: stream, datagram, and raw. You specify the type
of socket at creation time. In theory, you can extend the socket interface and you can

define new types to provide additional services.

2.1.3 HTTP/CGI

HTTP/CGI is currently the predominant model for creating 3-tier client/server solutions
over the Internet. The Hypertext Transfer Protocol (HTTP) provides simple RPC-like
semantics on top of sockets. You can use it very effectively to access resources that
locate in URL space. After HTTP locates a program identified by URL, on the receiving
end, the typical Web server only knows how to handle HTML documents. When it
receives a request for a program, it invokes the resource named in the URL and tells it to
take care of the request. The server passes the method request and its parameters to the
back-end program using a protocol called the Common Gateway Interface (CGI). You

can write your CGI server programs in any language.

2.1.4 Servlet

A servlet is a Java program that a Web server loads to handle client request. Unlike a CGI
application, the servlet code stays resident in memory when the request terminates. In
addition, a serviet can connect to a database when it is initialized and then retain its
connection across requests. A serviet can also chain a client request to another serviet.
This is called servlet chaining. All these features make serviet an excellent workaround
for many of CGI's limitations.

2.1.5RMI

The Remote Method Invocation (RMI) — now part of JDK - was designed from ground
to seamlessly support remote method invocations on objects across Java virtual machines.
RMI directly integrates a distributed object model into the Java language. It makes the
Object Request Broker (ORB) almost transparent to the client by adding some new

implementation requirements on the server. RMI also extends Java's security net to
include the dynamic downloading of stubs. An RMI object is a remote Java object whose
methods can be invoked from another Java Virtual Machine, even across a network. You

can invoke methods on the remote RMI object like you would on a local Java object.

2.1.6 DCOM

DCOM (Distributed Component Object Model) is a Microsoft-developed standard for

allowing software components to interact with each other over a network.

Like Corba, DCOM separates the object interface from its implementation and requires
that all interfaces be declares using an Interface Definition Language (IDL). Like Corba,
DCOM provides both static and dynamic interfaces for method invocations.

Unlike Corba, DCOM does not support IDL-specified multiple inheritance. However, a
DCOM component can support multiple interfaces and achieve reuse by encapsulating
the interface of inner components and representing them to a client. So with DCOM, you
can achieve object reuse via containment and aggregation instead of inheritance. A

DCOM object is not an object in the object-oriented sense.
2.2 Comparing of the Available Techniques

Table 1 shows us the comparing of Corba and their Competitors. Four bold stars is the
highest rating and one normal star is the worst rating, it means the function is not there.
The table gives us a bird's-eye view of the comparisons. The data in table 1 come from

reference [2].

Abstraction level: The higher the level of abstraction, the less work your application must
do. For example, Sockets present the lowest level of abstraction; you must create your

own conventions for passing the request names and their arguments.

Intergalactic scaling: Sockets via TCP/IP support intergalactic federations of networks.
However this support is at a very low level of abstraction. In contrast, CORBA supports
loose federations of ORBs.

Open standard: An intergalactic platform must be an open, level-playing field. No single
vendor should be allowed to control the platform.

2.3 Why We Choose Corba

Corba extends the reach of applications across networks, languages, component
boundaries, and operating systems. Also we can use Corba IDL to wrap existing code.
Corba deals with network transparency, while Java deals with implementation

transparency. So we chose Corba combined with Java for our application.

Feature

CorballioP DCOM | RMURMP | HTTP/CGI [Serviets Sockets
Abstraction level dededede dededee %dedkede %de dede %
Seamless Java integration dedekede dededee dededede sk £33 %k
OS platform support sededede Jede kdedk | dedkkk dekdkde : dededede
| s
All-Java implementation dededede %* hkdd | kk dedeJede , dededese
Typed parameter support Jededede dedekde dededede %* %* 5 %*
Ease of configuration dedked dedede Jedede dedede dedede Jedede
Distributed method invocation dededede dedede dedede * % *
State across invocation dededede dedede deded % ek dede
Dynamic discovery and
metadata support dededede edek Jede % %* *
Dynamic invocations wededede dededede %* % 3 %
Performance (speed) dedede dedede dedede * * dededede
Wire level security dededede dededede dedede Jedede kkde dkdkede
Wire level transaction dededese dedede %* * * %*
Persistent object references dededede * * * * %*
URL-based naming dededede 23 hdk dededede Jededede dedede
Multiingual object invacations kdedk dededede * feked * dededede
Language neutral wire protocol fedehed *okedede * dededede dededede %*
intergalactic scaling deddede %k %* %% %t dededede
Open standard dededede dede dede dededese dede Hededede

Table 1: Comparing Corba and their competitors

Chapter 3

3 Corba Version of CPPE

3.1 Brief Description of CPPE Function

CPPE (Concordia Parallel Programming Environment) consists of two major modules:
CPCC and CPSS (Figure 1)

(1) CPCC (Concordia Parallel C Compiler): The CPCC accepts parallel programs
written in the CPC (Concordia Parallel C) language and generates virtual machine
code (vCode) which will be the input to the CPSS.

(2) CPSS (Concordia Parallel System Simulator): The CPSS reads in the
intermediate code produced by the CPCC, simulates execution of the application,

yields programs outputs.

Parallel
Proerams

CPCC

vCode

CPCC

Application Outputs

Debugging
Information

Figure 1: General structure of the CPPE

The core of the CPCC (Concordia Parallel C Compiler) is a compiler. After reading a
parallel program written in CPC (Concordia Parallel C) language, the CPCC builds a
complete abstract syntax tree to perform syntax and semantics analysis, and produces
object code for a generic virtual machine. Such object code is called vCode in CPPE. The
vCode instruction set is defined based on an analysis of common operations of parallel
computer systems. To produce vCode, the compilation process makes use of the virtual
architecture and does not call for the physical architecture. The advantage of this design
is that the CPC parallel program does not need to be re-compiled every time the
underlying target architecture is changed.

The vCode produced by the CPCC will be input to the CPSS. Other inputs to the CPSS

are parameters and commands from the user. For example, the user can specify the

10

physical topology on which the program will run and the virtual-to-physical topology
mapping. The CPSS then executes the vCode, using the parameters and commands
entered by the user. The outputs from the CPSS are the application outputs, performance
statistics, and debugging information.

CPSS is a major component of the CPPE and is made of three main components:
(1) Code Execution Module (CEM): The CEM is the processing element of a
simulated parallel system. It executes the vCode produced by the CPCC.
(2) Network Module: The roll of the network module is to allocate network resources
to messages, route and deliver messages, and detect deadlock in the network.
(3) Performance Debugger: The performance debugger provides a set of software

tools to facilitate program testing and debugging.

3.2 Client/Server Design

3.2.1 Corba Technology

Corba (Common Object Request Bruker Architecture) is a middleware project from
Object Management Group (OMG). Corba is designed to allow intelligent components to
discover each other and interoperate on an object bus. Corba objects can live anywhere
on a network. They are packaged as binary components that remote clients can access via
method invocations. Clients do not need to know where the distributed object resides or
what operating system it executes on or how the server object is implemented. What the
client needs to know is the interface that its server object publishes. This interface serves
as a binding contract between clients and servers. Corba IDL (Interface Definition
Language) is purely declarative and it provides operating system and programming
language independent interfaces to all the services and components that reside on a Corba

bus. It allows client and server objects written in deferent languages to inter-operate. (see

Figure 2)

11

®®? OO E

IDL IDL IDL
| | |
Client Stubs Server Skeletons
l l | l] |

(Corba LIOP ORB

Figure 2: Corba IDL language bindings provide client/server interoperability

3.2.2 Corba Method Invocation

Figure 3 shows the steps to create server classes and provide interface stubs for them. The

arrows represent the step order.

1.

~

To Define server interface using the Interface Definition Language (IDL). The IDL is

the tool by which objects tell clients what operations are available and how to

innovate them. The IDL defines the types of objects, attributes, the methods and the

method parameters.

To Run the IDL file through a language precompiler. VisiBroker and other vendors

can provide the precompiler. The compiler generates three types of output files:

o Client stubs for the [DL-defined methods. These stubs are invoked by a client
program,

o Server skeletons that call the methods on the server;

e An example class for implementation.

To Add the servant implementation code. User must only provide the code that

implements the server interface

To Compile the server code.

5. To Implement the client code.

To Compile the client code

12

Create IDL Definitions

/

Client IDL Stub ¢ Skeleton
L ¢ Example Servant
Implement Client Implement Servant
Ceomic >
Client Class Servant Class

Figure 3 : Defining services: from IDL to interface stubs
3.2.3 Mapping Corba IDL to C++

When we have an IDL file, we can map it into something that C++ clients and severs can
understand. So we will need an IDL-to-C++ compiler. We chose the VisiBroker idl2cpp
compiler (or precompiler). It generates four C++ files from the IDL inputs (to see Figure
4). Corba supports two styles of programming: inheritance-based and delegation-based.
We use delegation to integrate existing code because we want to reuse the existing CPPE
codes and can not inherient from the IDL.

1) cppe_s.cpp is the server skeleton for the methods of CPPE class.

2) cppe_s.hh is a server header file that includes the class definitions for the server
skeletons.

13

3) cppe_c.cpp contains a class called cppe that serves as a proxy on the client for the
Cppe object.

4) cppe_c.hh is a client header file that includes declarations and class definitions for the

stub implementation in cppe_c.cpp.

cppe.idl

I
(i

Corba IDL

Precompiler

Compiler cppe_c.hh | | cppe_c.cp

Generated Files - 5
Client

cppe_s.hh cppe_s.cp

Server

Figure 4 : The C+ files generated by the idl2cpp compiler

14

3.2.4 Mapping Corba IDL to Java

When we have an IDL file, we can map it into something that Java Clients and severs can

understand. So we will need an IDL-to-Java compiler. We chose the VisiBroker idl2java

compiler (or precompiler). It generates a Java package that contains five Java classes and

one Java interface (see Figure 5)

1) _cppelmpliBase is a Java class that implements the Corba server-side skeleton for
CPPE.

2) _st_cppeis a Java class that implements the Corba client-side stub for CPPE.

3) cppeHelper is a Java class that provides useful helper function for CPPE clients.

4) cppeHolder is a Java class that holds a public instance member of type CPPE.

5) Cppe is a Java interface. It maps the CPPE interface to the corresponding Java
interface.

6) _example_cppe is an example class for the CPPE object implementation.

Corba IDL 4 cppe.idl

Precompiler

class class class class class class

_St_cppe cppeHelper cppeHolder _cppelmpiBase cppe _example cppe

Client Server

Figure 5 : The Java classes generated by the idl2java compiler

15

3.2.5 Mapping Corba IDL to C++ and Java

For our special application, we choose the combination of the mapping from Corba IDL
to C++ for server and the mapping from Corba IDL to Java for client. The reasons are
that we want to reuse the existing CPPE codes implemented in C/C++ and we want to
provide the Java codes for client site. We choose the VisiBroker idl2java precompiler for
the mapping from Corba IDL to Java and the VisiBroker idl2cpp precompiler for the

mapping from Corba IDL to C++. They generate Java and C++ packages (see Figure 6)

For client side, we just keep client side files as the followings:
¢ st cppe
¢ CppeHelper
¢ CppeHolder.
and drop all server side files (_cppelmplBase, Cppe, _example_cppe).
Java files (cppeFrame.java and others) are the main client side codes that provide user

interface for the application.

For server side, we just keep server side files as the followings:
¢ cppe_s.hh
¢ cppe_s.cpp
and drop all client side files (cppe_c.hh, cppe_c.cpp).
C++ files (server.cpp, cppeimp.h and cppeimp.cpp) are the main server side codes that

provide function for client to call.

16

Corba IDL

Precompiler

Compiler
Generated
Files

Codes

Source {
By Author

Compilers ¢

Executable
Files

cppe.idl

_st_cppe

cppeHelper

cppeHolder

\

cppeFrame\java

—\

others.ja

¢ ..

¢ cppeFrame.class
¢ others.class

cppe_s.hh

cppe_s.cp

sefver.cpp

L /.

peimp.h

V4

<

eimp.cpp

nmake

server.exe

Server

Figure 6 : The Java codes in client side and C++ codes in server side

e

3.3 Client/Server Implementation

3.3.1IDL

The CPPE has the following data type needed to map from C+— to IDL., and then map
from IDL to Java:

boolean

int

char

char*

array([] of int

array[][] of char

enum

struct{int, int}
struct{char array(], int}
array{] of struct

We can use the following table to map the above data types.

18

C++ to IDL Mapping IDL to Java Mapping
C+ IDL IDL Java

boolean boolean boolean boolean

int short short short

char char char char

char* string string java.lang.string

int arrayf] short arrav(] short arrav{] . short array[}

char array[][] char arrav{][} ! char array[][] : char arrav{]{]

enum enum | enum i Java class with same
name as enum type

struct struct struct Java class with same
name as struct type

Table 2: The Corba C++ to IDL mapping and Corba IDL to Java mapping

3.3.2 File Structure

In the server side, there are 4 major subdirectories in Cppe\, they are
cppe\cpcc
cppe\cpss
cppelinclude
cppe\CorbaCPPE

In the CorbaCPPE subdirectory, there are the following files:
server.cpp
Cppelmp.h
Cppelmp.cpp
cpssExportCorba.h
Configh
Config.cpp
CorbaPrint.h
CorbaPrint.cpp
Cppe.idl

19

Makefile

3.3.3 Operations

Open: when the button "Open" is pressed, then

¢ A file choosing window pops up, a local source file (*.c) at the client side can be

chosen.

¢ The chosen source file is transferred to server side and saved in subdirectory: ~\user.

Compile: when the button "C" is pressed, then

¢ The source file located in server side is compiled and its executable file (*.cod) is
generated and saved in server side.

¢ Compilation displaying will be saved in server side in a temp output file and the

contents of the file will be sent back to client to display in the first text area (up).

Execute: when the button "E" is pressed, then
¢ The executable file located in server side is executed.
¢ Execution displaying will be saved in server side in a temporal output file and the

contents of the file will be send back to client to display in the second text area
(down).

Save: when the button "Save” is pressed, then

¢ The execution results displayed in second text area will be saved into text file in

client side. Users can give it any name.

20

String :>< Orb (;:> String

Client Server

Figure 7 : Open

File name ——__—‘>(Orb G—> Call cpee
] @

user*.cod Il
Compile II
output

ST[<:_::< Orb (3;‘: String

A

Up text area }

Client Server

Figure 8 : Compile

File name

——(_* (—>

Call cpss

String

Execute
output

<—_:C Orb C;)::

String

|

[Down text area J

Client

Figure 9 : Execute

Figure 10 : Save

Server

Chapter 4

4 Java GUI Design

4.1 Design Objectives

A graphic user interface (GUI) is used to communicate with the major components in
CPPE (CPCC and CPSS). Through the interaction with the GUIL, user can accomplish the
whole development process from source code listing, compilation, execution, debugging,
and performance profiling. The designing goal of the GUl is to make the developing and
debugging process easy for the parallel application programmers.

CPPE needs two major functions to be a complete development environment: compile of
the application programs written in CPC, simulation of parallel system and program

execution.

The compile function in CPPE is provided by CPCC. If used from command line, CPCC
is an independent executable with its own command line input and console output. We
need to modify its main function into a CPPE global function, which is called from an
interface function. A generic output function is needed to replace the original output
function to display the program output into a designated text field in the CPPE GUL

CPSS is the parallel system simulator that includes the functionality of network module,
code execution module, and debugging monitor. When used from command line, CPSS

has an interpret function that accepts the user command and invokes the corresponding
functions from the network module, code execution module or debugging monitor. The
function of interpret of CPSS will not be used when incorporated into the Corba CPPE.
Instead, CPSS functions can be invoked from the function calls of GUI components. The

same generic output function can be used to display the program output into designated
text field in the CPPE GUIL

4.2 Main Frame

Figure 11 shows a typical layout of the Java GUI. The window with the title CppeFrame
is the main frame of the CPPE. To make a friend GUI, we designed many types of GUI
widgets. From top to bottom, there are many widgets as the following:
¢ Menu (including sub menu) with shortcut keys. The menu provides the
comprehensive item for CPPE functionality. To refer to Figure 12.
¢ Floating toolbar with icons and shortcut keys. The buttons in the toolbar can be
used to invoke those most frequently used functions in CPPE, such as, opening
and compiling a source file, or executing a vCode.
¢ Splitting text areas that display the application execution result, debugging
information and performance statistics.
¢ Pop up debug pane. Clicking on button D will show or hide the debug pane.
Figure 12 shows that the debug pane is hidden.
¢ Combo box pane.
¢ Status text field.
The above GUI widgets are implemented in Java/Swing.

24

eicome ta Concordia Paraliet System:
ebig Flagisnow OR - : _
CPCC compilation success: cutputin emajor_reporitcppe\corbaCPPECpplusenshiytleam2.cod

Figure 11 : Main frame

25

Figure 12 : Menu in main frame

26

4.3 Open and Save Shells

The window with the title Open is used to open a file from local machine, to refer to
Figure 13. It is Java Swing utility. Users can browse the local file system by clicking
combo box. Users can select a fold or a file by double clicking on the desired item, or
clicking on the desired item and press Open button. If users select a file, then this file
name will be added in source file combo box and become current one in main frame, also

to refer to Figure 11.

Eeam.c

1Y tnkt.c

D
1EY long.c
DY leng2c

Figure 13 : Open window

27

The window with the title Save is used to save a file to local machine, to refer to Figure
14. Users can browse the local file system by clicking combo box. Users can select a fold
by double clicking on the desired item, or clicking on the desired item. After giving a file
name, user can press Save button to save the contents in text area of main frame, also to

refer to Figure 11.

) ringCom.c
3 Y stacke

i suite.c
iNteste

a trymalioc.c
) trypeintfc
DY yuanc

Figure 14 : Save window

28

4.4 Source Code Shell

The window with the title SourceShell is the source code-listing window, to refer to
Figure 15. Users can specify the starting and ending line numbers of the source code to
be displayed. This window can also be used to set source code breakpoints. There are two
source code lists in this window. The list in the upper part of the window is used to
display the source code with line number, called source list, and the list in the lower part
of the window is used to display the source lines of the breakpoints, called breakpoint
list. Users can set a breakpoint by double clicking on the desired source line in the source
list, or clicking on the desired source line and press Break button, then this source line
will be listed in the breakpoint list. To clear a breakpoint, users can double click the
source line in the breakpoint list, or clicking on the desired source line and press

UnBreak button, then this source line will be deleted from the breakpoint list.

By default, the line numbers to be display are from 1 to 20. If users enter invalidate data,
such as, "-1" or "abc” in the fields, then the invalidate data will be found and to be
replaced by default values automatically. If usera enter a bigger number than the
maximum line number of the vCode in the second text field, then the invalidate number

will be replaced by the maximum line number automatically.

29

a2 BN .
K'—‘i SourceShedl

L;étftdm- F'

i1t
{12
113
114
15
1186
F 17
18
- 18

| 2t

Status

void maind
{
int}, , array1{10}, array2{20}[30};,

for (=0; i<t G, i++) arayt{i} = i*;
array2(2ji3] = 5;
for (i=0; i<10; i++)
{
fork G, j).
TR A DR DRI S B 590 (R SRS (YRR A K

}

_foraliifromtodaroupingd) o

R O RS B L (D TARREPRE LR P

TR cov v > o

Figure 15 : Source code shell

30

4.5 Step Shell

The window with the title StepShell is the source code step shell window. After setting a
break or breaks, users can debug the code by pressing Run button in debug pane. Users
can find that the currently executed line in the StepShell window will be highlighted. The

highlighted line will move when user press Step button or Continue button.

(18
18

{20
{2
122
123
{24
125

i E:: StepShell

for (=0; i<10; I++) arrayt f[j = PI;

amray2{2){3} = 5;
for (=0; i<10; i++)

printf"process %d retums %dn”, i, J);
}
forali{i from G to 8 grouping 3)
for (i=0; i<10; i++) printfCArrayt [%d} = %dW”, i, at

Figure 16 : Step shell

4.6 Step Process Dialog

The window with the title Step Process Dialog is used to set step line number, to refer to
Figure 17. Users can specify a line number of the source code to step. To update the step
line number, users can press ok button. To keep previous value, press Cancel button, then
this window will be closed.

By default, the line number to be display is 1. If users enter invalidate data, such as, "-1"
or "abc" in the field, then the invalidate data will be found and to be replaced by default
values automatically. At the same time, the status field will show user some warning

message.

i Status i

Figure 17 : Step process dialog window

32

4.7 Trace Dialog Window

The window with the title TraceDialog is used to set trace variables in certain process, to
refer to Figure 18. The Trace Variable List in the window is used to display the variable
names with their process numbers. Users can set a variable to trace by pressing Trace
button. To clear a variable, users can double click the desired line in the Trace Variable
List, or clicking on the desired line and press UnTrace button, then this line will be
deleted from the Trace Variable List. By pressing back button, this window will be
closed.

By default, the value of Trace Process field is 0. If users enters invalidate data, such as,
"-1" or "abc” in the field, then the invalidate data will be found and to be replaced by
default values automatically. At the same time, the status field will show user some

warning message.

[5-} 1ac

TraceVariable |}

TraceProcess |0

Trace Variable List

Variable i Process: 0
ariable § Process: 0

- Status |

Figure 18 : Trace dialog window

4.8 Show Variable Dialog Window

The window with the title ShowVarDialog is used to set variable name in certain process,
to refer to Figure 19. For an array variable, users can set the index range. To update the
new settings, users can press ok button. To keep previous settings, press Cance!l button,
then this window will be closed.

After setting the trace variables in Trace Dialog Window (to refer to Figure 18), users can
use this Show Variable Dialog Window to select a variable to show its value. This

variable value will be display in upper text area in main frame (to refer to Figure 11).

E: ShowVY abialog

variable Name {i

Process Number {0

index Range Of Array Variable:

indexFrom {C

sans |

Figure 19 : Show variable dialog window

34

4.9 Alarm Dialog Window

The window with the title AlarmDialog is used to set alarm ON or OFF by clicking on
corresponding ratio button, to refer to Figure 20. An alarm time in millisecond can be
entered to set alarm time. To confirm the new settings, users can press ok button. To keep

previous settings, press Cancel button, then this window will be closed.

By default, the value of Alarm Time field is 10. If users enter invalidate data, such as, "-
1" or "abc" in the field, then the invalidate data will be found and to be replaced by
default values automatically. At the same time, the status field will show user some

warning message.

r#$ N
E._;_f:hlmml)miug /

@ plamon C Alamor

Enter Alarm Time: [1 o

Status |Alarm On

Figure 20 : Alarm dialog window

4.10 Profile Dialog Window

The window with the title ProfileDialog is used to set profile for some processes and
time interval, to refer to Figure 21. To confirm the new settings, users can press ok
button. To keep previous settings, press Cancel button, then this window will be closed.

By default, the field values of From Process, To Process and Time Interval are 0, | and
10. If users enter invalidate data, such as, "-1" or "abc" in the field, then the invalidate
data will be found and to be replaced by default values automatically. At the same time,

the status field will show user some warning message.

g’; ProfileDialog

From Process |0

ToProcess {1

Time interval [10

saws |

Figure 21 : Profile dialog window

36

4.11 Status Dialog Window

The window with the title StatusDialog is uscd to set to show the status for some
processes, to refer to Figure 22. To confirm the new settings, users can press ok button.

To keep previous settings, press Cancel button, then this window will be closed.

By default, the field values of From Process and To Process are 0 and 1. If users enter
invalidate data, such as, "-1" or "abc” in the field, then the invalidate data will be found
and to be replaced by default values automatically. At the same time, the status field will

show user some warning message.

FomProcess {0

ToProcess |t

Figure 22 : Status dialog window

37

4.12 Utilization Dialog Window

The window with the title Processor Utilization is used to check the utilization for some
processes, to refer to Figure 23. To confirm the new settings, users can press ok button.

To keep previous settings, press Cancel button, then this window will be closed.

By default, the field values of From Process and To Process are 0 and 1. If users enter
invalidate data, such as, "-1" or "abc” in the field, then the invalidate data will be found
and to be replaced by default values automatically. At the same time, the status field will

show user some warning message.

é}l’n)(:c:;ml Hthzation

Check Utilization of Procassor

Fomprocess |8

To Procass 1

Figure 23 : Utilization dialog window

38

4.13 Code Shell

The window with the title vCode window is the executable code-listing window, to refer
to Figure 24. Users can enter the starting and ending line numbers of the executable code
to be displayed, and press List button. To close the window, press Back button.

By default, the line numbers to be display are from 1 to 20. If users enter invalidate data,
such as, "-1" or "abc" in the fields, then the invalidate data will be found and to be
replaced by default values automatically. If users enter a bigger number than the
maximum line number of the vCode in the second text field, then the user’s number will
be replaced by the maximum line number automatically. At the same time, the status field

will show user some warning message.

39

Code Window

Smﬂne#&f:qéame#w OPCODE X - CodgName

0w o

1
2
3
Fi
5
53
7 3 4 1 g LoadVaiue
7 4 6 g 2 Loadintegeriiteral
7 5 4B i} 1 Add
7 & 3 1 11 LoadAddress
7 7 8 2 g Store
8 8 4 1 11 Loadvalue
8 g 4 1 11 Loadvaiue
8 16 48 g 1] Multiply
g 1 3 t 10 LoadAddress
8 $2 8 1] g Dereference
8 13 g 2 1] Store
8 14 22 g i ExitProcedure
g
Loadintegart iteral

LoadAddress

Figure 24 :

Code Shell

40

4.14 Stack Dialog Window

The window with the title StackDialog is used to set some lines to be shown in execution
stack, to refer to Figure 25. To confirm the new settings, users can press ok button. To

keep previous settings, press Cancel button, then this window will be closed.

By defauit, the field values of From Line and To Line are 0 and 10. If users enter
invalidate data, such as, "-1" or "abc" in the field, then the invalidate data will be found
and to be replaced by default values automatically. At the same time, the status field will

show user some warning message.

i E.: StackDialug

List Exgcution Stack

Fromtine [b

Toune {0

Figure 25 : Stack dialog window

41

4.15 Class Relationship

Java client side has the following files
CppeFrame.java
MyFrameWithExitHandling.java
CppeAction.java
SourceShell.java
AlarmDialog. java
TraceDialog.java
ShowVarDialog java
StepShell.java
StepProcDialog.java
StepLineNbrDialog.java
ProfileDialog.java
StatusDialog.java
UtilizationDialog.java
CodeShell.java
StackDialog.java

Cppe.idl

Vbmake.bat

® ® ¢ & O & & & & 6 O O O O o o o

The Figure 26 shows the relationship of client side classes.

42

CppeAction
Actions / SourceShell
|
Set and clear break. source code / AlarmDialog
Alarm i
/ TraceDialog
Set and clear trace
/ ShowVarDialog
Show variable
/ StepShell
Run, step, continue
StepProcDialog
CppeFrame | Set process
StepLineNbrDialog
ProfileDialog
Status \
StatusDialog
Utilization
UtilizationDialog
V-Code
CodeShell
StackDialog

Figure 26 : Relationship of client side classes

43

Chapter 5

S User Manual

The Corba version CPPE supports multiple users and contains three major functions:
Parallel application program compiling;
Parallel application program execution;

Correctness and performance debugging.

5.1 Account Management and Login

5.1.1 Account Management

To support multiple users, the Corba version CPPE provides an account for each user. An
administrator has the permission to open an account by the GUI shown in Figure 27. This
window will pop up when you run "accManage " in server site. An administrator can add,

delete an account and list the names, passwords for all current accounts.

Exox, . .
E K‘;r'.f‘u;nnr:x:;hq!m Y irnilow
g L~

U‘ser Ust V E_wu

UserName [‘s_wu

Password jmyPasswa

Figure 27 : Administrator window

S.1.2 Login

To login to an account, a user must have an account with user name and password in
advance. The window as shown in Figure 28 will pop up when you run "cppe” in client
site. After entering right user name and password, the main frame as shown in Figurel1l

will pop up.

E.:.} Lugin Window

UserName fs',w »

Password [myPasswd]

$

Figure 28 : Login window

5.2 Create Application Program Source File

A parallel application program source file should be created first as a text file, with file
name extension ".c”. Users can use any text editor to create the source file outside the

CPPE program.

45

5.3 Compile Application Program Source File

5.3.1 Open Source Files

To open a source file, users can click the function button Open in the GUI main frame. A
file selection dialog box is popped up. To select a directory, users can double click the
requested directory in the Directories list. Then the files in that directory will be
displayed in the Files list besides the Directories list. To select a file, users can double
click the requested file or single click the requested file and then click OK. The file name
will be displayed in the Source option menu, to refer to Figure 13.

5.3.2 Compile Source Files

Compile process is used to compile an application program source file into a virtual

machine code (vCode) file, with file name extension “.cod”, for execution in CPPE.

A source file should be opened before it can be compiled. To compile a source file, users
can click the function button Compile. If the compilation is successful, the corresponding
code file name is displayed in the Cod option menu. At the same time, the virtual
architecture of the program will be displayed in the Virtual Arch text field and the default
mapping will be displayed in the Mapping option menu.

5.3.3 Open vCode Files

Function button Open can also be used to open a vCode file directly. The opened vCode
file name is displayed in the Cod option menu. At the same time, the virtual architecture
of the program will be displayed in the Virtual Arch text field and the default mapping
will be displayed in the Mapping option menu. The opened code file is immediately
ready for execution.

46

5.4 Execution and Debugging

5.4.1 Execution

After a source file is compiled successfully or a vCode file is opened, click the function
button Run in the main frame. The execution result and any debugging message will be
displayed in the main window of the main frame.

5.4.2 Viewing Source Code and vCode

After a source file is compiled successfully or a vCode file is opened, or after program
execution is suspended, users can specify a range of source code or vCode to be

displayed by referring to the line numbers.

To display the source code, from the main menu in the main frame, users can click the
button D to pop up Debug pane and click the button SrcCode. A new List window will be
popped up. In the List window, users can specify the line numbers in the List From and
To fields and then click the List button. If no line numbers are specified in the List From
and 7o fields, the whole source file will be displayed. To close the List window, users can

click the Back button in the List window, to refer to Figure 15.

To display the vCode, from the main menu in the main frame, users can click the button
D to pop up Debug pane and click the button vCode. A new vCode window will be
popped up. In the vCode window, users can specify in the List From and 7o fields the
starting and ending line numbers for the vCode to be displayed, and then click the List
button. If no line numbers are specified in the List From and To fields, the whole vCode
file will be displayed, to refer to Figure 24.

5.4.3 Setting Breakpoints

47

Users can set breakpoints on executable instructions in the source program to
automatically interrupt the program execution. This function is useful for helping users to
locate bugs in the program, to refer to Figure 15.

Breakpoints are set in the CPPE by referring to program line numbers. To seta
breakpoint, users can click the function button SetBreak in the debug pane. A new
window titled List will be popped up. From the List window, users can get a list of
program source code in a source code list. To set a breakpoint, users can single click on
the source line in the source list where the break point will be. Then users can click the
Break button in the List window. The selected break point line will be displayed in the
breakpoint list below the source code list. To clear a breakpoint, users can single click on
the breakpoint line in the break point list, then click Unbreak button in the List window.
Both setting a breakpoint and clearing a breakpoint can also be done by double clicking

the source line in the source list or in the breakpoint list.

If a breakpoint is set and CPPE is set to Debug mode and an user executes an application
program, the execution will stop at the breakpoint and a new window titled Step
Execution From Breakpoint will pop up showing the program source code with the

breakpoint highlighted.

5.4.4 Stepping Through Process

When any running process tries to execute a line in a program with a breakpoint, the
whole program execution will be suspended. At this point, the execution of the program
may be continued with two functions: continue or step. If continue function is used, the
execution will be continued until any process encounters the next breakpoint. If step
function is used, the execution will be continued line by line from the breakpoint in the
suspended process. Users can also specify the number of lines in each step and set the
"Step-Process” to a different running process, to refer to Figure 16.

48

To use Continue function, users can click the function button Continue in the main frame.
To use the Step function, if users want to step through the currently suspended process
line by line, they can click the function button Step in the main frame. In either case, if
the program execution stops at a new breakpoint of execution, the new breakpoint of
source code will be highlighted in the Step Execution From Breakpoint window.

5.4.5 Tracing Variables

Whenever the execution of the parallel program is suspended, Users may want to
examine the current value of variables in the current environment of each process. CPPE

provides two functions for this purpose: show and trace.

Function show is used to display the value of a variable when program execution is in
suspension state. To use function show, the variable should be in a currently active
process, users can click the function button Show in the debug pane, and specify a
variable name and an active process id. If the variable is an array, users should specify
the index range that user wants to display, then click the button OK. The output will be
displayed in the up output window in the main frame, to refer to Figure 18.

Function trace is used to trace a particular variable during the execution process. To use
function Trace, from the debug pane, users can click button Trace. A trace dialog box
will be popped up. Users can specify the variable name and process id in the trace dialog
box and then click button Trace. The traced variables are displayed in the Trace Variable
List in the dialog box. Users can clear a trace variable later by selecting the variable from
the Traced Variable List and clicking the button UnTrace.

Users have the option to turn on or off the trace function before or during program
execution. There is a group of Trace On/Off radio buttons in the main frame window for

users to turn Trace function on or off.

5.4.6 Alarm

49

Alarm is used to suspend the program execution when a certain amount of time is
reached. The functionality of Alarm is similar to setting a breakpoint so that users can

examine execution status in the process of program execution, to refer to Figure 20.

To set an alarm, users can click the function button Alarm in the debug pane. An
alarm_popup dialog box will pop up. Users can turn the alarm function on or off from
this dialog box. When the alarm is turned on, users can specify the alarm time in the text
field Enter Alarm Time.

5.5 Network Architectures and Mapping

5.5.1 Specifying Architecture

When CPPE starts, the default architecture is a 2D-mesh parallel computer with size of
each dimension being 4 (mesh 4x4). Users may override this default and specify a wide
range of other architectures, including many of the common parallel topologies. This

allows the performance of the parallel program to be simulated and evaluated on 2 wide

range of parallel computer architectures according to the choice of the users.

CPPE has predefined some most common architecture in the system, which can be used
directly by selecting from the option menu PhyArch in the main frame.

5.5.2 Virtual-to-Physical Architecture Mapping

We are encouraged to write message-passing parallel programs using virtual topologies,
the topologies most natural to express the program communication structure. However,
the virtual topology may be the same as or different from the topology of the physical
system on which the program is running. CPPE supports virtual-to-physical architecture
mapping. The objectives of virtual-to-physical architecture mapping are to minimize
communication cost by minimizing the distance between communicating processes, and

to balance the workload among physical processors.

50

CPPE currently supports six types of mapping: Default, Identity, Random, Ring-to-Line,
Torus-to-Mesh and User-defined Mapping.

To specify a virtual-to-physical mapping, users can select a mapping type from the option
menu Mapping in the main frame.

5.5.3 Network Routing Type

CPPE can simulate different network types. Currently it supports packet switching

network, simulated packet switching network, shortest path network and wormhole-
routed network.

Users can select a network type before program execution starts or change network type
during program execution. The network type can be selected from the option menu

Network in the main frame.

5.5.4 Program Performance Statistics

When CPPE executes a program, it keeps track of the relative timing of all processes and
generates a range of performance statistics at the end of execution to help the user

understand the behavior and evaluate the performance of the program.

5.5.5 Execution Time

At the end of execution, CPPE will display the total Sequential Execution Time and the
total Parallel Execution Time. Sequential Execution Time is the estimated execution time
on a uniprocessor computer. Parallel Execution Time is the estimated execution time on
an actual target multicomputer or multiprocessor. From the ratio of sequential/parallel

execution time, user can estimate the performance improvement by parallel computing.

51

5.5.6 Time

Time function can be used whenever program execution is suspended to give the total

elapsed time since the beginning of the program execution.

To use the time function, users can click the function button Time in the debug pane. The
output will be displayed in the main output window in the main frame.

5.5.7 Utilization

Utilization function is used to show the usage of physical processors in a particular
parallel architecture.

To use the Utilization function, users can click the function button Utilization in the
debug pane. A utilizationDialog dialog box will pop up, to refer to Figure 23. Users can
specify the range of processors that the user wishes to see the utilization value from the
dialog box.

5.5.8 Program Performance Profile

To create a performance profile, the user needs to turn on the profile option. In the CPPE
main frame there is a group of Profile radio buttons that let users to turn on or off the
profile option. The default range of processors in the profile is all processors used in the
program. The default time interval in the profile is 10 time units. Users can also specify a
different range of processors and time interval, and click the function button Profile in
the debug pane, a profileDialog dialog box will pop up. Users can specify the range of
processors and the time interval from this dialog box, to refer to Figure 21.

52

Chapter 6

6 Build and Installation Manual

To install the application, the following web sites are very useful:
http://www.sun.com.
http://www javasoft.com.
http://www.visigenic.com.

http://www.microsoft.com.

6.1 Build and Installation Server on Windows NT

(1) Install JDK1.2.2 (20kb).
(2) Install Visibroker for cpp 3.3 (8kb).
(3) Install Microsoft Virtual C++ 6.0.
(4) Unzip the CPPE project file CorbaCPPE.zip into your directory workdir.
(5) Changed attributes of all files under CPPE from read only to be writable.
(6) Add "c:\Program Files\Microsoft Visual Studio\VC98\bin\Vcvars32"into PATH
variable.
(7) Copy the following tools (6 files) into directory: c:'fools
Flex.exe

Bison.exe

53

Bison.hai
Bison.sim
Lex.exe
Lex.par
(8) Add c:'\tools into PATH variable.
Add c:‘tools\Bison.hai into BISON_HAIRY variable.
Add c::tools\Bison.sim into BISON_SIMPLE variable.
(9) Add workdiricppeitest into CPPE variable.
(10) Compile the cpcc and cpss in DOS prompt:
workdiricppe cpcc'>nmake
workdir\cppe cpss\>nmake
to create executable files in directory workdir\cppe:bin
(11) Change the directory of VBROKERDIR in file
workdir\cppe\CorbaCPPE'cpp\stdmk to the directory where Visibroker is installed,
for example, VBROKERDIR = c:'pkg'inprise:vbroker if Visibroker is installed in the
directory c:'pkgiinprise.
(12) Compile the server in DOS prompt.
workdir\cppe\CorbaCPPE\cpp\>nmake

6.2 Build and Installation Server on Windows 95/98

(1) Install JDK1.2.2 (20kb)
(2) Install Visibroker for cpp 3.3 (8kb)
(3) Install Microsoft Virtual C++ 6.0
(4) Unzip the CPPE project file CorbaCPPE.zip into your directory workdir.
(5) Changed attributes of all files under CPPE from read only to be writable. (need to do
it in several directories. Go there, select all files, then start properties window).
(6) Set PATH in autoexec.bat as the following:
set PATH="c:\Program Files\Microsoft Visual Studio\VC98\bin\Vcvars32"
(7) Copy compilation the following tools (6 files) into directory: c:'roolsias:

54

Flex.exe
Bison.exe
Bison.hai
Bison.sim
Lex.exe
Lex.par
(8) Modify autoexec.bat by adding:
set PATH=c:'tools
set BISON_HAIRY=c: tools\Bison.hai
set BISON _SIMPLE=c:'tools\Bison.sim
(9) Modify autoexec.bat by adding:
set CPPE= workdiricppe\test
(10) Compile the cpcc and cpss in DOS prompt:
workdir\cppe cpcc\>nmake
workdir\cppe cpss\>nmake
to create executable files in directory workdir.cppe bin
(11) Change the directory of VBROKERDIR in file
workdir\cppe\CorbaCPPE\cpp'stdmk to the directory where Visibroker is installed,
for example, YBROKERDIR = c:'pkg\inprise\vbroker if Visibroker is installed in the
directory c:\pkg\inprise.
(12) Compile the server in DOS prompt.
workdir\cppe\CorbaCPPE\cpp\>nmake

6.3 Build and Installation Client

The client programs are implemented in pure Java, so they can be installed in any

platform. The installation of client programs is very simple, just 4 steps as the following:

(1) Install JDK1.2.2 (20kb)
(2) Install Visibroker for Java 3.4 (12kb)

55

(3) Unzip the CPPE project file CorbaCPPE.zip into your directory workdir.
Changed attributes of all files under CPPE from read only to be writable. (select all
files, then start properties window).
(4) Compile the client in DOS prompt.
workdir\cppe\CorbaCPPE java\>vbmake

56

Chapter 7

7 Conclusion and Future Work

7.1 Advantages

Our Corba version CPPE has the following advantageous features:

¢ Distributed application: This version is client/server distributed application. It is
Internet accessible.

e Multiple users: The server can provide services for multiple users who have an
accounts in advance.

¢ Reusing of the existing C/C++ code: By using Corba delegation mechanism, the
existing C/C++ codes can be reused.

e High-speed server: The server runs fast because it is implemented in C/C++.

e Platform independent client: The client programs can be installed in any platform
because they are implemented in pure Java.

e Friendly GUISs: There are rich graphical user interfaces for client users and account
manager users. The GUIs make the application easy to use.

7.2 Future Work

57

In the future, a Java applet can be used to implement the GUI that will be embedded on a
web page. A clicking on it will download the codes to the user's web browser, and this
applet will communicate with the CPPE Corba server object through gatekeeper. Most of
parts of Java applet could be the same as this standalone application.

58

Bibliography

[1] Jing Zhang, A Visual Performance Debugger for Concordia Parallel Programming

Environment, Master Degree Thesis of Concordia University, 2000

[2] Orfali Harkey, Client/Server Programming with Java and Corba, Wiley, 1998

[3] Thomas Mowbray and Ron Zahavi, The Essential Corba: Systems Integration

Using Distributed Objects, Wiley, 1995

[4] Thomas Mowbray and Raphael Malveau, Corba Design Pattern, Wiley, 1997

[51 Jon Siegel, et al., Corba Fundamentals and Programming, Wiley, 1996

[6] Andreas Vogel and Keith Duddy, Java Programming with Corba, Wiley, 1997

[7] Robert Orfali, et al., Instant Corba, Wiley, 1997

[8] Inprise Corporation, Programmer's Guide: VisiBroker for C++, 2000

[9] Inprise Corporation, Programmer’s Guide: VisiBroker for Java, 2000

[10] Y. Daniel Liang, Introduction to Java Programming, An Imprint of Macmillan
Computer Publishing, 1999

[11] Cay Horstmann and Gray Cornell, Core Java 1.1, Prentice Hall, 1997

[12] James Gosling et al., Java Programming Language, Addison Wesley, 1998

[13] B. P. Lester, The art of parallel programming, Prentice Hall, 1993

[14] E. A. Brewer, et al, “Proteus: A high performance parallel architecture simulator”,
Technical Report MIT/LCS/TR-516, Massachusetts Institute of Technology,
Laboratory of Computer Science, September 1991

[15] E. Reiher, H. H. J. Hum, and A. Singh, “Simulating networks of superscalar
processors”, Proceedings of the Supercomputing Symposium, 1993, pp.125-133

[16] E. Olk, “PARSE: Simulation of message passing communication networks”,

Proceedings of the 27" Annual Simulation Symposium, 1994, pp.115-124

[17] B. A. Delagi, et al, “An instrumented architectural simulation system”, Technical
Report KSL 86-36, Knowledge System Laboratory, Stanford University, January,
1987

[18] B. A. Delagi, et al, “Instrumented architectural simulation”, Technical Report KSL

59

87-65, Knowledge System Laboratory, Stanford University, November 1987

[19] G. Gao. et al, “Towards a portable parallel programming environment”, Proceedings
of the Supercomputing Symposium, June 1992, pp.219-228

[20] B. P. Lester and G. R. Gutherie, “A system for investigating parallel algorithm
architecture interaction”, Proceedings of the 1987 International Conference on
Parallel Processing, August 1987, pp.667-670

[21] A. Saha, “A simulator for real-time parallel processing architectures”, Proceedings
of the 28" Annual Simulation Symposium, 1995, pp.74-83

[22] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, 1993

[23]1 L. M. Ni and P. K. Mckinley, “A survey of wormhole routing techniques in direct
networks”, Computer, 1993, pp.62-76

[24] Virginia M. Lo, Kurt Windisch, and Rajen Datta. METRICS: A Tool for the Display
and Analysis of Mappings in Message-passing Multicomputers. Proceedings of the
Sixth Distributed Memory Computing Conference, April 1991

[25] Kurt Windisch, Jayne V. Miller, Virginia Lo. ProcSimity: An Experimental Tool for
Processor Allocation and Scheduling in Highly Parallel Systems. Department of
Computer and Information Science, University of Oregon, Eugene, OR

[26] Michael T. Heath, Jennifer A. Etheridge. Visualizing the Performance of Parallel
Programs. IEEE Software, 8(5), September 1991, pp.29-39

[27] James Gosling, Frank Yellin, and The Java Team. The Java Application
Programming Interface Volume 1: Core Package; Volume 2: Window Toolkit and
Applets. Sun Microsystems, June 1996

[28] F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes, Morgan Kaufmann, 1991

[29] Michael J. Quinn, Designing Efficient Algorithms for Parailel Computers. McGraw-
Hill, 1987

[30] William A. Shay, Understanding Data Communications and Networks, PWS
Publishing Company, 1995

[31] S. Chittor and R. Enbody, “Predicting the effect of mapping on the communication

performance of large multicomputers”, Proceedings of the International Conference

60

on Parallel Processing, 1991, vol.2, pp.1-4

[32] S. Chittor and R. Enbody, “Performance degradation in large wormhole-routed
interprocessor communication networks”, Proceedings of the International
Conference on Parallel processing, 1990, vol. 1, pp.424-428

61

