INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are avaiiable for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Message Passing Interface Implementation for Concordia

Parallel Programming Environment

Zhong Guan

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

September 2000

© Zhong Guan, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wallington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référance
Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui proteége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-59322-3

Abstract

Message Passing Interface Implementation for Concordia Parallel

Programming Environment

Zhong Guan

In this report, we present the design and implementation of a Message Passing Interface
(MPI) [1] for the Concordia Parallel Programming Environment (CPPE), an environment
for parallel computing simulation. The purpose of this project is to provide Message
Passing Interface (MPI) support for CPPE, so that user can get access to MPI
programming with CPPE. Also the CPPE environment, which allows users to study
impacts of system and software factors on program performance and locate performance
bottlenecks in parallel programming [2], in turn, benefits the developing of the MPI
applications with all of its advanced features.

Parallel computing offers the potential to push the performance of computer
systems into new dimensions. One of the main obstacles for a broad application of the
parallel technology is the lack of parallel programming standards. The Message Passing
Interface (MPI) is just such a portable message passing standard that facilitates the
development of parallel applications and libraries. The goal of MPI is to achieve efficient
communication, portability and rich functionality.

This report outlines the development and implementation of MPI for CPPE. As a
development tool, this implementation enables MPI parallel software developing easy
and inexpensive. As a learning tool, it provides a larger group of computer users with the
opportunity to gain experience with MPI programming on their personal computers.

We also discuss the MPI standard in detail, and furthermore illustrate the MPI
parallel programming with some example programs. We focus on design and
implementation issues for MPI, as well as the simulation procedure under CPPE virtual
parallel machine. Special consideration is given to confirm the correctness of this
implementation by comparing the running of a series of MPI applications on CPPE with

that of MPICH implementation on UNIX.

iil

Acknowledgements

I would like to thank Dr. Lixin Tao for his thesis supervision during my study at
Concordia University for my master degree.

My thanks also go to the CPPE team: Dr. Lixin Tao, the team leader; Hassan
Hosseini and Ai Kong (CPCC), Hoang Uyen Trang Nguyen and Thien Bui (CPSS),
which provided the good basis for the contributions of this thesis.

I am grateful to the professors and administrative staffs in the Department of
Computer Science, especially Dr. Greg Butler, who gave the lectures in Software
Engineering and Software Design Methodology, Dr. H.F. Li, who taught an excellent
course in Computer Architecture and offered me the guidance in graduate study, Mr. Stan
Sweircz, who gave me so much help in the use of computer system and system
programming and Ms. Halina Monkiewicz, whose friendliness and administrative support
have made my student’s life much easier and pleasant.

I also have a very supportive famnily that backs me up. My wife supported me
with her unconditional love, sharing and inspiration throughout my study.

I am also grateful to my parents for their encouragement and help.

iv

Contents

1. Introduction 1
1.1 1\Y (100 7Z: 14 Te) 4 S OO PSS USSR 1
1.1.1 The Need of Parallel COMPULAtiON ...cccceereeeeereneceecceeeeeeeeeeeeeeeeeeeereeeeeaas 1
1.1.2 The Need of Simulating Environment for Parallel Computation................ 2
1.1.3 The Need of Another Standard as MPI.........ccocoirimiiiiiiinciieerereeeeteerees 3
1.1.4 The Need of MPI for Parallel Computation in CPPEccaeeeunnen...... 6

1.2 Overview Of CPPE ettt eee e s e ee s e eesen st e easesersmnseenes 7
1.2.1 Architecture of CPPE ...ttt teteeeeeeee e e eaaee s e s e 7
1.2.2 Architecture Of CPSS ...t seceeee e teee e e e e s esenrennns 8

1.3 OVErVIEW Of MPL ..ottt es s e ce et ee s et se e e e aneeessnenseaes 12
1.3.1 WHhat IS MIPT7 ... receterste s anne e ntetes s s s s e aasasnn s e sassssnsensenns 12
1.3.2 What does MPI Offer? ... oo ceceeetee et 13
1.3.3 MPI PTOZIAIMS ..coeeniiiieiiiieieaceeec e ceetreeres e e e eessessasass s snann e eraensnns 14
1.3.4 MPL MESSAZES ...ereeeiireiieiieneeeececnecennseatasnaraeseaetameasesaasesssssrssesessassasssesssnns 16
1.3.5 COMIMUNICALOLS ..cceeeneeenrnnriicceneneeererescecsaserasennnesessnensessnmeemeeessesnnnsnsnsesseses 18
1.3.6 SUMMATY coetiiiieeieeeimeitietiirerreetoaeeineteteeeereatcnereecoseseseeaeesssnntensassasssnesnss 18

1.4 Contributions Of This TReESIS ccccceeeeeeeeeririeetitiririreireeercteeeeeereeerenrre e s e eeeeeeresseens 19
1.5 ThesisS OULLNE ..ccovoneiiiiieiiiitie et seccette it eo e ecsetenene e e e esessnnemsnnaanssanasans 19
2. MPI Implementation Survey e 21
2.1 Relation of MPI to PVM and HPFcccoorimioireciecieceeeeseeeeeeeveeeneen 22
2.2 Freely Available Implementations....c.occocivionciinnccnninceiecenrnaen. 23
2.3 Vendor ImplementationS. ... it cceeetee e 27
2.4 SUMIMATY eeiiiiiiiiiiiiiiecetettttetereesee e reere s e senaes s e am e s eseeasessesesesansssesaassnssesnsanes 31
3. Message Passing Interface Standard . 33
3.1 BaSiC COMCEPLS . eeeincceieeccieteeceseeeeamneeee e e nnnaessesacenssesessnnsssssasennnnsnnsnnnsnseesenns 33
3.2 INItHAHZALION eueetiiiiieie et cce e s e e et cer ettt e e e s s e e s ot s s e e s e memseeaaasasn s ssnnnsenns 34
3.3 Blocking Point-to-Point COmMMUNICAtION.cucireerercretireirrerececreeerereererenserenees 35
3.4 Nonblocking Point-to-Point CoOmMmUNICAtiON.....ccccueeueirerereeeirierireereeeneareeereannens 38
3.5 MesSSage DatatyPes.......euviiiiieiiiiinircieire ettt ettt e e e s e e e e e nnns 41
3.6 Collective Message-PasSINgcceveeeeeierreeiiiiiiiniiieeecrrecteecrreeeeenneesasasseessssnaessnns 49
3.7 Creating COMITUNICALOLS ccouuvuuuerecereeeemnnereoterieearameesennssencrsmseomeasstrsssssasssassessasnans 54
3.8 Process TOPOLOZIES.c...uuuuieiiiiiiieitencecceoteaente ittt ree e e e e steeceseses s eennesaeseeeasssnrasanns 57
3.9 ProCesS CrEAtIONuiieeieeereeieiieeenececee et ecttttttes e eesee s e e steeereasesssasenasasnsasasasasasnsnnns 61
3.10 Miscellaneous MPI FEaturescccceieueiiimiincecteccmeeeteocmteneeeeeanncsenesesssnseans 63
311 SUIMHTIETY eeeeeeeeiiitiinieeeeeeemnneeeceetiteeseesassesnsanstssssesessssensmsessaseseesssessentaeaessssssasanen 66
4. Design and Implementation cecscsssssesasenes 67
4.1 Point to Point COMMUNICALION ...ccccceveeriieentiiirintienerrersteecrresecisseseeesasasasssesasasens 67
4.2 Collective COMMUNICAION. ...civeuireerreerertereteeterareeseesseetesosesssssosancesaasassesossaesssans 73
4.3 Derived DatatyPe...ccccccueeeeereeriiriereaeeeeeereeetieernteesseseesesesesennesemseresasasnnnnssessssens 83
4.4 Communicator and TOPOLOZY...cccceeeeeeertimmmuiitiiiriiiincetrnttieeieiesssreesetenasesaeeseasssnens 86

4.5 SUIMITIETY it s et st s s s e e s s s s sea s e sesssssssnnnne 90
5. Example Applications of MPI programming with CPPE- MPI.........91

5.1 Porting MPI between UNIX and CPPEccoonimiceceecieeeecceeenee 91
5.2 Design and Coding of Parallel MPI Programs..........cccooeviiciciricncrarnecniicenneneeee 91
5.3 RE:ToTe)2 BECTILY [11 Lo L« U 92
5.4 Jacobi’s Method With MPT ... eeeieemeeeeeteeteteeeeaesersesesesoacsesassssssnsesssansen 93
5.5 2330030 (oY o) n MY/ (S Lo L AR 96
5.6 Bitonic Sort Method WIth MPL.......eeeireecieeeeeeeeeeeeeeceeereeeeneeseseeessesnssnsssossssesases 98
5.7 RYTE 1010015 o OSSO 102
6. Conclusion and Future Work. 103
A. MPI Programming Examples 106
B. MPI C Binding Reference 160
Bibliography . 181

vi

List of Tables

Table 1: Initialization related MPI FOULINESueeeeruereeiiiiiiieiecciiecceceeneeeeeecceceeeesenneees 34
Table 2: Blocking point to point communication related MPI routines..........c.cccceceeeeeen. 35
Table 3: Nonblocking point to point communication related MPI routines 38
Table 4: Message datatype related MPI FOULINEScooieememmmminrmineieneieriemmiinnieeeeeeeeennnenes 41
B :10) SR LY § 24 e b 1 10 o R 42
Table 6: MPI routines that derive new datatypeccccceeeeeeeemmmiriiiienenicmmmiorminneeeeeeneessseesens 43
Table 7: Collective message passing related MPI routines......coueeeeeeeiminrenininicviiinnnnnnnnn. 49
Table 8: REAUCE OPEIALOIS..ccuuneiicnenneceietirieneieretirc e eat e e nnresssesseeaesssesseensetrass s ssasnsnnnssens 52
Table 9: Communication and group create related MPI routingsccceeeeiveeieeciceecennnn. 54
Table 10: Process topology related MPI FOULINESc..eeeiiiiiiiiiiiiiicciciieneiecctee e asnaeees 57
Table 11: Process creation related MPI TOUTINES.......ccceveemmmmmmirrineecertertreeeeinnneeeceesesssssees 61
Table 12: Miscellaneous MPI FOUINES.....cceuuumueiiiereireemirreereeeec et ee e eraeeeceeseneesenes 63
Table 13: Attribute caching related MPI rOULINES.....c...eeeiiiiiiiiiiiiniteeenertcc e 65

vii

List of Figures

Figure 1: General structure of the CPPE.........ccccooiiiiiiiiintececcrecceeceenn. 8
Figure 2: CPSS structure and OPEIALIONS.....cccccceeeueeemmmersememmmmeooraraaremccnsesseseosesessansenensessesanne 9
Figure 3: Broadcast message passing COMMUNICALION «...uvueeeeiereereraeermmemmsseeseaaannssensennennnnns 50
Figure 4: Scatter message passing COMMUNICATIONueceiireeiiriiieerieieereeereceeesesceesesens 50
Figure 5: Gather message passing COMMUNICAtION «...uuciiieiiemiiiiiceiesrre et csaec e cesssenas 51
Figure 6: Reduce message passing COMMUITICALION c...uuuuunnueeeierriineenreresreresaeecesnesesssasaees 51
Figure 7: CommuniCator SPlit.......ccciiiiiiiiiiiiinioriiniinirineeternreceemsrrrrarsessseseessessnasees 56
Figure 8: Cartesian TOPOIOZYcciiiviiirriiiiiiitieieieeeeetecctccee e s esesaees 60
| To400 O R Or:T g (TE: 1ol @eTe) s H1 41 () o 60
Figure 10: Orientation of Subsequences during stages of bitonic SOrIt......ccccceeeecceerecanence.. 98

viii

Chapter 1

1. Introduction

In this chapter, we first discuss the motivations and objectives of this research. Then we

present the contributions of this thesis. At the end we give a thesis outline.
1.1 Motivations

1.1.1 The Need of Parallel Computation

Since the invention of computers about 50 years ago, the world of computing has
changed rapidly. Roughly in each decade, a new generation of computer systems sets
higher standards with regards to performance, size, price, and usability. Computers
continue to conquer new spheres in industry, research, and management and affect
virtually every aspect of daily life.

In the 1990’s, this race goes into a new round, the Era of Parallel Computers.
Parallel computer systems adopt the idea of cooperation by employing multiple
processors. Huge computational problems are divided, separately solved, and integrated
into a final solution.

The boost of parallel computers is no coincidence. Many scientific and
engineering problems in research and industry demand tremendous computational power
for large-scale computations that cannot be provided by uniprocessors. Parallel
processing has shown its potential to meet the demands for high computing power.
Complex processes such as atmospheric activities, crash test simulations, fluid dynamics,
oil reservoir, seismic study and computer visualization are modeled theoretically by
mathematical methods, resulting in complexities of large-scale computations. Only
parallel computers provide the sufficient computational performance to solve such

problems in an acceptable period of time.

1.1.2 The Need of Simulating Environment for Parallel Computation

Computing power has always been an issue in research and industry areas. Despite the
tremendous growth of processor speed over years, there is always a wide range of
important computational problems in science and engineering that require much greater
computer speed. Parallel programming has shown its potential to meet the demands for
high computing power. However, parallel programming is difficult and error-prone, not
only because parallel processes are difficult to trace and debug, but also because many
hardware and software factors, such as algorithm design, system architecture, routing
technique, and networking speed, influence the performance of parallel programs.

In order to evaluate and improve the performance of parallel applications
effectively, all deciding factors must be taken into account. Also, programmers/designers
should be able to observe the effects of these factors on their applications so as to detect
system bottlenecks and thus optimize performance of the application. Fortunately, CPPE
is a powerful tool developed for parallel research. CPPE offers programmers a
development environment superior to those on real multiprocessors. It provides flexible
and efficient software tools for developing parallel applications and optimizing their
performance. It supports testing and debugging, as well as algorithmic and architectural
performance evaluation and tuning which allows users to evaluate impacts of system and
software factors on performance of parallel applications. It allows you to produce
efficient parallel programs by locating and eliminating performance bottlenecks in the
programs.

CPPE (Concordia Parallel Programming Environment) is one of the simulated
parallel systems, which is studied and developed by our group, aiming to provide users
with flexible and efficient software tools for developing parallel programs, evaluating and

optimizing performance of parallel applications.

1.1.3 The Need of Another Standard as MPI

By the mid-1950’s, computers had come into a state of development that suggested their
successful utilization not only for research but also for applications in industry and
administration. A number of manufacturers designed and marketed computer systems.
Many computer programs were written for these systems. During this period, assembly
language was used for software development, which, from today’s point of view, has
several drawbacks:

e designed for a particular hardware

e source code difficult to understand

e laborious and time-consuming debugging
As a result, computer programs could be used only for a particular computer system and
proved to be very expensive and error-prone. Efficient software development required
new concepts.

In the late 1950’s, the solution appeared in the form of high-level languages such
as Fortran and Algol 60 [3]. Source code became more intuitive and easier to read and to
debug. A compiler translated the source code to machine-dependent assembly (or
executable) code. Suddenly, it was possible to write reliable software of greater
complexity in a shorter time.

Additionally, high-level languages defined a hardware-independent programming
interface; programs could run on different computer systems. The standardization of
high-level languages allowed for portable software developing.

Computers became even easier to use when UNIX was adopted as the de-facto
operating system standard. Today, no major workstation vendor can afford not to offer
UNIX for its computer systems. Once familiar with the UNIX user interface, users are
able to operate machines from different manufacturers without additional training.

During the last two decades, parallel computing has evolved into a major field of
research in computer science. Manufacturers such as Cray, IBM, INTEL, nCube, Maspar,
Sequent, and Silicon Graphics have developed and marketed computer systems equipped

with multiple processors. Two major groups of parallel systems can be distinguished:

e Shared memory machines - Multiple processors have access to a common main
memory (shared memory communication).

e Distributed memory machines - Each processor has associated it’s own local main
memory. The processors exchange messages via separate communication
channels (message passing).

The UNIX standard proved to be so strong that even vendors of parallel machines felt
compelled to offer UNIX-like operating systems for their computers. Parallel machines
can be programmed using popular high-level languages such as C, Fortran, and Pascal.
However, parallel computers require specific extensions to the UNIX operating system
for communication and synchronization. Hence, vendors added functions to the UNIX
programming interface, which are used for implementing parallel application software.

The number of problems in research and industry requiring huge computational
power is steadily increasing; nevertheless, the parallel computers are very expensive
since the number of sold systems is still small. A less expensive alternative is the use of
distributed systems, which consist of a number of workstations connected by a
communication network (workstation cluster). Distributed systems are suitable for
parallel applications although they do not reach the performance of parallel systems.

The current state of development for parallel and distributed systems is
comparable to the crisis in assembly language programming in the late 1950’s. An
application program written for a particular parallel computer system is difficult to port to
another manufacturer’s hardware because the parallel extensions to the UNIX
programming environment differ. As a solution to this dilemma, a standard is desirable.
This new standard will accomplish for parallel applications what high-level languages
permitted for sequential application software - application programs running on different
parallel machines without any changes.

Numerous attempts have been made to propose a standard. Intel’s NX/2 [4], PICL
[5], Express [6], p4 [7], and PVM [8] are only a few examples. Common drawbacks of
these programming systems are:

e Designed with regard to the hardware of a particular computer manufacturer.

e Designed as a research project, not suitable for commercial use.

Meanwhile, the availability of a widely accepted standard for parallel computers is the
key to growing acceptance of parallel computers in research and industry. In order to be
suitable for all types of parallel computers, a parallel program standard must be based on
the most general communication paradigm, the message-passing paradigm. In the
message-passing paradigm, sharing resources and synchronization among processes are
achieved by sending messages.

About 60 people from 40 organizations participated in the standardization of the
Message-Passing Interface Standard (MPI). Most major manufacturers of parallel
computers and researchers from universities, government laboratories, and industry were
involved in the development of MPIL.

The MPI standardization process began in April 1992, with the Workshop on
Standards for Message Passing in a Distributed Memory Environment, which was held in
Williamsburg, Virginia [7]. At this workshop the essential features for a message-passing
interface standard were discussed, and the MPI working group was formed to continue
the standardization process.

In November 1992, this working group held a meeting in Minnesota where the
standardization process was reformed by adopting the organization and procedures of the
High Performance Fortran Forum. For each major component area, a subcommittee was
formed and an email discussion service provided. Both together embodied the MPI
Forum, which invited all members of the high performance computing community to
participate in the standardization process.

A Revised Version of the preliminary draft proposal, called MPI1, was available
in February 1993 [10]. The intention behind MPI1 was to provide a base for a broad
discussion. The draft MPI standard was presented at the Supercomputing 93 conference
in November 1993. It is available as a technical report from the University of Tennessee
report [11], as a postscript file by ftp (from info.mcs.anl.gov in /pub/mpi/mpi-report.Z),
as a hypertext on the World Wide Web at http://www.mcs.anl.gov/mpi, and as an article
in the Journal of Supercomputing Applications [12].

Meanwhile, MPI has reached a state, where several proprietary, native
implementations are in progress and portable public domain implementations are

available [13].

A discussion at the final MPI meeting in February 1994, resulted in the decision
of MPI standard. MPI 2 extends the MPI message passing standard in the later years.

1.1.4 The Need of MPI for Parallel Computation in CPPE

Due to the utilization of the latest technology, immense development costs, and lack of
competition, parallel computers have been very expensive and only available to a limited
number of institutions. Distributed systems of interconnected workstations are an
alternative. They are widely available and offer a far better price-performance ratio.

Currently, many users have access to parallel computing technology and are
willing to use it for their particular needs. Both demand and supply of parallel software
are increasing considerably. Software developers and users face the nonexistence of a
widely accepted standard as a severe obstacle. Software for a particular parallel computer
is expensive to rewrite for another system or is simply not portable. Numerous attempts
have been made to establish a standard. Due to a broad foundation of support from
vendors and researchers, a standard called Message Passing Interface (MPI) is adopted as
the base for future parallel application software. The standard is stable, and
implementations are wide used for parallel and distributed systems.

CPPE offers a development environment superior to those available on real
multiprocessors. It provides flexible and efficient software tools for developing parallel
applications and optimizing their performance. It supports testing and debugging, as well
as algorithmic and architectural performance evaluation and tuning, which allows users to
evaluate impacts of system and software factors on performance of parallel applications.
It allows you to produce efficient parallel programs by locating and eliminating
performance bottlenecks in the programs by optimal mapping functions for wormhole-
routed networks, and providing accurate information about the timing and behavior of
parallel applications and the underlying simulated architecture.

The development of CPPE and its MPI porting is to provide a superior
environment for parallel computing software development.

As part of the CPPE project, the research objective of this thesis is to implement
the MPI standard in order to make CPPE a more portable, flexible and efficient system

for parallel program development. The focus of this project is on MPI implementation for

CPPE.

1.2 Overview of CPPE

In this section we are going to discuss the architecture and high level design of CPPE as a

start point of this MPI project.

1.2.1 Architecture of CPPE

CPPE-MPI implementation, which is part of the research project of Concordia Parallel
Programming Environment (CPPE), provides CPPE with MPI programming support.

CPPE consists of two major moduli [14] (Figure 1):

1. Concordia Parallel C Compiler (CPCC): The CPCC accepts parallel programs written
in the CPC (Concordia Parallel C) language and generates virtual machine code
(vCode), which will be the input to the CPSS.

Concordia Parallel System Simulator (CPSS): The CPSS reads in the intermediate

!\)

code produced by the CPCC, simulates the execution of the application, and yields

the program output.

The development and implementation of MPI need to extend both CPCC and

CPSS components, with focus on the CPSS components.

Parallel
Program

CPCC >

User Interface
GUI
CPSS &

Application Outputs
Debugging Information
Performance Statistics

Figure 1: General structure of the CPPE

1.2.2 Architecture of CPSS

CPPE (Concordia Parallel Programming Environment) consists of two components: the
CPCC (Concordia Parallel C Compiler) and the CPSS (Concordia Parallel System
Simulator) [14].

The core of the CPCC (Concordia Parallel C Compiler) is a compiler. After
reading a parallel program written in CPC (Concordia Parallel C) language, the CPCC
builds a complete abstract syntax tree to perform syntax and semantics analysis, and
produces object code for a generic virtual machine. Such object code is called vCode in
CPPE. The defination of the vCode instruction set is based on an analysis of common
operations of parallel computer systems. To produce vCode, the compilation process
makes use of the virtual architecture instead of calling for the physical architecture. The
advantage of this design is that the CPC parallel program does not need to be re-compiled

every time the underlying target architecture is changed.

The vCode produced by the CPCC will be input to the CPSS. Other inputs to the
CPSS are parameters and commands from the user. For example, the user can specify the
physical topology, on which the program will run, and the virtual-to-physical topology
mapping. The CPSS then executes the vCode, using the parameters and commands
entered by the user. The outputs from the CPSS are the application outputs, performance
statistics, and debugging information.

The CPSS consists of two major components: the code execution module and the
network module. The code execution module models the processing elements of the
parallel computer system: it executes the parallel code specified by the parallel program.
The network module manages the inter-processor communication via message passing.
There are two other utility modules interacting with the code execution module and
network module in CPSS: the debugging monitor and the user interface.

The interactions between the components in CPSS are illustrated in Figure 3.

Application input Application output

vCode
User Commands Debugging info
Parameters Performance statistics
Y Applicati >
Code Execution o ft p:t:atlon User
Module < P P [nterface
ICP
Message ICP| |Debugging information
MAN PSI PSR Performance statistics
Network Debugging
Module <MN[L Monitor
MNR
MAN: Message Arrival Notification ICP: Input/Commands/Parameters
MNR: Message/Network Request PSR: Process/Processor Status Request
MNI: Message/Network Information PSI: Process/Processor Status Information

Figure 2: CPSS structure and operations

The Code Execution Module

The Code Execution Module (CEM) plays a role in processing elements of a parallel
computer system: it executes the parallel code specified by the parallel program. There
are three key issues that influence the design of the debugging monitor: simulation at the
functional level, sequential execution model and the way in which timing system is
implemented. CPSS uses the functional simulation technique, with sequential execution
model emulating the parallel execution and interpreting the parallel object code
instructions at the functional level. This technique offers the most accurate results among
the existing simulation techniques. In addition, this technique provides a good basis for

performance debugging:

e Functional simulation: CEM interprets the intermediate parallel code at the
functional level in such a way as if they were executed on the target machine.
Each instruction of the target machine is usually expressed as a host macro or
procedure, whose size varies with the complexity of the instruction and the
desired level of simulation accuracy. This technique permits the simulator to have
complete control over program execution. It establishs the connection between
user program statements and intermediate instructions. Thus the user can set
breakpoints, examine trace variables, or step-through the program fragment of a
particular process. Monitor code can be added to the simulating code without
affecting the execution outcomes, because the CEM is able to distinguish between
application code and monitor code and the execution time for monitoring code is

not accumulated.

e By using functional simulation technique, we can parameterize system
measurements (e.g, system clock cycle, execution time of object code
instructions, network packet size, link buffer size, network delay, message and
packet startup overheads). Performance statistics are based on these parameterized

measurements.

10

e The sequential simulation is deterministic in nature. Therefore executing a
parallel program repetitively with the same system parameters will always
produce the same results and performances. This provides a stable environment to
study the performance of parallel programs at different levels of detail and from

different perspectives.

e Timing system: CPSS does not use the machine clock for performance timing.
There is a global clock for the simulated parallel computer system, which is
updated periodically by the CEM. Each process has a local clock that keeps track
of the present time of this process. In the CPSS, parallelism is simulated by time
slicing, with each application process being given a quantum to run and scheduled
in a round-robin fashion. During each quantum, the process scheduler traverses
the list of processes, scheduling one at a time for execution. The local clock of the
scheduled process is updated after each instruction is executed. The cost to
execute an instruction is dependent on the complexity of the instruction and thus
estimatable. The process runs until its time quantum expires or it is put to sleep by
some event. The process scheduler then schedules the next process for execution.
When every parallel application process has finished its quantum, the global clock
is advanced to the next quantum. By using this timing system, CPSS can provide

accurate and repeatable performance statistics for performance debugging.

The Network Module

The Network Module is responsible for inter-process communication via message
passing. It is under control of the network manager. The network manager allocates
network resources to the messages to be sent, routes them and delivers them to the
destination processors, and detects and resolves deadlocks, if any.

The following design issues of the network module is crucial for accurately
simulating the communication behavior, yet providing feasibility for performance

evaluation for parallel applications:

11

e By using the functional simulation technique and the same global clock
mentioned in the CEM design, the network module can effectively simulate the
network behavior and communication cost such as message startup overhead,
routing overhead and congestion delay. New messages, which are being
initialized for routing, are queued at a new message list. The waiting time at this
list simulates message startup overheads. When the startup overhead time of a
new message expires, the message is removed from the list and appended to a list
of active messages. In each quantum, all active packets that are not blocked are
advanced by one link. The network module simulates the movement of packets by

advancing their ID numbers.

e Most of the network and communication parameters are well defined with
appropriate data structures. User can configure most of the network parameters
such as packet size, flit size, routing scheme, link bandwidth, communication
delay, network topologies and virtual-to-physical mapping without recompile of
the simulator software and application programs, which adds to the flexibility of

the performance debugging environment.

1.3 Overview of MPI

1.3.1 What Is MPI?

MPI is a message-passing library, a collection of routines for facilitating communication
(exchange of data and synchronization of tasks) among processors in a distributed
memory parallel program. The acronym stands for Message-Passing Interface. MPI is the
first standard and portable message-passing library with good performance.

The MPI "standard" was introduced by the MPI Forum in May 1994 and updated
in June 1995. The document that defines it is entitled "MPI: A Message-Passing
Standard", published by the University of Tennessee. MPI 2 extends the MPI message

passing standard without changing it in the following areas:

12

Dynamic process management
One-sided operations

Parallel /O

C++ and FORTRAN 90 bindings
External interfaces

Extended collective communications
Real-time extensions

Other areas

1.3.2 What does MPI offer?

MPI offers portability, standardization, performance, functionality, and several high

quality implementations.

Standardization MPI is standardized on many levels. Since the functional
behavior of MPI calls is standardized, there is no need to worry about which
implementation of MPI is currently on the machine; the MPI calls should behave
the same regardless of the implementation. Performance, however, varies slightly

with different implementations.

Portability With environments of high performance computers changing rapidly
and communication technology developing fast, portability is given a thought to
by almost everyone. Who wants to develop a program that can be run on only one
machine, or only poorly on others? All massively parallel processing (MPP)
systems provide some sort of message passing library specific to their hardware.
These provide great performance, but an application code written for one platform
cannot be ported easily to another. With MPI, one can write portable programs
that still take advantage of the specifications of the hardware and software
provided by vendors. Happily, this is mostly taken care of by simply using MPI
calls because the implementers have tuned these calls to the underlying hardware

and software environment.

13

e Performance A number of environments, including PVM, Express, and P4, have
attempted to provide a standardized parallel-computing environment. However,

none of these attempts has shown the same high performance as MPL

e Richness MPI has more than one quality implementation. These implementations
provide asynchronous communication, efficient message buffer management,
efficient groups, and rich functionality. MPI includes a large set of collective
communication operations, virtual topologies, and different communication

modes. MPI supports libraries and heterogeneous networks as well.

1.3.3 MPI Programs

This section give you an introduction to a simple MPI program; the intent here is just to
give you a visual image that you can relate to and refer back to if you have questions
concerning things like these:

e What order should these calls be made in?

e What does the parameter list look like?

MPI routines

As you'll see, the basic programming of a MPI follows these general steps:
e Initialize for communications
e Communicate to share data between processes

e Exit in a "clean' fashion from the message-passing system

MPI has about 128 functions. However, a beginning programmer usually can make do
with only six of these functions. These six functions, illustrated and discussed in the
sample program, are:

e Initialize for communications

MPI_INIT initializes for the MPI environment

MPI_COMM_SIZE returns the number of processes

14

MPI_COMM_RANK returns this process's number (rank)
e Communicate to share data between processes

MPI_SEND sends a message

MPI_RECV receives a message

e Exit from the message-passing system

MPI_FINALIZE

A MPI sample program

As you look at the code below, note the six basic calls to MPI routines.

#include <stdio.h>
#include "mpi.h"
int main(int argc, char ""argv)
{
int rank, size, tag, rc, i;
MPI_Status status;
char message[20];

rc = MPI_Init(&argc, &argv);

rc = MPI_Comm_size(MPI_COMM_WORLD, &size);
rc = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
tag = 100;

if(rank == 0) {
strepy(message, "Hello, world");
for (i=1; i<size; i++)
rc = MPI_Send(message, 13, MPI_CHAR, i, tag, MPI_COMM_WORLD);
I3

else
rc = MPI_Recv(message, 13, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);

printf("node %d : %.13s\n", rank,message);
rc = MPL_Finalize();

}

To summarize the program:
This is a SPMD code, so copies of this program are running on multiple nodes. Each

process initializes itself with MPI (MPI_INIT), determines the number of processes

15

(MPI_COMM_SIZE), and leamns its rank (MPI_COMM_RANK). Then one process
(with rank 0) sends messages in a loop (MPI_SEND), setting the destination argument to
the loop index to ensure that each of the other processes is sent one message. The
remaining processes receive one message (MPI_RECV). All processes then print the
message, and exit from MPI (MPI_FINALIZE).

It is also worth noting what doesn't happen in this program. There is no routine
that causes additional copies of the program to run. For MPI-1 all processes are started on

the command line, in an implementation-specific manner.

1.3.4 MPI Messages

MPI messages consist of two basic parts: the actual data that you want to send/receive,
and an envelope of information that helps to route the data. There are usually three
calling parameters in MPI message-passing calls that describe the data, and another three

parameters that specify the routing:
Message = data (3 parameters) + envelope (3 parameters)

Let's look at the data and envelope in more detail. We'll describe each parameter, and

discuss whether these must be coordinated between the sender and receiver.

Data

When we use the term buffer to describe parameters in MPI calls, we mean a space in the
computer's memory where the MPI messages are to be sent from or stored. So, in this
context, a buffer is simply memory that the compiler has assigned to a variable (usually
an array) in the program. To specify the buffer, one has to give three parameters in the

MPI calls:

e Startbuf: the address where the data start. For example, it could be the start of an

array in the program.

e Count: the number of elements (items) of data in the message. Note that it is an

element, not byte. This makes it a portable code, since you don't have to worry

16

about different representations of data types on different computers.

The software implementation of MPI determines the number of bytes
automatically. The count specified by the received call should be greater than or
equal to the count specified by the sent call. If the length of the sent data is longer

than the storage available in the receiving buffer, an error will occur.

e Datatype: the type of data to be transmitted. For example, it could be floating
point. The types of data already defined for you are called "basic datatypes", and

you can also define additional datatypes, which will be covered in later sections.

Envelope

As mentioned earlier, a message consists of the actual data and the message envelope.
The envelope provides information on how to match send to receive. Three parameters

used to specify the message envelope are:

e Destination or source: Arguments that are set to a rank in a communicator. Ranks

range from O to (size-1), where size is the number of processes in the communicator.

Destination is specified by the sender and is used to route the message to the
appropriate process. The source is specified by the receive. Only messages coming

from that source can be accepted by the receive call.

e Tag: An arbitrary number to help distinguish among messages. The tags specified by

the sender and receiver must match.

e Communicator: The communicator specified by the sender must equal that specified
by the receiver. We'll describe communicators in more depth later in the sections. For
now, we'll just say that a communicator defines a communication "universe", and that
processes may belong to more than one communicator. The first and most that you
are going to work with is the predefined communicator MPI_COMM_WORLD,

which includes all processes in the application.

17

1.3.5 Communicators

A communicator is an object that represents a group of processes and their
communication medium or context. These processes exchange messages with each other
to transfer data. In this context, communicators encapsulate their processes such that
communication is restricted to processes only within the group.

The default communicators provided by MPI are MPI_COMM_WORLD and
MPI_COMM_SELF. MPI_COMM_WORLD consists of all processes that are running
when an application begins execution. Each process is the single member of its own
MPI_COMM_SELF.

Many MPI applications depend upon MPI_Comm_size and MPI_Comm_rank
to know the number of processes and the process rank within a given communicator.

e To determine the number of processes in a communicator named comm, use

MPI_Comm_size(MPI_Comm comm, int *size);

e To determine the rank of each process in comm, use MPI_Comm_rank

(MPI_Comm comm, int *rank); where rank is an integer between zero and (size
- 1.

1.3.6 Summary

Although MPI provides an extensive, sometimes complex, set of calls, one can begin
with just the six basic calls:

o MPI_INIT

e MPI_COMM_RANK

e MPI_COMM_SIZE

e MPI_SEND

e MPI_RECV

e MPI_FINALIZE

However, for programming convenience and optimization of your code, you should

consider using other calls.

18

MPI Messages

MPI messages consist of two parts:
e data (startbuf, count, datatype)
e envelope (destination/source, tag, communicator)
The data defines the information to be sent or received. The envelope is used in routing

messages to the receiver, and in matching sending calls to recexving calls.

Communicators

Communicators guarantee unique message spaces. In conjunction with process groups,

they can be used to limit communication to a subset of processes.

1.4 Contributions of This Thesis

This thesis is part of the project that aims at the design and implemenation of the
Concordia Parallel C programinng (CPC), compiler (CPCC), programming environment
(CPPE) and systems simulator (CPSS) by a team of researchers led by Dr. Lixin Tao. My
task aims particularly at the implementation of a message passing interface for CPC
parallel process communication based on the MPI model. The research work consists in

the implementation of the MPI libraries to the CPPE.

1.5 Thesis Outline

In chapter 2, we present a review of Message Passing Interface Implementations. The
review makes an analytical comparison of different implementations including free
distributed and commercial implementations, as a starting-poimnt to build our CPPE-MPI
implementation. Chapter 3 gives a detailed description of the Message Passing Interface
that will provide a foundation for our MPI implementation for CPPE. In chapter 4, major

components of the CPPE-MPI are described at a high level, and the design and

19

implementation of the code execution modules are described in details. The discussion
focuses on major MPI routines, regarding point to point communication, collective
communication, derived datatype, communicator and topology. In chapter 5, we discuss
porting MPI application between CPPE and UNIX implementations and coding
principles with MPL. At last, we give two applications in MPI — Jacobi’s method and
Bitonic Sort method to demenstrate our design and implementation. Chapter 6 provides a
summary of the thesis and give suggestions for future work. Appendix A lists all the MPI
programming examples created to run on the CPPE-MPI implementation. Appendix B
provides a description of all routines that MPI supports as the convenience for CPPE-

MPI user.

20

Chapter 2

2. MPI Implementation Survey

An MPI program consists of a set of processes and a logical communication medium
connecting those processes. These processes may be the same program (SPMD - Single
Program Multiple Data) or different programs (MPMD — Multiple Programs Multiple
Data). The MPI memory model is logically distributed: an MPI process cannot directly
access memory in another MPI process, and inter-process communication requires calling
MPI routines in both processes. MPI defines a library of subroutines through which MPI
processes communicate — this library is the core of MPI and implicitly defines the
programming model.

The most important routines in the MPI library are the so-called “point-to-point”
communication routines, which allow processes to exchange data cooperatively - one
process sends data to another process, which receives the data. This cooperative form of
communication is called “message passing.”

The MPI standard is a specification, rather than a piece of software. What is
specified is the application interface, not the implementation of that interface. In order to
allow implementers to implement MPI efficiently, the MPI standard does not specify
protocols, or require that implementations be able to inter-operate. Thus MPI can make
sense in a wide range of environments, the standard does not specify how processes are
created or destroyed, and does not even specify precisely what a process is. The most
important considerations in the design of MPI were:

e Portability. An MPI application should require only recompilation to use a
different MPI implementation. Furthermore, it should be possible to implement
MPI on any MIMD (Multiple Instruction, Multiple Data) parallel computer. MPI

should support (though not require) execution in heterogeneous environments.

21

e Efficiency. It should be possible to implement MPI efficiently. In particular, good
MPI implementations should perform as well as proprietary “native” message
passing libraries.

e Robustness. MPI should provide all the important functionality in “common
practice,” and some MPI should provide significant support for the

development of parallel libraries.

2.1 Relation of MPI to PVM and HPF

In the context of software standards for parallel computing, there are two other terms -
Parallel Virtual Machine (PVM) and High Performance Fortran (HPF). We will take a
look at how MPI fits in the larger context.

PVM is a package of software that provides message passing functionality as well
as infrastructure for building a virtual parallel computer out of a network of workstations
0. It is often thought of as a competitor of MPI, but it is actually a different beast. PVM is
a research project of the University of Tennessee at Knoxville and Oak Ridge National
Laboratory. While quite popular for writing message-passing programs, PVM is a vehicle
for performing research in parallel computing rather than a parallel-computing standard.
Compared with MPI, its weaknesses are also its strengths: it is not bound by an absolute
requirement for backward compatibility; its design is not constrained to be efficient on
any imaginable MIMD parallel architecture; there is no rigorous specification of PVM
behavior. In some sense, the tradeoff is between efficiency and portability in MPI, and
flexibility and adaptability in PVM.

Successful features of PVM are finding their way into MPI, though MPI is
unlikely to provide any support for fault tolerance or a virtual distributed operating
system in the near future. Moreover, since PVM is defined by a full implementation
rather than by a specification, possibilities for interoperability in PVM are higher than in
MPIL.

HPF is an industry standard for the data parallel model of parallel computation.

HPF was standardized a year earlier than MPI, and the successful HPF standardization

22

process was copied by the MPI Forum. Despite the conceptual appeal and simplicity of
HPF, MPI is much more widely used than HPF for several reasons. These include:

e HPF is much more difficult to implement, and to implement efficiently. MPI, on
the other hand, has benefited greatly from the large number of good
implementations, including an implementation that was available at about the
same time the standard was released.

e MPI is a more general model, and can be used to implement almost any parallel
computation, while HPF is applicable only to certain types of problems.

e Obtaining high performance in a HPF program can be more difficult than would
be expected from the superficial simplicity of the HPF model. It is an open
question whether this is a fundamental obstacle or can be addressed by more

mature compilers.

2.2 Freely Available Implementations

MPICH

Without question, the most important MPI implementation is MPICH, a freely available
portable implementation of MPI developed at Argonne National Laboratory and
Mississippi State University [21]. MPICH has played an important role in the
development of MPL

MPICH is the parent of a large number of commercial implementations of MPL
These include vendor-supported implementations from Digital, Sun, HP, SGI/Cray, NEC
and Fujitsu. In some cases (e.g., SGI and HP) the implementation has evolved far from its
roots; in others (e.g., Digital and Sun) the implementation is young and still close to
MPICH. Only two of the major vendor-supported implementations are not directly
derived from MPICH: the Cray T3D/E implementation (which derives from the CHIMP
implementation) and the IBM SP implementation (for which MPICH still provided
substantial inspiration). The HP implementation also has a second parent in LAM.

MPICH is also the basis for most experimental and research versions of MPL

23

The first version of MPICH was written during the MPI standardization process.
The experiences of the MPICH authors provided important feedback to the MPI Forum.
MPICH was released at approximately the same time as the original MPI 1.0 standard.

The portability of MPICH stems from its two-layer design. The bulk of MPICH
code is device independent and is implemented on top of an Abstract Device Interface
(ADI). The ADI interface hides most hardware-specific details, allowing MPICH to be
easily ported to new architectures. The ADI design allows for efficient layering, and the

device-independent top layer takes care of the majority of MPI syntax and semantics.

LAM - Local Area Multi-computer

The LAM implementation of MPI is a freely available and portable implementation
developed at the Ohio Supercomputer Center [17]. LAM and MPICH are the two most
important free options for running MPI on a network of workstations. LAM existed
before MPI and was adopted to implement the MPI interface. LAM runs on many
platforms, including RS6000, Irix 5, Irix 6, Linux86, HPUX, OSF/1 and Solaris.

LAM provides an infrastructure to turn a network of workstations (possibly
heterogeneous) into a virtual parallel computer. A user-level daemon running on each
node provides process management, including signal handling and I/O management.

LAM also provides extensive monitoring capabilities to support tuning and
debugging. The XMPI graphic debug tool that comes with LAM has been adopted by

many other MPI implemenations.
CHIMP - Common High-level Interface to Message Passing

The CHIMP project is based at the Edinburgh Parallel Computing Center [18]. Like LAM,
CHIMP started off as an independent portable message-passing infrastructure and was later
adapted to implement MPI. CHIMP is best known as the basis for the vendor-supplied optimized
versions of MPI for the Cray T3D and T3E. Chimp is portable, running on many platforms
including Solaris, Irix, AIX, OSF/1, and Meiko. To the best of this reviewer’s knowledge,

CHIMP is not in active development and is not widely used, at least in the U.S.

24

NT

Students at Mississippi State University have developed an MPICH ADI implementation
for Microsoft Windows NT clusters. It is a demonstration implementation, rather than a

high performance implementation.

See http://www.erc.msstate.edw/mpi/mpiNT.html for more information.

Win32

A researcher in Portugal has implemented the MPICH ADI device for Microsoft

Windows.

See http://alentejo.dei.uc.pt/ fafe/w32mpi/ for more information.

Active Messages

A student at the University of California at Berkeley has implemented the MPICH ADI
(ADI-2) on top of Generic Active Messages (GAM) and Active Messages [(AM?2).
See http://now.cs.berkeley.edu/Fastcomm/MPI/ for more information.

Fast Messages

Students at the University of Illinois at Urbana Champaign have implemented the
MPICH ADI on top of Fast Messages, which runs on PCs running NT or Linux with
Myrinet or Winsock 32.

See http://www-csag.cs.uiuc.edu/projects/comm/mpi-fm.html for more in-formation.

25

Multithreaded (MT) Device

A researcher in Germany has implemei:ted the MPICH ADI so that MPI “processes™ are

in fact threads on a multiprocessor machine. Communication between these processes can

be done with a single copy.

26

2.3 Vendor Implementations

IBM

IBM has been a consistently strong supporter of MPL. IBM’s implementation of MPI for
its SP systems was one of the first vendor-supported MPI implementations. MPI has
replaced IBM’s proprietary library MPL as the preferred message-passing library on SP
systems. The first optimized version of MPI available for SP systems, MPI-F, was a
research prototype based on MPICH. The currently available implementation of MPI
(hereafter referred to as IBM MPI) is rewritten from scratch [19].

IBM MPI runs on IBM SP systems and AIX workstation clusters in one of two
modes. In User Space (US) mode, an MPI application has direct access to the SP high
performance switch (if one exists). This provides the best performance, with the
restriction that only one process may access the switch on each node. In [P mode, MPI
processes communicate using [P — over the high performance switch if there exists, or
over any other network if not. Latency (minimum message transfer time) in US mode is

an order of magnitude lower than in [P mode.

HP

HP provides an implementation of MPI that runs on all current HP hardware, including
the S-class and X-class Exemplar systems [20]. HP MPI was derived from MPICH, but
also was significantly influenced by LAM. HP MPI uses whatever communication
medium it has access to: TCP/IP between hosts, shared memory within a host, and a
hardware data mover for long messages on Exemplar systems. HP MPI is interoperable
among all supported HP systems. HP MPI is well tuned on the high-end systems, with
both very low latency and high bandwidth on Exemplar servers. It has also been
optimized to use shared memory to implement collective operations where possible,

rather than layering on top of point-to-point routines. HP MPI is compliant with MPI 1.2.

27

Sun

The Sun implementation of MPI is quite recent. Version 2 is in beta release as of this
writing and should be generally available soon. Version 1 was a repackaged MPICH. Sun
MPI is derived from MPICH. For version 2, it has been integrated with a new Sun HPC
environment and optimized for SCI, though it can run over any network using TCP. The
Sun HPC environment is layered software that includes parallel job management. Users
can launch (tmrun), examine (tmps) or kill (tmkill) parallel jobs. There is considerable
flexibility in specifying where jobs are started, how standard input and output should be
handled (approximately the same as the functionality in IBM MPI, plus a bit more), etc.

Digital

Digital is another newcomer to the MPI world, having recently released a version for
clusters of Alpha SMP servers connected by Digital’s proprietary Memory Channel
interconnect [21]. Digital MPI is quite close to the original MPICH, with special
optimizations for communication over local shared memory and over the memory
channel.

Digital’s implementation of the MPICH ADI uses a lower level communication layer,
UMP (Universal Message Passing), that provides low-level communication functionality
over the Memory Channel and over shared memory. For long messages, UMP uses a

background thread to allow overlap of communication and computation.

28

SGI

Now that Silicon Graphics, Inc (SGI) has bought Cray Research Inc. (CRI), SGI has three
separate MPI implementations for its three types of machines —parallel vector (e.g.
J90/C90/T90), Irix (including Origin 2000), and T3E. These implementations all have
different roots and are therefore treated as separate implementations here. SGI is in the
process of merging at least two of the implementations. In each case, MPI is part of a
package called MPT (Message Passing Toolkit) that also includes SGI/Cray’s shmem
library and PVM.

NEC SX-4

NEC MPI is another new implementation. NEC has experimented with several very
different implementations. The one described here is just becoming available on the SX-4
as of this writing and should be standard on the SX-4 in the near future 0.

NEC MPI is a recent descendant of MPICH, starting from the ch Ifshmem device, which
was originally implemented for the SX-4. NEC MPI has been highly optimized for both a
single-node SX-4, where MPI uses shared memory for communication, and a multi-node
SX-4, where communication between nodes is done through the Inter-node Crossbar
Switch (IXS).

NEC MPI is integrated with the VAMPIR and VAMPIR trace tools from Pallas, which
allows users to visualization message trace information to optimize pro-grams 0.

Other features of the NEC implementation are at this time limited to what is available in
MPICH. Because of its recent release, I have not had an opportunity to assess its

usability.

29

Mercury Race

Hughes Aircraft Co. has implemented MPI for Mercury RACE systems 0. RACE MPI is
derived from MPICH. There are a few interesting features of this implementation that are
worth noting. On SHARC systems, where a “byte” (defined by ANSI C to be the size of a
char) is 32 bits, not 8 bits, this implementation exposed a portability problem for MPI
codes. The MPICH library has been modified to conserve as much space as possible.
Only needed routines are linked, argument checking and strings are omitted.

Several collective operations have been optimized to use shared memory.

Hitachi

Hitachi provides an implementation of MPI based on MPICH for its SR2201 series

computers. This implementation uses the SR2201’s remote DMA facility.

NEC Cenju-3

NEC provides an MPICH device for its Cenju-3 computers. See: http://www.ccrl-

nece.technopark.gmd.de/mpich/mpich-cenju3.html.

Alpha Data

Alpha Data provides an implementation of MPI for its AD66 systems. This
implementation was developed jointly with the Edinburgh Parallel Computing Center and
is presumably related to CHIMP.

See http://www.alphadata.co.uk/softhome.htm.

30

Fujitsu

MPI for the Fujitsu VPP machines has been recently developped by Pallas
(http://www .pallas.de) for Fujitsu. This implementation is reported to be in final testing,
but no further information is available. MPI for the Fujitsu AP1000 is available from
Australian National University 0.

See http://cap.anu.edu.au/cap/projects/mpi/mpi.html for more information.

2.4 Summary

The discussions in the last several sections have illuminated the promise of MPI
implementations. The primary message is that there are many MPI implementations out
there, that they are well supported by vendors. The overwhelming majority of the MPI
standard has been correctly implemented by all implementations.

MPI implementations discussed above are built over real hardware system, most
of those are kind of expensive. Individual beginners are unlikely to have access to them.
More important, those hardware based systems are hard to change to suit for research on
performance study under different system configuration.

As we introduced in previous sections, CPPE offers a development environment
superior to those that is available on real multiprocessors. It provides flexible and
efficient software tools for developing parallel applications and optimizing their
performance. It supports testing and debugging, as well as algorithmic and architectural
performance evaluation and tuning so as to allow users to evaluate impacts of system and
software factors on performance of parallel applications. With the help of optimal
mapping functions for wormhole-routed networks, it is capable of locating and
eliminating performance bottlenecks in the programs. It also provides accurate
information about the timing and behavior of parallel applications and the underlying
simulated architecture. These enable efficient parallel MPI programming.

We believe a MPI standard that is built on CPPE parallel virtual machine, that

was implemented in C, and run virtually on any platform, will provide a great tool for

31

both beginners and senior MPI developers for developing high quality parallel programs.
That also is the major purpose of this project.

32

Chapter 3

3. Message Passing Interface Standard

In this chapter, we give a detailed introduction of Message Passing Interface standard, to

make it the base of our design and implementation in the next chapter.

3.1 Basic Concepts

Through Message Passing Interface (MPI), an application views its parallel environment
as a static group of processes. This initial collection of processes is called the world
group. A unique number, called a rank, is assigned to each member process from the
sequence O through N4, where N is the total number of processes in the world group. A
member can query its own rank and size of the world group. Processes may all be
running the same program (SPMD) or different programs (MIMD). The world group
processes may be subdivided and create additional subgroups with a potentially different
rank in each group.

A process sends a message to a destination rank in the desired group. Messages
are further filtered by an arbitrary, user specified synchronization integer called tag.

An important feature of MPI is its ability to guarantee independent software
developers that their choice of tag in a particular library will not conflict with that of any
other independent developer or end user of the library. A further synchronization integer
called a context is allocated by MPI and is automatically attached to every message.
Thus, the four main synchronization variables in MPI are the source, the destination
ranks, the tag and the context.

A communicator is an opaque MPI data structure that contains information on one
group and that contains one context. A MPI_COMM_WORLD communicator is an

argument to all MPI communication routines after a process is created and initialized.

33

Many applications require no other communicators beyond the world
communicator - MPI_COMM_WORLD. If new subgroups or new contexts are needed,

additional communicators must be created.

MPI constants, templates and prototypes are in the MPI header file, mpi.h.

e #include <mpi.h>

3.2 Initialization

MP!_Init Initialize MPI state.

MPI_Finalize Clean up MPI state.

MPI_Abort * | Abnormally terminate.
MPI_Comm_size Get group process count.
MPI_Comm_rank Get my rank within process group.
MP!_Initialized Has MPI been initialized?

Table 1: Initialization related MPI routines

The first MPI routine called by a program must be MPI_Init(). The command line

arguments are passed to MPI_Init().

e MPI_Init(int *argc, char **argv(l);

A process ceases MPI operations with MPI_Finalize().

e MPI_Finalize(void);

In response to an error condition, a process can terminate itself and all members of a
communicator with MP|_Abort(). The implementation may report the error code
argument to the user in a manner consistent with the underlying operation system.

e MPI_Abort (MPI_Comm comm, int errcode);

34

Basic Parallel Information

Two numbers that are very useful to most parallel applications are the total numbers of
parallel processes and self-process identification. This information is learned from the
MPI_COMM_WORLD communicator using the routines MPI_Comm_size() and
MPI_Comm_rank().

e MPI_Comm_size (MPI_Comm comm, int *size);

e MPI_Comm_rank (MPI_Comm comm, int *rank);

3.3 Blocking Point-to-Point Communication

MPI_Send Send a message in standard mode.
MPI_Recv Receive a message.
MPI_Get_count Count the elements received.
MPI_Probe Wait for message arrival.
MPI_Bsend Send a message in buffered mode.
MPI_Ssend Send a message in synchronous mode.
MPI_Rsend Send a message in ready mode.
MPI_Buffer_attach Attach a buffer for buffered sends.
MPI_Buffer_detach Detach the current buffer.
MPI_Sendrecv Send in standard mode then receive.
MPI_Sendrecv_replace Send and receive from/to one area.
MPI_Get_elements Count the basic elements received.

Table 2: Blocking point to point communication related MPI routines

This section focuses on pointtopoint message passing routines. A pointtopoint

message is sent by one process and received by another process.

35

Send Modes

The issues of flow control and buffering present different choices in designing message
passing primitives. MPI does not impose a single choice but instead offers four
transmission modes that cover the synchronization, data transfer and performance needs
of most applications. The mode is selected by the sender through four different send
routines, all of them with identical argument lists. There is only one receive routine. The
four send modes are:

e Standard The send completes when the system buffers the message (it is not

obligated to do so) or when the message is received.
e Buffered The send completes when the message is buffered in application
supplied space, or when the message is received.
e Synchronous The send completes when the message is received.
e Ready The send must not be started unless a matching receive has been started.

The send completes immediately.

Standard Send

Standard mode satisfies the needs of most applications. A standard mode message is sent

with MP[_Send().

e MPI_Send (void *buf, int count, MPI_Datatype dtype, int dest, int tag,

MPI_Comm comm);

An MPI message is not merely a raw byte array. It is a count of typed elements. The
element type may be a simple raw byte or a complex data structure. The source rank is
the caller's. The destination rank and message tag is explicitly given. The context is a

property of the communicator.

36

Standard Receive

A message in any mode is received with MPI_Recv().

e MPI_Recv (void *buf, int count, MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Status *status);

Again the four synchronization variables are indicated with source and destination
swapping places. The source rank and the tag can be ignored with the special values

MPI_ANY_SOURCE and MPI_ANY_TAG. If both of these wildcards are used, the

next message for the given communicator is received.

Status Object

An argument not present in MPI_Send() is the status object pointer. The status object is
filled with useful information when MPI_Recv() returns. If the source and/or tag
wildcards are used, the actual received source rank and/or message tag is accessible
directly from the status object. status.MPI_SOURCE is the sender's rank, and
status.MPI_TAG is the tag given by the sender.

Message Lengths
It is erroneous for an MPI program to receive a message longer than the specified receive
buffer. It is completely acceptable to receive a message shorter than the specified receive

buffer. If a short message arrives, the application queries the actual length of the message

with MPI_Get_count().

e MPI_Get_count (MPI_Status *status, MP!_Datatype dtype, int *count);

The status object and MPI datatype are those provided to MPI_Recv(). The count

returned is the number of elements received of the given datatype.

37

Probe

Sometimes it is impractical to pre-allocate a receive buffer. MPI_Probe() synchronizes a
message and returns information about it without actually receiving it. Only
synchronization variables and the status object are provided as arguments. MPI_Probe()

does not return until a message is synchronized.
e MPI_Probe (in source, int tag, MPI_Comm comm, MPI_Status *status);

3.4 Nonblocking Point-to-Point Communication

MPI_lIsend Begin to send a standard message.
MPI_Irecv Begin to receive a message.

MPI_Wait Complete a pending request.

MPI_Test Check or complete a pending request.
MPI_lprobe Check message arrival.

MPI_lbsend Begin to send a buffered message.
MPI_Issend Begin to send a synchronous message.
MPI_Irsend Begin to send a ready message.
MPI_Request_free Free a pending request.

MPI_Waitany Complete any one request.
MPI_Testany Check or complete any one request.
MPI_Waitall Complete all requests.

MPI_Testall Check or complete all requests.
MPI_Waitsome Complete one or more requests.
MPI_Testsome Check or complete one or more requests.
MPI_Cancel Cancel a pending request.
MPI_Test_cancelled Check if a pending request was cancelled.

Table 3: Nonblocking point to point communication related MPI routines

38

The term “non-blocking” in MPI means that the routine returns immediately and may
only have started the message transfer operation, not necessarily completed it. The four
blocking send routines and one blocking receive routine all have non-blocking
counterparts. The non-blocking routines have an extra output argument -a request object.
The request is later passed to one of a suite of completion routines.

MPI_isend() begins a standard non-blocking message send.

e MPI_[send (void *buf, int count, MPI_Datatype dtype, int dest, int tag,
MPI_Comm comm, MP!_Request *req);

Likewise, MPI_Irecv() begins a non-blocking message receive.

e MPI_Irecv (void *buf, int count, MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Request *reqj;

Request Completion

Both routines accept arguments with the same meaning as their blocking counterparts.
When the application wishes to complete a non-blocking send or receive, a completion
routine is called with the corresponding request. The MPI_Test() routine is non-blocking
and the MPI_Wait() routine is blocking. Other completion routines operate on multiple

requests.

e MPI_Test (MPI_Request *req, int *flag, MPI_Status *status);
e MPI_Wait (MPI_Request *req, MPI_Status *status);

MPI_Test() returns a flag in an output argument that indicates if the request completed.
If true, the status object argument is filled with information. If the request was a receive
operation, the status object is filled as in MPI_Recv(). Since MPI_Wait() blocks until

completion, the status object argument is always filled.

39

Probe

MPI_Iprobe() is the nonblocking counterpart of MPI_Probe(), but it does not return a
request object since it does not begin any message transfer that would need to complete.
It sets the flag argument, which indicates the presence of a matching message (for a

subsequent receives).

e MPI_[probe (int source, int tag, MPI_Comm comm, int *flag, MPI_Status

*status);

Programmers should not consider the non-blocking routines simply as fast versions of the
blocking calls and therefore the preferred choice in all applications. Some
implementations cannot take advantage of the opportunity to optimize performance
offered by the non-blocking routines. In order to preserve the semantics of the message
passing interface, some implementations may be even slower with non-blocking
transfers. Programmers should have a clear and substantial computation overlap before

considering non-blocking routines.

3.5 Message Datatypes

MPI_Type_vector

Create a strided homogeneous vector.

MPI_Type_struct

Create a heterogeneous structure.

MPI_Address Get absolute address of memory location.
MPI_Type_commit Use datatype in message transfers.
MPI_Pack Pack element into contiguous buffer.
MPI_Unpack Unpack element from contiguous buffer.
MPI_Pack_size Get packing buffer size requirement.

MPI_Type_continuous

Create contiguous homogeneous array.

MPI_Type_hvector

Create vector with byte displacement.

MPI_Type_indexed

Create a homogeneous structure.

MPI_Type_hindexed

Create an index with byte displacements.

MPI1_Type_extent

Get range of space occupied by a datatype.

MPI_Type_size Get amount of space occupied by a
datatype.

MPI_Type_lb Get displacement of datatype's lower
bound.

MPI1_Type_ub Get displacement of datatype's upper

bound.

MPI_Type_free

Free a datatype.

Table 4: Message datatype related MPI routines

Heterogeneous computing requires that message data be typed or described somehow so

that its machine representation can be converted as necessary between computer

architectures. MPI can thoroughly describe message datatypes, from the simple primitive

machine types to complex structures, arrays and indices.

All the messagepassing routin es accept a datatype argument, whose C typedef is

MPI_Datatype. For example, recall MPI_Send(). Message data is specified as a number

of elements of a given type.

41

Several MPI_Datatype values, covering the basic data units on most computer

architectures, are predefined:

MPI_CHAR signed char
MPI_SHORT signed short
MPI_INT signed int
MPI_LONG signed long

MPI_UNSIGNED_CHAR

unsigned char

MPI_UNSIGNED_SHORT

unsigned short

MPI_UNSIGNED

unsigned int

MPI_UNSIGNED_LONG

unsigned long

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE araw byte

Table 5: MPI data type

The number of bytes occupied by these basic datatypes follows the corresponding C
definition. Thus, MPI_INT could occupy four bytes on one machine and eight bytes on
another machine. A message count of one MPI_INT specified by both sender and
receiver would, in one direction, require padding and always be correct. In the reverse
direction, the integer may not be representable in the lesser number of bytes and the

communication will fail.

Derived Datatypes

Derived datatypes are built by combining basic datatypes, or previously built derived
datatypes. A derived datatype describes a memory layout, which consists of multiple
arrays of elements. A generalization of this capability is that the four varieties of
constructor routines offer more or less control over array length, array element datatype

and array displacement.

42

Contiguous one array length, no displacement, one datatype

Vector one array length, one displacement, one datatype

Indexed multiple array lengths, multiple displacements, one datatype
Structure multiple everything

Table 6: MPI routines that derive new datatype

Strided Vector Datatype

Consider a two dimensional matrix with R rows and C columns stored in row major
order. The application wishes to communicate one entire column. A vector-derived

datatype fits the requirement.

e MPI_Type_Vector (int count, int blocklength, int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype);

Assuming the matrix elements are of MPI_INT, the arguments for the stated requirement

would be:

int R, C;

MPI_Datatype newtype;

MPI_Type_vector(R, 1, C, MPI_INT, &newtype);
MPI_Type_commit(&newtype);

The count of blocks (arrays) is the number of elements in a column (R).
Each block contains just one element and the elements are strided (displaced) from each

other by the number of elements in a row (C).

43

Structure Datatype

An arbitrary record whose template is a C structure is a common message form. The most

flexible MPI derived datatype, the structure, is required to describe the memory layout.

e MPI_Type_struct (int count, int blocklengths[], MPI_Aint displacementsf],
MPI_Datatype dtypes[], MPI_Datatype *newtype);

In the following code fragment, a C struct of diverse fields is described with

MPI_Type_struct() in the safest, most portable manner.

// non#rivial structure
struct cell {

double energy;

char flags;

float coord[3];

o

/l We want to be able to send arrays of this datatype.
struct cell cloud[2];

// New datatype for cell struct
MPI_Datatype celitype;

Note that this datatype is not sufficient to send multiple columns from the matrix, since it
does not presume the final displacement between the last element of the first column and
the first element of the second column. One solution is to use MPI_Type_struct() and
MPI_UB.

int blocklengths[4] = {1, 1, 3, 1};

MPI_Aint base;

MPI_Aint displacements([4];

MPI_Datatype types[4] = {MPI_DOUBLE, MPI_CHAR, MPI_FLOAT, MPI_UB};

44

MPI_Address(&cloud[0].energy, &displacement[0]);
MPI_Address(&cloud[0].flags, &displacement[1]);
MPI_Address(&cloud[0].coord, &displacement[2]);
MPI_Address(&cloud[1].energy, &displacement[3]);

base = displacement[0];

for (i = 0; i < 4; ++i) displacement[i] = base;

MPI_Type_struct(4, blocklengths, displacements, types, &celltype);
MPI_Type_commit(&celltype);

The displacements in a structure datatype are byte offsets from the first storage location
of the C structure. Without guessing the compiler's policy for packing and alignment in a
C structure, the MPI_Address() routine, together with some pointer arithmetic, is the
best way to get the precise values.

MPI_Address() simply returns the absolute address of a location in memory. The
displacement of the first element within the structure is zero.

When transferring arrays of a given datatype (by specifying a count greater than 1
in MPl_Send(), for example), MPI assumes that the array elements are stored
contiguously. If necessary, a gap can be specified at the end of the derived datatype
memory layout by adding an artificial element of type MPI_UB to the datatype
description and giving it a displacement, which extends to the first byte of the second
element in an array.

MPI_Type_Commit() separates the datatypes to be used to transfer messages
from the intermediate ones scaffolded on the way to some very complicated datatype. A

derived datatype must be committed before being used in communication.

Packed Datatype

The description of a derived datatype is fixed after creation at runtime. If any slight detail
change accue, (say, in the blocklength of a particular field in a structure.) a new datatype
is required. In addition to the tedium of creating many derived datatypes, a receiver may
not know in advance which of a nearly identical suite of datatypes will arrive in the next

message. MPI's solution is packing and unpacking routines that incrementally assemble

45

and disassemble a contiguous message buffer. The packed message has the special MPI

datatype, MPI_PACKED, and is transferred with a count equal to its length in bytes.

e MPI_Pack_size (int incount, MPI_Datatype dtype, MPI_Comm comm, int

*size);

MPI_Pack_size() returns the packed message buffer size requirement for a given
datatype. This may be greater than one would expect from the type description due to

hidden, implementation dependent packing overhead.

e MPI_Pack (void *inbuf, int incount, MPI_Datatype dtype, void *outbuf, int

outsize, int *position, MPI_Comm comm);

Contiguous blocks of homogeneous elements are packed one at a time with MPI_Pack().
After each call, the current location in the packed message buffer is updated. The “in”
data are the elements to be packed and the “out” data is the packed message buffer. The
outsize is always the maximum size of the packed message buffer, to guard against

overflow.

e MPI_Unpack (void *inbuf, int insize, int *position, void *outbuf, int outcount,
MPI1_Datatype datatype, MPI_Comm comm);

MPI_Unpack() is the natural reverse of MPI_Pack() where the “in” data is the packed
message buffer and the “out” data are the elements to be unpacked.

Consider a networking application that is transferring a variable length message
consisting of a count, several (count) Internet addresses as four byte character arrays and

an equal number of port numbers as shorts.

#define MAXN 100
unsigned char addrs[MAXN][4];
short ports[MAXN];

In the following code fragment, a message is packed and sent based on a given count.

unsigned int membersize, maxsize;
int position;

int nhosts;

int dest, tag;

char *buffer;

/! Do this once.

MPI_Pack_size(1, MPI_INT, MPI_COMM_WORLD, &membersize);

maxsize = membersize;

MPI1_Pack_size(MAXN * 4, MPI_UNSIGNED_CHAR, MPI_COMM_WORLD,
&membersize);

maxsize += membersize;

MPI_Pack_size(MAXN, MPI_SHORT, MP{_ COMM_WORLD, &membersize);
maxsize += membersize;

buffer = malloc(maxsize);

// Do this for every new message.

nhosts = /* some number less than MAXN */ 50;

position = O;

MPI_Pack(nhosts, 1, MPI_INT, buffer, maxsize, &position,
MPI_COMM_WORLD);

MPI_Pack(addrs, nhosts * 4, MPI_UNSIGNED_CHAR, buffer, maxsize,
&position, MPI_COMM_WORLD);

MPI__Pack(ports, nhosts, MPI_SHORT, buffer, maxsize, &position,
MPi_COMM_WORLD);

MPI_Send(buffer, position, MPI_PACKED, dest, tag, MPI_COMM_WORLD);

47

A buffer is allocated once to contain the maximum size of a packed message. In the
following code fragment, a message is received and unpacked, based on a count packed

into the beginning of the message.

int src;

int msgsize;

MPI_Status status;

MPI_Recv(buffer, maxsize, MP|_PACKED, src, tag, MPI_COMM_WORLD,
&status);

position = 0;

MPI_Get_count(&status, MPI_PACKED, &msgsize);

MPI_Unpack(buffer, msgsize, &position, &nhosts, 1, MPI_INT,
MPI_COMM_WORLD);

MPI_Unpack(buffer, msgsize, &position, addrs, nhosts * 4,
MPI_UNSIGNED_CHAR, MPI_COMM_WORLD);

MPI_Unpack(buffer, msgsize, &position, ports, nhosts, MPI_SHORT,
MPI_COMM_WORLD);

48

3.6 Collective Message-Passing

MPI_Bcast Send one message to all group members.
MPI_Gather Receive and concatenate from all members.
MPI_Scatter Separate and distribute data to all members.
MPI_Reduce Combine messages from all members.
MPI_Barrier Wait until all group members reach this point.
MPI_Gatherv Vary counts and buffer displacements.
MPI_Scatterv Vary counts and buffer displacements.
MPI_Allgather Gather and then broadcast.
MPI_Aligatherv Variably gather and then broadcast.
MPI1_Alltoall Gather and then scatter.

MPI_Alitoallv Variably gather and then scatter.
MPI_Op_create Create reduction operation.
MPI_Allreduce Reduce and then broadcast.

MPI_Reduce_scatter

Reduce and then scatter.

MPI_Scan

Perform a prefix reduction.

Table 7: Collective message passing related MPI routines

Collective operations consist of many pointtopoint messages, which happen more or
less concurrently (depending on the operation and the internal algorithm) and involve all
processes in a given communicator. Every process must call the same MPI collective

routine. Most of the collective operations are variations and/or combinations of four

primitives: broadcast, gather, scatter and reduce.

49

Broadcast

Broadcast

e

el »

Figure 3: Broadcast message passing communication

e MPI_Bcast (void *buf, int count, MPI_Datatype dtype, int root, MPI_Comm

commy);
In the broadcast operation, all processes specify the same root process, whose buffer

contents will be sent. Processes other than the root, specify receive buffers. After the

operation, all buffers contain the message from the root process.

Scatter

Scatter

-

Olo|jw]| >

Figure 4: Scatter message passing communication

e MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype sendtype, void
*recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

MPI_Scatter() is also a onetoinany collective operation. All processes specify the same

receive count. The send arguments are only significant to the root process, whose buffer

50

actually contains sendcount * N elements of the given datatype, where N is the number of
processes in the given communicator. The send buffer will be divided equally and
dispersed to all processes (including itself). After the operation, the root has sent
sendcount elements to each process in ascending rank order. Rank O receives the first
sendcount elements from the send buffer. Rank 1 receives the second send-count

elements from the send buffer, and so on.

Gather

Gather

|

olo|w]| »

Figure 5: Gather message passing communication

e MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype sendtype, void
“recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm);

MPI_Gather() is a manytoone collective operation and is a complete reverse of the

description of MPI_Scatter().

Reduce

Reduce

L
-

o|loj=w | »

E=A+B+C+D

Figure 6: Reduce message passing communication

51

e MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype dtype,
MPI_Op op, int root, MPI_Comm commy);

MPI_Reduce() is also a manytoone collective operation. All processes specify the
same count and reduction operation. After the reduction, all processes have sent count

elements from their send buffer to the root process.

Elements from corresponding send buffer locations are combined pair wise to yield a
single corresponding element in the root process's receive buffer. The full reduction
expression over all processes is always associative and may or may not be commutative.
Application specific reduction operations can be defined at runtime. MPI provides several

predefined operations, all of which are commutative. They can be used only with sensible

MPI predefined datatypes.
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

Table 8: Reduce operators

The following code fragment illustrates the primitive collective operations together in the
context of a statically partitioned regular data domain (e.g., 1D array). The global

domain information is initially obtained by the root process (e.g., rank 0) and is broadcast

52

to all other processes. The initial dataset is also obtained by the root and is scattered to all
processes. After the computation phase, a global maximum is returned to the root process

followed by the new dataset itself.

// parallel programming with a single control process
int root;

int rank, size;

inti;

int full_domain_length;

int sub_domain_length;

double *full_domain, *sub_domain;

double local_max, global_max;

root = 0;
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/I Root obtains full domain and broadcasts its length.
if (rank == root) {
get_full_domain(&full_domain, &full_domain_length);

}
MPI_Bcast(&full_domain_length, 1 MPI_INT, root, MPI_COMM_WORLD);

// Distribute the initial dataset.
sub_domain_length = full_domain_length / size;
sub_domain = (double *) malloc(sub_domain_length * sizeof(double));

MPI_Scatter(full_domain, sub_domain_length, MPI_DOUBLE, sub_domain,
sub_domain_length, MPI_DOUBLE, root, MPI_COMM_WORLD);

// Compute the new dataset.
compute(sub_domain, sub_domain_length, &local_max);

/ Reduce the local maxima to one global maximum at the root.
MPI_Reduce(&local_max, &global_max, 1, MPI_DOUBLE, MPI_MAX, root,
MPI_COMM_WORLD);

/! Collect the new dataset.
MPI_Gather(sub_domain, sub_domain_length, MPI_DOUBLE, full_domain,
sub_domain_length, MPI_DOUBLE, root, MPI_COMM_WORLD);

53

3.7 Creating Communicators

MPI_Comm_dup

Duplicate communicator with new context.

MPI_Comm_split

Split into categorized subgroups.

MPI_Comm_free

Release a communicator.

MPI_Comm_remote_size

Count intercomm. remote group members.

MPI_Intercomm_merge

Create an intracomm. from an intercomm.

MPI_Comm_compare

Compare two communicators.

MPI_Comm_create

Create a communicator with a given group.

MPI_Comm_test_inter

Test for intracommunicator or intercommunicator.

MPI_Intercomm_create

Create an intercommunicator.

MPI_Group_size

Get number of processes in group.

MPI_Group_rank

Get rank of calling process.

MPI1_Group_translate_ranks

Processes in group A have what ranks in B?

MPI_Group_compare

Compare membership of two groups.

MPI_Comm_group

Get group from communicator.

MPI_Group_union

Create group with all members of 2 others.

MPI_Group_intersection

Create with common members of 2 others.

MPI_Group_difference

Create with the complement of intersection.

MPI_Group_incl

Create with specific members of old group.

MPI_Group_excl

Create with the complement of incl.

MPI_Group_range_incl

Create with ranges of old group members.

MPI_Group_range_excl

Create with the complement of range_incl.

MPI_Group_free

Release a group object.

Table 9: Communication and group create related MPI routines

A communicator could be described simply as a process group. Its creation is
synchronized and its membership is static. There is no period in user code where a
communicator is created but not all its members have joined. These qualities make

communicators a solid parallel programming foundation. Three communicators are

54

prefabricated before the user code is first called: MPI_COMM_WORLD,
MPI_COMM_SELF and MPI_COMM_PARENT.

Communicators carry a hidden synchronization variable called the context. If two
processes agree on source rank, destination rank and message tag, but use different
communicators, they will not synchronize. The extra synchronization means that the
global software industry does not have to divide, allocate or reserve tag values. When
writing a library or a module of an application, it is a good idea to create new
communicators, and hence a private synchronization spaces. The simplest MPI routine
for this purpose is MPI_Comm_dup(), which duplicates everything in a communicator,

particularly the group membership, and allocates a new context.

e MPI_Comm_dup (MPl_comm comm, MPI_comm *newcomm);

Applications may wish to split into many subgroups, sometimes for data parallel
convenience (i.e. a row of a matrix), sometimes for functional grouping (i.e. multiple
distinct programs in dataflow architecture). The group membership can be extracted from
the communicator and manipulated by an entire suite of MPI routines. The new group
can then be used to create a new communicator. MPI also provides a powerful routine,
MPI1_Comm_split() starts with a communicator and results in one or more new
communicators. It combines group splitting with communicator creation and is sufficient

for many common application requirements.

e MPI_Comm_split (MPIl_comm comm, int color, int key, MPI_Comm

*newcommy;

The color and key arguments guide the group splitting. There will be one new
communicator for each value of color. Processes providing the same value for color will
be grouped in the same communicator. Their ranks in the new communicator are
determined by sorting the key arguments. The lowest value of key will become rank 0.
Ties are broken by rank in the old communicator. To preserve relative order from the old

communicator, simply use the same key everywhere.

55

Figure 7: Communicator Split

A communicator is released by MPI_Comm_free(). Underlying system resources may

be conserved by means of releasing unwanted communicators.

e MPI_Comm_free (MPI_Comm *comm);

Intercommunicators

An intercommunicator contains two groups: a local group in which the owning process is
a member and a remote group of separate processes. The remote process group has the
mirror image intercommunicator - the groups are flipped. Sp awning new processes
creates an intercommunicator. MPI_Intercomm_merge() creates an intracommunicator
(the common form with a single group) from an intercommunicator. This is often done to

permit collective operations, which can only be done on intracommunicators.

e MPI_Intercomm_merge (MPI_Comm intercomm, int high, MPI_Comm

*newintracomm);

The new intracommunicator group contains the union of the two groups of the
intercommunicator. The operation is collective over both groups. Rank ordering within
the two founding groups is maintained. Ordering between the two founding groups is
controlled by the high parameter, a Boolean value. The intercommunicator group that sets
this parameter true will occupy the higher ranks in the intracommunicator.

The number of members in the remote group of an intercommunicator is obtained

by MPI_Comm_remote_size().

56

e MPI_Comm_remote_size (MPI_Comm comm, int *size);

3.8 Process Topologies

MPI_Cart_create

Create cartesian topology communicator.

MPI_Dims_create

Suggest balanced dimension ranges.

MPI_Cart_rank Get rank from cartesian coordinates.
MPI_Cart_coords Get cartesian coordinates from rank.
MPI_Cart_shift Determine ranks for cartesian shift.
MPI_Cart_sub Split into lower dimensional subgrids.

MPI_Graph_create

Create arbitrary topology communicator.

MPI_Topo_test

Get type of communicator topology.

MPI_Graphdims_get

Get number of edges and nodes.

MPI_Graph_get

Get edges and nodes.

MPI_Cartdim_get

Get number of dimensions.

MPI_Cart_get

Get dimensions, periodicity and local coordinates.

MPI_Graph_neighbors_cou

Get number of neighbors in a graph topology.

nt
MPI_Graph_neighbors Get neighbor ranks in a graph topology.
MPI_Cart_map Suggest new ranks in an optimal cartesian mapping.

MPI_Graph_map

Suggest new ranks in an optimal graph mapping.

Table 10: Process topology related MPI routines

MPI is a process oriented programming model that is independent of underlying nodes in
a parallel computer. Nevertheless, to enhance performance, the data movement patterns
in a parallel application should match, as closely as possible, the communication
topology of the hardware. Since it is difficult for compilers and message passing systems

to guess at an application's data movement, MPI allows the application to supply a

57

topology to a communicator, in the hope that the MPI implementation will use that
information to identify processes in an optimal manner.

For example, if the application is dominated by Cartesian communication and the
parallel computer has a cartesian topology, it is preferable to align the distribution of data
with the machine, and not blindly place any data coordinate at any node coordinate.

MPI provides two types of topologies, the ubiquitous cartesian grid, and an
arbitrary graph. Topology information is attached to a communicator by creating a new

communicator. MPI_Cart_create() does this for the cartesian topology.

e MPI_Cart_create (MPI_Comm oldcomm, int ndims, int *dims, int *periods, int

rearder, MPI_Comm *newcomm);

The essential information for a cartesian topology is the number of dimensions, the length
of each dimension and a periodicity flag (does the dimension wrap around?) for each
dimension. The reorder argument is a flag that indicates if the application will allow a
different ranking in the new topology communicator. Reordering may make coordinate
calculation easier for the MPI implementation.

With a topology enhanced communicator, the application will use coordinates to
decide source and destination ranks. Since MPI communication routines still use ranks,
the coordinates must be translated into a rank and vice versa. MPI eases this translation

with MP!_Cart_rank() and MPI_Cart_coords().

e MPI_Cart_rank (MPI_comm comm, int *coords, int *rank);

e MPI_Cart_coords (MPI_Comm comm, int rank, int maxdims, int *coords);

To further assist process identification in cartesian topology applications,
MPI_Cart_shift() returns the ranks corresponding to common neighbourly shift
communication. The direction (dimension) and relative distance are input arguments and
two ranks are output arguments, one on each side of the calling process along the given

direction. Depending on the periodicity of the cartesian topology associated with the

58

given communicator, one or both ranks may be returned as MPI_PROC_NULL,
indicating a shift off the edge of the grid.

e MPI_Cart_shift (MPI_Comm comm, int direction, int distance, int

*rank_source, *int rank_dest);

Consider a two-dimensional cartesian dataset. The following code skeleton establishes a
corresponding process topology for any number of processes, and then creates a new
communicator for collective operations on the first column of processes. Finally, it
obtains the ranks that hold the previous and next rows, which would lead to data

exchange.

int mycoords[2];

int dims[2];

int periods[2] = {1, O};

int rank_prev, rank_next;
int size;

MPI_Comm comm_cart;
MPI_Comm comm_col1;

/I Create communicator with 2D grid topology.
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Dims_create(size, 2, dims);

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1, &omm__cart);

//Get local coordinates.
MPI_Comm_rank(comm_cart, &rank);
MPI_Cart_coords(comm_cart, rank, 2, mycoords);

// Build new communicator on first column.

if (mycoords[1] == 0) {

MPI_Comm_split(comm_cart, 0, mycoords[0], &comm_coil);
}else {

MPI_Comm_split(comm_cart, MPI_UNDEFINED, 0, &comm_col1);

}

/I Get the ranks of the next and previous rows, same column.
MPI_Cart_shift(comm_cart, 0, 1, &rank_prev, &rank_next);

59

MPI_Dims_create() suggests the most balanced (“square") dimension ranges for a
given number of nodes and dimensions.
A good reason for building a communicator over a subset of the grid, in this case

the first column in a mesh, is to enable the use of collective operations.

13 14 15 16

Figure 8: Cartesian Topology

0,0 0,1 0,2] 03

1,0 Il 1,2 1,3

2,0 2,1 22 23

3.0 3,1 32| 33

Figure 9: Cartesian Coordinator

60

3.9 Process Creation

MPI_Spawn Start copies of one program.
MPI_Spawn_multiple Start multiple programs.

MPI_Port_open Obtain a connection point for a server.
MPI_Port_close Release a connection point.

MPI_Accept Accept a connection from a client.
MPI_Connect Make a connection to a server.
MPI_Name_pubiish Publish a connection point under a service name.
MPI_Name_unpublish Stop publishing a connection point.
MPI_Name_get Get connection point from service name.
MPI_Info_create Create a new info object.

MPI_iInfo_set Store a key/value pair to an info object.
MPI_Info_get Read the value associated with a stored key.
MPI_Info_get_valuelen Get the length of a key value.
MPI_Info_get_nkeys Get number of keys stored with an info object.
MPI_Info_get_nthkey Get the key name in a sequence position.
MPI_Info_dup Duplicate an info object.

MPI_Info_free Destroy an info object.

MPI_Info_delete Remove a key/value pair from an info object.

Table 11: Process creation related MPI routines

Due to the static nature of process groups in MPI (a virtue), process creation must be
done carefully. Process creation is a collective operation over a given communicator. A
group of processes are created by one call to MPI_Spawn(). The child processes start up,
initialize and communicate in the traditional MPI way. They must begin by calling
MPL_Init(). The child group has its own MPI_COMM_WORLD, which is distinct from
the world communicator of the parent group.

e MPI_Spawn (char program[], char *argv(], int maxprocs, MPI_Info info, int

root, MPI_Comm, parents, MPI_Comm *children, int errs[]);

61

How do the parents communicate with their children? The natural mechamism for
communication between two groups is the intercommunicator. An intercommunicator,
whose remote group contains the children, is returned to the parents in the second
communicator argument of MPI_Spawn(). The children get the mirror communicator,
whose remote group contains the parents, as the predefined communicator
MPI_COMM_PARENT. In the application's original process world that has no parent,
the remote group of MPI_COMM_PARENT is of size 0.

The maxprocs parameter is the number of copies of the single program that will
be created. Each process will be passed command line arguments consistinig of the
program name followed by the arguments specified in the argv parameter. (The argv
parameter should not contain the program name.) The program name, maxprocs and argv
are only significant in the parent process whose rank is given by the root parameter. The
result of each individual process spawn is returned through the errs parameter, an array of

MPI error codes.

Portable Resource Specification

New processes require resources, beginning with a processor. The specification of
resources is a natural area where the MPI abstraction succumbs to the underlying
operating system and its entire domestic customs and conventions. It is thus difficult if
not impossible for an MPI application to make a detailed resource specification and
remain portable. The info parameter to MPI_Spawn is an opportunity for the pro grammer
to choose control over portability. MPI implementations are not required to intexpret this
argument. Thus the only portable value for the info parameter is MPI_INFO_NULL.

Consult each MPI implementation's documentation for (nonportable) features
within the info parameter and for the default behavior with MPI_INFO_NULL.

A common and fairly abstract resource requirement is simply to fill the available
processors with processes. MPI makes an attempt, with no guarantees of accuracy, to
supply that information through a predefined attribute called MPI_UNIVERSE_SIZE,
which is cached on MPI_COMM_WORLD. In typical usage, the application would
subtract the value associated with MP!_UNIVERSE_SIZE from the current number of

62

processes, often the size of MPI_COMM_WORLD. The difference is the recommended

value for the maxprocs parameter of MPI_Spawn().

3.10 Miscellaneous MPI Features

MPI_Errhandler_create

Create custom error handler.

MPI_Errhandler_set

Set error handler for communicator.

MPI_Error_string

Get description of error code.

MPI_Error_class

Get class of error code.

MPI_Abort Abnormally terminate application.
MPI_Atir_get Get cached attribute value.
MPl_Wtime Get wall clock time.

MPI_Errhandler_get

Get error handler from communicator.

MPI_Errhandler_free

Release custom error handler.

MPI|_Get_processor_name

Get the caller's processor name.

MPI_Wtick

Get wall clock timer resolution.

MP1_Get_version

Get the MPI version numbers.

MPI_Keyval_create

Create a new attribute key.

MPI_Keyval_free

Release an attribute key.

MPI_Attr_put

Cache an attribute in a communicator.

MPI_Attr_delete

Remove cached attribute.

Table 12: Miscellaneous MPI routines
Error Handling
An error handler is a software routine, which is called when an error occurs during some
MPI operation. One handler is associated with each communicator and is inherited by

created communicators, which derive from it. When an error occurs in an MPI routine

that uses a communicator, that communicator's error handler is called. An application's

63

initial communicator, MPI_COMM_WORLD, gets a default built-in handler,
MPI_ERRORS_ARE_FATAL, which aborts all tasks in the communicator.

An application may supply an error handler by first creating an MPI error handler object

from a user routine.
e MPI_Errhandler_create (void (*function)(), MPI_Errhandler *errhandler);

The first parameter is the handler's communicator and the second is the error code
describing the problem.

void function (MPI_Comm *comm, int *code, ...);

The error handler object is then associated with a communicator by

MPI_Errhandler_set().
e MPI_Errhandler_set (MPI_Comm comm, MPI_Errhandler errhandler);

A second built-in error handler is MPI_ERRORS_RETURN, which does nothing and
allows the error code to be returned by the offending MPI routine where it can be tested

and acted upon. In C the error code is the return value of the MPI function.

e MPI_Error_string (int code, char *errstring, int *resultlen);

Error codes are converted into descriptive strings by MPI_Error_string(). The user
provides space for the string that is a minimum of MPI_MAX_ERROR_STRING
characters in length. The actual length of the returned string is returned through the

resultlen argument.
MPI defines a list of standard error codes (also called error classes) that can be examined

and acted upon by portable applications. All additional error codes, specific to the

implementation, can be mapped to one of the standard error codes. The idea is that

64

additional error codes are variations on one of the standard codes, or members of the
same error class. Two standard error codes catch any additional error code that does not
fit this intent: MPI_ERR_OTHER (doesn't fit but convert to string and learn something)
and MPI_ERR_UNKNOWN (no clue). Again, the goal of this design is portable,

intelligent applications.

The mapping of error code to standard error code (class) is done by MPI_Error_class().

e MPI_Error_class (int code, int class);

Attribute Caching

MPI provides a mechanism for storing arbitrary information with a communicator. A
registered key is associated with each piece of information and is used, like a database

record, for storage and retrieval. Several keys and associated values are predefined by
MPI and stored in MPI_COMM_WORLD.

MPI_TAG_UB maximum message tag value
MPI_HOST process rank on user's local processor
MPI_IO process rank that can fully accomplish /O
MPI_WTIME_IS_GLOBAL Are clocks synchronized?
MPI_UNIVERSE_SIZE #processes to fill machine

Table 13: Attribute caching related MPI routines

All cached information is retrieved by calling MPI_Attr_get() and specifying the desired
key.

e MPI_Attr_get (MPI_Comm comm, int keyval, void *attr_val, int *flag);

The flag parameter is set to true by MPI_Attr_get() if a value has been stored the
specified key, as will be the case for all the predefined keys.

65

Timing

Performance measurement is assisted by MPI_Wtime(), which returns an elapsed wall

clock time from some fixed point in the past.

e double MPI_Wtime (void);

3.11Summery

In this chapter, we gave a detailed introduction of Message Passing Interface standard
that include point-to-point communication, collective communication, message datatype,
comminicator, process toponology and others. In next chaper we are going to get into
details about how to implement MPI libraries in the CPPE environment. This part will

give you the idea that how MPI library routines is embeded in CPCC and CPSS.

66

Chapter 4

4. Design and Implementation

CPPE-MPI is a software simulation environment for parallel computation. It features the
Message Passing Interface (MPI) programming standard, supported by extensive visual
system configuration and debugging tools.

This chapter is organized into four major sections. We begin with point-to-point
Communication that provides the most basic communication between two processes. The
second section is Collective Communications that provide collective communication
among a group of processes in the same context. Derived datatypes provide the library
routines to let user define his/her datatype, this make noncontigous data communication a
lot easier. The last section covers Groups and Communicators that provide service to
create and manipulate communication context of processes. Also, Process Topologies
that provide a set of utility functions to assist in the mapping of process group (a linearly
ordered set) to richer topological structures such as multi-dimensional grids, is introduced

at last.

4.1 Point to Point Communication

As point-to-point communication is the start point of all others, we will take a little time
to get into details to see how a message is transferred around network in CPPE simulation
environment.

In CPSS, network communication is emulated in the way of that messages were
transferred between channels. When a message is sent out, it is sent out to a channel
where waiting for its destination processor to retrieve it from the channel eventually.

The channel value structure in C is as below that include buffer address, message

arrival time, message size, message tag and message destination.

67

struct ChannelValue

{
basicValue value; // value for basic types; address for buffer otherwise
float time; /l message arrival time
int size; // message size
int processID; /I message destination process
int tag; /I user tag for message, can be thread ID
int next; /! link the channel value node together
ot

Another important thing is that CPSS have to take care of the synchronic problem
between the message sent into channel and the processor to retrieve it. When retrieve
process try to read a message that is not currently inside channel, this process is going to
be hanged into a channel message waiting queue to wait its message to come. Later when
the message arrived into the channel (the delay may caused by network delay or the
sender sent it out too late), the message is going to wake up this waiting process to have
itself retrieved.

The structure of communication network channel in C language

Struct Channel {

Int head, /! head of list of values for this channel var
dataCount; // number of values available in channel
ProcDesPtr waitProcQueue; // list of waiting processes for read

Float earliestReadTime; /I earliest time the channel can be read again
Int channElemSize; /1 value size

Int link; /I index to next available channel

In our MPI implementation design, we use two basic routine to transfer message from
process to process; one is mpiSend() and the other is mpiRecv(). Our MPI
communication library routines will use those two basic functions to achieve their
communication goal for both point-to-point communication and collective

communication that we will discuss in next section.

68

In mpiSend(), major functionality includes packing message into a channel
message package in order to insert it into destination channel’s message queue. After the
packed message has been in its destination channel, the process sending this message
have to wake up the process that is sleeping inside channel message waiting queue

waiting for this message by setting its wake up time and its state to “Delayed™.

mpiSend()
{

/l pack message into a channel message package
CHANN_VAL_Time(msgAdr) = (float) INFINITY;
CHANN_VAL_TAG(msgAdr) = tag;
CHANN_VAL_SIZE(msgAdr) = dataSize;
CHANN_VAL_PROCESSID{msgAdr) = curProcess->phyProcessor;
CHANN_VAL INT(msgAdr) = getBlock(dataSize);
Memcpy(STACK_ADR(CHANN_VAL_INT(msgAdr)), STACK_ADR(dataAdr),
dataSize~*sizeof(basicValue));

// -insert message into channel queue
CHANN_VAL_NEXT(node1) = msgAdr;

/! Wake up the process if exist, which is waiting inside the channel waiting queue to retrieve it
while (t I= NULL)

if ((t>messageTag == CHANN_VAL_TAG(msgAdr) Il t->messageTag == ANY)
&& t->messageSize == CHANN_VAL_SIZE(msgAdr)
&& (t->processiD == CHANN_VAL_PROCESSID(msgAdr) |l
CHANN_VAL_PROCESSID(msgAdr) == curProcess->phyProcessor))

t->state = Delayed;
t->wakeTime = CHANN_VAL_Time(msgAdr);
break;
}
t
}
}

= t>qNext;

First, mpiSend() pack the message by

CHANN_VAL_Time(msgAdr) = (float) INFINITY;
CHANN_VAL_TAG(msgAdr) = tag;

CHANN_VAL_SIZE(msgAdr) = dataSize;
CHANN_VAL_PROCESSID(msgAdr) = curProcess->phyProcessor;
CHANN_VAL_INT(msgAdr) = getBlock(dataSize);

Than, send this packed message into the channel queue that connected to destination

process by

69

CHANN_VAL_NEXT(node1) = msgAdr;

At last, if the destination process is inside the channel waiting queue to wait to retrieve
this message, wake up this process to retrieve it by

t->state = Delayed:;

t>wakeTime = CHANN_VAL_Time(msgAdr);
mpiRecv() is the reverse operation of mpiSend(), first all messages in the channel queue
will be scanned for matching message. If a matching message is found, it is going to be
copied to local buffer, and at the same time it is going to be removed from the message
queue for that channel. If no matching message is found, the process is going to insert
itself into the message wait queue for this channel, waiting the arrival of the matching

message to wake it up. Below is mpiRecv() main loop in C.

MpiRecv()

// .search all messages inside channel queue for matching message
node = channPtr—>head;
while (node >0 &&
((CHANN_VAL_TAG(node) !=tag && tag != ANY)
Il
CHANN_VAL_SIZE(node) != size
H
CHANN_VAL_PROCESSID(node) != source))
{
prevNode = node;
node = CHANN_VAL _NEXT(node);

}

/I if no message found or too earier to retreive, insert process into waiting queue
if (node == 0 Il CHANN_VAL_Time(node) > curProcess->time) //no matching data OR arrival
time > current time

{
//'i'r-lsert itself into waiting queue to wait for the message to arrive
ProcDesPtr temp = channPtr->waitProcQueue;
while (temp->gNext != NULL)
temp = temp->qNext;
temp->gNext = curProcess;

/I if a matched message find inside the channel
else

70

{

// copy message to local buffer and release channel message buffer
memcpy(STACK_ADR(dataAdr), STACK_ADR(CHANN_VAL INT(node)),
size"sizeof(basicValue));
retBlock(CHANN_VAL_INT(node), size);
/f remove message form channel
CHANN_VAL_NEXT (prevNode) = CHANN_VAL_NEXT(node);

,
)

We can see, first, mpiSend() searches all messages inside channel queue for matched

message by checking condition below.

node >0 && ((CHANN_VAL_TAG(node) !=tag && tag != ANY)
[l CHANN_VAL_SIZE(node) != size | CHANN_VAL_PROCESSID(node) =

source

If a message is found at the right time, it will be retrieved by.

memcpy(STACK_ADR(dataAdr), STACK_ADR(CHANN_VAL_INT(node)),
size*sizeof(basicValue));

Otherwise, this process will be inserted into the process wait queue of this channel to wait

the right message to arrive to wake it up as.

temp->qNext = curProcess

We implement all the MPI library routines as CPSS built-in function. When a MPI
routine is called from application program, CEM (Code Execution Module) will invoke
the corresponding routine to manipulate the parameters on the stack top.

The mostly used MPI point-to-point communication routines are MPI send

(MPI_Send) and MPI receive (MPI_Recv). We want take a little time to talk about it.

e int MPI_Send (void* buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

The first three parameters of the send call specify the data to be sent: the outgoing data is
to be taken from buf; it consists of count entries; each of type MPI_Datatype, The fourth

parameter, specifies the message destination. The fifth parameter specifies the message

71

tag. Finally, the last parameter is a communicator that specifies a communication domain
for this communication. Among other things, a communicator serves to define a set of
processes that can be contacted. Each such process is labeled by a process rank. Process

ranks are integers and are discovered by inquiry to a communicator.

e int MPI Recv (void* buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI Status *status)

The receiving process specified that the incoming data was to be placed in buf and that it
had a size of count entries of type MPI_Datatype. The variable status, set by MPI
Recv(), gives information on the source and tag of the message and how many elements

were actually received.

The above two are the interface of MPI send and receive call. Either MPI_Send() or

MPI_Recv() is called, CEM will execute the following code showing in next.

case MPI_SEND:
{

int comm = STACK_INT((*T)-);
inttag = STACK_INT(("T)—);
int dest = STACK_INT(("T)-);
int datatype = STACK_INT(("T)—);
int count = STACK_INT((*T)-);
int buf = STACK_INT("T);

mpiSend(buf, count, datatype, dest, tag, comm);

}

break;

case MPI_RECV:

{
int status = STACK_INT((*T)-);
int comm = STACK_INT((*T)-);
inttag = STACK_INT((*T)-);
int source = STACK_INT(("T)-);
int datatype = STACK_INT(("T)--);
int count = STACK_INT((*T)-);
int buf = STACK_INT(*T);

if (mpiRecv(buf, count, datatype, source, tag, comm, status) ==0)

curProcess—>T += 6; // Restore the 3 parameters on the stack

72

curProcess->PC-; // next time this channel read will be re-executed

}

break;

The MPI_SEND case is simple, just call mpiSend() to send out the message. But with
MP!_RECV, we have to recover the stack and PC counter in order to repeat this
operation next time, if mpiRecv() failed to retrieve a matching message from
communication channel due to the delay of network or the delay of the process which
send out the message. Recovery of Stack and Processor Counter is down in C as follows.

curProcess—=T += 6; // Restore the 3 parameters on the stack
curProcess->PC—; // next time this channel read will be re-executed

Starting from point-to-point communicaton, we are going to discuss the more advance

communication mode, collective communication in next secion.

4.2 Collective Communication

Collective communications transmit data among all processes in a group specified by an
intracommunicator object. One function, the barrier, serves to synchronize processes
without passing data. MPI provides the following collective communication functions.

Global communication functions include Broadcast, Gather, Scatter, and Reduce.
Broadcast will transfer message from one member to all members of a group in the same
communication context. Gather will collect data from all group members to one member.
Scatter will send different data from one member to all other members in the group. A
variation on Gather where all members of the group receive the result, that is allgather.
Scatter/Gather will transfer data from all members to all members of the group that is
called all-to-all. Global reduction will do calculation (such as sum, max, and min.) with
the data from all processes. This includes Reductions where the result is returned to all
group members and a variation where the result is returned to only one member.

Some of these functions, such as broadcast or gather, have a single origin or a

single receive process. Such a process is called the root. Global communication functions

73

basically come in three patterns: Root sends data to all processes (itself included):
broadcast and scatter. Root receives data from all processes (itself included): gather. Each
process communicates with each process (itself included): allgather and all-to-all.

The syntax and semantics of the MPI collective functions were designed to be
consistent with point-to-point communications. However, to keep the number of
functions and their argument lists to a reasonable level of complexity, the MPI committee
made collective functions more restrictive than the point-to-point functions in several
ways. One restriction is that, in contrast to point-to-point communication, the amount of
data sent must exactly match the amount of data specied by the receiver.

A major simplification is that collective functions come in blocking versions only.
Though a standing joke at committee meetings concerned the “non-blocking barrier,"
such functions can be quite useful and may be included in a future version of MPL
Collective functions do not use a tag argument. Thus, within each intragroup
communication domain, collective calls are matched strictly according to the order of
execution.

A final simplification of collective functions concems modes. Collective
functions come in only one mode, and this mode may be regarded as analogous to the
standard mode of point-to-point. Specifically, the semantics are as follows. A collective
function (on a given process) can return as soon as its participation in the overall
communication is complete. As usual, the completion indicates that the caller is now free
to access and modify locations in the communication buffer(s). It does not indicate that
other processes have completed, or even started, the operation. Thus, a collective
communication may, or may not have the effect of synchronizing all calling processes.
The barrier, of course, is an exception to this statement. This choice of semantics was
made so as to achieve a variety of implementations. The consequence of the desire of
MPI to: allow efficient implementations on a variety of architectures; and, be clear about

exactly what is, and what is not, guaranteed by the standard.

Broadcast

e int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

74

MPI BCAST broadcasts a message from the process with rank root to all processes of the
group. The argument root must have identical values on all processes, and comm must
represent the same intragroup communication domain. On return, the content of root’s
communication buffer has been copied to all processes. General, derived datatypes are
allowed for datatype. The type signature of count and datatype on any process must be
equal to the type signature of count and datatype at the root. This implies that the amount
of data sent must be equal to the amount received, pairwise between each process and the
root. MPI BCAST and all other data-movement collective routines make this restriction.

Distinct type maps between sender and receiver is still allowed.

Below is the C code to implement MPI_Bcast routines in C.

case MPI_BCAST:
{
int comm = stack_int((*T)—);
int root = stack_int(("T)-);
int datatype = stack_int(("T)-);
int count = stack_int(("T)—);
int buf = stack_int(("T));

/1 if | am root, sent out message to all the process in this communicatior but itself
if (curProcess->phyProcessor == TT{comm)].processor{root])

for (inti =0; i< TT[comm].size; i++)

if (il=root)
{
mpiSend(buf, count, datatype, i, MPI_BCAST, comm);
}
}
}
/f if | am not the source process, trying receive message from source process
else
// if no matched message in channel yet, recover PC count an stack.
if (ImpiRecv(buf, count, datatype, root, MPI_BCAST, comm, 1))
curProcess—=>T +=4;
curProcess->PC-;
}
}

75

break;

All process in the communicator context, either send out message or receive it from
sender depend on whether it is the root process.
The root process will send out message to all other processes inside the

communicator domain by

mpiSend(buf, count, datatype, i, MPI_BCAST, comm);

Others will retrieve the message sent by root from their channel by

mpiRecv(buf, count, datatype, root, MPI_BCAST, comm, 1)

No matter what the reason is, if a process fails to sucessfully retrieve a message from the
channel, it need to try againt next time slot. So we have to recover the computation stack
and process count to perform the same action. This is down in C by follows.

curProcess—>T += 4;
curProcess>PC—;

Gather

e int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Each process (root process included) sends the contents of its send buffer to the root
process. The root process receives the messages and stores them in rank order. The
outcome is as if each of the n processes in the group (including the root process) had
executed a call to MPI_Send(sendbuf, sendcount, sendtype, root, ...), and the root
had executed n calls to MPI Recv(recvbuf+i*recvcount*recvtype, recvcount, recvtype, i
yeee)-

An alternative description is that the n messages sent by the processes in the

group are concatenated in rank order, and the resulting message is received by the root as

76

if by a call to MPI_RECV(recvbuf, recvcount*n, recvtype, ...). The receive buffer is
ignored by all non-root processes.

General, derived datatypes are allowed for both sendtype and recvtype. The type
signature of sendcount and sendtype on process i must be equal to the type signature of
recvcount and recvtype at the root. This implies that the amount of data sent must be
equal to the amount of data received, pairwise between each process and the root.
Distinct type maps between sender and receiver is still allowed.

All arguments to the function are significant on process root, while on other
processes, only argument sendbuf, sendcount, sendtype, root, and comm are significant.
The argument root must have identical values on all processes and comm must represent

the same intragroup communication domain.

Below is the C code to implement MPI_Gather routines in C.

case MPI_GATHER:
{

int comm = stack_int(("T)—);
int root = stack_int((*T)--);

int recvtype = stack_int((*T)—);
int recvent = stack_int((*T)-—);
int recvbuf = stack_int(("T)—);
int sendtype = stack_int(("T)—);
int sendent = stack_int(("T)-);
int sendbuf = stack_int((*T));

if (curProcess->phyProcessor == T T[comm].processor[root])
if (zero ==root) [l @@ copy root buffer locally

{
memcpy(STACK_ADR(recvbuf+zero recvent recvtype),
STACK_ADR(sendbuf), sendcnt*sendtype~sizeof(basicValue));
ZEero++;

else if (mpiRecv({recvbuf+zero recvent recvtype), recvent, recvtype, zero,
MPI_GATHER, comm, 1)) // @@ receive from others
{

zero++; [/ @@ if receive succeed

}

if (zero 1= TT[comm].size) /l @@ recover to redo

{

curProcess->T +=7;
curProcess->PC—;

77

else
{ o .
mpiBarrier(comm); Il @@ received all buffers
zero =0;
. I3
I
else
{
mpiSend(sendbuf, sendcnt, sendtype, root, MPI_GATHER, comm);
mpiBarrier(commy);
}
}
break;

All process in the communicator context, either send out message or receive it from
sender depend on whether it is the root process.
The root process will retrieve messages from all other processes inside the

communicator domain at its channel by

mpiRecv((recvbuf+zero recvent recvtype), recvent, recvitype, zero, MPI_GATHER, comm, 1)

Others will send out the message to root by

mpiSend(sendbuf, sendcnt, sendtype, root, MPI_GATHER, comm);

No matter what is the reason, if a process fail to sucessfully retrieve a message from the
channel, it need to try againt next time slot. So we have to recover the computation stack
and process count to perform the same action. This is down in C by follows.

curProcess—=>T +=7;
curProcess->PC—;

Scatter

e int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

78

The outcome is as if the root executed n send operations, MPI_Send(sendbuf+i*
sendcount*sendtype, sendcount, sendtype, i,...), i = 0 to n — 1, and each process
executed a receive, MPI_Recv(recvbuf, recvcount, recvtype, root,...).

An alternative description is that the root sends a message with
MPI_Send(sendbuf, sendcountn, sendtype, ...). This message is split into n equal
segments; the ith segment is sent to theith process in the group, and each process receives
this message as above.

The type signature associated with sendcount and sendtype at the root must be
equal to the type signature associated with recvcount and recvtype at all processes. This
implies that the amount of data sent must be equal to the amount of data received,
pairwise between each process and the root. Distinct type maps between sender and
receiver is still allowed.

All arguments to the function are significant on process root, while on other
processes, only arguments recvbuf, recvcount, recvtype, root, comm are significant. The
argument root must have identical values on all processes and comm must represent the
same intragroup communication domain. All non-root processes ignore the send buffer.
The specification of counts and types should not cause any location on the root to be read

more than once.

Below is the C code to implement MPI_Scatter routines in C.

case MPI_SCATTER:
{

int comm = stack_int((*T)-);
int root = stack_int(("T)-);
int recvtype = stack_int((*T)-);
int recvent = stack_int(("T)—);
int recvbuf = stack_int(("T)-);
int sendtype = stack_int(("T)-);
int sendent = stack_int(("T)—);
int sendbuf = stack_int(("T));

/1 If current process is root, send out message
if (curProcess->phyProcessor == TT[comm)].processor{root])

for (inti= 1-1;i < TT[comm].size + 1-1; i++)

{

if (i==root)

79

memcpy(STACK_ADR(recvbuf),
STACK_ADR(sendbuf+(i-1+1)*sendcnt*sendtype),
Sendcnt*sendtype*sizeof(basicValue));

}
else
{
mpiSend(sendbuf+(i-1+1)"sendcnt”sendtype, sendcent,
sendtype, i, MPI_S-CATTER, comm);
}
I3
}
/1 If current processor is not root, receive messages from root processor
else
//If message is not in channel yet, recover PC counter and stack for next time.
If ('mpiRecv(recvbuf, recvent, recvtype, root, MPI_SCATTER, comm, 1))
curProcess>T +=7;
curProcess>PC—;
}
b
}
break;

All process in the communicator context, either send out message or receive it from

sender depend on whether it is the root process.

The root process will send out message to all other processes inside the

communicator domain by

mpiSend(sendbuf+(i-1+1)"sendcnt*sendtype, sendent, sendtype, i, MPI_SCATTER, comm);

Others will retrieve the message sent by root from their channel by

mpiRecv(recvbuf, recvent, recvtype, root, MPI_SCATTER, comm, 1)

No matter what the reason is, if a process fails to sucessfully retrieve a message from the
channel, it need to try againt next time slot. So we have to recover the computation stack
and process count to perform the same action. This is- down in C by follows.

curProcess->T +=7;
curProcess—=PC-—;

80

Reduce

e int MPI_Reduce(void* sendbuf, void* recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root, MPI_Comm comm)

Global Reduction functions perform a global reduce operation (such as sum, max, logical
AND, etc.) across all the members of a group. The reduction operation can be either one
of a predefined list of operations, or a user-defined operation.

The global reduction functions come in several flavors: a reduce that returns the
result of the reduction at one node, an all-reduce that returns this result at all nodes, and a
scan (parallel prefix) operation. In addition, a reduce-scatter operation combines the
functionality of a reduce and a scatter operation. In order to improve performance, the
functions can be passed an array of values; one call will perform a sequence of element-

wise reductions on the arrays of values.

MPI_Reduce() combines the elements provided in the input buffer of each
process in the group, using the operation op, and returns the combined value in the output
buffer of the process with rank root. The input buffer is defined by the following
arguments: sendbuf, count and datatype; the output buffer is defined by the arguments of
recvbuf, count and datatype; both have the same number of elements, with the same type.
The arguments: count, op and root must have identical values at all processes, the
datatype arguments should match, and comm should represent the same intragroup
communication domain. Thus, all processes provide input buffers and output buffers of
the same length, with elements of the same type. Each process can provide one element,
or a sequence of elements, in which case the combine operation is executed element-wise
on each entry of the sequence. For example, if the operation is MPI MAX and the send
buffer contains two elements which are floating point numbers (count = 2 and datatype =
MPI FLOAT), then recvbuf(0) = global max(sendbuf(0)) and recvbuf(l) = global
max(sendbuf(1)).

Below is the C code to implement MPI_Reduce routines in C.

81

Case MPI_REDUCE:

{
int tempbuf;

int comm = stack_int(("T)-);
int root = stack_int(("T)—);

int op = stack_int(("T)-);

int datatype = stack_int(("*T)—);
int count = stack_int(("T)-);

int recvbuf = stack_int((*T)—);
int sendbuf = stack_int((*T));

if (zero == 0)
tempbuf = getBlock(count*datatype);

}

if (curProcess—>phyProcessor == T T[comm].processor{root])
i{f (zero ==root) /I @@ copy root buffer locally

memcpy(STACK_ADR(tempbuf), STACK_ADR(sendbuf),
count~datatype*sizeof(basicValue));

mpiReduce(recvbuf, tempbuf, count, datatype, op);

Zero++;

}
else if (mpiRecv(tempbuf, count, datatype, zero, MPI_REDUCE, comm, 1))

{
mpiReduce(recvbuf, tempbuf, count, datatype,op);
zero++; I/ @@ if receive succeed
}
if (zero != TT[comm].size) /[l @@ recover to redo
{
curProcess—>T += 6;
curProcess—>PC—;
}
else
{ o :
mpiBarrier(comm); /I @@ received all buffers
retBlock(tempbuf,count*datatype);
zero =0;
}
I3
else
{
mpiSend(sendbuf, count, datatype, root, MPI_REDUCE, comm);
mpiBarrier(comm};
}
}
break;

82

All process in the communicator context, either send out message or receive it from
sender depend on whether it is the root process.
The root process will retrieve messages from all other processes inside the

communicator domain at its channel by

mpiRecv(tempbuf, count, datatype, zero, MPI_REDUCE, comm, 1);

Whenever root received a message, it will do reduce operation also by

mpiReduce(recvbuf, tempbuf, count, datatype,op);

Others will send out the message to root by
mpiSend(sendbuf, count, datatype, root, MPI_REDUCE, comm);

No matter what the reason is, if a process fails to sucessfully retrieve a message from the
channel, it need to try againt at its next time slot. So we have to recover the computation
stack and process count to perform the same action. This is down in C by follows.

curProcess>T +=6;
curProcess—>PC—;

4.3 Derived Datatype

MPI provides mechanisms to specify more general, mixed, and noncontiguous
communication. A general datatype in MPI is an opaque object that specifies two things:
Sequence of basic datatypes and sequence of integer (byte) displacements.

The MPI communication mechanisms allow one to send or receive a sequence of
identical elements that are contiguous in memory. It is often desirable to send data that is
not homogeneous, such as a structure, or that is not contiguous in memory, such as an
array section. This allows one to amortize the fixed overhead of sending and receiving a
message over the transmittal of many elements, even in these more general

circumstances. MPI provides two mechanisms to achieve this.

83

The user can define derived datatypes that specify miore general data layouts.
User-defined datatypes can be used in MPI communication functions, in place of the
basic, predefined datatypes.

A sending process can explicitly pack noncontiguous data into a contiguous
buffer, and next send it; a receiving process can explicitly unpack data received in a
contiguous buffer and store in noncontiguous locations.

The construction and use of derived datatypes is allowed. The use of Pack and
Unpack functions is also implemented. It is often possible to achieve the same data
transfer using either mechanism. All MPI communication functions take a datatype
argument. In the simplest case this will be a primitive type, such as an integer or floating-
point number. An important and powerful generalization results by allowing user-defined
(or “*derived”) types wherever the primitive types can occur. These are not types as far as
the programming language is concerned. They are only types in that MPI is made aware
of them through the use of type-constructor functions, and they describe the layout, in
memory, of sets of primitive types. Through user-defined types, MPI supports the
communication of complex data structures, such as array sections and structures
containing combinations of primitive datatypes.

As we have discussed in previous, derived datatypes are built by combining basic
datatypes, or previously built derived datatypes. A derived datatype describes a memory
layout, which consists of multiple arrays of elements.

There are three kinds of derived datatype related to MPI routines. One is the kind
of routines that will create a new datatype from the old datatypes, or in another words,
derive a new datatype from old ones. (MPI_Type_struct() is one of this kind routine.)
The second one is the kind of routines that query datatype information by being given a
datatype name. (MPI_Type_size() is one of them.) The last one is the kind of MPI
routines. They are point-to-point or collective communication routines, but they take
datatype all the time as parameter and use its information to manipulate communication
message. (MPI_Send() is one of them.)

Because the functionality related to the derived datatype routines almost has no

overlap with the CPCC and CPSS, we decide to design and implement the datatype as a

84

C++ class object. The main attribute of this class is an array typeTable[] that is used to

store all the information of newly derived datatype.

Newly derived datatype structure in C is as below:

Structure datatype
{
int NEWTYPE,
int COUNT,
int LENGTH,
int DISPLACEMENT,
int OLDTYPE
)2

TypeClass provides the following methods for MPI routines to call when they create new

datatype or query the information of the old datatype. Those methods are:

int count(int type)

int length(int type)

int displacement(int type)

int oldtype(int type)

int newtype(int caller, int count, int length, int displacement, int oldtype)

count() will return the count of datatype type, length() will return the length of datatype
type, displacement() will return the displacement of datatype type, and oldtype() will
return which old type this new datatype derived from.

NewType (caller, ...) is the one that will create new data type for MPI data type
creating routines including MPI_Type_contiguous(), MPI_Type_vector(),
MPI_Type_Hvector(), MPI_Indexed(), MPI_Hindexed(), and MPI_Type_struct().
By specifying caller with different value as TYPE_CONTIGUOUS, TYPE_VECTOR,
TYPE_HVECTOR, TYPE_INDEXED, TYPE_HINDEXED or TYPE_STRUCT, and

different other parameters it will works for different MPI routines.

85

4.4 Communicator and Topology

In some applications, it is desirable to divide up the processes to allow different groups of
processes to perform independent work. For example, we might want an application to
utilize 2/3 of its processes to predict the weather based on data already processed, while
the other 1/3 of the processes initially process new data. This would allow the application
to regularly complete a weather forecast. However, if no new data is available for
processing, we might want the same application to use all of its processes to make a
weather forecast.

Being able to do this efficiently and easily requires the application to be able to
logically divide the processes into independent subsets. It is important that these subsets
are logically the same as the initial set of processes. For example, the module to predict
the weather might use process O as the master process to dole out work. If subsets of
processes are not numbered in a consistent manner with the initial set of processes, then
there may be no process O in one of the two subsets. This would cause the weather
prediction model to fail.

Applications also need to have collective operations working on a subset of
processes. If collective operations only work on the initial set of processes, it is
impossible to create independent subsets that perform collective operations. Even if the
application does not need independent subsets, having collective operations working on
subsets is desirable. Since the time to complete most collective operations increases with
the number of processes, limiting a collective operation to only the processes that need to
be involved yields much better scaling behavior. For example, if a matrix computation
needs to broadcast information along the diagonal of a matrix, only the processes
containing diagonal elements should be involved.

Regarding to MPI topology mechanism, a topology is an extra, optional attribute
that one can give toan intra-communicator; topologies cannot be added to inter-
communicators. A topology can provide a convenient naming mechanism for the
processes of a group (within a communicator), and additionally, may assist the runtime

system in mapping the processes onto hardware.

86

A process group in MPI is a collection of n processes. Each process in the group
is assigned a rank between O and n-1. In many parallel applications a linear ranking of
processes does not adequately reflect the logical communication pattern of the processes
(which is usually determined by the underlying problem geometry and the numerical
algorithm used). Often the processes are arranged in topological patterns such as two- or
three-dimensional grids.

More generally, the logical process arrangement is described by a graph. A clear
distinction must be made between the virtual process topology and the topology of the
underlying physical hardware. The virtual topology can be exploited by the system in the
assignment of processes to physical processors if this helps to improve the
communication performance on a given machine. How this mapping is done, however, is
outside the scope of MPL The description of the virtual topology, on the other hand,
depends only on the application, and is machine independent.

We create an array T 1 [] as storage for newly created communicator and topology.
This table is accessed through a class called commClass. This class provides two kinds of
methods for MPI routine to call. One is related to create a new communicator or
topology, the other is query information for already «<reated communicators and
topologies.

int CommClass::newComm(commEnum caller, int pl, int p2, int p3, int p4, int
pS) is the method to create new communicator or topologies. It will serve different MPI

routine’s call by given different parameters. The caller could be one of following:

GROUP_UNION,
GROUP_INTERSECTION,
GROUP_DIFFERENCE,
GROUP_INCL,
GROUP_EXCL,
GROUP_RANGE_INCL,
GROUP_RANGE_EXCL,
COMM_DUP,
COMM_GREATE,
COMM_SPLIT,
INTERCOMM_CREATE,
INTERCOMM_MERGE,
CART_CREATE,
GRAPH_CREATE,
CART_SUB

87

When following MPI routines call newCommy().

MPI_Group_union(),
MPI_Group_intersection(),
MPI_Group_difference(),
MPI_Group_inci(),
MPI_Group_excl(),
MPI_Group_range_incl(),
MPI_Group_range_excl(),
MPI_Comm_dup(},
MPI_Comm_create(),
MPI_Comm_split(),
MPI1_Intercomm_create(),
MPI_Intercomm_merge(),
MPI_Cart_create(),
MPI_Graph_create(),
MPI_Cart_sub()

The following methods provide service for MPI routines that its functions rely on
communicator or topology informatiom, but will not generate new communicator or

topology, but query or use the topology information to act.

int groupSize(int group)

int groupRank(int group)

int groupTranslateRank(int group_a, int n, int rank_a, int group_Db, int rank_b)
int commGroup(int comm)

int groupCompare(int group1, int group2, int result)

int groupFree(int group)

int commSize(int comm)

int commRank(int comm)

int commCompare(int comm1, int comm2)

int commFree(int comm)

int communicatorinter(int comm)

int commRemoteSize(int comm)

int commRemoteGroup(int comm)

int keyvalCreate(int copy_fn, int delete_fn, int extra_state)

int keyvalFree(int keyval)

int attrPut(int comm, int keyval, int attribute_val)

int attrGet(int comm, int keyval, int attribute_val, int flag)

int attrDelete(int comm, int keyval)

int dimsCreate(int nnodes, int ndims, int dims)

int topoTest()

int graphDimsGet(int comm, int nnodes, int nedges)

int graphGet(int comm, int maxindex, int maxedges, int index, int edges)
int cartDimGet(int comm)

int cartGet(int comm, int maxdims, int dims, int periods, int coords)
int cartRank(int comm, int coords)

88

int cartCoords(int comm, int rank, int maxdims, int coords)

int graphNeighborsCount(int comm, int rank, int nneighbours)

int graphNeighbors(int comm, int rank, int maxneighbors, int neighbours)
int cartShift(int comm, int direction, int disp, int rank_source, int rank_dest)
int cartMap(int comm_old, int ndims, int dims, int periods, int newrank)

int graphMap(int comm_old, int nnodes, int index, int edges, int newrank)

The following MPI routines will call above methods to achieve its MPI functionality. We
choose not to discuss here in detail as most of them are simple information store and

query functions.

MPI_Group_size()
MPI_Group_rank()
MPI_Group_translate_rank()
MPI_Comm_group()
MPI_Group_compare()
MPI_Group_free()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Comm_compare()
MPI_Comm_fee()
MPI_Communicator_inter()
MPI_Comm_remote_size()
MPI_Comm_remote_group()
MPI_Keyval_create()
MPI_Keyval_free()
MPI_Attr_put()
MPI_Atir_get()
MPIL_Attr_delete()
MPI!_Dims_create()
MPI_Topo_test()
MPI_Graphdims_get()
MPI_Graph_get()
MPI_Cartdim_get()
MPI_Cart_get()
MPI_Cart_rank()
MPI_Cart_coords()
MPI_Graph_neighborsCount()
MPI_Graph_neighbors()
MPI_Cart_shift()
MPI_Cart_map()
MPI_Graph_map()

89

4.5 Summery

In this chapter, implementation of MPI libraries is introduced including Point-to-Point
Communication, Collective Communications, Derived Datatypes, Groups,
Communicators, and Process Topologies. In next chapter, we are going to begin with
how to porting MPI application programs between CPC-MPI and other MPI
implementations. And then, we will give a introduction of how to progrmming MPI

appiication programes over CPC-MPI with examples.

90

Chapter 5

5. Example Applications of MPI programming
with CPPE-MPI

In this chapter, we first talk about porting MPI program into and out of CPPE. Then
discuss issues related to parallel programming with MPI. Finally, we present two MPI

application programs: Jacobi’s method and Bitonic sort.

5.1 Porting MPI between UNIX and CPPE

First, to port MPI Programs from UNIX to CPPE, or CPPE to UNIX in reverse, the only
thing you need to do is to replace these two lines:

e int main (int argc, char* argv[]) // for UNIX

e int MPI_main (int argc, char* argv[]) // for CPPE
Second, to run MPI program under CPPE, the only thing you need to do is to follow
CPSS User’s Manual. It is totally the same as you running a regular CPC program. In the

following two sections, two of MPI applications will be discussed.

5.2 Design and Coding of Parallel MPI Programs

There are essentially two approaches to designing parallel programming:

e The data-parallel approach. In this approach, we partition the data among the
processes, and each process executes more or less the same set of commands on its
data.

e The control-parallel approach. In this approach, we partition the tasks we wish to
cartry out among the processes, and each process executes commands that are

essentially different from some or all other processes.

91

It should be noted that most parallel programs involve both approaches. However, data-
parallel programming is more common and generally much easier to do. Most
importantly perhaps, data-parallel programs tend to scale well: loosely, this means that
they can be used to solve larger and larger problems with more and more processes.

How do we design a parallel program? Generally, we start by examining serial
solutions to the problem. Then we try partitioning data and control in various ways
among the processes. In the following sections, we are going to discuss two algorithms,

Jacobi and Bitonic methods in MPI programming.

5.3 Jacobi’s Method

Jacobi's method is used to solve a system of linear equations (AX = B). It is an iterative
method; that is, after making any initial guess, XO, to a solution, the method generates a
sequence of approximations Xk, k = 1,2,3, ..., Xf.

The iteration formula is:

x(k+i) = 1/a@@)(@)*(b() - (a@)O0)*x(O)+a@)(1)*x()+...+a(1)(1-1)*x(-

D+a()+1)*x(i+D+...+a(i)(n-1)*x(n-1)))

In general, this iteration may not converge. However, if the system is strictly diagonally
dominant, Jacobi's method will converge.

In order to terminate the iteration, we can compute the size of the difference
between successive estimates, and when this becomes less than some pre-defined
tolerance, the iteration terminates. Since the iteration may not converge, we should also
keep track of the number of iterations, and terminate it if there is no convergence after

some maximum number of iterations.

Here is the serial Jacobi's method

[~ Return 1 if iteration converged, 0 otherwise */
/* MATRIX_T is just a 2-dimensional array */

int Jacobi(
MATRIX_T A /"in ~/,
float x[] /* out 7/,
float D[] /min 7/,
int n [rin */,
float tol [min ~/,

92

int max_iter /7in "/} {
int ij;
int iter_num;
float x_old[MAX_DIM];

float Distance(float x[l, float y[], int n);

/™ Initialize x */
for (i =0;i<n;i++)

x[i} = b(i];

iter_num = Q;
do{
iter_num-++;

for (i=0;i<n;i++)
x_oldfi] = x[i;

for (i=0;i<n;i++){
xfi] = blil;
for (=0; j<i; j++)
x[i] = x[i] - A[]0]"x_old[j];
for (=i+1; j<n; j++)
x{i] = x[i] - A[lI{]*x_old[];
x[i} = x[/AQ[;

} while ((iter_num < max_iter) &&
(Distance(x,x_old,n) >= tol));

if (Distance(x,x_old,n) < tol)
return 1;
else
return O;
} /= Jacobi */

5.4 Jacobi’s Method with MPI

If there are p processes, and we make the assumption that n>=p, a natural approach to
parallelizing Jacobi is to have each process calculate the entries in a sub-vector of the
solution vector X.

To do so, we begin by considering how to distribute the data among the processes.
In other words, how should A, n, b, tol, max_iter, X, and X_old be distributed? In our
case, after process O reads these values, it should broadcast them to all the processes.
The heart of the algorithm is

Process q: Calculate the entries in x that are assigned to q.

93

In order to do this we need to calculate process q :

for each subscript i assigned to q
{

x[i] = b[i];

for (j=0; j<i; j++)

x[i] = x[i] - A{i][i1"x_old[i];

for (j=i+1; j<n; j++)

x[i] = x[i] - Afij[]*x_old[];

x[i] = x[iVALI[];

}

In order to carry out the basic calculations, each process needs a complete copy of x_old,
as well as its own entries in x and b. This calculation also suggests a partition of A (each
process is assigned the rows of A corresponding to its entries in x and b.).

The remaining issue is which entries of x should be assigned to each process. If
there are p processes, in order to balance the computational load, we would like to assign
approximately p/n entries to each process.

The only parts of the algorithm that we haven't yet looked at are Copy entries of
x_local from each process to x_old and the calculation of Distance. Since the distance
between two vectors x and y is just sqrt(X.Y). There is no advantage of using one
partition scheme over the other in calculation of Distance.

In order to carry out the calculation, copy entries of x_local from each process to
x_old.

We want to execute something like the following:

Copy x_local to temp;
for (root=0; root<p; root++)

MPI_Bcast(temp, n_bar, MPI_FLOAT, root, MPI_COMM_WORLD);
Copy temp into appropriate locations in x_oid;

If we have used block partition of x, this has the same overall effect as a single call to the

MPI collective communication function, MPI|_Allgather;

MPI_Allgather (b_local, n_bar, MPI_FLOAT, x_temp1, n_bar,
MPI_FLOAT, MPI_COMM_WORLD);

94

That is, each process' array x_local is sent to every other process, and the received arrays
are copied in process rank order into x_old. Now we are ready to write a parallel Jacobi

routine.

#define Swap(x,y) {float” temp; temp =x; x = y; y = temp;}
/* Return 1 if iteration converged, O otherwise */
/~ MATRIX_T is a 2-dimensional array "/
int Parallel_jacobi(
MATRIX_T A_local /~in */,
float x_locall] /" out */,
float b_locall]l /min */,

int n ["in */,
float tol "in */,
int max_iter /"in ~/,
int p /~in */,
int my_rank /"in */){
int i_local, i_global, j;
int n_bar;

int iter_num;

float x_temp1[MAX_DIM];
float x_temp2[MAX_DIM];
float” x_old;

float” x_new;

float Distance(float x[], float yf], int n);
n_bar =n/p;

[~ Initialize x */

MPI_Allgather(b_local, n_bar, MPI_FLOAT, x_temp1,
n_bar, MPI_FLOAT, MPI_COMM_WORLD);

X_new = x_temp1;

x_old = x_temp2;

iter_num = 0;
do{
iter_num-++;

/" Interchange x_old and x_new */
Swap(x_old, x_new);
for (i_local = 0; i_local < n_bar; i_local++){
i_global = i_local + my_rank™n_bar;
x_local[i_local] = b_local[i_local];
for (j = O; j <i_global; j++)
x_local[i_local] = x_local[i_local] -
A_localfi_local][jl"x_old[j];
for (j = i_global+1; < n; j++)
x_local[i_local} = x_localfi_local} -
A_local[i_locall[j]*x_old{j];
x_local[i_local] = x_localli_local)/
A_local[i_local][i_global);

95

}

MPI_Allgather(x_local, n_bar, MPI_FLOAT, x_new,
n_bar, MP!_FLOAT, MPI_COMM_WORLD);
} while ((iter_num < max_iter) &&
(Distance(x_new,x_old,n) >= tol));

if (Distance(x_new,x_old,n) < tol)
return 1;
else
return O;
} /7 Jacobi */

float Distance(float x[], float y{l, int n) {
int i;
float sum = 0.0;

for (i =0; i<n;i++) {
sum = sum + (x[i] - y[i)~(x{i] - y(iI);
}
return sqgrt(sum);
} I~ Distance */

Note that we use storage for an extra temporary vector - x_new. We do this so that each
pass through the main loop involves only one communication - the call to

MPI_Aligather.

5.5 Bitonic Sort Method

The bitonic-sorting algorithm is based on the idea of sorting network. Recollect that a
monotonic sequence is on that either increase or decreases, but not both. The word
"bitonic" was coined to describe sequences that increase and then decrease.

First, it is obvious that any sequence containing two elements is bitonic - in fact,
any sequence containing two elements is monotic. We also know that the iterated bitonic
split converts a bitonic sequence into a sorted sequence. SO we can CONVverts any sequernce

to a sorted sequence by bitonic split.

If we assume that n is a power of two, it's easy to code a serial bitonic sort.

/* Successive subsequences wili switch between
* increasing and decreasing bitonic splits.

96

*/

#define INCR 0

#define DECR 1

#define Reverse(ordering) ((ordering) == INCR ? DECR : INCR)
#define Swap(a,b) {KEY_T temp; temp = a; a = b; b = temp;}

int MPI_main() {
int list_length;
int n;
int start_index;
int ordering;
KEY_T A[MAX];

printf("Enter the list size (a power of 2)\n");
scanf("%d", &n);

Generate_list(n, A);
Print_list(*"The unsorted list is", n, A);

for (list_length = 2; list_length <=n;
list_length = list_length*2)
for (start_index = 0, ordering = INCR;
start_index <n;
start_index = start_index + list_length,
ordering = Reverse(ordering))
if (ordering == INCR)
Bitonic_sort_incr(list_length,
A + start_index);
else
Bitonic_sort_decr(list_length,
A + start_index);

Print_list(*The sorted list is", n, A);
} /" main */

void Bitonic_sort_incr(
int length /~in 7/,
KEY_T B[] /~infout™/){
int i;
int half_way;

[~ This is the bitonic split */
half_way = length/2;
for (i = 0; i < half_way; i++)
if (Bfij > B[half_way +i])
Swap(B[i],B[half_way+i]);

if (length > 2) {
Bitonic_sort_incr(length/2, B);
Bitonic_sort_incr(length/2, B + half_way);

} /I* Bitonic_sort_incr */

97

The nested for loops in the main program arrange first that successive two element
subsequences are monotone (increasing or decreasing), then successive four element
subsequences are monotone, etc. For a 16-element sequence, the effect of the algorithm
can be visualized as illustrated in Figure 10. An up arrow indicates an increasing

subsequence, a down arrow a decreasing subsequence.

subscripts 0O 1|2 3[4 56 7{8 9|101t1| 12 13|14 15

e AN N NN

list_length=4 / \ / \
list_length=8 / \

list_length=12

Figure 10: Orientation of Subsequences during stages of bitonic sort

5.6 Bitonic Sort Method with MPI

For the serial bitonic sort, we will assume that the number of key n is a power of two.
We'll also assume that the number of process p is a power of two. At each stage of the
algorithm, each process will have a sub-list of the global list containing n/p keys.

Let's first consider the case p= 4. We can begin by using a local sorting algorithm
to convert the local keys on each process into an increasing or decreasing sequence. The
order will be determined by the parity of the process rank: even numbered processes will
be sorted into increasing order, odd-numbered processed will be sorted into decreasing

order. Then, each pair of processes, (0,1) and (2,3) jointly owns a bitonic sequence, and

98

the global sequence is bitonic. That is, the 4 tuple of processes, (0,1,2,3), jointly owns a
bitonic sequence.

Observe that we can now carry out a bitonic split on the entire distributed
sequence by carrying out a bitonic split on the sequence shared by processes 0 and 2 and
by carrying out a bitonic split on the sequence shared by processes 1 and 3.

To finish up and obtain a sorted sequence on the four processes, we can perform a
bitonic split on the sequence shared by process 0 and 1 and a bitonic split on the sequence
shared by processes 2 and 3.

Suppose processes A and B, where A < B, share a bitonic sequence with A's keys
increasing and B's keys decreasing. Merge splits is an alternative to obtain a monotonic
sequence. Instead of performing a bitonic split, we sort the keys on B in increasing order,
merge the keys from the two processes, and assign the smaller keys to A and the larger
keys to B. In other words, we can replace our bitonic splits with merge splits.

This is a cheaper operation since it always maintains a sorted list, if there are n/p
keys per process, we only have to sort n/p times. If we used bitonic splits, we would sort

them every time we sorted across a set of processes.

Let's make all this precise by writing down some of the code for carrying it out. The core

of the algorithm, the bitonic split, is replaced by a merge split.

#include "mpi.h"

KEY_T temp_list{MAX]; /* buffer for keys received in Merge_split */
/* Merges the contents of the two lists. */
/* Returns the smaller keys in listt "/
void Merge_list_low(
int list_size /"in 7/,
KEY_T list1] /*infout "/,
KEY_T list2] /~in *)){

int i;
int index1 =0;
int index2 = 0;

for (i = 0; i < list_size; i++)
if (list1findex1] <= list2[index2]) {
scratch_list[i] = list1[index1];
index1++;
}else {
scratch_listfi] = list2[index2];

99

index2++;

for (i = 0; i < list_size; i++)
list1[i] = scratch_list[i];

} /* Merge_list_low */

void Merge_split(
int list size /[in */,
KEY_T local_listl] /" in/out "/,
int which_keys /7 in "/,
int partner /min 7/,
MPI_Comm comm min 1) {

MPI_Status status;

/" key_mpi_t is an MPI (derived) type */
MPI_Sendrecv(local_list, list_size, key_mpi_t,
partner, O, temp_list, list_size,
key_mpi_t, partner, O, comm, &status);
if (which_keys == HIGH)
Merge_list_high(list_size, local_list,

temp_list);
else
Merge_list_low(list_size, local_list,
temp_list);

} /I* Merge_split */

Since we are effectively parallelizing the inner loop of the serial main program, the main

program will now have a single for loop:

int MPI_main(int argc, char™ argv(l) {
int list_size; /* Local list size */
int n; /* Global list size */
KEY_T local_listfMAX];
int proc_set_size;
int my_rank;
int p;
unsigned and_bit;
MPI_Comm io_comm;

MPI_Init(&argc, &argv);
MPI1_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_dup(MPI_COMM_WORLD, &io_comm);
Cache_io_rank(MPI_COMM_WORLD, io_commy);

Cscanf(io_comm,"Enter the global list size","%ad",&n);
list_size = n/p;

Generate_local_list(list_size, local_list);

100

Print_list("Before local sort", list_size, local_list, io_commy);
Local_sort(list_size, local_list);

/* and_bit is a bitmask that, when "anded" with */
/* my_rank, tells us whether we're working on an */
[* increasing or decreasing list */
for (proc_set_size =2, and_bit = 2;
proc_set_size <= p;
proc_set_size = proc_set_size™2,
and_bit = and_bit << 1)
if ((my_rank & and_bit} == 0)
Par_bitonic_sort_incr(list_size,
local_list, proc_set_size, MPI_COMM_WORLD);
else
Par_bitonic_sort_decr(list_size,
local_list, proc_set_size, MPI_COMM_WORLD);

Print_list("After sort", list_size, local_list, io_comm);

MPI_Finalize();
} /- main */

The processes that have been grouped for a bitonic sort are paired by exclusive or by the

process rank with a bitmask consisting of a single bit successively right shifted.

void Par_bitonic_sort_incr(

int list_size /min o </,

KEY_T* local_list [infout */,
int proc_set_size ~in 7/,
MPI_Comm comm min o 1) {

unsigned eor_bit;

int proc_set_dim;
int stage;

int partner;

int my_rank;

MPI_Comm_rank(comm, &my_rank);

proc_set_dim = log_base2(proc_set_size);
eor_bit = 1 << (proc_set_dim - 1);
for (stage = 0; stage < proc_set_dim; stage++) {
partner = my_rank * eor_bit;
if (my_rank < partner)
Merge_split(list_size, local_list, LOW,
partner, comm);
else
Merge_split(list_size, local_list, HIGH,
partner, commy;

101

eor_bit = eor_bit >> 1;

} /* Par_bitonic_sort_incr */

5.7 Summery

In previus several chapters, we start with introducing CPPE environment including CPC,
CPCC and CPSS, then MPI standard is presented in details. Later, we focus on
implementation of MPI libraries in CPPE environment and MPI application program
development with CPPE-MPIL. Now it’s time to make a conclusion summery for this

search work as a part of CPPE project in next chapter.

102

Chapter 6

6. Conclusion and Future Work

MPI is designed for writing message-passing programs that are portable to all existing

parallel architectures.

Current MPI implementations are mostly based on UNIX as operating system,

and are available for most parallel computers and distributed systems.

There are two major ideas behind building MPI on CPPE.
One is that CPPE-MPI is based on CPPE, thus inherits all CPPE’s advantageous

features:

Accuracy: The CPSS employs the functional simulation technique that offers the
most accurate results among the existing simulation techniques. In addition,
configurable parameters enable the user to accurately simulate a particular multi-
computer system by simply setting the values of system parameters to those
belonging to the architecture to be simulated.

Flexibility: The CPSS can simulate a wide range of multi-computer topologies and
sizes. It also supports a large set of configurable parameters that permit users to fine-
tune their applications and simulate various multi-computer systems. Moreover, the
same virtual-architecture program can be mapped to different physical architectures at
run time. The flexibility offered by the CPSS is unique among existing simulators.
Performance: The simulation is fast because the low levels of details are selectively
left out to retain essential characteristics of the target processors and network. The
entire simulation system, including the application program, is run by a single
process, which gives no rise to host context switching at all.

Repeatability: The CPSS provides repeatability, which is essential for implementing a
stable and reliable debugging environment. The CPSS also supports multiple
executions of a non-deterministic application. Multiple executions are equally useful

for testing the robustness of a deterministic application.

103

e Correctness and performance debugging tools: The CPSS provides a rich set of
correctness and performance-debugging tools to facilitate users' code development.
Performance statistics at various levels of detaiis are also available to support
algorithmic and architectural performance evaluation and tuning.

e User-friendliness and portability: The parallel programming language used in the
CPPE is based on the popular language C. Design concepts of the CPSS user
interface and debugging tools are borrowed from sequential programming
environments. Currently, the simulator can work on UNIX workstations and
Windows or MacOS PCs.

e Expandability: The design and implementation of the simulator are modular and
decoupled. Future changes and enhancements to the simulator would be quick and

easy.

The second one is that CPPE-MPI provides MPI application development environment
for a large community of users that do not have access to multiprocessor computer
or multi-computer system. CPPE-MPI fills a gap left by the currently
available MPI implementations. Its goals are to promote the acceptance of
MPI and improve the developing procedure of MPI applications. Both
goals have been achieved by CPPE-MPI implementation. Virtually, CPPE-
MPI can run on any uni-processor system with any operating system
(DOS, Windows, MacOS or UNIX, etc.).

The CPPE-MPI allows porting parallel programs from CPPE to any
other platform MPI system with minimum modification. With a wide
range of users enabled to use CPPE-MPI on their PC, the MPI
applications are sure to be well developed and promoted. CPPE-MPI, as a
development tool, helps decrease implementation cost for MPI
applications by relying on less expensive system. As a learning tool, it is
accessible to a growing audience of people who feel attracted or
challenged by the virtues of parallel computing. CPPE-MPI will play an

important role for years to come.

104

CPPE-MPI is available in a form that permits writing and executing
MPI applications under CPPE. The current vexsion of CPPE-MPI supports
most library routines. Hopefully, full implementation of MPI including
support of C++ language binding will be completed in the future.

105

Appendix A

A. MPI Programming Examples

/* greetings.c — greetings program

* Send a message from all processes with rank {= 0 to process 0.
* Process 0 prints the messages received.

* Input: none.

* Output: contents of messages received by process 0.

“f
I#define UNIX

#ifdef UNIX
#include "mpi.h”
#else

#include "mpi8.h"
#endif

#ifdef UNIX
#include <stdio.h>
#include <string.h>

#endif

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int argc;

char® argv(];
int my_rank; /” rank of process */
int p: /* number of processes /
int source; /* rank of sender i
int dest; /” rank of receiver */
int tag = 0; I" tag for messages °/
char message(100]; /* storage for message */
MP|_Status status; I* return status for */

/* receive !

[~ Start up MP1 */
MPI_Init(&argc, &argv);

/” Find out process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out number of processes */
MPI_Comm_size(MPi_COMM_WORLD, &p);

if (my_rank 1= 0) {

/* Create message */

dest = 0:

/" Use strlen+1 so that \0' gets transmitted °/

MPI_Send(&my_rank, 1, MPI_INT, dest, tag, MPI_COMM_WORLD);
Yelse{/"my rank ==0"/

106

for (source = 1; source < p; source++) {
MPI_Recv(&my_rank, 1, MPI_INT, source, tag, MPI_COMM_WORLD, &status);
printf("Greetings from process %d to %d!\n", my_rank, dest);

}

/* Shut down MP! */
MPI_Finalize();
} /7 main */

/* serial.c — serial trapezoidal rule

- Calculate definite integral using trapezoidal rule.
* The function f(x) is hardwired.

* Input:- a, b, n.

= Qutput: estimate of integral from a to b of f(x)

* using n trapezoids.

“f
/1#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi1.h"
#endif

float f();

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int argc;

char® argv(];

{
float integral; /* Store result in integral </
float a, b; /* Left and right endpoints */

int n; I* Number of trapezoids *!
float h; /" Trapezoid base width !
float x;

int i;

a=00;b=00;n=0;

printf("Enter a, b, and n\n\n\n");
I

scanf("%f %f %d", &a, &b, &n);
/
a=0.0;b=1.0;n=100;

h = (b-a)/n;

integra!l = (f(a) + f(b))/2.0;
X=a;
for (i=1;i<=n-1;i++) {
x=x+h;
integral = integral + f(x);

integral = integral*h;

printf("With n = %d trapezoids, our estimate\n”,
ny;
printf("of the integral from %f to %f = %f\n",
a, b, integral);
}/* main */

107

float f(x)
float x;
{
float return_val;
/" Calculate f(x). Store calculation in return_val. */

return_val = x"x;
return return_val;
Yyt

I* trap.c — Parallel Trapezoidal Rule, first version

* Input: None.
* Qutput: Estimate of the integral from a to b of f(x)
* using the trapezoidal rule and n trapezoids.
“ Algorithm:
1. Each process calculates "its" interval of
integration.
* 2. Each process estimates the integral of f(x)
over its interval using the trapezoidal rule.
3a. Each process = 0 sends its integral to 0.
* 3b. Process 0 sums the calculations received from
* the individual processes and prints the result.
“ Notes:
* 1. {(x), a, b, and n are all hardwired.
- 2. The number of processes (p) should evenly divide
‘ the number of trapezoids (n = 1024)

!
I#define UNIX
#ifdef UNIX

#include <stdio.h>
#include "mpi.h"

#else

#include "mpi8.nh"

#endif

/~ We'll be using MPI routines, definitions, etc. */

float f();

/* function we're integrating */

float Trap();

/* Calculate local integral */

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int arge;

char® argv(l;
int my_rank; /My process rank !
int p: [* The number of processes */
float a =0.0; /* Left endpoint *f
float b = 1.0; /* Right endpoint !
int n = 1024; /* Number of trapezoids */
float h; /* Trapezoid base length */

float local_a; /° Left endpoint my process */
float local_b; /7 Right endpoint my process */

int local_n; /* Number of trapezoids for */
/7 my calculation i

float integral; /- Integral over my interval */

float total; /® Total integral i

int source; /* Process sending integral */

108

int dest =0; /~ Allmessagesgoto0 °/
int tag =0;
MPI_Status status;

I Let the system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

/* Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

h = (b-a)/n; /" his the same for all processes */
local_n = nip; /* Sois the number of trapezoids */

/= Length of each process' interval of

* integration = local_n"h. So my interval

* starts at: */

local_a = a + my_rank“local_n~h;

local_b = local_a + local_n*h;

integral = Trap(local_a, local_b, local_n, h);

/= Add up the integrals calculated by each process /
if (my_rank == 0) {
total = integral;
for (source = 1; source < p; source++) {
MPI_Recv(&integral, 1, MP!_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
total = total + integral;

}else{
MPI_Send(&integral, 1, MPI_FLOAT, dest,
tag, MPi_COMM_WORLD);

}

[~ Print the result ~/
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n”,
n);
printf("of the integral from %f to %f = %f\n",
a, b, total);

}

/= Shut down MPI */
MPI_Finalize();
y/7 main </

float Trap(local_a, local_b, local_n, h)
float local_a; /~in "/
float local_b; /~in*/
int local_n; /"in*/

float h; /7in~/

{
float integral; /* Store result in integral */
float x;
inti;

integral = (f(local_a) + f(local_p))/2.0;
x = local_a;
for (i = 1; i <= local_n-1; i++) {
x=x+h;
integral = integral + f(x);

integral = integral“h;
return integral;
}/° Trap */

109

float f(x)
float x;
{
float return_val;
/" Calculate f(x). </
/* Store calculation in return_val. */
return_val = x"x;
return return_val;
yro £

I* reduce.c — Parallel Trapezoidal Rule. Uses 3 calls to MPI_Bcast to
* distribute input. Also uses MPI_Reduce to compute final sum.
* Input:
© a, b: limits of integration.
* n: number of trapezoids.
- Output: Estimate of the integral from a to b of f(x)
using the trapezoidal rule and n trapezoids.

* Notes:

= 1. {(x) is hardwired.

* 2. the number of processes (p) should evenly divide
- the number of trapezoids (n).

</
If#define UNIX
#ifdef UNIX

#include <stdio.h>
#include "mpi.h"

#else

#include "mpi2.h"

#endif

float f();

void Get_data2();

float Trap();

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int argc;

char® argv(l;
int my_rank; /My process rank */
int [oX /* The number of processes */
float a; /I~ Left endpoint */
float b; /* Right endpoint *f
int n; /* Number of trapezoids !

float h; /* Trapezoid base length */
float local_a; /* Left endpoint my process */
float local_b; /* Right endpoint my process */

int local_n; /° Number of trapezoids for */
/* my calculation */

float integral; /~ Integral over my interval */

float total; /° Total integral */

int source; /* Process sending integral */

int dest=0; /- Allmessagesgoto0 */

int tag = 0;

MPI_Status status;

/" Let the system do what it needs to start up MP1 */
MPI_Init(&argc, &argv);

/* Get my process rank °/

110

MPi_Comm_rank(MPI_COMM_WORLD, &my_rank);

I* Find out how many processes are being used */
MPI_Comm_size(MP!I_COMM_WORLD, &p);

Get_data2(&a, &b, &n, my_rank);

h = (b-a)/n; /° his the same for all processes */
local_n = n/p; /* Sois the number of trapezoids */

/* Length of each process' interval of

* integration = local_n*h. So my interval

* starts at: */

local_a = a + my_rank*local_n"h;

local_b = local_a + local_n*h;

integral = Trap(local_a, local_b, local_n, h);

I Add up the integrals calculated by each process */
MPIi_Reduce(&integral, &total, 1, MPI_FLOAT,
MPI_SUM, 0, MPI_COMM_WORLD);

/* Print the resuit */
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n”,
n);
printf("of the integral from %f to %f = %f\n",
a, b, total);
}

/* Shut down MP1 */
MPI_Finalize();
}/* main */

/
/* Function Get_data2

* Reads in the user input a, b, and n.

* Input parameters:

* 1. int my_rank: rank of current process.
* 2. int p: number of processes.

° Output parameters:

* 1. float® a_ptr: pointer to left endpoint a.

v 2. float” b_ptr: pointer to right endpoint b.

* 3. int" n_ptr: pointer to number of trapezoids.
- Algorithm:

“ 1. Process 0 prompts user for input and

- reads in the values.

© 2. Process 0 sends input values to other

- processes using three calls to MPI_Bcast.
!

void Get_data2(a_ptr, b_ptr, n_ptr, my_rank)
float” a_ptr; /" out*/
float” b_ptr; /" out "/
int™ n_ptr; /“out®/
int my_rank; /*in */

{
if (my_rank == 0) {
printf("Enter a, b, and n\n\n");
'.a_ptr =0; *b_ptr=0; ‘n_ptr=0;
/./ scanf("%f %f %d", a_ptr, b_ptr, n_ptr);

*a_ptr = 0.0; *b_ptr = 1.0; “n_ptr = 1024;

}

MPI_Bcast(a_ptr, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(b_ptr, 1, MPI_FLOAT, 0, MP|_COMM_WORLD);
MPI_Bcast(n_ptr, 1, MPI_INT, 0, MPL_COMM_WORLD);

111

} I Get_data2 =/

/

float Trap(local_a, local_b, local_n, h)
float local_a; /"in "~/

float local_b; /7in*/

int local_n; /"in~/

float h; /Imin*/

{

float integral: /* Store result in integral */
float x;
int i;

integral = (f(local_a) + f(local_b))/2.0;
x = local_a;
for (i = 1; i <= locai_n-1; i++) {

X =x+h;

integral = integral + f(x);

integral = integral™h;
return integral;
}y/~ Trap “/

! /
float f(x)
float x;
{
float return_val;
/~ Calculate f(x). “/
/* Store calculation in return_val. */
return_val = x*x;
return return_val;
Yyt

/- get_data.c — Parallef Trapezoidal Rule, uses basic Get_data function for
© input.
* Input:
* a, b: limits of integration.
* n: number of trapezoids.
* Qutput: Estimate of the integral from a to b of {(x}
* using the trapezoidal rule and n trapezoids.
* Notes:
* 1. {(x) is hardwired.
* 2. Assumes number of processes (p) evenly divides
. number of trapezoids (n).

*/
/1#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi8.h"
#endif

float f();

/" function we're integrating */

void Get_data();

float Trap(); [/ Calculate local integral */

112

#ifdef UNIX
void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int argc;

char® argv(];

{
int my_rank; /° My process rank i
int p; /* The number of processes */
float a; I* Left endpoint */
float b; /* Right endpoint °/
int n; /* Number of trapezoids */

float h; [* Trapezoid base length */
float local_a; /" Left endpoint my process */
float local_b; /* Right endpoint my process */

int local_n; /* Number of trapezoids for */
/* my calculation =/

float integral; /* Integral over my interval */

float total; /* Total integral */

int source; /* Process sending integral */

int dest = 0; /* All messages go to 0 !

int tag=0;

MPI_Status status;

/* Let the system do what it needs to start up MPI */
MPL_Init(&argc, &argv);

/* Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p):

Get_data(&a, &b, &n, my_rank, p);

h = (b-a)/n; /* his the same for all processes */
local_n = n/p; /~ So is the number of trapezoids */

/- Length of each process' interval of
- integration = local_n‘h. So my interval
* starts at: °/
local_a = a + my_rank*local_n*h;
local_b = local_a + local_n"h;
integral = Trap(local_a, local_b, locai_n, h);

/* Add up the integrals calculated by each process */
if (my_rank == 0) {

total = integral;

for (source = 1; source < p; source++) {

MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,

MPI_COMM_WORLD, &status);
total = total + integral;

}else {
MP!_Send(&integral, 1, MPI_FLOAT, dest,
tag, MPI_COMM_WORLD);

/* Print the result */
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n"®,
n);
printf("of the integral from %f to %f = %f\n",
a, b, total);
}

/7 Shut down MPI */
MPI_Finalize();
Y/ main */

113

/
/* Function Get_data
* Reads in the user input a, b, and n.
* Input parameters:
1. int my_rank: rank of current process.
© 2. int p: number of processes.
* Output parameters:
1. float” a_ptr: pointer to left endpoint a.
2. float” b_ptr: pointer to right endpoint b.
3. int" n_ptr: pointer to number of trapezoids.
Algorithm:
1. Process 0 prompts user for input and
reads in the values.
2. Process 0 sends input values to other
processes.

L S B A I)

¥
~

void Get_data(a_ptr, b_ptr, n_ptr, my_rank, p)
float™ a_ptr; /" out~/

float™ b_ptr; /* out */

int® n_ptr; /" out*/

int my_rank; /"in */

int p; IMin 7/

{
int source = 0; /* All local variables used by */
int dest; /* MPI_Send and MP!_Recv !
int tag;

MPI_Status status;
if (my_rank == 0){
*a_ptr = 0.0; "b_ptr = 0.0; *n_ptr = 0;

printf("Enter a, b, and n\n\n");
r
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
!
*a_ptr = 0.0; “b_ptr = 1.0; "n_ptr = 1024;

for (dest = 1; dest < p; dest++){

tag = 0;

MP!_Send(a_ptr, 1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);

tag=1;

MPI_Send(b_ptr, 1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);

tag = 2;

MPI_Send(n_ptr, 1, MPI_INT, dest, tag,
MPI_COMM_WORLD);

}else{
tag = 0;
MPI_Recv(a_ptr, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
tag=1;
MPI_Recv(b_ptr, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
tag = 2;
MPI_Recv(n_ptr, 1, MPI_INT, source, tag,
MPI_COMM_WORLD, &status);

}
}/” Get_data </

/ e eve

float Trap(local_a, local_b, local_n, h)
float local a; /*in~/

114

float local_b; /*in */
int local_n; /min*/
float h; [*in*/

{

float integral; /° Store result in integral */
float x;
int i;

integral = (f(local_a) + f(local_b))/2.0;
x = local_a;
for (i = 1; i <=local_n-1; i++) {
X=X+h;
integral = integrai + f(x);

integral = integral*h;
return integral;
Yo Trap °/

/ /
float f(x)
float x;

{
float return_val;
/* Calculate f(x). */
/* Store calculation in return_val. */
return_val = x°x;
return return_val;
yrf

/* get_datal.c — Paralle! Trapezoidal Rule; uses a harnd-coded
* tree-structured broadcast.

“ Input:

* a, b: limits of integration.

n: number of trapezoids.

* Output: Estimate of the integral from a to b of f(x)

* using the trapezoidal rule and n trapezoids.

“ Notes:

* 1. i(x) is hardwired.

* 2. the number of processes (p) should evenly divide
- the number of trapezoias (n).

“/
I1#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi8.h"
#endif

float {();

int Ceiling_log2();
int I_receive();

int I_send();

void Send();

void Receive();

void Get_datai();
float Trap();

#ifdef UNIX
void main (argc, argv)
#else

115

int MPI_main (argc, argv)

#endif

int argc;

char® argvf];

{
int my_rank; /° My process rank i
int p; I~ The number of processes */
float a; /* Left endpoint i
float b; /* Right endpoint !
int n; /” Number of trapezoids */
float h; /* Trapezoid base length */

float local_a; /- Left endpoint my process */
float local_b; /° Right endpoint my process */

int local_n; /7 Number of trapezoids for */
/= my calculation !

float integral; /° Integral over my interval */

float total; /° Total integral */

int source; /° Process sending integral */

int dest =0; /* AllmessagesgotoQ °/

int tag=0;

MPI_Status status;

/* Let the system do what it needs to start up MP1 */
MPI_Init(&argc, &argv);

I~ Get my process rank °/
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

Get_datat(&a, &b, &n, my_rank, p);

h = (b-a)/n; /" his the same for all processes */
local_n = n/p; /* So is the number of trapezoids */

/* Length of each process' interval of

* integration = local_n*h. So my interval

- starts at: */

local_a = a + my_rank-local_n‘h;

local_b = local_a + local_n"h;

integral = Trap(local_a, local_b, local_n, h);

/* Add up the integrals calculated by each process °/
if (my_rank == 0) {
total = integral;
for (source = 1; source < p; source++) {
MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
total = total + integral;

}else {
MPI_Send(&integral, 1, MPI_FLOAT, dest,
tag, MPI_COMM_WORLD);

}

/* Print the result */
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n",
n)
printf("of the integral from %f to %f = %f\n",
a, b, total);

}

/* Shut down MP1 */
MPI_Finalize():
}/° main */

116

/* Ceiling of log_2(x) is just the number of times
* times x-1 can be divided by 2 until the quotient
“ is 0. Dividing by 2 is the same as right shift.

*f

int Ceiling_log2(x)
int x; /7in*/

I* Use unsigned so that right shift will fill
* leftmost bit with 0

“/

unsigned temp = (unsigned) x - 1;

int result = 0;

while (temp != 0) {
temp = temp >> 1;
result =result + 1 ;

return result;
} /I~ Ceiling_log2 */

enweaws rew /

/
int I_receive(stage, my_rank, source_ptr)
int stage; Irin */

int my_rank; /"in */

int” source_ptr; /~ out */

{

int power_2_stage;

/" 27stage = 1 << stage */

power_2_stage = 1 << stage;

if ((power_2_stage <= my_rank) &&

(my_rank < 2*power_2_stage)){

"source_ptr = my_rank - power_2_stage;
return 1;

} else return O;

} I” I_receive °/

int [_send(stage, my_rank, p, dest_ptr)
int stage; /min */
int my_rank; /7in °/

int p; 7in */
int” dest_ptr; /* out */
{

int power_2_stage;

/* 2Astage = 1 << stage */
power_2_stage = 1 << stage;
if (my_rank < power_2_stage}{
*dest_ptr = my_rank + power_2_stage;
if ("dest_ptr >= p) retum 0;

else return 1;
} else returmn 0;
Y/~ l_send "/
/ /

void Send(a, b, n, dest)
float a; /"in*/

float b; /in*/

int n; /fin~°/

int dest; /"in*/

MPI_Send(&a, 1, MPI_FLOAT, dest, 0, MPi_COMM_WORLD);

MPI_Send(&b, 1, MPI_FLOAT, dest, 1, MPi_COMM_WORLD);

MPI_Send(&n, 1, MPI_INT, dest, 2, MPI_COMM_WORLD);
}/" Send */

117

/
void Receive(a_ptr, b_ptr, n_ptr, source)
float® a_ptr; /™ out */
float” b_ptr; /~ out */
int n_ptr; /* out*/
int source; /" in */

MPI_Status status;

MPI_Recv(a_ptr, 1, MPI_FLOAT, source, 0,
MPI_COMM_WORLD, &status);
MPI_Recv(b_ptr, 1, MPI_FLOAT, source, 1,
MPI_COMM_WORLD, &status);
MPI_Recv(n_ptr, 1, MPI_INT, source, 2,
MPi_COMM_WORLD, &status);
} /* Receive */

!

/- Function Get_datat

“ Reads in the user input &, b, and n.

* Input parameters:

° 1. int my_rank: rank of current process.

* 2. int p: number of processes.

= Qutput parameters:

“ 1. float” a_ptr: pointer to left endpoint a.

© 2. float” b_ptr: pointer to right endpoint b.

- 3. int" n_ptr: pointer to number of trapezoids.

* Algorithm:

“ 1. Process 0 prompts user for input and
reads in the values.

* 2. Process 0 sends input values to other

- processes using hand-coded tree-structured
- broadcast.
*f

void Get_data1(a_ptr, b_ptr, n_ptr, my_rank, p)
float® a_ptr; /* ocut*/

float” b_ptr; /" out*/

int® n_ptr; /“out*/

int my_rank; /"in “/

int p; min

{

int source;
int dest;
int stage;

if (my_rank == 0}

*a_ptr = 0.0; "b_ptr = 0.0; "n_ptr = 0;
printf("Enter a, b, and n\n\n");
-
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
*/
*a_ptr = 0.0; "b_ptr = 1.0; "n_ptr = 1024;

for (stage = 0; stage < Ceiling_log2(p); stage++)
if (I_receive(stage, my_rank, &source))
Receive(a_ptr, b_ptr, n_ptr, source);
else if (I_send(stage, my_rank, p, &dest))
Send("a_ptr, “b_ptr, “n_ptr, dest);
} /7 Get_data1/

/

float Trap(local_a, local_b, local_n, h)
float local_a: /"in*/

float local_b; /7in */

int local_n; /*in*/

float h; /min*/

118

float integral; /- Store result in integral */
float x;
int i;

integrai = (f(local_a) + f(iocal_b)})/2.0;
x = local_a;
for (i = 1; i <= local_n-1; i++) {

x =X+ h;

integral = integral + f(x);

}
integral = integral*h;
return integral;

Y/ Trap */

f !
float f(x)
float x;
{
float return_val;
/* Calculate f(x). */
[~ Store calculation in return_val. */
return_val = x°x;
return return_val;
yrecl

I* get_data2.c — Parallel Trapezoidal Rule. Uses 3 calls to MPI_Bcast to
© distribute input data.

° Input:

* a, b: limits of integration.

* n: number of trapezoids.

* Qutput: Estimate of the integral from a to b of f(x)

* using the trapezoidal rule and n trapezoids.

Notes:

1. f(x) is hardwired.

2. the number of processes (p) should evenly divide
v the number of trapezoids (n).

LI T N)

*/
/1#define UNIX
#ifdef UNIX

#include <stdio.h>
#include "mpi.h"

#else

#include "mpi8.h"

#endif

float f();

void Get_data2();

float Trap();

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int arge;

char® argv(};
int my_rank; /° My process rank ‘!
int p; I* The number of processes */
float a; /" Left endpoint */
float b; /* Right endpoint !

119

int n; /* Number of trapezoids ~/
float h; [Trapezoid base length */
float local_a; /- Left endpoint my process */
float local_b; /° Right endpoint my process */

int local_n; /° Number of trapezoids for */
/* my calculation !

float integral; /* Integral over my interval */

float total; /* Total integral “f

int source; /° Process sending integral */

int dest=0; /" Allmessagesgoto0 °/

int tag=0;

MPI_Status status;

I* Let the system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

[~ Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

I~ Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

Get_data2(&a, &b, &n, my_rank);

h = (b-a)/n; /" his the same for all processes */
local_n =n/p; /I~ So is the number of trapezoids */

I* Length of each process' interval of

* integration = local_n*h. So my interval

* starts at: */

local_a = a + my_rank-local_nh;

local_b = local_a + local_n"h;

integral = Trap(local_a, local_b, local_n, h);

/* Add up the integrals calculated by each process */
if (my_rank ==0) {
total = integral;
for (source = 1; source < p; source++) {
MPI_Recv(&integral, 1, MPI_FLOAT, source, tag,
MP!_COMM_WORLD, &status);
total = total + integral;

}else{
MPIi_Send(&integral, 1, MPI_FLOAT, dest,
tag, MPI_COMM_WORLD);

}

/* Print the result </
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n®,
n);
printf("of the integral from %f to %f = %fin",
a, b, total);

'

/* Shut down MPI */
MPI_Finalize();

}/° main */

/

I" Ceiling of log_2(x) is just the number of times

- times x-1 can be divided by 2 until the quotient
* is 0. Dividing by 2 is the same as right shift.

int Ceiling_log2(x)
int x; /7in*/

/I~ Use unsigned so that right shift will fill
“ leftmost bit with 0

120

!
unsigned temp = (unsigned) x - 1;
int result = 0;

while (temp != 0)
temp = temp >> 1;
result =result + 1 ;

return result;
}/° Ceiling_log2 */

/

int I_receive(stage, my_rank, source_ptr)
int stage; ~in =/

int my_rank; /"in */

int” source_ptr; /* out ™/

int power_2_stage;

[+ 2Astage = 1 << stage */

power_2_stage = 1 << stage;

if ((power_2_stage <= my_rank) &&

(my_rank < 2*power_2_stage)){

*source_ptr = my_rank - power_2_stage;
return 1;

} else return 0;

} I _receive */

-
int |_send(stage, my_rank, p, dest_ptr)
int stage; /7in */

int my_rank; /"in */

int p; I"in */
int* dest_ptr; /* out */
{

int power_2_stage;

I* 2*stage = 1 << stage */
power_2_stage = 1 << stage;
if (my_rank < power_2_stage){
*dest_ptr = my_rank + power_2_stage;
if ("dest_ptr >= p) return O;

else return 1;
} else return O;
Y/~ I_send "/

/

void Send(a, b, n, dest)
float a; /*in*/

float b; /"in*/

int n; /min*/

int dest; /7in*/

{

=

MPI_Send(&a, 1, MPI_FLOAT, dest, 0, MPI_COMM_WORLD);
MPI_Send(&b, 1, MPI_FLOAT, dest, 1, MPI_COMM_WORLD);
MPI_Send(&n, 1, MPI_INT, dest, 2, MPI_COMM_WORLD);

/7 Send */

vom

/
void Receive(a_ptr, b_ptr, n_ptr, source)
float” a_ptr; /- out */
float” b_ptr; / out */
int™ n_ptr; /" out™/
int source; /"in */

{
MPI_Status status;

121

MPI_Recv(a_ptr, 1, MPI_FLOAT, source, 0,
MPI_COMM_WORLD, &status);
MPI_Recv(b_ptr, 1, MPI_FLOAT, source, 1,
MPI_COMM_WORLD, &status);
MPI_Recv(n_ptr, 1, MPI_INT, source, 2,
MPi_COMM_WORLD, &status);
} /I~ Receive */

/
/* Function Get_data2
“ Reads in the user input a, b, and n.
* Input parameters:
“ 1. int my_rank: rank of current process.
2. int p: number of processes.
Output parameters:
1. float* a_ptr: pointer to left endpoint a.
2. float” b_ptr: pointer to right endpoint b.
3. int" n_ptr: pointer to number of trapezoids.
Algorithm:
1. Process 0 prompts user for input and
reads in the values.
2. Process 0 sends input values to other
processes using three calls to MPI_Bcast.

L T N R I T S)

.
-~

void Get_data2(a_ptr, b_ptr, n_ptr, my_rank)
float” a_ptr; /" out™/

float” b_ptr; /® out*/

int® n_ptr; /" out*/

int my_rank; /7 in */

{
if (my_rank == 0) {
*a_ptr = 0.0; *b_ptr = 0.0; “n_ptr = 0;

printf("Enter a, b, and n\n\n");
I

scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
*/
*a_ptr = 0.0; *b_ptr = 1.0; ‘n_ptr = 1024;

}
MPI_Bcast(a_ptr, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(b_ptr, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_ptr, 1, MPI_INT, 0, MPI_COMM_WORLD);

}/* Get_data2 */

/ o /
float Trap(local_a, local_b, local_n, h)

float local_a; /*in */

float local_b; /*in */

int local_n; /*in~/

float h; I~in~/

{
float integral; /* Store result in integral °/
float x;
inti;

integral = (f(local_a) + f(local_b))/2.0;
x = local_a;
for (i = 1; i <= local_n-1; i++) {
Xx=Xx+h;
integral = integral + f(x);

}
integral = integralh;
return integral;

122

}y/ Trap */

/
float f(x)
float x;
{
float return_val;
/* Calculate f(x). */
/* Store calculation in return_val. */
return_val = x*x;
return return_val;
Yyt

/* get_data3.c — Parallel Trapezoidal Rule. Builds a derived type

* for use with the distribution of the input data.
* Input:
* a, b: limits of integration.
* n: number of trapezoids.
- Qutput: Estimate of the integral from a to b of {(x)
* using the trapezoidal rule and n trapezoids.
* Notes:
* 1. f(x) is hardwired.
* 2. the number of processes (p) should evenly divide
* the number of trapezoids (n)-
!
/1#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"

#else

#include "mpi8.h"

#endif

void Build_derived_type();

float f();

void Get_data3();

float Trap():

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int arge;

char® argv(l;
int my_rank; /* My process rank !
int p: /” The number of processes °/
float a; /* Left endpoint */
float b; /I~ Right endpoint */
int n; /* Number of trapezoids °/
float h; /* Trapezoid base length */

float local_a; /* Left endpoint my process */
float local_b; [/ Right endpoint my process */

int local_n; /° Number of trapezoids for */
/* my calculation Vi

float integral; /* Integral over my interval */

float total; /- Total integral *!

int source; /° Process sending integral */

int dest =0; /" Allmessagesgoto0 */

int tag = 0;

MPI_Status status;

/* Letthe system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

/- Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

Get_data3(&a, &b, &n, my_rank);
h = (b-a)/(float)n;
local_n =n/p; /" So is the number of trapezoids */

I” Length of each process' interval of

- integration = local_n"h. So my interval

* starts at: */

local_a = a + my_rank‘local_n*h;

local_b = local_a + local_n"h;

integral = Trap(local_a, local_b, iocal_n, h);

[~ Add up the integrals calculated by each process */
MPI_Reduce(&integral, &total, 1, MPI_FLOAT,
MPI_SUM, 0, MPI_COMM_WORLD);

[+ Print the result */
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n",
n);
printf("of the integral from %f to %f = %fin",
a, b, total);
}

[~ Shut down MP! */
MPI_Finalize();
}/© main */

/ weswseavosnawe - Ladd}

void Build_derived_type(a_ptr, b_ptr, n_ptr, mesg_mpi_t_ptr)

float” a_ptr; ~in
float” b_ptr; I~in o/
int* n_ptr; /7in *f
MPI_Datatype” mesg_mpi_t_ptr; /~ out */
{

[* pointer to new MP! type ~/

inta, b, c, d;

/* The number of elements in each "block” of the */
/* newtype. Forus, 1 each. i
int block_lengths{3}];

/* Displacement of each element from start of new */

I~ type. The "d_i's." */
/* MPI_Aint ("address int") is an MP! defined C */
[/~ type. Usually an int. */

MPI_Aint displacements(3];

/~ MPI types of the elements. The "t_i's." */
MPI_Datatype typelist{3];

[~ Use for calculating displacements *!
MPI_Aint start_address;
MPI_Aint address;

block_lengths[0] = block_lengths[1]
= block_lengths[2] = 1;

/= Build a derived datatype consisting of °/

124

/* two floats and an int !
typelist[0] = MPI_FLOAT;

typelist(1] = MPI_FLOAT;

typelist(2] = MPI_INT;

[* First element, a, is at displacement0 */
displacements[0] = O;

/* Caiculate other displacements relative to a */
MPI_Address(a_ptr, &start_address);

/* Find address of b and displacement from a */
MP!_Address(b_ptr, &address);
displacements[1] = address - start_address;

/* Find address of n and displacement from a */
MPI_Address(n_ptr, &address);
displacements{2] = address - start_address;

[* Build the derived datatype °/
MPI_Type_struct(3, block_lengths, displacements,
typelist, mesg_mpi_t_ptr);

/- Commit it — tell system we'll be using it for */
/* communication. i
MPI_Type_commit(mesg_mpi_t_ptr);

} /* Build_derived_type */

/ i !
void Get_data3(a_ptr, b_ptr, n_ptr, my_rank)

float® a_ptr; /" out*/

float* b_ptr; /" out*/

int™ n_ptr; /"out*/

int my_rank; /*in °/

MPI_Datatype mesg_mpi_t; /~ MPI type corresponding */
/- to 3 floats and an int */

if (my_rank == 0){
printf("Enter a, b, and n\n");
“a_ptr = 0.0; “b_ptr=0.0;

’
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);

°/

*a_ptr = 0.0; “b_ptr=1.0; *n_ptr=1024;

}
Build_derived_type(a_ptr, b_ptr, n_ptr, &mesg_mpi_t};

MPI_Bcast(a_ptr, 1, mesg_mpi_t, 0, MPi_COMM_WORLD);
} /1 Get_data3 */

/ /
float Trap(local_a, local_b, local_n, h)

float local_a; /*in */

float local_b; /"in*/

int local_n; /7in~/

float h; /min*/

{
float integral; /* Store result in integral */
float x;
int i;

integral = (f(local_a) + f(local_b))/2.0;

x = local_a;
for (i = 1; i <= local_n-1; i++) {
X =x+h;

125

integral = integral + f(x);

integral = integral*h;
return integral;
y/© Trap </

/ /
float f(x)
float x;
{
float return_val;
[~ Calculate f(x). */
/* Store calculation in return_val. */
return_val = x"x;
return return_val;
yroe

/- get_datad.c — Parallel Trapezoidal Rule. Uses MPI_Pack/Unpack in

- distribution of input data.

* Input:

* a, b: limits of integration.

* n: number of trapezoids.
* Qutput: Estimate of the integral from a to b of f(x)
* using the trapezoidal rule and n trapezoids.
“ Notes:
* 1. f(x) is hardwired.
~ 2. the number of processes (p) should evenly divide
- the number of trapezoids (n).

“f
/1#define UNIX
#ifdef UNIX

#include <stdio.h>
#include "mpi.h"

#else

#include "mpi8.h"

#endif

float f();

void Get_data4();

float Trap();

#ifdef UNIX

void main (argc, argv)

#else

int MPI_main (argc, argv)

#endif

int argc;

char® argv(];
int my_rank; /7 My process rank °/
int p; /* The number of processes °/
float a; /* Left endpoint */
float b; [~ Right endpoint “f
int n; /* Number of trapezoids */
float h; I* Trapezoid base length */

float local_a; /* Left endpoint my process */
float local_b; /° Right endpoint my process */

int local_n; /° Number of trapezoids for */
/* my calculation */

float integral; /* Integral over my interval */

float total; /° Total integral */

int source; /* Process sending integral */

126

int dest = 0; /~ Allmessagesgoto0 ~/
int tag =0;
MPI_Status status;

/- Let the system do what it needs to start up MPI */
MPI_Init(&argc, &argv);

I~ Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &p);

Get_data4(&a, &b, &n, my_rank);

h = (b-a)/n; /" his the same for all processes */
local_n = n/p; /~ Sois the number of trapezoids */

/* Length of each process' interval of

* integration = local_n"h. So my interval

- starts at: */

local_a = a + my_rank“local_n"h;

local_b = local_a + local_n"h;

integral = Trap(local_a, local_b, local_n, h);

I~ Add up the integrals calculated by each process °/
MPI_Reduce(&integral, &total, 1, MPI_FLOAT,
MPI_SUM, 0, MPI_COMM_WORLD);

/~ Print the result */
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n®,
n);
printf("of the integral from %f to %f = %f\n",
a, b, total);
}

[~ Shut down MPI */
MPI_Finalize();
}/© main */

/ !
void Get_data4(a_ptr, b_ptr, n_ptr, my_rank)

float” a_ptr; /[“out”/

float” b_ptr; [/~ out*/

int n_ptr; /"out*/

int my_rank; /7in “/

{

char buffer[100]; /* Store data in buffer °f
int position; /* Keep track of where data is */
[+ inthe buffer !

if (my_rank == 0){
*a_ptr = 0.0; “b_ptr=0.0;
printf("Enter a, b, and n\n");
I
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
*/
*a_ptr = 0.0; “b_ptr=1.0; "n_ptr=1024;

/* Now pack the data into buffer. Position =0 */
/* says start at beginning of buffer. */
position = 0;

I~ Position is infout */

MPI_Pack{a_ptr, 1, MPI_FLOAT, buffer, 100,
&position, MPI_COMM_WORLD);

/~ Position has been incremented: it now refer- */

127

I* ences the first free location in buffer. */

MPI_Pack(b_ptr, 1, MPI_FLOAT, buffer, 100,
&paosition, MPI_COMM_WORLD);
I Position has been incremented again. */

MPI_Pack(n_ptr, 1, MPI_INT, buffer, 100,
&position, MPI_COMM_WORLD);
/* Position has been incremented again. °/

/* Now broadcast contents of buffer */
MPI_Bcast(buffer, 100, MPI_PACKED, 0,
MPI_COMM_WORLD);
}else {
MPI_Bcast(buffer, 100, MPI_PACKED, 0,
MPI_COMM_WORLD);

/* Now unpack the contents of buffer */

position = 0;

MPI_Unpack(buffer, 100, &position, a_ptr, 1,
MP!_FLOAT, MPI_COMM_WORLD);

/* Once again position has been incremented: */

I* it now references the beginning of b. */

MPI_Unpack(buffer, 100, &position, b_ptr, 1,
MPI_FLOAT, MPI_COMM_WORLD);

MPI_Unpack(buffer, 100, &position, n_ptr, 1,
MPI_INT, MP{_COMM_WORLD);

}
}/° Get_data4 =/

/

float Trap(local_a, local_b, local_n, h)
float local_a; /"in*/

float local_b; /"in*/

int local_n; /*in*/

float h; I7in */

{

float integral; /* Store result in integral */
float x;
inti;

integral = (f(local_a) + f(local_b})/2.0;
x = local_a;
for (i = 1;i <= local_n-1; i++) {
x=Xx+h;
integral = integral + f(x);

integral = integral“h;
return integral;

Y/~ Trap /

/

float f(x)
float x;

{

float return_val;

/* Calculate f(x). */

/* Store calculation in return_val. */
return_val = x"x;

return return_val;

Yyl

I* serial_dot.c — compute a dot product on a single processor.

* Input:

128

“ n:order of vectors

T x,y: the vectors

* Output:

* the dot product of x and y.

-

“ Note: Arrays containing vectors are statically allocated.
°/
[/#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpit1.h"
#endif

#define MAX_ORDER 100

void Read_vector();
float Serial_dot();

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char* argvl];

float xiMAX_ORDER];
float y[MAX_ORDER];
int n;

float dot;

printf("Enter the order of the vectors\n\n®);
”

scanf("%d\n\n", &n);
*/
n=4;

Read_vector("the first vector”, x, n);
x[0]=3; x{1]=1; x[2]=4; x[3]=2;

Read_vector("the second vector”, y, n);
y(01=2; y[11=5; y[2]=1; y[3]=3;

dot = Serial_dot(x, y, n);

printf("The dot product is %f\n", dot);
} /7 main */

Ladadaaldd

/

void Read_vector(prompt, v, n)
char® prompt; /*in */

float™ v; /" out */

int n; Imin =/

{

inti;

printf("Enter %s\n\n", prompt);
for (i =0;i<n; i++)

{

,
scanf("%f", &v(i});
!

}
} I* Read_vector /

129

/

float Serial_dot(x, y, n)
float® x; /*in */

float* y; /~in "~/

int n; /7in*/

{

int i;
float sum =0.0;

for (i=0;i<n; i++)

{

sum = sum + x[i]"y[i;
}
return sum;

}/° Serial_dot */

I~ parallel_dot.c — compute a dot product of a vector distributed among
* the processes. Uses a block distribution of the vectors.
“ Input:
* n: global order of vectors

° x,y: the vectors

* Qutput:

* the dot product of x and y.

* Note: Arrays containing vectors are statically allocated. Assumes
* n, the global order of the vectors, is divisible by p, the number

* of processes.

-

*/
/i#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi2.h"
#endif

#define MAX_LOCAL_ORDER 100

float Serial_dot();
void Read_vector();
float Parallel_dot();

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char® argv(l;

float local_x{MAX_LOCAL_ORDER];
float local_y[MAX_LLOCAL_ORDER];
int n;

int n_bar; "=n/p°/

float dot;

int p;

int my_rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

130

if (my_rank == 0) {
printf("Enter the order of the vectors\n\n®);
scanf("%d", &n);

}
MPI_Bcast(&n, 1, MPI_{NT, 0, MPI_COMM_WORLD);
n_bar = n/p;

Read_vector("the first vector”, local_x, n_bar, p, my_rank);
Read_vector("the second vector®, local_y, n_bar, p, my_rank);

dot = Parallel_dot(local_x, local_y, n_bar);

if (my_rank == 0)
printf("The dot product is %f\n", dot);

MPI_Finalize();
} /* main */

/ /
void Read_vector(prompt, local_v, n_bar, p, my_rank)
char® prompt; /*in °/

float” local_v; /* out */

int n_bar;, /in */

int p; min </
int my_rank; /7in °/
e

inti, g;

float temp[MAX_LOCAL_ORDER};
MPI_Status status;

if (my_rank == 0) {
printf("Enter %s\n\n", prompt);
for (i = 0; i < n_bar; i++)

local_vfi] = 0;
scanf("%f", &local_v(i}):

}
for(a=1,q<p;g++){
for (i = 0; i <n_bar; i++)

tempfi] = 0;
scanf("%f", &temp(i]);

}
MPI_Send(temp, n_bar, MPI_FLOAT, q, 0, MPi_COMM_WORLD);
}else{
MPI_Recv(local_v, n_bar, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,
&status);

}
} 1 Read_vector */

I 1
float Serial_dot(x, y, n)
float” x; /7in "/
float™ y; /7 in "/
int n; /~in*/
¢
int i;
float sum = 0.0;

for (i = 0; i <n; i++)
sum = sum + x[i]*y(i];

return sum;
} /* Serial_dot */

131

float Parallel_dot(local_x, local_y, n_bar)
float” local_x; /*in~/
float® local_y; /7 in~/
int n_bar; rrin=/
{
float local_dot = 0.0;
float dot = 0.0;

local_dot = Serial_dot(local_x, local_y, n_bar);
MPI_Reduce(&local_dot, &dot, 1, MPI_FLOAT,
MPI_SUM, 0, MPI_COMM_WORLD);

return dot;
} /- Parailel_dot */

/* count.c — send a subvector from process 0 to process 1
 Input: none
- QOutput: contents of vector received by process 1

“ Note: Program should only be run with 2 processes.
*/
/i#define UNIX

#itdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi2.h"
#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char® argv(l;

float vector{100];
MPI_Status status;
int p;

int my_rank;

inti;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p});
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

/= Initialize vector and send */
if (my_rank == 0) {
for (i = 0; i < 60; i++)

vector(i] = 0.0;
for (i = 60; i < 100; i++)
vectorfi] = 1.0;

MPI_Send(vector+50, 50, MPI_FLOAT, 1, 0,

MPI_COMM_WORLD);
}else{/"my rank==1"/

MPI_Recv(vector+50, 50, MPI_FLOAT, 0, 0,
MPI_COMM_WORLD, &status);

for (i = 50; i < 100; i++)
printf("%3.1f ",vector(i]);

printf(n");

MPI_Finalize();
Y /* main */

132

/* parallel_dot1.c — Computes a parallel dot product. Uses MPI_Allreduce.

“ input:
n: order of vectors
x, y: the vectors

* Qutput:
© the dot product of x and y as computed by each process.

Note: Arrays containing vectors are statically allocated. Assumes that
n, the global order of the vectors, is evenly divisible by p, the
number of processes.

!
/1#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi2.n"
#endif

float Serial_dot(});

void Read_vector();
float Parallel_dot();
void Print_results();

#define MAX_LOCAL_ORDER 100

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char® argv(l;

float local_x[MAX_LOCAL_ORDER];
float local_y[MAX_LOCAL_ORDER];
int n;
int n_bar; I"=n/p~/
float dot;
int p;
int my_rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
if (my_rank ==0) {
printf("Enter the order of the vectors\n");
scanf("%d", &n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
n_bar = n/p;

Read_vector("the first vector®, local_x, n_bar, p, my_rank);
Read_vector("the second vector”, local_y, n_bar, p, my_rank);

dot = Parallel_dot(local_x, local_y, n_bar);
Print_results(dot, my_rank, p);

MPI_Finalize();
} /7 main */

133

/ !
void Read_vector(prompt, local_v, n_bar, p, my_rank)
char® prompt; /“in */

float” local_v; /" out */

int n_bar; [/*in */

int p; Imin
int my_rank; /*in */
t .

inti, q;

float temp[MAX_LOCAL_ORDER];
MPI_Status status;

if (my_rank == 0) {
printf("Enter %s\n", prompt);
for (i = 0; i <n_bar; i++)

local_v{i] = 0;
scanf("%f", &local_v{i});

}
for(q =1, q<p; g++) {
for (i = 0; i < n_bar; i++)

temp(i] = 0;
scanf("%f", &tempfi]);

t
MPI_Send(temp, n_bar, MPI_FLOAT, g, 0, MPI_COMM_WORLD);
}else{
MPI_Recv(local_v, n_bar, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,
&status);

}
} /I~ Read_vector */

/

float Serial_dot(x, y, n)
float® x; /*in*/

float” y; /in*/

int n; /7in*/

{

int i;
float sum =0.0;

for i=0;i<n;i++)
sum = sum + x[i}"y{i];
return sum;
} I~ Serial_dot */

/ ttttttt rowwnw rremaren R R R A R 2 4 - /
float Parallel_dot(local_x, local_y, n_bar)

float* local_x; /" in */

float” local_y; /*in */

int n_bar; min*/

{

float local_dot;
float dot =0.0;

local_dot = Serial_dot(local_x, local_y, n_bar);
MPI_Allreduce(&local_dot, &dot, 1, MPI_FLOAT,
MPI_SUM, MPI_COMM_WORLD);
return dot;
} /* Parallel_dot */

/ /
void Print_results(dot, my_rank, p)

134

float dot; /"in*/
int my_rank; /*in */
int p; I*in*/

int q;
float temp;
MPI_Status status;

if (my_rank == 0) {
printf("dot = \n");
printf("Process 0 > %f\n", dot);
for(g=1;q<p: g++) {
MPi_Recv(&temp, 1, MPI_FLOAT, q, 0, MPI_COMM_WORLD,
&status);
printf("Process %d > %fin", q, temp);

}else{
MPI_Send(&dot, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
}

} /° Print_resuilts </

/* serial_mat_vect.c — computes a matrix-vector product on a single processor.
“ Input:
* m, n: order of matrix
A, x: the matrix and the vector to be muitiplied

* Qutput:
* y: the product vector

Note: A, x, and y are statically allocated.
i
//#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpit.h"
#endif

#define MAX_ORDER 100

typedef float MATRIX_T[MAX_ORDER][MAX_ORDER];
typedef float VECTOR_T[MAX_ORDER];

void Read_matrix(};
void Read_vector();
void Serial_matrix_vector_prod();
void Print_vector();

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char” argv(};

float A[IMAX_ORDER][MAX_ORDER];
float x[MAX_ORDER};

float y[MAX_ORDER];

int m,n,ij:

printf("Enter the order of the matrix (m x n)\n\n");
I

135

scanf("%d %d", &m, &n);

*!

m=n=4;
Read_matrix("the matrix", A, m, n);
Read_vector("the vector", x, m);
Serial_matrix_vector_prod(A, m, n, X, y);
Print_vector(y, n);

} /- main */

! /
void Read_matrix(prompt, A, m, n)

char* prompt; /*in °/

VECTOR_T* A; /" out */

int m; Imin */

int n; /[fin */

inti, j;

printf("Enter %s\n\n", prompt);
for (i = 0; i <m; i++)
for (j = 0; j <n; j++)

Al = 0.0;
”

scanf("%f", &Af][);
“/

}
A[0]{0]=4; A[Q][1]=2; A[0][2]=2; A[O][3]=1;
A[1][0]=5; A[1][1]=4; A[1][{2]=7; A[1][3]=3;
A[2][0]=3; A[2](1]=5; A[2][2]=4; A[2][3]=4;
A[3][0]=7; A[3][1]=8; A[3][2]=3; A[3](3]=6;
} /~ Read_matrix */

/ !
void Read_vector(prompt, v, n)

char® prompt; /*in */

float” v; /" out "/

int n; I7in */

{

int i;

printf("Enter %s\n\n", prompt);
for (i=0;i<n;i++)

vii] = 0;
”

scanf("%f", &vfi]);
/

}
v[0]=2 ; v[1]=1; v[2]=5 ; v[3]=3 ;
} 7 Read_vector */

void Serial_matrix_vector_prod(A, m, n, x, y)
VECTOR_T* A; /*in */

int m; /7in */

int n; /min */

float x; /*in */

float™ y; /"out*/

{

intk, j;
float z;

for (k = 0; k< m; k++) {

ylk] = 0.0;
for(§ = 0;j<n; j++)

136

yik] = y[k] + ALKI0]"x(l:

} /* Serial_matrix_vector_prod */

/ !
void Print_vector(y, n)

float™y; /Tin*/

int n; /7in*/

{

inti;

printf("Result is \n");
for (i =0;i<n;i++)
printf("%4.1f ", y[il);
printf("\n");
} /” Print_vector */

/* parallel_mat_vect.c — computes a parallel matrix-vector product. Matrix
* is distributed by block rows. Vectors are distributed by blocks.
* Input:
m, n: order of matrix
A, x: the matrix and the vector to be muiltiplied

* Output:
* y:the product vector

Notes:
1. Local storage for A, x, and y is statically allocated.
2. Number of processes (p) should evenly divide both m and n.

i
/Htdefine UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h*
#else

#include "mpi4.h"
#endif

#define MAX_ORDER 10

typedef float LOCAL_MATRIX_T[MAX_ORDER][MAX_ORDER};
typedef float LOCAL_VECTOR_T{MAX_ORDER];

void Read_matrix();
void Read_vector();
void Parallel_matrix_vector_prod();
void Print_matrix();
void Print_vector();

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char” argv(];

int my_rank;

int p;

LOCAL_MATRIX_T local_A;

float global_x{MAX_ORDER];
float local_x(MAX_ORDERY];
float local_y[MAX_ORDER];
int m, n, ij;

137

int local_m, local_n;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == 0) {
printf("Enter the order of the matrix {m x n)\n");

/-
scanf("%d %d", &m, &n);

!

m=n=4;

}
MPI_Bcast(&m, 1, MPI_INT, 0, MP{_COMM_WORLD);
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

local_m = m/p;
local_n = n/p;

Read_matrix("Enter the matrix®, local_A, local_m, n, my_rank, p);
Print_matrix("We read", local_A, local_m, n, my_rank, p);

Read_vector("Enter the vector”, local_x, local_n, my_rank, p);
Print_vector("We read”, local_x, local_n, my_rank, p);

Parallel_matrix_vector_prod(local_A, m, n, local_x, global_x,
local_y, local_m, local_n);

Print_vector(*The product is”, local_y, local_m, my_rank, p);

MPI_Finalize();

} /" main */

/ /
void Read_matrix(prompt, local_A, local_m, n, my_rank, p)
char” prompt; /in °/

LOCAL_VECTOR_T" local_A; / out */

int local_m; /~in =/

int n; Imin ™/

int my_rank; /~in */

int o I"in */

{

int i i
LOCAL_MATRIX_T temp;

/* Fill dummy entries in temp with zeroes */
for (i = 0; i < p~local_m; i++)
for (j = n; j < MAX_ORDER; j++)
temp(i]{j] = 0.0;

if (my_rank == 0) {
printf("%s\n\n", prompt});
for (i = 0; i <p°local_m; i++)
for § =0;j<n; j++)

temp(i](j] = 0.0;
I

scanf("%f",&temp(i{i]);
~/

}
temp[0]{0]=4; temp[0][1]=2; temp([0][2]=2; templ[O][3]=1;
temp[1]{0]=5; temp[1][1]=4; temp[1][2]=7; temp[1][3]=3;
temp[2][0]=3; temp[2]{1]=5; temp(2][2]=4; temp(2][3]=4;
temp[3][0]=7; temp[3]}{1]=8; temp([3][2]=3; temp(3][3]=6;

}
MPI_Scatter((float")temp, local_m"MAX_ORDER, MPI_FLOAT, (float*)local_A,
local_ m"MAX ORDER, MPI_FLOAT, 0, MPI_COMM_WORLD);

138

} I Read_matrix */

/ /
void Read_vector(prompt, local_x, local_n, my_rank, p)
char®* prompt; /*in */
float® local_x; /* out*/
int local_n; /"in */
int my_rank; /Tin */
int p; /min *f
{
int i;
float temp{MAX_ORDER];
if (my_rank == 0) {

printf("%s\n\n", prompt);
for (i = 0; i < plocal_n; i++)

temp(i] =0;
I’
scanf("%f", &templi});
i
}
temp[0]=2 ; temp[1]=1 ; temp[2]=5 ; temp(3]=3 ;
}

MPI_Scatter(temp, local_n, MPI_FLOAT, local_x, local_n, MPI_FLOAT,
0, MPi_COMM_WORLD);

} /* Read_vector */

/ i !
/* All arrays are allocated in calling program */
/* Note that argument m is unused °/

void Parallel_matrix_vector_prod(local_A, m, n, local_x, global_x, local_y, local_m, local_n)
LOCAL_VECTOR_T" local_A; ["in */

int m; /I"in </
int n; /min */
float” local_x; /"in */
float” global_x; /*in */
float” local_y; /" out*/
int local m; /*in */
int local_n; /["in */
{

/" local_m = m/p, local_n = n/p */
inti, j;

MPI_Allgather(local_x, locai_n, MPI_FLOAT,
global_x, local_n, MPI_FLOAT,
MPI_COMM_WORLD);

for (i = 0; i < local_m; i++) {
local_y(i] = 0.0;
for (j =0;j<n; j++)
local_yfi] = local_y(i] +
local_A[i]fj]"global_xj};

}
} /° Parallel_matrix_vector_prod */

/ /
void Print_matrix(title, locai_A, local_m, n, my_rank, p)

char” title; /~in*/

LOCAL_VECTOR_T" local_A; [/"in*/

int local_m; /*in*/

int n; Imin*/

139

int my_rank; /"in*/
int p; Imin*f
{

int i
float temp(MAX_ORDER][MAX_ORDER];

MPI_Gather({float")local_A, local_m*MAX_ORDER, MPI_FLOAT, (float")temp,
local_m*MAX_ORDER, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (my_rank == 0} {
printf{("%s\n", title);
for (i = 0; i < p-local_m; i++) {
for(j=0;j<n;j++)
printf("%4.1f ", temp(i][]);
printf(n");

} /* Print_matrix */

/ /
void Print_vector(title, local_y, local_m, my_rank, p)

char® titte; /in*/

float” local_y; /"in*/

int local_m; /"in~/

int my_rank; /in*/

int p; /*in*/

{

int i;
float temp[MAX_ORDER];-

MPI_Gather(local_y, local_m, MPI_FLOAT, temp, local_m, MPI_FLOAT,
0, MPI_COMM_WORLD);

if (my_rank == 0) {
printf("%s\n*, title);
for (i=0; i < plocal_m; i++)
printf("%4.1f ", tempf(i]);
printf("\n");

}
} /7 Print_vector */

/* send_row.c — send third row of a matrix from process 0 to process 1
* Input: none
* Output: the row received by process 1

* Note: Program should only be run with 2 processes
!
/l#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"”
#else

#include "mpi2.h"
#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char” argv[];

140

int p;

int my_rank;

float A[10]{10];
MPI_Status status;
inti,j;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == 0) {
for (i=0; i< 10; i++)
for (j=0;j<10; j++)
Afili] = (float) i;
MPI_Send(&(A[2][0]), 10, MPI_FLOAT, 1, 0,
MPi_COMM_WORLD);
}else{/"my_rank =1 "/
MPI_Recv(&(A[2][0]), 10, MPI_FLOAT, q, 0,
MPI_COMM_WORLD, &status);
for (j = 0;] < 10; j++)
printf("%3.1f ", A[2]{iD:
printf(Mn™);

MPI_Finalize();
} I~ main */

/™ send_col.c — send the third column of a matrix from process 0 to
© process 1
° Input: None
* Qutput: The column received by process 1

* Note: This program should only be run with 2 processes
*/
[/f#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi2.h"
#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char® argv(];

{

int p;

int my_rank;

float A[10][10];

MPI_Status status;
MPi_Datatype column_mpi_t;
inti, j;

MPI_tnit(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Type_vector(10, 1, 10, MPI_FLOAT, &column_mpi_t);
MPI_Type_commit(&column_mpi_t});

if (my_rank == 0) {
for (i = 0; i < 10; i++)

141

for = 0; j < 10; j++)
A[ilfi] = (float) j;
MPI_Send(&(A[0][2]), 1, column_mpi_t, 1, 0,
MPI_COMM_WORLD);
}else{/"my_rank=1"°/
MPI_Recv(&(A[0][2]), 1, column_mpi_t, 0, O,
MPI_COMM_WORLD, &status);
for (i = 0; i< 10; i++)
printf("%3.1f ", A[ij[2]);
printf(Mn");

MPI_Finalize();
} * main */

/* send_col_to_row.c — send column 1 of a matrix on process 0 to row 1

* onprocess 1.
* Input: none
* Qutput: The row received by process 1.

* Note: This program should only be run with 2 processes
*/
/l#define UNIX

#ifdef UNIX
#include <stdio.h>
#include "mpi.h"
#else

#include "mpi2.h"
#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char® argv{];

int p;

int my_rank;

float A[101{10];

MP1_Status status;
MPI_Datatype column_mpi_t;
inti, j;

MPI_Init(&argc, &argv);
MP!_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Type_vector(10, 1, 10, MPI_FLOAT, &column_mpi_t);
MPI_Type_commit(&column_mpi_t);

if (my_rank ==0) {
for (i = 0; i < 10; i++)
for (j =0; j < 10; j++)
AQI] = (float) i;
MPI_Send(&(A[0][Q]). 1., column_mpi_t, 1, 0,
MPI_COMM_WORLD);
Yelse{/"my_rank =1~/
for (i =0; i< 10; i++)
for =0;j<10; j++)
A[ij(j} = 0.0;
MPI_Recv(&(A[0][0]), 10, MPI_FLOAT, 0, 0,
MPI_COMM_WORLD, &status);
for (j=0; < 10; j++)
printf("%3.1f ", A[O][]D:

142

printf("Mn");

MPI_Finalize();
} /" main */

/" send_triangle.c — send the upper triangle of a matrix from process 0
* toprocess 1

-

* Input: None
* Qutput: The matrix received by process 1

: Note: This program should only be run with 2 processes.
*/

[Htdefine UNIX

#ifdef UNIX

#include <stdio.h>
#include "mpi.h"

#else
#include "mpi2.h"
#endif
#definen 10
#ifdef UNIX
void main (argc, argv)
#else
int MPI_main (argc, argv)
#endif
int argc;
char” argv(];
.
int p;
int my_rank;
float An][n]; /* Complete Matrix °/
float Tin]n]; I~ Upper Triangle °/
int displacements[n];
int block_lengths[n];
MP{_Datatype index_mpi_t;
int L

MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

for (i=0;i<n; i++) {
block_lengths[i] = n-i;
displacements{i] = (n+1)"i;

}

MPI_Type_indexed(n, block_lengths, displacements,
MPI_FLOAT, &index_mpi_t);

MP1_Type_commit(&index_mpi_t);

it (my_rank == 0) {
for (i=0;i<n;i++)
for (j = 0; j <n; j++)
A[ilf] = (float) i +§;
MPI_Send(&A[0][0], 1, index_mpi_t, 1, 0, MPI_COMM_WORLD);
}else{/* my_rank ==1"°/
for (i=0;i<n;i++)
for (= 0; j<n; j++)
THlb = 0.0;

MP{_Recv(&T[0][0], 1, index_mpi_t, 0, 0, MPI_COMM_WORLD, &status);

for (i=0;i<n;i++) {
for (j = 0; j <n; j++)

143

printf("%4.1f ", TH):
printf("in\n");
}

}
}

MPI_Finalize();
} /" main */

/" sparse_row.c — pack a row of a sparse matrix and send from process 0
* toprocess 1. Process 1 allocates required storage after partially

* unpacking.
* Input: none
* Qutput: the row received by process 1.

* Notes:
* 1. This program should only be run with 2 processes.
* 2. Only the row of the matrix is created on both processes.

-

i
/1#define UNIX

#ifdef UNIX
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#else

#include "mpi2.h"
#endif

#define HUGE 22

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char® argv(];

int p:

int my_rank;

float® entries;

int* column_subscripts;
int nonzeroes;

int position;

int row_number;

char buffer(HUGE]; /* HUGE is a predefined constant */
MPI_Status status;
int i;

MPi_Init(&argc, &argv);
MPi_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == 0) {
/= Get the number of nonzeros in the row. =/
/* Allocate storage for the row. */
/" Initialize entries and column_subscripts */
nonzeroes = 10;
entries = (float”) malloc(nonzeroes-sizeof(float));
column_subscripts = (int") malloc(nonzeroes-sizeof(int));
for (i = 0; i < nonzeroes; i++) {
entries(i] = (float) 2°i;
column_subscripts[i] = 3"i;

144

}

/* Now pack the data and send */

position = 0;

MPI_Pack(&nonzeroes, 1, MPI_INT, buffer, HUGE,
&position, MPI_COMM_WORLD);

MPI_Pack(&row_number, 1, MPI_INT, buffer, HUGE,
&position, MPI_COMM_WORLD);

MPI_Pack(entries, nonzeroes, MPI_FLOAT, buffer,
HUGE, &position, MPI_COMM_WORLD);

MPI_Pack{column_subscripts, nonzeroes, MPi_INT,
buffer, HUGE, &position, MPI_COMM_WORLD);

MPI_Send(buffer, position, MPI_PACKED, 1, Q,
MPI_COMM_WORLD);

telse {/"my rank ==1"°/
MPI_Recv(buffer, HUGE, MPi_PACKED, 0, 0,
MPI_COMM_WORLD, &status);
position = 0;
MPI_Unpack(buffer, HUGE, &position, &nonzeroes,
1, MPL_INT, MPI_COMM_WORLD);
MPI_Unpack(buffer, HUGE, &position, &row_number,
1, MPI_INT, MPI_COMM_WORLD);
/* Allocate storage for entries and column_subscripts */
entries = (float *) malloc(nonzeroes-sizeof(float));
column_subscripts = (int *) malloc{nonzeroes sizeof(int));
MPI_Unpack(buffer, HUGE, &position, entries,
nonzeroes, MPI_FLOAT, MPI_COMM_WORLD);
MPI_Unpack(buffer, HUGE, &position, column_subscripts,
nonzeroes, MPI_INT, MPI_COMM_WORLD);
for (i = 0; i < nonzeroes; i++)
printf("%4.1f %2d\n", entries(i], column_subscripts(i]);

MPI_Finalize();
} /- main 7/

/" comm_test.c — creates a communicator from the first q processes
° in a communicator containing p = g2 processes. Broadcasts
* an array to the members of the newly created communicator.
* Input: none
* Output: Contents of array broadcast to each process in the newly
* created communicator

: Note: MPI_COMM_WORLD should contain p = g*2 processes.
*/

[/l#define UNIX

#ifdef UNIX

#include <stdio.h>

#include <math.h>
#include <stdlib.h>

#include "mpi.h"

#else

#include "mpi4.h"

#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int arge;

char® argv(l;

145

int p:

int q; /* = sqrt(p) */

int my_rank;

int n_bar = 2;

MPI_Group group_world;
MPI_Group first_row_group;
MPI_Comm first_row_comm;
int* process_ranks;

int proc, i;
float~ A_00;
int my_rank_in_first_row;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank});

q = ceil(sqrt((double) p));

/* Make a list of the processes in the new

* communicator */

process_ranks = (int*) malloc(q*sizeof(int));

for (proc = 0; proc < q; proc++)
process_ranks(proc] = proc;

/ Get the group underlying MPI_COMM_WORLD */
MPI_Comm_group(MPI_COMM_WORLD, &group_world);

{* Create the new group */
MPI_Group_inci(group_world, g, process_ranks,
&first_row_group);

/* Create the new communicator */
MPI_Comm_create(MPI_COMM_WORLD, first_row_group,
&first_row_comm);

/* Now broadcast across the first row °/
if (my_rank <q){
MPI_Comm_rank(first_row_comm, &my_rank_in_first_row);

I* Allocate space for A_00 */
A_Q0 = (float") malloc (n_bar'n_bar sizeof(float));
if (my_rank_in_first_row == 0) {
I” Initialize A_00 */
for (i = 0; i <n_bar'n_bar; i++)
A_00[i] = (float) i;

}
MPI_Bcast(A_00, n_bar“n_bar, MPI_FLOAT, O,
first_row_commy);

printf("Process %d > ", my_rank);
for (i = 0; i< n_bar n_bar; i++)

printf("%4.1f ", A_0O[i);
printf(Mn\n");

}
MPI_Finalize();

} /* main */

I* comm_split.c — build a collection of g communicators using MPI_Comm_split

* Input: none

* Output: Results of doing a broadcast across each of the g communicators.

* Note: Assumes the number of processes, p = g2

o/

li#define UNIX

146

#ifdef UNIX
#include <stdio.h>
#include <math_.h>
#include "mpi.h"
#else

#include "mpi4.h"
#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int arge;

char® argv(l;

{

int o}

int my_rank;

MPI_Comm my_row_comm;
int my_row;

int a;

int test;

int my_rank_in_row;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPi_COMM_WORLD, &my_rank);

q = ceil(sqgrt({(double) p));

{* my_rank is rank in MPI_COMM_WORLD.

‘gq=p°/

my_row = my_rank/q;

MPI_Comm_split(tMPI_COMM_WORLD, my_row, my_rark,
&my_row_commy);

[~ Test the new communicators */
MPI_Comm_rank(my_row_comm, &my_rank_in_row);

if (my_rank_in_row == 0)
test = my_row;

else
test = 0;

MPI_Bcast(&test, 1, MPI_INT, 0, my_row_comm);

printf("Process %d > my_row = %d, my_rank_in_row = %d, test = %d\n",
my_rank, my_row, my_rank_in_row, test);

MPI_Finalize();
} /7 main */

/" top_fens.c — test basic topology functions

* Input: none

* Output: results of calls to various functions testing topology

© creation

~ Algorithm:

1. Build a 2-dimensional Cartesian communicator from
MPI_Comm_world

2. Print topology information for each process

3. Use MPI_Cart_sub to build a communicator for each
row of the Cartesian communicator

4. Carry out a broadcast across each row communicator

5. Print results of broadcast

LI T N AR

147

* 6. Use MPI_Cart_sub to build a communicator for each
h column of the Cartesian communicator

* 7. Carry out a broadcast across each column communicator
* 8. Print results of broadcast

Note: Assumes the number of processes, p, is a perfect square
!
/#define UNIX

#ifdef UNIX
#include <stdio.h>
#include <math.h>
#include "mpi.h"
#else

#include "mpi8.h"
#endif

#ifdef UNIX

void main (argc, argv)
#else

int MPI_main (argc, argv)
#endif

int argc;

char* argv(};

int p;
int my_rank;
int q;

MPI_Comm grid_comm;
int dim_sizes[2];

int wrap_around[2];
int reorder = 1;

int coordinates(2};
int my_agrid_rank;

int grid_rank;

int free_coords[2];
MPI_Comm row_comm;
MPI_Comm col_comm;
int row_test;

int col_test;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPi_COMM_WORLD, &my_rank);

q = ceil(sgrt({(double) p}));

dim_sizes[Q] = dim_sizes[1] = q;
wrap_around[0] = wrap_around[1} = 1;
MPi_Cart_create(MPI_COMM_WORLD, 2, dim_sizes, wrap_around, reorder, &grid_comm);

MPI_Comm_rank(grid_comm, &my_grid_rank);
MPI_Cart_coords(grid_comm, my_grid_rank, 2, coordinates);

MPI_Cart_rank(grid_comm, coordinates, &grid_rank);

printf("Process %d > my_grid_rank = %d, coords = (%d,%d), grid_rank = %d\n",
my_rank, my_grid_rank, coordinates{0], coordinates[1], grid_rank};

free_coords[0] = 0;
free_coords{1] = 1;
MPI_Cart_sub(grid_comm, free_coords, &row_comm);

if (coordinates[1] == 0)
row_test = coordinates(0];
else
row_test = -1;

148

I
if (coordinates{0] == 0)
row_test = coordinates{1];
else
row_test =-1;

*/
MPI_Bcast(&row_test, 1, MPI_INT, 0, row_comm);
printf("row_comm %d Process %d > coords = (%d,%d), row_test = %d\n",
row_comm, my_rank, coordinates(0], coordinates(1], row_test);
free_coords[0] = 1;
free_coords[1} = 0;
MPI_Cart_sub(grid_comm, free_coords, &col_comm);
if (coordinates[0] == 0)
col_test = coordinates(1];
else
col_test = -1;
MPI_Bcast(&col_test, 1, MPI_INT, 0, col_comm);
printf("Process %d > coords = (%d,%d), col_test = %d\n",
my_rank, coordinates[0], coordinates[1], col_test);
MPI_Finalize();
} /7 main */

/" paraliel_jacobi.c — parallel implementation of Jacobi's method
* for solving the linear system Ax = b. Uses block distribution
* of vectors and block-row distribution of A.

“ input:

* n: order of system

* tol: convergence tolerance

* max_iter: maximum number of iterations
- A: coefficient matrix

© b: right-hand side of system

* Qutput:

“ x: the solution if the method converges

* max_iter: if the method fails to converge

~ Notes:

* 1. A should be strongly diagonally dominant in
- order to insure convergence.

* 2. A, x, and b are statically allocated.

i
/f#define UNIX

#ifdef UNIX
#include <stdio.h>
#include <math.h>
#include "mpi.h"
#else

#include "mpi4.h"
#endif

#define MAX_DIM 4
#define Swap(x,y) { float” temp; temp = x; x = y; y = temp;}

float Distance (};

int Parallel_jacobi ();
void Read_matrix ();
void Read_vector ();
void Print_matrix ();
void Print_vector ();

#ifdef UNIX

149

void main (argc, argv)

#else
int MPI_main (argc, argv)
#endif
int argc;
char® argv(l;
int P;
int my_rank;

float A_localf]MAX_DIM*MAX_DIM];
float x_local[MAX_DIM];
float b_local[MAX_DIM];

int n;
float tol;
int max_iter;

int converged;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank == 0}

tol=0.01;
printf("Enter n, tolerance, and max number of iterations\n\n");
I
scanf("%d %f %d", &n, &tol, &max_iter);
i
n=4; tol=0.01; max_iter=100;

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&tol, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Bcast(&max_iter, 1, MPI_INT, 0, MPI_COMM_WORLD);

Read_matrix("Enter the matrix here\n", A_local, n, my_rank, p);
Print_matrix("Matrix entered\n”, A_local, n, my_rank, p);
Read_vector("Enter right-hand side vector\n”, b_local, n, my_rank, p);
Print_vector("Vector entered at right-hand side”, b_local, n, my_rank, p);

converged =
Paraliel_jacobi(A_local, x_local, b_local, n, tol, max_iter, p, my_rank);

if (converged)
Print_vector("The solution is", x_local, n, my_rank, p);
else
if (my_rank == 0)
printf("Failed to converge in %d iterations\n", max_iter);

MPI_Finalize();
} /¥ main </
I~ /
/* Return 1 if iteration converged, 0 otherwise */
I~ MATRIX_T is a 2-dimensional array i

int Parallel_jacobi (A_local, x_local, b_local, n, tol, max_iter, p, my_rank)
float” A_local;

float™ x_local; /7 out */

float” b_local;

int n;

float tol;

int max_iter;

int p;

int my_rank;
int i_local, i_global, j;
int n_bar;

int iter_num;

150

float x_temp1[MAX_DIM];
float x_temp2[MAX_DIM];
float” x_old;

float” x_new;

float” x_tmp;

floata, b, ¢, x, y;

n_bar = n/p;

I~ Initialize x */
MPI_Allgather
(b_local, n_bar, MPI_FLOAT, x_temp1, n_bar, MPI_FLOAT, MPI_COMM_WORLD);
x_new = x_temp1;
x_old = x_temp2;

iter_num = 0;

do

¢
iter_num++;

/* Interchange x_oid and x_new */
Swap(x_old, x_new);
for (i_local = 0; i_local < n_bar; i_local++)
{
i_global =i_local + my_rank"n_bar;
x_local(i_local] = b_local[i_local];
for (j = O; j < i_global; j++)
x_localfi_local]
= x_local(i_local] - 1*A_local[MAX_DIM"i_local+j]"x_old[j];
for (j = i_global+1; j < n; j++)
x_local[i_local]
= x_local[i_local] - 1*A_local[MAX_DIM*i_local+j}*x_old(j];

x_localli_local]
= x_local[i_local)/A_locai[MAX_DIM"i_local+i_globall;
}

MPI_Aligather
(x_local, n_bar, MPI_FLOAT, x_new, n_bar, MPI_FLOAT, MPI_COMM_WORLD);

while ((iter_num < max_iter) && (Distance(x_new,x_old,n) >= (tol"tol) });

if (Distance(x_new,x_old,n) < (tol"tol))
return 1;
else
return 0;
} /I~ Jacobi */

/ /

float Distance(x, y, n)
float” x;
float” y;
intn;
e
int i;
float sum = 0.0;
for (i=0;i<n;i++)

{
sum = sum + (x[i] - y[iD"(x{] - y[);

return (sum);
} /I Distance */

/ /

void Read_matrix(prompt, A_local, n, my_rank, p)

151

char® prompt;
float” A_local; /” out =/

int n;
int my_rank;
int p;
. i
int L
float temp[MAX_DIM*MAX_DIM];
int n_bar;
n_bar = n/p;

/" Fill dummy entries in temp with zerces */
for (i=0;i<n;i++)
for (j = n; j < MAX_DIM; j++)
temp[MAX_DIM*i+] = 0.0;

if (my_rank == 0)

printf("%s\n", prompt);
for (i = 0; i < n; i++)
for (j = 0; j < 11 j++)
}'
scanf("%f{", &temp[{MAX_DIM"i+j]);

i
temp[0] = 9.0; temp(1] = 1; temp[2] = 3; temp(3] = 2;
temp[4] = 2; temp[5] = 6; temp[6] = 1; temp(7] = 2;
temp(8] = 3; temp[9] = 1; temp[10] = 7; temp(11] = 2;
temp(12] = 1; temp[13] = 1; temp[14] = 1; temp(15] = 5;

}
MPI_Scatter(&temp(0], n_bar"MAX_DIM, MPI_FLOAT,

A_local, n_bar"MAX_DIM, MP!_FLOAT, 0, MPI_COMM_WORLD)

} /* Read_matrix */

/ - /

void Read_vector (prompt, x_local, n, my_rank, p)
char” prompt;
float® x_local; /- out */
int n;
int my_rank;
int p;
e
nt i;
float temp[MAX_DIM];
int n_bar;

n_bar = n/p;
if (my_rank==0)

printf("%s\n", prompt);
for (i=0;i<n; i++)
temp(i] = 0.0; [~ without this scanf not working */
I
scanf("%f", &temp(il);
</

}
temp[0] = 28; temp[1] = 25; temp[2] = 34; temp(3] = 26
}

MPI_Scatter

(temp, n_bar, MPI_FLOAT, x_local, n_bar, MPI_FLOAT, 0, MPI_COMM_WORLD);

} 1" Read_vector */

152

/ /

void Print_matrix (title, A_local, n, my_rank, p)
char* title;

float” A_local;
int n;
int my_rank;
int p:
{
int i
float temp[{MAX_DIM*MAX_DIM];
int n_bar;
n_bar = n/p;

MPIi_Gather(A_local, n_bar*MAX_DIM, MPI_FLOAT,
&temp[0], n_barMAX_DiM, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (my_rank == 0)

printf("%s\n", title);
for (i = 0;i<n;i++)

for (= 0; j<n; j++)
printf("%4.3f ", temp[MAX_DIM"i+j]);

printf("\n");
printf("n\n");

} /7 Print_matrix °/

/ - !

void Print_vector (title, x_local, n, my_rank, p)
char” title;
float” x_local;
int n;
int my_rank;
int p;
e
int
float temp[MAX_DIM};
int n_bar;

n_bar = n/p;

MPI_Gather
(x_local, n_bar, MPI_FLOAT, temp, n_bar, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (my_rank == 0)

printf("%s\n", title);

for (i=0;i<n; i++)
printf("%4.3f ", temp(i]);

printf("\n");

}
printf("n\n");
}/* Print_vector “/

" parallel_bitonic.c — paralle! bitonic sort of randomly generated list
* of integers
* Input:
* n:the global length of the list -~ must be a power of 2.

* Qutput:

153

The sorted list.

* Notes:

“ 1. Assumes the number of processes p = 2d and p divides n.
* 2. Thelists are statically allocated — size specified in MAX.

* 3. Keys are in the range 0 — KEY_MAX-1.

- 4. Implementation can be made much more efficient by using
* pointers and avoiding re-copying lists in merges.

“/
/* Get rand and gsort */
/l#define UNIX

#itdef UNIX
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "mpi.h"
#else

#include "mpi4.h"
#endif

#define MAX 100

#define LOW 0

#define HIGH 1

#define KEY_MAX 10000
#define key_mpi_t MPI_INT

typedef int KEY_T;

void Generate_local_list ();
void Print_list ();

void Local_sort ();

int Key_compare ();

int log_base2 ();

void Par_bitonic_sort_incr ();
void Par_bitonic_sort_decr ();
void Merge_split ();

void Merge_list_low (};

void Merge_list_high ();

/ ‘ (
#ifdef UNIX
void main(argc, argv)
#else
int MPI_main(argc, argv)
#endif
int argc;
char” argv(];
int list_size; /* Local list size °/
int n; /* Global list size */

KEY_T local_listfMAX];
int proc_set_size;

int my_rank;

int p;

unsigned and_bit;
MPI_Comm io_comm;

MPI_Init(&argc, &argv);
MP!_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_rank(MP!{_COMM_WORLD, &my_rank);
MPI_Comm_dup(MPI_COMM_WORLD, &io_comm);
if (my_rank == 0)

print{("Enter the global list size.\n");

154

I
scanf("%d", &n);

“f
n=20;
}
MPI1_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
list_size = n/p;
Generate_local_list(list_size, local_list);
Print_list(™Mn\n\nBefore local sort", list_size, local_list, io_comm);
i Local_sort(list_size, local_list);
/'/ Print_list("\nAfter local sort", list_size, local_list, io_comm);

/* and_bit is a bitmask that, when "anded" with “/
I my_rank, tells us whether we're working on an */
/* increasing or decreasing list */

for (proc_set_size = 2, and_bit = 2;
proc_set_size <=p;
proc_set_size = proc_set_size"2, and_bit = and_bit << 1)
if ((my_rank & and_bit) == 0)
Par_bitonic_sort_incr
(list_size, local_list, proc_set_size, MPI_COMM_WORLD);
else
Par_bitonic_sort_decr
(list_size, local_list, proc_set_size, MPI_COMM_WORLD);

Print_list("\nAfter sort", list_size, local_list, io_comm);

MPI_Finalize();
} /- main */

/ h o b /

void Generate_local_list (list_size, local_list)

int list_size;
KEY_T" local_list; /- out */
t

inti;

int my_rank;

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
srand(my_rank);

for (i = 0; i < list_size; i++)

#ifdef UNIX

local_list[i] = rand() % KEY_MAX;
#else

local_list[i] = (int)(fabs(rand()) ~ 10000) % KEY_MAX;
#endif

} /I Generate_iocal_list </

/ - /
void Print_list (title, list_size, local_list, io_comm)

char® title;

int list_size;

KEY_T* local_list;
MPI_Comm io_comm;

. :
int i, Q;
int p;
int my_rank;
int root = 0;

MPI_Status status;

155

KEY_T temp_list{MAX];

MPI_Comm_size(io_comm, &p);
MPI_Comm_rank(io_comm, &my_rank);

if (my_rank == root)

printf("%s\n", title);
for (g = 0; g <root; g++)

MPI_Recv(temp_list, list_size, key_mpi_t, q, 0, io_comm, &status);
printf("Process %d > ".q);
for (i = 0; i < list_size; i++)
printf("%d ", temp_list(i]);
printf(Mn™);

printf("Process %d > ", root);

for (i = O; i < list_size; i++)
printf("%d *, local_list(i});

printf("Min®);

for (q = root+1; Q< p: q++)

MPI_Recv(temp_list, list_size, key_mpi_t, q, 0, io_comm, &status);
printf("Process %d > ",q);
for (i = 0; i < list_size; i++)
printf("%d *, temp_list[i]);
printf("\n");
3
}
else

MPI_Send(local_list, list_size, key_mpi_t, root, 0, io_comm);

}
} /7 Print_list =/

/ !/

void Local_sort (list_size, local_keys)
int list_size;
KEY_T* local_keys; /* infout */
{
inti, j, k, tmp, temp(100];

for (i=0; i<list_size; i++)

{
tmp = 0;
for (j=0; j<list_size; j++)
if (tmp <local_keys{j])
tmp = local_keys{jl;
k= j;
}
templ(list_size-i-1] = tmp;
local_keys(k} = 0;
}

MPIi_Comm_rank(MPI_COMM_WORLD, &k);

for (i=0; i<list_size; i++)
local_keys[i] = templil;

156

int Key_compare (p, q)
KEY T p:

KEY_T-q;

{

if Cp<-q)
return -1;

elseif (‘p == "q)
return 0;

else/* "p>-q "~/
return 1;

} " Key_compare “/

/ /

int log_base2 (x)
int x;

int count = 0;
while (x> 1)

X = x/2;
count++;

return count;
} /" log_base2 */

/ - !

void Par_bitonic_sort_incr (list_size, local_list, proc_set_size, comm)
int list_size;
KEY_T" local_list; /” infout */

int proc_set_size;
MPI_Comm comm;
{

unsigned eor_bit;

int proc_set_dim;
int stage;

int partner;

int my_rank;

MP!_Comm_rank(comm, &my_rank);

proc_set_dim = log_base2(proc_set_size);
eor_bit = 1 << (proc_set_dim - 1);
for (stage = O; stage < proc_set_dim; stage++)
{
partner = my_rank * eor_bit;
if (my_rank < partner)
Merge_split(list_size, local_list, LOW, partner, comm);
else
Merge_split(list_size, local_list, HIGH, partner, comm);
eor_bit = eor_bit >> 1;

} /* Par_bitonic_sort_incr */

/ /

void Par_bitonic_sort_decr (list_size, local_list, proc_set_size, comm)
int list_size;

KEY_T" local_list; /" infout */

int proc_set_size;

MPI_Comm comm;

unsigned eor_bit;

157

int proc_set_dim;
int stage;

int partner;

int my_rank;

MP!I_Comm_rank{comm, &my_rank);

proc_set_dim = log_base2(proc_set_size);
eor_bit = 1 << (proc_set_dim - 1);
for (stage = 0; stage < proc_set_dim; stage++)
{
partner = my_rank * eor_bit;
if (my_rank > partner)
Merge_split(list_size, local_list, LOW, partner, comm);
else
Merge_split(list_size, local_list, HIGH, partner, comm);
eor_bit = eor_bit>> 1;

} " Par_bitonic_sort_decr */

/ /

void Merge_split (list_size, local_list, which_keys, partner, comm)
int list_size;
KEY_T* local_list; /* infout */

int which_keys;
int partner;
MP!_Comm comm;

{

MPI_Status status;
KEY_T temp_list{MAX];

/* key_mpi_tis an MPI (derived) type */

MP!_Sendrecv(liocal_list, list_size, key_mpi_t, partner, 0, temp_list,
list_size, key_mpi_t, partner, 0, comm, &status);

if (which_keys == HIGH)
Merge_list_high(list_size, local_list, temp_list);
else
Merge_list_low(list_size, local_list, temp_list);
} /- Merge_split */

/ ==/
I~ Merges the contents of the two lists. */
/* Returns the smaller keys in listt */

void Merge_list_low (list_size, list1, list2)
int list_size;
KEY_T* list1; /" infout */
KEY_T* list2;
e
int i;
int index1 = 0;
int index2 = 0;
KEY_T scratch_list(MAX];

for (i = 0; i < list_size; i++)
if (list1(index1] <= list2[index2})

scratch_list(i] = list1[indexi};
index1++;

else

scratch_list{i] = list2{index2];
index2++;

158

}

for (i = 0; i <list_size; i++)
list1[i] = scratch_list(i];

} /- Merge_list_low °/

/
/~ Returns the larger keys in list 1. */

void Merge_list_high (list_size, list1, list2)
int list_size;
KEY_T* list1; /" infout */
KEY_T* list2;
(-
int i;
int indext = list_size - 1;
int index2 = list_size - 1;
KEY_T scratch_list{tMAX];

for (i = list_size - 1; i >=0; i-)
if (list1{index1] >= list2[index2])

scratch_list[i] = list1[index1];
indexi—;
}

eise

scratch_list(i] = list2index2];
index2-—;
}
for (i = 0; i < list_size; i++)

list1(i] = scratch_list[i];
} /I~ Merge_list _high */

159

Appendix B

B. MPI C Binding Reference

int MPI_Abort(comm, errorcode)
MPI_Comm comm;
int errorcode;

Terminates MPI execution environment

int MPI_Address(location, address)
void *location;
MPI_Aint *address;

Gets the address of a location in memory

int MPIL_Allgatherv (sendbuf, sendcount,
sendtype, recvbuf, recvcounts,

displs, recvtype, comm

)
void *sendbuf;

int sendcount;
MPI_Datatype sendtype;
void “recvbuf;

int “recvcounts;

int "displs;
MPI_Datatype recvtype;
MPI_Comm comm;

Gathers data from all tasks and deliver it to all

int MPI_Allgather (sendbuf, sendcount,
sendtype, recvbuf, recvcount,
recvtype, comm

)

void *sendbuf;

int sendcount;

MPI_Datatype sendtype;
void "recvbuf;

int recvcount;

MPI_Datatype recvtype;
MPI_Comm comm;

Gathers data from all tasks and distribute it to all

int MPI_Alireduce (sendbuf, recvbuf,
count, datatype, op, comm)

Combines values from all processes and

distribute the result back to all processes

160

void "sendbuf;

void “recvbuf;

int count;

MPI_Datatype datatype;
MPI_Op op;
MPI_Comm comm;

int MPI_Alltoallv (sendbuf, sendcnts,
sdispls, sendtype, recvbuf,
recvents, rdispls, recvtype,
comm

)

void *sendbuf;

int "sendcnts;

int "sdispls;

MPI_Datatype sendtype;
void *recvbuf;

int “recvents;

int “rdispls;

MPI_Datatype recvtype;
MPI_Comm comm;

Sends data from all to all processes, with a

Displacement

int MPI_Alltoall(sendbuf, sendcount,
sendtype, recvbuf, recvent,
recvtype, comm

)
void "sendbuf;

int sendcount;
MPI_Datatype sendtype;
void “recvbuf;

int recvent;
MPI_Datatype recvtype;
MPI_Comm comm;

Sends data from all to all processes

int MPI_Attr_delete (comm, keyval)
MPI_Comm comm;
int keyval;

Deletes attribute value associated with a key

int MPI_Attr_get (comm, keyval,
attr_value, flag)
MPI_Comm comm;

Retrieves attribute value by key

161

int keyval;
void attr_value;
int *flag;

int MPI_Attr_put (comm, keyval,
attr_value)

MPI_Comm comm;

int keyval;

void *attr_value;

Stores attribute value associated with a key

int MPI_Barrier (comm)
MPI_Comm comm;

Blocks until all process have reached this routine.

int MPI_Bcast (buffer, count, datatype,
root, comm)

void "buffer;

int count;

MPI_Datatype datatype;

int root;

MPI_Comm comm;

Broadcasts a message from the process with rank

"root" to all other processes of the group.

int MP1_Bsend_init(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

MPI_Request *“request;

Builds a handle for a buffered send

int MPI_Bsend(buf, count, datatype,
dest, tag, comm)

void ~buf;

int count, dest, tag;

MPI_Datatype datatype;

MPI_Comm comm;

Basic send with userspecified buffering
int MPI_Buffer_attach(buffer, size)
void ~buffer;

int size;

Attaches a userdefined buffer for sending

int MPI_Buffer_detach(bufferptr, size)

Removes an existing buffer (for use in

162

void *bufferptr;
int "size;

MPI_Bsend etc)

int MPI_Cancel(request)
MPI_Request "request;

Cancels a communication request

int MPI_Cart_coords (comm, rank,
maxdims, coords)

MPI_Comm comm;

int rank;

int maxdims;

int "coords;

Determines process coords in cartesian topology

given rank in group

int MPI_Cart_create (comm_old, ndims,
dims, periods, reorder,

comm_cart)

MPI_Comm comm_old;

int ndims;

int *dims;

int "periods;

int reorder;

MPI_Comm "comm_cart;

Makes a new communicator to which topology

information has been attached

int MPI_Cart_get (comm, maxdims, dims,
periods, coords)

MPI_Comm comm;

int maxdims;

int “dims, “periods, "coords;

Retrieves Cartesian topology information

associated with a communicator

int MPI_Cart_map (comm_old, ndims, dims,
periods, newrank)

MPI_Comm comm_old;

int ndims;

int *dims;

int "periods;

int "newrank;

Maps process to Cartesian topology information

int MPI_Cart_rank (comm, coords, rank)
MPI_Comm comm;

int *coords;

int *rank;

Determines process rank in communicator given

Cartesian location

int MPI_Cart_shift (comm, direction,
displ, source, dest)

Returns the shifted source and destination ranks,

given a shift direction and amount

163

MPI_Comm comm;
int direction;

int displ;

int "source;

int “dest;

int MPI_Cart_sub (comm, remain_dims,
comm_new)

MPI_Comm comm;

int "remain_dims;

MPI_Comm *comm_new;

Partitions a communicator into subgroups which

form lowerdimensional cartesian subgrids

int MPI_Cartdim_get (comm, ndims)
MPI_Comm comm;
int "ndims;

Retrieves Cartesian topology information

associated with a communicator

int MPI_Comm_compare { comm1, comm2,
result)

MPI_Comm comm1;

MPI_Comm comm2;

int “result;

Compares two communicators

int MPI_Comm_create (comm, group,
comm_out)

MPI_Comm comm;

MPI1_Group group;

MPI_Comm *comm_out;

Creates a new comrnunicator

int MPI_Comm_dup (comm, comm_out)
MPI_Comm comm, "comm_out;

Duplicates an existing communicator with all its

cached information

int MPI_Comm_free (commp)
MPI_Comm *commp;

Marks the communicator object for deallocation

int MPI_Comm_group (comm, group)
MPI_Comm comm;
MPI_Group *group;

Accesses the group associated with given

Communicator

int MPI_Comm_rank (comm, rank)
MPI_Comm comm;
int "rank;

Determines the rank of the calling process in the

Communicator

int MP!_Comm_remote_group (comm, group)

MPI_Comm comm;
MPI_Group *group;

Accesses the remote group associated with the

given intereommunicator

int MPI_Comm_remote_size (comm, size)

Determines the size of the remote group

164

MPI_Comm comm;
int *size;

associated with an interecommunictor

int MPl_Comm_size (comm, size)
MPI_Comm comm;
int "size;

Determines the size of the group associated with

a communictor

int MP{_Comm_split (comm, color, key,
comm_out)

MPI_Comm comm;

int color, key;

MPI_Comm “comm_out;

Creates new communicators based on colors and

Keys

int MPI_Comm_test_inter (comm, flag)
MPI_Comm comm;
int *flag;

Tests to see if a comm is an intercommunicator

int MPIR_dup_fn (comm, keyval,
extra_state, attr_in, attr_out,
flag)

MPI_Comm comm;

int keyval;

void *extra_state;

void "attr_in;

void "attr_out;

int *flag;

A function to simplemindedly copy attributes

int MPI_Dims_create(nnodes, ndims, dims)
int nnodes;

int ndims;

int *dims;

Creates a division of processors in a cartesian

Grid

int MPI_Errhandler_create(function,
errhandler)

MPI_Handler_function *function;
MPI_Errhandler “errhandler;

Creates an MPIstyle errorhandler

int MPI_Errhandler_free(errhandier)
MPI_Errhandler “errhandler;

Frees an MPIstyle errorhandler

int MP1_Errhandler_get(comm, errhandler

)

MPI_Comm comm;
MPI_Errhandler "errhandler;

Gets the error handler for a communicator

int MPI_Errhandler_set(comm, errhandler

Sets the error handler for a communicator

165

)

MP{_Comm comm;
MPI_Errhandler errhandier;

int MPI_Error_class(errorcode,
errorclass)
int errorcode, “errorclass;

Converts an error code into an error class

int MPI_Error_string(errorcode, string,
resultlen)

int errorcode, “resultlen;

char “string;

Return a string for a given error code

int MP1_Finalize()

Terminates MPI execution environment

int MPI_Gatherv (sendbuf, sendcnt,
sendtype, recvbuf, recvents,
displs, recvtype, root, comm
)

void “sendbuf;

int sendcnt;

MPI_Datatype sendtype;
void *recvbuf;

int “recvents;

int ~displs;

MPI_Datatype recvtype;

int root;

MPI_Comm comm;

Gathers into specified locations from all

processes in a group

int MPI_Gather (sendbuf, sendcnt,
sendtype, recvbuf, recvcount,
recvtype, root, comm

)
void *sendbuf;

int sendcnt;
MPI_Datatype sendtype;
void “recvbuf;

int recvcount;
MPI_Datatype recvtype;
int root;

MPI_Comm comm;

Gathers together values from a group of processes

int MPI_Get_count(status, datatype,

Gets the number of "top level" elements

166

count)

MPI_Status "status;
MPI_Datatype datatype;
int *count;

int MPI_Get_elements (status, datatype,
elements)

MPI_Status ~status;

MPI_Datatype datatype;

int "elements;

Returns the number of basic elements in a

Datatype

int MPI_Get_processor_name(name,
resultlen)

char "name;

int "resultlen;

Gets the name of the processor

int MPi_Graph_create (comm_old, nnodes,
index, edges, reorder,

comm_graph)

MPI_Comm comm_old;

int nnodes;

int "index;

int "edges;

int reorder;

MPI_Comm *comm_graph;

Makes a new communicator to which topology

information has been attached

int MPI_Graph_get (comm, maxindex,
maxedges, index, edges)

MPI_Comm comm;

int maxindex, maxedges;

int “index, "edges;

Retrieves graph topology information associated

with a communicator

int MPI_Graph_map (comm_old, nnodes,
index, edges, newrank)

MPI_Comm comm_old;

int nnodes;

int “index;

int "edges;

int *newrank;

Maps process to graph topology information

int MPI_Graph_neighbors_count (comm,
rank, nneighbors)
MPI_Comm comm;

Returns the number of neighbors of a node

associated with a graph topology

167

int rank;
int "nneighbors;

int MPI_Graph_neighbors (comm, rank,
maxneighbors, neighbors)

MPI_Comm comm;

int rank;

int maxneighbors;

int *neighbors;

Returns the neighbors of a node associated with

a graph topology

int MPI_Graphdims_get (comm, nnodes,
nedges)

MPI_Comm comm;

int "nnodes;

int "nedges;

Retrieves graph topology information associated

with a communicator

int MPI_Group_compare (group1, group2,
result)

MPi_Group groupi;

MPI_Group group2;

int “result;

Compares two groups

int MPI_Group_difference (group1,
group2, group_out)
MPI_Group group1, group2, *group_out;

Makes a group from the difference of two groups

int MPI_Group_excl (group, n, ranks,
newgroup)

MPI_Group group, "newgroup;

int n, "ranks;

Produces a group by reordering an existing group

and taking only unlisted members

int MPI_Group_free (group)
MPI_Group "group;

Frees a group

int MPI_Group_incl (group, n, ranks,
group_out)

MPI_Group group, "group_out;

int n, “ranks;

Produces a group by reordering an existing group

and taking only listed members

int MPI_Group_intersection (group1i,
group?2, group_out)
MPI_Group group1, group2, “group_out;

Produces a group as the intersection of two

existing groups

int MPI_Group_range_excl (group, n,
ranges, newgroup)
MPI_Group group, "newgroup;

Produces a group by excluding ranges of

processes from an existing group

168

int n, ranges([3];

int MPI_Group_range_incl (group, n,
ranges, newgroup)

MPI_Group group, “newgroup;

int n, rangesi[3];

Creates a new group from ranges of ranks in an

existing group

int MPI_Group_rank (group, rank)
MPI_Group group;
int *rank;

Returns the rank of this process in the given group

int MPI_Group_size (group, size)
MPI1_Group group;
int "size;

Returns the size of a group

int MPI_Group_translate_ranks (group_a,
n, ranks_a, group_b, ranks_b)
MPI_Group group_a;

int n;

int “ranks_a;

MPI_Group group_b;

int “ranks_b;

Translates the ranks of processes in one group to

those in another group

int MPI_Group_union (group1, group2,
group_out)
MPI_Group group1, group2, *group_out;

Produces a group by combining two groups

int MPI_lbsend(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

MPI_Request "request;

Starts a nonblocking buffered send

int MPI_Initialized(flag)
int *flag;

Indicates whether *"MPI_Init' has been called.

int MPI_Init(argc,argv)
int "argc;
char ""argv;

Initialize the MPI execution environment

int MPI_Intercomm_create (local_comm,
local_leader, peer_comm,

Creates an intercommuncator from two

Intracommunicators

169

remote_leader, tag, comm_out
)
MPI_Comm local_comm;
int local_leader;
MPI_Comm peer_comm;
int remote_leader;

int tag;

MPI_Comm *comm_out;

int MPI_Intercomm_merge (comm, high,
comm_out)

MPI_Comm comm;

int high;

MPI_Comm *comm_out;

Creates an intracommuncator from an

Intercommunicator

int MPI_Iprobe(source, tag, comm, fiag,
status)

int source;

int tag;

int “flag;

MPI_Comm comm;

MPI_Status “status;

Nonblocking test for a message

int MPI_lIrecv(buf, count, datatype,
source, tag, comm, request)

void "buf;

int count;

MPI_Datatype datatype;

int source;

int tag;

MPI_Comm comm;

MPI_Request “request;

Begins a nonblocking receive

int MPI_Irsend(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

Starts a nonblocking ready send

170

MPI_Request "request;

int MP1_Isend(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

MPI_Request "request;

Begins a nonblocking send

int MPI_lssend(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

MPI_Request "request;

Starts a nonblocking synchronous send

int MPI_Keyval_create (copy_fn,
delete_fn, keyval, extra_state

)
MPi_Copy_function "copy_fn;
MPI_Delete_function *delete_fn;
int "keyval;

void "extra_state;

Generates a new attribute key

int MPI_Keyval_free (keyval)
int "keyval;

Frees attribute key for communicator cache attribute

int MPI_Op_create(function, commute, op
)
MPI_User_function *function;

int commute;

MPI_Op *op;

Creates a userdefined combination function
handle

int MPI_Op_free{(op)

MPI_Op *op;

Frees a userdefined combination function handle

171

int MPI_Pack_size (incount, datatype,
comm, size)

int incount;

MPI_Datatype datatype;

MPI_Comm comm;

int *size;

Returns the upper bound on the amount of space

needed to pack a message

int MPI_Pack (inbuf, incount, type,
outbuf, outcount, position,

comm)

void *inbuf;

int incount;

MPI_Datatype type;

void *outbuf;

int outcount;

int "position;

MPI_Comm comm;

Packs a datatype into contiguous memory

int MPI_Pcontrol(level)
int level;

Controls profiling

int MPI_Probe(source, tag, comm, status

)

int source;

int tag;

MPI_Comm comm;
MP[_Status "status;

Blocking test for a message

int MP1_Recv_init(buf, count, datatype,
source, tag, comm, request)

void ~buf;

int count;

MPI_Request “request;

MPI_Datatype datatype;

int source;

int tag;

MPI_Comm comm;

Builds a handle for a receive

int MPI_Recv(buf, count, datatype,
source, tag, comm, status)

void *buf;

int count, source, tag;

Basic receive

172

MPI_Datatype datatype;
MPi_Comm comm;
MPI_Status "status;

int MPI_Reduce_scatter (sendbuf,
recvbuf, recvents, datatype,

op, comm)

void *sendbuf;

void “recvbuf;

int “recvents;

MPI_Datatype datatype;

MPI_Op op;

MPI_Comm comm;

Combines values and scatters the results

int MPI_Reduce (sendbuf, recvbuf, count,
datatype, op, root, comm)

void "sendbuf;

void *recvbuf;

int count;

MPI_Datatype datatype;

MPI_Op op;

int root;

MPI_Comm comm;

Reduces values on all processes to a single
value

int MPI_Request_free(request)
MPI_Request "request;

Frees a communication request object

int MPI_Rsend_init(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

MPI_Request "request;

Builds a handle for a ready send

int MPI_Rsend(buf, count, datatype,
dest, tag, comm)
void *buf;

Basic ready send

173

int count, dest, tag;
MPIi_Datatype datatype;
MPI_Comm comm;

int MPI_Scan (sendbuf, recvbuf, count,
datatype, op, comm)

void *sendbuf;

void *recvbuf;

int count;

MPI_Datatype datatype;

MPI_Op op;

MPI_Comm comm;

Computes the scan (partial reductions) of data

on a collection of processes

int MPI_Scatterv (sendbuf, sendcnts,
displs, sendtype, recvbuf,

recvent, recvtype, root, comm

)
void “sendbuf;

int *sendcnts;

int *displs;
MPI_Datatype sendtype;
void “recvbuf;

int recvent;
MPI_Datatype recvtype;
int root;

MPI_Comm comm;

Scatters a buffer in parts to all tasks in a group

int MPI_Scatter (sendbuf, sendcnt,
sendtype, recvbuf, recvent,
recvtype, root, comm

)
void *sendbuf;

int sendcnt;
MPI_Datatype sendtype;
void “recvbuf;

int recvent;
MPI_Datatype recvtype;
int root;

MPI_Comm comm;

Sends data from one task to all other tasks in a

Group

int MPI_Send_init(buf, count, datatype,

Builds a handle for a standard send

174

dest, tag, comm, request)
void *buf;

int count;

MPI_Datatype datatype;
int dest;

int tag;

MPI_Comm comm;
MPI_Request "request;

int MPI_Sendrecv_replace(buf, count,
datatype, dest, sendtag,

source, recvtag, comm, status

)

void *buf;

int count, dest, sendtag, source,
recvtag;

MPI_Datatype datatype;

MPI_Comm comm;

MPI_Status ~status;

Sends and receives using a single buffer

int MPI_Sendrecv(sendbuf, sendcount,
sendtype, dest, sendtag,

recvbuf, recvcount, recvtype,

source, recvtag, comm, status

)
void “sendbuf;

int sendcount;
MPI_Datatype sendtype;
int dest, sendtag;

void “recvbuf;

int recvcount;
MPI_Datatype recvtype;
int source, recvtag;
MPI_Comm comm;
MPI_Status “status;

Sends and receives a message

int MPl_Send(buf, count, datatype, dest,
tag, comm)

void *buf;

int count, dest, tag;

Performs a basic send

175

MPI_Datatype datatype;
MPI_Comm comm;

int MPI_Ssend_init(buf, count, datatype,
dest, tag, comm, request)

void *buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

MPI_Request "request;

Builds a handle for a synchronous send

int MPI_Ssend(buf, count, datatype,
dest, tag, comm)

void *buf;

int count, dest, tag;

MPI_Datatype datatype;
MPI_Comm comm;

Basic synchronous send

int MPI_Startall(count,
array_of_requests)

int count;

MPI_Request array_of_requests[];

Starts a collection of requests

int MPI_Start(request)
MPI1_Request "request;

Initiates a communication with a persistent

request handle

int MPI_Test_cancelled(status, flag)
MPI|_Status ~status;
int *flag;

Tests to see if a request was canceled

int MPI_Testall(count,
array_of_requests, flag,
array_of_statuses)

int count;

MPI_Request array_of_requests[];
int *flag;

MP|_Status "array_of_statuses;

Tests for the completion of all previously

initiated communications

int MPI_Testany(count,
array_of_requests, index, flag,
status)

Tests for completion of any previdously initiated

Communication

176

int count;

MPI_Request array _of_requests[];
int *index, *flag;

MPI_Status “status;

int MPI_Testsome(incount,
array_of_requests, outcount,
array_of_indices,

array_of statuses

)
int incount, *outcount,
array_of_indicesf];

MPI_Request array_of_requests]];
MPI_Status array_of _statusesl[];

Tests for some given communications to complete

int MPI_Test (request, flag, status)
MPI_Request "request;

int *flag;

MPI_Status *status;

Tests for the completion of a send or receive
int MPI_Topo_test (comm, top_type)
MPI_Comm comm;

int "top_type;

Determines the type of topology (if any)

associated with a communicator

int MPI_Type_commit (datatype)
MPI_Datatype “datatype;

Commits the datatype

int MPI_Type_contiguous(count, old_type,
newtype)

int count;

MPI_Datatype old_type;

MPI_Datatype "newtype;

Creates a contiguous datatype

int MPI_Type_extent(datatype, extent)
MPI_Datatype datatype;

MPI_Aint *extent;

Returns the extent of a datatype

int MPI_Tvpe_free (datatype)
MPI_Datatype *datatype;

Frees the datatype

int MPI_Type_hindexed(count, blocklens,
indices, old_type, newtype)

Creates an indexed datatype with offsets in bytes

177

int count;

int blockiens(];

MPI_Aint indices[];
MPI_Datatype old_type;
MPI_Datatype "newtype;

int MPI_Type_hvector(count, blockien,
stride, old_type, newtype)

int count;

int blocklen;

MPI_Aint stride;

MPI1_Datatype old_type;
MPI_Datatype “newtype;

Creates a vector (strided) datatype with offset in

Bytes

int MPI_Type_indexed(count, blocklens,
indices, old_type, newtype)

int count;

int blocklens{];

int indices(];

MPI_Datatype old_type;

MPI_Datatype "newtype;

Creates an indexed datatype

int MPI_Type_Ib (datatype, displacement
)
MPI_Datatype datatype;

MPI_Aint *displacement;

Returns the lowerbound of a datatype
int MPI_Type_size (datatype, size)
MPI_Datatype datatype;

int "size;

Return the number of bytes occupied by entries

in the datatype

int MPI_Type_struct(count, blocklens,
indices, old_types, newtype)

int count;

int blocklens(];

MPI_Aint indices[];

MPI_Datatype old_types[];
MPI_Datatype “newtype;

Creates a struct datatype

int MPI_Type_ub (datatype, displacement

)
MPI_Datatype datatype;

Returns the upper bound of a datatype

178

MPI_Aint "displacement;

int MPI_Type_vector(count, blocklen,
stride, old_type, newtype)

int count;

int blocklen;

int stride;

MPI_Datatype old_type;
MPi_Datatype "newtype;

Creates a vector (strided) datatype

int MPI_Unpack (inbuf, insize, position,
outbuf, outcount, type, comm)

void "inbuf;

int insize;

int “position;

void *outbuf;

int outcount;

MPI_Datatype type;

MPI_Comm comm;

Unpack a datatype into contiguous memory

int MPI_Waitall(count, array_of_requests,
array_of_statuses)

int count;

MPI_Request array_of_requests[];
MPI_Status array_of_statuses[;

Waits for all given communications to complete

int MPI_Waitany(count, array_of_requests,
index, status)

int count;

MPI_Request array_of_requests{];

int "index;

MPI_Status "status;

Waits for any specified send or receive to

Complete

int MPI_Waitsome(incount,
array_of_requests, outcount,
array_of_indices,
array_of_statuses

)

int incount, outcount,
array_of_indices{];

MPI_Request array_of_requests[];
MPI_Status array_of_statuses[];

Waits for some given communications to

Complete

179

int MPI_Wait (request, status)
MPI_Request “request;
MPI_Status "status;

Waits for an MPI send or receive to complete

double MPI_Wtick()

Returns the resolution of MPI_Wtime

double MPI_Wtime()

Returns an elapsed time on the calling processor

180

Bibliography

[1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

E. Anderson, et al. “MPIL: Message Passing Interface Standard”, Message Passing
Interface Forum, 1997.

H. U. T. Nguyen, “CPSS: A Flexible and Efficent Simulator for Wormhole-

Routed Multicomputers”, Master Degree Thesis at Concordia University, 1997.

B. Meek. “Fortran, PL/1, and the Algols,” Macmillan Press, London, 1978.

P. Pierce. '"The NX/2 Operating System,” Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, pages 384-390. ACM Press,
1988.

G.A. Geist, et.al. “A User's Guide to PICL.: a Portable Instrumented
Communication Library,” Technical Report TM-11616, Oak Ridge National
Laboratory, October 1990.

Parasoft Corporation, “Express User's Guide, version 3.2.5 edition,” Pasadena,

CA,1992.

R. Butler, E. Lusk. “User's Guide to the p4 Programming System.” Technical
report TM-ANL-92/17, Argonne National Laboratory, 1992.

J. Dongarra, et al. “Integrated PVM Framework Supports Heterogenous Network
Computing.” Computers in Physics, 7(2):166-75, April 1993.

181

[9]

[10]

[11]

[12]

[13]

(14]

[15]

D. Walker. “Standards for Message Passing in a Distributed Memory
Environment.” Technical Report TM-12147, Oak Ridge National Laboratory,
August 1992.

J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. “A Proposal for a
User-level, Message Passing Interface in a Distributed Memory Environment.”

Technical Report TM-12231, Oak Ridge National Laboratory, February 1993.

Message Passing Interface Forum. “MPI: A Message-passing Interface Standard.”
Technical Report CS-94-230, Computer Science Dept., University of Tennessee,
Knoxville, TN, 1994.

Message Passing Interface Forum. MPI: “A Message-passing Interface Standard.”

International Journal of Supercomputer Applications, 8(3/4), 1994.

P. Bridges, et.al. “User's Guide to MPICH, a Portable Implementation of MPL”
Available by ftp from info.mcs.anl.gov in |publ/mpilguide.ps.Z, November 1994.

J. Zhang, “A Visual Performance Debugger for Concordia Parallel Programming

Environment,” Master Degree Thesis at Concordia University, 1999.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. “A high-performance, portable
implementation of the MPI message passing interface standard,” Parallel Com-

puting, 22(6):789-828, See: http://www.mcs.anl.govimpich/. September 1996.

182

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Al Geist, Adam Begeulin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. “PVM: Parallel Virtual Machine. A Users' Guide and Tutorial
for Networked Parallel = Computing,” MIT Press, See also

http:/lwww.epm.ornl.govipvm/. 1994.

Ohio Supercomputer Center. “MPI Primer/Developing with LAM.” Ohio

Supercomputer Center. http:[fwww.osc.edul/lam.html. 1995.

R. Alasdair, A. Bruce, James. G. Mills, and A. Gordon Smith. “CHIMP/MPI User

Guide.” Ohio Supercomputer Center. http:/lwww.osc.edulchimp.html. 1996.

IBM, “IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference,” Version 2, Release 2, Document Number GC23-3894-01,
http:/lwww.rs6000.ibm.com/resourcelaix resource/sp books/pelindex.html.

November 1996.

Hewlett Packard. “HP MPI User's Guide,” HP Part No. B6011-90001, Hewlett

Packard. http:/Iwww.hp.com/wsgissalmpilmpihome.html. November 1996.

Digital Equipment Corporation. “Digital MPI User Guide,” Digital Equipment
Corporation. http:/lwww.digital.com/hpc/software/dmpi.html. February 1997.

R. Hempel, H. Ritzdorf, and F. Zimmermann. “Implementation of MPI on NEC's
SX-4 multi-node architecture,” In Proceedings of the Euro PVM-MPI Workshop,
htp:l/www.ccrl-nece.technopark.gmd.del mpich/mpich nec.html. 1997.

183

(23]

[24]

[25]

Pallas. “Vampir and vampirtrace,” Pallas. http://www.pallas.de. 1997.

Lloyd J. Lewins. “MPI for the mercury race processor,” For more information,

mail to llewins@ccgate.hac.com. 1998.

David Sitsky. “Implementing mpi using interrupts and remote copying on the
ap1000/ap1000+,” In Proceedings of the Fourth Parallel Computing Workshop,

London, England, htip://cap.anu.edu.au/caplprojects/mpi/mpi.html. October

1995.

184

