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ABSTRACT

Average Lang—Trotter Conjecture for 2 Elliptic Curves

Robert Juricéevié

Let E; and E, be two elliptic curves without complex multiplication over the ra-
tionals. For primes p of good reduction, let a,(F1) and a,(E-) be the traces of the
Frobenius morphism of E; and E, respectively. By Hasse’s theorem, we know that
ap(E;),© = 1,2, are integers and satisﬁf the inequality |a,(E;)| < 2,/p. For fixed

integers r; and 75, we define
Te () =#({p <z p(B) =m}N{p <z : ap(E2) =12}).

The Lang-Trotter conjecture for 2 elliptic curves asserts that there exists a con-
stant C} (depending on the elliptic curves E;, E,, and the fixed integers ry, T9) such
that 7"z, (z) is asymptotic to C;loglogz. The average Lang—Trotter conjecture
for 2 elliptic curves asserts that there exists a constant C, (depending only on the
fixed integers ry,2) such that sl 3710 1<car Dolaaic s Dolbrl<Br Doibel<Be Tor g, (T)
is asymptotic to C;loglogz. Unfortunately, this does not imply the Lang~Trotter
conjecture for any 2 elliptic curves Ej, E,, but gives further evidence for it. This
thesis presents an asymptotic result related to the average Lang~Trotter conjecture

for 2 elliptic curves.
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Chapter 1

Introduction

Any natural number greater than 1 which has exactly 2 divisors is called a prime
number, and is denoted by the lower case letter p. For example, 2,17, 1093, 3511, are
prime numbers, whereas 4 =22, 105 =3x5x 7, 187 =11 x 17, 1729 = 7 x 13 x 19,
are not. In book 9 of Elements, Euclid (355-265) proves the existence of infinitely
many primes. Analogously, we can ask similar questions regarding the distribution
of primes in other sequences. Dirichlet (1805-1859) was the first to show there exist
infinitely many primes in the arithmetic progression a, a+k, a+2k, ..., whenever the
greatest common divisor of a and k is equal to 1. For example, a = 3,k = 25. Are
there infinitely many primes p of the form 1 + n2? for some natural number n? In
other words, are there infinitely many primes like 2 =1+12,5 = 1+22 17 = 1 +42,
37 = 1+62% 101 = 1 + 102? This is an ancient problem in mathematics and its
solution is unknown at present. The surprising thing is that this problem has a
connection with the theory of elliptic curves. An elliptic curve E is a cubic equation
in two variables of the form y? = 2% + az + b, where a and b are rational numbers.

‘The equation defining F can be reduced modulo all but finitely many prime numbers



p- If the resulting equation is nonsingular over the finite field with p elements Z/pZ,
then F is said to have good reduction at p. All but finitely many primes are primes
of good reduction for a given E. Let IV, be the number of solutions (over the field
Z/pZ) of the reduced equation, and set a,(E) = p+1— N,. The sequence {a,(E)},
(indexed by the primes p of good reduction) encodes basic arithmetic information
on E. By a theorem of Hasse we know that a,(F) is an integer which lies in the
interval —2.,/p < a,(E) < 2,/p. The study of the distribution of a,(E)’s is closely
related to the study of the distribution of primes in certain sequences. For example,
let E be the curve y> = z°® — z. Then a,(F) = £2 if and only if p = 1 + n? for
some natural number n. On the distribution of a,(E)’s, an unsolved conjecture of
Lang and Trotter asserts that for a fixed integer r, the number of primes p < z
such that a,(F) = r, denoted n%(z), is roughly +/z/logz, as = approaches infinity,
where log z is the natural logarithm of z. This conjecture seems extremely hard to
prove. Elkies [Elk87] proved that for each elliptic curve E over the rationals, there
are infinitely many primes such that a,(¥) = 0 (supersingular primes). But it is not
known if there are infinitely many primes p such that a,(E) = r # 0, for any E over
the rationals. It is also known that the number of primes p such that a,(E) = r has
density O in the set of all primes [Ser81].

In order to get further evidence for the Lang—Trotter conjecture, Murty and Fouvry
showed in [FM96] that the Lang-Trotter conjecture is true on average in the super-
singular case 7 = 0. David and Pappalardi generalized their work in [DP99] and

showed that the Lang—Trotter conjecture is true on average for any r € Z. More



precisely, they show that for any r € Z,

o5 2 2 mhle) ~ K,

|a|<A. 1bl<B

where K, is a non—zero constant depending only on r. This thesis studies the
distribution of a,(E)’s associated to 2 elliptic curves E; and F,. The Lang—Trotter
conjecture for 2 elliptic curves asserts that for fixed integers r; and r,, the number
of primes p < z such that a,(E;) = r; and ap(E2) = r2, denoted wg;jgz (z), is
asymptotic to C; loglog z, as z approaches infinity, where C; is a constant depending
on the fixed integers 7,79, and E;, E5. This conjecture also seems extremely hard
to prove; furthermore, as the set of primes in question is very sparse, no convincing
numerical evidence can be obtained to verify the conjecture. In order to get evidence
for the Lang—Trotter conjecture for 2 elliptic curves, Murty and Fouvry showed in

[FM95] that the Lang—Trotter conjecture for 2 elliptic curves is true on average in

the supersingular case r; = r; = 0. More precisely,

35
16A1A2B132 Z Z Z Z E').,Ez(z ~ “610510517

la1|<AL Jaz|< A2 [61]|< By [02]<B2

We study the general case 71,7, € Z. In our proof of Theorem 1, we display the
techniques we developed for a proof of the general case ry,r, € Z; the average Lang—
Trotter conjecture for 2 elliptic curves. We believe that these techniques, modulo a
few unresolved technical problems, will enable us to prove the average Lang-Trotter
conjecture for 2 elliptic curves. This work is in progress [ADJ00]. On the techniques,
a result of Deuring coupled with partial summation links the average Lang—Trotter
conjecture for 2 elliptic curves to an average of a product of special values of 2

3



L-series. We extend the techniques of [DP99] which involve an average of special
values of 1 L—series. In particular, we give a new representation for a product of
Dirichlet L~Functions L(s, x4, )L(s, xa,), valid for non—trivial Dirichlet characters
Xd; t =1,2,and s =1, in lemma 4.1.

This thesis consists of 3 parts.

Part 1 (chapter 2) is concerned with the mathematical backround needed to state
and prove Theorem 1 and lemma 4.1. The symbols and notation are standard for
the most part but should be glanced over. The tools include partial summation,
Dirichlet’s Theorem on Zps r<=  logp, and Montgomery’s result [Mon71] on the
Barban—-Davenport—Halberstam Theorem. The elementary lemmas are on properties
of the arithmetic functions d(n) and ¢(n) used later in our work on K(r). The
analytic lemmas are backround for lemma 4.1, and Proposition 4.1.

Part 2 (chapter 3) is concerned with the Lang—Trotter conjecture, the average Lang—
Trotter conjectures, and Deuring’s link between the average Lang—Trotter conjec-
tures and averages of special values of L—series. We state Theorem 1 and explain

how it relates to the average Lang—Trotter conjecture for 2 elliptic curves.

Part 3 (chapter 4) is concerned with proving Theorem 1.



Chapter 2

Background

This chapter contains the mathematical backround needed to state and prove the

results of the thesis.

2.1 Notation

2.1.1 List of Symbols

The following notation is standard for the most part:

N={1,2,3,...}, the natural numbers.

The lower case letter p denotes a prime number. That is, p € {2,3,5,7,11,13,. .. }
Z ={0,%1,+£2,...}, the integers.

Z* = NuU {0}, the non-negative integers.

Q={%: aecZ,be N}, the rational numbers.

@, the irrational numbers. For example, v2, 7, e € Q°.

R = QU @Q", the real numbers.

C={a+bi: abeRi=+/=1}, the complex numbers.

C*, the multiplicative group of complex numbers.



F, = {0,1,2,...,p — 2,p — 1}, the finite field of prime p elements. Note that
sometimes we write Z/pZ instead of F,.

F; ={1,2,....0—2,p—1} = (Z/Z)"

[z], the integer part of the real number z, that is, the integer uniquely determined
by the inequality [z] < z < [z] + 1.

{z}, the fractional part of the real number z, that is, {z} =z — [z] € [0, 1).
(n1,m2),n; € N7 = 1,2 denotes an ordered pair.

alb, a divides b (b = ak for some k € Z).

a1 b, a does not divide .

b = a mod m, means m|b — a.

(a1,-...,an), the greatest common divisor of the integers ay, ..., an.

[a1, - .., an], the least common multiple of the integers a,..., an.

#X, the cardinality of the set X.

|z|, absolute value of z. That is, |z| = Vz2.

=, equality holds by convention.

déf, equality holds by definition.

=, approximately equal.

#, equality does not hold.

<>, two sets are in one-to-one correspondence.

&, if and only if.

—, maps to.

We write logz to mean log, r; €!°8* = z.



MT denotes main term, while ET denotes error term.

ETOi denotes error term number 7, where 1 = 1,2, 3,4, 5,6, 7, 8.
Respecting Euclid, we write Q.E.D. (Quad Erat Demonstradum) to denote the end
of a proof.

Greek alphabet

a, alpha.

B, beta.

I', v, gamma.

A, ¢, delta.

€, epsilon.

1, eta.

¢, zeta.

©, 8, theta.

L, iota.

K, kappa.

A, A, lambda.

L, mu.

v, nu.

=&, xi.

0, omicron.

II, , pi, where [ .. is read the product over all prime p dividing .

p|r

p, Tho.



3, 0, sigma, where Zp<z is read the sum over all prime p up to z.

T, tau.

T, v, upsilon.
®, ¢, phi.

X, chi.

W, 1), psi.

2, w, omega.
2.1.2 The Big O and Little o Notation.

Let f be any real or complex-valued function, and let g be a positive function. The
functions f and g can be functions of a real variable z or arithmetic functions defined

only on the positive integers. Respecting Landau’s notation, we write
f=0(g),
or respecting Vinogradov’s notation,
f <y,

or

g>f,

if there exists a constant ¢ > 0 such that

|f ()] < cg(=),

for all z in the domain of f. The constant c is called the implied constant.



We write

f <KapB,. 9,

if there exists a constant ¢ > 0 that depends on A, B, ... such that

|f ()] < cg(z),

for all z in the domain of f.

We write
f= O(Q),
if
. f(=)
lim —= =0.
zmve0 g(z)

The function f is asymptotic to g, denoted
f~a,
if

. f@
ooy b

We make use of the following properties of the O notation.
1. If f<gand g <h, then f < h.

2. If fi = O(g1) and f» = O(g2), then fi fo = O(g192) and fi+ fo =O0(g1 +g2) =

O(maz(g1, g2))-

3. If f < g on [a,b], then f:f<<fabg for z € [a, b].



Note that the second properties follow from the properties of the absolute value
metric. Namely, |fif2| = |fillfo] and |f1 + fo| < Ifil+[fe] < 2max(|f1], | f2]). To see
the third property recall that if cg > |f|, then cg —|f] = 0, so that f:(cg ~1fD) =0,

which is equivalent to ¢ f: -/ : |f] > 0, which is equivalent to

c/:gz/:lfl; /abf

2.1.3 Conventions

We adhere to the usual convention that the empty sum (the sum containing no
terms) is equal to zero and the empty product is equal to one. We remark on some
conventions in analysis.

We write f( ¢) to mean we are integrating over the line c+ico. That is, from ¢ — ioco,
to ¢ + i00. Furthermore, we define what we mean when we say that a function
is holomorphic, analytic, regular, or meromorphic. The point is that holomorphic,
analytic, and regular are synonyms so that authors use these words interchangeably.
Definition A holomorphic function is a single-valued, continuous, and differentiable
function of a complex variable.

The synonyms of holomorphic are analytic and regular.

Definition A meromorphic function is analytic except at a finite number of poles.
2.2 Tools

Our tool belt consists of partial summation, a lemma comparing a sum and an

integral which will be needed in our work on the error terms in the following chapters,
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for @ > 0,8 > 0, a lemma comparing (logz)? and z* as £ — oo which will also
be needed in our work on the error terms in the following chapters, a big theorem
by Dirichlet, and a result by Montgomery on the Barban—Davenport-Halberstam
theorem.

Tool 1: Partial Summation. Let z € N, and A4, & > 1gmgn @m, Where {a;}2,

is a sequence of complex numbers. Then

D by = Y (An—Ana)b

I<ngz 1<ngz
= Y Adm T A
1gnLz 1<ngz-1
= Z An(bn_’ n+l)+Aa:b:|:-
I<ngz—1

This is called Abel’s partial summation formula. If f(¢) is a continuous function on
[1,z], we get the following Stieltjes® integral analog.

Lemma 2.1 (Partial summation formula) For any arithmetical function a(n) :
N — C, let A(x) &ef 2 n<z @(n), where A(z) = 0ifz < 1. Assume f has a continuous
derivative on the interval [1,z]. Then

> amf(n) = A@)f(@) - [ AWF O

nge

Proof Let z € N. Since A(n) is a step function we have

D an)f(n) = Z[A(n) — A(n —1)]f(n)

= ZA(n f(n) — Z A(n)f(n+1)
= 4@~ 3 4w [ o

n<~1 -

1The Dutch mathematician Thomas Stieltjes (1856-1894) was responsible for the notion of
integrating one function with respect to another function. Notice ff A(t)df(t) = flz A(t) f'(t)dt.

11



= AR - Y [ AwF@e

= A@fE) - [ A0 @

Forz €

- pla]
S a(n) f(n) = A(iz)) £(=]) ~ / A@)F (B)dt.

n<(z]

Noting A(z) = A([z]),

S =36,

n<fe] n<z

and [ A(t)f'(¢)dt = A(z) (f(z) — f([z])) gives the general result.

Q.E.D.

Tool 2: Comparing a Sum and an Integral.

Lemma 2.2 Let a,b € Z,a <b and f(t) a monotonic function on [a,b]. Then

b b
min(f(a), F8)) < 3_ £(6) — [ £(®)dt < max(£(a), £(&)).

k=a

k+1

Proof If f(t) is increasing on [a, 8], then f(k) < [, f(t)dtfork =a,a+1,...,6—1,

and f(k) = [F | f(t)dt for k =a +1,...,b. It follows that

b b—1 b
SCFER) =Y FR) + £(B) < / F(O)dt+ F(b),

k=a k=a

and 374, f(k) = Yieprs F(B) + f(a) > J; f(t)dt + f(a). Thus

b b
@) < £ - [ £t < F0).

k=a
Similarly, if £(t) is decreasing, then f(b) < Y.0_, f(k) — [° f(t)dt < f(a).
Q.E.D.
Tool 3: Comparing (logz)® and z? for Every a > 0,5 > 0.

12



Lemma 2.3 For every a > 0,8 >0, (logz)® = o (zf).

Proof By ¢’Hopital’s rule we see

. (logz)> ologz)*?t
zl_l_glo B - :clggo Jofd
.. a(la~1)(logz)>"?
- zl—lgo ,62:1;13
. ola—1)(a—2)(logz)>3
- zl—]{]c?o 531:5
= 0.
Q.E.D.

Tool 4: Dirichlet’s Theorem.

Lemma 2.4 (Dirichlet) Let

p(zin,a) € Y logp.

p<z
p=a modn

Then for (a,n) =1,
_Z

5(n) + E(z;n,a),

¥(z;n, a) =
where E(z;n,a) = o(z).
Tool 5: Barban—Davenport—Halberstam Theorem.

Lemma 2.5 (Montgomery,[Mon71]) Let

E\(z:k,a0) & Z logp —

P<Z
p=a mod k

z
é(k)
For 1< @<z, and any A > 0,

2
> > EXzik,a) =QzlogQ+0 (Qxdrfl_o:W) :

< 0<agk
k\Q (a,k)\=1

13



More precisely, for ﬁz)—ﬁ. <Q <z,

Z Z E%(z; k,0) < Qzlogz.

k<O 1<agk
<@ (a.k)=1

2.3 Elementary Lemmas

Here we define the divisor function d(n), Euler’s ¢ function and prove related prop-
erties. Note .that elementary means elementary in a technical sense; the proofs avoid
the use of complex analysis.

Definition For n € N, we let d(n) denote the number of divisors of n,

d(n) {—Sf Z 1.

éin
Definition An arithmetic function f : N — C is multiplicative if f(mn) = f(m)f(n)
whenever (m,n) = 1. Further, f(n) is completely multiplicative if f(mn) = f(m)f(n)
for all m,n € N.

Lemma 2.6 The following properties hold for d(n).
1. d(n) is multiplicative.
2. For every € > 0, d(n) K. n®.
8. Yongzd(n) = zlogz + O(z).

Proof 1. Let py,...,pr be prime numbers that divide m,n € N. For oy, 5; € Z* we
have m = [, p*,n = []%_, %. Then d(mn) = [T (ci + B +1). If (m,n) = 1,

T =1

then a; =0 or §; = 0 for each < = 1,...,k. Hence (o; + f; + 1) = (o; + 1)(B; + 1)

14



and d(mn) = [IC; (s + B + 1) = [TE (o + 1) [Te, (B + 1) = d(m)d(n). That is,
d(n) is multiplicative.

2. Let f(n) = 4{:—). We show f(n) = o(1). Since d(n) and n¢ are multiplicative,
f(n) is multiplicative and it is enough? to show that lim_,., f(p*) = 0.

By ¢'Hopital’s rule, 2%‘,—12- is bounded for k£ > 1 (see proof of Lemma, 2.3). It follows

that

d(p)
pke

k+1

pke

k+1 1
pkel2 pkel2
k+1) ( 1 )
<
( 9ke/2 pke/2
1 €/2
< (#) -

/2 ,
Letting p* — oo, (51,;)6 — 0, and we see that lim_,, f(p*) = 0 as desired.

F@")

3. Since [§] = £+ O(1),

Zd(n) = ZZI

n<z n<z §in

= 2 [

i<z

= Z{%*‘O(l)}

i<z

=Y % +0(a).
i<z
By Lemma 2.1,

Z -(l§ = logz + O(1).
i<z
Q.E.D.
2See [HW64], pg. 260.
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Definition For n € N,
o) E#{1<i<n: Gin) =1}

@-is called Euler’s ¢ function.

Lemma 2.7 The following properties hold for ¢.

1. ¢ is multiplicative.
2. ¢(ab) = (a)g(b).
3. If bla, ¢(ab) = be(a).

4. $(ab) = (a,5)6([a, b))

W

- ¢((a,8))¢([a, b]) = ¢(a)8(b).

— (a.b)d(a)é(b)
6. $(ab) = gy -

Proof 1. See [HW64], pg. 53.

2. Let py,...,pr be prime numbers that divide a,b € N. Then for oy, ; € Z+,
—TT*% = p —TTF B —TT7F a+B q; ; s Tirats

a = [T, P b=, p{", and ab = [[;_, p¥™". Since ¢ is multiplicative,

¢(a) = [[o™ =][r"0-p"=a]J1 -2,

pla pla pla
o) = s]Ja-p),
plb

and

¢(ab) =ab[J(1-p7").

plab
Recall if p|ab, then pla or p|b. Since § < (1 —p~1) < 1, it follows that

HHa-p2]Ja-2]Ja -2,

plab ple pib
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from which we deduce the result.

3. If bla, then a; —F; > O for all ¢. Since ¢ is multiplicative, and ¢(p*) = p* (p—1),

we have

¢(ab)

[ 6%

=1

k
2% o — 1)

=1

I

=1

b (] | p5%)

=1

bo(a).

4. Since ab = [a, b](a, b), and (a,b) divides [a, 8], by part 3

¢(ab) = ¢([a’ b](a7 b)) = (a'a b)¢([a7 b])

5. Let a,b be defined as above. We have {max(a;, 5;), min(e, 5:)} = {04, B:}. Since

¢ is multiplicative, it follows that

k k
8([e,8])6((a,5)) = []e@F=C) ] o(pr==+)

A e
= []66) 166
= ¢(a)o(b)-

6. By part 4 ¢(ab) = (a,b)¢([a,b]). Since ¢([a,d]) = ‘g{‘(—z;?,g’)l, by part 5, we deduce

the result.

Q.E.D.
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2.4 Analytic Lemmas

The fundamental difference between the methods found in David’s and Pappalardi’s
paper [DP99] and our methods is an expression for the product L(1, x4, )L(1,Xa,)
using contour integration. Here we recall definitions and prove lemmas which we
use in our proof of lemma, 4.1 that given € > 0,U > 1,

o] 1 d d Ca d-d. 3/16+¢
B )L xe) =3 2 3 (%) (2) 0+ o, (108070,

n=1 n=de

where x4, = (%L) ,% = 1, 2 are non-trivial Dirichlet? characters. In addition, we prove
lemmas called in our work on error terms ET02, ET03 and ETO0S.

Let s = o0 4+ it € C. The next lemma allows us to interchange an infinite sum and
integral.

Lemma 2.8 Let f(s) = > .2 2= be a Dirichlet series absolutely convergent in o >
c—e€, and let g(s) be a meromorphic function with no poles on the line o = ¢. Then

o
/ f(s)g(s)ds = Z n 2(—?033,
(e n=1 (€ T

provided that

/°° lg(c + it)|dt

-0

1S convergent.

®Consider the group (Z/qZ)*. A homomorphism x : (Z/qZ)* — C* is called a Dirichlet
character modulo q. Since (Z/qZ)* has order ¢(g), and by Euler’s theorem, %) = 1 mod gq,
then we must have (x(a))®@ = 1 for all a € (Z/¢Z)*. Thus x(a) must be a ¢(g)t" root of unity.
We extend the definition of x to all integers by setting x(n) = x(n mod gq), if (n,q) = 1, and 0
otherwise. The character xo : (Z/qZ)* — C* satisfying xo(a) = 1 for all (a,q) = 1 is called the
trivial character (or principal) character.

18



Proof The proof of lemma 2.8 is based on the following fact. If u,(z) > 0 for all

values of n and z, and

/ {Zun(:z:)} nzx / un(@)dz,

n2l

for all finite values of b, then

/ {Zun(z)}dx—Z/ un(z)dz

n2l n=1l

provided that either side is convergent. It can be shown that this fact remains true

for functions u,(z) which are real or complex provided that either of
o0
/ Z iun(z)| ¢ dz,
a n>1

or

Z/ lun(z)|dz,

nzl

is convergent. To complete the proof of lemma 2.8, note that f(s) is uniformly con-
vergent on the compact subsets of the line o = ¢, and therefore we can interchange
the sum and the integral over the finite intervals.

Q.E.D.

We define the I'-function by Euler’s formula. That is,
I'(s) & / e~it*"ldt, o > 0.

Note that the inversion formula for ['(s) = [;° e~¢*~'dt is given by*

1 c+ioo
et = 3 ['(s)t™°ds, ¢ > 0.

c—ioo

“For a proof see [KM84], pg. 82, 83.
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To apply lemma 2.8 in our work on L(1, x4, ) L(1, X4,), We need to know the following

facts about the I" function.

Lemma 2.9 (Stirling’s formula)
(o + it)| = V2re 2 M[¢7~% {1 +r(0,8)},

where r(o,t) — 0, while [t| — oo, and |o| < a. Here « is a fized constant.
Proof See [Tit78], pg. 58.

Lemma 2.10

o0
/ IT( + 4t)|dt < co.

—00

Proof By lemma 2.9,
IT(1 + it)| = V2me 3™ [¢[2 {1 + r(1,£)}.

We write

/_: IT(1 + 4t)|dt = {/_:—i-/—ll—i-/lm} IT(1 + 4t)|de.

Consider the middle integral.

1
2

2t

1 1 L ) w/2 ,
/]F(1+it)|dt<</ e~ Imtt7dt <« / el dt’
-1 -1 —m/2 ™
/2
< / el
-~ /2

< 1.
For the others, since r(1,£) — 0 as |t| — oo, there exists a ¥ € N such that

V21 +r(1,t)) < k, so

-1 -1
V2me T 1/2(1 + r(1,8))dt < k / e~z ¢z,

—_00 it e
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and .
o 1 o 1 1
/ Vame S L2 (1 4 (1, 8))dt < k / 3t b gr.
1 1
The integrals on the right hand side of the last two inequalities are the same because

t is in absolute value. Putting u = 3¢, du = Swdt in the second gives

du = 2k (—2—) / e"”u%du,
T i 1;_

which is absolutely convergent as I'(s) is absolutely convergent for o > 0.

2k

™ /2

— 9|

T

Q.E.D.

We use lemma 2.11 in our proof of lemma 2.12. First we define the Riemann ¢-

function. By definition, for s = o + it € C,
(=Y
= ~-
Lemma 2.11 Let0<d < 1,¢ > 6. Foro € [d,c],t > 1,
C(o+1it) = 05 (7).

Proof It follows by lemma 2.1, where {t} =¢ — [t] is the fractional part of ¢, that

@ = ;- [ Ha

sjl—s{ tstt—!—/ t{si};dt}
=Z%+ 1 @ e,

< (s—1Dzs—1 g z toFL
Forz>1,0260<6<1,
1 1 *® dt
< .
€@l € 3ot ot el [
Z + i + (1 + ) —
n<z t:z:"‘l lnd

21



1
S Z—+t 5—1 (

ngz )III
”dt 1 ty 1
< + N
S Jo 7 tztt (+5) ind
1 o, £\ 1
= 1—_;$ <2+5> 5"

Choosing z =¢, (z > 1,t > 1) gives

tl—5 5 5 1-6
< i 2t _

For t > 1,t'~% dominates t~%, so that

1-¢ 1-¢
ot ) =05 ).

¢(s)] = (

We recall lemma 2.12 in our work on ETO02. Furthermore, we recall the method of

proving lemma 2.12 at the end of our work on ETOS.

Lemma 2.12 Forany U > 1,

Zd(n) _a 1 2 !
Z_n_e u_2(logU) +2'ylogU+B+O(\/ﬁ),

n=1

where B is a constant independent of U.

Proof By lemma 2.8, for ¢ > 0,

wi@e-%—mégn—)i sgss
Z n - Z n 2w (C)F()(n)d

n=1 n=1
1 2. d(n)\ ['(s + 1)U*
= o /@ (Z ns+1> pa——
_ 1 s+ )I‘(s + l)Us
o 27z (0

Recall that the Laurent expansion of {(s) at s = 1 looks like

()= s +7+als— 1) +als — 1)+,
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so that the Laurent expansion of (s + 1) at s = 0 looks like
1 2
((s+1) = ;+’y+als+ags + e,

which implies

1 2
C(s+1) = -—2+—sl+(2+7)a1+(2a2+a17)s+---.

Further,

logU  (logU)? , . (logU)3S3

e T 3!

Since I'(1) =1, therefore

C(s+1)I(s+1)U*
s

Res s=0

1 2
= Ress:O ('5—2"‘?7‘*'(2 +'7)a1+(2a2+a17)s+---) X
1 log U)? 1 3
<_+logU+(og> L (ogly 5 )

X

s 1l a1 ° 30
1
= §(logU)2 4+ 2vlogU + (2 +7v)ay

Let R

c_._

41 |T| > 1 denote the boundary of the rectangle with vertices ¢ + i7",

—2 3+ 1T. Then by Cauchy’s residue theoremS5,

1 r 1 1
— C(s+1) (s+ )U’ds= ~(logU)? +2vlogU + (2 + 7)a,
27t Jp 2

c.—&,it'l'
That is,

1 cHiT —3+iT —iT c—iT T 1
— / +[ )7+ (s +1) (s L+ D egs
21t | Je—ir e+iT —3+T LT

= %(IogU)2 +2vlogU + (24 v)ay

5See [Tit78], pg. 102.
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Since ¢(o + 1 +iT) < Tz foroe[-2
—LT
L/‘ (s +1)I‘(s+1)

271

,¢|,T > 1, by lemma 2.11, for U > 1,

c+iT

1 —L > o1l
= 3= -/c ¢ (a+1+zT)I‘(a+1+zT) Tda
< L[ |3 (e +1+ TY[T(oc+1+ 'T)!————,Ei__d
S o -% 1 g 7 0'2+T2 ag

ue ¢
< =/, I¢* (o + 1 +iT)||T(0 + 1 + iT)|do

-z
< Uce™ 2T | To+igs
-7

& Ucez™TTe+s (c-i- %) ,

which goes to 0 as 7" — oco. The same argument shows that

1 c—1i00

27 S S

Since ¢ (§ +1it) < /2 for ¢t > 1 by lemma 2.11, and (% + #2)~1/2
2 4

by lemma 2.9 that

C(s+1)

—-—F(s: Dieds =0,

2 1
/ s (1/2+zt)||r(1/2+zt)ldt<< / eV < 1,
0

Ji/i+ e

and

T
/.
which implies
1
1 [~z T I(s+1
o [ ety

27e +zT

1
2n
1

27

|§2(1/2 + it)

N

—iT
/ : §2(3+1)MU8d
——+iT S

L/ + i)
1/4 +

. . T
D2+ D)y o [7 oy,
1

V1[4 + 2

= U124t

24
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S /T CAL/2+)IDA/2+3)] oy / a2 +)Ira/2+i)

V1/4+¢ Vi/a+t2
< o [Teira g
<« U 3Te ™7 4+ U3,
which goes to U~% as T — oo.
Q.E.D.
We recall lemma 2.13 in our work on ET03. Note that it is because of this lemma
2.13 that we break the n sum at UlogU? and not U, as done in [DP99].

Lemma 2.13 For any0 <6 < 1,U > 1,

Z dsz) —% U L5 1,.

U
n>Ulog U?

Proof Since 0 < § < 1 implies 1 < ¢4 < ¢, by lemma 2.6, part 2,
5
n

> et <« Y Led

n
n>Ulog U2 n>Ulog U?
T ¢ _,
<5 lim —e Udt
T—oo Jylogu2
T t
<5 lim e uvdt
T—o0 Jyr10g U2
1
iR
Q.E.D.

2.5 An Upper Bound for L(1, xq) and L(s, x4,) L(s, Xd,)

The purpose of this section is to deduce an upper bound for L(s, xa,) L(s, Xa,) Which

we need in our proof of lemma 4.1. For s = o + it € C,

L(s) = L(s, xa,) L(5, Xax) = Zadl,dz(n) —

n=1
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where

gy 4, () = Z (%) <%) '

n=de

We do this in lemma 2.18. First we recall the Pélya—Vinogradov inequality. We will
use lemma 2.14 in our proof of lemma 2.15 and lemma 2.18.

Lemma 2.14 (The Pdélya-Vinogradov inequality) Let S(x,z) = 2y <ngz X(1),
where x is a non-trivial character modulo q. Then S(x, z) < Vqlogq, uniformly in
x and T.

Proof See [P6118] or [Vinl9] for historical interest, and [MM97], pg. 91 for a proof
of the case where x is primitive.®

We include lemma 2.15 for completion as it is precisely the result used by David
and Pappalardi in [DP99]. First recall that for a complex number s and a Dirichlet

character xy,

L(s, x4) = z (%) %

nz=l

Lemma 2.15 Let x4 = (%) be a non-trivial Dirichlet character. For any U > 0,

L(l,xa) =) (%) 1.0 (__M;jogldl) :

n
n<U

An important notion is the propriety of characters. Let ¢ be a multiple of d, and let x(n) be
a Dirichlet character (mod d). The group of reduced residue classes (mod ¢) maps homomor-
phically onto the corresponding group (mod d), and we define a character x‘/ (mod ¢) by the
equation
vdet voovdef [ x(n) i (mg) =15
X' =x (”)—{o if (n.q) > 1.
We note that x and x‘/ are different arithmetic functions. For example, if d = 3 and ¢ = 6, and
X takes the values 1,~1,0,1,—1,0 for n = 1,2,3,4,5,6, then x" takes the values 1,0,0,0, —1,0,
since x‘/ is zero when n is a multiple of 2, as well as when n is a multiple of 3. When x

is constructed as above, we say that x  (mod d) induces x‘/ (mod gq), and if ¢ # d, that x‘/
(mod q) is imprimitive. A primitive character is one that is not induced by a character (mod d)
for any divisor d of g other than q itself. The smallest f for which a character x (mod f) induces

x‘/ (mod gq) is called the conductor of x.
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Proof By Lemma 2.14, A(z) = 3 pcne, (2) < V/ld]log|d|, so by Lemma 2.1 we

/ A(t)
U

- [ o/Hosid),,

have

~~

3|

——

S|
I

= 0( VMg d| lim t (%)

o ( Vidl log ldl) _

Q.E.D.

Furthermore, we include lemma 2.16 as it is precisely the bound used by David and
Pappalardi in [DP99].

Lemma 2.16 L(1, x;) = O(log|d|)-

Proof Choose U = +/|d| in lemma 2.15,

d\ 1 1 idl 1

- -1 L —_ —~dt =1 dj.
> (9ic X i< [ ta=tmig
ng ng/ld|

(d]
Q.E.D.
In order to prove lemma 2.18, we need to further recall Dirichlet’s hyperbola method.
Let f(n) = 35, 9(6)h (2). We define G(z) € ¥, g9(n), and H(z) & > ns A1)
Lemma 2.17 For any y > 0,

> i) =3 s (5) + S re)6 (3) -ewa (2).

n<zx i<y 6<%

Proof

> f(n)

n<z
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> g(6)h(e)

degz

= > g@h(e) + > g(6)h(e)

= > 9D he)+ > g(d)he)
o<y e<¥ ye<ldez

= S e0)H (g) + > g(d)h(e) = D g(6)h(e)
< o

- g g(O)H (5) + g h(e)G (Z) —H (5) G(y).

Q.E.D.
We now apply the Pélya—Vinogradov inequality and Dirichlet’s hyperbola method

in order to deduce an upper bound on L(s).

Lemma 2.18 Foranyo >0, and T > 1,

/72 + T2
L(o +4T) < /[dida] log [dy | log | dal *T——.

Proof If ¢ > 0, and A(t) = 3, , aa, ¢,(m), then by lemma 2.1,

ZAQ) 4

s+l

L(s)=s
1
But by lemma 2.14 together with lemma 2.17,

A(t) < V/|d1ds|log|d:|log|dy].

Thus for o > 0,
L(s) < \/[d1d2|10g|d1[logldznsl/ #(o+1) gy
1
ST VTR
= Vldidz|log|d:|log|dy|———

Q.E.D.
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Chapter 3

Lang—Trotter Conjecture

‘This chapter explains all of the mathematical background needed to state and justify
the Lang-Trotter conjectures and to explain the link between the Lang-Trotter
conjectures and L—series, which is the theme of the thesis. It also reviews the
existing results contained in the literature, explaining their relevance to the present
work. Moreover, it presents Theorem 1 proven in the next chapter, and it’s relation

with the average Lang-Trotter conjecture for 2 elliptic curves.
3.1 Motivation

Any natural number greater than 1 which has exactly 2 divisors is called a prime
number. Let

def

m(z) = #{p <z : pisa prime }.

In book 9 of Elements, Euclid (355-265) proves the existence of infinitely many
primes. That is, as £ — oo,

w(z) = oo.
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In 1896, Hadamard (1865-1963) and de la Vallée Poussin (1866-1962) proved (inde-

pendently) the prime number theorem. That is,

T
logz’

w(z) ~

which means

lim w(z) logz -1

T—r00 xr

Similarly, for fixed a,k € N, (a, k) = 1, we define
m(z; k, a) déf#{p <z :p=a (modk)}.
Dirichlet (1805-1859) was the first to show as z — oo,
m(z; k,a) — co.
That is, there exist infinitely many primes in the arithmetic progression
a,a+k,a+ 2k, ...

whenever (a, k) = 1. The prime number theorem for arithmetic progressions! is the

fact that for fixed a, k € N, (a,k) =1,

m(z)

w(z; k,a) ~ .
=:5.2) ~ 5 k)

Analogously, we can ask similar questions regarding the distribution of primes in

other sequences. In 1923, Hardy and Littlewood [HL23] conjectured the following

statement about the distribution of primes in a quadratic progression. For fixed

!For an elementary proof see [Sel50].
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a#0,b,c,eZ*, and some n € N, we let
g(n) =an®*+bn+c

be a quadratic progression, and we define

Q(z) déf#{p < z : p =g(n) for some n }.

Conjecture (Hardy-Littlewood, 1923) For some constant C > 0,

JZ

logz’

Qz) ~C

This conjecture is related to a more general conjecture of Lang and Trotter [LT786].
Both conjectures are unproven to this day, and so motivate our study. In the next
section we recall the facts from the theory of elliptic curves that are needed for

understanding the Lang—Trotter conjecture.
3.2 Elliptic Curves

An elliptic curve E defined over a field K is a curve that is given by an equation of

the generalized Weierstrass form
E:y+azy+ay=z°+az’ +ac+as,a,€K,i=1,...,6.

We let E(K) denote the set of points (z,y) € K x K that satisfy this equation along
with a point at infinity denoted P,. If F is any extension of K, then E(F) denotes
the set of (z,y) € F x F that satisfy the above equation, along with P... In order
for E' to be an elliptic curve it must be smooth. This means that there is no point of
E(K) (K denotes the algebraic closure of K) where both partial derivatives vanish.
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If the characteristic of K is neither 2 nor 3, without loss of generality we may suppose

that our elliptic curve is given by an equation of the form
E:y*=z}+azx+b, a,bc K.

In this case the condition that the curve be smooth is equivalent to requiring that the
cubic on the right have no multiple roots. This holds if and only if the discriminant
of 2 + az + b is non-zero. The discriminant of this cubic is —4a3 — 2752.

Definition The discriminant of the elliptic curve F is defined as follows:

Ap & —16(4a3 + 2707).

Definition The j-invariant of the elliptic curve E is defined as follows:

3
J(E) & _17283%
Ag

From now on, we assume that K = Q, which has characteristic 0, so that E has co-
efficients a,b € Q. We first note that there is a cubic equation for E with coefficients
a,beZ.
‘The point is that we want to consider curves originally defined over Z as if defined
over finite fields F,. That is, we will consider reductions of the curve modulo p.
Now for every p { Ag, we can associate a new elliptic curve'Ep with coefficients in
F,. Namely,

E,:y* =z +ax+b.

Here @ and b are modulo p reductions of a and b. Let

#E(Fp) = #({(z,y) €Fp xF, : Y* =2°+az+5, a,b € F,} U{Py}).
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It is not hard to see that

#E,(Fp) <2p+1,

as z € F, can be any of the p elements 0, 1, ...,p—1, so there are at most 2p solutions
to y? = z3+Gz +b. Not forgetting to count the point Py, at infinity which is already
in Ep(F,), we deduce the result. The following heuristic suggests the right order of
magnitude to be p, and not 2p + 1. It is known that among the non-zero elements
1,2,...,p—1 of the field F,, half of them are squares®>. Hence, a “randomly chosen”
quadratic equation has a 50 percent chance of being solvable in F,. It follows that
#Ep(Fp) ~ p.

The following theorem (conjectured by E. Artin in his thesis) and proved by Hasse,
shows that this heuristic is correct.

Theorem (Hasse, 1938) Let E, be the modulo p reduction of E, and #E,(F,) the
number of (z,y) € F, x I, which satisfy E, along with the point at infinity P.,.
Then

#E,(Fp) =p+1—ap(E),

where a,(E) is an integer, |a,(E)| < 2,/P.
In order to study more properties of a,(E), we need to study the ring End(F).
"The points on an elliptic curve form a group. The group law can be characterized in

a number of equivalent ways. Recall that we have assumed E to be an elliptic curve

2Note (see [Sie64], pg. 17) that for p prime, n € N, g = (n,p — 1), the number of different nt"
power residues modulo p (excluding 0) is (p—1)/g. Consequently, if p = 1 mod =, then (n,p— 1) =
n, and the number of different n** power residues modulo p (excluding 0) is (p— 1)/n. Equivalently,
if p=1modn, %th of the elements in F, are nth powers. In particular, if p =1 mod 2, one half
ofthet e F, are squares.
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over Q so that it has the special form with coefficients a,b € Q. Geometrically,
three points sum to zero if and only if they are collinear. Using this geometric
characterization, we can write down explicit formulas. For example, if P = (z,y)

and @ = (z/,y’) are on E, then
r N2
P+@Q = (y, y) —z -z,
' —z
z* — 2az? — 8bz + a2
4z3 + dax + 4b

Similarly, the additive inverse of P = (z,y) is —P = (z, —y); the reflection of P in

2P =

the z—axis. Notice repeated addition gives multiplication maps [n] : E — E,n € Z,

P+P+P+---+P ifn>0,
—~(P+P+P+---+P) ifn<0.

Definition An isogeny is a homomorphism ¢ : E(Q) — E(Q) which is defined by
rational functions. That is, an isogeny is a homomorphism ¢ : E(Q) — E(Q) that

has the form

polynomial in z and y polynomial in z and y
polynomial in z and y’ polynomial in z and 3/ -

é(z,y) = (
We define isogenies in this way because we are interested in isogenies from an elliptic
curve to itself; such isogenies are called endomorphisms. Notice that every elliptic
curve has the multiplication~by-n endomorphisms, one for each integer n. For most
elliptic curves, there will be no other endomorphisms. The degree of an isogeny ¢
is its degree as a finite map of curves. It is denoted by deg(¢). Associated to an
isogeny ¢ of degree n is a dual isogeny ¢ : E — E, characterized by the property
that ¢ o ¢ = [n]g, and ¢ o ¢ = [n]z. The dual isogeny has the following additional

—— -~ ——

properties; ¢ =6, 3+ % = ¢+, Fo ¥ =$o d, [4] = [n].



Definition The endomorphism ring of E, denoted End(E), is defined as follows:
End(E) ¥ {isogenies¢ : E — E },

together with the zero map. We make End(E) into a ring via the rules (¢ +v)(P) =
#(P) + ¥(P) and (¢9)(P) = ¢(x(P)). The unit group of End(E) consists of the
isomorphisms from FE to itself. It is called the automorphism group of E. With
regards to the next theorem, note that we define what we mean by an order in a
quadratic field in a later section.

Definition A quaternion algebra is an algebra of the form
H=Q+ Qa+ QB +Qup,

with the multiplication rules o2, 5% € Q, o® < 0, 8% < 0, fa = —af.
Theorem Let E be an elliptic curve defined over a field K. The endomorphism

ring of E is one of the following & sorts of rings:

Z,
End(F) = { an order in a quadratic field (ordinary),
a mazimal order in a quaternion algebra (supersingular).

The third possibility can occur if and only if the characteristic of K is strictly larger
than 0.
Proof See [Sil99], Corollary 9.4, pg. 102.
Definition An elliptic curve E has complex multiplication (CM in short) provided
Z # End(E).
Definition For an element ¢ € End(E), the trace is T(¢) = ¢ + é, and the charac-
teristic polynomial is

cs(t) =t — T(4)t + deg(9).
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The point of discussing all of these notions is that we want to define the integer ay(E)
from Hasse’s theorem in a precise way, and show by an example that the study of
the distribution of a,(E)’s is closely related to the problem of the distribution of

primes in certain sequences. Before discussing the example, we observe for @ € Fyp,
@’ =a mod p

by Fermat’s Cittle theorem. It follows by taking p** powers on both sides of the
equation for F,, the modulo p reduction of F, that y? = z% + gPzP + P if and only

if (y?)? = (zP)3 + azP + b. That is, the Frobenius map
¢p : By — Ep, (z,y) — (2P, 97),
is an endomorphism of E,. Hasse’s theorem says that the trace of Frobenius,
T(¢p) = ¢ + & = ap(E),

is an integer in the endomorphism ring of E, of magnitude at most 2,/p. Since the

degree of ¢, is p, note that the characteristic polynomial of ¢p is given by
Cs, (1) 2 ap(E)t + p.

Example Let E over Q be the curve y? = 23 — z, and let E, be the reduction of F

modulo p. E has CM by Z[i]. For some n € N, we show
ap(E) =£2=p=1+n

In fact, a,(F) = £2 & p =1+ n2.
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Proof Let ¢ : (z,y) — (~z,%y). Note that ¢o ¢ : (z,7) — (=, —y). That is,
pod = [-1]; ¢ is a root of z2 +1 = 0. It follows that End(E) = Z[i]. Let
.End(Ep) be the endomorphism ring of the reduced curve. Since End(F) C End(E,),
therefore Z[i] C End(E,). It follows from a previous theorem that End(E,) is
either an order in a.. quadratic field (ordinary), or a maximal order in a quaternion
algebra (supersingular). But® E, is supersingular if and only if ap(F) = 0. Since
ap(E) = %2, then End(F,) = Z[i]. But we know one element of the ring End(E,),

namely the Frobenius endomorphism ¢,. It is a root of ¢ — a,(E)t + p. That is,

PR RV ) L)

As ap(E) = +2, this gives ¢, = +1 + /I —p € Z[i], which for some n € N is
equivalent to 1 — p = —n?, which is equivalent to p = 1 + n2. We have shown that
ap(F) = £2 = p =1+ n?, for some n € N, from which we deduce the result.
Q.E.D.

Forr € Z, let np(z) = #{p < z : ap(F) =r}. In light of the example,
5 (z) = #{p < 7 : a(E) =£2},

and

#{p<z :p=1+n?for some n},

are equal. Notice for some constant C > 0, Hardy-Littlewood’s conjecture gives

5i(z) ~ C il

logz’

3See [Si199], chapter 3, Corollary 5.5 together with chapter 5, Theorem 3.1 a(ii).
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In fact, the Lang and Trotter conjecture predicts that for some constant Cpg,

5 (L) ~ CEE\Q%-

In the case that F has CM as in the above example, we can relate the conjecture
made by Lang and Trotter to the distribution of primes in quadratic progressions
and is consistent with the conjecture made by Hardy and Littlewood. But 1f E has
no CM, then the conjecture by Lang and Trotter is new and nothing was known
about it untill recently. In the next section we state the Lang-Trotter conjecture,
describe a heuristic indicating the plausibility of the conjecture, and discuss the

recent progress made towards proving it.
3.3 The Lang—Trotter Conjecture

Let E be an elliptic curve defined over Q, and for a fixed integer r, let
T5(z) = #{p <z : a(B)=r}.

The conjecture of Lang and Trotter predicts the asymptotic behaviour of ().
Conjecture (Lang—Trotter, [LT76]) Ezcept for the case where r =0 and E has

CM, there is a constant Cg, such that

, vz
7TE($) ~ C'E,,-Egz.

Notice that the constant Cg, can be zero, and then the asymptotic relation is inter-

preted to mean that there is only a finite number of primes such that ap(E) =r.
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The exceptional case, supersingular primes* of a CM curve was treated by Deuring
in the following theorem, and was based on a criterion of Deuring [Deu41], which
states that if F over Q has CM, then a prime p is supersingular for E if and only
if it is ramified or inert in the field of complex multiplication, with finitely many
exceptions.

Theorem (Deuring, [Deudl]) If E over Q has CM, then

z
2logz’

m(z) ~ 3(z) ~

That is, the set of supersingular primes has density 1/2 in the set of primes.

Let E be an elliptic curve over Q without CM. A naive heuristic suggests that as
ap(E) =r if and only if it has p + 1 — r points over F,, and #E,(F,) can take only
one of 4,/p values by Hasse’s inequality, each p is supersingular with “probability”

proportional to 1/,/p. That is,

1
Prob{a,(F) =0}~ —.
Generally, fix r € Z. It follows by the same heuristic that
Prob{ a,(E) =1} ~ —
ro = ~ —.
Qp /P
Let
mh(z) =D A,
p<zT
where

\ = 1 ifa,(E)=r,
P~ 1 0 otherwise.

4Recall that a prime p is called supersingular (or of supersingular reduction) if and only if p tAg
and ap(E) =0.
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Then A, =1 with probability proportional to 1/,/p. It follows that
5(z) ~ Z
p<:z:

By partial summation lemma 2.1, we write

Z— = 7r(a:)7+ /7;3(/752)

= "<“’)7+‘/ { Voo o (V7o)
-l

VT logz logz
_ 2W($)+o<\/§).
z log z

By the prime number theorem, we see that

WE(:B) Z p logx

<z

which is consistent with the Lang—Trotter conjecture.

The Lang-Trotter conjecture is based on a sophisticated probabalistic model which
generalizes the naive heuristic presented above. Their model also predicts the value
of the constant Cg ..

The conjecture we are considering in this thesis is not the Lang-Trotter conjecture,
but rather the following conjecture which we call the Lang-Trotter conjecture for 2
elliptic curves.

Let E; and E; be two elliptic curves over Q. Fix r; and 75 in Z, and let
TEE(E) =D
pP<zT

where

A= 1 if ap(EBy) =7 and ap(E2) = 7,
P71 0 otherwise.
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Conjeéture (Lang-Trotter for 2 elliptic curves) There ezists a constant Cg, g, ry.rp =
0 such that

g, £, () ~ CEy By . l0g lOg z.
This conjecture seems extremely hard to prove. Also, the set in question is very

sparse so that gathering numerical evidence is futile.

We can motivate this conjecture with the naive heuristic used above. We have

1
Prob{a,(F1) =7 } = ﬁ,
and
Prob{ ay(Bp) =12 } ~ ——
Qpl L2 2 \/17
Then ), = 1 with probability proportional to
1 1 1
—x —==,
vVP VP P
Such a probalistic assumption of independence appears in [LT76], page 37. Conse-
quently,
T1,7 1
THEE) =D A >
p<z p<z
Since

Z% = loglogz + O(1),

p<T

a classical result by Chebysev®, for some constant C > 0, our heuristic leads to

Ty, l
TR (Z) = ) . Cloglog z.

Pz

5See [Che51] for historical interest, or recall Mertens’ theorem, 2 opge l—°§2 =logz + O(1), and
apply partial summation lemma 2.1to 3 . 2 =3 ¢, lﬁg-eﬁ;.
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We further remark that if we were to consider for fixed ry,79,73 € Z, the set

L2, —
TE\,E,Es (z) - Z /\p’

p<T

where now A, = 1 if a,(E;) = r; for ¢ = 1,2, and 3, then by the same heuristic we

obtain

1
T1,72,T2 ~
WElyEZyE:i (x) -~ Z p3/2 .
psT

Since

1 1 1_3/2
Zﬁgzm<</l 7324t <« 2,

<z neN
ngz

it follows that
o By (€) = O(1).
That is, the set 7z 2%, () is finite.
We now give a survey of what results are known regarding the Lang-Trotter conjec-
ture and the Lang—-Trotter conjecture for 2 elliptic curves.
Let E be an elliptic curve over Q without CM. It is not immediately obvious that

either
Tz (z) = o(m(z)).

That is, that the supersingular primes have density zero, or that
1%(z) # O(1).

That is, that there are infinitely many such primes.
Serre [Ser68| proved n%(z) = o(w(z)) by applying the Cebotarev Density Theorem
to the number fields generated by the coordinates of the torsion points of E. Later
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in [Ser81], he combined this idea with sieve techniques in order to show

mg(z) < Geopi== ir=0,
5T mme forany r €2 (including 0).

Furthermore, assuming the Generalized Riemann Hypothesis (GRH)® for these num-

ber fields, he showed that

T () < z3/4 if r =0,
TE\T) S z'/®(logz)~Y/? for any r € Z (including 0).

Elkies [Elk87] made a big breakthrough and showed 7%(z) # O(1), and that there
are infinitely many supersingular primes. This result was improved by Fouvry and
Murty ([FM96], Théoréme 1). Note that Elkies and Murty [Elk91] obtained uncon-
ditionally the upper bound z%* for 7% (z) obtained by Serre under GRH.

Murty and Fouvry also showed in [FM96] that the Lang-Trotter conjecture, is true
on average in the supersingular case. More precisely,

Theorem B ([FM96], Théoréme 6) Given € > 0, if A(z) > z¥/2*< and B(z) >

/2% then

> Y m@~g VT 4 4(2)B(z)).

lal<A(z) [b]<B(z) logz

In 1997, David and Pappalardi generalized the work of Murty and Fouvry showing

that the Lang-Trotter conjecture is true on average for any r € Z.

SLet K be an algebraic number field, O its ring of integers, a an ideal of O, and (x(s) =
> mlTF’ where the sum is over all ideals a of O, and Na is the norm of a; defined to be the
index of a in O

Conjecture (Generalized Riemann Hypothesis—GRH) All non-trivial zeros of (x(s) lie

on the line o = 1.
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Theorem ([DP99], Corollary 1.3) For any r € Z, given € > 0, if A(z) >

zl*€, B(z) > zlte, then

1\ —p—1
> 3 m@~(i-3) glé(fl)éz e (4A()B(2))

lel<A(=) [bl<B(=) ol

We observe that for r =0,

PP’ —p—1) con
o= =t

On the other hand,

M(-5) =H(-5) =@=F

»[0

the constant obtained by Fouvry and Murty.
In a subsequent paper, Fouvry and Murty also proved the Lang-Trotter conjecture

for 2 supersingular elliptic curves E; and E, over Q. Recall for fixed T1,T2 € Z,

”E[T;:z( ) & #{p<z:0,(B)=m}n{p<z: ap(E2) =12}),

and in particular for r; = ry = 0,

5@ F#{p <7 : 0p(B) =0} N {p <7 : ay(Ey) = 0}).

Theorem ([FM95], Theorem 1) For every positive €, we have for £ — oo, the

asymptotic relation

>0 3 Y @~ loglogx(lsAl(x)Az(mBl(x)Bz(x))

la1]SAL(Z) |a21<A2(2) [b1]<B1(2) [b2|< Ba(z)
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holds uniformly for Ai(z) > z'/%**<, B;(z) > z'/?*¢, A;(z) Bi(z) > £3/2+¢ i = 1,2.

In the spirit of [DP99], we attempt to prove a similar result for all r;, 7, € Z. That
is, we would like to prove the following average Lang—Trotter conjecture for 2 elliptic
curves.

Conjecture (Average Lang—Trotter for 2 elliptic curves) For fizedr,,r, € Z,

S D > Y a32.(2) ~ C(ry, 1) loglog (164, (z) Ag(z) By () Ba (),

le11€ A1 (z) laz|<A2(x) [b1|<B1(z) |b2|< B2 (x)

where C(ry,r2) is a constant depending only on fited r1, 75 € Z. This is the subject
of ongoing research [ADJO00].

We have discussed the notions underlying the Lang-Trotter conjectures. In addition,
we have discussed what work has been done in the direction of proving them.

Our direction now changes toward understanding the notions of our present work
in this thesis on the average Lang~Trotter conjecture for 2 elliptic curves. We begin
in the next section with an overview of some of the theory of quadratic fields and

orders in quadratic fields.
3.4 Quadratic Fields and Orders

We start by recalling some facts regarding quadratic fields.
Definition Any extension of degree 2 over the field Q is called a quadratic field.

Let d # 1 be a square-free” rational integer® (positive or negative). Since the

If d = a2, for some a € Z, then we say that d is a square. If d # a®, for any a € Z, then we
say that d is non square, or not a square. If p|d = p? { d, then we say that d is square-free. If
pld = p?|d, then we say that d is square-full.

8By a rational integer we mean d € Z. This is used to distinguish integer between rational
integer and algebraic integer.
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polynomial p(z) = z? — d is irreducible over Q, the field Q(c), obtained from Q by
adjoining a root « of p(z), is of degree 2 over Q; Q(c) is a quadratic field. We denote
it by Q(v/d). It can be seen that any quadratic field is of this type. Furthermore, it
can be shown that for distinct d (not equal to 1 and square-free), the fields Q(v/d)
are distinct®. It follows that there is a one-to-one correspondence between quadratic
fields and square-free rational integers d # 1.

In fact, Q(V/d) has exactly two distinct Q-monomorphisms!® to C, namely

01,00 : Q(Wd) — C

o1(r + sVd) r+svVd

oa(r +svVd) = r—sVd.
Definition Let {w;,w.} be a basis'! of Q(v/d). The discriminant D(w;,ws) of this

basis is defined as

Do, z) % {aet | THer) orlen) ]}2
Definition Let d # 1 be a square—free rational integer. An element 8 of Q(+/d)
is called an algebraic integer if there is a monic!? quadratic polynomial p(¢) with
integer coefficients such that p(6) = 0.
It is known that the set of all algebraic integers in K o Q(V/d) forms a ring which

is called the ring of integers of K.

Definition We let Ok denote the ring of integers of K.

9See [BS66], pg. 130
1A monomorphism is an injective homomorphism.
1 {w1,ws} span a Z-submodule of rank 2 of Q(v/d).
12A quadratic polynomial over Z has the shape az? + bz + ¢, with a, b, ¢ € Z. It is monic when
a=1.
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In fact,- Ok is a free Z-module of rank 2. A Z-basis for (Ok, +) is called an integral
basis for K (or for Og). Thus {1,w} is an integral basis if and only if all z € O
are uniquely expressible in the form a;1 + ayw, a; € Z. The discriminants of the
bases of the Z-module O differ by a square unit in Z. This can only be 1. That
is, the discriminant of the Z-module Ok is a well-defined element of Z. It is called
the absolute discriminant or the discriminant of K.

Our next lemma gives a complete description of the ring of integers and the discrim-

inant of quadratic fields.

Lemma 3.1 Let K be a quadratic field, 1,w be an integral basis and Dy the dis-

crztminant of K. Then,

1. If d =1 mod 4, we can take w = %‘?, and we have D = d.

2. Ifd =2 or 3 mod 4, we can take w = V/d, and we have Dy = 4d.

Proof See [ST87], pg. 68, Theorem 3.3.

We now discuss orders in quadratic fields.

Definition An order R in K is a subring of K which as a Z-submodule is finitely
generated and has rank 2.

Example If d = 1 mod 4, then Z[Vd] and Z[“’z—‘/z] are two different orders in
Q(Vd).

In a similar way we define the discriminant of an order.

Definition An integer D is called a fundamental discriminant if D is the discrim-

inant of a quadratic field K. In other words, D # 1 and either D = 1 mod 4 and
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square-free, or D = 0 mod 4, £ is square-free and 2 =2 or 3 mod 4.
The next lemma suggests that it is natural to consider quadratic fields together with
their orders, since their discriminants form a sequence which is almost a union of

two arithmetic progressions.

Lemma 3.2 If K is a quadratic field of discriminant D, then every order R of K
has discriminant D f2 where f is a positive integer called the conductor of the order.
Conversely, if A is any non-square integer such that A = 0 or 1 mod 4, then A is
uniquely of the form A = D f? where D is a fundamental discriminant, and there
ezists a unique order R of discriminant A, and R is an order of the quadratic field
Q(VD).

Proof See [Coh93], pg. 219, Proposition 5.1.3.

For an order R in a quadratic field K, we define the class group cf(R) as the quotient
of the group of non-zero fractional ideals’® in R, S, by the group of non-zero
principal fractional ideals!* in R, Pg.

Definition

c(R) ¥ Sp/Ph.

It can be proved that!® #cf(R) < co.
Definition The number of ideal classes in cf(R) is called the class number of R and

is denoted by h(Dg) or h(R).

13Fractional ideals of R are subsets of K of the form c—'b where b is an ideal of R and ¢ is a

non-zero element of R. For example, the fractional ideals of Z are of the form qZ where g € Q.
14A fractional ideal of R is principal if it is of the form c—'a, where a is a principal ideal in R.
15See [BS66], pg. 221, Theorem 2.
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From temma. 3.2 it is clear that if a is any non-square integer such that d =
0 or 1 mod 4, then h(a) is well defined. We need one more concept from the theory
of quadratic fields.

Definition (Hurwitz—Kronecker class number) Let n € Z,n < 0 and w(a) be
the number of roots of unity'® in the quadratic order of discriminant a. Then the

Hurwitz-Kronecker class number H(n) is defined as

def h(a)
H(n) =2 eGNZ‘;M o(@)

a=

e
a=0,1 mod 4

Notice that H(n) involves all of the orders containing the order of discriminant a.

Now we have the definitions and notions in place to discuss the work of Deuring.
3.5 A Result of Deuring

Let E and E' be two elliptic curves over @, and for primes p of good reduction, let
E and E' be their modulo p reductions respectively’. Recall that the elliptic curves

E' over F,, which are F,—isomorphic to E, are given by all the choices
@ =wu'a and ¥ = u%b, with u € F;.

The number of such £’ is!®

%1 when @ =0 and p =1 mod 3,

2= when b =0 and p = 1 mod 4,

9w(-3) = 6,w(—4) = 4,w(a) =2 for a < —4, see [Coh93], pg. 226, Proposition 5.3.1.

17"We change notation because we will be considering two elliptic curves E;, and E,, and their
reductions E; and E; respectively in this section.

18This is true because if p = 1 mod n, the number of different nth power residues modulo p
(excluding 0) is (p — 1)/n. See [Sie64], page 17.
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E=l  when @ =b=0and p=1 mod 2.
Theorem (Deuring) Let p > 5 be a prime, and let r € Z, |r| < 2,/p. Then the
number of isomorphism classes of elliptic curves over F, with p + 1 — r points is
equal to H(r? — 4p).
Proof See [Cox89], pg. 319, Theorem 14.18.
Deurings result provides a link between the average Lang-Trotter conjectures and
class numbers.
Let E;;,i = 1, 2, be complete sets of residues ( mod p) x( mod p). For fixed ry, 5 € Z,
recall A, = 1 if ap(E;) = r;,1 = 1,2, and 0 otherwise. For clarity in the exposition

we denote

>
lagl<4; (=)
1b;1< B;(z)

to mean
la11€A1(Z) [61]<B1(z) [az|SA2(z) [b2{< B2(z)

and generally a sum over ¢ will mean a double sum. Further, let 4 = 4; (z)As(z), B =

Bl(x)Bz(:z:) C = A;(z) + A2(z),D = Bl(x) + Ba(z). Then

Z TEE,(T) = 16 A Z Z Ap

la;I<A (z) lagi€Ai(=) Br <p<T
1b;1<B; (<) b;1€ B; (=)

=16ABZ DB

B. <z lail<A;(2)
i SPS 16;1<Bi(z)

SRR YD SR SRR

B <z a;=a; (mod p) b;=b; d
i SPSE (3:,B0) €65 o PP VAR DY Sratd

with the convention that the last sum expression is zero when it is empty, and where

B, ¥ max{5, |r;| +1, -—}
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Notice for each 7 =1, 2,

o o1 = g$+0(1),

a;=d&; (mod p)
lezi€Ai(=)

Yool = 2B;ﬁJ.-O(l).

b;=b; (mod p)

16;1<B;i(z)
Hence,
—= 3 e
16AB lazl<A;(=z) n
[6:1< Bi(x)
_ 1 2A1($) 2B,;(.’L‘)
By, <pgzi=1,2

=12 RS
Consider the inner sum.

>

(a't yEl' ) 65;7

€ #{E1/Fp ¢ ap(Br) =71} x #{ E2/F, : ap(Ep) =12}

= #{ - El/mtp }x#{ - E2/]E:p X
F,—isomorphism class F,—isomorphism class

F,—isomorphism classes F,—isomorphism classes
X 7 X # :

of elliptic curves with of elliptic curves with
p+1-r; points p+1-r2 points
We observed at the beginning of this section that for each i =1, 2,

#{ Ei/By }=Z—’+0(1).

F,—isomorphism class 2

Deuring’s theorem implies for each ¢ = 1, 2,

F,-isomorphism classes 9
of elliptic curves with = & (r; — 4p).
p+l—r; pOi.ntS
It follows that,
p 2
> % = {E+vow} HEI-mHEE - )

(@:.b:)€€}

= T a0} — ) (3 — 49) + OWH(? — ) H(E - 4p).
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Moreover,

(262 00) 1 52

i=1,2 i=1,2
16AB AD+ B A+B+CD C+D
p? p
Then,
1 T, 1 H(T% _ 4p)H(T% — 4p)
6AF 2. 2 "EA@ = 7 3 +ET,
164B le;lSAi(=) By <p<gz n 4 Br;<p<z p2

[6;1< B (=)

where ET is equal to

1 CD , C+D, 1 3
({B A} {A+B+E}z+ 28 ° t 25% (log z)°+

‘0 (Z H(r? — 4p) H(r} — 4p)) _

p3

p<z

The point is that Deuring’s theorem has transformed the study of the average Lang—

Trotter conjecture for 2 elliptic curves to the study of the asymptotic behaviour of

MT = L = H(r} —427)5[(7‘3 —4p)
Br.<p< p
ri RPRT
In order to study MT, and justify ET, we recall Dirichlet’s class number formula

in the next section.
3.6 Dirichlet’s Class Number Formula

Before we can apply Dirichlet’s class number formula to study the main term MT
and the error term ET from the last section, we need to be able to associate a
Dirichlet character to a number, 4 < 0, A = 0,1 mod 4. We do this in subsection

3.6.2. In the next subsection we define the Legendre-Jacobi—Kronecker symbol.
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3.6.1 The Legendre—Jacobi—Kronecker (LJK) symbol

Here we define Legendre’s symbol, Jacobi’s symbol, and the Legendre-Jacobi-Kronecker
symbol. Let a € Z.
Definiton (Legendre’s symbol) If p > 2, then we define the Legendre symbol

(g-) as follows:

0 ifpla;

p ~1 ifp4{a and z? = a mod p has no solution.

(a) et { 1 if p ¥ @ and z2 = a mod p has a solution;
Note that Legendre’s symbol is to the prime modulus p. Jacobi’s symbol is a natural
generalization to the modulus @, where @ is any positive, odd integer.

Definition (Jacobi’s symbol) Let @ be positive and odd. We write @ = p1ps - - - Dy,

where the p; are odd primes, not necessarily distinct. Then we define the Jacobi

(5)=11(2)-

j=1

symbol as follows:

We are now ready to define!® the LIK symbol to the modulus m, where m is any
positive integer.

Definition (LJK symbol) Let m > 0,m = 2°p;ps---p; where the p; are odd
primes, ¢ > 0, A € Z, A = 0 or 1 mod 4, and A not a perfect square. The LJK
symbol (£) is defined by

B)=(3) U

=1

19Gee [Hua82], pg. 304.
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where

()
5)

3.6.2 Properties of the LJK Symbol

[«
e,

1 ifA=1modS8,

0 ifA=0mod4,
-1 if A =5 mod 8;

lIg;

Legendre’s symbol (p > 2).

We list the properties of the Legendre symbol, Jacobi symbol and the LJK sym-
bol. Furthermore, we use the properties of the LIK symbol in order to associate a
Dirichlet character to a number, A < 0,4 =0,1 mod 4. Let a,a’,b € Z.

Properties of the Legendre symbol

. (ﬂ;b) = (g) (g) See [EM99], pg. 162, exercise 7.1.4.

2. If a = b mod p, then (1%) = (%) This is clear from the definition of the

Legendre symbol. That is, if a is a quadratic residue modulo p, then so is b&.

The same holds if a is a quadratic non residue.

3. If p, q are distinct odd primes then

(2) () -co=e=

or equivalently, (’3) = (%) -unless p=¢ =3 (mod 4), in which case (g) =

- (5) . Note that this is Gauss’s law of quadratic reciprocity. An equivalent

formulation?® of Gauss’s law of quadratic reciprocity is as follows. For p, q as

above, and § > 1, if p= 4q (mod 446), then (g) = (g).

20See [Ros94], pg. 67.
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Properties of the Jacobi symbol
1. If Q and @' are odd and positive, then?!
@ (&) (&) = ().
o (2) ()= (%),
(c) (%) = (%) ifa=a' mod Q.
2. If P and Q are odd, positive and coprime, then
(@)~
This is the reciprocity law for the Jacobi symbol?2.
Properties of the LIK symbol
1. The following are true:

(a) If (A,m) > 1, then (£) =0;

(b) If (A,m) =1, then (&) = %I,

(c) If my >0,m, > 0, then ( A ) = (%) (miz)

mima
2. If m > 0, (m, A) = 1, then the LJK symbol is given by

(é) = { (sznl') ' when A is odd;

m (2)°(-1)*F " (ﬂ) , when A =2°%,2¢u.

fu

Here (ﬁ) (), (ﬂ) are all Jacobi symbols?3.

]

21See [EM99)], pg. 183, exercise 7.6.12.
22See [EM99), pg. 184, exercise 7.6.15.
23See [Hua82], pg.305, Theorem 3.1.



3. Suppose that m > 0,7 > 0, and m = —n mod |A|. Then**

A\ _ [ (®), ifA>0;
m) | —(%), ifAd<o.
4. The LIK symbol (£) = (jzf4 ) is a real® Dirichlet character modulo |A|.

Now if A < 0, A = 0,1 mod 4, then by lemma 3.2 there exists a fundamental
discriminant D such that A = Df2. By the properties of the LJK symbol we can

associate a Dirichlet character to a number, 4 < 0, A = 0,1 mod 4, namely

xa(m) = (%) :

We have the notions in place to discuss Dirichlet’s class number formula.

3.6.3 Dirichlet’s Class Number Formula

Let s=0+it€C, thenforoc >0, A€Z, A <0, A=0,1 mod 4, we consider the

Dirichlet L-series

A) def Z XA(n)’

n=1

where x.4(n) = (£) is LJK symbol. L(s, x4) satisfies a functional equation® and is
an analytic function of s for all s € C whenever x4 is non-trivial??.
Dirichlet showed at s = 1, L(1,x4) # 0, and deduced Diricklet’s class number

formula?8:

h(4) = <A \/@L(I,XA),

24See [Hua82), pg. 305, Theorem 3.3.

25See [Hua82], pg. 305, Theorem 3.2.

26See [Dav80], pg. 11.

*TThe character xo : (Z/qZ)* — C* satisfying xo(a) = 1 for all (a,q) = 1 is called the trivial
character (or principal) character.

28See [EM99], exercise 10.5.12, for a sketch of a proof in the case that A is a fundamental
discriminant. See also [BS66], chapter 5.
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where w(A) is the number of units in R4 (order associated to A).
We may now justify the error term ET from the last section. Fori=1,2, |r;] < 2,/p

implies -
\Vidp—ri= 22+ 0(1).

The definition of the Hurwitz—Kronecker class number and the fact that w(d;) > 2

together imply

Hrf—4p)=2 > g—((—%s > h(d).

f2Ir?—4p f2Ir2—ap
fizdi=r?—4p f‘?di=r‘.2—4p
2;=0,1 mod 4 d;=0,1 mod 4

Dirichlets class number formula, and an upper bound for L(1, x4, ) obtained in lemma

2.16 together imply

. 1
() = S a0, xa) < /T logla] < LELEE,

It follows that

H(r}—4p) < /plogp Z f

32 -4,
f2d ;=r2—ip
But
2v7 1
Z << Z —<</ —ds<<logp,
FRIr2- 4p fi<2P
so that

H(r? — 4p) < /p(logp)*.

It follows that H(r? — 4p)H (r? — 4p) < p(logp)?, and

s H = 49 (3~ 4) o S (10g )t < (log2)* 31 < z(log 2)?,

p

PET p<zT pP<T
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Z H(r? — 4p)H(r} — 4p) < Y p(logp)* < z(logz)* Y | 1 < z*(logz)?,

<z p<T p<zT

D pH(r} — 4p)H(r} — 4p) < 2*(logz),

PST

and
Z p?H(r? — 4p)H (72 — 4p) < z*(logz)®.
psz

Hence, the error term ET is equal to

AD+BC A+B+CD C’+D
16AB Z —H(r1—4p)H(r2—4p)O( = + 1)

B, \p<z: p p

+ 16AB > O(@H(r} — 4p)H(r} — 4p)) x
Br;<p<z
D
< o (AD—:BC’ +A+B:—CD L O+ +1)
P P
164B
— —4
16AB ] > O(pH(r? — 4p)H(r5 — 4p))
r; SPST

which is equal to

0] Lz £l”B—CJ.-(A+B+CD)+((J+D)p+pz}H(rf—zzp)lar(r._%--a;p)
ABp<z p

+ O( {&B—C+(A+B+CD)%)+(C+D)+ZJ}H(’r%—-llp)H('r%—élp))
o<z

Lo (Z H(r} ~ 4p)H(r3 - 4p>) ,

3
p<z P

which is equal to

D C 1 1 CDY , (C+D), 1 3
O({§+Z}z+{A+B+AB}$+ 1B x—f-ABz (logz)

+ 0 (Z H(r} —4p)H(T%—4p)> _

3
p<z p
We have completed our survey of the notions underlying our thesis. In the next

section we present Theorem 1 proven in the next chapter and discuss it’s relationship

with the Lang-Trotter conjecture for 2 elliptic curves.
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3.7 On a Theorem of Fouvry and Murty

We prove the following theorem in the next chapter.

Theorem 1 Forr € Z, r of odd parity,

1 K(r
Z Ez-Hfg(r"’ — 4p) ~ 71_(2 ) loglog z,

p<zT

where

def h?(d)
Hy(r*—4p) = 3 w2(d)’
FEN,f2Ir2—4p

df=r2—4p
d=0,1 mod 4

K(r) = Z i nquzgzzfz) Z (%)

f=1 n=1 a mod 4n

2r,f)=1 (r2—-af2,4n)=4
_ sz(pz-!-l)H2p8—p7—4p6—4p5—3p4—2p3+p2-p—1
~ 9 2 _1)2 4 _1)(p2 —1)2 !
gLl P —17 1| F -6 1)

1S a non-zero constant depending only on r, d(n) is the number of divisors of n, ¢
is Euler’s ¢ function, >, .44 IS @ Sum over a complete set of invertible residues
moaulo 4n, and (2) is the Legendre-Jacobi-Kronecker (LJK) symbol.

We explain the relationship between Theorem 1 and the average Lang-Trotter con-
jecture for 2 elliptic curves.

Using Deuring’s theorem, the number of F,-isomorphism classes of supersingular
elliptic curves over F, is H(—4p), Murty and Fouvry [FM95] reduce the

2. > > 3 mAE)

la1l€A1(2) laz|<A2(z) [01]<B1(T) [b2[<B2(z)
in the case r, =5 = 0 (as we did in section 3.5 in the general case r,,7, € Z), to

lzﬂ—_“_?l+ET

2
p<T p
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and then prove

= ~ 57 — loglogz.

pP<zT

More precisely, by the definition of the Hurwitz—Kronecker class number A (—4p),

( ) 2
H?(—4p) 1 h(d)
SECE 1L @l
Pz P psz P £21—-4p w(d)
\ d=0,1 mod 4 J

A(—4 h(— e
5 Z h(d) —9 Z h(d) — 9 { h;_g,} + w(_’;)) if p = 3 mod 4,
F2—1p w(d) g w(d) ;(—:‘{% if p=1 mod 4.
d=:4{. d=:f‘}_,2
d=0,1 mod 4 d=0,1 mod 4

Recall that w(—4) = 4,w(—3) = 6, and w(d) = 2 for all other d < —4. Notice for
all primes p, —4p < —4, so that w(—4p) = 2 for all p. By excluding the primes 2
and 3, —p < —4, so that w(—p) =2 for all p # 2, 3. It follows that

> 2 H(~4p)

2
a\p<zp
1 1
= 2 Sn)+h(—p)P+ > Sh(-4p)
5z p s<p<z p
p=3 mod 4 P=1 mod 4
h?*(—p h(—p)h(—4p ! 1
= > B 3 MR s s Ly
5<p<z P’ 5<p< p? l s<p<r s<p<z p
P=3 mod 4 p=3 mod 4 p=3 mod 4 p=1 mod 4
h2(— h(—p)h(—4 h%(—4
— Z (2P)+2 Z ( P)z( P)+z (2P)
p p p
5¢<p<gz s<pLz 5<p<z
p=3 mod 4 P=3 mod 4
def

= Tl,l(l') + 2T1’4($) + T4,4($).

Murty and Fouvry show that

5
Th1(z) ~ 57 loglogz,
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1
Ty 4(z) ~ Zloglog:z:,

and

: 3
Tis(z) ~ 7 loglogz,
from which they deduce

1. 5 1 3 35
Z p_zH (—4p) ~ (ﬁ + ) + Z) loglogz = -ﬁloglogx.

5<p<z

Generally, for r € Z, |r| < 2,/D, by the definition of the Hurwitz—Kronecker class

number H (r? — 4p),

r 32
1 1 h(d)
—H(r?—4p) =) {2 —
d=r2f—4
\. d=0,1 mod4 J

Observe that

1
Z ?H?(TJ - 4p)1

p<z

may be written as a sum over a diagonal (dg) part and a non-diagonal (ndg) part.

That is,

1
Z ;2-Hz(r2 — 4p)

pP<zT
2

- v 1L hd)
‘szz Z w(d)

psz fr2-4p
d=0,1 mod 4
_— 1 ) h(d1) h(ds)
<z p’ fRir2—4p w(di) w(de)
dy=0,1 mod 4
f3ir2—4p

do=0,1 mod 4
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,
1 B2 (dy) h(dy) h(d2)
SOOI ED >
2
p<z p? JE T w?(d;) ir2—tp w(di) w(dz)
d1=0,1 mod 4 d1=0,1 mod 4
f31r2-4p £3Ir2-ap
d9=0,1 mod 4 d9=0,1 mod 4
\ h=f h#f2
3\
1 h2(d) h(d1) h(d2)
- ayal 3 Hd, > M
P<T p fF3ir2—4p wz(d) fRr2-ap w(dl) w(dg)
d=0,1 mod 4 d1=0,1 mod 4
i
4 d2=f£<?;o J
def 1 1
= 4D SHL(T-4p)+8) 7 Houe(r” = 4p)-

LT p<z
We modify the methods found in David’s and Pappalardi’s paper [DP99] to obtain

a result (Theorem 1) on the diagonal part,

K(r)

T2

) ,
Z ?Hfg(r2 —4p) ~ loglog z,

p<zT
for r € Z, r of odd parity, which is analogous to the result obtained by Fouvry and

Murty in [FM95] after summing their diagonal parts,
5 3 23
T11(z) + Tya(z) ~ (ﬂ + Z) loglogz = ﬁloglogz.

More precisely, instead of using the result of lemma 2.15; for U > 0,

L, xa) = (%) %-;-0 (M) ’

ngU
whose proof depends on the Pélya—Vinogradov inequality lemma 2.14, as used in

[DP99], we use the result of lemma 4.1 on L(1, xa,) L(1, Xa,)-
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Chapter 4

Proof of Theorem 1

‘This chapter is solely concerned with the proof of Theorem 1. It displays the tech-
nique we developed in order to prove the average Lang—Trotter conjecture for 2
elliptic curves. This work is in progress [ADJ00]. The main difference between our
technique and the technique from [DP99] is lemma 4.1. We give a new representa-
tion for a product of Dirichlet L-Functions L(s, x4,)L($, X4,), valid for non—trivial
Dirichlet characters x4,,7 = 1,2, and s = 1, using the technique of contour integra-
tion.

Theorem 1 Forr € Z, v of odd parity,

K
Z —4p) ~ (: ) loglog z,
p<:r: T
where
2 2 def hz(d)
Hy(r* —4p) = > w2(d)’
FEN fr2—4p
df=r2—4p
d=0,1 mod 4
Ko = 3 S0y (2
f=1 n=1 nf ¢(nf ) 2° mod 4n n
(2r,f)=1 (r2-af2,4n)=4
_ ész(pz-i-l) ]:[2p8_p7_4p6_4p5 _3p4_2p3+p2_p_1
- 9plr 2—1)2;*2 (p* — 1)(p® — 1)2 )
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is a non-zero constant depending only on r, d(n) is the number of divisors ofn, ¢
is Buler’s ¢ function, 3, ., is a sum over a complete set of invertible residues
modulo 4n, and (2) is the Legendre-Jacobi-Kronecker (LJK) symbol.

Proof of Theorem 1 By Dirichlet’s class number formula,

d
wi(d) = 2D, ),
we have!
h?(d
> Ehe-w = Y 5 > 5
Br-Lp<z B,-\p<:z f2ir2—4p
f d—r2—4p
d—l mod 4
= = Y o Y ML)
By \P<-'5 f2lr2-4p
f2d=r2_4p
d=1 mod 4
— z : E : @—_7'2 L*(1,x )
= U2 2 ! -
47r B,-\p<a: F2ir2-4p f
f2d=r2—4p
d=1 mod 4

For clarity we define,

% —4p

S3(B;, o) ¥ {B. <pg z:1°—4p=0mod f2, feN,d= 72

=1 mod 4}.

Our next move is to interchange the sums. We observe since f2 divides r2 — 4p,
|f| < 24/p. Further, as p < z, we have that |f| < 2,/Z. We range the f’s over all

numbers less than 2/7, and then pick primes p satisfying the conditions of SH(Br, ).

1Not:e that we define B, & max{5,|r| + 1, % } and set p > By to ensure p > T ,p 5, and

2 [r] + 1. We take a moment to explain why we set p 2 B,. Since r is odd, if f2|r® — 4p, then
f is odd, and d = "ﬂf_ﬁﬂ = 1 mod 4. Since (r, f)|p, therefore (r,f) = por (r,f) = 1. We set
p> |r| + 1 to ensure (r, f) =1, a necessary condition for p to be in the arithmetic progression

4p =r? mod f2. Furthermore, we have p > I, as [r] £24/P, and p > 5, as we excluded the primes
2 and 3. We encode these inequalities on p by setting p > Bs.
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It follows that by intercha.nging the sums,

.2
=2 5 > T

Br\psz f2r2—4p

f2d=r2—4p

d=1 mod 4
con 1 1 4p—7‘2 3
= Z_ F > —I*(Lxd)

P(Br z)
1 1 L?(1, xa) % (1 Xd)
——22—22 L) _7os L »
f<2f PES} (Br,z) <2V PES}(Br,z)

with the convention that the sum expression is zero when it is empty. By partial

summation lemma 2.1,

Z L3(1, xaq) logp

PEST(Br,z) p logp
= .’L‘l; T Z Lz(laXd) logp _'Bﬁ' Z L2(1,Xd) logp
g €57(1,z) r 08 br PEST(L,B;)
‘ d 1
- L?(1,xq)1 — dt
/ z (1, xa) logp {dttlogt}
= | pest(1e)
= 11 > L*(1,xa)logp —/z{ Y L2(1,x4) logp {%ﬂl t}dt
T8z PES}(Br,z) Br \ pesi(B-.t) 0g
1 1
t (o pms) X ol
zlogz B.log B, peSTQLEL)
i d 1
- 2(1, xa) 1 — dt
/ > L*(1,x4)logp {dttlogt}
= pesi1.B.)

We claim? for any 0 < € < &,¢ > 6 — 3¢,

Z Z L*(1,xa) logp = K(r)x + Oc e r (__x_c> )

f<2\/- pGS}(Br x) (IOg l‘)
Assuming the claim for the moment, we complete the proof. Observe,

1 2
T logz Z f2 Z L (1 Xd) logp

fg2\/_ pGS"(Br 12)

2Note that we call this claim Proposition 4.1, and prove it in section 4.2.
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1 d 1
ZF > Lz(l’Xd)hgp} {Eitlogt}dt

/B' {fszﬁ PESH(Br.t)
1 T
zlogz {K(r):z; * Oree ((log:z:)c) }
N 3 1+logt
dt
N /B {K(r) FH Oree ((logt)°> } {t"’(logt)z}
1 T dt T dt
- K() {ng [t [ tlogt}
+ Opee(maxd — / T dt / = dt
e (logz)ett’ Jp_t(logt)et?’ Jp_ t(logt)ett

— loglog B, }

1
log B,

+ O max { 1 ! — 1 )
i (logz)e+1’ c(log B;)¢ c(logz)e [/~

Moreover,

def 1
VO 7 > L*(1, xd)logp,
f<2VE? peSH(LBy)

def

is a constant depending on r. This is true because log|d] logéi"f—z—'2 < logp,

together with lemma 2.16, implies L2(1, x4) < (log|d|)? < (logp)?, so that,

o) < 3 fi 3 (logldl)logp

I&o NG PES}(1,Br)

< > % > (logp)®

L2z p<B-
& [Br](log B,)?.

Hence,

1 1 Tfd 1
(zlogx B, logBr) (r) = Q(r) /}3r {Zl?tlogt} d

1 1 1 1
- (xlogz B, logB,.) f(r) —a(r) (:z:log:z: B, logBr>

= 0.
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Letting £ — oo, we deduce,

z fi? Z L*(L, xa) ~ K(r)loglog z.

ravE’ pesiBezy P

Since

/ * loglogt loglog B, loglogz / T o dt
dt = - + [ =,
B, t2 B, T B, t?logt

and

/ £ dt < 1
B, t2logt B, log B,’
therefore by partial summation lemma 2.1,

1 L2(1,Xd)
D D

f<2vE " pESH(Br )

1 1 L2(1, = 1 L2(1, 1
=_z_zw+/ ZTZM_#
z f? p B f p £2
f<2vz ©  pES}H(Br,z) T f<2vE”  pESH(Brt)
= o(loglogz).

We have shown

K(r)

2

1
D> SHL(r?—4p) ~

Br<p<z

loglogz.

Lastly, note that 3~ 5 ;};Hfg(rz —4p) is a constant depending on r. It follows that

lim Epgz 1}_2H35(T2 - 4p)
z—00 __lffr(;‘ loglogz

ZpsBr p_lz_st(r2 - 4p)

ZB,gpgz ;712'H35 (r? — 4p)

= lim + lim

=0 -I%(-Q loglogz T—+00 %(zr—) loglogz
= 0+1
= 1.

Q.E.D. Theorem 1
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4.1 An Expression for L(1,x4)L(1, xd,)

In order to prove Proposition 4.1 we need an expression for L?(1, x4). We obtain
an expression for L2(1, x4) using contour integration. Notice that the fundamental
difference between the methods found in David’s and Pappalardi’s paper [DP99] and
our methods is an estimate for the product L2(1, x4) using contour integration. This
estimate seems necessary as using the Pélya—Vinogradov inequality (lemma 2.14) as
in [DP99] does not suffice. In fact, in lemma 4.1, we obtain a more general expression
for L(1, x4, ) L(1, Xa,), Where xg4,, % = 1,2 are non—trivial Dirichlet characters, because
in our proof in progress of the average Lang—Trotter conjecture for 2 elliptic curves

the more general expression is used.

Lemma 4.1 Given € > 0, xq, = (%),%7 = 1,2 non-trivia® Dirichlet characters,

Qa,z (1) = D g0 (B) (), for U > 1,

o a n) = did 3/16+¢
L(L, xa;) L(1, Xa) =Z——""‘j§( Jeot 10, (——' ‘5-'1/2 )
n=1L

In particular, given €, > 0, ford, =ds =d, and U > 1,

S (d\ d(n) _s |d[3/8+
2 _ _n
L*(1,xa) = nz=1: (;) - €7 + O¢, (_U1/2 ) :
Proof of Lemma 4.1 Let s = g + it € C. By definition,

L(s) & L(s, xa) L(s, Xa) = 3 ni ) (%) (%) o $ adl,:;(n)'

n=1 de=n n=1

3The term L(s,Xo), where xo corresponds to the trivial character, differs only slightly from
the Riemann (-function, {(s). Since xo(p) = 1 for (p,d) = 1 and xo(p) = 0 for (p,d) > 1, then

-1 =
L(s,x0) = (led -1-_;—.,) ¢(s). However, ((s) has a simple pole at s = 1. See [BS66], pg. 330.
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Following Barban* for U > 1, we consider

1 2-+ico o1 1 2-+ic0 OO adl,dz (TL) U s—1
— L(s)['(s — 1)U ds = i ), D (s —1) <;> ds.

272 Jo_ioo T2 Joico 47

By lemma 2.10, [ T(1 + 4t)|dt < oo, so we can apply lemma 2.8 in order to

interchange the sum and the integral. It follows that

L 2Hmf:““1"‘2(")1*( —1)( )Hds

27t Jo_ioo —
[o ] 1 24+i0o U s—1
= Z Garaz(n) 1 / L(s—1) (—-) ds.
— n 27 [fo_io n
Recall that I'(s’) is regular in the entire complex plane except for simple poles at
s =0,-1,-2,...,and for’ ¢ > 6,z > 0,
1 c+i00 ,
— [(s")z*ds' = e =
2wy c—100

Let s =s'"+1,ds = ds'. Then,

4

2+-i00 s—1 1+ico s
i. '(s—1) (%) ds = i INE)) (%) ds' =e~

278 Ja—ioo 27t J1—ico

SE

Hence,

1 2+ 1 2 Qdy d (n) n
— — = d -— _L _—_
i L(s)I(s — 1)U*'ds n§=1: e

For any T' > 1, let Ryij224ir denote the boundary of the rectangle with vertices
1/2 £14T,2 +4T in the complex plane. Since (s — 1)['(s — 1) = ['(s), and L(s, xa) is
an analytic function® of s for all s € C whenever xy is non-trivial, the only pole of

l"(s)

L(s)T(s—=1U*t=L(s ) Us‘

4See [Bar66], section 5. Note that L(s) is absolutely convergent for ¢ > 1 and so uniformly
comergent for o > 1 by comparison with |L(s)] € Y nw; in—.,l = (?(o). Furthermore, I'(s) = ef
e~tt*~1dt is absolutely convergent for o > 0, so that I'(s — 1) is absolutely convergent for
0 1.
g >
5See [KM84], pg. 82 and 83.
See [Dav80], pg- 11.
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inside Ry/22 47 is a simple pole at s = 1. Thus, by Cauchy’s residue theorem?,

1

Resg 1 L(s)['(s — 1)Ut = — L(s)I'(s —1)U*ds.
2mi Ris2,2, 47
Observe at s =1, L(s) = L(1),
.y O _pepy o
Res;—1I'(s — 1) = Eﬁ(s + l)?ﬁ =I'(1) =1,

and Res;=U*"! = 1, so that we may write

1 24iT 1/2+iT 1/2—iT 2~iT
L(1) = 5 f2 + + + /1 L(s)T(s — 1)U*1ds.

—iT 2iT 1/2-+iT [2—iT
Notice
1' 2—iT L
P L(s)'(s — 1) U° *ds
o ) o HTG =)
2
- L Lo +iT) (o —1+ iT)U"_l“"dea'l
2w 1/2 :

2
< = / IL(c + 4T)| [T(0 — 1+ iT)| U do,
271’ 1/2
and by lemma 2.18, for any o > 0,

/2 + T2
L{o +1iT) < \/|d1dz|log|d;|log |d2|—ao,_-

Also, by Stirling’s lemma 2.9 we have
IT(c — 1 +iT)| = V2re Y2 TT7-3/2{1 4 r(o — 1, T)}.

Note if T > 1,U > 1, and 1/2 < o < 2, then U°~! < U, T°732 L T2 and

Vo +TZ < V1+4T2. It follows that
1 2—iT o1
e L(s)'(s — V)U* 'ds
57t Jyjpir (s)I( )

7See [Tit78], pg 102.
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2 /3 L T2 T2
< V/|dida| log |d:]log |d,| / B i—:-'—e-I/MT‘f-?*/?g +7r(c—1,T)}U° 'do
1

2
< |dida|log|ds| log |dole " TUVT + 4T3 (1 + [ rle-1, T)da) :
1/2
Furthermore, note that the same bound is realized by the integral from 2 + T to

1/2 +4T. Letting T — oo, we deduce

1 2—ico
== L(s)T(s — 1)U ds = 0,

27 1/2—ico

and

1 1/2+i00 .
T L(S)F(s — l)Us‘-lds =0.

271 Jotiog

Now we consider,

1 2T
—/ L(s)['(s — 1)U 'ds
1

2mi [2+iT

1
27

1/2+4+iT
/ L(s)T(s — 1)U 'ds
1

[2—iT

1 T
< vkt [ 12a/2+w)lir-1/2 +it)lde.
l'—T

Again, by Stirling’s lemma 2.9, we know that
IT(—1/2 + it)| = v/2me™ V27l |¢]~1{1 4 r(—1/2,£)}.
Since r(—1/2,t) — 0 as |[t| = oo, there exists a k¥ € N such that
V2r(1+1(=1/2,t)) < k.

Moreover, by Burgess’s result® on character sums and Dirichlet series, we have for
any € > 0,

L(1/2 + it, Xa) <o/ [t]|d[/1E+/2,

8See [Bur63).
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so that
L(1/2 +it) = L(L/2+t, X&) L(L/2 + i, Xar) e [ty /1%,

We write ffT as {j_—,;. +jf1 +j;)1+f1T} since T' > 1 and by Stirling’s lemma 2.9,
|T(—1/2 + it)| has a discontinuity at T = 0. It follows that

U-%i / : [L(1/2 + it)|[T(—=1/2 + it)|d¢

3/16+¢ -1
Le ldldl;lﬁ { / + / + / + / }[t[e'lfz"'”dt

Let g(t) ¥ |t|e—/271tl. Integrating by parts we see

T T
/lg(t)dt<< SI/ZT

Since g(t) = g(—t), the same bound is realized by _—Tl g(t)dt. Moreover, by changing

variables we see
1 /2 o0
/ g(t)dt < / e ttdt <« / e “tdt’ =T(2) = O(1).
0 0 0

Since g(t) = g(—t), the same bound is realized by [ 01 g(t)dt. It follows that

o {L e L] ] Yoo

[d1d2I3/16+e |d1d2l3/16-re
U1/2 UL/2 61/21:'1*

<
Letting T — co, -/z=r — 0, and we obtain for any € > 0

1 1/2—ioco
— L(s)T'(s —1)U*'ds = O, (

2mi 1/2+ico

ld1d2|3/16+e
U1/2

Q.E.D. Lemma 4.1
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4.2 Proposition 1

This section should be read in conjunction with section 4.3. In addition, note that
the notation ETO1i, where i=1,2,3.45,6,7,8, means error term 1,2,3,4,5,6,7,8. These
error terms are evaluated in subsections 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5, 4.3.6, 4.3.7,
and 4.3.8 respectively.

Proposition 4.1 Fiz anr € Z of odd parity. Let B, Lt max{5, |r| + 1, %}, Xe LJK
symbol, and

2 —4p

f2

t(Br, ) &f B, <p<z:r*—4p=0mod 2, feN,d=

=1mod 4}.

Forany 0 < e < 35,¢> 6 — 3¢,

1 T
Z r>) Z L2(1:Xd) lng = K(T‘).’ZI + Oc,e,r PR YE
(logz)°
f<2vz’  peS;(Br)
Proof of Proposition 4.1 By lemma 4.1, given an ¢; > 0, for U > 1,
[0 o]
d d(n) o ld|3/8+e1
2 —
L*(1, xa) —z_; <;) e’ + O, (W :
This means we can write,

> % > L*(1,xa)logp,

f<2vz?  peSy(B.z)

as
= 3 d d(n) —_n Id!:&/B-*-E1
Z }E Z {Z (;> n € U+O€1 (W Iogp.
é"sj;/_:l pesf(B" ) \n=1
Let

def 1 1
ETO01 = W Z f—2 Z |d|3/8+€1 ].ng.

<2 *(Br,
(gr'fi/i pESj(B,- )

73



We evaluate ETO01 in subsection 4.3.1, showing that ET01 = O, (—”‘;’flq) - It

follows that

> % > L*(1,x4)logp

f<2v3* pES}H(Briz)

1 o=~d(n) _a d
o pes (B

Let 1 <V < 24/ be a parameter to be chosen later,

e 1 d(n) _» d

“sigE e eS(Brs)
1 d(n) _=» d
mros ¥ 3 5 ¥ Mot > (D
@ISV, n>UlogU? pESF(Br,z)

We cut off the f sum at V, and the n sum at UlogU? because of lemma 2.13,
which we use to evaluate ET03. We evaluate the error terms ET02 and ETO3
in subsections 4.3.2 and 4.3.3, where we show that ET02 = O (“ﬁ%ﬂi) , and

ETO03 = O;, (£) . Then, for any 0 < &, < 1,

> f—12 > L*(L,xa)logp

f$2vE ° peSH(Bryz)

(2r.f)=1
dn) _a
= S Ly A 5" (%) 10gp + ETO1 + ET02 + ETO3.
ik n n
<V n<Ulog U2 pEST(Br )

(2r.N)=1
Now we evaluate the sum over “small” values of f and n by splitting the sum

according to the residue of d mod 4n. By the equivalent formulation of Gauss’s law

of quadratic reciprocity®,

d =a mod 4n = (é) = (E) for n € N.
n n

9See introductory subsection 3.6.2.
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Since (£) = 0 when!? (a,n) > 1, and the conditions

2 4p

e —
p € S§(Br,z) and d = —F = q mod 4n,
are equivalent to the conditions
2 _ qf2
B, <p<=z, andpz%modnfa
it follows that
1 d(n) _a d
— —e T —)1lo
S Y TPt T (5)oe
P n<U logU? PESF(Br,x)
con 1 d(n) _n a
2 X m > SRt 3 (5) > e
(2{§;’=1 n<Ulog U2 a mod 4n PES}(Br,z)

d=a mod 4n

S LS W s (8 v

fev n<Ulog U2 a mod 4n Br<p<z
@rfy=t h ¢ pzﬁ—“—“ 2 mod nf2

Since we are summing over a complete set of invertable residues mod 4n, we note
that the convention is the sum expression is zero when it is empty. A necessary!!

condition for p to be in the arithmetic progression Tz—_:f—z mod nf?, is that
2 _ _r2
(T - ’”fz) =1

2 — af?
& there exists z1,2, € Z such that (———

" )Zl+nf22'2=1

& (rP—af)z+4nflz =4
< For some k € Z, (r* — af?,4n) = (4(p + nf3k), 4n) = 4.
By Dirichlet’s Theorem (lemma 2.4), we have

12, Tz"—afz),

Z logp=¢—(nzf—2)+E1(x;n 1

psz

2_gf2
PE_d_Lr £l— mod nf2

10Gee introductory subsection 3.6.1.
*Consider the arithmetic progression a + kq, k € N. If (a,q) = d > 1, then there is no prime in
this progression. That is, a + kg = d (% + k%) is a composite number.

75



where E;(z;nf?, "2—‘4“&) = o(z). Respecting David’s and Pappalardi’s notation we

define
def a
gmE Y (2.
a mod 4n
(r2—-af2,4n)=4
Let

ET04 % Z% > %")e‘ﬁ > (3) X e

f<v agUlog U2 2 mod 4n P<Br
h p=22f2 mod ny?
2 2
ETOS = > & et 3 (2) Bansr, =20,
£V f nsU[ogm n ¢ mod 4n n

(2r.f)=1 (r2-af2,4n)=4

In subsection 4.3.4 we show that
ET04 = O, (U(logU)?) ,

while in subsection 4.3.5, using Mongomery’s [Mon71] result on the Barban-Davenport—

Halberstam Theorem (lemma 2.5), we show that the main error term
ETO05 = O ((1og U)3(UV2(log U2)a:1ogx)%) ,

whenever —~£— < UV2logU? < z, for any A > 0. It follows that!2
(logz)

I P I ONED Y

fFEV n<UlogU? a mod 4n Br<p<z

(@r,f)=1 pE—Ter—a 2 mod nf2
1 d{n
= E I E _(._).e_'(%
gV f2 <UlogU?2 n
@rp=1 SV
a
X E — _S_ logp — E logp
n
a mod 4n . . p§= 2 P<2Br
,,E'_-;L mod nf2 p=T"2L0 mod nf2

12Notice if we defined et
{3
¥(z;n,a) = E - logp,

BrgpLa

P=a modn

then the same result would hold as this differs from the previous definition (see lemma 2.4) by only
a constant. This way we would not have to carry the B, everywhere.
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Z f2 Z d(n) e~ T Z () Z logp + ETO04

fsvV ngUlogU? a mod 4n PSzT

(2r.F)=1 p=2EL2 mod nf2
- > 5 Y WD
ry)
(2{?;’— f n<Ulog U2
< T Oy nenn 5] ceres
a mad 4n n ¢(nf) 4
(r2—af2, 4n)—4
d(n) B a
S E R e T ()
f<v n<U log U2 n b
(2r.f)=1 -4 (r2-af24n)=4
d(n) -5 AN T )
+ Z I3 > &> (E)El(x’nf’T)
(2 {?;/_ L n<U logU? (,...‘.‘_ffzd,:yz")ﬂ
d(n)cf(n) s
=22 X Shgamye §+ETo4+ETs
<V n<UlogU2
(2r. f)=
Let
def — e
BT06 = 2 3, X hamy
(ehprm ">V ogU?
d(n)ct(n) _a
ETO7 & _2 Taye t
> S
(2rf) 1
2. d(n)ci(n) _.
ETo8 ¥ - f e

(2r, f)—l

In subsections 4.3.6, 4.3.7, and 4.3.8, we show that for any 0 < 6, < %, 0 <d3+€ <

%, ET06 = 052 (W), ETO7 =0 (Vx'g-), and ETO8 = 053,52 (ﬁf—z)

Continuing , we re-write the finite sums over n and f as infinite sums and remove

the exponential e~% as it depends on the parameter U. If follows that for any

0<&h<i0<d+e<i,

z Z Z Mn— i Z Z d(n)cj(n )+ET06+ET07+ET08.

SV ngUlogU?

(2r.f)=1

nf2(nf?)° Lo 2t nf2(nf?)

@r.f)=1

n=1
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To this point we have shown

Z 7 Z L*(1, xq) logp

f<2vE 1 pesy(z)

(erf)=
d(n)c}(n) .
Z Z eyl ZETOL

f=1 n=1 <8
2r,f)=1

By subsection 4.3.9, for any 0 < € < 12, ¢ > 6 — 3¢, we have that

ET = ZETOi

i<8

T
= Oser ((log x)c) '

Q.E.D. Proposition 4.1

4.3 The Error Term ET
4.3.1 On ETO01

Notice

__ =P
ldl - f2 ’

1 2vz i
Z f2H3/4+2e p( F2) < Z f2 <</ tTdt K 1,

<2
oyl f<ave

and by the prime number theorem for arithmetic progressions,

T
v (F2)
4p=r2 mod f2

Hence,

U1/2 Z f2 z ld|3/8+ex logp

<2,/‘
(f f) pGSf(B,. \Z)
1

3/8+€1
<r U1/2 Z f2+3/4+261 Z p log p
FL2VE Pz
@r.f)=1 4p=r2 mod f2
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3/8+€l
< Z f2+3/4+251 Z logp
fL2vzE p<zT
(2r,f)=1 4p=r2 mod f2
x11/8+61
< U1/2

That is,
$11/8+€1
ETO]. == 01',51 (—E/T') .

4.3.2 On ETO02
Since

> o= ¥ i<k

neN,ngz keN

4n=r2 mod f2 k< 4zf—r2
2/T 1
z —<</ t_4dt<<vg,
|4
V<f<2VE

and by lemma 2.12,

> He-2 < 0072,

n=1
therefore
d(n -z d
Z fzz n ¢ Z (E)logp
epnE T PES}(Br.2)
d(n) s
< Zfzzn 5 ) logp
V<fg2y/z n=1 p<zT
(2r.f)=1 4p=r2 mod f2
< gz ¥ 53 %es >
fz n
veravaT st Wi
z logz(log U)?
< V3 .
That is,

zlog z(log U)?
ET02=0 ( 73 .
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4.3.3 On ETO03

S p Y et ¥ (Dogs

(zﬁ;’ . n>Ulog U2 pESE(Br,z)
< ¥ &l ¥ et 3 e
v f2 n
n>UlogU? pP<=

(2" f)_l 4p=r2 mod f2

d n
<z 3 S o

n
<V
n>Ulog U2 (2{,]‘)_

d n
L z E —(n—)e'ﬁ ,
n
n>Ulog U? |
and by lemma 2.13, forany 0 < d; < 1

S Ay L
n “U

n>UlogU?2

That is,

ET03 = O;, (%) .
4.3.4 On ETO04

Notice

Z, log p,

p<Br

—'-2—?& mod nf2
is a constant depending only onr. Forn>1,U > 1,

le 7| < [e77|

- I i+ 1 L .
- U2t 33l
1 1 1
<1 —

T e tEs

1 1
< 1+(1+= or tgrt )
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Since n! > 2™71, therefore 3 2, L < Y02 | =L =2 so that [e~F| < 3. Moreover,

> (7

a mod 4n

< ¢(4n) < n,

and by lemma 2.6, part 3,

Zd(n) = zlogz + O(z),

nsz

so that we have

YrE X et S (2 T s

LV Y ngUlogU? a mod 4n p<Br

pE’&——fﬁmodnfz
1 din), _a
< Ta > e

> ()
v n<U log U2 e mod 4n n
< > dn)

ngUlogU?
< U(logU)2.

That is,

ET04 = O, (U(logU)?) .

4.3.5 On ETO05

We begin by introducing new notation.

Definition We write @ (mod ¢)* to mean a mod ¢, (a,c) = 1.

Definition We writea =5 (mod c)" to mean a =b+cz,z € Z, (a,¢) = (b,c) = 1.
By the Cauchy-Schwarz inequality, recall for z, ..., z,, Y1y---,Yn € R,

e (2 ()’

i<n i<n i<n

[
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we have that

Z z @6—5 Z ( )El(x nf?, r’ f —)

<V 7 d 4
(z{ fi=1 "SU log U (r2 “-:?2 45—4
d(n) r2 — af?
. 2
<3y % ¥ P =)
F<V ngU log U2
(2r, f)=l a (mod 4n)*

(rz—af2.4n)=4

2 _ 2
< 3 Z > djgb) > Ef(x;nfz,%)

(2£?;’ 1 RS <L)
= a mod 4n)* a mo n)*
(r2—af2,4n)=4 (r2—af2,4n)=4

Sinceld

> d*(n) = O(z(log 7)*),

ngz

by partial summation lemma 2.1 we obtain!4

> -dz—i@ < (log U)°.

nLUlogU?

It follows that

(N
N~

Nlm

d?(n) d*(n)
Z n2 < Z n < (logl)2.
n o 2 2
R <Oios
(ré—af*,4n)=4

We now consider,

2 _ _f2
> a| X Baes,

sV ngU log U2
(2r.f)=1 a (mod 4n)*
(r2—-af2,4n)=4

13 z:nq d'(n) = z(A1(logz)* ! + Aa(logz)> 2 + ... + Ap-) + O (28 ~V/Q@+2+¢) for r > 2,
and A,,..., Az~ constants. See [Wil22] for a proof.
2
14We note that Rama.nujan proved Y2 4 _ (see [HW64], pg. 256), and since
n=1l n 28

> izE—’-e"fr = 5= f(c) ((23) I‘(s) U ds, and ¢%(s) has a quadruple pole at s = 1, we may

n=L s—1
use Cauchy’s residue theorem to deduce an asymptotic formula for Yoo -—Le T, whlch gives a

d2
precise upper bound on En<Ulog U2
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Let b= "2 and ¥ = Z=¢/% Notice
b=b (modnf?)*=a=d (mecd4n)*.
It follows that,

Z 2 2 r? —af? Z 2 2
El(x;nf ) 4 ) g El(xanf 1b)'
n<U log U2 ngU log U2
a (mod 4n)* b (mod nf2)*
(r2—af2,4n)=4

Notice
E : 2 2 E : 20 ..
El(xinf ’b) g E]_(.’E,m,b),
n<Ulog U2 mgUf2 log U2
b (mod nf2)= 5 (mod m)*
which implies

(S

1 r?2 —af?
> 7 > Eiznf? Tf)
€V n€U log U2
(2r,f)=1 a (mod 4n)*

(r2—af2,4n)=4

< Z }.}2- Z E2(z;m, b)

gV mgUf2logU2
(2r.f)=1 b  (mod m)*

Wl

N[

< > EBlzim,b)

mgUV2log U2
b (mod m)*

Recall the result of Montgomery on the Barban—Davenpori—Halberstam theorem

(lemma 2.5); for Toasa S@<1,4>0,

z Z EX(z;k,a) < Qzlogz.

k<O 1<a<k
@ (a k)=1

Consequently,

(M

Z Ei(z;m,b) | < (UV?(ogU?z logx)%,

mgUV2log U2
b (mod m)*
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whenever =7 < UV?logU? < z, for any A > 0. That is,
ET05 =0 ((logU)%(UVz(IogUz):z: logz:)%) ,

whenever 2=x < UV?logU? < z, for any A > 0.

4.3.6 On ETO06
In order to evaluate error term six, we need to recall some lemmas from David’s and
Pappalardi’s work. For fixed r € Z, f,n € N, we define

¥ T (2.

a {(mod 4nr)*
(r2—af2,4n)=4

where ¢  (mod 4n)* means ¢ mod 4n, (a,4n) = 1, and for n € N, we define k(n) to

be the smallest positive integer dividing n such that -2~ (n) is a square.

Lemma 4.2 The following hold,

1. Ifn is odd, cj(n) = o L (2)-

_°f2 n)=1

2. c7(n) is a multiplicative function of n.
3. For any prime p, c;(p®) = (r.p) (P%)-
4 Fa>1, 2% = (-2)2/2.

5. Ifp is an odd prime, then ¢j(p®)/p* ' =p—1— (%) if a is even, and — (%2)

if @ is odd.

6. If p is an odd prime (pt ), then SL—) s equal to 0 if o is odd, and is equal
top—1 if o is even.
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7. Foralln €N, [c}(n)] < -
Proof See [DP99], lemma 3.3.

Lemma 4.3 Let ¢ =[], (1 + m) . Then

> e~ 7
2 e ™ T
In particular, 3 70, wrsbes converges.

Proof See [DP99], lemma 3.4.

We are now ready to evaluate ET06. Notice by lemma 2.7, part 2,

¢(nf?) > ¢(n)$(f?) = ¢(n) f(f),

by lemma 4.2, part 7,

n

7 (n)] < )

and by lemma 2.6, part 2, for any 6, > 0,
d(n) <s, n’.
It follows that

dm)em) _,
=2, X nf2(nf?) "

SV n.>UlogU2

Q

(2r.f)=
d(n)
® 2 7o oo
(2r,f)=1
nd2
P SI-orok

n>Ulog U2
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We are now interested in obtaining an upper bound for 3

Fit)=3, ., =22 __ We know!®

n<t x(n)é(n)

F)~<

If follows by lemma 2.1,
&2

2 #(n)d(n)

UlogU2<ngN

n3/2 1
B n\;\,'ﬁ(n)cb(n) n3/2=% nsg;ogm
F(N) F(U)

N3/2-&  (Ulog U?)3/2—%

g2

n
2 e <

n>Ulog U2

It now follows that for any 0 < J, < T

r(n)é(n) n¥/2=%

)

Letting V' — oo, we obtain for any 0 <6, < 1

F(t)
og U2 t5/2—-62

% WlegU2)12~%"

ET06 = Oy, (
4.3.7 On ETO7

Observe

n=1

(U log U2) /222

I ORTPISwl P o

n<e

In subsection 4.3.6 we showed for any U >

L0<d <4,

d(n)
2 #(n)¢(n)

n>Ulog U2

15See proof of lemma 4.3.
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In particular, for U = e, Ulog U? = 2e, we have for any 0 < 8, < 35

P ORI
5. w(n)g(n)
2 L oXa)_ s finite, therefore o ;(—ngz% converges. It follows

Morever, since Y % preVPTCY

that

Q

d(n)c”(n) _n — _d(n)
— Z Z nf2¢('nf2) < 2 Z f3¢(f) Z r(n)g(n)

>V n=1 v n=1
(2r.f)=1 (2r.f)=1

1
<z I
f>v
(2r,f)=1
T
< z lim t3dt

T—oc v

T
< 5
That is,

ET07 = O (%) :
4.3.8 On ETO0S8

Here we remove the exponential e~% from the main term as it depends on /. Recall6

for any ¢; > 0,

e~ T 1 I'(s) (g) ds.
278 J ey n

It follows that

2 d(n)cj(n) B — o s d(n)ci(n) 1 . A% S
> Z PPl 2 2_:1 7 PP (n ?) 27 /@F“(n) ds.
(2r,f)=1 (2r,f)=1

By lemma 4.2, part 7, and by lemma 2.6, part 2, for any 63 > 0, &3 — 3 <0<,

— _d(n)c};(n) |d(n)]|c}(n)]
; nz__; ns+1 f2¢(n f2) < ; Z na’+1f2¢(nf2)
2r, f)=1 (2r.f)=1

8For a proof see [KM84], pg. 82, 83.
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<5, Z f3¢(f) Z nvn(n)cﬁ(n)

f=1 n=1
@r,.f)=1
<5 1.
That is, 3 r1 >0, %ﬁ% converges absolutcly. Hence, by lemma 2.8, we

(2r,f)=1

may interchange the sum and the integral to obtain

© & dnGm) . 1 @ & dn)n) ]
2 2 Zl nf26(n ) “mzm‘/(q) 2 2 gy | N@Uds.

(2r,f)=1 (2r,f)=1

Note that in the proof of lemma 4.3, it is shown that

o n3/2—s _ p(ps—3/2 + 1)
2 = L (1 6252y

. . 3/2—s
converges for o > 1. More precisely, given an € > 0, anl ﬁm converges for any

o = 1 + ¢, or equivalently Zn>1 K(;;—W converges for any € > 0.

Thus, for given €; > 0,5 = —es,
2. d(n)c(n) nistez
Z Z s+1f£2 . 2y | Kbaez Z
2t 75 f2(n f?) 2 k(n)p(n)’
(2r f)—l

converges whenever d3 + €; < %, which means we may move the line of integration
from (c1), to (—€2). As I'(s) has a simple pole at s = 0, by using Cauchy’s residue
theorem, in an analogous way to our proof of lemma 2.12, we deduce

= = d(n)cr(n) _n T
z Z Z WC U ZK(T‘) =+ 053,52 (%) .

f=r n=1
(2r.f)=1

That is,
T
ETOS = 053,52 (U_Ez-) .

88



4.3.9 On ET=}, ET0i

Since gZer < UV?logU? < z for any A > 0, let

T

U= (log z)e’

and
V? = ((log z)#/?)? = (log z)?,
for some a, B to be determined later. It follows that

z

2 2___ Z B - _
UV<logU oz 2)° (logz)”{2(logz — arloglog z)} < (logz)ap—T"

Notice

z

implies our first conditions
a>p320a—-8>1.
Let ¢ > 0. Observe
e ET01 <, % = z7/%*<1(log z)%. By lemma 2.3, for any € > 0,

(logz) %+ <« z°.

It follows that

:L.7/8+ex (Iog:z:) S+ < x7/8+e1+e’ <z,

forany 0 <e; +€ < 3.
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e ET02 < zlogzvgl :ggf — xlogz!logz—aloglogz!z. Notice

(log z)3/28

zlogz(log z — aloglog z)? < zlog z(log z)? + z log z(a loglog )2
(log z)3/28 (log z)3/2F
T

< (log z)3/26—-3°

which implies the condition ¢ < 28 — 3.
e ET03 <5, & = (logz)*. By lemma 2.3,
(logz)**° <« .
It follows that ET03 < m, forany0<d; <1

e ET04 <, U(logU)? = = Tegy= (logz — aloglog z)2. Notice

(logz) (logz — aloglog:z;)2 < W {(10g:1:)2 +C¥2(10glog:z:) }
< —*F
(log )2’
which implies the condition ¢ < & — 2.

e ETO05 < (logU)*2(UV?(log U?)z log z)'/2. Notice

(log U)*2(UV?(log U?)z log z)*/?

1/2
= (logz — aloglogz)®/? ( o zz)a (log z)?2(log  — aloglog z)z log x)

\/5(1_;:‘1_——- = (logz — aloglog z)®
ogzx
< ﬁ%{(logxf + 3logz(aloglog )2}
og ) =5+
T
cz—B—-l _8?

(logz)™= 2

which implies the condition 2c < ¢ — 3 - 7.
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e ET06 <5, W for any 0 < d, < 1. By lemma 2.3, for any ¢ > 0,

(log 2:) S +afa+c < :L.E'
(2logz — 2aloglog )3+ -

It follows that

z(log z)© - (log z) 5 +adzte
(Ulog U2)1/2+4 (2logz — 2cxloglog z)z+
< x%—é’z-ﬁ-e’
<z,

whenever 0 < €' — J; < L.

e ETO7 K & = (log""z) , which implies the condition 8 > c.

e ET08 5,6, 7257 = -7 2(log z)*%2. By lemma 2.3, for any € > 0,

(log z)*e2*¢ < z°.

It follows that

$1—€2 (logx)aez-{-c < xl—ez-{-—e’ < z,
whenever 0 < € < €,0<d3+¢6 < i.

Consider the following conditions:

a—B-—-T2 2,
B 2ec,
a>p20,
a—-0G21,
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s8—-32c (4.5)
a—-2>c (4.6)
Let o —f—T7=2cand B=c+6,6 >0, so that the first two conditions (4.1) and

(4.2) are satisfied. Notice
3c+T+d6 >c+46 >0,

2c+7>1,

1 3,
c—+ (50‘{"55 —3> >c,

whenever zc + 24’ > 3, and

c+5+08 >¢

satistying conditions (4.3), (4.4), (4.5), and (4.6) respectively. To double sum up,
given any ¢ > 0,4’ > 0,41 > 0,0, > 0,63 > 0,€ > 0,¢; > 0,62 > 0, such that
c+30>6,0<60<1,0<80<30<d+6<50<e -6 <1,0<¢ <ep,and

0 < & +d3 < £, choosing
T

(log z)=

V = (log:v)%, where 8 =c+ ¢,

U = , where a =3¢+ 7+ ¢,

we have that

ET = E:ETm

i<8

z
= 06,5',51,52y53’5"€1’52'r m ’
Lastly, let € > 0,

1
é =61=€1=62=€,
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and

It follows that
c+38>6 & c>6-—3¢

0<dé; < & 0<e<l,

0<d < &S 0<e<?,

0<é +¢ < S 0<e<

ﬁ;

M| 00k~ M|

O0<ée -6 < < 0<e<?,

€
O0<éd<e & 0<§<e,

1 1
O<§3+62<§ & O<e<§.

Hence for 0 < € < 5,¢ > 6 — 3¢,

T T
Oc,ﬂ',c’&,52,53,6.’,61,'5%7' ((log—x)c> - Oc,e,r ((log'_r:)c) ’

4.4 The Constant Term K(r)

For r € Z of odd parity, recall that

OIS ()

a mod 4n
(r2—af2,4n)=4

The purpose of this section is to write

d(n)c}(n)
K= > an2¢(nf2)

f=1 n=1
(2r.f)=1
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as a product, thereby showing that K (r) is non-zero. We digress for the moment in
order to prove some lemmas.

Lemma 4.4 Forp{2r,

> o 50 d(p%) = 2+l
2+ 724 = @ -1
Proof For p t 2r, by lemma 4.2, part 6, we have that

G%) oo cp(p%)
;p——aq&(pa) d(p®) = ;p“pa‘_l(p _—y (x+1)
a+1

= 2ZPT¢+Z 2

o>1 w1 P
Let z = p1—2 Then
1
= = T+ +z+ ..
a'?lp
- 11—z
_ 1
= Z-7
and
9 o 2 3
22 5w = 2z(1 + 2z +3z° +42° +..))
a2l
= 2:1:—(1-(:1: +z2 4+t 4 )
dx
_ 2z
T (1-x)2
_ 2
R
Q.E.D.
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Lemma 4.5 Forp =2,

ci (p®) @
;p‘%(pa) %) =

Proof Let z = —1. Then by lemma 4.2, part 4,

Z c{(pa) d(pa) — 1+Z c’l'(2°’) d(za)

s po(0®) e 2"¢(2°‘)
= 1+ Z ( (a -1)

= 1+2$+3:z:2+41:3+...

d 2
= E(x-ﬁ-x‘-{-xz‘—f-...)

_d(z=
T dz \1l—-z

1
(1-2)?
1
(3/2)*

Q.E.D.

Lemma 4.6 Let p > 2. For p|r,

) 4w P D)
2 7o ) = G

Proof Let z = -1—. For p|r, (-’pi) = (0. Thus by lemma 4.2, part 5, we have

i (p*) o 20/ +1
Z d(p®) = Z 2o
= P (p*) el
= 14+3z+522+72%+...

(1+2z2+322 + 4z +...)(1 + z)
PP’ +1)
(p®—1)%"

Q.E.D.
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Lemma 4.7 Letp > 2. Forptr,

Z cl(pa) (pa) 2(p3 - 2p2 — P — 2) .

22 0°6(0%) (- 1)@ - 172
Proof, Since p { r, (%2) = 1. It follows by lemma 4.2, part 5, that
Cl(pa) (pa)
2 7260
- Z (a1
St p - 1)
_ (a + 1) (a +1)
_ p—2 p"’(p2+1) __1 2p°
p—1 (pP*-1)? p—1(pP*—1)2
_ P+ 2p(p* + 1) 2p°

C @e-DE*-1? p-DEP-12 (-l -1
p5_2p4_p3_2p2

(P~ 1)(p* - 1)?
_ PP’ —2p°-p-2)
(r—-1)@* - 1)

Q.E.D.

We now have the lemmas in place and may proceed to show X (r) has a product

expansion. Note by lemma 2.6, part 6,

s (m, F))B(F2)
o) = =5y

so that
K = 32 3 o 1)
2+ 2 nF2(n, FHMB)
(2r.f)=l
Let f(n) = d(nzlc(}é;)g;(&)f 2)). Note that by lemma 4.2, part 2, ct(n) is multiplica-

tive, d(n) is multiplicative, and ¢ is multiplicative, so that f(n) is a multiplicative
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function. Furthermore,
d(n)
¢(n)x(n)’
d(n)

and we know from our work in subsection 4.3.7 on ETO7 that > on>1 mf);(n—) con-

|F(n)] <

verges, so that > ., |f(n)| converges by comparison. It follows by the analytic

fundamental theorem of arithemetic!” that

& F®%) 6% %) o o
K(T) = ; f2¢(f2) ];[ (az?; pa¢(p&) (pa‘,f2) d(p )) .
@r.f)=1

We consider the inner product. Note by lemma 4.2, part 3, cHp®%) = s, (@), s0

that

F0%) ¢ f2) ;o
IPI (azo pa¢(pa) (pa’ f2) d(p ))

_ c1(p%) @ c;(pa) #((p*, 2)) o

- (S I (S 2840 en).
which is equal to

aAl®) , o
(S 28m) 1]

P \ax0 plf

Za>0 paéz();a)z) d(pa)
Substituting back into the equation for K (r) we obtain
) . (%) #((p=.£2)) a
1 i (p®) 2 a0 e5(p=)  (p%.f%) d(p®)
K(r) = —_—— L d(p®  d Lot
( ) Z f2¢(f2) ].;[ <Z pa¢(pa) (P )) H < Z =) d(pa)

ol a0 oIf a>0 776G

_ G0 ) & 1 P a0 poards L) g (0)
- (G) £ riml) (i)

"(p‘!) o 2
(zm 2L e f%”d(p“))

az0 i 20 p°¢(p°‘

"Let f be a multiplicative function such that the 3 f(n) is absolutely convergent. Then the
series can be expressed as an absolutely convergent infinite product. That i is,

3 fn) = 1'[(1 + f0) + F(B?) +...).

n2l
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Applying the analytic fundamental theorem of arithmetic to the inner sum over f

we obtain
5 (P*)p((p*.p%#))

ci(p®) @ Za;o P (pe) (7= pzs) d(p*)
1(5580) D o s (B2 22 )

pf2r a>0 p°¢(P°‘

which is equal to

G0 . G0 . SE")8((% 7)) |
H<Zpa¢<pa)d(p >)H{Z 2266+ L 57 2 e o) 4 )}'

p|2r \a20 2 az0 B>l a>0

Notice
;) o((0*,p%7)) ,
gpz%”) Z 6" %, %) )
(P*)d(p") 1 #((p* p*))
- 2; ) 2 P ;;;pqu(pw) (o=, %)
and by lemma 2.7, part 6,

(%) _ $(*)8(»*)

(0=,p%) —  ¢(p?hte)
_ p*Hp—-1)p*p—1)
- p2ﬂ+a—1(p _ 1)
_ p—1
P
Furthermore,
1 _ 1
p*P(p?)  p¥-l(p—1)’
so that
> 367 = 721 (703)
B>1 2ﬁ¢(p2ﬂ) pt-1)’
and

S 1 ¢(*p%) _ 1
SiP¥6(0%*) (p*.p%)  pt -1

Hence, K(r) is equal to

A0 oo A0 4o P, 500
H(pr(pa)d(p ’) H{Zpaqs(pa) ) (p—l +Zw)}’

pl2r \a20 pf2r \a>0 a>l
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which by lemmas 4.4, 4.5, 4.6 and 4.7, is equal to

o= I (=t oo {7 )):

which is equal to

sz 2+1) HZp_g—3p8—3p7+p5+p4+3p3—2p2+1
9 2 —1)? (p —L)(p* - 1)(p*> — 1)? ’

pir

which is equal to

P’@® +1) 7 (p—1)(2p° —p" —4p° —4p° —3p* —2p3 +p% —p—1)
s 11— 71 R [ |

plr

which is equal to

EHP2@2+1)H2P ~p" — 4p® — 4p° — 3p* — 2p% + p? ~p—1
9 2 —1)2 (p* - 1)(p? —1)2

plr
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