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Abstract

Views and Consistencies in Distributed Shared Memory

Gabriel Girard, PhD
Concordia University, 2000

The distributed shared memory (DSM) abstraction is a very popular programming
paradigm in parallel and distributed environments. However, DSM often suffers from
performance problems as consistency requirements often incur long access latencies
that cannot be overlapped with other operations in a process. Sequential consistency
is the most general consistency requirement for DSM systems.

This thesis explores two different avenues to solve the performance problem for
DSM systems. First, for sequentially consistent DSM, we introduce a new strategy to
minimize synchronization cost and maximize the hiding of synchronization delays in
a process. The strategy is based on the knowledge of spatial locality in the sharing of
memory objects. An access graph is used to capture the sharing relationship among
processes via the shared objects. We show that if accesses in all cycles are ‘properly’
synchronized, then the execution is guaranteed to be sequentially consistent. We de-
velop two distinct solution strategies to ensure proper synchronization. (i) Neighbor
protocol: conflicting accesses between two neighbors in an access cycle must be syn-
chronized, and (ii) flush protocol: asynchronous accesses in an access cycle must be
eventually synchronized by a special flush-access in the cycle. Simulation experiments
have shown significant improvements in performance in our protocols, especially in

the case of the flush protocol.
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Another strategy to improve performance of DSM systems is to adopt a weaker
consistency model so that blocking among some memory operations can be removed.
In this thesis, we use the primitive notion of program-order and value-order to define
global view. Using this as a seed, various consistency models evolve and form mul-
tiple hierarchies of models. The creation of these models and hierarchies comes via
one of the following means: (i) a global view is augmented with additional ordering
among its operations whenever some orderings exist, or (ii) besides linearizability of
a global view, certain orderings must not co-exist in it. The former involves aug-
mentation rules, and the latter involves causality requirements. The creation of these
hierarchies leads to several novel consequences: the notion of exact implementation is
introduced, new protocols are discovered and the precise analysis of access behaviors

of an application is now possible.
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Chapter 1

Introduction

Today, computer networks are becoming commonplace. The potential computing
power of all the processors connected to a particular network can be very important.
This situation has created challenging opportunities in research in high performance
distributed computing and many current research efforts are targeted toward devel-
oping techniques to exploit this computing power maximally.

Many existing distributed environments already provide facilities to efficiently
share and use the multiple resources of computer networks. To fully exploit the
distributed processing capabilities of a network, the distributed environment must
also provide facilities for the user to write distributed applications. However, writing
distributed applications is a difficult task. The user must specify all the independent
computational units and how they interact.

Among the interaction facilities provided by the distributed environment, message
passing is probably the most natural and efficient tool, but it is difficult to use. Indeed,
with this tool, an application must explicitly manipulate all the state information.
Moreover, the access between local and remote state is not uniform.

Several higher level facilities based on message passing have been developed to
render its use easier. The remote procedure call (RPC) facility, which provides a pro-
cedure call semantics over the message passing system, is probably the most popular
message passing abstraction. It is used to execute remote operations. Broadcast and

multicast facilities, either normal, causal or atomic, are other higher level facilities



available in a message passing system.

The distributed shared memory (DSM) paradigm is another facility that can be
provided by a distributed environment. In this paradigm, the environment provides
the distributed application with the illusion of a global shared memory across multiple
processors. This paradigm is becoming popular because it has advantages over the
message passing paradigm. First, it is easier to use since it offers a uniform access to
information. There is no need to use separate mechanisms to access local and remote
data as in message passing. One can use the easy-to-follow shared variable paradigm
to program distributed applications. As an example, many classical solutions for
process synchronization were developed using the shared variable paradigm. Second,
because of the absence of multiple address spaces, data partitioning and dynamic load
balancing are simplified. Finally, many parallel programs written for shared memory
multiprocessors can be ported easily to a distributed environment that uses the DSM

paradigm.

Problem Statement

The DSM abstraction provides the programmer with a useful and simple model based
on shared data with all the advantages mentioned earlier. However this comes at a
performance cost. Indeed, in order to provide fast access to the shared data, multiple
copies of the information are often maintained at different nodes. Moreover, the DSM
system allows processes to access the same location simultaneously. Since the accesses
are not instantaneous across the network, a consistency mechanism is required to
guarantee that operations will appear in some ordering that is consistent under some
condition. This condition, called a memory consistency model, is essential to allow
programmers to use the shared memory correctly.

To maintain programmability, the memory consistency model should be intuitive
and simple to use. Since the DSM abstraction provides the illusion of a centralized
shared memory, it is natural to expect its behavior to be a simple extension of the

centralized shared memory consistency model. A simple, widely accepted extension



to the centralized model, formulated by Lamport [41] for the multiprocessor case, is

sequential consistency (SC) which is stated as follow:

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by

its program.

Unfortunately, implementing DSM systems that support sequential consistency is
expensive. Indeed, all the suggested solutions [2, 4, 14, 18, 21, 46] require some form of
blocking, which is expensive on networks that involve long access latencies. Blocking
deters overlapping of operations. Processes in such systems are then slowed down
considerably because their operations must be globally synchronized and executed
locally in program order. So, the problem is to achieve efficient and scalable DSM
systems.

There are several optimizations to reduce or hide synchronization delays. One is to
minimize communication. This can be achieved by reducing the number of messages
that must be exchanged to implement an operation. Another is to hide synchroniza-
tion. This is achieved mostly by using non-blocking operations, non-atomic multicast
facilities and out-of-order messages. Reducing the number of processes involved in a
synchronization can also help.

Unfortunately, most of these optimizations involve memory consistency models
that are weaker than sequential consistency and that are more difficult to use. Some
of these models are based on the concept of data race free programs [3, 16, 25, 24, 34] in
which only a subset of the operations are synchronized. They require the programmer
to use special labels to guarantee consistency. Other models [8, 9, 10, 18, 23, 33, 44, 49]
do not use special operations but are even more difficult to use in general. A program
may be restricted to using specific algorithms that are known to execute correctly on
such a model. To circumvent such a limitation DSM systems that support multiple
consistency models are proposed [18]. Again, even in this case, the programmer must

choose a proper model for its distributed application.



There is still controversy about the usefulness of weak consistency models. Hill [30]
has suggested that the weaker models are too difficult to use and that sequential

consistency is still the convenient model in multiprocessor systems.

Contributions

A challenging problem in DSM systems is to provide an abstraction that is both easy
to use and efficient. The issues to study include: what consistency models should
be supported? which consistency models have efficient implementation? and which
consistency models can be easily used in an application? These issues involve ei-
ther the development of a better implementation for sequential consistency or the
development of weaker models that are as easy to use (or almost) as sequential con-
sistency. Another possible solution is to develop a distributed application as if it
were to execute on a sequentially consistent DSM system and for the environment to
automatically detect the weaker consistency model that can guarantee sequentially
consistent execution.

This thesis explores most of these issues. First, we introduce new optimized pro-
tocols for sequential consistency. Second, we present hierarchies of weak consistency
models and develop implementations for some of them. These protocols are more
efficient than SC protocols and still ensure SC execution under some restrictions.

The major contributions of this thesis are the following:

e We propose a new abstraction, called a view, for capturing consistency models.
This abstraction differs from many existing models [23, 28, 29, 39, 46, 51] as
it uses a logical ordering based on value coupling rather than the usual causal
ordering. We can define such hierarchical consistency models by inferring ad-
ditional logical ordering from the ones that already exist and/or by imposing

some additional properties.

The development of the view model was motivated by the fact that existing
models based on the linearizability of a global execution history lacks the ca-

pacity to specify some weak consistency requirements. This is based on the fact

4



that the execution history always contains the global causality among events.
It is then difficult to use them to specify weak consistency requirements such
as slow memory or to determine which consistency requirements a particular

protocol implements.

To develop a model to capture consistency requirements we have to use a dif-
ferent approach. We have based our model on the local perception of a pro-
cess. This local perception is captured by the local program order and the val-
ues of variables read, without taking into account the global causality among
events. By using these individual local perceptions, called local views, as build-
ing blocks, we can generate a taxonomy of consistency requirements. Hence,
local views or different compositions of local views can be used to specify dif-

ferent consistency requirements.

Stronger consistency requirements are derived by adding global causality re-
lations. to form global views. With global causality, we are able to specify
sequential consistency in terms of a strong union of local views. Hence, the
separation between the local perception of a process and the global causality
among events enables us to develop a powerful basis for modeling consistency

requirements.

We introduce an access graph to represent the static access restrictions of a
shared object by the processes. It is different from the conflict graph [53] con-

cept, which is dynamic.

Using views and access graphs, we introduce two novel protocols for sequential
consistency. These protocols exploit the information in an access graph to
reduce the synchronization and hence improve performance. They are update-
based, like the ones presented in [2, 4, 14, 13, 21]. However, the update does
not always need atomic-broadcast or a 3-phase update protocol. Some protocols
[18, 46] implement sequential consistency without the use of atomic broadcast
or 3-phase protocols. However, they are invalidation-based protocols, which

involve non-local read operations.

[¥)]



In most existing protocols, all update operations are blocking. However, some
protocols [4, 46] have introduced some form of asynchrony on write operations
issued by a single process. One of our protocols allows asynchronous operations
not only between writes but also between write and read operations issued
by a single process. All other protocols that allow asynchronous operations
implement a relaxed memory model [2, 3, 13, 25, 34] in which only specially
labeled operations are synchronized. None of our protocols use special labeling

of information.

Simulations conducted with these algorithms show significant performance im-

provement over many existing SC implementations.

Consistency hierarchies are proposed by starting from a minimal consistency
model based on the global view of an execution. This view can be refined in
many different ways using a hierarchy of refinement rules. These hierarchies are
an original contribution of this thesis since no formal comparisons nor classifi-
cations are done as thoroughly as in our case. Indeed, even though some com-
parisons and classifications are proposed in the literature [19, 29, 33, 39, 47, 51],
they are done only among existing models and the classifications are done in a

rather ad hoc manner.

Using views and the hierarchies of consistency models, it becomes easier to
determine more precisely which model a particular protocol implements. We
define ezact implementation as an implementation that is strict enough to guar-

antee a model but not a stronger model in a consistency hierarchy.

Using views and the hierarchies of consistency models, we show that many
popular applications do not require sequential consistency to execute correctly.
Similar work is done in [9, 36, 50] but only for the causal memory model. In
this thesis, we determine more precisely the required consistency models for
applications such as those using single-writer objects, barrier-synchronization

and mutual exclusion.



Organization

The rest of this thesis is divided into ten chapters. Chapter 2 introduces the two key
components in our models: views, which are used to capture consistency requirements;
and access graphs, which are used to model the sharing restrictions among processes.

In Chapter 3, we present two optimizing protocols, the neighbor and flush pro-
tocols, that implement sequential consistency. This chapter first defines sequential
consistency using the view model and then presents the abstract description of the
protocols. Finally, the implementation of each protocol is described.

In Chapters 4 and 5, multiple hierarchies of consistency models are introduced.
The creation of these models and hierarchies comes naturally via augmentation rules,
which infer additional orderings among the operations whenever some orderings al-
ready exist. Chapter 4 presents the hierarchies derivable from the global view while
Chapter 5 presents those derivable from the local and partial views.

In Chapter 6, the hierarchies of consistency models are used to define the concept
of exact implementation. The rest of the chapter presents many protocols and the
consistency models they implement or exactly implement.

In Chapter 7, the hierarchies of consistency models are used to study the con-
sistency requirements of some distributed applications. This analysis is based on a
characterization of the applications or on some specific synchronization.

In Chapter 8, we present the results of simulation experiments conducted to eval-
uate the efficiency of the neighbor and flush protocols. These experiments show
significant performance improvement over conventional blocking protocols. Indeed,
in some specific cases, the simulation shows that we can expect as much as 50%
performance improvement.

In Chapter 9, we discuss how the implementation of the neighbor and flush pro-
tocols can be automated by a compiler.

Chapter 10 presents the conclusion.



Chapter 2

Views and Access Graph

The resuits of memory operations in a shared memory parallel program consist of
a set of sequences of memory operations and their associated objects and values.
Each sequence is program-ordered, i.e., in accordance to the order in which they are
invoked in a sequential process. To identify the legality of an execution and hence
the consistency semantics of shared memory, this chapter develops some primitive
notions involving the individual (local) view of a process and the composite (global)
view of all the processes together.

In an approximate abstraction, the local view of a process consists of its program
ordered memory operations and the external writes whose values it has read. The
global view is the direct composition (union) of the local views.

Both local and global views can be modified to generate other views. Two such
modifications are introduced in this chapter. (1) A view can be modified using subset
restriction (or projection). For example, a new view can be constructed by retaining
only a subset of the operations and their order relations in a given view. (2) A view can
also be modified using additional order relations. Such a modification is governed by
augmentation rules. An augmentation rule stipulates that if a certain ordering exists
in the view, then an additional ordering should also exist in the resultant view.

Shared memory consistency can be defined using various types of (global) view
constructs. Two non-exclusive types of requirements can be asserted from a consistent

global view. (1) The view should correspond to an acyclic graph (a partial order of

8



the operations). (2) In addition, we may require that the view does not contain some
undesirable orderings.

In this chapter (Section 2.1 and 2.2), the various notions of views and their con-
structions are detailed. Their use in defining various weak consistency hierarchies are
dealt with in later chapters.

Views are dynamic entities constructed from the execution. On the other hand,
a process in a given parallel program may have certain static access restrictions to
shared memory. For example, process P; may write to only a subset of the shared
objects. This access restriction is modeled by an access graph whose nodes correspond
to processes and edges correspond to potential writer-reader relationships: if a process
can read a value written by another process, then an edge leads from the latter to the
former in the access graph. By capturing the access restrictions of a parallel program,
it is possible to develop less expensive protocols to implement shared memory, which
is the topic of Chapter 3.

In Section 2.3 and 2.4, the notion of access graph is formally introduced and the
relationship between an access graph and a cyclic (inconsistent) global view is estab-
lished by an important lemma. This formal result lays the foundation for protocol

design in Chapter 3.

2.1 Distributed Application

A distributed system is formed by a set of cooperating processes exchanging informa-
tion through communication channels. However, we define a distributed application
as the abstraction of a distributed system that uses distributed shared memory rather
than communication channels as the basis of cooperation. Distributed shared mem-
ory consists of a set of objects on which processes execute read and write operations.
These objects could be replicated in the kernel implementation. In the following, we
assume, unless explicitly stated, that each node maintains a local copy of each object.
For convenience, we also assume that all copies are automatically initialized to the

same state.



P 2 ; y?1 ; y?2 ; z?1 ; y!3
b !l ; yl2 ; z71
P3 : y!l

Figure 1: Sequence of memory operations by three processes

2.2 The View Model

An execution of the system results in a set of linear traces, one per process. BEach
trace contains the sequence of program-ordered memory operations performed by the
process, and the values associated with them. In particular, (z'v); represents the
writing of value v into object = by process 7, and (z?v); represents the reading of
value v from object z by process i. For ease of explanation and without loss of
generality, we assume the values written to an object are distinct. We may omit the

process label ¢ whenever the context is clear or the value of ¢ is of no significance.

2.2.1 Local View

The memory operations associated with a process, say F;, are invoked in program
order, i.e., in the order in which they appear in the program. Process F; observes
changes in the shared memory objects through its own writing and reading of these
objects. When it reads z, it may observe a value written by itself or another process.
Hence there is a logical ordering among these related read/write operations. Taking
all this into consideration, a local view of P;, denoted by LV;, can be defined. Before
introducing the definition, a motivating example is presented.

Figure 1 shows a sequence of memory operations performed by three processes Py,
P, and P;. Figure 2 gives (a) the local view LV; of Py, (b) the local view LV, of P,
and (c) the local view LV; of P3. In these views, P, perceives its local operations in
its program order. In addition, some write operations in P, and Ps, are ordered with
respect to some operations in P,. A logical ordering between z!v and z?v is introduced
since a write should logically precede a read that returns the value written by it. Asa

consequence of this, LV] contains (z!1)s — (z71)1, (y!1)s — (¥?1); — (¥72)1 — (y!3):

10



as well as (y'2)2 — (¥72); — (y!3);. We also observe that (y!1); and (y!2), are
concurrent events. Two properties can be observed in LV): (i) LV; is a partial order
of events relevant to the observation by P;, and (ii) only write operations in other
processes can be observed by P;,. LV, and LV; each contain only operations local to
P, and P; respectively as they do not read any value written by other processes in

the given sequence of operations.

P - xm—»//’y?l—»/«fy?z_»/'l?l_»

(¥y'1)s  (¥2)2  (z11)2

a) Local view of process P; (LV7)

P gll— y2— 271

b) Local view of process P, (LV5)

P yll

c) Local view of process P3 (LV3)

Figure 2: Views for example of Figure 1

We are now ready to formalize the above notions of local view. We assume that
in an execution, each process is represented by a sequence of memory operations it
performs. Each memory operation is of the form z!v or z?v. An execution is a set of

such sequences.

Definition 1 : Given an ezecution, the local view LV; of P; is constructively de-

fined as a partially ordered set of events LV; = (E;, O;) such that:

1. for an event op, op € E; iff op is a memory operation in P;, or op is a write

operation z'v in another process P; and z?v is a read operation in P,
2. for two events op; and opa, (0p1,0p2) € O; iff
(a) event op, appears before event ops in program order (denoted 5 ), or

11



(b) event op; = (zlv); and event op, = “earliest” (z?v); in P; (denoted 3).

The notation — is used when the distinction between the two ordering relations
is not important.

In Figure 2(a), the arrows drawn from P,/P; to P, represent those orderings in
O; introduced by condition 2(b) of the definition.

Hence from the definition, the local view of a process can be interpreted as the
minimal order perceived by the process, according to the local program order and the
value order created when it reads the values written by other processes.

From the definition of the local view, we know that it represents a partial order of
events. Moreover, we assume that all local views are admissible. A local view LV] is
admissible if for any read event z?v, there is no other event x!v’/x?v’ between z!v and
z?v in LV,. The concept of admissible local view eliminates inconsistent observations
by a single process. Figure 3 gives such an inconsistent observation not admissible as
a local view. This example reveals that once a new value has been read, no old value
of an object can any longer be read by the observing process. It will be assumed that

an execution never produces inadmissible local views.

P 2?1/ 72— ?1—= 172

/

(z11)2  (212);

Figure 3: An inadmissible local view

In general, a partial order is represented in its transitively reduced form and

we use LV;* to represent the transitive closure of LV;. LV;* represents all ordering

relationships among the events.!

1 A partial order can be visualized equivalently as a directed acyclic graph whose nodes represent
the events and whose edges represent the transitively reduced O;.

12



2.2.2 Partial and Global Views

In part or in whole, the local views of individual processes may be composed together
to form partial and global views. The composition of a subset of the local views forms
a partial view while the composition of all the local views forms a global view. The
composition is by means of (disjoint) union of the local views. Suppose LV} = (E1,O,)
and LV, = (E», O,) are two local views, then their composition is LV;ULV, = (E. O).
such that £ = E| U E; and O = O; U O,. The composition of two or more local
views reveals the global ordering among all memory operations as observed by the
processes. Obviously, the ordering observed by one process need not exist in that
of another. In the example of Figure 1, LV3 contains a singleton whereas LV and
LV, contain multiple memory operations and their observed orderings by P; and P,

respectively. Figure 4 gives the global view GV = LV, U L1V, U LV3.

Figure 4: Global view

In Figure 4, the disjoint union of the local views forms a directed acyclic graph
and the corresponding events are partially ordered, i.e., LV; ULV, U LV3 is a partially
ordered set represented by (£,O). In general, since the union operator does not
preserve a partial order, the global view obtained may form a cyclic graph. In the
latter case, we retain the graphical representation of the union, as the transitive
closure of O no longer represents meaningful ordering relationships.

As an example of the latter scenario, consider modifying the execution in Figure 1
by appending an extra event, (y?3), before (z?1), in P,. This will lead to the new
local view LV;, shown in Figure 5(a), and to the new global view LV, U LV, U LV3,

shown in Figure 5(b). The new global view contains the cycle (y¥!2), — (¥72), —

13



(y!l{«

P zll — y?73— yl2 — 271

a) Local view of process P, (LVy)

P 22— y?l—= y?22—= 2?1— y!3

b) Global view ViU V; U V3

Figure 5: Global view that contains a cycle.

(z?1); — (¥'3); — (¥73)2 — (y'2)2 and is no longer a partial order. Figure 12 in
Chapter 3 gives another example of an execution sequence with its corresponding
local (Figure 12(b)) and global (Figure 12(c)) views.

Again, to simplify the notation, we use ~» to indicate ordering that can be direct
(l> or —) or transitively induced via other operations. For the preceding example,

(y!2), ~ (y'3), since the coupling is not direct.

Definition 2 : A global view GV of an ezecution is defined as the union of the
local views: |J; LV; = (U; Ei,U; O:) = (E,0).

The transitive closure O* preserves transitivity but not necessarily the asymmetry.
If O* is asymmetric then GV is a partially ordered set of events. If it is not the case,
GV becomes a cyclic graph.

The global view is used to represent the ordering of operations deducible from the
program order and the direct coupling when a reader picks up the value written by a
writer. If the global view is cyclic, then we conclude immediately that the execution
is not sequentially consistent: there cannot exist a linear order of the operations that
is consistent with individual program orders without contradicting the direct coupling

between a writer and a reader. However, the converse is not true. Hence the global
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P z12 y?1 72 z?71 y!3

P zll —yl2 —z71

Figure 6: Partial view PV{; 4

view is used in Chapter 4 as a building block to define a family of weak consistency
models.

Partial views are composed only of a subset of the local views. As an example,
Figure 6 shows the partial view PV, 4} for the execution shown in Figure I. This
partial view is obtained by the union of LV} and LV, and it represents the combined
views of the execution of these two processes. The notation LV} U LV, is also used
to represent a partial view and is particularly useful when projections are used as we

will see later.

Definition 3 : A partial view PV is obtained by the union of a subset s of the

local views of the processes.

As in the case of global view, partial views are also used as building blocks to
define some weak consistency models. There are two basic mechanisms to derive

other views from a partial or global view.

2.2.3 Subset Restriction

Subset restriction, which is often called projection [28], can be applied to a given
view to construct a simpler one. The restriction is enforced on a subset of operations

without changing the ordering relations among them.

Definition 4 : The restriction of a (local, partial or global) view V' = (E,O) on a
subset s of its nodes E is given by V|; = (Es, O3) = (Els,0|s). OF|s is the restriction
of the transitive closure of O to s. If O*|s is asymmetric, then Oy ts stmplified into its

transitive reduction and Vs is treated as a partial order. In general, s can be chosen
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by (i) one or more of the processes, (ii) one or more of the objects, (i) all write

operations, or (iu) some combinations of the above.

A couple of illustrations will be appropriate here, using LV] in Figure 2, GV in

Figure 4 and PV, 2} in Figure 6 as examples.

Example 1 : Consider a local view LV; associated with process P;. We define LV;|p,
as the restriction of LV; to the events of P;, and hence include only those writes
performed by P; whose values are read by P;. According to the definition of the local
view, if i # j then the ordering of these writes is not observed by P; and hence LVi|p,

contains unordered writes. Figure 7(a) shows LVi|p, for the ezample LV; in Figure 2.

Example 2 : Consider LVi|p, - which is the local view of P; restricted to the writes
of P; into object x. In this case, LV;|p, » contains only a subset of writes in LVi|p,

that involve . Figure 7(b) shows LVi|p, »

Example 3 : Consider LV;|,, which is the local view of P; restricted to write oper-
ations only. In this case, the read operations in LV; are removed without destroying

the ordering among the write operations. Figure 7(c) shows LV

Example 4 : Consider the global view GV shown in Figure {. The restriction of
GV on object y (denoted by GV'|,) is shown in Figure 7(d) and contains only those
operations involving y. Since GV is a partial order, the restriction also preserves the

partial ordering. Hence GV|, is drawn in its transitively reduced form.

Example 5 : Consider the partial view PV{, 2y shown in Figure 6. The restriction

of PV{1,2} to operations involving y is drawn in Figure 7(e).

2.2.4 Augmented Views

Augmented views are obtained by the application of augmentation rules on a given

view. In this thesis, the view so involved is a local or a global view. An augmentation

rule is expressed in the form of a guarded command.
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PII Pl.:

(¥!2)2 (z!1)2 (z!1)s
a) Restricted local view LVi|p, b) Restricted local view LV|p, ;
. ? ? !

P : zI2 '3 P 71 ~ y?2 y!3

(y'1)3 // P, : y2

y!2 el (.’L’!l)'_)

( ) P3 . y!l
c) Restricted local view LVi|y, d) Restricted global view GV|,
P y?1 / y?2 y13
P, y!2

e) Restricted partial view PV{; 9]y

Figure 7: Examples of restricted views
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Definition 5 : An augmentation rule “op; ~ op, = op3 — ops” on a view

V = (E, O) results in a new view V' = (E',0’) such that :
1. E'=F, and

2. O'=0U{ if (op1,0p2) € O then (ops,ops)}

op1 ~ ops 1s called the guard and opz — op, s called the consequence of the
rule. For generality, the guard can be restricted to program-order, i.e., op; and ops

belong to the same process (op, = ops).

As an example, the augmentation rule (z?v); 2 (z?v"); = (z?v); — (z!v’); means
that whenever a process reads two different values of a same object z then the first
read is ordered before the write of the second value, possibly at another process.
Hence even if (z?v); and (z!v’); are not ordered in O, they are made ordered in O'.

A global view obtained by applying an augmentation rule r is denoted GV,.. Chap-
ter 4 presents the set of useful augmentation rule to generate interesting consistency

models.

2.3 Access Graph

The shared memory objects are not uniformly shared among all processes. Indeed,
they need not be writable and readable by all processes. An important consequence
of this is that the resulting kernel implementation of the shared memory objects
may require less synchronization and thus may incur less runtime latency. An access
graph is used to capture read/write restrictions of a shared memory object by the
distributed processes.

Figure 8(a) shows a simple example of three processes sharing three objects, z,y
and z. Object z can be read by all three processes but written only by P, and P;.
Object z can be written by P, and read by F». Object y can be written by P and read
by P;. In the access graph, nodes represent processes and edges represent objects.
An edge labeled z leading from P; to P; means that P; can write z and that F; can

read z.
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a) Directed access graph  b) Undirected access graph

Figure 8: An example of access graphs

Definition 6 : A directed access graph is a labeled directed graph G = (N, 4, L),
such that

1. N is a set of nodes {Py, ..., P, };
2. A s a set of directed access edges in N x N ;

3. L(A) is a subset of the memory objects O such that a memory object, say z, is
in L(P;, P;), iff P; is a writer and P; is a reader of x.

Definition 7 : An undirected access graph is obtained by removing the direction

of all edges in a directed access graph.

Figure 8(b) shows an undirected access graph.

In an undirected access graph, an edge labeled by object o with o € L(FP;, F;) is
formed either by F; writing into object o and P; reading the value written or by P;
reading o followed by P; writing a new value into 0. Because of this, an edge in the

undirected access graph is called a direct access edge.

Definition 8 : A direct access edge ezists between two processes P; and P; of the

undirected access graph G, if there exists an object o such that o € L(F;, P;).

We write P; = P; to denote that P; can write into object o and P; can read from

object 0. We use P; 2 P; instead of F; > P; or P; & P; when the direction of the
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direct access edge is unimportant. When the object name is unimportant, the label
“o” will be omitted.

A cycle in the undirected access graph is called an access cycle. It is formed by
a sequence of direct access edges starting from some process and ending in the same

process, without repeating any process in between.

Deﬁnition 9 : An access cycle is a cyclic sequence of direct access edges of the
form {P1 P2 — ...Pn o—n P }? with n > 1, in which no edge is repeated and where
P; # P; when 7 # 3.

Definition 10 : A directed access cycle is an access cycle with directed edges.

An undirected access cycle can correspond to multiple directed access cycles. Fig-
ure 9 illustrates all directed access cycles involving multiple objects for the directed
access graph of Figure 8. Figure 9(a) and (b) shows two distinct directed access
cycles that correspond to a single undirected access cycle. Figure 9(a) differs from
Figure 9(b) in that P, writes into z, which is read by P; in the former but which is
written by P; in the latter. Figures 9(d), (e), and (g) represent unconventional cycles
in which object z is accessed more than once in the cycle. It is noteworthy that the

notion of access cycle allows an object but not a process to be repeated in the cycle.

Definition 11 : An edge in the access graph is asynchronous if it does not lie in

an access cycle. Otherwise, it is synchronous.

The usefulness of the access graph lies in the minimization of synchronization delay
in each process. Indeed, the synchronization needs of a distributed application depend
on the underlying access graph involved. Particularly, we show, in Chapter 3, that in
order to maintain consistency, we can focus principally on the synchrony of operations
involved in an access cycle. As an example, we show that if every access cycle and some
other simple constructs to be defined later are properly “synchronized”, sequential

consistency is guaranteed.

9g(1)

2 Normally, we should use two functions f and g such that a cycle is represented by {Pr1y —

Og(2) Og(n)

Pi2y — ... Prny — Py} where Py # Pr(j) when i # j. However, without loss of generality
we abbreviate both f(i) and g(i) to i.
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Figure 9: Examples of directed access cycles



2.4 View Cycle and Access Cycle

The construction of global view by the union of local views may create cycles in the
global view. This is equivalent to GV = (E, Q) in which O is not asymmetric. There
is a relationship between a view cycle and the associated access graph. Specifically,
the existence of a view cycle also reveals the existence of a corresponding access cycle
in the access graph. Since a global view that is not asymmetric cannot possibly be
linearized, i.e., the operations cannot have a total order consistent with the global
view, the absence of view cycle is inherently important to get consistent executions.
The shared memory protocol should then be designed to avoid the occurrence of view
cycles. This is the subject of later chapters. In this section, we state and prove the

following important lemma.

Lemma 1 : The ezxistence of a cycle in a global view implies the ezistence of an

access cycle in the associated access graph.

Proof:
Consider a view cycle of the form:
op! B op} — op} B opt — ... = opt B ooph — ... opF B opk — op}
where opi and op} are the first and last operation in process P; contained in the
cycle. Without loss of generality, the above representation assumes that the processes
traversed in the view cycle are processes 1,2, ..., and k.

According to the construction of local view, op} — op'*! must be due to the value
order caused by process Py in opi™! reading the value written by process P; in op}.
By definition, this means that there is a direct access edge P; = P,,, between the
two processes. Hence, by construction, the above events of the view cycle exactly
trace a series of direct access edges in the access graph, starting from P; and ending
at Py, of the form: P, = B~ .. =P, 2 P,

|
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Chapter 3

Sequential Consistency

The most commonly assumed memory consistency model for DSM systems is se-
quential consistency (SC). This model provides a clear semantics for the execution of
memory operations. As a consequence, programming under this model is relatively
easy.

Taken literally, the definition of SC provided in the introduction implies that
an algorithm that implements SC must maintain program order among operations
from a single processor and a single sequential order among all operations. This last
condition makes a memory operation appear to execute atomically with respect to
other operations. In the context of DSM, sequential consistency is re-defined more

clearly as follows:

Definition 12 : An ezecution is sequentially consistent iff there ezists a total
ordering of all the operations such that (i) it is consistent with each program order,
and (ii) in the ordering, z'v must appear before z?v and there are no other operation

zlv' or z?v' appearing between z'v and z?v.

Figure 10 shows a sequentially consistent execution since there exists for all op-
erations a total order that satisfies the previous conditions. One such total order
for this execution is (z!1);; (z71)1; (y'1)2; (¥71)s; (211)1; (271)9; (212)3; (272)3; (272),.
Figure 11 shows an execution that is not sequentially consistent since there is no

sequential order that satisfies the previous definition.
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P : z1;211;z72
P: z?71;4!l; 271
Py y?1; 12 ;272

Figure 10: Sequentially consistent execution

P ozl 21272
P z?71;4'1; 271
Py: y?71;z12;z%1

Figure 11: Non-Sequentially consistent execution

In this chapter, we formulate the corresponding conditions of sequential consis-
tency in the view model. The concepts of necessary and possible views are introduced.
We also present some new algorithms for sequential consistency. These algorithms

alm at minimizing synchronization by exploiting the knowledge represented in access

graphs.

3.1 Views and SC

The global view, presented in the preceding chapter, is used to represent the ordering
of operations deducible from the program order and also the direct coupling when a
reader picks up the value written by a writer. If the global view is cyclic, we conclude
immediately that the execution is not sequentially consistent as defined earlier, i.e.,
there cannot exist a linear order of the operations that is consistent with individual
program orders without contradicting the direct coupling between a writer and a

reader. However, the converse is not true.

3.1.1 Necessary View

The coupling between readers and writers must also ensure that every object is atomic
through indirect coupling among the processes. Hence, there are additional orderings
that must be satisfied in the global view, and they are captured by the following

augmentation rule.
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Rule 1 : (zlv); ~ (z7');/(zlV'); =
(z?v)r — (zlv'); for each process Py that contains (z7v)ix and

(z'v); — (z!v"); if the value v is never read.

Rule 1 orders every read or the write of the value v to appear before the write of

another value v’ into z, if the write of the former value is ordered before some read

or the write of the latter value.
Definition 13 : A necessary view (NV) is a global view augmented with Rule 1.

Figure 12 shows an example of execution and its corresponding local, global and
necessary views. The necessary view includes y?3 — y!2 because y!3 ~ y!2.

The necessary view is the maximal ordering among the operations that can be
deduced from an execution. If the necessary view is cyclic, by the same reasoning
as in section 2.2.2, the execution is not sequentially consistent. Unfortunately, the
converse is still not true. However, it is easily verifiable that the necessary view can
be derived from an execution in polynomial time and is unique up to transitive closure

(i.e. reachability relation between nodes) in the representation.

Lemma 2 : The reachability relation in any necessary view for a given global view

1s independent of the order in which augmentation is performed.

Proof: This follows immediately from the stability of the guard (the left-hand side)
of Rule 1. The satisfaction of the guard is not affected by other augmentations. Hence
the claim. |

Lemma 2 allows us to augment a global view in arbitrary order, and this facilitates
proofs that use constructive arguments.

Moreover, in Lemma 1, we show that the presence of a view cycle in the global
view implies the presence of an access cycle in the access graph. This is an important
result that we must extend to necessary views in order to make use of access graph

to reduce synchronization among processes.
However, with the application of the augmentation rule, cyclic views inwolving a

single access edge are possible in the access graph. Indeed, the application of the
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e) Acyclic Possible view

Figure 12: Execution views

augmentation rule may introduce a direct precedence relation between processes that
are not directly connected in the access graph, creating what we call a virtual access
edge. This virtual access edge, labeled with the shared object (o;), introduces a
direct precedence relation between two write events (and possibly two read events
with different augmentation rules) in the access graph. For ease of explanation, we
call the object labeling this virtual access edge a virtual object. An access graph
augmented with these virtual access edges is called a virtual access graph. Every

cycle in the virtual access graph is called a virtual cycle.

Definition 14 : A virtual access graph is formed by an access graph augmented
with virtual access edges between two conflicting writers into an object that has a

single reader.



In other words, if P, and P; can write into = and P, is the only process that can

read z, then we add a virtual access edge between P, and P;.
Definition 15 : A cycle in the virtual access graph is called a virtual cycle.

A virtual cycle can be either an access cycle or a new cycle introduced by the
virtual access edges. Figure 13 shows examples of virtual access graphs that contain
virtual cycles that were not present in the access graph. In each case, the special
sequence P, = P, & P; is found and the virtual access edge labeled z is illustrated
with a dashed edge. In Figure 13(a) we have a virtual cycle formed by a virtual access
edge that implies the repetition of a single edge in the sequence. In Figure 13(b) we
have a virtual cycle formed by a virtual edge that implies the repetition of two access
edges in the sequence. Finally, in Figure 13(c) we have a virtual cycle that is formed

by completely distinct edges.

a.) Pl—z)Pg(z—P;;g-Pg(f—P]_b)Pl—i)Pz(z—P;;—y)Pz(iPl C) Pl—z>P2<:—P3&P2—I+P]_

Figure 13: Examples of virtual cycles

The new ordering introduced by the application of Rule 1 implies that program
order must be preserved among operations which involve a single edge and among
operations on a virtual cycle. The particularity of the new cycles introduced by a
virtual access graph is that they are a combination of two edges, a single edge with
an access cycle, or two access cycles. Hence, their proper synchronization requires

only to enforce program order in the repeated process. In Figure 13 program order



must be enforced in P, between z and y because they are both involved in a virtual
access cycle with z.

Suppose a cycle in a view involving P, is obtained. Let the first and last events in
the cycle of P; be the in and out events of P, respectively. Without loss of generality,
suppose the event in the cycle that follows the out event of P, is in P,. The latter
is now the in event of P,. The last event of P in the cycle is the out event of P,.
This repeats with other processes until the in event of P, is traced in the cycle.
Hence we define a view cycle to consist of critical events labeled as: op} — op} —
op? — op> — ... = opt — opy — .. = op¥ — opf — op! where op} and op}
are the in and out events of process P; in the cycle. Notice that because of the use of
Rule 1, the in and out events of a process may be the same in a cycle of a necessary

view, unlike that in a global view. Figure 14 shows such an example.

P1 : x!]—x!2
v,
P, : x72—=x71

Figure 14: A cycle in the necessary view

Suppose op} ~+ op¥ is a path in a view from op} to op5. Without loss of generality,
assume op! is in P, and opf is in Py, and op} is the last event in P; and opf is the

first event in F% in the path.

Definition 16 : The critical events of the path op} ~» op5 consists of events (op};
opi; op?; op3; ; op¥; opk) such that the op} is the first and oph is the last event in

process i in the path. opt and oph may not be distinct events.

Definition 17 : Two processes, P; and P;, are synchronous if they are connected

by an access edge that lies in an access cycle.

Definition 18 : (zlv); and (z?); is a synchronous read/write (conflict) pair if P;

and P; are synchronous.
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Definition 19 : Two writes, say (z'v); and (z!v');, are synchronous if there ezists a
reader process, say Py, such that (P;, P;) and (P, Pj) are synchronous process pairs.
Given these two synchronous pairs, (z?v), and (z'v'); form a synchronous read/write
conflict.

Definition 20 : If all the critical events op} and opi*' of a path are synchronous

read/write or write/write conflicts, then the path is called synchronous. Otherwise it

is asynchronous.

Lemma 3 : The sequence of critical events in a cycle in a necessary view corre-

spondingly traces a virtual cycle or a single edge traversed in both directions.

Proof:
i+l

opt — op} follows the program order of process P;. But op — op{™' corresponds

to some z in the form of:
(i) z'v — z?v (from the global view), or
(i) z?7v — z!v' (from augmentation Rule 1).
(iii) z'v — z!v' (from the ordering of writes if v is never read).

In the first two cases, an access edge between P; and P, is traced. From the third
case, a path between P; and F;; is traced via a reader Pi. This path is composed of
two access edges F; z Py z P; ;. Hence the cyclic sequence of critical events exactly
traces either a virtual cycle or a single edge (traversed in both directions) in the access
graph. In the latter case, the trace involves P, = P, & P, or P, & P, = P,. Thus

the claim. o

3.1.2 Possible View

For an execution to be sequentially consisteut, the acyclic necessary view must satisfy
an additional property. Suppose two writes, say (z!v); and (z!v’); at least one of whose
values has been read by some process, are unordered in the acyclic necessary view.

These writes are called concurrent writes.
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Processes Operation sequences

P a!ll— bl — 1
b, : z!ll— a?l =572
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. 11 <12 — 21— £?
Ps ell d!2 f,l/:z.l

a) Acyclic Necessary View

Processes Operation sequences

B a!]<f!1 —cll
P, '1— a?1 =572
P;: 2= al2— ¢?] —= z72
P, : 12— g?71 —~e?l
Ps : d'L—~ el2— f!

. 119 — f2]— ?
Ps : ell dl2 f.l/:::.l

b) A Cyclic Possible View

Figure 15: Acyclic necessary view without acyclic possible view

Definition 21 : A possible view is obtained from the necessary view by ordering
every pair of concurrent writes, say (z'w); and (z'v');, such that (z'v); — (zlv');

implies every (z7v)g — (z!v');

These selections are arbitrary and lead to different possible views. The existence
of an acyclic possible view is related to sequential consistency as we prove in Sec-
tion 3.1.4.

Figure 12(e) shows an acyclic possible view of the execution given in 12(a). We
show in Section 3.1.4 that this implies the execution is sequentially consistent. Figure
15(a) shows another execution which has an acyclic necessary view but which does
not possess an acyclic possible view. Figure 15(b) shows a cyclic possible view for
this execution. To establish this possible view, we use one possible ordering between
all writes on a single object. Other possible orderings exist but they all create a cycle

in the possible view. Thus it is not sequentially consistent.
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Lemma 3 establishes the correspondence between a cycle in a necessary view
(hence inconsistency) and a virtual cycle or a single edge. This correspondence also

applies to a possible view, as we prove here.

Lemma 4 : The sequence of critical events in a cycle in a possible view correspond-

ingly traces a virtual cycle or a single edge traversed in both directions.

Proof: Following the same strategy as in the proof of Lemma 3, we show that the

i+1

coupling opb — opi™' must be of the form:

(i) zlv — z?v (from the global view),
(ii) z?v — z!v’ (from necessary or possible view), or
(iii) z!lv — z!v’ (from necessary or possible view).

In each of the above, it traces an access edge or a virtual access edge between P,
and P;,,. Hence, the critical events correspond to a virtual cycle or a single edge

traversed in both directions. |

3.1.3 Necessary Ordering vs Possible Ordering

It is shown in [26] that deciding if an execution is sequentially consistent is an NP-
complete problem. Hence given an arbitrary execution, even though we can easily
derive the necessary ordering and hence the necessary view (in polynomial time), we
do not think it is possible to derive an acyclic possible view without enumeration. So
the necessary ordering is the maximal information we can deduce which must exist
among the operations in order that the read/write semantics of memory objects are
not violated. The possible ordering includes runtime choices which are not deducible

from the execution trace and are often not unique.

3.1.4 Sequential Consistency

In this section, we prove that an execution is sequentially consistent iff the corre-

sponding possible view is partially ordered.
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Lemma 5 : An ezecution is sequentially consistent iff it possesses an acyclic possible

view.

Proof:

(=) Given an acyclic possible view, we can obtain a total order of the execution
by iteratively selecting an operation, among the subset of operations which are
not preceded by other operations in the remaining possible view, as the next
operation in the total order. Because of the property of the possible view, this

total order satisfies the requirement of Definition 12.

(<=) The reverse is immediate as the total order is an acyclic possible view itself.
|

Lemma 5 clearly indicates that a distributed protocol correctly implements any
sequential consistency defined with views only if it guarantees that every execution
has an acyclic possible view.

Moreover, from Lemmas 3 and 4, we have shown that a cycle in a necessary or
possible view corresponds to a virtual cycle or an edge traversed in both directions.
To get rid of view cycles, we can design a protocol to ensure their non-occurrence
based on our knowledge of virtual cycles. It follows that synchronizing accesses in
every cycle may give us sequential consistency. To demonstrate this possibility, we use
the projection of views as presented in Section 2.2.4. We use a global view restricted
to the processes and objects involved in a particular cycle.

Any virtual cycle ¢ can be represented by a set of processes, {P;, Ps, ..., Px}, and

a set of objects, {01, 02, ..., 0m}, contained in the cycle.

Theorem 1 : For every virtual cycle or access edge ¢, U;(LV;|.) has an acyclic
possible view iff U;(LV;) has an acyclic posstble view.

Proof:

(=) Suppose all possible views of U;(LV;) are cyclic. Then in each possible view,
there is a cyclic sequence of critical events involving Pj; Pp; ... ;P;. From
Lemma 4, this traces a virtual cycle or a single edge traversed in both directions

in the virtual access graph. The same events form a cycle in U;(LV;].)-

32



(<) The reverse is immediate from the fact that (LV;|.) is a subset of (LV;). Hence

an acyclic possible view from LV; leads to the same from LV;|..
|

3.2 Algorithms

The definition of sequential consistency in terms of views is very important in order
to develop and prove new algorithms for sequential consistency using this tool. So, a
correctly designed distributed protocol for sequential consistency in shared memory
must ensure that at least one acyclic possible view exists, or that view cycle cannot
occur. This can be achieved in a number of ways. Different approaches lead to two
different protocols. In this section we introduce some new algorithms. The first two
algorithms are based on blocking protocols and they use the access graph concept to

reduce synchronization. The others that follow are extensions of the second protocol.

3.2.1 Execution Model

The view space presented earlier captures only abstract read and write events oc-
curring in the shared memory system. It is too abstract to be used to capture the
runtime details of the distributed protocol which implements the shared memory.
Another model, the execution model, is introduced to capture the runtime details
corresponding to events in the view model.

The execution space contains events that occur in the underlying message passing
distributed system. We associate with each operation (event) op; in the view space
two events in the execution space: the start (st_(op;)) and the end (end_(op;)) event.
Events in the execution space are related by the happens-before (—) relation intro-
duced by Lamport[40]. For obvious reasons, it is assumed that for each operation
(event) op;, st_(op;) — end_(op;).

The correspondence between the view precedence relation and the happens-before
relation is established by a set of conditions. These conditions specify for each protocol

the required correspondence between ordering relations in the view space (—) and
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ordering relations in the execution space (—). As an example, the following condition
can be used in such a set: op; — op; = end-(op;) — end_(op;)- The protocol
that implements a distributed shared memory system tries to enforce every condition
specified in such a set.

The start and/or end events of the execution space are synchronization points that
can be mapped to the events in the abstract view space. These synchronization points
are established by identifying which statements in the implementation correspond to

the start and end of the operation implemented.

3.2.2 Virtual Access Cycle Based Synchronous Protocol

A synchronous protocol (also called neighbor protocol) avoids the cycles in a possible
view by enforcing some set of conditions as mentioned in section 3.2.1. The following
set of conditions specify, for the neighbor protocol, the correspondence between the

ordering relations in the view space and the ordering relations in the execution space.

Condition 1 : PO - Program Order.
If op; and op; are two instances of operations by a process such that they are
associated with a same edge or two edges that lie in a same virtual cycle, then we

require: op; > op; = end_{op;) — end_(op;)

In other words, PO ensures that if op; and op; are program ordered and satisfy
the above condition, then their ending must follow the happens-before order as well.
The latter happens-before order is useful to eliminate view cycles and hence achieving
consistency. Under PO, operations that do not lie in a same edge or virtual cycle
do not have to be ordered at runtime (happens-before order). Moreover, it also
means that zlv B zlv’ = end_(zlv) — end_(zv’) and z?v B 270" = end_(z?v) —

end_(z?v"). This case is used also to avoid view cycles that can involve a single edge.

Condition 2 : CO - Conflict Order in a Shared Object

CO models the atomicity of each shared object so that conflicting accesses are

serialized properly.
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1. Writing of a value must precede any reading of that value:

end_(z!v) — end_(z?v) for every z7v.

2. Synchronization of operations associated with a synchronous edge:

(a) Consider P, = P, being a synchronous pair (edge), and (z'v); and (z?v'),
operations performed by P, and P,. Notice that (z'v') could have been
performed by some process other than Py, say P, and P3 5 P, can be
asynchronous. We require either:

e end (zlv); — end_(z7v'), or

e end. (z7v")s — end_(z'v);.-
In other words, the reader P, must be locally consistent with itself. For
ezample, in the former case, P, must not allow z'v' to happen before z7v
and at the same time z!v before z!v'.

(b) Consider P, = P, and P, & P; being two synchronous process pairs,
and (z'v);, (zW'); and (z7v), are operations on those processes. Then
a stronger condition than CO(2a) applies. Specifically, we require the two
writes by P, and P3 to be ordered in the happens-before world (for ezample,
ordering at P, transitively also asserts the ordering on these writes):

end_(z!v); — end_(z'v'); or end_(z!v')3; — end_(z'v);.

3. end_(z'v); — end_(z?v')s = —~(end_(zv')3 — end_(z?v)./end_(z'v),).

This condition enforces the consistency in the observation of events in a process.

In essence, condition CO(2) ensures that every pair of conflicting operations
(read/write or write/write) on a same object and lying on a same virtual cycle are
ordered in the protocol space. This means that as soon as for two conflicting oper-
ations (events) on an object z, op, ~» ops, this implies that end_(op:) — end_(op>)
for all processes. Condition CO(3) combined with PO ensures the same condition
on asynchronous edges. Together, CO(3) and PO specify FIFOness update which
is required on asynchronous edges. PO and CO are collectively called the neighbor

invariants.



We claim that the neighbor invariants (NI) guarantee sequential consistency. The

proof is not simple. Hence, we prove this claim by a sequence of proofs.
Lemma 6 : GV is acyclic under NI

Proof: Suppose otherwise, there is a cycle in GV. Since GV contains only either
value or program order, the critical events in this cycle must trace an access cycle and
hence correspond to synchronous conflicts. Hence from PO and CO(1), they must

also follow the happens-before order. This is a contradiction. So, GV is acyclic. W

Lemma 7 : If op; ~ op; s a synchronous path then end_(op;) — end_(op;).

Proof: op; ~ op; contains orderings that are either (i) program order, or (ii) value
order (i.e., z!'v = z?v). From CO(1), value order also corresponds to happens-before
order between the two involved events. Moreover, since op; ~ op; is synchronous, the
critical events must follow the happens-before order because of PO and CO. Hence

the claim. n

Knowing that conditions PO and CO avoid any view cycle in GV, we need to
show that no augmentation derived from Rule 1, (z!v), ~ (2?v')s = (27v)4/(z'v); —
(z!v")3, can create a view cycle without creating also a happens-before cycle. Notice
that P, and P, may be the same process and that the processes involved in the
augmentation rule are related by P, = P,/P, & P;. Hence we start with asymmetric
GV, and use the result of Lemma 2 to show that successive augmentations preserve
this property. In Phase I, we show that ordering of conflicts on synchronous edges
preserve the asymmetry. In Phase II, we proceed by showing that any augmentation
applied on synchronous edges does not create any view cycle. In Phase III, we show
that adding augmentations on asynchronous edge does not create any view cycle.
Finally, in Phase IV, we show that the additional ordering required to obtain a possible
view does not create any cycle in the resulting view and hence NI ensures sequential

consistency.
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Phase I: Ordering conflicts on synchronous edges

In this first phase, we order all unordered synchronous write conflicts and
read/write conflicts according to their happens-before order. For example, sup-
pose z!v and z!v' are unordered in GV. In such a case, we augment GV with
v — zW' if zlv — zl'. Similarly, order any unordered read/write conflicts.

This must exist according to CO(2a) and CO(2b).

Hence, at the end of Phase I, GV contains inter-process “—” each of which
coincides with the happens-before order (from the above and CO(1)). Moreover,
the critical events of every synchronous path are happens-before ordered. We
call this property (acyclic and happens-before ordered synchronous path) well-

ordered. So, according to Lemma 6, GV is well-ordered (before Phase I).

Lemma 8 : FEvery augmentation in Phase I preserves the well-ordering in GV'.

Proof: This is immediate as each augmentation in Phase I involves syn-
chronous conflicts which are ordered according to their happens-before order.
Cyclicity will immediately contradict the anti-symmetry of the happens-before

relation. [
Phase II: Augmentation on synchronous edges

In this part, we deal with the simpler case in which we apply successively Rule 1
only in cases where the consequence (right-hand-side) is synchronous, i.e., every

access edge lies in some access cycle. This leads to a GV that is well-ordered.

Lemma 9 : FEvery augmentation in Phase II preserves the well-ordering in

GV.

Proof: Before an augmentation with Rule 1, by inductive argument, GV is
well-ordered (Lemma 8). Now consider the application of an instance of Rule 1

((zlv), ~ (2?0")2 = (z?0)4/(z!v)1 — (zlv);) when:
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1. both (P, P,) and (P4, P3) are synchronous process pairs:

(2)

(b)

(zlv) ~ (270")2 = (270)4 — (V)3

By the assumption in Phase Il and definition of synchronous con-
flicts, (P, P,) and (P, P;) are synchronous processes, i.e., both the
guard and the consequence of Rule 1 involve synchronous conflicts.
Hence, from the synchrony of (P, P) and Lemma 8, end_(z!v); —
end_(z?v');. Now, suppose GV already contains (z!v'); ~ (z7v)y,
then, from the synchrony of (P;, P;) and Lemma 8, end_(z!v'); —
end_(z?v)s. This immediately contradicts CO(3).

(z!v)1 ~ (2?0")2 = (zlv); = (zlV')3

This augmentation is needed only if z?v does not occur in GV, other-
wise case (a) will render this case redundant. The proof is immediate:
as before, we know that for the guard, end_(z'v), — end_(z?v'),. Now,
suppose (z!v')3 ~ (zlv), exists. From Lemma 8 and the inductive as-
sumption, this implies that end_(z!v'); — end_(z!v),. This contradicts

CO(3).

2. (P, P,) is an asynchronous process pair:

In this case, P, and P; must be the same process. Otherwise we have two

writers and two readers rendering (P, P») synchronous.

(2)

(b)

(zlv)1 ~ (2?70")2 = (z70)2 — (zl0')s

The asynchrony of {P,, P») implies that (z!v); — (y'u); — (y?u)2 —
(z?v')2. From PO (virtual cycle and single edge), we know that
end_(zlv), — end_(y'u), — end_(y?u),; — end_(z?v")>. Now, suppose
GV already contains (z!v')s ~ (z7v),. From Lemma 8, the induc-
tive assumption and the synchrony of (P, P;), we have end_(z!v'); —
end_(z7v);. The above two happens-before relations immediately vio-
late CO(3).

(z!v); ~ (270')2 = (zlv); = (z')3

This case is the same as case (a) except that we have end_(z!v'); —
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end_(z!v); contradicting also CO(3).

Moreover, in all of the above, the augmentation must coincide with the happens-
before order between the augmented conflict pair (guard), since they are already

ordered in the latter order after Phase I. Hence GV is acyclic. |

From the above lemmas, at the end of Phase II, all synchronous conflicts are
ordered in the resulting GV. Moreover, all orderings in GV coincide with
the happens-before order and GV is well-ordered. The remaining unordered

conflicts in GV belong to asynchronous read-write or write-write conflicts.

Phase ITI: Augmentations on asynchronous edges

In this third phase, we consider application of Rule 1 on asynchronous edges,
i.e., the two possible consequences of Rule 1, (i) (z?v), — (z!v'); and (ii)
(z!v); — (z!v')s, are applied on asynchronous edges. In this phase, we have two

possibilities of (P, P») and (P,, P3):

(Py, P) (P2, Ps)

(i) | Synchronous | Asynchronous

(ii) | Asynchronous | Asynchronous

We need to show that in every augmentation via Rule 1, each of these two cases

preserves acyclicity in GV.

Lemma 10 : Augmenting the GV from Phase II using Rule 1 preserves the

well-ordering in GV.

Proof: Consider:

1. (zW)y ~ (27V")2 = (2?v)4 — (z!V')s:
First, we claim that P, = P, otherwise the two process pairs must be
synchronous. Indeed, two writers and two readers sharing a common object
form an access cycle.

From the guard,(z!v), ~ (z?v¢')2, we deduce the following:

39



e from case (i), the synchrony of (P, P») implies that (zlv); — .. —
(op)2 — (z?'), where (z!v); — ..(op)2 is a synchronous path. This
implies, from well-ordering and PO (virtual cycle) respectively, that
end_(z'v); — end_(op)2 and end_(op)2 — end_(z7v'),.

e from case (ii), the asynchrony of (P, P,) implies that P, and P, are
connected by a single and direct edge in which case we have from
PO (virtual cycle and single edge) that (zlv); — (y'u): — (y?u)2 —

(z?v)2 = end_(zlv), — end_(y'u), — end_(y?u)s — end_(z7v'),.
Hence in both cases, we have end_(z'v); — end_(z?v')2.

Now, suppose GV already contains (z!v'); ~ (z7v)2. By the same rea-
soning, we conclude end_(z!v'); — end_(z?v),. The above two derived

happens-before relations contradict CO(3).

N

. (W) ~ (z7V")9 = (zlv); — (zW')s.
Analogously to the preceding case, we have end_(z!v); — end_(z7v'),.
Suppose (z'v')3 ~ (z!v);. Then we get also end_(z!v’)s — end_(z'v); by

similar arguments. These contradict CO(3).

Since Phase III does not introduce any new synchronous path in GV, the pre-
serving of happens-before order in a synchronous path follows from Lemma 9.

Hence GV is acyclic. [ ]

Thus after Phase III, the resulting GV is well-ordered and no further augmenta-
tion under Rule 1 is possible. However, GV may still contain unordered conflicts
between (z!v); and (z''); which involve a single reader, say P,. We show that
we can order these conflicts successively and arbitrarily without introducing

cycles until an acyclic possible view is formed.

Phase IV: Ordering of asynchronous concurrent writes

At this time, GV may still contain asynchronous conflicts that are unordered
as Rule 1 cannot be applied to them, i.e., z!lv — z7v' does not exist in GV.

In Phase IV, take any two unordered (z!v); and (z!v’); and augment GV with
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(z'v); — (z'v')3 and (z?v), — (z!v'); where P, is an arbitrary process that
reads the value v. If this augmentation creates (y!u) ~» (y'u’), then order also
(y?u) — (y!u'). We call this arbitrary ordering. This is repeated until unordered

conflicts do not exist in GV.

Lemma 11 : The processes tnvolved in Phase IV must be asynchronous.

Proof: This immediately follows as a consequence of Phases I and II. [

Lemma 12 : The arbitrary ordering in Phase IV preserves the well-ordering

in the resulting GV'.

Proof: Consider each step of the arbitrary ordering. Since (z!v); and (z'v')s
are unordered to start with, ordering them does not introduce a cycle in GV.
Now consider the introduction of (z?v); — (z!v')3 that follows. Since Rule 1
cannot be applied before the ordering, we cannot have (z!v’)s ~ (z?v), before
the augmentation. Hence GV remains acyclic. Now we need also to show that
Rule 1 cannot be applied after the augmentation step. Suppose we get the

following after the augmentation:

(1): ()i ~ (zW)1/(z?)2 — (zv')3 ~ (y?u');.
This is impossible, otherwise we have traced an access cycle with these

events.

(ii): (y'u)i ~ (zW)1/(z?0)2 — (z!v')3 ~ (y'u');
This is possible under asynchronous edges when P; = P;, P; = P; and the
only reader of y is P,. Otherwise, an access cycle is traced through object
y. A consequence of case (i) is that GV cannot contain (y!u'); ~ (y'u)a.
Hence, augmenting it with (y?u)s — (y!u)3 in the step would preserve
acyclicity. The preserving of the happens-before order in a synchronous
path follows from Lemma 9, since Phase IIl does not introduce any new

synchronous path in GV. This completes the proof.
[
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Theorem 2 NI implements sequential consistency.

Proof: From Lemma 12, at the end of Phase IV, the resulting GV is well-ordered.
Moreover, it does not contain any unordered conflicts. Hence it is an acyclic possible
view. Hence the claim. |

Based on the above abstract results, we can focus on designing a protocol that
synchronizes all virtual cycles while maintaining that every read or write of an object
is locally atomic (to the object). To illustrate this aspect, let us consider the simple
access graph in Figure 16. In this graph, there are only two access cycles. Suppose
process P, performs the following sequence of operations: z!l1;y!2;z?v;t?v'... Then
Lemma 6 asserts that z!l does not delay y!2 but must be completed before 27v as
the two writes are in two different access cycles and cannot form a view cycle. Hence
end_(z!'1) — end_(y'2) does not have to be enforced. Similarly, end_(¥!2) — end_(z?v)

does not have to be enforced.

Figure 16: Access graph with 2 independent access cycles

Access Cycle Based Synchronous (Neighbor) Protocol

In this protocol, synchronization on asynchronous edges is done implicitly by assum-
ing the presence of FIFO channels. To synchronize synchronous edges, objects are
separated into 2-phase and 3-phase objects respectively. Single reader objects are
synchronized using a 2-phase protocol. Others are synchronized using a 3-phase pro-
tocol. Synchronization delay between operations in a process is confined to operations
that lie in a same virtual cycle. Operations which are not lying in a virtual cycle are
not synchronized and do not incur delay between them (other than the FIFOness

requirement of the underlying channels). The serialization of concurrent writes in
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3-phase objects is achieved by using logical timestamp augmented with the process
identifier. It is assumed that a process contains a sequence of memory operations to
be invoked. This sequence is the program order of these operations. The invocation
of 2 memory operation spawns a child thread from the parent process thread. The
end of an operation is delayed if a preceding operation in a common virtual cycle
has not ended. When an operation finishes, the child thread disappears. In addition,
there is a kernel thread that is responsible for receiving and updating the values of

objects readable by that process. The details of the protocol are:

Process i:
Suppose ti is the logical clock shared by all the threads in process i and tzi is the times-

tamp/version number of the most recent version of = established at process i. We assume that
each statement in the protocol is atomically ezecuted in a thread and a parent thread spawns
child threads in program order.

(i) (x!v) thread:
case of
3-phase write:
procedure write_thread_3(x,v,ts)=*;
local: ts, wait;
ti, txi, ts:= inc(ti); (st_(x!v))
broadcast update3(x,v,i,ts) to all readers of x;
wait := {j| process j is a reader of z};
repeat until (wait = empty or killed(x,ts)) and
(all active older brother threads in a same virtual cycle have returned)
{upon receipt of ack(x,i,ts) from process j do

wait := wait - {j} };
if —-killed(x,ts)
then broadcast commit(x,i,ts) to all readers of x; (end_(x!v))

return;
2-phase write:
procedure write_thread 2(x,v);
repeat until all active older brother threads in a same virtual cycle have returned;

send update2(x,v) to the reader; (st_(x!v))
wait for acknowledge from the reader;
return;

= For simple presentation, it is assumed here that a writer is also a reader.

(ii) (x7?v) thread:
procedure read_thread(x);
repeat until all older brother threads in a same virtual cycle have returned;
case of
3-phase object:
repeat until readable(x);

return value(x); (st/end_(x?v))
2-phase object:
return value(x); (st/end_(x?Vv))
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(iii) Kermel thread:
repeat forever

case of
receipt of update3(x,v,j,ts’) from process j:
ti: = max(ti,ts’);

if txi < ts’ then
readable(x] := false; valuelx] := v;
txi := ts’;
send ack(x,j,ts’);
for all active write_thread(x,v,ts) and ts’ > ts do
killed[x,ts] := true;
receipt of commit(x,j,ts’):
if txi = ts’ then readable[x] := true;
receipt of update2(x,v) from process j:
value(x] := v;
send acknowledge(x,v) to process j; (end_(x'v)) (2-phase write)
end repeat forever

Lemma 13 : The implementation of the synchronous protocol satisfies conditions

PO and CO.

Proof: The details of the correctness proof involve showing the causal relationship
among the ending of all operations. We proceed by showing that the protocol indeed

implements all the happens-before relations required by PO and CO:

e PO - op; > ops = end_(op,)—end_(ops)

Program order among two operations (events) op; and op, are ensured by the
loop that delays the ending of the actions in the read and the two (2-phase and
3-phase) writes operations. Hence, end_(op;)—end_(op,). This delay is enforced
only if the operations lie on a same virtual cycle. Program order is also ensured

by the presence of FIFO channels.

e CO - Conflict order

(1) zlv—z?v : There are two write operations to consider. In the 3-phase
write, the variable “readable” ensures that the new value is
not read before the write ends. Hence, end_(z!v)— end_(z7v).

In the 2-phase write, the write ends as soon as the variable

44



(2) zlv—zl' :

(3) zlv—z? :

(4) 2?v—zW :

(3) CO(3) :

is updated at the reader node. Hence, end_(z'v)—end_(z7v).

This ensures conditions CO(1).

A complete ordering of all the write operations is implemented
by the use of the timestamp ts. So, if there are two concurrent
writes, one of them will be killed according to the timestamp.
This ensures end_(z'v)—end_(z'v’). This ensures conditions

CO(2b)

Asin case (2), since the writes are totally ordered, we also have

end_(z'v)—end_(z?v'). This ensures conditions CO(2a)

By construction, in our protocol, the read operation is virtu-
ally atomic since st_(z?v) and end_(z?v) are both associated
with the same operation. So, if z!v' is a 2-phase write, then
end_(z?v)—end_(z!v') as the local update and the read are
both locally atomic operations. If z!v’ is a 3-phase write, then
end_(z?v)—end_(z!v') as the update of the variable readable
and the read are both locally atomic operations. This ensures

condition CO(2a).

CO(3) assumes that end_(z!v), — end_(z?v')2. Then, from the
total ordering of write operations ensured by the timestamps,
we know that end_(z!v); — end_(z!v')3 (either z'v really ends
before z!v’ or it was killed because of its smaller timestamps).
Then, the fact that end_(z'v), — end_(z7v),, the atomicity
of local updates, and the persistence of memory information
ensure that —(end-(z!v'); — end_(z?v)>/end_(z'v),) is always

satisfied.
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3.2.3 Flush Protocol

The flush protocol is a novel protocol designed to eliminate the tight synchronization
imposed by PO and CO. In particular, we wish to allow conflicting operations to
proceed asynchronously. So, in the flush, we enhance concurrency by permitting all
operations in different edges in a virtual cycle, except a specific one called the flush
operation, to execute asynchronously. When the flush operation is to be executed, it
synchronizes all processes in the virtual cycle such that all events that have started
must have completed before the flush operation can complete. The correctness of the
flush protocol is based on the following conditions, particularly on the flush order
condition that must be enforced between an arbitrary operation (op) and a flush
operation (fop) in a same virtual cycle. We use st_(op) to represent the starting

event of op, as marked explicitly in the detailed protocol earlier.

Condition 3 : RPO - Relazed Program Order

If op; and op; are two instances of operations by a process on a same edge or on
a same virtual cycle then we require: op; —» op; = st_(op;) — st_(op;).

Hence, program order is preserved only in the form of start-event order for every

potential view cycle.

Condition 4 : RCO - Relazed Conflict Order
In any case, a write z'v must have started before any read returning the value v

can end. Hence, we require: st_(zlv) — end_(z?v).

Condition 5 : WO - Write order

For any x'v and z'v', we require:
1. end_(z'v) — end_(zl') or end_(z'v') — end_(z!v).
2. end_(z'v) — end_(z'v') = end_(z7v) — end_(z'v')

Condition 6 : EO - Edge Ordering (FIFOness on a single edge)
Suppose z'v, z!v', z7v, 7', ylu and y?u are instances of operations in a same

edge from a process. We require the following “FIFOness”:
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1. st_(zlv) — st(zlV') — st_(y'u) = ~(st_(y?u) — st(z?v)) and —(st_(z?v') —

st_(z?v))
2. st(zlv) — st (z?') = —~(st_(z7) — st_(z?v))
EQO is used to avoid view cycles that can occur on a single edge.

Condition 7 : FO - Flush Order in a virtual cycle:
Each virtual cycle has a flush operation fop such that for every instance of oper-

ation op in the virtual cycle, we have
1. st_(op) — st_(fop) or st_.(fop) —> st_(op),

2. st_(op) — st_(fop) = end_(op) — end_(fop).

3. st_(fop) — st_(op) = end_(fop) — end_(op).

Conditions 3 to 7 are called flush invariants and we now show that they are
sufficient to ensure sequential consistency (SC).

Let us consider the augmentation of GV with the happens-before order among
writes to each object, and their respective reads according to WO. We call this view

graph TGV (Temporal Global View).
Lemma 14 : TGV s acyclic.

Proof: Suppose otherwise. Take a cycle in TGV consisting of a cyclic sequence of
critical events in Py; Ps; ...; P, (Recall critical events are the first and last events in
a process in the cyclic sequence.). As in earlier proofs (see Lemmas 3 and 4) these
critical events trace either (a) a virtual cycle or (b) a single edge of the access graph

traversed twice.

(a) virtual cycle case

Since each access cycle must contain a flush operation, one of the critical events
must be a flush. Without loss of generality, take the first/last operation (i.e.,
opi) in the cyclic sequence of critical events [op};op}; ..; ops; op}] as the flush
operation. The ordering between opé—)op(li“) in this sequence is one of the

following:
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(b)

(1) v = z?v: From RCO, st_(z!v) — end_(z?v).
(ii) z'v — z!v’: This comes from TGV, and hence end_(z!v) — end_(z'v’).

(iii) z?v — z!lv’: This comes from TGV, and hence end_(z?v) — end_(z!v').

Consider op} = fop. From conditions RPO and FO, we have st_op} — st_(op})
and end_(fop) — end_(opl). The next relation in the given sequence of critical
events is an instance of (i), (ii) or (iii). Consider opi — op? is zlv — zlv'
(the same holds for z!'v — z?v and z?v — z!v'). Hence st_(fop) — st_(z'v) —
end_(z!v) — end_(z!v'). From FO, we get end_( fop) — end_(z!v) — end_(z'v').
This in turn leads to st_(fop) — st(z!v’). From this deduction, for each oc-
currence of (i), (ii) or (iii), we can extend st_(fop) — st_(op}) where op} is the
second event of (i), (ii) or (iii). Hence end_(op}) — end_(op}) for every event

op{ in the given sequence, including op} itself. This is a contradiction.

single edge case

Since it is a single edge, the cyclic sequence of critical events concerns only two

processes and mimics:

o [(zW); (z')1; (270')2; (z10)4]
However, this sequence implies the sequence (z?v')s % (z7v)2 in P,. But,
from RPO we must then have st.(zlv), — st_(zlv'); — st(z?v'), and
st_(z?v')a —> st_(z?v)2, This contradicts EO(3).

o [(z!')1; (yv")1; (y7u")2; (270)2; (z10')1]
However, this sequence of events implies the sequence (z!v); (z'')1; (y'v")1
and (y?v"), 2 (z7v)2 in P;. From RPO(1), we must then have st_(z'v), —
st_(zW'); — st_(yWw"); — st_(y?")2 and st_(y?v"), — st_(z?v),. This
contradicts EO(2).

o [(zW')y; (z70)2; (270)2; (z10)1]
However, this sequence implies the sequence (z7?v'); ~ (z7v)4 in some

processes P; and P,. But this also creates the cycle [(z!v'); (z7")q; (z!0):;
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(z?v')3] which lies in a virtual cycle. Therefore, there is a flush operation in
the sequence such that [end_(z'v'); — ... > end_fop — end_(z7v'); —

end_(z'v');]. Hence a contradiction.

Lemma 15 : TGV satisfies R1.

Proof: Suppose otherwise. There is an instance of z!v ~ z?v'/z!v’ but there is

some z?v such that z7v — z!v’ does not hold.

1. zlv ~» z!v’ and there exists z7v = z!v':

From WO, we have end_(z!v') — end_(z?v). This in turn implies end_(z!v') —
end_(z!v). From TGV, we must have v’ — z'v. This implies TGV is cyclic

and hence is a contradiction.

[\

. zlv ~» £7v' and there exists z?v -» z!v’:

From WO, we must have end_(z!v') — end_(z?v) and hence end_(z!v') —
end_(z'v). This in turn implies end_(z7v') — end_(z!v). From TGV, we have

z?7v" — zlv. Again, we have a cyclic TGV and a contradiction.

Lemma 16 : TGV is a possible view.

Proof: [t is immediate from Lemma 15 and the fact that TGV does not contain

any concurrent writes to a same object (they are all serialized via WQ). [ ]
Theorem 3 : The flush invariants ensure SC.

Proof: This follows from Lemmas 14 to 16. [ |

So, in terms of the synchronous protocol described in Section 3.2.2, it means a
child thread no longer waits for its old brother threads in a same virtual cycle to
return before proceeding with its termination operation. The parent thread can start
each child thread of a virtual cycle in program order. These child threads move asyn-

chronously with respect to their brothers as well as with respect to other threads in
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other processes. The only synchronization imposed is atomically triggered whenever
a special write operation in each virtual cycle is invoked by a parent thread. This
special write operation is called a flush_-write. The flush_write serves to synchronize
all asynchronous operations in a virtual cycle that can potentially lead to a view
cycle. Intuitively a view cycle involving the operations in a given virtual cycle cannot
be formed unless every operation in the virtual cycle has been invoked since the last
(flush) synchronization. Hence synchronization is completely hidden/ignored until
the flush_write occurs. When it does, each writer process in the same virtual cycle is
checked so that all operations in the virtual cycle that have started before the flush
must have ended before the flush is allowed to end. The theory allows the use of
a read operation as a flush, but for our design and simulation, we use a write for
this purpose. The details of such a protocol are given below. It is assumed that the
protocol described in Section 3.2.2 is used with the removal of all delays (waiting)
caused by the return of older brother threads (those lines marked in italics). This re-
moval concerns only events in a same virtual cycle. The changes to the base protocol
then include the case of a flush_write in the write thread and the case of receipt of

flush_write in the kernel thread:

(x!v) thread:
case of

flush (x!v):
procedure flush_(x!v);
broadcast flush_(x!v) to each process in the virtual cycle;

repeat until receipt of flush_ack(x,v) from each process; (st_flush)
broadcast commit_flush(x,v) to each process; (end_flush)
return;

Kernel thread:
case of
receipt of flush_(x!v) from process j;
atomically perform
wait until
all child threads in the same virtual cycle as the flush operation have returned;

send flush_ack(x,v) to process j;
if process i is a reader of x then value(x]:= v;
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In addition, the parent thread is changed so that it delays spawning a child thread
if the latter is in the same virtual cycle of an ongoing flush_write which has not yet

committed, i.e., the commit_flush message has not been received.

Lemma 17 : The preceding implementation of the flush protocol satisfies the flush

invariants.

Proof: The details of its correctness proof involve showing the causal relationship
among the ending of all operations. In particularly, we have to show that if an
operation in the virtual cycle starts before the flush operation, then it ends before
the flush. This condition is locally enforced in the protocol by requiring that each
earlier operation ends before acknowledging the flush operation. Moreover, since these
actions are done atomically and the start of other threads is delayed by the parent,
no other operations can start before the flush ends.

As for the neighbor protocol, WO is enforced by timestamps and EO is enforced
by FIFO channels. |

3.2.4 Multiple Flush Protocols

The flush invariants presented earlier can be considered as “single flush” invariants
since every cycle is synchronized by a single flush operation. For scalability consider-
ations, it is possible to use multiple flush operations in a long cycle. Protocols using
multiple flush operations inside a single virtual cycle may be useful when we have a
long virtual cycle since it reduces the number of participants for each broadcast and
hence reduces the time for the 3-phase flush protocol.

When multiple flush operations are used, each flush operation synchronizes a
subset of the operations involved in the virtual cycles. According to the organization

of the operations, these subsets must possess some specific characteristics.

Definition 22 : A group is a set of operations {opi, 0D, ..., 0px} such that for all

i,7, op; and op; are operations of the same virtual cycle.



Definition 23 : Two operations op; and op; are consecutive in a virtual cycle if
they are emanating from the same process on two separate edges of the cycle or from

two distinct processes on the same edge of the cycle.

Definition 24 : A segment is a group such that, for each i, op; and op;,, are

consecutive operations in the virtual cycle.

As an example, consider the virtual cycle P, =3 P» 33 P; 23 P, 23 P,. This virtual
cycle can be divided into the two following segments, each containing four operations:
{(o1!'v1)1, (017v1)2, (02!v2)2, (02712)3} and {(03!v3)s, (037U3)s, (04'vs)4, (047v4)1}. The
number & of operations in each group may differ. As an example, the preceding
virtual cycle can also be divided into two groups or segments containing respectively
three and five operations.

When a virtual cycle is divided into groups or segments, we can provide a distinct
flush operation for each group or segment. The choice of the flush operation for
each group or segment produces many possible organizations and hence multiple
flush conditions. In this section, we present three different multiple flush conditions.
These flush conditions, combined with conditions EQ, WO and RPO described earlier,

produce different multiple flush invariants.

Linear Flush Operations

Consider a virtual cycle which is divided into n segments s; = {op},op}, ...,opL}, ...,
sn = {op?,op},...,opl} where op] identifies the i*" operation of segment s;. The
segments are consecutive, which means that the last operation of segment s;, opL
and the first operation of segment s;41, op{“, are consecutive events.

When we use a single flush, the choice of the operation in a virtual cycle is simple.
However, with multiple flush, the choice becomes more complex. Indeed, a virtual
cycle can produce two view cycles, one in each “direction”, and so each “direction”
must be covered. This is not a problem with the single flush since it covers all
operations in both directions. With linear flush protocols, each segment must be

covered by two flush operations, one at each end. A simple strategy is to use the
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first and the last event of a segment as flush. Hence, the first flush operation fop} of
segment % is opt and the second flush operation fop} is the last event of the segment.
The flush operations, fop: and fop,, must themselves be synchronous respectively
with the first operation of the next segment or the last operation of the preceding
segment. The condition for the linear flush that replaces FO in the flush invariants

is:
Condition 8 : LFO - Linear Flush Order in a virtual cycle:

1. op* and fop} (forl =1 or?2) in a same segment s; of a virtual cycle = st_(op*) —

st_(fopj) or st_(fop;) — st(op),
2. st_(op') — st_(fop}) in a same segment = end_(op') — end_(fop}),

3. st_(fop) — st_(op’) in a same segment = end_(fop}) — end_(op'), and

4. st_(fop) — st_(opi™') = end_(fop’) — end_(opi™') where opi~" is the last event

of the segment s;_; or st_(foph) — st_(opt™!) = end.(fop’) — end_(opit?).

Conditions 1 to 3 ensure that the flush operations synchronize every operation
in their segment. Condition 4 synchronizes the flush operations with the adjacent
segments.

When we combine conditions RPO, RCO, EO, WO amd LFO, we obtain the linear
flush invariants. Showing that these invariants are still sufficient to ensure sequential
consistency is similar to the proof showing that the single flush invariants guarantee
sequential consistency. So, we assume that we still have the view graph TGV. We

can show that TGV remains acyclic under the linear flush invariants.
Lemma 18 : TGV 1is acyclic under the linear flush inwariants.

Proof: Suppose otherwise. Take a cycle in TGV consisting of a cyclic sequence of
critical events in P;; P»;..P,. As in earlier proofs these cxitical events trace either (a)

a virtual cycle and (b) a single edge of the access graph traversed twice.
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(a) virtual cycle case

Since each virtual cycle is divided into segments and each segment contains a
flush operation, the last critical event of the segment is the flush operation.
This means that the view cycle that is formed by a set of operations regrouped

into m segments of the form:
S1 = 82 —> ... Sm — Si
where each segment s; contains a sequence of operations (events) of the form:
opi — opy — opi.. — op

where op? is the j* critical event of segment s; and op}, is the flush operation

(fopt) of that segment.

The ordering between two events opj—)opfj +1) 10 this sequence is either enforced

by program order or one of the following:

(i) zv = z7v: From RCO, st_(zlv) — end_(z?v).
(ii) z'v — zlv': This comes from TGV, and hence end_(z'v) — end_(z!v').

(iii) z?v — z'v’: This comes from TGV, and hence end_(z?v) — end_(z!v’).

If opf, % opi than from RPO and LFO, we have st_(opl) — st_(opl) =
st_(fops) and hence end_(opi) > end_(fopi). The next relation in the given
sequence of critical events is an instance of (i), (ii) or (iii). Consider the case,
opj- — opéﬁ_l) is zlv — z!v’ (the same holds for z!lv — z?v and z?7v — z!v').
From WO we have end_(z!lv) — end_(zlv') — end_(fopi). This in turn leads
to st_(z!v) — st_(fops). From this deduction, for each occurrence of (i), (ii) or
(iii), we can extend end_(oph) — end_(fop}) for each event in segment s;. From
LFO, we also deduce that end_( fopg—l)) ~ end_(oph) — end_(foph). Hence,
end_(f opfqi_l)) — end_(fop}) for all segments s; involved in the view cycle. The
same reasonning can be used to show that the other flush operation fop} ensures

the same ordering in the other direction. Hence, this is a contradiction.



(b) single edge case

This case is the same as in Lemma 14 and is not repeated here.

Theorem 4 : The linear flush invariants ensure SC.

Proof: This follows from Lemmas 16 and 18. ]

When we use a single flush, the choice of the operation in a virtual cycle is simple.
However, with multiple flush, the choice becomes more complex. Indeed, since a
virtual cycle can produce two view cycles, one in each “direction”, each segment
must be covered by two flush operations, one at each end. A simple strategy is to
use the first and the last event of a segment as flush. However, the best solution is to
use a single flush operation for two contiguous segments. Each segment then overlaps
with its neighbor segments. The overlapping concerns only one operation which is
used to flush the two segments. With that solution, we have fewer flush operations’

and the segments are still covered both ways.

Consecutive Flush Operations

Consider a virtual cycle which is divided into n groups g; = {op},op}, ....opc}, -,
gn = {op?},0p3, ..., 0p% } where op! identifies the i** operation of group gj, and one
segment fs. All the operations of the unique segment, called the flush segment, are
used as flush operations. Each operation of the flush segment is used to “Aush™ all the
operations of one or many of the groups. The operations of the flush segment are noted
{fop', fop?, ..., fop™}. The operations of the flush segment must all be synchronized
as specified by the neighbor protocol. Hence they form a synchronized segment.
Again, as in the linear flush order, care must be taken to cover the virtual cycle in
both directions. In this case, this affects only the flush segment. The conditions for

the consecutive flush order are:

Condition 9 : CFO - Consecutive Flush Order in a virtual cycle:
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1. op{ of a group g; flushed by fop’ in a particular virtual cycle = st_(op{) —
st_(fop’) or st-(fop?) — st-(op?),

2. st_(op}) — st_(fop’) = end_(op}) — end_(fop’),
8. st_(fop’) — st_(opl) = end_(fop’) — end_(op]),

4. for two consecutive flush operations, fop’ and fop’*!, we have st_(fop’)

st_(fop’™) or st_(fop’*') — st_(fop?),

5. st_(fop’) — st (fop’*!) = end_(fop’) — end_(fop’*!) or
st_(fop’*') — st_(fop?) = end_(fop’™!) — end_(fop’), and

6. st_(fop™) — st_(op}) = end_(fop™) — end_(op}) where op} is consecutive to
fop™ in the view cycle and st_(fop') — st_(op!) = end_(fop') — end_(op])

where op! is consecutive to fop™ in the view cycle.

Conditions 1 to 3 are normal flush requirements. Conditions 4 and 5 ensure that all
the operations in the flush segment are synchronous. Finally, condition 6 synchronizes
the flush operations at both ends of the flush segments with operations outside the
segment. When we combine CFO with conditions RPO, RCO, EO and WO, we
obtain the consecutive flush invariants. As before, to show that these invariants are
sufficient to ensure sequential consistency, we must show that TGV remains acyclic

under these invariants.
Lemma 19 : TGV is acyclic under the consecutive flush invariants.

Proof: Suppose otherwise. Take a cycle in TGV consisting of a cyclic sequence of
critical events in P;; P»;..P;. As in earlier proofs these critical events trace either (a)

a virtual cycle and (b) a single edge of the access graph traversed twice.

(a) virtual cycle case

Each virtual cycle is divided into n groups and one flush segment fs that con-
tains all flush operations. This means that a view cycle, formed by a set of

operations regrouped into 7 groups and one flush segment fs, is of the form:
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opp — Op2 —» ops —> .. = fs — op;

where each segment op; is a member of a single group g; and flushed by a single

flush operation fop’ of segment fs.

From RPO and WO, we know that for all events, op; and op;4, (flush events or
not) either st_(op;) — st_(op+1)) or end_(op;) — end_(opgi+1))-

Hence from CFO, we have for every flush operation, fop' and fopl*! in
fs, end_(fop') — end_(fopl*V). Also from CFO, we have that from each
event op; which is flushed by some fop*, st/end_(op;) — st/end_(opi+1)) ---
st/end_(op;) — st/end_(fop') — ... — end_(fop*) where st/end — st/end
means st — st or end — end. So, by transitivity, we have for all non flush
events op;, end_(op;) — end_(fop*) — end_(fop™). In particular, end_(op;) —
end_(fop') — end_(fop™). However, from CFO, we also have end_(fop™) —
end_(op;). The same argument can be used to show the same ordering in the

other direction. Hence there is a contradiction.

(b) single edge case

The single edge case is the same as in Lemma 14 and is not repeated here.

Theorem 5 : The consecutive flush invariants ensure SC.

Proof: This follows from Lemmas 16 and 19. |

The advantage of this protocol is that the operations in a group can be non-consec-
utive. However, the operations of the flush segment must be consecutive in the virtual
cycle. The problem of this approach is the formation of the groups. Since it is not
required to put consecutive operations in groups, other criteria must be established

to create each group.



Hierarchical Flush Operations

Consider a virtual cycle which is divided into n groups g; = {op1,0p}, ..., 0Dk}, ..,
g = {op?, 0P, ..., op% } where op] identifies the it* operation of the group g;.

In the hierarchical flush, all flush operations are organized in a tree-like hierarchy.
The root node contains one operation fop” that flushes all its children nodes. Each
intermediary node contains an operation that flushes all its children nodes. The leaf
nodes contain only normal operations. All nodes having the same parent represent
a group. All the operations of a specific group g; must appear before their flush
operation (fop?) in the view graph, i.e., for all op!, op! ~ fop’ in the view. Again,
the root operation must be synchronized with its consecutive operation.

The detailed description and proof of the hierarchical flush invariants are omitted
here since they are very similar to the descriptions and proofs of the other multi-
ple flush invariants. However, this particular organization of the flush operations is
the most flexible. Indeed, the definition of the flush permits many hierarchical or-
ganizations. Figure 17 shows some possible organizations for the hierarchical flush
operations. In fact, any rooted tree provides a possible hierarchical organization for
the flush operations. Figure 17(a) and (b) show two possible trees. Figure 17(b)
shows a hierarchy where each flush operation flushes two operations of the same pro-
cess. This avoids the use of broadcasting primitives since each flush communicates
only with one process. It is interesting to note that CFO can be used to recreate many
protocols. Figure 17(c) shows a hierarchy that represents exactly the organization
of the neighbor protocol where each operation flushes the preceding one in the view.

Figure 17(d) shows a hierarchy that represents the single flush protocol.

3.3 Conclusion

In this chapter, we have presented new protocols that implement sequential consis-
tency. Two of these protocols, the neighbor and flush protocols, were evaluated and
compared with other more conventional algorithms. The results of this evaluation are

reported in Chapter 8 and in [27]. The multiple flush protocols were not evaluated.
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b) Organisation for process oriented protocol

a) General organisation

O
d) Organisation for single flush protocol

c¢) Organisation for the neighbor protocol
Figure 17: Possible organizations for hierarchical flush events



More work must be done to complete the implementation and evaluation of all these
protocols. Further work must also be done to compare the flush protocols with pro-
tocols used in relazed consistency models such as release consistency. We think that

these protocols and the flush protocols are intrinsically related.

60



Chapter 4

DSM Comnsistency Models Based
on Global Views

The view concept is a very powerful and flexible tool to represent different DSM
consistency models. In the preceding chapter, we have used it to represent principally
sequential consistency. In this chapter, using the global view as a seed, we define
hierarchies of weak consistency models. A first minimal consistency model is defined
by requiring the global view to be acyclic. Other stronger consistency models are
then defined by the use of augmentation rules which enforce additional orderings on
operations. These orderings lead to two distinct hierarchies of consistency models.
Moreover, another hierarchy is obtained by requiring the acyclic global view to satisfy
some additional properties. This last hierarchy, related to causal memory, requires

the absence of some bad orderings instead of enforcing new ones.

4.1 Minimal Consistency Based on Global View

From the definition of global view, it follows that a global view can be regarded as a
directed graph. When the graph is acyclic, then the global view is a partial order. A

minimal consistency model can than be defined.
Definition 25 : An ezecution satisfies minimal consistency ff its global view s

acyclic.
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Process F;
zly D XViI= v
broadcast (x,v); end_(z'v)
z%v : returns x.v; end_(z?v)
receive(z,v) : X.v:i=vV; update x.v

Figure 18: Asynchronous Update Protocol (AUP)

Intuitively, minimal consistency is achieved when all program orders and value
orders do not contradict one another “globally” among the processes. Unfortunately,
minimal consistency is a very weak memory model to be used in programming, al-
though it is easily implementable. One such protocol is the asynchronous update

protocol (AUP) shown in Figure 18.

Lemma 20 : The asynchronous update protocol AUP (Figure 18) tmplements min-

imal consistency.

Proof: We use Lamport’s happens-before relation (denoted by ) in the proof. We
observe that under AUP, op; — op, in GV also implies that end_(op;) — end_(ops)
(in Figure 18). Specifically, op; must have ended before ops can end. Events under
the happens-before relation must be partially ordered. Hence GV must be acyclic.
|

The asynchronous protocol, since it does not try to order the operations, is fast
because a process is not stalled at all by either read or write operations. Hence

message communication or network delays do not contribute to memory latency.

4.2 Augmentation Rules and Consistency Models

As minimal consistency is too weak to be of general use, we will focus on its gradual
strengthening to form various consistency hierarchies. From here onward, it is as-

sumed that all executions are minimally consistent, i.e., their global views are partially
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ordered (acyclic). This assumption is largely based on the ease with which minimal
corisistency can be guaranteed, such as by the AUP as established in Lemma 20.

<

4.2.1 Reachability Relations

To formulate our strengthening strategy, let us restrict our attention to the read and
write operations of two distinct values of a variable, say . We use X ?v to denote the
entire set of read operations that return the value v, i.e., {z?v}, and z7v to denote
a particular element in X?v. There are exactly nine possible reachability relations in
GV involving an element in {z!v, z?v, X?v} and another element in {z!', z7v', X ?v'}

as follows.

Ry: X7 >z Rg : X —= X R;:X%—=z?
Re:z?7v - zlv' Rs:z27v - X Ry:z7v—z

Ry:zlv -zl Ry:zlv— X2 Ri:zlv—z7

In the above notation, for example in Rqg, X7v — z!v’ means that in GV every
read of v in z can reach the write of ¢’ in z, i.e., there is a path from the former to
the latter in the directed graph GV. We use R; > R; to mean that if R; holds in GV,
then R; also holds in GV. The following lemma holds.

Lemma 21 : The following order exists among the nine reachability relations:
Rq > Rg > Rz; Re¢ > Rs > Ry; Rs > Ry > Ry;
Ry > Rg > Rj3; Rg > Rs > Ry; R; > Ry > R;.

Proof: We will show Rg > Rg. The rest is proved similarly.
With X?v — zlv' (Rg) and zlv' — X7?v' (the definition of global view), we can
immediately conclude X7v — X7v' (Rg). [ |
From Lemma 21, a natural hierarchy of reachability relations among the nine
relations has surfaced as shown in Figure 19. In this hierarchy an arrow between
a relation R; and R; means that R; > R;. This hierarchy can be used later as the
basis of defining rules to augment GV, from which stronger consistency models are

defined.
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Y 1 Y
R; R, R,

Figure 19: Hierarchy of relations

Some of these reachability relations can be limited to program-order, in which
case they are noted R’ where the superscript p means program-order. Obviously the
hierarchy defined earlier between the nine relations can be extended to reachability

relations (R?) that are program-ordered.

4.2.2 Augmentation Rules

In this section, we introduce various augmentation rules which, once applied on the
basic global view, are used to define weak consistency models. Augmentation rules, as
presented in Chapter 2, are used to infer new precedence relations from existing ones.
They are guarded commands of the form R; = R; where R; and R; are reachability
relations. An augmented view obtained from the rule R; = R; is noted GVj;. A
consistency model C;; is definable by requiring the global view GV;; to be acyclic.

If program-ordered reachably relations are used as guards (Rf = R;), we have
a local augmentation rule. The augmented global view and the consistency models
obtained by the use of a local augmentation rule are respectively noted GV} and C7,.
These local rules are used to define even weaker consistency models than the more
global augmentation rules.

The well-ordered property of the relations R, through Ry presented in the pre-

ceding section were used in [42] to define ordering properties among the consistency

models. So, an execution that satisfies Cj; will also satisfy Cji if R; and Ry are two
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relations such that R; > R;. Hence, a memory protocol that implements C;; also im-
plements Cj;. Similarly to the hierarchy established among the relations, a hierarchy
can be established among all the consistency models obtainable from augmentation
rules that use the same guard. So, a distinct hierarchy of consistency models can be
obtained by using different guards.

In the following sections, we use op; 2 op, to represent two events op; and ops
which are program ordered, i.e., op; can reach op, by traversing only events from the
same process. In general, op; ~» op, represents the reachability relation between op,

and ops in GV (a directed path exists from op; to op, in GV').

4.2.3 Consistency Models Based on Local Augmentation

Rules

R,, R3, Ry and Rs are the only relations that can involve operations in the same
process. The remaining five reachability relations may involve reads from multiple
processes. We identify these relations as RY, R}, R} and RE respectively. The hierar-
chy among the relations is still valid among their local counterparts.

RP can be used as the basis of augmenting a global view. In particular, whenever
R? holds in a global view GV, we can augment GV so that it satisfies R;. For
example, whenever z!v — z?7v' holds in program order (written as R} : z'v 5 z7?v'),
then we augment GV with zlv — z!v'. In other words, a directed edge is added
to GV connecting z!v and z!v'. Obviously the latter write operations may belong
to different processes. This augmentation rule is stated in the form of a guarded
command: R} = Rj, or in general, R} = R;. The left hand part of the rule is called

the guard and the right hand side is called the consequence of the rule.

Definition 26 : GV} (i =1,3,4,6) is the augmented global view obtained by applying
the local augmentation rule RY = R;. Whenever R? holds in GV, GV is augmented
to become GV} such that R; also holds in GVE. Specifically, if R; = opi — op»
and some opy — op, does not hold, then O will be augmented with that instance of

(op1,0p2). Since it would be vacuous to augment GV using R? = R; if R; > R;, we
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will consider only R; < R; in an augmentation rule.

From this definition, we derive the following augmented view:

P],Z

Pz:

Augmented views based on the local guard R}.

From the guard RY, ie., zlv 2 z?¢, and from Lemma 21, we can deduce

five different augmented global views: GVf,, GV, GV, GVE, GV, The
cases of Ry, Rs and Rg (hence GV, GVE, GVE) cannot arise because z7v
is not identifiable from the guard R? in these cases. Figures 20 shows GV}
(zlv B 7' = zlv — ') and GVE (z'v B 70 = X770 — z1v’) of the

example execution respectively. In the drawings, we use op,--+0p, to denote a

new relation introduced by an augmentation rule.

x?1 yR2  Pp: y2 P x12—= y?—=x?l—=y72

yi2—/—=x?1 Ps:

P3: yll—x72 Pj:

a) GV b) GV

Figure 20: GV{; and GV}

e Augmented views based on the local guard Rj.

From the guard RE, i.e., zlv 2 zv', and from Lemma 21, we can deduce only
two different augmented global views: GV} and GVJ%. The augmentations using
R4, Rs, Rg and R; are unusable since they require knowledge about a specific
read, and all the others are equivalent to GV according to Lemma 21. Figure

21 shows some examples of augmented views.

e Augmented views based on the local guard Rj.

Again, from the guard RY, i.e., z7v 2 z7v', and from Lemma 21, we can deduce

seven different augmented global views: GV}, GVE, GVE, GVE, GVE, GVE
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Py xll — x12— y!l P mx!l — x12— y!] P x!1 —‘-’qx!Z — y!l
Pp| 2 —= y2T—="x2 P [ x2—= yUT——x22 Py x?f'f_:; y2UT—"x72
P;: ynR—=x?1 P3: yn—- x?l"‘— P;: y??_—.‘ x71

a) Global view GV b) Augmented view GV c) Augmented view GV}

Figure 21: Augmented views based on the guard R}

and GVJ,. The cases of GV}, and GV} are redundant as they are equivalent to
GV, according to definition and Lemma 21 respectively. Figure 22 shows some

examples of augmented views.

Pp: by:
Ps: Pa:
P3: | x12—= 27| —= y2 —= 272 P5:
Pz y!3—=x721 Py:

a} Global view GV

x! —

'

!l — y!l —= x?1

2721 — y2—=2z72

Pi: y!13—= x21
Y Py yI3—x11

c) Augmented view GV d) Augmented view GV,

Figure 22: Augmented views based on the guard R%

e Augmented views based on the local guard RE.

From the guard RE, i.e., z7v 2 zlv/, and from Lemma 21, we can deduce two
different augmented global views: GV{y and GV{%. The augmenta.tion using Rz
is unusable since it requires the knowledge about a specific read, and all the
others are equivalent to GV according to Lemma 21. Figure 23 shows some

examples of augmented views.
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x!] —= y12

|

x?] ——= x!12 —= y!l

x!] — yi2 Py :

/

x?l —= x!12 ——= y!] Ps:

Py Loy — %71 P;: Py ey —%71
a) Global view GV b) Augmented view GVE c) Augmented view GV,

Figure 23: Augmented views based on the guard RE

Given an acyclic GV, it is not guaranteed that an augmentation rule preserves

acyclicity in GV}. For example, Figure 24 shows a cyclic GV with an acyclic GV.

P[: y?l_’x!l_’x?z Pl: y?l__,‘x!l_,x?:)-
Py: x12—yll Py x3—=Y11
Acyclic GV Cyclic GV,

Figure 24: Acyclic global view with a cyclic augmentation

A consistency model can be defined corresponding to each GV} that is acyclic.
In other words, C}; is the memory consistency model that requires every GV} to be
acyclic (and hence consistent under the given augmentation). For all the consistency
models derivable from a particular guard R?, a simple consistency hierarchy results,

based on the following theorem.

Theorem 6 : Consider two consistency models Cf; and C% such that R; > Ri. An

ezecution that satisfies C’fj must also satisfy C%..

Proof: From Lemma 21 and the definition of GV}, GV} must contain GV%. Hence
acyclic GV} also implies acyclic GVE. |

Hence a shared memory protocol that ensures C’fj will also ensure Cf.. We denote
this ordering relationship C’fj > CP. For the five consistency models based on R?,
the following hierarchy is derivable from Theorem 6.

P P P . P P . P P . P p
Clo > Cig >Cl;;  Cl3>Cly;  Clg>Cly;  Cig > Chs,.
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Table 1 provides all the consistency models derivable from RY, R}, R} and R
as the basis of augmentation and summarizes the consistency hierarchies obtainable
from these guards. Since R} and Rf are not related in general, the four consistency

hierarchies based on program-ordered augmentation are unrelated in general.

| Guard (RP) | Consistency model | Hierarchy I
D . P . .
Rl < :Z:!'U — x?vl Cfg, Cfs, Cf7, Cf3, Cfg > Cfg > Clp-,, Cfs > sz,
P p P . p P
Cis- Cle > Cl3; Cis > Cis.
RE: zlv Bzl | CB,, CP.. Chy > Cls.
D . P P . -
RY - 2?7y 5 2 | CFy, Ch, Ch7, Chs, Chy > Chy > Cir; Ch > Cks;
P P P P 14
Cis) Cis: Cha- C;.)a > Ci» ) )
P P . P
Cio > Cie > Cis; Cizg > Cis > Cap-
RE: z7y B zlv' | C&y, C%,. CE > CL.

Table 1: Consistency models and hierarchy using program-ordered guards

All these augmented views are obtained by applying a unique augmentation rule.
Other views can be obtained by applying multiple augmentation rules. As an example,
we can combine rules R? = Ry and R} = Ry, which produce the rule zlv/z?v 5
z?7' = X7v — zl', to augment GV and obtain another weak consistency model.
A more complex rule can be obtained by the combination of R? = Ry (z?v & 170’ =
X% — zlv') and R? = R3 (zlv 5 7' = zlv — zlv'). Many other combinations
are possible and are not discussed in detail here.

All these augmentation rules are used to generate a series of consistency models
that we identify under the class of local consistency models since they are based on
local augmentation rules. Based on the rules, we have identified the following family

of local consistency models:

e Local read consistency models (LRC)

Local read consistency models are all based on local augmentation rules that
use relations R? and R% as guards (z?v/z!v & z27v'). For examples, C?, is one

possible LRC consistency model as well as the combination of C?, and C¥.

e Local write consistency models (LWC)
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Local write consistency models are all based on local augmentation rules that
use relations R} and RE as guards (z?v/z!v & zlv’). For example, C% is one

possible LWC models and the combination of C§; and C%, is another one.

e Local consistency models (LC)

General local consistency models are all based on combined local augmentation
rules. The guards can generally take the form z?v/zlv % z?v'/z!v'. So any

combination of LRC and LWC models can be used to specify LC models.

The above leads to many consistency models. Not all of them are useful or ef-
ficiently irnplementable. However, in Chapter 6 we give algorithms that implement

some of these models.

4.2.4 Consistency Models from Global Augmentation Rules

The previous section uses R? as the basis of augmentation. The program-ordered
restriction of the guard can be relaxed to generate more augmentations and hence
stronger consistency models. This section presents these results.

A major difference arises when the guard R; is not required to be in program order:
now all cases of R; (instead of just the four cases in Section 4.2.3) can be used as the
guard for further augmentation. This is because a global view can meaningfully satisfy
every R;. For example, Rg (X?v — X7?v') is satisfied in GV when every occurrence
of z7v can reach every occurrence of z7v' in GV. Augmented global view GV; and
consistency model Cj; can be defined similar to the ones defined in Section 4.2.3.

Table 2 gives the consistency models derivable from all the global rules. Using
R, R3, Ry, and Rg, we derive respectively five (GVia, GVi3, GVi7, GVig and GVyg),
two (GV3s and GVig), seven (GVia, GVis, GVis, GVis, GVya7, GVis and GVyg) and two
(GVgs and GVgg) augmented views which are used to define the consistency models
presented in Table 2. These models are similar to the one deduced from the local
counterpart of these guards. Using R,;, Rs, Ry and Rg we deduce respectively three
(GVas, GVag and GVy), four (GVs3, GVss, GVsg and GVsg), four (GVia, GViz, GVig

and GVzg) and two (GVaz and GVg) new augmented views. Figure 25, 26, 27 and
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28 show some of these augmented views. All the other cases either use a specific
operation that cannot be meaningfully applied with the guard, or are equivalent to

GV.

| Guard | Consistency models | Hierarchies based on the guard |
R Ci2, Ci3, C17, Cis, Cr9 > Cig > Cir; Ciz > Cia;
Cig Crg > Ci3; Cig > Cia-
Ry Cas, Cag, Cag Cag > Cos; Cag > Cas.
R3 Ci3g, C3g Cag > Csg.
Ry Ca2, Ca3, Cas, Cys, Cag > Cyg > Cyr; Cys6 > Cis:
Cy7,C4s, Cao Ca3 > Ciyo;
Cyg > Cys > Cls; Cug > Cys > Coya.
Rs Cs3, Css, Css, Cse Csg > Css; Csg > Cs6 > Csa.
Rg Ces, Ceg Csg > Cos.
Ry C12,C73,Cqs, Crg Cz9 > Crs; C73 > Cra;
C79 > Crs; Czs > Cra.
Rg Cgs, Csg Cgg > Cgs.

Table 2: Consistency models using global guards

Py: x12—=y?l—=x?l—=y72 Py: x!2—=yll—ex?—=y?72 P;: x2—yll—=x?l—y72
Py: x! y!2—=x?1 Py: Ps:
Py ytF—=x72 Ps: y!‘li’ x72 Ps:

a) GV b) GVia

Figure 25: Augmented views based on Rule R,

A hierarchy of consistency models can be defined with Theorem 6 extended as

follows:
Corollary 1 : [f Rj > Ry then Cij > Cik-

Table 2 summarizes the eight hierarchies of consistency models derivable from
global augmentation rules. Following the same reasoning as used in deriving the
various consistency models of a hierarchy using R; as guard, C;; will be a consistency

model only if under the guard R;, R; can be meaningfully applied to a global view
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Pr:

Ps
P3

P

x!l— y!F—=x?1
x2—=y72
2] —=x12—=x?1

a) Global view GV

x!l——y!F—x?1

x?f_—:—:— y72

7] —ex12—=x21

b) Augmented view GVag

Py: x!}—=ytI—=x?1
Ps: xN2—e-y72
Pi: Leyri— x12—ex71

c) Augmented view GVig

Figure 26: Augmented views based on Rule R;

Py /(!l—’zll—> ] —=x7?1
v
P x?1 yl—=2z!12 —= x72
Ps: 'x!Z\——z?l——)i!Z——z?z
Py: b2 —xN—=yN2
a) Global view GV
P H—=z!l —=y!l —x?1]
1 /1
Ps: x?1 y—=z!12—= x72
¢ -7 :*_
Ps: X2—= 22| —=y2—— 272
P;: =22 —xl—=y72

c) Augmented view GVi¢

Jex2 2 —yn—=2m

I—'L?‘.’. —-’x?l——’yl?Z

b) Augmented view GV;3

/\(I!l—'/z!l —-—/v!l——x?l

yo—=212 —= x72

- -
X!Z“—’ 2?2l —yi2 z72

7N == x2—yR

d) Augmented view GVig

Figure 27: Augmented views based on Rule R,

T Py x!1
: xLl—— y!l
: y?2—— x12 Py

: xXNR— y2

a) Global view GV

Py: - xi.’l—— y'l

y?1

!

y?l— x12
Py: :-"x?z——— yi2

b) Augmented view GVgs

P x!ll—= yt?l-—-;
Py: x2l—= y!l
Ps: y?l_~—-: x12
P;: x??.—:‘yll -~

¢) Augmented view GVeg

Figure 28: Augmented views based on Rule Rg
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GV, i.e., without introducing inconsistency. For example, C\g is a consistency model
obtained using R;(z!lv — z7v") = Rg(X?v — z!v'): whenever an z!v can reach an
occurrence of z7v' in GV, we augment GV so that every occurrence of £7v can reach
the occurrence of z!v’. However, not all C;; are consistency models. For example,
Ci4 is not a consistency model obtainable: R;(z!v — z?7v') = Ry(z?v — z!v') cannot
be meaningfully applied given R;; given R;, the instance of z?v is not uniquely
identifiable in GV for the augmentation. Because of this, many of the hierarchies
shown in Table 2 consist of fewer model candidates. Table 2 also does not show
consistency models C;; which are indistinct from the minimal consistency given by

an acyclic GV, according to the following theorem.

Theorem 7 : A consistency model C;; is equivalent to minimal consistency (acyclic

GV') whenever R; > R;.

Proof: This follows trivially from Lemma 21. Whenever R; > R;, then GV that
satisfies R; also satisfies R;. Hence the claim. u

Unlike hierarchies obtained using program-ordered guards, the eight hierarchies in
Table 2 are related. Indeed together they actually form a single composite hierarchy

due to the following theorem.
Theorem 8 : If R; > R; and Cy and Cj; are both defined, then Cy > Cij.

Proof: This also follows from Lemma 21. If R; > R;, and both augmentations are
defined, then every augmentation in GVj; can be found in GVj. Hence if GV is
acyclic then GV} will also be acyclic, or equivalently Cix > Cj. [ |

Using Theorem 8, we can integrate the eight hierarchies in Table 2 to form a single
hierarchy under the ordering relation “>" among consistency models. The details are
not further elaborated. Table 3 shows the hierarchy based on Theorem 8 with all the
models listed in Table 2 and Figure 29 shows the single hierarchy formed by all the
models.

Again, even if no example is given, it is possible to combine multiple augmentation

rules to specify more complex consistency models.
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fConsequence R;

Consistency Hierarchies based on R; ]

Rg : X% — v/ Csg > Cig; Ceg > Csg > Clyo; Cag > Cog > Cig;
Cego > Cag. Cgg > Cs9 > Cag; Cr9 > Cyg > Clg;
Rg : X7v = X' | Cgg > Css > Cug; Cag > Cog > Cis;
Ceg > Csg. Csg > Cos; Cag > Cig;
R; : X% — v | Cy7 > Cy7;
Rg : z7v — =V’ Cse > Cig.-
R3 czlv = ' CS3 > 073; C53 > 643; 023 > C13;
Csz > Cs3 > Cas; Cr3 > Cy3 > Ciz;
Ro : glv = X720 | Crp > Cya > Cho;

Table 3: Consistency hierarchies using consequences

All these augmentation rules are used to generate a series of consistency models

that we identify under the class of global consistency models since they are based on

global augmentation rules. Based on the rules, we have identified the following family

of global consistency models:

e Global read consistency models

Global read consistency models use as guards the global augmentation rules R,

R;, R4, Rs, R7 and Rs.

Global write consistency models

Global write consistency models use as guards the global augmentation rules

R3 and Rs.

Global consistency models

Global consistency models include all the models mentioned earlier. The more

restrictive of these global consistency models is based on the necessary view.

So, we call this particular consistency model, Necessary Consistency.

~]
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4.3 Weak Consistency Models Without Augmen-

tation

An acyclic global view can be used to define other consistency hierarchies without ap-
plying augmentation rules to GV. Alternately, a consistency model can be defined by
asserting some additional property to be satisfied in GV'. This section will introduce
one such interesting hierarchy.

Suppose a given global view GV satisfies some R;. In Section 4.2, augmentation
is used to produce GVj; (for some R; > R;). Here, instead of changing GV, we
define a new consistency model by requiring that GV does not violate R;. The non
violation of a reachability relation is expressed by the converse of the reachability

relation denoted R;. We have nine “non-reachability” relations:

Ry:zlv'» X?7v Rg: X% - X% Rs:z?7 - X%
Rg:zlv' »z?v Rz: XMW »z?v Rz:z? -z
Rz:zlW' »zlv Ry: X% -wzlv  Ry:z? -»zl
The hierarchy introduced in Lemma 21 is also still valid on their reverse counter-

part.
Lemma 22 : If R; > R; in the hierarchy then R; > R;

Proof: The proof is similar to the one of Lemma 21 and is not shown here. [ |
So, similarly to the ordering established among the reachability relations Ry

through R,, the following order exists among these non-reachability relations :

R§>R§>R7; R§>Rg> Rz;
Rz > R5 > Ry; R5 > Rg > Ry;
Rg > Rz > Rs; Rz> Ry > Ry.

where R; > R; means that if a relation does not exist between two operations in

R; then it also does not exist in R;.
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As for the reachability relations, these “non-reachability” relations can also be lim-
ited to program-order and are then noted RZ. Obviously, the hierarchy defined earlier
between the nine non-reachability relations also applies to their local counterparts.

The additional property to be satisfied in GV is expressed by a guarded command:
R; = R; where R; is the guard and Rj the restriction. A consistency model Cj; is
definable by requiring GV to be acyclic and to satisfy the rule R; = R;. These weak
consistency models are all related to causal memory.

As an example, consider C,5 (weak consistency model with R, as guard and the
converse of Ry as the restriction). Under C,g, we require that whenever an instance R,
exists in GV, then Ry must hold in GV. Specifically, if z7v — z7v' in GV (i.e., Ry),
then GV cannot contain any other instance of z?v such that z!v' — z?v. Figure 30
illustrates an example of a global view that violates C 5. Intuitively, C,g requires that
whenever an instance of z7v is ordered before an instance of z?v’, then z!v' cannot
be ordered before any other instance of z7v in GV'. The latter is asserted by taking
Ry involving the write z!v' and an arbitrary instance of z?v. So through value-order

or program-order, the ordering of “values” in an object is “consistent” in GV/.

Figure 30: An execution that violates Cy g

Some Cj; is redundant: an acyclic GV already ensures it. For example, Cy is
redundant: given z?v — z?v' in GV, z7v' — zlv cannot be in GV without creating a
cyclic GV. Hence minimal consistency already includes C,7. On the other hand, some
Cg is undefined: given the operations in R;, we cannot assert additional properties of
GV using R;. For example, Cz is undefined: given z!v — z?v' (R;) in GV, it is not
meaningful to associate a particular z7v not referenced in R, but which is required
in R4. A different example is Cy7 which is also undefined. Indeed, given z!lv — X7/

(Rp) in GV, it is not meaningful to associate a particular z?7v' not referenced in R,
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but which is required in Ry. In the rest of the thesis, every reference of Cj; is assumed

to be defined and meaningful.
Theorem 9 : If R; > Ry, then C;5 > Cz and C; > Cj;.

Proof: We show that every execution allowed in Cj; is also allowed in Cjz. Suppose
otherwise and that there exists a converse instance of R;. But it would also be a
converse instance of Ry (R; > Ri). Hence C; > Ciz. Similarly we can prove that
Cy > C'J-;. ]

As for the reachability relations, the non-reachability relations can also be limited
to program-order (local relations) and are then noted Rg. As before, when limited to
program order, RY, R}, R and R are the only relations usable as guard. However for
the non-reachability relations limited to program order, X ?v is interpreted as all the
read operations in a single process. For example, R’% : z?7v' % zlv is interpreted as a
particular read of value v’ must not precede the write of value v, while R’zi' X
is interpreted as no read of v’ from process P; must precede the write of v by F;.
Obviously, the hierarchy defined earlier between the nine non-reachability relations
also applies between their local counterparts. The local and global reachability and
non-reachability relations can be used to create different types of restriction each of

which being able to define consistency models based on:

1. Global properties obtained with global guards and global restrictions (R; = Rj).

Such models are noted C;.

Mixed properties obtained with local guards and global restrictions (R} = R3).

[§™)

Such models are noted Cf]-..

3. Mixed properties obtained with global guards and local restrictions (R; = RJE.).

Such models are noted C‘i;-.p .

4. Local properties obtained with local guards and local restrictions (R} = RJE.).

Such models are noted C’%” .
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Again, the basic rules presented in the next sections can be combined to produce
more complex rules. These rules produce other consistency models that can also be

part of the family of causal memory. This part is not elaborated here.

4.3.1 Global Properties (R; = R5)

Relations R; through Rg are used as guards in these relations to produce the con-
sistency models C;; presented in Table 4 and the hierarchies obtainable according
to Theorem 9. The similarities between this hierarchy and the ordering hierarchy

formed by R; and the augmentation rules is noteworthy.

| R; | Consistency models | Consistency Hierarchy |
Ry: zlv — 7' C1§’ Clg, Cﬁ, CIE: Cl§ Cl§ > Clg > Cﬁ; C1§' > C]j
Cig > Ci3; Ciz>Cis
Rs: zlv = X7 C2§, ng, ng ng > ng; ng > C2§.
FRj: v — ' Cag, C3§ C3§ > 038_’
Ry: z?v = 7’ C4§, C4§, 047, C4g, C4§ > C4§ > C47; C46— > C4§;
Csi5.Ci3,C Cy3 > Cyz;
Cyg > Cy5 > Ciyz; Cis>Cy5>Cys
Rs: z%7v — X7 ng, C5§1 ng, ng ng > ng; 055 > ng > C5§;
Rg: z7v — v’ C6§, ng ng > ng.
R X?%7v — 7/ C7§, C—,-g, C'-,—g, C7§ C7§ > C—,-g; C—,—g > C—,g;
Crg > Ci3; Crg > Crs-
Rg: X?7v — X7 ng, ng Cg§ > ng.

Table 4: Weak consistency models and hierarchies based on global properties

As before, these basic rules can be combined to obtain more complex rules and
then different consistency models.

These weak consistency models are related to causality of the reads and writes
via the global view. It is interesting to note that the causal memory, as defined
by Ahamad et al. [7] and used in [5, 8, 10, 36, 30, 49], is equivalent to the weak
consistency model that satisfies the property zlv/z?v — zW'/z7V = zW'/z7v -
X7v. This intuitively means that if a write or a read of a value v precedes the write
or read of the same object with another value v’, then the latter operation cannot
precede any read of the former value. Another slightly less restrictive form of causal

memory was introduced in [9]. This causal memory is different since the causality is
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defined only relative to write operations. This “write” causal memory corresponds to
the weak consistency involving z'v/z%7v — zlv’ = zlv' -» X 7v. This causal memory
is less restrictive than the preceding one and the authors have provided a non-blocking

implementation based on timestamps and remote writes and local reads.

4.3.2 Mixed Properties (R} = R;)

Relations RY, R}, R} and RE are used as guards in these properties to produce the
consistency models C%. Table 5 shows the possible mixed properties and the hier-
archies obtainable according to Theorem 9. It should be noted that these models

are strictly weaker than their global counterpart, and so form a sub-hierarchy of the

latter.
| R; | Consistency models Consistency Hierarchy |
D. lyy Py P9y P P P P P P P P . P P
Ry: ol B o | Oy, Cly, C Oy, Gy | Oy > Clg > Clyy - Oy > O
; Cig>Chs Cig>Cs
P. 1 1o/ P 14 P P
R3: zlv —: ' | Cf, Clz Cls > Coz-
P, o 27 | (P (PP P P p P P b .
By oo 5 a7 | Oy O% CF. Cly, | Gy > Cig > O Cig > Ol
C5CaCa Ca>Ca e
; Ca>Cig>Cin  C>Ciz >Ch
P. 9., Todd P P P P
Ri: z7v = zlv' | C5,Cs Cés > Crz-

Table 5: Weak consistency models and hierarchies based on local guards

As before, these basic rules can be combined to obtain more complex properties

and derive other consistency models.

4.3.3 Mixed Properties (R; = R;i.)

Relations R; through Rg are again used as guards in these properties to produce
the consistency models Ci;—.p . Since we can use all the non-reachability relations as
restrictions, we deduce many consistency models. Table 6 shows the possible mixed
properties and the hierarchies obtainable according to Theorem 9. In this case, given
R; in GV, the absence of R; in GV is restricted to program-order. For example,

GV;%” - gly—=zl' = v’ % X?v in GV means that if the write of the value v
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precedes the write of value v/, then the write of v must never precede any read of v
in the process that issues the write.
It should be noted that these models are strictly weaker than their global coun-

terpart and so form a sub-hierarchy of the latter.

R; Consistency mod- Weak Consistency Hierarchy
y
els
. o7 =P =D D =P —p —p. =7 =P
R;: zlv — z7v gl_-gp,gl_gp,cﬁ , gl—gp > gl—gp > CF5 gl—gp > gl—fp
F.CH P> CF: P> CP.
13 12 19 13 18 12
Ry: zlv — X7 C’i_gp, C;{, Cz_{ Cg’ > C;;; Cg’ > C,,}p.
Ry zlv — v’ Ci.Cx CL>CHr
R 9.7 =P ~—P v _ =D ~p =p. =7 =7.
R4- TV — IV C4—§ s C4_§p, C47, C{-g—p > C4§ > C4={; ; C46- > 043' :
046 ] C4§ H 045’ 43 > C4§;
—-p =p -p -p. -p —-p —p
C@p — C46p > Cmp >Cas C4§p > C4§p > C4§p-
I "7 P CP O = —P. ~ - —P.
53
T2 Ty =P ~—P =7 =P
Re: z7v — zlv Cﬁ§p’ Cﬁgp . Cﬁgp >CF. p ]
) 22, = - = - _. = =7
- Cﬁp > Cﬁp > Cﬂp; C7§ > C'fi -
. <] ) —_ = — —

Table 6: Weak consistency models and hierarchies based on local restrictions

As before, these basic rules can be combined to obtain more complex properties

and derive other consistency models.

4.3.4 Local Properties (Rf = Rgf-)

Relations R}, R}, R} and RZ are used as guards in these properties to produce the
consistency models C%.” . Table 7 shows the consistency models derivable from these
properties and the associated hierarchies. Because of the program order restriction,
this hierarchy of models is weaker than the previous ones without full program re-
striction in both the guard and the consequence.

Many consistency models are not included in the table because they are redundant
with the well ordering restrictions imposed on admissible local views. Indeed, the rules
C?,C%, C?, C¥, CIZ, CP2,CP and CE are redundant with the concept of admissible
local view. For example, Cfg is derived from the property zlv & z7v' = z!v’ & zly
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which means that a read must return that most recent value written (locally). All the
other models are very weak but useful. For example, CX¥, derived from the property
zlv B v’ = X7 % X 7vu, may seem very weak but it can be used to specify object

based FIFO channels which are similar to slow memory [33].

| R; [ Consistency models | Weak Consistency Hierarchy |
D
RY: zlv = =z’ | C?E,C?? C?? > C%;
RE: zlv B ' | CPE
P. 9, Py 90 PP (PP (PP PP PP PP. PP PP.
i} Cs>Cii  Cr>Cp
RE: z?7v =zl | C

Table 7: Weak consistency models and hierarchies on locals guards and restrictions

As before, these basic rules can be combined to obtain more complex properties

and derive different consistency models.

4.4 Conclusion

In this chapter. we have presented multiple hierarchies of consistency models using
the global view as a seed. All the models are derived from augmentation rules or
properties asserted on the global view.

Other consistency models may be derivable from the global view by applying
subset restrictions as presented in Chapter 2. Many subset restrictions (projections)
can be performed on the basic global view or on any augmented global view, including

the necessary and possible views. Some examples of projections are:

1. GV|, is the global view projected on object o;
2. GV|, is the global view projected on process p;
3. GV, is some augmented global view projected on object o;

4. GV;|, is some augmented global view projected on process p;
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However the usefulness of these projected views is questionable from the perspec-
tive of removing cycles in the original view. For example, to remove a cycle in a view,
all the objects referenced in the cycle have to be removed in the projection operation.

We leave this exploration to future work.
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Chapter 5

DSM Consistency Models Based

on Partial Views

In the preceding chapter, we have presented many consistency models derivable from
global views. It is possible to define consistency models based on partial views that
contain only a subset of the events. In this chapter, we present some of these more

restrictive models. They are weaker because of the partiality of views used.

5.1 Restricted Views

Restricted views involve only a subset of the events in an execution. They are selected
by restricting the choices on (i) process, or (ii) object, or (iii) type of event. Such

“projection” operations [28] applied on local views result in restricted local views.

5.1.1 Restricted Local Views

A restricted local view can be obtained by applying subset restriction (event projec-
tion) on the local view. Restriction can be based on one of the three criteria: (i)
subset of objects, (ii) subset of processes, or (iii) type of operation. Unfortunately,
if we apply restrictions directly to local views and later compose these views to form

a partial (global) view, too many ordering relations may be lost in the restriction.
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Such a partial view may not lead to interesting consistency models. Figure 31 and 32
illustrate this. Figure 31 shows an execution. The local view of process P, LV, is
shown in Figure 32(a). If we apply process restriction to LV7, in particular, restricting
LV; to events in process P,, we get LV|p, which is shown in Figure 32(b). LVi|p,
shows two concurrent writes from P,. In comparing LV; with LV{|p,, we observe
that even though the two writes from P, are still concurrent in LV}, these two writes
are indirectly related by the reads in P, and their ordering (consistency) can still be
inferred later in the use of LV;. But LV)|p, has completely removed this valuable
piece of information, and significantly weakens itself from being useful in consistency
requirement. Figure 32(c) and (d) shows the restriction of LV] to write events, and

to events involving object y, respectively.

P : z!2 ; 2?71 ; y?1 ; y?2 ; y!3
P !l 5 yl2 ; 27?1
P3 : y!l

Figure 31: Sequence of memory operations by three processes

P z2 371 y72 y?3 —yHd B (¥'1)2
(y{)Q (yé)a (¥'3)2 (y13)2
a) Local view L) b) Restricted local view LVi|p,
P : z2 yl4 P : y?l —=y?2 —y?3 —yl4
(YiL)z M3£ (yé()z ¥12)s  (¥!3)

c) Restricted local view LVi|y d) Restricted local view LVi|y

Figure 32: Local view LV, and some restricted local views

To overcome the above deficiency of a restricted local view, we propose to augment
a local view before applying the restriction. The augmentation used is the direct

correspondence of the rule used to produce the necessary global view in Chapter 4.
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The only difference is that it is applied to a local view instead. For this distinction,
we call it Rule 2. Our strategy is to augment local views, to become necessary local
views, before restricting them to a subset of events. We can then take the union of

these restricted necessary local views to form partial (global) views.
Rule 2 : (zv):;/(z?v); & () = (zW):/(z70)i—(zv');

This rule is a combination of the two augmentation rules R} = R3; and R} = Rs
as presented in Chapter 4. It orders every read of z that returns the value of v, or
the single write of the new value v, to appear before the external write of v’ into z,
if the write of the former is ordered in process P; before some read of the latter. It
corresponds to the maximal ordering among the events directly “perceived” by the

process F;.

Definition 27 : A local view LV; augmented with Rule 2 is called a necessary local

view NLV;.

We use the name necessary local view because the local view cannot be consistent
if it does not satisfy it. Indeed, Rule 2 is just the localized version of Rule 1. Since ex-
ternal writes are not ordered, the necessary local view is a partial order. Figure 33(a)
shows the necessary local view of process P, from the example execution of Figure 31.
Figure 33(b), (c) and (d) shows the restricted local views obtained from the necessary
local view. We use restrictions on necessary local views rather than local views as the
former preserve all ordering perceived by a process and are more useful in defining
consistency models.

Applying this rule before or after the formation of the global view produces exactly
the same augmented view. Hence, (U; NLV;) = GV[3 4, Where GV, ;) represents
the global view augmented with the rules Rf = R3 and R} = Rs. This means
that every restricted local view derived from the necessary local view may be used to
specify a consistency model strictly weaker than the consistency model wa' 45) Which

is derived from the augmented global view GV(I{3,46)' This consistency model is one
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P - z2 54'?3 —yl4 P

y?1 3?2
/ \/ \ / (¥1l)e — (¥'3)2

(¥'1)2  (¥'2)3  (¥'3)2

a) Necessary local view NLV, b) Restricted necessary local view NLVi|p,

P z!2 y'4 P y?l —y?72 —y?3 —yl4
(y!lﬂ o / N/ "\ /
\ /

(¥'2)s (1) (¥2)s (¥13)

c) Restricted necessary local view LV, d) Restricted necessary local view NLVi|,

Figure 33: Necessary local view and its restricted views

of the models included in the class of local read consistency models introduced in the
Chapter 4.

Instead of Rule 2, other restricted views are possible by applying R} = Rj3 or
Ry = Rgs. These new augmented local views can then be used to produce consistency
models weaker than those obtainable from GVJ (CV;) and GVJ (C};). However,

these models are not explored in this thesis.

5.2 Consistency Models Based on Partial Views

A restricted necessary local view is one obtained by selecting a subset of the events
in the necessary local view. A partial (global) view is obtained by taking the union
of some restricted necessary local views. To derive consistency models that are based
on partial views, we use partial views involving restrictions on a subset of necessary
local views. A consistency model is definable by requiring a partial view to remain
acyclic. In this section, we present these consistency models obtained from partial

views. They can be classified into three types:

e object relative consistency: they are obtained by restricting necessary local

views to selected objects.
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e process relative consistency: they are obtained by restricting necessary local

views on a subset of processes.

e mixed consistency models: they are obtained by a combination of the above.

5.2.1 Consistency Models using Object Restriction
Some interesting object relative consistency models are given below:

1. Pairwise Single Object Consistency (PSO)

Suppose PVZ = (NLVj|; U NLV;|,).

Definition 28 : If, for every process pair P; and P; and for each object z,
PV s acyclic then the ezecution satisfies Pairwise Single Object (PSO)

consistency.

This model asserts that every pair of processes must agree on the ordering of
conflicting events on every object that they share.
2. Single Object Consistency (SO)

Suppose PV* = (U; NLV|.).

Definition 29 : If, for every object x, PV* is a partial order, then the ezecu-
tion satisfies Single Object (SO) consistency.

This model asserts that all processes must agree on the ordering of all conflicting
events on every object. This condition is often called coherence [29].
3. Object Local Consistency (OL)

This consistency is derived from GV(’{:;,M)lz = (U; NLV;)|z. This augmented
global view can be restricted to a single object x to produce the restricted

global view GV 46)l=-
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Definition 30 : If for all objects T, GV{; 4|z is a partial order, then the
ezecution satisfies Object Local (OL) consistency.

This model asserts that all processes must agree on the ordering of all write
events on every object z individually. However they must agree even in the
presence of indirect ordering relations induced by other objects. This consis-

tency model is provably equivalent to model Cfm, 16)"

These models form the following hierarchy: PSO < SO < OL = Cf;4. This
means that any protocol that implements C%; 4 also implements the other models.

Figure 34 shows three examples. In Figure 34(a), the execution is not PSO consis-
tent. In Figure 34(b), the execution is PSO consistent but not SO consistent. Finally,

in Figure 34(c), the execution is PSO and SO consistent but not OL consistent.

P : z!l; z!2
P z?2 ;71
P : z?1 ;272

(a) No object consistency.

P]_ : T!l
P z?1 ;z!2
P z?2 ;7?1

(b) PSO consistent but not SO consistent.

P !l ; y!'l
P y?1 ;=211
P z?1 ;270 ; z?1

(c) SO consistent but not Cﬁs 46) consistent.

Figure 34: Examples of object relative consistency

5.2.2 Process Relative Consistency

The only process relative consistency model is Single Process (SP) consistency.

Suppose PV{; = (NLV;|p, U NLVj|p,).
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Definition 31 : If, for every process pair P; and Pj, PV;’J is a partial order, then

the ezecution satisfies Single Process (SP) consistency.

This model asserts that every process agrees with the ordering of all the write opera-

tions performed by another process. This model is equivalent to the PRAM model

[44] and is useful in defining FIFO delivery.

Definition 32 : Process FIFO delivery (PRAM [{4])
An ezecution satisfies process FIFQO delivery iff for every writer P; and every

reader P; of a shared object, PVtg is a partial order.

Process FIFO delivery ensures that the order in which a writer changes any object
will not be contradicted by a reader.

It is noteworthy that single process consistency is equivalent to requiring that the
partial view obtained by the union of all restricted necessary local views (U; NLV;|p,)
is acyclic. This is enforced by the fact that the local view of a process P;, NLV}| P
contains all the events and their relative order.

The following hierarchy exists between this model and C(pm, 16)° SP < C€13,46)'

Figure 35 illustrates SP. In Figure 35(a), the execution is not SP consistent. In

Figure 35(b), the execution is SP consistent but not locally consistent.

B z!l; yil; 2'1
P y?1l; z?70; z71
Py - 7?1 ; y?1; 271

(2) No process consistency.

P z!l; yll
b y?1l; 21
P 2?1 ; z70; =71

(b) SP Consistent but not C'(p13 46) consistent.

Figure 35: Examples of process relative consistency
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5.2.3 Other Consistency Models

It is possible to obtain a consistency model by applying restrictions on both object

and process. This leads to the following mixed consistency models:

1. Suppose PVZ* = (NLVi|p, - U NLVj|p, z).

Definition 33 : If, for any pair of processes P; and P; and for every object z,
PVé-”' s a partial order, then the ezecution satisfies Single Process/Object

(SPO) consistency.

This model asserts that every process agrees with the order of operations by a
writer process P; on every object z. This is equivalent to object FIFO delivery

and Slow memory [33]. It is also very similar to C?%.

Definition 34 : Object FIFO delivery (Slow Memory [33])

An ezecution satisfies object FIFO delivery iff for every object x, writer P; and
reader P;, (NLV;|p, - U NLVj|p, ;) is a partial order.

Object FIFO delivery ensures that the order in which a writer changes a variable
z will not be contradicted by a reader in its reads. It is a weaker condition than

process FIFO delivery. So, We have the hierarchy:

SPO<SO <OL=Ch, SPO <SP < Chu

It is noteworthy that process and object relative consistencies are not compa-

rable. So they form two distinct hierarchies.

2. As we have done with some augmented views in Chapter 4, it is possible to
combine some of these partial views to define stronger consistency models. As
an example, a consistency model can be defined on both object and process

consistency. This model would be very similar to processor comnsistency

[6, 29].
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Definition 35 : Processor Consistency

An ezecution respects the processor consistency constraints if it is single process
(SP) consistent (V P;, P; PVlg is acyclic) and single object (SO) consistent or
coherent (PV* is acyclic).

5.3 Conclusion

In this chapter, we have introduced some weak consistency models based on restricted
and partial views. Other models may be possible using other restrictions and aug-

mentations but we have limited ourselves to those that seem more interesting.



Chapter 6

Exact Implementability of Weak
Consistency Models

One of the reasons for our deriving the taxonomy of consistency hierarchies is to
create a medium to analyze the consistency support required by various types of
application programs, and that can also be used to determine as precisely as possible
which model a particular protocol implements. Using these hierarchies as a basic
tool one can determine the consistency models implemented by some protocols, and
even derive new protocols. For some models, it is possible to come up with an exact
implementation. An exact implementation involves a protocol that implements the
required model but not any stronger model in the hierarchy.

In this chapter, we first define the concept of exact implementation. Then, we in-
troduce many protocols and show they implement, or exactly implement, some models
of our hierarchies. These protocols are grouped into four types: asynchronous pro-
tocols, semi-synchronous protocols, almost synchronous protocols and synchronous
protocols. It is noteworthy that many protocols based on timestamps implement
some form of causal memory Cys. Indeed, since these models are based on absence
of certain bad orderings (R3), in the presence of some ordering R; in an augmented
GV, and GV intrinsically preserves causality, an obvious strategy to implement Cy5
is to maintain causal knowledge among processes in all message exchanges in such a

way as to avoid those ordering relations not allowed under Cy,3. This is an avoidance
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strategy rather than the assurance strategy required in handling C;;. As could be ex-
pected, avoidance can be done asynchronously, unlike assurance which often requires
handshaking in the form of 2-phase or 3-phase protocols. Timestamps are generally
useful for avoidance of contradicting causal knowledge in the computation, in contrast

to global knowledge required in assurance requirements.

6.1 Exact Implementation

Since a stronger <onsistency model normally costs more (in space and/or time) to
implement, we need to determine as precisely as possible the model implemented by a
particular protocol. In this section, the notion of exact implementation is introduced,

to capture the tightness of an implementation with respect to a consistency model.

Definition 36 : A shared memory protocol implements a consistency model ij
(C;;) iff every execution allowed in the protocol has an acyclic GVi? (GV;;). A protocol
implements exactly C; (Cy;) iff it implements Cf; (Cy;) but no C%. (Cix) such that
Csz > CZ (Cik > Cij).

In the above definition, an exact implementation is restricted to a hierarchy gener-
ated from a common augmentation guard. Intuitively, it is possible to take the entire
hierarchy formed by the eight guards in Table 2, integrated via the ' >’ relation from
Theorem 8, as illustrated in Figure 29. Moreover, as a direct consequence of the

hierarchies, we can state the following corollary.

Corollary 2 : A protocol that implements Cy; also implements all weaker models in

the hierarchies.

6.2 Asynchronous Protocols

We use the term asynchronous protocol to design a protocol that uses non-blocking

read and write operations. Write operations atomically modify the local copy and
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broadcast the new value to all readers. In Chapter 4, we have presented one such pro-
tocol, called AUP, that implements the minimal consistency model. In this section, we
present many asynchronous protocols that use FIFO channels and/or timestamp-s to
implement stronger consistency models. We analyze the implementation guarantees

for each of these protocols.

6.2.1 Multiple Vector Timestamps Protocol (MVTP)

This protocol is very weak since it does not assume the presence of FIFO chanmels.
To provide the illusion of FIFO channels, it uses a vector of version numbers VN
associated with each object z. Seo, x.VN[i] represents -the last version number that
process P; used to update object x. This protocol implements slow memory or Object
FIFO delivery as defined earlier. Simply said, it provides a distinct FIFO channel for

each object.

Process 1i

Tl : x.VN[i] := x.VN[i] + 1;
X.Vv 1= Vv;
broadcast (x,v,x.VN[i],1i)

v : return(x.v);
recetve(z,v,vn,7) : if x.VN[j] < vn
x.VN[j] := vn; x.v := v;

Protocol MTVP

Lemma 23 : Protocol MVTP impléments single process/object consistency (which

is also named object FIFO delivery or CZF).

. p P .
Proof: Assume the contrary. This means we have zlv = zWW' and z7v' = z7v.

These in turn imply VN(zlv) < VN(z!v') and VN(zlv') < VN(zlv) respectively. An

obuitous contradiction s reached. [ |

Lemma 24 : Protocol MTVP implements ezactly ng .
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Proof: In order for MTVP to implement exactly C;’Sf, we must show that it does

not implement C_F, C?

C¥ and CP. The executions shown in Figure 36 are all

38 3%
permitted by MTVP but each violates one of these models. |
P x!l;yll P x!1;x!2

Py y71;x!2
Py x?72;x71

Execution that violates C?;—p
P x'1;xt2;yl1
P y?71;x71

Execution that violates C:’;g

P x?2;yll
Py: y?71;x71

Execution that violates ng
P xl1
P x71;x?2

Py x72;x7?1

Execution that violates ng

Figure 36: Legal executions for protocol MTVP

6.2.2 Disjoint Version Number Protocol (DVNP)

This protocol also uses the concept of version number. However, it associates with

each object a single version number which is updated whenever a process modifies

the object.

Process i

z?v

recetve(z,v,vn, j)

x.VN := x.VN + 1;
x.v
broadcast(x,v,x.VN,i)

= v

return(x.v);

if x. VN < vn
x.VN = vn; x.v :

I
<

Protocol DVNP

Lemma 25

Protocol DVNP implements a restricted form of local write consis-

tency, C¥ and CZ ((z?v)/(zlv) B (zlv') = (X') 5 (X 7)).

Proof: Assume the contrary. This means that we have zlv/z?v 5 z'v’ and =70’ A

z?v. These in turn imply VN(z!v) < VN(z!v') and VN(z!v') < VN(z'v). An obvious

contradiction is reached.
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Lemma 26 : Protocol DVINP implements ezactly CE.

Proof: In order for DVNP to implement exactly CF, we must show that it does

not implement C” and Cf;. The executions shown in Figure 37 are all permitted by

DVNP but each violates one of these models. [ |
P x71;x!12 P x71;yll
P x?72:y11 Py : y?71;x!2
Py: y71;x7?1 Py x72;x71
Execution that violates ng Execution that violates Cs—gp

Figure 37: Legal executions for protocol DVNP

6.2.3 Totally Ordered DVNP (TODVNP)

As in protocol DVNP introduced earlier, this protocol associates with each object a
single version number. This version number is updated every time a process modifies
the object. Moreover, when two operations have the same version number, process
identifiers are used to order them. A new field x.pid is associated with each object

x. It contains the identifier of the last process that modified object x.

Process 1

Tlv : x.VN := x.VN + 1;
x.pid := i; x.v := v;
broadcast(x,v,x.VN,i)

v : return(x.v);

receive(z,v,vn,j) : if [x.VN,x.pid] < [vn,j]
x.VN := vn; x.pid := j;
X.V = v;

Protocol TODVNP

Lemma 27 : Protocol TODVNP implements some restricted form of local consis-
tency CF? where u and v can take any valid value for these models (z?v/zlv 2>

7 [zl = X' [zl B X 7u/zlv).
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Proof: Suppose the contrary. This implies that there exists z?v/z'v 2 z7v'/zh'
as well as z?v'/z!v’ & z?v/zlv. However, according to the total ordering of the
protocol, this means that VN(z!v) < VN(z!v') as well as VN(z!v') < VN(z!v). Hence a

contradiction is reached. u
Lemma 28 : Protocol TODVNP implements ezactly C?%.

Proof: In order for TODVNP to implement exactly C?2, we must show that it does

not implement C_F and C?_. The executions shown in Figure 38 are all permitted by

TODVNP but each violates one of these models. [ |
P x?1; ¥yl P x?71;x!2
P y?1;x12 P x72;y!ll
Py x72;x71 Py: y?71;x71
Execution that violates C?;-p Execution that violates ng

Figure 38: Legal executions for protocol TODVNP

6.2.4 Extended Asynchronous Update Protocol (EAUP)

This protocol is an extended version of the AUP protocol, in which we assume that
the underlying communication system provides FIFO channels. This assumption is

. . : PP
sufficient to enforce single process consistency or CZ%.
Lemma 29 : Protocol EAUP implements CT¢ (zlv 5 zlv' = X7/ 5 X7).

Proof: This immediately follows from the use of FIFO channel and hence the preser-
vation of the arrival ordering of (x,v) and (x,v’) at a reader site. Consequently,

the asynchronous update prevents X7 5 X ?v. [ ]
Lemma 30 : EAUP implements exactly C2¥.

Proof: EAUP does not implement ng and neither CS%” . Figure 39 shows executions

allowed by EAUP that violate ng and C’;S-” respectively. [ |
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P x!1;x12; P x!1;y!1;

Py: x?72;y!1; Py y71 ;x12;

P;: y?1;x71; P;: x72;x71;
: p - —p
Violates Cis Violates C'3-g

Figure 39: Executions that violate C¥; and Cf

6.2.5 Logical Time Protocols (LTP)

For this protocol, timestamps extracted from a logical clock are recorded at the local
copy of an object in each reader process. Naturally a logical clock is maintained
among the distributed processes. There are a few versions of such protocols, leading

to different results.

Logical Read Time Protocol (LRTF)

The Logical Read Time Protocol (LRTP) is a novel protocol that allows a process
to maintain the timestamp of the copy of a shared memory object locally. This
timestamp indicates the (logical) time of the last read operation performed by the
process on that object. An update received from another writer will be accepted only
if it carries a timestamp larger than the last “time” that process read that object.
Logical time is maintained among all processes through message passing. The full

protocol is given below.

Process i

zly : LC :=LC + 1; increment logical clock
X.v 1= v; update value of x
broadcast(x,v,LC); send update to readers

z?v : LC :=LC + 1; increment logical clock
x.VN := LC; update timestamp of x

return Xx.v;

receive(z,v’,LC') : if x.VN < LC’ if larger timestamp
X.v 1= v’; accept the update and
LC := max(LC, LC’); wupdate logical clock

Protocol LRTP
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It is provable that LRTP implements C3;. The proof is based on the total ordering

of logical time.
Lemma 31 : LRTP implements Ck.

Proof: Suppose VN[e] represents the logical time of a memory operation in GV[.
Given R (z?v 5 z7?v') in GV, LRTP ensures that VN[z?v] < VN[z'v']; otherwise, the
update of = from v to v’ cannot happen and hence v’ cannot be read in that process.
Hence the augmentation using Rs (z?v — z'v’) satisfies also the logical time ordering,
i.e., for every instance of op, — op, in GVf;, we must also have VN[op;] < VN[op,].

From the total ordering of logical time, GV} cannot contain any cycle. |

Lemma 32 : LRTP implements Cks ezactly.

Proof: From the definition of exact implementation and Table 1, we need to prove

LRTP does not implement C%,. Figure 40 shows an example execution allowed by

LRTP but acyclic GV and cyclic GV}y. Hence the claim. [ |
il 161
Pyl —= x21 Pyl —x2l
TR
P,: x2——=y!l P X125 y!]
X :
e
Py: x2—=x72 Py x?—=x72
n
Py xll Py xll
a) Acyclic GVj b) Cyclic GV ([t] = logical time of operation)

Figure 40: Acyclic GV and cyclic GV

Logical Write Time Protocol (LWTP)

In a similar manner, the timestamp maintained for an object may indicate the last
time that process wrote into the object. When an update is received, it is accepted
only if the timestamp of the update is larger than the last time the process wrote

into the same object. The full protocol is given below:
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Process i

zlv : LC :=LC + 1; increment logical clock
X.V 1= V; update local copy
x.VN := LC; record last-write time
broadcast(x,v,LC); send update to readers
z?v : LC :=LC + 1; increment logical clock

return x.v;

recetve(z,v',LC') : if x.VN < LC’ if larger timestamp
xX.v :=v’; accept the update and
LC := max(LC, LC’); wupdate logical clock

Protocol LWTP

Lemma 33 : LWTP implements C%.

Proof: The proof is exactly analogous to that of Lemma 31. In particular, the
update protocol ensures that if z'v 2 7', then it must be that VN[zlv] < VN[z!'].

Hence any ordering in GVJ is also ordered in logical time. |
Lemma 34 : LWTP implements C%; ezactly.

Proof: As in the case of LRTP, LWTP does not implement C% and hence LWTP
implements C¥; exactly. Figure 41 shows an example execution allowed by LWTP

that has cyclic GV |

P;

Figure 41: Cyclic GV allowed by LWTP

Both logical time protocols presented are basically asynchronous; every read or
write operation is performed without explicit synchronization among the processes.
Hence it can be expected that memory latency is small, as all operations involve local

events and are wait-free. The consistency models they exactly implement are also
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rather weak; both C7; and C%; are one of the weakest members of their respective

consistency hierarchies.

Logical Time Protocol (LTP) and Local Read Consistency (LRC)

The previous protocols can be combined together to form a protocol that implements
C?, and Cj;. The composite updates the time of the last local operation by the

process on an object.

Process i

zlv : LC :=LC + 1; increment logical clock
X.v 1= v; update local copy
x.VN := LC; record last-write time
broadcast(x,v,LC); send update to readers
z?v : LC :=LC + 1; increment logical clock
x.VN := LC; record last-read time

return x.v;

receive(z,v',LC’) : if x.VN < LC’ if larger timestamp
xX.v :=v’; accept the update and
LC := max(LC, LC’); update logical clock

Protocol LTP

Lemma 35 : LTP implements ezactly C¥; and C%.

Proof: With x.VN updated to LC in both read and write operations in a process,
the result follows from Lemmas 32 and 34. |
Ct,; and C%; forms a LRC model as presented in Chapter 4; the augmentation rule
applied become: zlv/z?v B 70’ = zlv/z?v — zlv'.
Intuitively, this asserts that when a process reads a local value different from the
last value associated with its last operation on the object, then the latter must be

“ordered” before the write of the new value (performed elsewhere).

6.2.6 Logical Clock Protocol (LCP)

This protocol uses a logical clock LC to associate a timestamp with each write op-

eration. With this protocol there is no timestamp associated with an object. An
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operation is accepted only if its timestamp is bigger than the current clock. The
problem with this protocol is that many write operations may be discarded even if

they do not cause any inconsistencies.

Process i
zlv : LC :=LC + 1; x.v = v;
broadcast(x,v,LC)
z?v : return(x.v);
receive(z,v,T) : I LC < T
x.v := v; LC := max(LC,T);

Protocol LCP

Lemma 36 : This protocol implements Cys and Cgg (z?v/zlv ~ =l = X7 =

z!v).

Proof: According to the protocol, the relation z?v/z!v ~ z!v’' implies that LC(x!v)
< LC(x'v’). Again, according to the protocol, the relation X7v' ~ zlv implies

LC(x!'v’) < LC(x!v). Hence a contradiction. [ ]

6.2.7 Totally Ordered LCP (TOLCP)

This protocol is an extension of protocol LCP presented earlier. It uses a logical clock
LC to associate a timestamp with each operation, which is then used as a version
number .V N. Moreover, as in the preceding protocol, process identifiers are used to

resolve conflicting version numbers.

Process 1

zlv : LC :=LC + 1; x.VN := LC;
x.pid := 1; x.v = v;
broadcast(x,v,LC,1)

z?v : return(x.v);

receive(z,v,T,j7) : if [LC,x.pid] < [T,j]
x.VN :=T; x.pid := j;
X.V 1= v;

LC := max(LC,T);
Protocol TOLCP
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Lemma 37 : Protocol TOLCP implements Cgg (70~ 20’ = X7v — zlV' ).

Proof: According to the protocol, z?v ~ z!v’ implies that LC(x!v) < LC(x!v’).
Again, according to the protocol, z!v' ~ z?7v implies LC(x!v’) < LC(x!v). Hence a
contradiction. Moreover, all concurrent events are ordered by the process identifier.

So a total order exists among them. [ |

6.2.8 Causal Update Protocol (CUP)

This protocol associates with each object x a version number x.VN. The version
number of object x is incremented each time it is updated. When process P; executes
a write operation, it broadcasts the entire object space 0S to all processes. This
guarantees that the information will always be causally up-to-date. CUP maintains
the most recent version of object x causally among the processes. Updates will be

performed only if the received version is more recent than the version known at the

time.
Process 1
zlv : 0S[x].VN := 0OS[x].VN + 1;
gs[x]l.v := v;
broadcast (0S)
z?v : return(x.v);
receive(ROS) : for all objects z
if 0S[x] .VN < ROS[x].VN
0S[x].v := ROS[x].v;
0s{x].VN := ROS[x].VN;

Protocol CUP

Lemma 38 : Protocol CUP implements Cyz =

(z70):/(z!v); ~ (20');/(zW'); = (270" )e /(2" = (27v)i/(z'v):-

Proof: Using the causal broadcast of OS and the update policy at a reader process,
the latter is guaranteed to maintain the most recent version of every object it has
perceived through updates it has received. If z?7v/zlv ~ z7v'/z!v’ exists in GV, then
it must be also true that OS[z].VN < OS[z].V N'. This in turn implies GV cannot

have z?v'/zlv' — z7v/zlv. [
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6.2.9 Vector Time Protocol (VTP)

LTP can be extended to involve a vector to record the most recent write operation
of each object known to a process. With n objects in the system, the vector has
n elements. As update messages are broadcast from a writer to all readers, natu-
rally every process becomes aware of the most recent version ts[j] and value v[j]
of object j. Recentness of an object j is established by using a tuple: the ver-
sion number ts[j].n and the process identifier ts[j].pid. The process identifier
is used to totally order the tuples. In the VTP protocol presented below, it is as-
sumed that the objects are identified with j = (1,...,n), the timestamps with T =
(ts[1], ts(2], ...,ts[n])and T’ = (ts[1]’, ...,ts[n]’),V = (v[1], ...,
v[nl), the value with Vv’ = (v[1]1’,...,v[n]’), ts[i]l = (ts[i].n, ts[i].pid)

and that max(T,T’) returns the component-wise larger timestamps of T and T’.

Process i

jlv : LC :=LC + 1; increment clock
ts{j] := (LC, 1); update vector clock
vijl := v; update local copy
broadcast (T,V); broadcast to readers
7?u : LC :=LC + 1; increment clock
ts[j] := LC; record last-read time

return v[jl;

recetve(T',V') : for all j do for all objects
if tsfj] < ts[j]’ if larger timestamp
v(jl = v[jl’ ; update the value,
T:=(max(T,T’); the vector clock and

LC:=max(LC,ts[1].n,...,ts[n].n) logical clock;

Protocol VTP

In VTP, a process accepts an update only if its version is more recent than the
present one. Hence the logical times (augmented with pid) of the two writes are also

ordered in the same manner.
Lemma 39 : Protocol VTP implements ezactly C\3.

Proof: We use ts[e] to denote the logical time (ts[e].n,ts[el.pid) of each

operation. From VTP, we can easily establish:
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1. if op; 2 op, then tsfop;] < ts{opa],

2. if zlv — z7v' then ts[zlv] < ts[z?v'], and ts[zlv] < ts[z!v] (else the reader

could not read v')

Hence the augmented view GVj3 cannot be cyclic without violating the total or-
dering in (ts[e] .n,ts[e] .pid). Moreover, VTP does not implement Cyg. Figure 42
is an example execution with cyclic Cyg that is allowed under VTP. Hence the claim.

t 13 151 iol
72

Figure 42: Cyclic GVig allowed by VTP

Protocol VTP is interesting because it also implements C3. Since C.3 is the
strongest model in the weak consistency hierarchy, it follows, from Theorem 9, that

VTP implements every model in this particular hierarchy.
Lemma 40 : Protocol VTP implements C3.

Proof: Following the proof of Lemma 39, if z!lv — 7 holds in GV, then ts[z!v] <
ts[z!v’]. But if there exists an instance of z7v such that z!v" — z?v in GV, then we
also have ts[z!v’] < ts[z!v]. Hence we have a contradiction. [ |

VTP can be slightly changed to become VRWTP (Vector Read/Write Time Pro-
tocol), which allows the timestamp of an object to change at every read operation
(in addition to every write operation). Specifically, the “Read” function in VTP is

modified as follows:

Process 1
z?7v : LC := LC + 1; increment logical clock
ts[jl := LC; record last-read time
return v[jl;
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With the above change, it is observable that if z?v — z7v then ts[z?v] < ts[zlv'],
else that reader will not be able to read v’. Hence we can prove that VRWTP
implements Cy. For brevity, the details are omitted here.

VTP is expensive in that the message passing actually carries object values. The
latter can be eliminated if a process delays a read operation until it has received the
value corresponding to the most recent version causally known to the process. In
other words, if other indirect channels form a faster path than the update channel to

a reader, then the reader has to wait until the actual update is received.

6.2.10 Ahamad Vector Clock Protocol (AVCP)

Ahamad [9] has proposed the following protocol for causal memory.

Process 1

zlv : VC[il:=VC[i]l + 1; increment clock
X.V:=V; update local copy
broadcast(i,x,v,VC); send to readers

v : return x.v;

receive(j, z,v',VC') : wait until

VCEk] > vC’[k] V k#j if larger timestamp
and VC’ [jI=VC[jl+1;
X.V 1= V; accept update and
VC[j] := VvC’[jl+1; update logical clock

Protocol AVCP

It is assumed that the receive is multi-threaded. When one is blocked, other
messages can be received. Moreover, when the receive is blocked, reads and writes

can continue to be issued.

Lemma 41 : Protocol AVCP implements Csg and Cgz (z'lv/z?7v — zlv' = ' -
X?%).
Proof: This was proved in [9] |
This protocol does not implement C,5 (z7v — z70' = z!v'/z?v" - X7v). Fig-
ure 43 shows an execution which is permitted by the protocol AVCP but contradicts
Cy-
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P xl1;

P xI2;

P: x?1;y!l

Py y?1;x72 ;2!
Py 271 ;x71

Figure 43: Legal execution for protocol AVCP that violates Cyg

6.3 Semi-synchronous Protocols

Most of the asynchronous protocols implement very weak models and those that
implement stronger model are very expensive in terms of space and bandwidth. To
reduce this cost, we use blocking functions. In this new class of protocols, called
semi-synchronous protocols, some but not all operations involve some blocking. In
many cases, timestamps are used to determine if an operation or the process must be

blocked.

6.3.1 2-phase Write Protocol (2WP)

Protocol 2WP uses a blocking 2-phase write protocol to block a writer until the write
is acknowledged by every reader. Even if not written, we consider that concurrent
writes are resolved by the use of process identifiers. This protocol does not assume

FIFO channels as many of the timestamps or version number based protocols do.

Process i
zlv : broadcast(x,v,i);
wait ack(x,v) from all process;

z?v : return x.v;

receive(z,v,j) : x.V :=v;
send(ack,x,v) to process Fj;

Protocol 2WP

Lemma 42 : This protocol implements C3E ((z'v) B (zlv) = (X') & (X ).

Proof: This condition is guaranteed since a previous write must end before the
next one can start. So, when the new value is received by a process, the last value

has already been received and is overwritten. [ |
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6.3.2 Invalidation Protocol

An invalidation protocol involves invalidation messages between readers and writers,
so that an old value will not be read again. The following subsection presents two such
invalidation protocols: a reader invalidation protocol (RIP) and a writer invalidation

protocol (WIP).

Reader Invalidation Protocol (RIP)

The Reader Invalidation Protocol (RIP) requires a writer to wait until the value it
last wrote has become invalid among all readers before the writer is allowed to read
a new value. Hence synchronization latency occurs only when a writer reads a new
value. In this protocol, the version number VN and the process identifier pid are used
to resolve concurrent writes. The process identifier pid is also used to determine if a
value to be read by process F; is different from the last value it has written. In such
a case, P; must wait until the last value it has written is invalid among all potential

readers. The variable x.invalid is used to maintain this information.

Process 1
zly : (x.VN,x.pid) := (x.VN + 1, I);
X.Vv = v;
broadcast (x, v, x.VN, i);

z?v : if x.pid <> 1
wait until x.invalid[j] for all reader Pj;
return x.v;

receive(z,v', T, j) : if (x.VN,x.pid) < (T,j)
send(inv,x, x.VN, i) to Process x.pid;
(x.VN,x.pid) := (T,j); '
x.v := v’
else send(inv,x,T,i) to Pj;

recerve(inv,z,z.VN,j) : x.invalid[j] := true;
Protocol RIP

In RIP, a writer waits until the previous value it wrote has become invalid. Invali-

dation messages are sent from a reader to the writer whenever the former has received
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a new version, or equivalently, the value written by the latter will not be readable by

the former. Intuitively, this means CY; is implemented, as proved next.
Lemma 43 : RIP implements C?, (z'v B z?7v' = X7 — 7).

Proof: Suppose zlv B z?v' (RF) is used to augment GV with X?v — 70" (R7).
From the description of RIP, a reader will send an invalidation message concerning r =
v to the writer only if it has received a more recent version of z, and hence v will never
be readable again. In addition, the writer of v can read a new value v only if it has
received invalidation messages from all readers. Hence every end_(z7v) — end_(z7v'),
or the augmentation preserves — ordering among the related events. Using the same

reasoning as in the proof of Lemma 50, we can similarly assert that GV} is acyclic.

Writer Invalidation Protocol (WIP)

Protocol WIP associates to each object two version numbers: the version number of
the current value, x.VN, and the version number of the last value read or written,
x.last. x.last is transmitted with any new value and is used to invalidate old
values. A boolean indicator is associated with each version number (valid(x.VN))
to indicate if the value associated with this version number was invalidated by some

write operations.

Process 1
ztv : x.last := x.VN ; x.VN := x. VN + 1;
X.V 1= v;

broadcast (x, v, x.VN, x.last);

z?v : wait until valid(x.VN);
x.last := x.VN; return x.v;
recetve(z,v,vn,last) : for all x.last < last

valid(x.last) := false;
if vn > x.last

x.v := v; x.VN := vn;

valid(x.VN) := true;

Protocol WIP

Lemma 44 : Protocol WIP implements C¥ (z7v/zlv 2ozl = X7 5 X7).
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Proof: This is obvious since any value read or written before the current value will

be invalidated before the new value can be read. |

6.3.3 Causal Read Protocol (CRP)

This protocol associates a version number with each object. All the version numbers
are grouped into an Object Clock (0C). When an object x is updated, its corresponding
version number in the object clock 0C[x] is modified. OC is then broadcast with each
write operation. Even if it is not specified here, process identifiers are used to resolve

conflicting version numbers.

Process 1

zlv : 0C[x] :=o0C[x] + 1;
x.VN = 0C[x];
X.V 1= V;
broadcast (x,v,0C)
z?v : while x.VN < 0C[x] do nothing;

return(x.v);

recetve(z,v,T) : if x.VN < T[x]
x.v :=v; x.VN = T[x];
0C := max(0C,T);

Protocol CRP

Lemma 45 : Protocol CRP implements Cyz =

(z?v/zlv ~ 2 [zl = 2 [z - £7u/zlv).

Proof: The proof follows that of Lemma 38 and the fact that a reader is delayed

until it has received the most recent version of an object through the causal broadcasts

that it has received. [ |

6.3.4 Asynchronous 3-phase Protocol (A3P)

Protocol A3P uses a 3-phase write protocol that does not block the writer. However,

a reader may be blocked until the write has committed.
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Process 1
Init(z,v) : x.0ld = -; V x: readable(x) := true;

zlv : readable(x) = false;
X.v = v; x.0ld = x.v
broadcast(x,v) ;

z?v : if ((x.0ld # -) and (x.o0ld # x.v))
wait readable(x);
x.0ld = x.v;
return(x.v);

receive(z,v) : readable(x) := false;
X.V 1= V;
send (ack,x,v);

receive(ack, z,v) : if ack received from all processes
broadcast (readable,x,v);
readable(x) := true;

receive(readable,z,v) : readable(x) := true;

Protocol A3P
Lemma 46 : This protocol implements Cyg (z?7v—z?0 = X' - zlv).

Proof: The protocol ensures that a value is read only after the write has ended (so
a write happens before a read in real time). If z?v—z7v, the protocol ensures that
z!v ends (z becomes readable) before z!v'. if X7v" ~ zlv, this means that z!v’ ends

(z becomes readable) before z!v. Hence a contradiction. |

6.3.5 Direct/Indirect Vector Clock Protocol (DIVCP)

This protocol associates with each process two vector clocks. The first vector clock,
called DVC, contains the version numbers of each operation directly received from
each process. The second vector clock, IVC contains the version number of the last
operation of each process indirectly received from any other process. So, before

reading any value, a process waits until IVC < DVC.
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Process i
zlv : DVC[i] := DVC[i] + 1;
x.v := v; x.VN = DVC[i];
broadcast(x,v,DVC[i] ,max(DVC,IVC),1i)

z?v : while DVC < IVC do nothing;
return(x.v);

receive(z,v,T,VC,7) : DVC[j] := T; DVC[i] := max(DVC[i],T);
IVC = max(IVC,VC);
if (x.VN < T)
x.VN :=T; x.v := v;

Protocol DIVCP

Lemma 47 : Protocol DIVCP implements the same model as CRP (Cyz).

Proof: The proof is based on the fact that all causal events are captured by [DVC
and IVC and the fact that a process waits until the indirectly known events are

received. |

6.4 Almost Synchronous Protocols

The preceding protocols are semi-synchronous because at least one of the operatizons
is always asynchronous. In this section we present a category of protocols in which

all the operations are synchronous except when some conditions are satisfied.

6.4.1 Possibly Asynchronous Read (PAR)

Protocol PAR uses a blocking 3-phase write protocol that blocks the writer until the
write is committed. The reader is also blocked unless the preceding committed value
was never read. The field x.01d is used to stored the value returned in the last read
operation. The field x.comm contains the last value committed. If they are different,
the read may execute asynchronously. As before, even if it is not specified, concurrent

writes are resolved by the use of process identifiers.
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Process 1
Init : x.0ld = x.comm = —;

zlv : broadcast(x,v)
wait for all ack;(x,v)
broadcast(commit,x,v)
X.v (= Vv

z?v : if (x.0ld = x.comm) and (x.0ld # x.v)
wait committed(x)
x.0ld := x.v;
return x.v

receive(z, v) : X.v=v
committed(x) := false
send(ack,x,v)

receive(commit,z,v) : if (x.v = v) committed(x) := true

X.comm=x.v

Protocol PAR

Lemma 48 : Protocol PAR implements C%y (z?7v B 270" = z%7v — z!t').

Proof: When a value is read it may be either committed or not. If it is committed
then since the write is blocking we have z?7v — z!v’ for any value v written before the
value v'. If the value is not committed and we have z7v = v’ , this means there is
another value v”, written more recently than v, which is committed. Then the value

v cannot be read anymore. Hence z7v — z!v'. [ |

6.4.2 Possibly Asynchronous Write Protocol (PAWP)

Protocol PAWP mixes the use of the blocking 3-phase write protocol, that blocks the
writer until the write is committed, and of an asynchronous write. The asynchronous
write is used only if the last value read or written by this process is different from
the last value committed. The reader is also blocked unless the asynchronous write is
used. The field x.01d is used to store the last value read or written. As before, even

if it is not specified, concurrent writes are resolved by the use of process identifiers.
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Process i

Init

zh

(X3

receive(z, v, type)

receive(readable, )

x.0ld = - ; readable(x) = true

if ((x.0ld = =) or ((x.0ld <> x.v) and readable(x)))
broadcast(write,x,v,async);

else

broadcast(write,x,v,sync);

wait for all ack(x,v);

broadcast (readable,x) ;

x.0ld = x.v; (to enforce x!v -> x!v’);
X.Vv = v;

wait readable(x);
x.0ld = x.v (for x?v->xliv’);
return x.v;

X.Vv = v;

if (type=sync)
readable(x) = false;
send (ack,x,v);

readable(x) = true;

Lemma 49

zlv.

Protocol PAWP

Protocol PAWP implements C%; and CF;, z7v/zlv 2zl = X% -

69°

Proof: When z?v/zlv B z!v', we know that zlv ends before z!v’ starts in real time.

If we have X?v' — z'v, this implies that z!v’ starts in real time before z!v ends.

Hence a contradiction.

6.4.3 Fast-Read Three-Phase Protocol (FRTPP)

A traditional synchronous protocol involves a three-phase handshaking between a

writer and the readers of a shared object: the writer broadcasts the new value to the

readers, and waits for acknowledgements from the latter before broadcasting a commit
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message to the latter, thereby allowing the value to be read. Concurrent writes are
serialized by using version number and pid. Such a protocol is expensive: a memory
operation may take extra delay before a new value is committed and readable. A
reader must read in full synchrony with the rest of the processes.

A refined version of the 3-phase write-protocol is presented in this section. It is
called Fast-Read Three-Phase Protocol (FRTPP). As the name implies, the protocol

allows a reader to read asynchronously, when some locally decidable property holds.

Process i

zlv : x.t :=x.t +1; x.v :=v; x.pid := i;
broadcast(x,v,x.t,x.pid);
suspend process i until
received ack(x,v,x.t,x.pid) from every reader;
broadcast(cmit,x,x.t,i);

x.commit := x.last := (x.t, x.pid);
z?v : wait for x.ready or x.last <> x.commit;
x.last := x.commit;

return x.v;

receive(z,v’, t', 7) : if (t?,3) > (x.t, x.pid)
(x.t, x.pid) := (t’,j);
x.ready := false;
reply with ack(x,v’,t’,j);

receive(cmit,z,t',7) : if (x.t, x.pid) = (t’,j)
x.commit := (t?,j);
x.ready := true;

Protocol FRTPP

The above FRTPP differs from the traditional 3-phase protocol in only the read
function: a reader is allowed to read without waiting for a value to be committed if
x.last <> x.commit. Under such a condition, reader delay can be reduced.

FRTPP does not implement sequential consistency but implements both C3y and

C%,. as proved next.
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Lemma 50 : FRTPP implements CYy and Ciy.

Proof: We will assume a memory operation begins/ends at the first/last statement
in the respective functions of the given protocol. Hence end_(z?v) occurs when the
value v is returned, and similarly for end_(z!v). The proof is constructed by showing

that GVig and GVy9 cannot be cyclic. Specifically,

1. op; 2 op,: Obvious, end_(op,) happens before (denoted by — ) start_(ops) —

end_(op3).
2. zlv — z7v: Again, we get start_(zlv) — end_(z7v).

3. z7v — z'v' (due to augmentation with X?v — z!v’): Since some reader of z!v'
has x.commit (involving some vx) <> x.last (involving v), it follows also that

all end_(z7v) — end_(z!lv*) — end_(z'v')/end_(z70').

From the above, a cyclic GV or GV} would create a cycle of events whose “ends”

are ordered cyclically by the happens-before relation. This is a contradiction. |

FRTPP can be extended so that a process causally keeps track of the last version of
an object read globally by other processes (through the underlying message passing).
This increases the complexity by a constant factor but the extended protocol will
implement Cig and Cyg, i.e., without restriction to program-ordered augmentation.

The details are omitted here.

6.4.4 Ahamad’s Owner Protocol for Causal Memory (OP)

Ahamad [8] and John [36] present the following owner based protocol that implements

causal memory.
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Process i
zlv : LC :=LC + 1;
if owner(x) # i
send (write,x,v,LC,i) to owner(x);
receive(reply,x,v,LC’) from owner(x);
LC = MAX(LC,LC’);
x.v := v; x.VN = LC;

z?v : if x= NIL;
send (read,x,i) to owner(x);
receive(reply,x,v’,LC’) from owner(x);
LC = MAX(LC,LC’);
x.v :=v; x.VN = LC;
Vy: y.WWN <LC =y = NIL;

v o= X.V;
Owner
receive(read, z, J) : send(reply,x,x.v,x.VN) to j;
receive(write,z,v,LC',j) : LC := MAX(LC,LC’);

x.v :=v; x.VN := LC;
Vy: v.WW < LC = y = NIL;
send (reply, x,x.v, x.VN) to j;

Ahamad’s owner protocol

This protocol implements a stronger version of causal memory than the one they
define. The exact causal memory implemented by this protocol can be defined by the

property rule z?v/zlv — 7' /zlv' = v = X7,
Lemma 51 : OP implements C g (z'v/z?v — zW' /270" = v’ - X 7).

Proof: The Owner protocol uses vector clocks and invalidation to implement causal-
ity between write and read operations. Moreover, the owner concept ensures that all
writes to a single object are totally ordered. So assume that z'v/z%7v — z!v'/z?v'. In
such a case, causality and total ordering of operations ensure that z.VN < z.VN'.
Suppose there exists a z?v such that z!v’ — z?v. In such a case, causality and total

ordering of write operations ensure that z.VN > z.VN'. This is a contradiction. B
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6.5 Synchronous Protocols

6.5.1 Possibly Asynchronous Protocol (PAP)

Protocol PAP uses a blocking write operation with a possibly non-blocking read. The
read operation blocks if the last value read or written is different from the current
value. This is implemented by the fields x.last, which contains the version number
of the last value read or written locally, and x.commit, which contains the version
number of the last value committed (write is completed). As in the previous protocol,
variable x.VN contains the version number of the last value written, while variable

x.WVN contains the version number of the last value written by F;.

Process i
zlv : wait until x.commit > x.last or x.VN = x.last;
x.VN := x.WVN:= x.VN + 1; x.pid := 1i; x.v := v;
broadcast (x, v, x.VN, x.pid);
suspend process i until
received(ack,x.WVN,i,j) from every reader Pj
or (x.VN,x.pid) > (x.WVN,i);;
broadcast(commit,x,x.WVN,i);
x.last:=x.commit:=x.VN;

z?v :  wait until x.commit > x.last or x.VN = x.last ;
return x.v; x.last := x.VN;
receive(z,v,vn, j) : if (x.VN,i) < (vn, j)
X.V 1= V;

x.pid := j; x.VN := vn;
reply(ack,x.VN, j, 1i);

recetve(commit,z,vn,j): if (x.VN,x.pid) = (vn, j)
x.commit := vn;

Protocol PAP

Lemma 52 : Protocol PAP implements C?; and C?, (which can also be defined with
u3 u4

relations z?v/z'v B ' /zlv' = X v — 7' /zlW’).

Proof: When a new value is read or written, the last value read or written is either

committed or there is a more recent value v” which is committed. If it is committed
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then since the write is blocking, we have z?7v — z!v’ for any value v written before
the value v'. If the value is not committed and we have z?v/zlv & z?v'/zh~', this
means there is another value v” written more recently than v which is committed.

Then the value v cannot be read anymore. Hence X7v — z7v'/z!v’. [ |

6.6 Conclusion

In this chapter, we have introduced the notion of exact implementation. Usin:g this
notion, we have studied implementations for some of the models introduced in ®Chap-
ters 4 and 5. It is noteworthy that from the understanding of the consistency re-quire-
ments, it is relatively easy to derive suitable protocols that implement them. Indeed,
this chapter presents many protocols, but it is easy to derive even more protocols.
For example, most of the protocols for models involving global augmentation: rules
require the use of a vector clock, rather than a logical clock, which keeps track of the
most recent version of every memory object known to a process. So, it is possible
to develop vectorized versions of many protocols such as LWTP and LRTP. -Other
examples are the following protocols, which were developed but are not described in

detail here:

SVNP: This protocol uses a logical clock to associate a timestamp to each asyn-

chronous operation.

TOSVNP: This protocol is the same as SVNP in which process identifiers are used

to force a total order on all asynchronous operations.

CDP: This protocol uses a vector clock to order asynchronous operations.
VTP2: This protocol uses vector timestamps and waiting to order operatmons.
C2WP: This protocol combines timestamps and 2-phase write operations te pro-

vide a better ordering of the operations.

Table 8 gives a summary of the protocols presented in this chapter.
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Protocol

Implements or implements exactly

MVTP, VTP2, 2WP and EAUP

DP
C‘x?i

DVNP and C2WP

PP BP
Cs and C’6§

SVND C.? and C.7
LCP ng and ng
TODVNP o
TOSVNP ocC

LRIP P,

LWIP P,

LTP C?; and Clg
TOLCP Cég

CDP CZ

CUP Cuz

VTP C]_g and Cl§
VRWTP Cse

AVCP Cs5 and Cgg
RIP 17, Cir
WIP [

CRP and DIVCP Cuz

A3D CP.

PAR P,

PAWP C?. and C%,
FRIPP C? and CF,
OP (Owner Protocol) Cho

PAP C?; and C7,

VWTP (vectorized version of LWTP)

VRTP (vectorized version of LRTP)

Table 8: Summary of some key examples
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Chapter 7

Programmability of Weak
Consistency Models

The underlying behavior of distributed applications may require a weaker consistency
memory than sequential consistency for its correct execution. This may be caused by
various reasons including (i) access patterns or restrictions to the shared objects, or
(ii) use of specific synchronization mechanisms or patterns in the programming layer.
Indeed, because of these, it is possible to execute programs and obtain sequentially
consistent results on weaker memories. We make a purposeful distinction between
a consistency model and a sequentially consistent result obtainable from sequential
consistency. Because of program design, it is possible to obtain a sequentially consis-
tent result on shared memory that is implementing a weaker consistency, such as the
weak consistency models presented in the various hierarchies.

It is natural to expect a stronger consistency model in the hierarchy to cost more
(in space and/or time) to implement. Hopefully, in return, a stronger consistency
model is more easily programmable. So, part of the reasons for our deriving the
taxonomy of consistency hierarchies is to create a medium to analyze the consis-
tency support required by various types of application programs. In some sense, the
augmentatioﬁ or weak consistency hierarchies come naturally and pinpoint specific
relationships in the global view whose consistency must be preserved. Bearing this

in mind, one could scrutinize the actual consistency needs of various existing parallel
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algorithms or use it to derive new algorithms. This has the obvious advantage of
preserving the ease of programming associated with sequential consistency even if
weaker consistency models are used.

The consistency needs of the applications may be determined in a number of ways.
In this chapter, we do a static analysis of the access restrictions based on the number
of readers/writers. This static analysis has the advantage of simplicity and, since
these characteristics can be deduced automatically by some pre-processing tools, an

appropriate consistency model can be chosen at compile time.

7.1 Readers/Writers based restrictions

Access restriction applied to a shared object can be asymmetrical. For example, a
shared object can be written by a single process (single-writer) or read by a single
process (single-reader). In this section, we scrutinize the actual consistency needs
of various existing parallel algorithms by analysing their access restrictions. We de-
termine the consistency model required for some application to produce sequentially
consistent results. In particular, we show that under some access restriction, C35 and

CP, are sufficient to guarantee sequentially consistent results.

7.1.1 Single-reader Variables and Algorithms

When applications use only single-reader variables, sequentially consistent results can
be obtained under weaker memory models. The following theorem establishes the im-

plications of single-reader algorithms and the relaxation of consistency requirements.

Theorem 10 : C% in a system involving only single-reader variables ensures se-

quential consistency.

Proof: It suffices to show that GVJ is an acyclic possible view. (i) From the
definition of C%, we know that in the acyclic GV, z7v B oz = %7 - W

Hence from (i) and from the fact that reads can only be issued by a single process,
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GV}, contains the following well-ordering of writes and reads of a given variable:
vy = X% = zlvg = X% — ... = zlup — X7 ... Hence the claim. [ |
Protocol LRTP presented in Section 6.2.5 is sufficient to implement sequential

consistency with single-reader applications.

7.1.2 Single-writer Variables and Algorithms

The following theorem establishes the implications of single-writer algorithms and the

relaxation of consistency requirements.

Theorem 11 : C%y in a system involving only single-writer variables ensures se-

quential consistency.

Proof: It suffices to show that GVJ is an acyclic possible view. (i) From the
definition of C;, we know that in the acyclic GV, zlv 2 zlv’ = X7 — z'v'. Hence
from (i), GVJ, contains the following well-ordering of writes and reads of a given
variable: z'v; = X?%v;, = zlvs = X%y — ... = zlvg = X 7vug ... Hence the claim. W

There are various well known algorithms that use single-writer variables.

Example 1: Bakery Algorithm

The classical bakery algorithm [12] employs shared variables, each writable by a
single process, and readable by all processes (single-writer/multiple-reader variables).
Hence, by default, all writes to a given variable are program ordered (i.e., z!v B zh').

From Theorem 11, the bakery algorithm can be executed correctly under C%,.

Example 2: Two-Process Mutual Exclusion

Consider the following two-process mutual exclusion example:

Process i

repeat
flagi} := true;
while (flagfj}) do nothing;
critical section
flagfi] := false;
non-critical section

until false
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Since all variables are single-writer variables, we know from Theorem 11 that a
protocol that implements C%, would correctly execute the above, and mutual exclusion
would always be ensured. However, this algorithm suffers from possible deadlocks.

Example 3: Peterson’s Two-process Mutual Exclusion [54]

Process 1
repeat
flag[i] := true;
turn :=j;

while (flagj] and turn=j) do;
critical section

flag[i] := false;
non-critical section
forever

This algorithm involves single-writer variables flag[i/ and flagfj]. and two-writer

variable turn. The following is provable:
1. Mutual exclusion can be ensured by C%,.

2. Existence of an acyclic possible view (hence deadlock-freeness) can be ensured
if runtime protocol serializes all writes and reads to “turn” according to the

write-order, i.e., turnlvl - TURN?vl — turn!v2 — TURN?v2 — turnlv3 ...

Theorem 12 : Assuming that all writes are serialized, the consistency models C%g

and C?; ensure the correct ezecution of Peterson’s algorithm.

Proof:
A typical execution of Peterson’s algorithm for two processes will provide the
following sequence of events in both processes:
P1l: .. flag[1]!0 (non —crit) ... flag[1]'l; turn!2; flag[2]27vl; turn?v2 ... (C.S.) ...
P2: .. flag[2]'0 (non — crit) ... flag[2)'i; turn!l; flag[1]?v3; turn?v4 ... (C.S.) ...
Suppose there is an incorrect execution in the algorithm. This execution can only

be produced by one of the following states for (vl,v2,v3,v4):

(0,-,0,-): In this state, both processes can enter critical section. However this

situation causes the following cycle in the augmented view.

(Flag[1])10): — (flag[1]?0)s — (flag[l]'1); — (flag[2]70); —
(flag[2]'1)e — (flag(1]?0)2
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(1,1,0,-):  In this state, both processes can enter the critical section. However, the

following cycle occurs in the augmented view:

(flag[1]'1); = (turn!2); — (turn!l)y — (flag[1]?0)2 — (flag[1]'1),

(0,-,1,2): In this state, both processes can enter the critical section. However,
this situation is identical to the preceding one, and causes a cycle in the

augmented view.
(1,1,1,2):  In this state, both processes enter the critical section. However, the
following cycle occurs in the augmented view:
(turn!2); — (turn!l), — (turn!2),
(1,2,1,1):  In this state, a deadlock occurs. There is no cycle in the augmented
gm

view. The program works if we guarantee a total order of writes on a

single object.

No other state causes an incorrect execution.

7.1.3 Single-writer/Single-reader Variables and Algorithms

Even if it is very limited, it is possible to imagine a parallel application using only
single-reader/single-writer variables. In such a case, from the single-writer and the
single-reader cases mentioned earlier, we know that either the C% or C}; memory

model is sufficient to provide sequentially consistent execution for these applications.

7.2 Special Forms of Synchronization

Barrier synchronization is a special form of synchronization used in many parallel
programs such as partial sum computation, matrix multiplication, iterative linear
solver, sort, etc. In this section, we analyze the use of barrier synchronization in

parallel algorithms and its implications for consistency requirements. It is conceivable
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that similar results can be derived, for other types of synchronization which do not

involve strict barriers to all processes, but we will not include such results in this

thesis.

7.2.1 Modeling of Barrier Synchronization

Barrier synchronization can be modeled as an abstract event [b] that occurs in all
the processes simultaneously. Hence corresponding b events from the processes are
merged to become a single (and same) atomic event.

In other words, suppose we have the following execution:

P : z1;b;y?2;b;z!3;b6;y74
Py: y2:b6;z?71;b;y4;b; x73

Then the global view is formed by merging the two b-events to become one:

P z!l y?2 z!3 y?4
\b - \b N , <
P, : y'2 — \ — \y!4 —

Hence the above execution can be decomposed into a sequence of phases separated

z?3

by b events:

Phase 1 ; b ; Phase 2 ; b ; Phase 3 ; b ; Phase 4 ...

A parallel algorithm based on barrier synchronization is often based on the pre-

vious “phased” structure.

7.2.2 Implementation of Barrier Synchronization

A common implementation of barrier synchronization is to use a centralized coordi-
nator that handshakes with individual processes synchronously. In particular, process

P; and the coordinator C perform the following for each abstract b event:
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P : i)'l ; afzf]?7v<>1; ... ; afE]?1
C: r[l]J?7v <>1; ... ;7[1]71; r[2]7v <> 1; ... 5 7[2]71; ... ; r[n]?L;
a[l]'l ; a[1]'1; ... ; a[n]1

In the above coordinator code, it is conceivable that the coordinator may be made
nondeterministic in the order in which it reads r[i] although the writing of a[¢] can
occur only after all the reads return a value of 1.

It is easy to verify that if we take a[1]'l as the abstract event b, then the global view
with all process events contains the abstracted global view in Section 7.2.1 involving
other read and write events and b events only.

There exist many implementations without a centralized coordinator [12]. How-

ever, they all have the same consistency requirements.

7.2.3 Correctness Requirement (CR) of Barrier Synchroniza-

tion Based Algorithms

An important correctness requirement (CR) in parallel algorithms based on barrier
synchronization is that if z7v occurs in phase i, then v must be associated with some
z!v in phase j < 7 and z!v' does not occur in any phase k satisfying 7 < k£ < 1,
assuming that conflicting operations cannot occur in a common phase. In other

words, z?v/z!v and z!v' cannot occur in different processes in a common phase.
Theorem 13 : zlv/z?7v — b — zlv' = X?v — zW' implements CR

Proof: This is immediate. Suppose otherwise and we have a violation of CR:
zv/z?7v — b — v’ — b — z7v. Then the augmentation of global view will result in

a cycle involving z!v’ and the latter z7v. |
Theorem 14 : Protocol EAUP implements CR.

Proof: AUP with FIFO channels implements zlv/z%7v — b — zlv' = X7v — zlv'.
Since conflicting operations cannot occur in. a common phase, X?v cannot occur in
the same phase as z!v'. If some z?v occurs after z!v’, then the reading process has
received v after it has received v'. But this contradicts z!v/z?v — b — z!v’. Hence

the claim. n
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Hence in general, synchronous algorithms involving barrier synchronization of the
form modeled here can be correctly executed in a distributed system involving simply

FIFO channels and asynchronous updates of local copies.

7.3 Other Applications

Many applications have been used to evaluate the performance of DSM [1, 11, 20, 22,
31, 32, 35, 37, 36, 39, 43, 48, 52, 56, 58]. The most used applications are :

e EP (embarrassingly parallel), MG (multigrid), 3d-FFT, IS (integer sort), CGM
(conjugate gradient method) from the NAS benchmarks [15];

e Cholesky from the SPLASH benchmarks [35];

e Water, LU, Barnes and Ocean from the SPLASH-2 benchmarks [59];
e Matrix multiplication;

e SOR (successive over-relaxation);

e linear equation solver (simple approach);

e QS (Parallel quicksort);

e TSP (traveling salesman problem) ;

e (Gauss.

Many of these applications are “whole applications” that use many different par-
allel algorithms. As an example, the Ocean application uses a SOR algorithm. These
applications are quite complex and are very difficult to analyze. A complete study of
the consistency requirements of these applications is beyond the scope of this thesis.

However, many of these applications strictly use barrier synchronization. In par-
ticular, applications such as IS, 3D-FFT, MG, CGM and Gauss [11] use only barrier
synchronization. Hence, the consistency model required for barrier synchronization
as established in the preceding section, can be applied to these applications. More-
over, many of the other applications, such as Water, QS and TSP, require mutual
exclusion and in some cases mutual exclusion and barrier. In such cases, it is likely
that the consistency requirements established for the mutual exclusion algorithm are

applicable to those algorithms.
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Chapter 8

Performance Evaluation of

Neighbor and Flush Protocols

In Chapter 2, we have presented protocols that implement sequentially consistent
memory systems. In this chapter, simulations are performed to evaluate the perfor-
mance of the synchronous and flush protocols. The simulations are done to evaluate
the efficiency of the two protocols under different operating conditions. The varying
conditions for the simulation include (i) network communication delays, (ii) compu-
tation versus communication time in the user application, (iii) varying degrees of
sharing modeled by access graphs, and (iv) typical application benchmarks.
Simulations are also performed on three other protocols. These protocols form a

good basis for comparison.

8.1 The Simulator

The simulation is written in Java and built around a discrete event simulation package
called Javasim [45]. It consists of three basic components: the shared memory kernel,
the network simulator, and the application simulator. This section will present some

relevant detail before analyzing the simulation results.
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8.1.1 The Shared Memory Kernel Simulator

Five versions of different protocols are simulated as the kernel support. They are

respectively:

e General 3-phase protocol:

Each write operation is a 3-phase write that is broadcast to all processes, with-
out taking advantage of the information of the access graph of the user appli-
cation. Hence this is expected to be the worst performing protocol and serves

as an upper bound of the execution time of the simulated system.

e Restricted-synchronous protocol:

This is the synchronous protocol presented in Section 3.2 without making full
use of neighbor information. In particular, the 3-phase handshaking is restricted
to those processes actually sharing a given object. The writer always delays later

operation until the current operation has ended.

e Synchronous (neighbor) protocol:

This is the synchronous protocol presented in Section 3.2. It differs from the
restricted-synchronous protocol in that a writer delays a later operation only if
the latter lies in the same access cycle as one of its readers which has not vet

acknowledged.

e Flush protocol:

This is the flush protocol as described in Section 3.2.

e Asynchronous protocol:

The asynchronous protocol is formed by removing all handshaking among read-
ers and writers. In particular, a writer simply broadcasts its new value, and a
reader reads the local copy at any time, asynchronously. This protocol obvi-
ously does not implement sequential consistency but the resulting performance

will serve as the lower bound of the execution time of the simulated system.
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8.1.2 The Network Simulator

The shared memory protocols in Section 8.1.1 are simulated on a simulated network
environment. A single performance metric, the total execution time of the simulated
application, is chosen to analyze system performance. Hence we do not need a de-
tailed simulator such as that in [57]. To account for realistic communication delay,
we use the same approach as that in [17, 38]. The sending and receiving of a message
incurs a delay D. Hence a 2-phase handshake between a writer and a reader incurs a
communication delay of 2D. A 3-phase operation involves the writer that broadcasts
a message and receives n acknowledges before broadcasting a commit message. The
total communication delay is therefore (n+2)D, assuming that an ethernet-like broad-
cast channel exists and that each broadcast incurs a delay of D. These assumptions
are similar to those used in [17, 38] when the size of a packet is small. We make a
simplifying assumption by ignoring congestion and retransmission. The latter could
be modeled and simulated as well but is unlikely to make a difference in comparing

the performance of different protocols.

8.1.3 The Application Simulator

The application simulator drives the shared memory kernel based on (i) the choice of
protocol used, (ii) the behavior of the application being simulated, and (iii) the static

access graph supplied with the application.

Behavior of the Application and Access Graph

The behavior of an application process consists of a sequence of read and write op-
erations to be performed. These are either synthetically generated or derived from

some known applications.

1. Synthetic applications

A pure synthetic application generator is used to generate different behaviors to

be tested. Each process repeatedly executes a computation phase followed by a
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read /write operation chosen randomly. During a computation phase, a process
can perform any operation except shared memory access. The duration of a
computation phase is normally distributed with a mean of 5 time units. Figure

44 shows the various access graphs used in the synthetic applications.

ol
Oung

o2

1) Access Graph |

ol o3

P P P;
02 ~— o4

4) Access Graph 4

6) Access Graph 6 7) Access Graph 7

Figure 44: Synthetic application’s access graphs

2. Mutual exclusion

Lamport’s bakery algorithm [12] for critical sections is simulated here. In its
general form, the access graph is a fully connected graph as shown in Fig-

‘ure 45(a). In the access graph, ch[i] represents the variable indicating that
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process F; is choosing his number, and num|i| represents the number picked up
by process P;. The variable parameters in this application include the compu-

tation delays associated with the «<ritical and non-critical sections.

3. Dining philosopher

A distributed mutual exclusion algorithm for the dining philosopher problem
[12] is simulated. The access graphe here is a single ring as shown in Figure 45(b).
In the access graph, variables fi represent the forks of process P;. As in the
previous case, the computation delay of a process is a variable parameter in
the simulation. By varying this, we achieve different degrees of concurrency in

computation among the processes_

ch{2], num[2] . 3

a) Access graph of Lamport’s bakery algorathm b) Dining philosopher’s access graph

Figure 45: Mutual exclusion’s anid dining philosopher’s access graphs

8.2 Analysis of Results

The results of various simulation runs are illustrated in Figures 46, 47, 48 and 49.
Figures 46 and 47 show the simulated performances of the protocols for the synthetic
applications. Figure 48 shows a typical result for the mutual exclusion application
and Figure 49 shows that of the dining philosopher application. In general, we expect
the restricted-synchronous, synchronous (neighbor), and flush protocols to outper-
form the general 3-phase because of thesir avoidance of unnecessary synchronization

and abilities to hide long access latency with the computation or among accesses.
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In the case of the restricted-synchronous protocol, it reduces synchronization cost
by restricting reader/writer synchronization among relevant processes. Hence each
acknowledgment phase will be faster. In the synchronous neighbor protocol, two ac-
cesses from a process may overlap if they do not lie in the same access cycle. Hence
synchronization delays of program-ordered accesses can overlap among themselves
as well as with the computation phase of the process. In the flush protocol, not
only is synchronization restricted to those processes that are related, but also each
access does not delay subsequent accesses, except in the case of the flush. Hence,
all synchronization delays except the flush are hidden. The cost of synchronization
will surface in the latter case and it is localized to the access cycles that the flush
operation controls.

The results of the synthetic applications more or less substantiate the above ex-
pectations. Seven different access graphs are simulated. Access graph 7 in Figure 44
contains more access cycles, whereas the rest of the access graphs are rather simple.
Generally, the flush protocol outperforms the rest except in graph 6 which contains
significantly more processes in a single access cycle. In that case, the synchronous
neighbor protocol gives the best result, as synchronization between two neighbors is
more effective than invoking a 3-phase flush involving a relatively large set of processes
when that operation is performed. The effectiveness of the synchronous neighbor pro-
tocol is also noteworthy in Figure 46, demonstrating that using knowledge of access
cycles to hide access latency is an effective strategy.

The mutual exclusion simulation is performed with some small changes from
the synthetic simulation. As the access graph for this application is a complete
graph, there is no difference between the general 3-phase protocol and the restricted-
synchronous protocol. To ensure progress, the asynchronous protocol is not mean-
ingful. So it is not included in the evaluation. Simulation is performed for different
combinations of communication delays and number of processes. The results for dif-
ferent communication delays are very similai:, and a typical comparison is plotted in
Figure 48. In general, the flush protocol outperforms both the general 3-phase and the

synchronous neighbor protocols, and the effects are more significant as the number of
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processes increases. This is understandable as the frequency of synchronization, and
program-ordered delays, become more significant with an increase in the number of
processes.

The dining philosopher problem is in the opposite spectrum when compared with
the general mutual exclusion probiem as object sharing is more localized and precise
access cycles exist. Hence, as the results in Figure 49 confirm, all three protocols
that make use of the results of this paper perform well, and the synchronous neighbor
protocol is the best of the three. The access graph of the dining philosopher problem
contains cycles between two neighbors as well as global cycles involving all processes.
Hence flush synchronization in various access cycles may result in more non-hidden

delays than the synchronous neighbor protocol.
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Figure 46: Synthetic application simulation results (access graphs 1-6)

137



Total simulation time

Synthetic Application - Access graph 7
T ™ T

1800 |-

1400

Total Simulation Time
T

Asynchi
Synchronous (neighbon -e—
1600 -Ramemsynmmaons —_—

us|

nnous -e—

N ~—

Three-phase -w—

I 2

Figure 47: Synthetic application simulation results (access graph 7)

10
Communication delay

Mutual extusion result - configuration &
T

Mutual exjusion result - configuration 1
T ks

600 T T T T Y 10000 T T T T T
550 S ronous (neighbor) -5— e L
ynch nhon &= 9000 | Synchronous (nengg?grg o
500 Three-phase —— E 8000 b Three-phase -w—
450 ] g om0
400 4
‘—é 6000
350 - =
E 5000
300 E i
S 4000
250 g 2
200 i 3000
150 B 2000
1m 1 1 L L L L 1 L 1m L L L 1 L
2 25 3 3.5 4 45 5 55 6 2 25 3 35 4 4.5

Nurmber of processes

Figure 48: Mutual exclusion simulation results for two configurations

Number of processes

1500 -

Total Simulation Time

Dining Philosopher
T

Synchronous (neighbor) e—
Restricted-synchronous -+—
Flush ~—

Three-phase -e—

L x Il

10 15 20
Communication delay
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Chapter 9

Implementation Considerations

In Chapters 2 and 3 we have introduced and used the concept of virtual access graphs
to develop efficient algorithms for sequentially consistent DSM. Chapter 8 has re-
ported simulation experiments that show significant improvements in performance in
our protocols, especially for the flush protocol.

For these preliminary evaluations, the construction as well as the analysis of the
virtual access graphs of the chosen applications were done manually. The resulting
synchronization was then manually coded in the simulator. In this chapter, we dis-
cuss how all the construction and analysis of the virtual access graph can be done
automatically and how the proper synchronization can be provided by the run-time

system.

9.1 Virtual Access Graph Construction and
Analysis

A possible procedure to implement the automatic treatment of virtual access graph
and of synchronization could be for some pre-processor to add the proper synchroniza-
tion directly into the application. In such a case, the DSM system does not provide
any consistency model.

The pre-processor must first generate the virtual access graph. It then uses the
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order relation introduced for the protocols (program order, flush order, ...) and the
information provided by the virtual access graph to insert the necessary synchro-
nization. The information provided by the virtual access graph can be extracted by
a pre-processor, and inserted into some tables associated with the processes. Each
entry of a table contains all the necessary information that must be known to avoid
inconsistencies. Using these tables, the pre-processor can statically add synchroniza-
tion operations into the application program and leave it to the run-time system to
take care of the rest of the synchronization. A run-time system can use the table
to dynamically determine the necessary actions to preserve consistency. However,
the information needed from the virtual access graph may be different according to
the protocol used. For example, the information required to implement the proper
synchronization for the flush protocol is different than that for the neighbor protocol.
In order to illustrate the idea presented in this chapter, we use the example shown
in Figure 50. It contains a virtual access graph and all the virtual cycles associated
to it.
1. pipipilp
2. Bip 2 pPiptp
. ,ipIpIpipip

b z c
4. P, —P3—-P;— P4

z T b
5. P, — P —-P;— P4

x r z c
6. L —P—-P3—-PFPs—-Fy

Virtual access graph Virtual cycles

Figure 50: Example of virtual access graph

9.1.1 Virtual Access Graph Construction

To construct the virtual access graph of a given distributed program (before or after

compilation), we require that every process declare the set of shared variables used.
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Static analysis is performed to identify whether an object is of the type read-only,
write-only, or read/write. From this analysis, access tables can be constructed for
each process. Using these tables, the complete virtual access graph is then built.
Figure 51 shows the access table for the virtual access graph of Figure 50. Each line
of the table contains all the objects written by a particular process and each column

contains all the objects read by a particular process.

[PrOCGSSlPllPQ P3IP4IP5 Ps]
P T |z

P, a |y |w
P3 Z

Py b c

Ps

Fs

Figure 51: Access table

Once the virtual access graph is constructed, the proper synchronization infor-
mation must be extracted from it. Since the synchronization is required only along
virtual cycles, the extraction requires an analysis of the virtual cycles. This operation
is done differently for each protocol.

Proper synchronization to avoid view cycles on a single edge can be easily imple-
mented by the run-time system by using FIFO channels or timestamps without any
other synchronization operations. Hence, the following discussion considers only the

treatment of virtual cycles.

9.1.2 Neighbor Protocol

There are two types of savings in the neighbor protocol. First, synchronization traffic
is reduced to involve accesses that lie on virtual cycles. Second, blocking is reduced
inside a single process. Blocking of a later operation in a same process, say P, is
deemed unnecessary unless she two operations lie in some virtual cycle. Essentially,
the program order of the memory operations of a process is replaced by a partial-order;

two instances of operations, say op; and op; (by processes P; and P; respectively), are
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ordered op; < opj iff they are in program order and lie on a common virtual cycle.
This graph problem can be solved by checking if the nodes, P; and P;, connected to
P via op; and op; are 1-connected (other than through P;). This is done by checking
if the removal of some other node will disconnect these two nodes. This is solvable by
iteratively deleting all the other nodes and testing if the two nodes are still connected.
Hence the problem possesses a polynomial time solution (complexity of O(n?)). This
algorithm is used to determine if two operations must be synchronized and also the
processes involved in these operations.

To generate this partial order, the virtual access graph has to be processed so that
for every pair of distinct accesses from a process, this dependence/independence can
be recorded for runtime use. Specifically, by analyzing the virtual access graph, a
table is constructed for process Pi such that (op;, op;) is in the table if op; and op;
are two instances of operations by P, such that they are associated with two edges
that lie in a same virtual cycle. Moreover, the table contains the processes involved in
the operations. The runtime system of a node executing P, would block the commit
of op; if an earlier op; has not yet committed. Alternately, we can directly tag this
information in the code so that the partial order is explicitly specified in the program
code, as in scope consistency [34].

For example, in Figure 50, process P, writes into object = which is read by pro-
cesses P; and P,. Since this object is involved in a cycle and has two readers, P; must
use a (3-phase) write operation involving processes P; and F;. This operation does
not need to be synchronized with other operations. In the same example, process P»
writes objects a, ¥ and w. Object w is not involved in any cycle, while the other two
objects are involved in cycles involving a single reader for each object. So, P> uses a
write on w without having to wait for any acknowledgement, and (2-phase) writes on
a and y that require each acknowledgements from processes P; and P; respectively.
Since a and y are involved in the same cycle, any a'v must end before a y!v1 can begin
and vice versa. Figure 52 shows for each process a table containing all the necessary
information for the neighbor protocol. Each line of these tables represents an object.

Each column provides one item of the information as presented earlier. The first
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column contains the object to consider. The second column, entitled “Op”, contains
the operation on that object. The third column, entitled “Ack from”, contains the
set of processes that must acknowledge the operation. When no acknowledgement is
required, the operation is asynchronous. In a read operation, an acknowledgement
indicates that the operation must wait for the arrival of the commit message. Finally,
the last column, entitled “Synchronized with” contains the objects (and their re-
spective operation) with which the operation on this object should be synchronized
(program order must be enforced). So, in the table of process P;, we know that blv
must be acknowledged by process P; and must be synchronized with the operations
z?vl, a?v2 and clv3. In essence, this means for the neighbor protocol that the opera-

tions z?7v1, a?v2 and c!v3 cannot end before the operation b!v has been acknowledged

by P3.

9.1.3 Flush Protocol

The information needed for the flush protocol is quite different from that for the
neighbor protocol. We need to find a set of flush operations that covers all the virtual
cycles and the set of operations covered by each flush operation.

Savings in the flush protocols are obtained by the asynchronous nature of all non-
flush operations. Hence, the careful choice of the flush operations is an important
implementation issue and an interesting optimization problem. To minimize the use
of flush-accesses, one strategy is to find a minimal set of operations (edges) whose
deletion from the virtual access graph produces an acyclic graph. For example, in
Figure 50, we can delete three edges, say a, z and b and make all writes into theses
objects, by P, P and P, respectively, as flush-writes, and allow all the other op-
erations to be non-blocking (asynchronous). Figure 53 shows this particular choice
of flush operation and all the operations covered by each flush operation. The write
operations used in these tables are the same as the ones presented in Figure 52, i.e.,
they require the same acknowledgement. For now, we do not use read operations as
flush. When a flush is executed, all operations it covers must end before the flush

can continue and none of these covered operations can proceed until the flush ends
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Process P
[ Object I operation | Ack from I Synchronized with]

I T | zlv | P, Py I I
Process P»
| Object | operation | Ack from | Synchronized with |
a alv Py ylul
w wly
y ylv Py alv2
Process P;
| Object | operation | Ack from | Synchronized with |
l z a?v B bvl, zlvw2
b b?v z?vl, zlv2
z zv bvl, z7v2
Process P,
[ Object | operation | Ack from | Synchronized with |
T z?y P a?vl, b3, clv2
a alv blvy, clv2, z7v2
b blu Py a?vl, clw2, z7v3
c clu Ps a?vl, blw2, z?v3
Process Ps
[ Object | operation | Ack from | Synchronized with |
c c?v ytvl, 2702
Y y?v c?vl, 2702
z zh c?ul, y?v2

Figure 52: Synchronization tables for the neighbor protocol
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(commits). This means that, in our example, when the flush operation (z!v); is ex-
ecuted, the operations (clvl)y and (z!v2), covered by the flush must end before the
flush ends. It also blocks any new execution of (clvl)s and (z'v2); until the flush

ends.

Process P
rFlush operation I Operation flushed J
I alv ] (clul)y, (bv2)4, (y1v3)2, (2tv4)3, (z'v5), ]
Process P3
[ Flush operation | Operation flushed |
[ zly | (clvl)s, (z'v2), |
Process P,
fFIush operation [ Operation flushed ]
| alv | (clvl)y, (z102)3, (z!03)y |

Figure 53: Flush tables

The choice of a set of flush operations can be solved heuristically by repeatedly
choosing an edge to delete until the acyclicity requirement is satisfied. Then for these
sets of edges, we need to identify the edges that they flush. The algorithm works as

follows:

1. Let G be the virtual access graph.

2. Randomly pick an edge a and decide S(a) = set of edges which can be in some
cycle with a. S(a) is the set of edges flushed by a. Include a in F, the set of

flush writes. Delete a from G and repeat 2 until the graph becomes acyclic.

According to this algorithm, it is possible for some edges to be flushed by multiple
operations. But it is difficult to reduce the number of flush operations on a single
edge. The complexity of the algorithm is polynomial since checking if two edges are
on some cycle can be decided by asking if the deletion of some node in G (including
the four edge nodes of the two edges) will disconnect some of the node(s) among of

the four nodes. A problem answerable in O(n?) time. Moreover, checking if two nodes
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lie on a cycle can also be decided by determining if the two nodes are 1-connected.

A problem answerable in O(n?) time as well.

9.1.4 Choice of Synchronization

Detailed implementation of proper synchronization may involve different uses of asyn-
chronous message passing (fast-read and fast-write), 2-phase or 3-phase synchroniza-
tion, depending on the virtual access graph. 2-phase synchronization requires a pro-
cess to send a message, and wait for the acknowledgement before completing the
operation. On the receiver side, the operation is considered complete as soon as
the acknowledgement is sent. 3-phase synchronization requires a process to send a
message, waits for all required acknowledgements, and then sends a commit message
before completing the operation. On the receiver side, the operation is considered
complete only when the commit message is received. This implies blocking some
operations in our implementations of the two protocols. Specifically, a synchronous
remote write is delayed until its readers have acknowledged.

In general, operations not lying in any virtual cycle are implemented as asyn-
chronous operations and hence are totally non-blocking. For other operations that
lie in some virtual cycle, their implementation may vary. In the neighbor protocol,
a single-reader object in a virtual cycle requires only 2-phase synchronization, while
a multiple-reader object would require 3-phase synchronization. For the example
of Figure 50, a write of a requires only 2-phase synchronization while a write of z
requires 3-phase synchronization.

For the flush protocol, asynchronous operations are used except those labeled as
flush. A flush operation requires 3-phase synchronization, involving all processes lying
in the same virtual cycle “synchronized” by this flush. Hence once a flush operation
has been heard by a process in the same virtual cycle, the latter cannot start any

more operations until its previous operations have completed and it has acknowledged

the flush.
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The replacement of memory read and write operations by special calls using asyn-
chronous read/write, 2-phase write, 3-phase write or flush can be automated by mak-

ing use of the results outlined earlier.

9.2 Conclusion

In this chapter, we have presented simple techniques to implement the automatic
construction and analysis of virtual access graphs. These techniques can be used by
a compiler to automatically provide the proper synchronization for each application.
These algorithms are not optimal. Possible optimizations are briefly introduced in

Chapter 10.

147



Chapter 10

Conclusion

In recent years, much research has been done on software and hardware distributed
shared memory. Numerous consistency models and their implementation have been
proposed. In this chapter we summarize the contributions of this thesis to the field of
DSM consistency models and their implementation. We also discuss some limitations

of our approach that may open opportunities for future work.

Contributions

In this thesis, we have formalized a notion of local and global views that are useful
for studying consistency requirements of shared memory and their subsequent im-
plementations. A minimal consistency model was introduced which is interesting in
its own right: it corresponds to simple asynchronous updates among the distributed
processes. However, to successively generate stronger consistencies (and less pro-
grammed synchronization), a global view should remain consistent (acyclic) under
different augmentation rules. These augmentation rules generate a hierarchy of con-
sistency models. Besides acyclicity, some ordering (“causal”) relations may also be
asserted of a global view. The latter form the weak consistency hierarchy that is
related to causal memory. By understanding these models from the perspective of
views, it is possible to derive appropriate implementation protocols as well as to use

them in programming.
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A few attempts [19, 29, 39, 46, 51] have been suggested to define and compare
shared memory consistency models. The view model presented in this thesis repre-
sents an original attempt that distinguishes itself from others by its use of logical
order (view precedence) rather than time precedence that applies in the execution
world. Hence, an important property of this model is that not all conflicting opera-
tions need to be ordered in the global or augmented views. This property gives the
view concept a high level of flexibility in expressing consistency requirements rather
than runtime ordering.

The results are attractive: the hierarchies so developed cover a broad spectrum
of consistency models proposed to date and lead to new ones introduced in this
thesis. Indeed, even though some comparisons and classifications were proposed in
some earlier literature [19, 29, 33, 39, 47, 51], they were done only among existing
models and the classifications were done in a rather ad hoc manner. Our approach
is systematic and logical, and should lay a clear foundation in the study of all inter-
related concepts in shared memory consistency, its use and implementation.

In this thesis, we have also presented two novel protocols that implement sequen-
tial consistency in a distributed memory system with replications in reader sites. Qur
protocols are update-based protocols but do not use atomic-broadcast or 3-phase on
each update unlike the protocols introduced in [2, 4, 13, 14, 21].

To our knowledge, our protocols, particularly the flush protocol, are the only ones
that provide as much asynchrony among operations in a process without using labeled
operations as in relaxed consistency models [2, 3, 13, 25, 34]. In most protocols, all
update operations are blocking. Some protocols [4, 46] allow asynchrony on write
operations issued by the same process. Our flush protocol allows asynchronous oper-
ations not only between writes but also between write and read operations issued by
the same process.

To increase asynchronicity in our protocols, we have used a new strategy to min-
imize synchronization cost and maximize the hiding of synchronization delays in a
process. The strategy is based on the knowledge of spatial locality in the sharing of

memory objects. An access graph is used to capture the sharing relationship among
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processes via the shared objects.

Future Work

The new protocols presented in this thesis are interesting from a performance per-
spective. There is a need to implement these in a real DSM to validate the results
obtained by simulation. In a real platform, much of the runtime and compilation

support will have to be automated and optimized.

1. The automatic generation approach suggested in Chapter 9 uses a statically
constructed access graph. It is however possible to imagine a dynamic access
graph to which edges are inserted and deleted dynamically during execution.
This is possible if the tables are used by a run-time system to implement the
proper synchronization. In such a case, the run-time system can delete or insert

information dynamically into the tables.

So, a process knowing that it won’t use a variable for some time can send
a special message to all its neighbors in the virtual access graph related to
that object telling them to “forget about me”. The neighbors won’t need to
synchronize along this virtual cycle. When the process wants to use the shared
variable, it must issue a synchronous operation saying “I am back”, to inform
its neighbors to recreate the arcs. This can be implemented with the access
tables presented in Chapter 9. A process receiving a “forget about me” message
deletes an entry in its access table corresponding to that particular process and
the related object. The reverse is done when a process receives the “I am back”

message.

A process can decide to send the message “forget about me” based on some
instruction count which can be provided by the compiler. The compiler may
also detect some phases in the process and insert the necessary code to send

the proper “forget about me” and “I am back” messages.

When a process removes itself from a cycle, it eliminates the cycle. So it may
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be interesting for the process to send a “forget about me” message to all the
processes in the just broken virtual cycle (or the message can be forwarded by
the neighbors). When a process is coming back, the same broadcasting must

be done.

2. Normally, an object modified by a 3-phase write operation requires all read op-
erations on the same object to be blocked until the write commits. We suggest
an optimization in which a read operation can always execute asynchronously.
For an object z modified by a 3-phase write, this means that a read can prema-
turely return a value even if it is not committed. However, the next operation,
read or write, on any other object involved in a virtual cycle with z may not
start before the value is committed. Hence, the next operation acts as a flush

for the preceding write.

We believe that a neighbor protocol using premature reads still guarantees se-

quential consistency. We intend to prove this claim in the future.

The work done on the view model is still incomplete. Even if we have designed
hierarchies of consistency models, the synthesis of implementations for some of these
consistency models is not done. Moreover, there are some consistency models that do
not fall in our hierarchies. For example, the view model cannot be used to represent
relazed consistency models that use special operations to create a partial order in a
process.

The extension of the view model to allow special operations is a future research
topic. Our results lead us to believe that our approach can easily be extended. A
basic characteristic of models that use special operations is that they require each
program to be data race free. The special operations, often called acquire and release,
can sometimes be interpreted as a read-modify-write operation (RMW) (for acquire),
and a simple write (for release).

We believe that the view model can be adapted easily to these special operations.
The release, being equivalent to a simple write, does not require any adaptation. The

RMW operations may require the addition of a new operation to the view model. A

151



simple extension is to represent it by a read immediately followed by a write with
some additionnal value constraints in the view.

We also believe that these new operations will not affect the definition of the access
graph. Indeed a RMW will simply be represented by two edges from and to the issuing
process. However, the definition of virtual cycles must be adapted to the labeling
of operations and indirectly to the data itself. Indeed, in the relaxed consistency
models, objects can be classified into two types: data objects and synchronous objects.
Data objects are normal objects accessed through normal read and write operations.
Synchronous objects are those typically used to synchronize the access to data objects.
These objects are normally accessed through the special operations presented earlier,
i.e., RMW for the acquire and write for the release. The classification of objects

enables us to introduce three types of virtual cycles:
1. Data virtual cycle whose edges are labeled only with data objects,

2. Synchronous virtual cycles whose edges are labeled only with synchronous ob-

jects, and

3. Mixed virtual cycles whose edges are labeled with both data and synchronous

objects.

Finally, the definition of data race free programs must be introduced in our ap-
proach to correctly represent relaxed consistency models. We know that an execution
is data race free if any two conflicting events, op; and op,, on a data object z in
the execution are separated by a specific sequence of events (release-acquire) on a
synchronous object y. A program is then labeled data race free if all its executions
are data race free. This definition implies that there cannot be view cycles involving
only data objects. Hence the only access cycles to consider for synchronization are

mixed and synchronous cycles.
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