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ABSTRACT

Control of Nonlinear Systems Using Sugeno Fuzzy Approximators

Mohanad Alata, Ph.D. Student

Concordia Unviersity, 2001

This thesis deals with the issue of controlling nonlinear systems by integrating
available classical as well as modern tools such as fuzzy logic and neural networks.
The proposed approaches throughout this thesis are based on the well known first-
order Sugeno fuzzy system. To achieve a better understanding of the approximation
and interpolation capabilities of Sugeno fuzzy system, the influence of the fuzzy set
parameters and the reasoning method on the interpolation function of the fuzzy
system is investigated. Control of nonlinear system based on known dynamic is
considered first. A fuzzy gain scheduling approach is developed. The proposed
approach is based on quasi-linear dynamic models of the plant. Classical optimal
controllers for each set of operating conditions were developed. These controllers
are used to construct a single fuzzy-logic gain scheduling-like controller. Adaptive-
neuro-fuzzy inference system was used to construct the rules for the fuzzy gain
schedule. This will guarantee the continuos change in the gains as the system
parameters change in time or space. This procedure is systematic and can be used
to design controllers for many nonlizear systems. Also, a modeling approach of some
known types of static nonlinearities is proposed. Control of nonlinear system with
unknown dynamic is also considered. An adaptive feedback control scheme for the

tracking of a class of continuous-time plants is presented. A parameterized Sugeno

il



fuzzy approximator is used to adaptively compensate for the plant nonlinearities.
All parameters in the fuzzy approximator are tuned using a Luapunov-based design.
In the fuzzy approximator, a first-order Sugeno consequent is used in the IF-THEN
rules of the fuzzy system, which has a better approximation capability compared
with that of a constant consequent. Global boundedness of the adaptive system is
established. Finally, simulation and experimentation are used to demonstrate the

effectiveness of the proposed controllers.
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Chapter 1

Introduction

In this chapter, motivations and objectives of this work are presented and discussed.

1.1 Motivation

New ideas and techniques for control are being introduced by the researchers in
the field of intelligent control. In many cases of more complex and ill-structured
problems, the conventional technology is not sufficiently strong to represent and im-
plement the knowledge needed for a powerful solution. Intelligent control technology
has been considered seeking hybrid solutions by enhancing control engineering where
it is needed and where it makes sense. Dynamical systems are in general complex
and nonlinear. Some systems are well defined that can be modelled easily while

there are systems which are difficult to model such as a process planing or product



control. Conventional control methods are in general based on mathematical mod-
els that describe the system response to its inputs. Even if a relatively accurate
model of a dynamic system can be developed, it is often too complex to use in con-
troller development. Thus, model free controllers, specifically PIDs are widely used
in practice. The usual application to optimize the system performance controlled
by a PID is to tune the PID coefficients. This approach may be acceptable as long
as the system parameters are not varying or do not display nonlinearities.

Some robust control methods, such as H.., have been developed to deal with
parametric uncertainties and disturbances. But they still require a low order of the
system and knowledge of the disturbance variations, and they are computationally
difficult. An alternate approach to control complex, nonlinear and ill-defined sys-
tems is the use of fuzzy control. Fuzzy control provides a formal methodology for
representing a human’s heuristic knowledge about how to control a system. In this
research, modelling and control approach of dynamic systems that can be well de-
fined and modelled using mathematical equations, is developed. Also, modelling of
some known simple and hard nonlinearities is discussed. Finally, control of systems
with unknown dynamics or are difficult to transform into closed form mathematical

model (equations of motion), are considered in this study.
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1.1.1 Nonlinear system with known dynamics

The vast majority of control design techniques are based upon a mathematical model
of the system to be controlled. These models allow the use of analytical tools to
guarantee that performance specifications will be met, but these guarantees only
hold as long as the underlying models are valid. Thus, many systems require complex
control strategies to perform their designed tasks. Furthermore, dealing with the
entire dynamic range of operation can bring a control design technique to its knees.
Varying parameters and uncertainty from sensor noise, and disturbances, ensure
that the model is never perfect. It seems that the most useful way of dealing with
nonlinearity of the model is to linearize it about some point, p, in its operating
range. If the model is “smooth”, the linearized equation will accurately represent
the true system in some “sufficiently small” region about the equilibrium point
p in the parameter space. Once linearization is done, we have all available tools
for linear analysis, and the solution within this neighbourhood can be obtained by
one of linear control synthesis techniques, such as linear quadratic regulators (LQR).
However, one must still deal with varying parameters over the entire operating range.
Varying the model’s parameters may remove the system from within this region of
model validity. The controller achieved above may vield an acceptable performance
beyond the region for which it was designed, but this must be considered as luck

in a specific problem solution. In an attempt to ensure adequate performance over



the entire parameter space. the designer must adequately cover the entire space
with a valid region, or regions, upon which to base the design. But, no single
controller can increase the volume of such a region to cover the entire parameter
space. A common practice is to perform several point-wise control designs. each
design performed for a fixed p, that will adequately cover the entire operational
range. In this type of approach (controller scheduling), one must devise a mean of
smoothly switching between controllers without inducing an objectionable response
during the transition.

Gain scheduling is widely used in controlling a nonlinear system. The gain
schedule is an interpolator, which takes a set of operating conditions as an input
and gives the gains as outputs. There are many applications where gain scheduling
is used, especially in aircraft control [1-3]. Linear control designs provide a set of
gains for the controller at each operating condition over the entire flight. The gains
at the operating points can be designed using any linear robust control strategy.
If limited number of operating points and their corresponcling gains is generated
using a linear controller the performance of the system will be very poor. There-
fore, the performance of the system can be improved by using a large database of
the gains and the corresponding operating conditions. However, this requires the
solution of the algebraic Riccati equation at every sample time which is complicated
and expensive. In [4], it is shown that the restriction to slow variations in the

scheduling variables is crucial in the gain scheduling practice. If the time variations
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in the operating conditions are ignored. instability may result. Also. the main prob-
lems of conventional gain scheduling are where to place the point controllers in the

operational state space, how to switch between controllers and when to switch.

1.1.2 Nonlinear systems with unknown dynamic

The weakness of traditional quantitative techniques to adequately describe and con-
trol complex and ill-defined phenomena was summarized in the well known prin-
ciple of incompatibility formulated by Zadeh [5]. This principle states that “as
the complexity of a system increases, our ability to make precise and vet significant
statements about its behaviors diminishes.” The idea of fuzzy modelling and control
first emerged in Mamdani [6], and has subsequently been pursued by many others.
Although fuzzy modelling and control is thought of as an alternative approach com-
pared with traditional control methods, its effectiveness is now well proven. Over
the past two decades, engineers have applied fuzzy modelling and control methods
very successfully [7-12]. Fuzzy control provides nonlinear controllers, which are
well justified by the universal approximation theorem in [13-17]. In other words,
these fuzzy controllers are general enough to perform any nonlinear control action.
Therefore, by carefully choosing the parameters of the fuzzy controller, it is always
possible to design a fuzzy controller that is suitable for the nonlinear S}.rstem under
consideration. Based on this fact, a global stable adaptive fuzzy controller is firstly

synthesized from a collection of fuzzy IF-THEN rules [18]. The fuzzy system, used



to approximate an optimal controller. is adjusted by an adaptive law based on Lu-
apunov synthesis approach. An adaptive tracking control architecture is proposed
in [19] for a class of continuous time nonlinear dynamic systems, where an explicit
linear parameterization of the uncertainty in the dynamics is not possible. The ar-
chitecture employs fuzzy systems, which are expressed as a series expansion of fuzzy
basis functions (FBF’s), to adaptively compensate for the plant nonlinearities. It
is shown in [13] that Gaussian basis functions (GBF’s) have the best approxima-
tion property. In the GBF expansion, three parameter vectors are used; connection
weights (constant consequents), variances and centers. It is obvious that as these
parameters change, the shape of the GBF vary accordingly. However, in the de-
veloped fuzzy schemes in [18-21] only connection weights are updated in the GBF
expansion. In [22], an adaptive controller using a similar approach to the one used
in [18] is introduced. Sugeno fuzzy system is used to approximate the controller.
In the recent developed adaptive fuzzy controller [23] all three parameters are up-
dated, which result in a better tracking performance. The approach in [23] can still
be improved by using a parameterized Stléeno fuzzy approximator with first-order
Sugeno consequent in the [F-THEN rules of the fuzzy system, which has a better
approximation capability compared with that of a constant consequent, which mo-
tivated the work in Chapter 5. It is shown in [24] that higher order Sugeno systems
are expected to result in at least the same system performance with fewer rules.

This is due to a better approximation capability of higher order Sugeno consequents
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[25]. The interpolation properties of Sugeno fuzzy system are discussed in Chapter

3.

1.2 Objectives and contributions

1.2.1 Interpolation behavior of Sugeno fuzzy controllers

Sugeno fuzzy model is used for modelling and control of nonlinear systems in all
applications presented in this thesis. The interpolation function of Sugeno fuzzy
systems depends on the shape, the distribution of the membership functions, the
conjunction operator of the antecedents, and the order of Sugeno functional con-
sequent. A mathematical study of the influence of these parameters on the inter-
polation function of the fuzzy systems is presented in Chapter 3 which will help
achieve a general understanding of these systems. In this chapter the influence of
the shape and the distribution of the membership functions and the order of the
functional consequent on the interpolation behavior of the Sugeno fuzzy systems is
investigated. In general, it can be shown by induction that for a controller with any
number of inputs, product conjunction operator, constant consequent and 0.5 com-
plementary triangular membership functions, the output is a linear function with
respect to each input. Increasing the order of Sugeno consequent by one will increase

the interpolation order by one. For a controller with any number of inputs, product
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conjunction operator, constant consequent and noncomplementary triangular mem-
bership functions, the output is a rational function, which is a linear function with
respect to each input in the numerator as well as in the denominator. Increasing
the order of Sugeno consequent will increase the order of the function in the numer-
ator by one with respect to each input, while the denominator will remain a linear

function with respect to each input.

1.2.2 Fuzzy control of nonlinear system based on known dy-

namic: Fuzzy gain scheduling approach

The goal of this research is to derive and explore a technique to design a fuzzy-logic
gain scheduling-like controllers for nonlinear plants using point-wise designs that
adequately span the parameter space of the plant to be controlled. The ability to
base the controller on point-wise designs allows the designer to use all available tools
of classical. modern and robust control theories to aid in the solution. The proposed
approach is based upon using fuzzy logic to blend the individual point designs such
that for any trajectory in the parameter space, the system performs adequately. The
ability to systematically design such a dynamic scheduler is 2 major contribution.
In Chapter 4 and [26], fuzzy-logic gain scheduling-like controller synthesis
technique is developed for multiple-input single-output (MISO) nonlinear systems.
The resulting controller does not require on line adaptation, estimation, or predic-

tion. Fuzzy logic (FL) is used to smoothly schedule independently designed point

[v4]



controllers over the operational and parameter spaces of the system’s model. These
point controllers are synthesized using techniques chosen by the designer, thus al-
lowing unprecedented amount of design freedom. The proposed approach utilizes
the advantages of gain scheduling, fuzzy logic control, neural networks and optimal
control theory. This approach starts with linearizing the plant dynamics about dif-
ferent equilibrium points. The effect of various parameters can be introduced and
studied. This results in a linear model of the system. Using one of the optimal
control algorithms such as LQR, a set of gains are obtained for each equilibrium
point. Subtractive clustering and ANFIS are used to construct the rules for the
fuzzy gain schedule. The fuzzy gain schedule is used to continuously provide the
controller with gains as a function of the states of the system. Conventional gain
schedule cannot work efficiently when controlling a fast varying system, which is a
major drawback. The fuzzy gain schedule provides a smooth gains without any dis-
continuities. Therefore, there will be no spikes in the response due to jumping from
a set of gains to another. The proposed controller is implemented on the unstable

inverted pendulum system, as shown in Chapter 6.



1.2.3 Fuzzy control of nonlinear systems with unknown dy-
namics using parameterized Sugeno fuzzy approxima-

tor

In Chapter 5 and [27,28], we introduce a controller along the lines of [23]. The
principal difference is that our controller is designed based on the well known Sugeno
first-order fuzzy system. The consequent part of IF-THEN rules is a linear combi-
nation of input variables and a constant term, and the final output is the weighted
average of each rule’s output. This introduces additional parameter vectors to be
updated, but improves the tracking performance due to a better approximation
ability of a higher order Sugeno consequents model. It is also shown in [24] that a
higher order Sugeno consequents model, compared with a lower order, could identify
a system with less error for the same number of rules or could achieve the required
performance with fewer rules. Global boundedness of the adaptive system is es-
tablished. Finally, simulation results, in Chapter 5, are used to demonstrate the
effectiveness of the proposed controller. A comparison between the implementation
of the proposed approach in Chapter 5 and that of the approach in [23] on the
unstable inverted pendulum system is shown in Chapter 6. This comparison verifies
that a higher order Sugeno conmsequents model has a better approximation ability

compared with a lower order model.
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Chapter 2

Fuzzy sets and fuzzy systems

In this chapter, an introduction to fuzzy sets and fuzzy systems is given. Fuzzy
connectives and fuzzy implication functions are discussed and examples on the most
frequently used ones are presented. This is followed by a literature on fuzzy control.
A brief description of a fuzzy controller and its components are introduced through
a benchmark example of balancing an inverted pendulum on a cart. Two types of
fuzzy models are introduced in this chapter. The main difference between these two

models lies in the consequents of their fuzzy rules.

2.1 Introduction

A fuzzy set is a set without a crisp, clearly defined boundary and can contain
elements with only a partial degree of membership. Zadeh [29] introduced fuzzy sets

in 1965. Set theory was founded in 1874 by G. Cantor, a German mathematician.
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The set theory is usually called “classical set theory™. A classical set is a container
that wholly includes or wholly excludes any given element. The membership function

tea(z) of a classical set A, as a subset of the universe X, is defined by:

1. if xed
0. iff a¢Ad

pale) =

This means that an element x is either a member of set A {with p4(z) = 1) or not
a member (with p4(x) = 0). A fuzzy set, introduced by Zadeh [’29]7 is a set with
graded membership in the real interval: p4(z) € [0,1]. In other words, it allows
each element of X to belong to the set with a membership degree characterized by
a real number in the closed interval [0, 1]. This grade corresponds to the degree to
which that individual is similar or compatible with the concept represented by the
fuzzy subset. Thus, individuals may belong in the fuzzy set to a greater or lesser
degree by a larger or sr_na,ller membership grade. Because full membership and full
-non membership in the fuzzy set can still be indicated by the values of 1 and 0.
respectively, we can consider the concept of a crisp set to he a restricted case of the

more general concept of a fuzzy set.

2.1.1 Properties of fuzzy sets

1. One of the most important concepts of fuzzy sets is the concept of an a-cut.

The a-cut of a fuzzy set is defined by:

a—cut(A)={ze X |pa(a)>ca}
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A strong a-cut is defined by

a—cut(d)={xeX |pa(r)>a}

That is, the a-cut of a fuzzy set A is the crisp set that contains all elements of
the universal set X, whose membership grades in A are greater than or equal

to the specified value of .

. The height (2(A)) of a fuzzy set A is the largest membership grade obtained

by any element in that set. An h(A) is defined by :

h(A) = sup,expale)

Fuzzy sets with a height equal to 1 are called normal. They are called subnor-

mal when A(A4) < 1.

The support of a fuzzy set A within a universal set X, is the crisp set that
contains all elements of X that have nonzero membership in A. It is defined
by:

supp(A) ={z € X | pa(z) > 0}
The support of A is the same as the strong 0-cut of A. The I-cut is often called
the core of A. The elements of A, where p4(z) = 0.5, are called crossover

points. Figure 2.1 shows the support, core and height of a fuzzy set.
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Figure 2.1: The support, core and height of a fuzzy set

2.1.2 Representation of a fuzzy set

1. Functional representation: uses functional description to represent fuzzy sets.

An example is the functional description of a triangular-shaped fuzzy set:

0 If z<—a

pa(z) =< =te If

> —ae<zaz<a
= ST s

1 If >a

2. Ordered pairs representation [29]: A fuzzy set A, a fuzzy subset of X, may be

represented as a set of ordered pairs of elements z and its grade of membership

function:

A= {(z,pa(z)) |z€X} or

A= g:l palz:)/xi = palz) /a1 + - + palzm)/Tm
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In this equation the summation sign does not denote summation. it denotes the
collection of all points € X, with associated membership function g () €
[0.1]. The slash in this expression associate the elements in X with their
membership grades.

Example: Let 4 = integer close to 7, then:
A=.1/4+5/5+.8/6+1/7+.8/8+.5/9+ .1/10

Three points to note from A:

(a) The integers not explicitly shown all have memberships functions equal
to zero.

(b) The values for the membership functions were chosen by a specific indi-
vidual, except for the unity membership value when = = 7, they can bhe
modified based on our own personal interpretation of the phrase “close.”

(c) The membership function is symmetric about = = 7, because there is no
reason to believe that integers to the left of 7 are close to 7 in a different
way than are integers to the right of 7. But again, we are free to make

other interpretations.

When X is continuous(e.g., the real numbers), A is commonly written as :

A=/#A(-’L‘)/~'C
Again, in this equation, the integral sign denotes the collection of all points
x € X with associated p4(z) € [0,1], but not integration.
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Comparing the above two types of fuzzy set representation, it is obvious that the
ordered pairs representation will be chosen for computer implementation. Due to
complexity of the operations when using functional representation discretizations

are necessary in practical applications.

2.2 Fuzzy Connectives

In classical set theory intersection, union and complement of sets are uniquely de-
fined, due to the fact that and, or and not are two-valued logical operations. Let us
start with elementary crisp-set operations. Let 4 and B be two subsets of (. The
union of A and B, denoted A U B, contains all of the elements in either A or B, i.e.,
tauB(z) =1,if x € A or €B, and paup(a) =0, if t ¢ A and 2¢ B. The intersection
of A and B, denoted A N B, contains all the elements that are simultaneously in 4
and B, i.e., panp =1, if £ € A and z€B, and pang =0, if + € A or 2¢ B. The com-
plement A contains all the elements that are not iﬁ A py(z)=Lax A, p5(z) =0,

if z € A. In summary, If A and B are crisp sets then
ANB={ala€e A AND ae€ B}
AUB={a|la€ed OR «a€ B}
A={a| a ¢ A}
The extension of standard concepts of classical set theory like union, intersection,

etc. to the theory of fuzzy sets is not obvious, due to the extension of the range
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of membership function to the interval [0. l] instead of the restricted set of {0.1}.
Linguistic connectives and and or are modelled through the use of fuzzy set theo-
retic operators, intersection and union, respectively. Intersection and union are also
interchangeably used with conjunction, and disjunction, respectively.

An infinite number of possible definitions can be chosen to implement intersec-
tion and union. Functions that qualify as fuzzy intersections and fuzzy unions are
usually referred to in the literature as triangular norms (T-norms) and triangular
conorms (T-conorms or S-norms), respectively. A significant body of literature has
appeared concerning the appropriate definitions for intersection and union of fuzzy
sets [30-35]. Zadeh [29] has stated that thé selection of the connectives should
be a local choice depending on the situation. Yager [36] also noted that the desire
for some specific properties for a certain application acts as a filter for selecting a

particular intersection\union pair.

2.2.1 Triangular Norms (T-norms)

The intersection of two fuzzy sets (T-norm), is specified in general by a two-place
function from [0, 1] x [0, 1] to [0, 1], satisfying the following four axioms [35]:
T1. Commutativity

T(a,b)=T(b,a)

This means that conjunction does not depend on the order of ¢, and 6. This is
expected since there is no reason to assign different truth values to T'(«,b), and
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T(d,a).

T2. Monotonicity
T(a.c) <T(b,d) when a<b,and c<d

Which means that the value of the conjunction should not decrease when the value
of at least one proposition increased. We should be more willing to accept “b and
d” than “a and ¢.”

T3. Associativity

T(a,T(b,c)) =T(T(a,b),c)

T4. Boundary condition

T{a,1) =a

An infinite number of possible definitions can be chosen to implement union, but
the desire for some additional properties for certain applications act as a filter for
selecting a particular union. Some’of these properties are:

T5. The property of idempotency T(«,«) = «. This property is useful in a situation
in which there exist a possibility of a set to be repeated, and we desire that this set
has no double effect.

T6. .Archimedea,n property is defined as follows:

A T-norm is Archimedean if

T is continuous, and

Ve € (0,1), T(a,e) < a.



Remarks

1. A many-valued conjunction is a pointwise operation, which means T'(a,b) de-

pends only on the values of « and b.

!.\')

Each T-norm satisfies additional boundary conditions:

T(0,¢)=T(a,0)=0
T(l.a)=a

We can conclude the following:

T(1,0) =T(0,1) = T(0,0) =0
T(L,1) =1

This property is called consistency with the classical set theory.

3. If for Ty and T3, Ti(a,b) < T3(a,b), for all (a,b) € [0,1] x [0, 1], then it can
be said that T) is weaker than 7. It can be proven that T(«,b) < min(«.b),

accepting “a and b” requires more than accepting « or b alone.

4. A T-norm is said to be strictly monotone if it is strictly increasing on ]0, 1] x

10, 1] as a function from [0, 1] x [0, L] into [0, ]:
T(a,c) < T(b,d) when a<b, and c<d

A T-norm is called strict if it is continuous and strictly monotone.
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2.2.2 Triangular conorms (T-conorms, S-norms)

The union of two fuzzy sets (T-conorm, S-norms), is specified in general by a two-
place function from [0, 1] x [0, 1] to [0, 1], satisfying the following conditions:
S1. Commutativity

S(a,b) = S(b,a)

This means that disjunction does not depend on the order of « and 5. This is
expected since there is no reason to assign different truth values to S(«,b), and
S5(b, a).

S2. Monotonicity
S(a,e) < S5(b,d) when a<b,and c<d

Which means that the value of the disjunction should not decrease when the value
of at least one proposition increased. We should be more willing to accept “b or d”
than “« or ¢.”

S3. Associativity

S(a,S(b,c)) '(S(a,b),c)

8.

S4. Boundary condition

S(e,0) = a.

Some of additional properties are:

S5. The property of idempotency S(«,a) = . This property is useful in a situation
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in which there exist a possibility of a set to be repeated, and we desire that this set

has no double effect.

S6. Archimedean property is defined as follows:

A T-conorm is Archimedean if

S is continuous, and

Ya € (0, 1), S(a,a) > a.

Remarks

1.

A many-valued disjunction is a pointwise operation, which means S(a,b) de-

pends only on the values of a and b.

Each S-norm satisfies additional boundary conditions:
S(l,a) = S(a,1) =1
S(a,0)

a
We can conclude the following:
S(1,1) = 5(0,1) = 5(1,0) =1
5(0,0)=0

This property is called consistency with the classical set theory.

. If for S; and 53, Si(a,b) < Sa(a,b), for all (a,b) € [0,1] x [0, 1], then it can

be said that S; is weaker than S;. It can be proven that S(«,b) > max(a,b).

accepting “a or b” requires less than accepting a or b alone.

4. The property of idempotency:

S(e,a) = a.



This property is useful in a situation in which there exist a possibility of a set

to be repeated, and we desire that this set has no double effect.

5. An S-norm is said to be strictly monotone if it is strictly increasing on ]0, 1] x

10,1] as a function from [0, 1] x [0, 1] into [0, 1]:
S(a.c) < S(b,d) when a<b, and c<d

An S-norm is called strict if it is continuous and strictly monotone.

2.2.3 Fuzzy sets intersection and union: Examples

There are several examples of T-norms and T-conorms. We list here the most fre-
quently used, and important ones.

Example 1: In his classical paper Zadeh [29] proposed to use:

Tmin(a,b) = min(a, b), as a conjunction. (minimum)

Smax(@,b) = max(«,b), as a disjunction. (maximum)

Min-max are the most popular in fuzzy literature. Ty, is the strongest T-norm,
while, Smax is the weakest T-conorm. If a modification of A (or B) does not neces-
sarily imply an alteration of AN B or AU B, therefore, N and U are said to be non
interactive. Min and max are non interactive operators. They are said to have a
dominance effect, for example, « and b € [0, 1], e Ay = ¢, fory € [, 1], and zVb = b,
for = € [0, b].

Example 2: One pair of the probabilistic like operators is:
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Tyroda.(@.b) = ab. as a conjunction. (algebraic product)

Ssum(a.b) =a + b — ab, as a disjunction. (algebraic sum)

Prod-sum operators reflect a trade-off between 4 and B, they. are said to be interac-
tive, because the outcome of the combination using one of these operators depends
on .4 as well as B, this means that any modification of 4 or B will affect -the outcome
of 4N B or AU B. These operators are used to eliminate the dominance effect of
min-max operators, wherever undesirable.

Example 3: Bold intersection and union:

Tyoa( e, b) = max(0,a + b — 1), as a conjunction. (bold intersection)

Spotd( @, b) = min(1l, @ + b), as a disjunction. (bold union)

Example 4: Drastic product and sum:
(
a if b=1

Ty(a,b) =q¢ b if a=1 - asa conjunction. (Drastic product)

0 otherwise
.
\

a if b=20

Sw(e,b) =< b if a=0 .asadisjunction. (Drastic sum)

1 otherwise
Ty 1s the weakest T-norm, and S5, is the strongest T-conorm.

To compare different T-norms (T-conorms), a graphical representation of these
T-norms (T-conorms) is given in [35]. These operators are ordered as follows:

T;u < Tbold S Tprod. S Tmin

Z Sbold Z Ssum > Sma..\’

r
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2.2.4 Operator selection

The variety of operators for conjunction and disjunction of fuzzy sets might make
it difficult to decide which one to use in a specific application. Zimmermann [37]

stated eight important criteria according to which operators can be classified:

I. Axiomatic strength: An operator is considered better if it satisfies the re-
quired axiomatic properties for a given application. These properties have

been discussed in section 2.2.

5\.‘/

Empirical fit: The operators must be appropriate models of real system be-
havior. This can be proven by empirical testing. Zimmermann and Zysno [38]

did some work in this aspect.

3. Adaptability: If we want to use a very small number of operators to model
many situations, then these operators have to be adaptable to the specific

context. This can be achieved by parametric families of operators.

4. Numerical efficiency: Parametrized operators usually require more computa-
tional effort than other operators like min or product. It is important to take

this issue into consideration when large problems have to be solved.

Compensation: This is the opposite of the dominance property which is pos-

Ut

sessed by minimum. Compensation effect is observed when the decrease in

the membership value of one of the components, intersection, is compensated
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Intersection operators | Union operators
T-norms T-conorms
minimum maximum

algebraic product algebraic sum
bold intersection bold union
drastic product drastic sum

Table 2.1: A summary of operators used to model fuzzy intersection and union

by an increase in the value of the other component. The product operator is

compensatory.

6. Aggregating behavior: If one combines fuzzy sets by the product operator,
each additional fuzzy set will normally decrease the resulting aggregate de-
grees of membership. This might' be desirable feature; it might be inadequate.
However, this will not be observed if the combination is done by the minimum

operator.

A summary of operators used to model fuzzy intersection and union is given in Table

2.1.

2.3 Implication Functions

The most widely studied type of fuzzy statements involving several variables is the
“If......Then.....” rule with fuzzy predicates. We will here write the If...Then state-
ment in the form “If z is A Then y is B.” The implication of logic is represented by
a truth table which specifies the truth value of the implication when the truth value-
of the antecedent, x = A, and of the consequence, y = B, are given. According to
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Zadeh [3]. a conditional statement “If & is 4 Then y is B”. describes a relation
between two fuzzy variables x and y. He, therefore, suggests that the conditional
statement should be represented by a fuzzy relation from the universe of the an-
tecedent to the universe of the consequence. This elementary conditional statement

can be represented by the following;:
taw = [(pa(x), pe(Y))
where [ is a fuzzy implication. I is a function of the form :
I:]0,1] x[0,1] = [0.1]

Dubois and Prade [39,40] made a summary of the different types of fuzzy implica-~

tions, some of them are discussed below:

1. Implication based on the classical view of implication, related to the formalizm

of Boolean logic : (where ¢ — b is defined by — « Vv b), and that of the form:
[(a,b) = S(n(a),b) (S-Implication)

Where S is a T-conorm, and n is a strong negation.
Examples:
By S(a,b) = min(l,a+b), and n(a) = 1 —a, the following implication function

is generated:

Ir(a,b) = min(l — a4+ b,1) (Lukasiewicz implication)
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By S(a.b) = a+b—aband n(a) = | — a, the following implication function is

generated:
Ire{a,b) =1 —a+ab (Reichenbach implication)

By S(a,b) = max(a,b) and n(a) =1 — «, the following implication function is

generated:

In_p(a.b) = max(l —a,b) (Ixleene-Dienes implication)

Implication related to the residuation concept from intuitionistic:
I{a,b) =sup{z €[0,1] | T(a,z) < b} (R-Implication)

Where T is a T-norm. This can be justified by the following classical set

theoretic identity:
a =>b=(a\b)=U{z |[anNz b}

Where \ denotes the set-difference.
Examples:
By T'(e,b) = min(a, b), the following implication function is generated:

1, if «<b B i o
Io;(a,b) = (G o del implication)

b, otherwise

By T'(a,b) = ab, the following implication function is generated:

1, if a=0 . o
Igo(a,b) = (Goguen implication)

min(1, 5), otherwise

18V
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By T'(e.b) = max(0.«¢+b—1). the following implication function is generated:

Ir(a,b) = min(l —a+b,1) (Lukasiewicz implication)

3. Implications based on the implication in Quantum logic:

I[(a,b) = S(n(a).T(a.b)) (QL-implications)

Where T is a T-norm, S is a T-conorm and n is a strong negation.
Examples:
By T'(«,b) = min(a.b), S(a,b) = max(a,b) and n(a) = 1 — «, the following

implication function is generated:
[zo = max(l — ¢, min(a, b)) (Zadeh implication)
By T'(a,b) = max(0,¢ +b — 1), S(a,b) = min(1, e + b) and n(a) = 1 — «, the
following implication function is generated:
Ix—-p = max(1l — a, b) (Kleene-Dienes implication)

In classical logic, “If « Then b” is always receives the same value as its contra-
positive, “If not-b Then not-a”. We will say that a fuzzy implication operator

— possesses contrapositive symmetry, iff:
(a =b)=(1-0b)—>(1—a)

It was found that contrapositive symmetry is, in general, in conflict with using
a T-norm and its n-dual T-conorm in generating the QL implications. Exam-
ples on QL implications generated from non dual T-norms and T-conorms:
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By T'(a.b) = min(a,b) and S(«.b) = min(1.a + b), the following implication

function is generated:
Ir(a,b) = min(l —a + b, 1) (Lukasiewicz implication)

By T'(a,b) = min(a,b) and S(«,b) = min(l,a + b), the following implication

function is generated:

Ir(a,b) = min(l —a + b,1) (Lukasiewicz implication)

. Interpretation of the implication as a conjunction:

[(a,b) =T(a,b)

This type is clearly not a generalization of the classical implication, but com-
plies with the classical conjunction. Fuzzy implication which are represented
by a conjunction are usually used in fuzzy control.

Examples:

I[(a,b) = min(a, b) ( Mamdani implication)

I[{a,b) =ab (Larsen implication)

2.4 Fuzzy control

2.4.1 Literature

During the past decade, fuzzy control (FC), initiated by the pioneering work of Mam-

dani and Assillian [41] (Steam Engine Control), which was motivated by Zadeh’s
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paper [42] (A rationale for fuzzy control), has emerged as one of the most active
and fruitful areas of research in the application of fuzzy set theory, fuzzy logic and
fuzzy reasoning. In contrast to conventional control techniques, FC is best utilized
in complex and ill-defined processes that can be controlled by a skilled human op-
erator without much knowledge of their underlying dynamics. Some of the most
important developments in this field is the work of Rutherford and Bloore [43] (
Analysis of control algorithms), Ostergaard [44] (Heat exchanger and cement klin
control), Willaeys [45] (Optimal fuzzy control], Fukami, Mizumoto and Tanaka [46]
(Fuzzy conditional inference), Takagi and Sugeno [47] (Derivation of fuzzy control
rules), Yasunobo and Miyamoto [48] (Predictive fuzzy control), Sugeno and Mu-
rakami [49] (Parking control of a model car), Kiszka, Gupta and Nikiforuk [50]
(Fuzzy system stability), Yamakawa [51] (Fuzzy controller hardware system).

Notable applications of fuzzy logic control include Steam Engine Control by
Mamdani and Assillian [41], a warm water process by Kickelft and Van Nauta Lemke
[52]; Heat exchanger by Ostergaard [44]; activated sludge wastewater treatment by
Tong, Beck and latten [53]; Traffic junction control by Pappis and Mamdani [54];
a cement klin by Larsen [55]; aircraft flight control by Larkin [56]; robot control
by Uragami Mizumoto and Tanaka [57], Scharf and Mandic [58], Wakileh and
Gill [59], Isik [60], Tsay and Huang [61], Hsu and Fu [62], Demirli and Turksen
[63]; model car parking and tuning by Sugeno and Murakami [49,64], Sugeno and
Nishida [63]; automobile speed control by Murakami [66].
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One of the main directions in the theory of fuzzy systems is the linguistic
approach, based on linguistically described models. It was originally initiated by
Zadeh [5] and developed further by Bezdek [67], Mamdani and Assillian [41],
Tong [68], Pedrycz [69], Takagi and Sugeno [70], Chiu [71], Emami et o/. [72]
and Demirli ef al. [24,73].

Stability analysis of fuzzy control systems is gaining much attention. Of var-
ious existing methodologies for stability analysis of fuzzy systems Mamdani [T4];
Negoita [75]; Braae and Rutherford [76]; Pedrycz [77]; Ray and Majumder [78];
Kiszka et al [50]; Langari and Tomizuka [79-82]; Tanaka and Sugeno [83]; Tanaka
and Sano [84,85]; Chen and Ying [S6].

Fuzzy logic control systems have found applications in household appliances
[87] such as air conditioners (Mitsubishi); washing machines (Matsushita, Hitachi);
video recorders (Sanyo, Matsushita); television autocontrast and brightness control

cameras (Canon); vacuum cleaners (Matsushita); microwave ovens (Toshiba);

2.4.2 Fuzzy models

We shall introduce two types of fuzzy models that have been widely employed in
various applications. The difference between these two models lies in the consequents

of their fuzzy rules.
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Mamdani fuzzy models

The Mamdani fuzzy model [41] was proposed as the first attempt to control a
steam engine and boiler combination by a set of linguistic control rules obtained
from experienced human operator. The basic idea of Mamdani fuzzy model is to
incorporate the experience of a human operator in the design of a controller for a
process whose input-output relationship is described by a collection of fuzzy control
rules involving linguistic variables rather than a complicated dynamic model. The

typical architecture of Mamdani fuzzy model is shown in Figure 2.2.

—_— e e e - — -y

1 )
Inference '
x x) . (y) y x
Fuzzifier 1 : Engine 2y Defuzzifier “ —
1
: States

or
Qutputs

Figure 2.2: The typical architecture of Mamdani fuzzy model

e Fuzzifier: It can be defined as a mapping from an observed input space to
labels of fuzzy sets in a specified input universe of discourse. In fuzzy control
applications, the observed data are usually crisp. A natural and simple fuzzi-
fication approach is to convert a crisp value 2 into a fuzzy singleton A within

the specified universe of discourse. That is, the membership function of A,
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Range of error | Normalized segments | Fuzzy set

e< 4 [1.-0.5] NB

6 <e<-2 [-0.75.-0.25] NM

4 <e<Z0 [-0.5.,0] NS

2<e<L?2 [-0.25.0.25] z

0<e<4 [0,0.5] PS5

2<e<6 [0.25, 0.75] PM
1<e [0.5.1] PB

Table 2.2: Normalization and fuzzy partition for [uzzy input varialole e

a(z), is equal to 1 at the point xg. and zero at other places. The fimzzification

involves the following functions.

1. Measures the values of input variables.

o
.

Performs a scale mapping that transfers the range of values of input into

corresponding universe of discourse.

3. Performs the function of fuzzification that converts input datam into suit-

able linguistic values which may be viewed as labels of fuzzy ssets.

The process of fuzzification is explained in Table 2.2. Figure 2.3 shows the

Diagrammatic representation of fuzzy sets corresponding to Table 2.2.

e The Knowledge base: It consists of a data base and a linguistic fuzzy control

rule base.

1. The data base provides necessary definitions. which are usedl to define
linguistic control rules and fuzzy data manipulation in an FC.
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NB NM NS z PS PM PB

-1 -0.75 -05 -0.25 0 0.25 05 075 1
e

[ I | I l | | | 1

-3 -3 -2 -1 0 1 2 3 4

Figure 2.3: Diagrammatic representation of fuzzy sets corresponding to Table 2.2

2. The rule base characterizes the control goals and control policy. Fuzzy

control rules are characterized by a collection of fuzzy [F-THEN rules.

e Inference engine: [t represents the processing unit. It determines the corre-
sponding output value from the measured input according to the knowledge
base. It has the capability of simulating human decision-making based on
fuzzy concepts and of inferring fuzzy control actions employing fuzzy implica-

tion and the rules of inference in fuzzy logic.

e Defuzzifier: Defuzzification is a mapping from a space of fuzzy control actions
defined over an output universe of discourse into a space of nonfuzzy (crisp)

control actions.

The components of the Mamdani fuzzy controller is introduced for a benchmark
example of balancing an inverted pendulum on a cart. Consider the inverted pendu-
lum mounted on a motor driven cart as shown in Figure 2.4. This is a model of the
attitude control of a space booster on take off. The inverted pendulum is unstable
in that it may fall over any time in any direction unless a suitable control force is
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applied. The objective of this controller is to balance the pendulum in the upright
position. Because all linear controllers are designed based on the linearized model of
the system, they are valid only for a region a bout a specific point. For this reason,
such linear controllers tend to be sensitive to parametric variations, uncertainties
and disturbances. To enhance the performance of the balancing control, we will use

a nonlinear control scheme, which is a fuzzy controller. The first task is to define the

Isin®
=
Y
\ €]
X /2
Ve
& —9—
Icos ©

X

Figure 2.4: The Cart-Pole system

inputs and the outputs, this stage depends on expert decision. Let us say that the
expert choses e = 64 —0 and é as two inputs and F is the control variable. Certainly
there are many other choices for the inputs, for example, the integral of the error.
In this system the force is the only choice. The membership function quantifies to
which linguistic value does the input value of a variable belong. Many shapes can
be used to define the meaning of a linguistic value, triangular, bell , trapezoid and

many others. The inputs e and € and their mapping into membership functions are



given in Figures 2.5 and 2.6 respectively. Figure 2.7 shows the fuzzification of the
output variable F.
In fuzzy control the expert will put the commands (rules) that will be used to

control the system in natural language.
® € : error
e ¢: change in error
e F': Force
Let the error, change in error and force take the following values:
NL : Negative Large
NM : Negative Medium
NS : Negative Small
ZE : Zero
PS: Positive Small
PM : Positive Medium
PL : Positive Large
To have the balance upright, 8, (the desired position) must equal to zero, then:
e=—0
e=-9
Note that:

e If 6 is negative, this means that pole is to the left of the upright position.
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Figure 2.7: The membership functions of the output (F’)

e If § is positive, this means that pole is to the right of the upright position.

Now the expert will specify a set of rules that describes the system behavior, one of
the rules is the following:

IF ¢ is NL AND é is NL THEN F is PL

There are 72 = 49 possible rules (all possible combinations of premise linguistic

values for two inputs), see Table 2.3.

To perform inference, there are four steps:

1. Matching (determination of the degree of membership of the input in the rule-
antecedent). This step is to take the inputs and determine the degree to which

they belong to each of the appropriate fuzzy sets via membership function.
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e
NL |NM| NS | ZE | PS | PM | PL
NL|PL|PL|PL|PL|PM|PS | ZE
NM| PL|PL|PL|PM| PS | ZE | NS
NS | PL|PL |PM| PS | ZE | NS | NM
e|ZE | PL |PM | PS | ZE | NS | NM | NL
PS {PM | PS | ZE | NS | NM | NL | NL
PM| PS|ZE | NS|NM| NL | NL | NL
PL | ZE | NS | NM | NL | NL | NL | NL

Table 2.3: All possible combinations of premise linguistic values for two inputs

2. Apply fuzzy conjunction operator. Once the inputs have been matched, we
know the degree to which each part of the antecedent has been satisfied for
each rule. If the antecedent of a given rule has more than one part, the fuzzy
operator and or oris applied to obtain one number that represents the result
of the antecedent for that rule. This number is called a firing strength and

will then be applied to the output membership function.

3. Apply implication function (computation of the rule consequences). The in-
ferred output of each rule is a fuzzy set scaled by its firing strength via impli-

cation function.

4. Aggregate all outputs( aggregation of rule consequences to the fuzzy set control
action). It is the process of taking all the fuzzy sets that represent the output

of each rule and combining them into a single fuzzy set.

There are two common applications of inference in fuzzy logic control. If we adopt

max and min as our choice for the T-conorm and T-norm operators, respectively,

39



and use max-min composition, then the resulting reasoning is called max-min-min
inference system and is shown in Figure 2.8. On the other hand, if max and algebraic
product are chosen for the T-conorm and T-norm operators, respectively, and max-

product composition is used, then the resulting reasoning is called max-product-

product inference system and is shown in Figure 2.9. Since technical processes
PS| PM PM PM  PB
Ifeis PS and deis PM A\ JAY A\
Thenuis PB \ / \ / i i i
de

u

ps| PM PM PM PB

PS

//\

PS
g oo / /\\ AN
T\ AR/ NN “ﬁ

e de 3

u

Figure 2.8: Graphical representation of max-min composition

requires crisp control actions, a procedure that generates a crisp value out of the
given fuzzy set is required. These defuzzification methods are based on heuristic
ideas like take the action that corresponds to the maximum membership. The most
commonly used defuzzification methods are: center of area (COA), center of sums
(COS), and mean of maxima (MOM).

In this example, the inference step and defuzzification step can be achieved

using the fuzzy toolbox of MATLAB. In the fuzzy toolbox, the AND operator is
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If eis PM and de is PS /\
Then v is PM

T\ /71 %\

Figure 2.9: Graphical representation of max-product composition

defined by minimum or product, THEN is defined by minimum, and maximum
is used as an aggregation operator. This arrangement is called Mamdani type of
inference or max-min-min inference system. Simulation tests are carried out with the
Fuzzy Toolbox for MATLAB and Simulink. The first step is to guantify the meaning
of the linguistic values from Table 2.3. This is done by specifying the membership
functions for the fuzzy sets. The inputs e and é and their mapping into membership
functions are given in Figures 2.5 and 2.6. The following step is to edit the rules
from Table 2.3 using the rule editor. Finally, we can test the fuzzy system using a
set of inputs. The fuzzy system should give a crisp control value. This completes
the operation of the fuzzy controller. One of the great advantages of the fuzzy
toolbox is the ability to take fuzzy systems directly into Simulink and test them out

in a simulation environment. A Simulink block diagram for this system is shown in
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Figure 2.10. Mamdani method is able to stabilize the pendulum with a very smooth
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Figure 2.10: Simulation of the inverted pendulum fuzzy control

response and with a steady state error which is equal to zero. Figure 2.11 shows the
time diagram of the angle when max-min-min method is used. Position of the cart

is given in Figure 2.12.
Sugeno fuzzy model

Sugeno model [70] is first introduced in 1985. The type of rule referred to as a
Sugeno rule has the following form:

IF eis NL AND ¢éis NL THEN F' = f(e, €)

which shows that the rules have fuzzy antecedents, just like Mamdani controller,

and consequences of these rules are functions of the controller inputs rather than
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Figure 2.11: The time diagram of § with max-min-min inference system
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Figure 2.12: The time diagram of z with max-min-min inference system
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fuzzy sets. The consequence function is usually a first-order polynomial but other
types can be used as long as all rules collectively can appropriately describe the
output of the model within the fuzzy region specified by the antecedents. When
the consequent is a first-order polynomial, the resulting fuzzy systém is called a
first-order Sugeno fuzzy model. The rule results are aggregated as weighted sums of
the control actions corresponding to each rule. For example, Consider the following

set of Sugeno fuzzy rules that describe the behavior of a fuzzy system:

Rl : IF T is .4.1 AND T2 is B1 THEN w = a;r; + bl.’lfg
Rz : IF T is .-42 AND T2 1S By_ THEN Wy = ATy + bz.’l?z

e Using Sugeno approach
e with the fuzzy inputs z;9 and x99
e the conclusions w] and wj are obtained as shown in Figure 2.13.

The firing strength of the rules, denoted ai,k = 1,2 are computed by

a; = T'(A(x1), 31(1‘20))’ .
a2 = T(Ax(x10), B2(220))

A Truin 1s used as a conjunction operator in Figure 2.13. Each rule conclusion

is obtained by:

w] = a1 + biTo0
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wy = axr o + b2

The the over all system conclusion is obtained by

. QpFw] 4 ag *w;

w

ap + o
B
w=ax+b, x, o ,=P§A$xm )
wi¥=a, X, + b X,
X,
B
W= X+ by X, OL=H (X )
i
--------- wi=a, Xo+ 8 X,
X0 Xy Xan X

Figure 2.13: Fuzzy inference with two antecedent using Sugeno approach

In practical applications the simplest case of Sugeno rules is that when the
consequences are constants, this means that all output membership functions are
fuzzy numbers. When the consequent is a constant, we then have a constant conse-
quent Sugeno fuzzy model. Sugeno system has several advantages. From a control
engineering prespective the use of local models bridges the gap between fuzzy control
and conventional control. Many existing tools and theories in linear systems theory
can be partially applied to Sugeno fuzzy models and controllers. The relationship
to gain scheduling is evident, as discussed in Chapter 4. Sugeno system is compﬁ-
tationally efficient, and better suited to mathematical analysis. However, Mamdani
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system has a widespread acceptance and better suited for human inputs. Sugeno
fuzzy model is used for modeling and control of nonlinear systems in all applications

presented in this thesis.
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Chapter 3

Interpolation behavior of Sugeno

fuzzy controllers

In recent publications Sugeno reasoning is considered as a powerful tool for system
modelling and control. Therefore, it is important to analyze what type of interpola-
tion function does this reasoning type result in. In this chapter, the influence of the
shape, the distribution of the membership functions and the order of the functional
consequent (in case of Sugeno controller) on the interpolation function of the fuzzy
system is investigated. A linear membership function, product conjunction operator,
and a general functional consequent are used. Different interpolation behavior can
be observed by changing the conjunction operator to minimum, or the membership

function to Gaussian.
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3.1 Introduction

Many investigations [17,88,89] proved that fuzzy systems can approximate a suffi-
ciently regular mapping from inputs to outputs to any degree of accuracy. To achieve
a better understanding of the approximation and interpolation capability of fuzzy
systems. the influence of the fuzzy set parameters and the reasoning method on the
interpolation function of the fuzzy system is needed. In this chapter, we investigate
the influence of the shape and the distribution of the membership functions and
the order of the functional consequent (in case of Sugeno controller [70]) on the
interpolation function of the fuzzy system.

Each rule form a node in the interpolation net of a fuzzy system. The fuzzy
system interpolates between these nodes using an interpolation function, which de-
pends on the shape, the distribution of the membership functions. the conjunction
operator of the antecedents, and the order of Sugeno functional consequent. A math-
ematical study of the influence of these parameters on the interpolation function of

the fuzzy systems will help achieve a general understanding of these systems.



uix )

Figure 3.1: Membership functions for input 2

3.2 Sugeno controller with single input, 0.5 com-
plementary triangular membership functions

and functional consequent

The interpolation function of Sugeno controller with single input, 0.5 complemen-
tary triangular membership functions [11}, and functional consequent is considered.
Consider a two-rule system, where the membership functions are as given below and
shown in Figure 3.1. The Sugeno rules have the following format:

IF z is mfi; THEN f(z) = ao; + a2t + a2122 + oo + apgz™

IF 2 is mfi, THEN f(x) = ao2 + @127 + @922% + ... + @nz2”

where
0 If a<—a
Emprn(T) = I;:’ If —a<z<a
1 If x>a
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1 If < —a

fmfi2(T) = :’gaﬂ If —a<r<a

0 If z>ea
The overall output can be calculated as a weighted sum of the outputs of all rules

(z = 1,2). Degree of fulfilment has to be calculated for each rule. The output of the

controller is:
2

92
> ai@oi + @i + az® 4 ... 4 Gnia”)

flz)==2 . (3.1)

where the degrees of fulfilment, c; and as, are i,y () and g pi2(), respectively.
For the considered membership functions, pmsi1(2) + pmsi2(z) = 1. The overall

output can be rewritten as:

y = an-;aQo + (aox—aoz)-i;(aaua+alza)m + ..+ anlz—:nz el (3.2)

PROPOSITION 1:The interpolation function of Sugeno controller with single in-
put, 0.5 complementary triangular membership functions, and functional consequent
is a polynomial function of the input. The order of this polynomial is one degree
higher than that of the functional consequent. Therefore, increasing the order of
Sugeno consequent by one will increase the interpolation order by one.

Only two special cases are proven below, but one can prove it in general.

Special case 1: Sugeno controller with single input and constant consequent
Consider the Sugeno controller with single input, 0.5 complementary membership

functions and constant consequent, i.e., n = 0 in Equations (3.1) and (3.2). The



overall output can be calculated from the general equation above as:

2y — 801—002 .. ag1 +ag2
y =g+ 7

As this equation shows, the output for a triangular membership function is a lineear
function of x. This relation is determined by the shape of the membership functieon,
since the consequent of the rules is constant. The above equation shows that omly

two constants are required to determine the appropriate action for any input. Theese

constants, 22-202 and 2014902 - are completely determined by the rule base and tghe
midpoints of the triangular membership functions of the input domain. A simizlar
but more complicated expression can be derived for Gaussian membership functions
which shows a smoother interpolation behavior, as it is demonstrated in Examples 1.
EXAMPLE 1: This example shows that we can achieve a smoother interpolatbon
by changing the shape of the membership function from triangular to Gaussian.

For x =0, ...,10;

~_sin(2x) | rand( size(x))
V== 30

where rand is random number. The Sugeno fuzzy model of the above equatmon
generated by ANFIS is shown in Table 3.1. The root mean squared errors (RMSSE)
is 0.082638. Triangular membership functions are used to partition the input spaace
as shown in Figure 3.2. Each row in this table represents a rule. For example, tihe
first rule is:

If 2 is inlmfl THEN y = 3.83x — 0.04608
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R; T a1 ;o
R; | inlmfl 3.83 | -0.0460S
Ry | inlmf2 | 2.252 -6.215
R3 { inlmi{3 | 0.8179 -4.535
Ry | inlmf4 | 0.8164 -5.75
Rs | inlmf5 | 1.455 -14.34

Table 3.1: The fuzzy model of 5 rules using triangular membership functions
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Figure 3.2: Triangular membership functions for the input (z)

where inlmfl,..., inlmf5 are the triangular membership functions for the input (z).

Sugeno output is shown in Figure 3.3. By changing the membership function to
Gaussian type the RMSE is reduced to 0.026449. The Sugeno fuzzy model is also
generated by ANFIS and shown in Table 3.2. Gaussian membership functions are
used to partition the input space as shown in Figure 3.4. Figure 3.5 shows the
output of the Sugeno fuzzy model with Gaussian membership functions.

Special case 2: Sugeno controller with single input and linear consequent
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Figure 3.3: Sugeno with 5 rules, linear consequent, and triangular membership
function

R; T aiy aio
Ry | inlmfl | 3.158 | 0.5444
Ry | inlmf2 | 1.721 -6.08
Rz | inlmf3 | -0.9669 | 3.979
R,y | inlmf4 | -0.875 6.534
Rs | inlmf5 | -0.1023 | 1.276

Table 3.2: The fuzzy model of 5 rules using Gaussian membership functions
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Figure 3.5: Sugeno with 5 rules, linear consequent, and Gaussian membership func-
tion



Consider the Sugeno controller with single input and linear consequent, i.e., n = 1

in Equations (3.1) and (3.2). The overall output of the controller is:

= (a1 —a52 2 ag);—agr+ajjatajra . ao1+aq2
y ( 2a ) z° + ( 2a ) T+ 2

The overall output is a quadratic function of x. This relation is determined by the
shape of the membership function, and the consequent of the rules. This means that
the interpolation has a higher degree than that of a constant consequent. Increasing
the order of Sugeno consequent by one will increase the interpolation order by one.
Higher order interpolation for this kind of Sugeno controller can be achieved by
higher order consequent. For example, it can be shown that a second order conse-
quent, and a triangular membership functions for the antecedent will give a third

order interpolation.

3.3 Sugeno with single antecedent, noncomple-
mentary membership functions, and functional
consequents

The interpolation function of Sugeno controller with single input, noncomplementary

triangular membership functions, and functional consequent is considered. Consider

the two-rule system in Equation (3.1) with the following membership functions:



u(x )

mfl2

Figure 3.6: Membership functions for input

0 If z<ec
Ema(T) =49 2= If c¢<a2<d
1 If z>d

1 If 2<b
Hmfr2(T) = < —Zia If <z<a

0 If z>a
These rnemb%:rship functions are shown in Figure 3.6. The output of the controller

is: ,
oi(ag + air + @+ ...+ Un;T™)

flz) ==

- (3.3)
2 o
=1

where the degrees of fulfilment, a; and s, are gmyr11 (2) and pm12(), respectively.
Then the output can be rewritten as

_ ko + kyx + kax? + ... + by 2™t

1
Y go + 1T

(3.4)

where,
ko = aaga(d — ¢) — cagi(a — b),
ky = (ao1 — cayy)(a — b) + (aai2 — ag2)(d — ¢),
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ke = (ay; — caz)(a —b) + (awz — ay2)(d — c),

Engr = ani(a — b) — ana(d — c),

go = ad + ¢cb — 2ac,

gi=a+c—b—d

PROPOSITION 2:The interpolation function of Sugeno controller with single in-
put., noncomplementary triangular membership functions, and functional consequent
is a rational function. The numerator is a polynomial. The order of this polynomial
depends on the order of the consequent. The denominator ts a linear function of the
mput.

Two special cases are proven below.

Spectal case 1: Sugeno with single antecedent, noncomplementary membership func-
tions, and constant consequent

The overall output can be calculated from the general equation above, for n =0 in

Equations (3.3) and (3.4). The overall output of the controller is

- (a01(a—b)—ag2(d—c))r+{aaga(d—c)—cagi (a—b))
y= (a+c—b—d)z+(ad+cb—2ac)

The output is not a linear function of x. This relation is determined by the shape
and the distribution of the membership functions. In this case the fuzzy system per-
forms a nonlinear interpolation. The output is a rational function. The numerator

and the denominator are of the same order, since the consequent is constant.
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Special case 2: Sugeno with single antecedent, noncomplementary membership func-
tions, and linear consequent
When the consequent is a linear function of the input, i.e.,n =1 in Equations (3.3)

and (3.4). The overall output of the controller is:

y = a3z
Y (a+c—~b—d)r+(ad+cb—2ac)

where,

a = (aii(a — b) — ar2(d — ¢)),

B = (aor — cayr)(e — b) + (aaiz — age)(d — ¢),

v = ato2(d — ¢) — cagi(a — b).

The output is a second order function of . in the numerator, which is determined
by the shape of the membership function, and the consequent of the rules. The
denominator is a linear function of z, which is determined by the distribution and the
shape of the membership functions. Increasing the order of consequents will increase

the order of the numerator, but will not change the order of the denominator.

.
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Figure 3.7: Membership functions for input z;, and z,

3.4 Sugeno controller with two inputs, 0.5 com-
plementary membership functions and func-

tional consequents

The interpolation function of Sugeno controller with two inputs, 0.5 complementary
triangular membership functions, product conjunction operator, and functional con-
sequents is considered in this section. Consider the case of two inputs, z; and z,,
with two fuzzy partitions in each input space, as shown in Figure 3.7.

Sugeno rules with two inputs and functional consequent are:
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IF xyis mfy; AND x5 is mfo; THEN y = fi(z1.x2)

IF 2y is mfy AND Ty is mfo; THEN y = fo(xy, 22)

IF x; is mfi; AND 2, is m fo; THEN y = f3(2), 22)

IF' x, 1s m fi2 AND 2, is m fop THEN y = fi(z1, 22)

Another factor is added in these rules that will affect the interpolation function of
Sugeno controller. This factor is the conjunction operator of the antecedents. De-
gree of fulfilment for each rule is:

@y = T(pmsui(21), fmp21(22))

a2 = T(ptmp12(x1), pim p21(22))

az = T(ptmpi1(x1), phms22(x2))

@y = T(fmp12(T1), fm 22(2))

where T' is a t-norm, which will be chosen as product in this chapter. For T =

product

01 = fhm p11( 01 ) empa1(32) = SEEREtaRtn,
@2 = fmp12(T1 ) mpar(72) = SELER=eREIOEE0 02
Q3 = m f11(F1 ) mp2a(w2) = =HEREe2ELSGT2 e 02
@y = fimf12(%1 ) ftmp2a(T2) = r‘ﬂ—aoi::;rﬁmm

The overall output of the controller is:

y = ZaiABC (3.3)

i=1
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where

-‘1=[l Ty - 'L;]

Qo: ari T Un;
A1) A(n42): ct A(2n+1)i
B =
Un(nt1)i Ca(n+1)+1)i """ C(n(n+l)+a)i
1
T
C =
T
.Zrl

PROPOSITION 3:The interpolation function of Sugeno controller with two in-
puts, 0.5 complementary triangular membership functions, product conjunction op-
erator, and a functional consequent is a polynomial function of all inputs. The order
of this polynomial depends on the order of the functional consequent.

The following are two special cases.

Special case 1: Sugeno controller with two inputs and a constant consequent
Consider the Sugeno controller with two inputs and a constant consequent, i.e.,

n = 0 in Equation (3.5). The overall output of the controller is

y = o [ao1] + aa [aoz] + oz [cos] + o4 [cod] -

Let us rewrite this as:

y = ko1 + ko + kosz2 + kosz122
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where

k —. aqy)+ag2+apa+aos
ol — o4 b

k — agp—ag2+anga—agq
02 4(1 1 k]
. . — &gjtapgr—aga—agy

[“03 — .

dan

@9 —ag> —aga-+agy
da 142 -

The output is a linear interpolation with respect to each input (this includes the
interaction term x;x3).

Example 2: For z; =0,...,4, and for 25 =0,....,4

The fuzzy model of the above equation is shown in Table 3.3. Each row in this table
represents a rule. For example, the first rule is:

If z; is mfl AND z, is mfl THEN z =0

where mfl,..., mf3 in the second column of Table 3.3 are membership functions for
the first input (x;) and mfl,..., mf3 in the third column of Table 3.3 are membership
functions for the second input (z3).

The output of a fuzzy system with 9 rules, triangular membership functions, prod-
uct conjunction operator and constant consequent is shown in Figure 3.8. The
membership functions for 2; and z; are shown in Figures 3.9, and 3.10. The inter-
polation between the nodes is linear. Different interpolation behavior between the

nodes can be observed by changing the conjunction operator to minimum, Figure
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R; | x; Ta =z
Ry |mfl |mfi]| 0
Ry |mfl | mf2 | 4
R3 | mfl | mf3 | 16
Ry | mf2 | mfl | 4
Rs | mf2 | mf2 | §
Re | mf2 | mf3 | 20
R | mf3 | mfl | 16
Rs | mf3 | mf2 | 20
Ry | mf3 | mf3 | 32

Table 3.3: The fuzzy model of 9 rules

Figure 3.8: Sugeno FIS with 9 rules, constant consequent, triangular membership
function and product conjunction
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Figure 3.9: Triangular membership functions for input z;
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Figure 3.10: Triangular membership functions for input



Figure 3.11: Sugeno FIS with 9 rules, corastant consequent, triangular membership
function and minimum conjunction

3.11, or by changing the shape of the mem bership function to Gaussian, Figure 3.12.
The Gaussian membership functions for @; and x, are shown in Figures 3.13, and
3.14.

Special case 2: Sugeno controller with tzvo inputs and bilinear consequent
When the consequent is a linear function with respect to each input ( called bilinear

consequent), i.e., n = 1 in Equation (3.5), the overall output of the controller is:
Y=¢go+ g1 + G222 + gax1 T2

where
go = koy + koax; + kozz2 + kouz i),
g1 = ki + ko + kizze + klaziza,

g2 = ka1 + kaoz) + koaTa + koyzi0,



Figure 3.12: Sugeno FIS with 9 rules, constant consequent, Gaussian membership
function and product conjunction
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Figure 3.13: Gaussian membership functions for input z;
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Figure 3.14: Gaussian membership functions for input x,

g3 = kay + ka1 + k332 + kasxiz2,

'Ii"il — antei -‘I‘-a,'o. +aiq

Y

e — Gj1—@j2fa;3--a4
/"12 - 2 2 b}

4a;

241 j:[li') —a;2—aq

4az ?

ko
&
I

ki = aspsaten,

The output of the controller is a second order interpolator with respect to each input
(this includes all interaction terms, such as z2z%). In the above case, a more general
consequent (includes all interaction terms) than that of Sugeno [70] is used. If the
interaction terms between the input variables are not considered, the output of the

controller will still be a second order interpolator with respect to each input without

the interaction terms.
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In general, it can be shown by induction that for a controller with any number
of inputs, product conjunction operator, constant consequent and 0.5 complemen-
tary triangular membership functions, the output is a linear function with respect
to each input. Increasing the order of TS consequent by one will increase the inter-

polation order by one with respect to each input.

3.5 Sugeno with two inputs, noncomplementary
membership functions, and a functional con-

sequent

The interpolation function of Sugeno controller with two inputs, noncomplementary
membership functions, product conjunction operator and a functional consequent
is considered in this section. Consider the case of two inputs, x; and x5, with two
fuzzy partitions of each input space, as shown in Figure 3.15.

The overall output of the controller is:

i CY{ABC'
y==— (3.6)

where A, B, C and «; are defined in Section 3.4.

PROPOSITION 4:The interpolation function of Sugeno controller with two in-
puts, noncomplementary triangular membership functions, and functional conse-
quent is a polynomial function of each input in the numerator. The order of this
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Figure 3.15: Membership functions for input z, and x5

69



polynomial depends on the order of the rulc consequents. The denominator is a lin-
ear function of all inputs.

A special case is considered and proven below:

Special case: Sugeno with two inputs, noncomplementary triangular membership
functions, product conjunction operator and constant consequent

When the consequent is a constant, i.e., n = 0 in Equation (3.6), the overall output

of the controller is:

_ kos122 + koay + ko2 + ko
/i.'os.’l?lili-z + ko';':l,‘]_ + k‘os.‘l,'g + 1:705

where
koy = riag; — Toag2 — r3aos + Tido4,
koz = —T1ag1c2 + r2a02¢2 + T332 — r3dpsds,
koz = —T101C1 + T20p2¢; + T3Q03C1 — T4lo4ly,
k‘o]_ = 1"1CiCy — Tl Cy — T3U2Cy -+ rqtiag,
kos =1 —ry —rz+ry,
kor = —r162 + T202 + 302 — 1402,
kos = —ricy + r2ay + r3e; — ryas,
kos = ricica — raa1c2 — r3aqcy + reaias,
=L
1 (di—c1)(d2—c2)?
r - !
2 7 (a1-b1)(dz2—c2)?

-1
T3 = @ =c)(az=ta)’



™= G

In general, one can show that for a controller with any number of inputs, product
conjunction operator, constant consequent and noncomplementary triangular mem-
bership functions, the output is a rational function, which is a linear function with
respect to each input in the numerator as well as in the denominator. Increasing
the order of Sugeno consequent by one will increase the order of the function in the

numerator by one with respect to each input, while the denominator will remain a

linear function with respect to each input.



Chapter 4

Fuzzy control of nonlinear system
based on known dynamic: Fuzzy

gain scheduling approach

In this chapter, an interactive procedure is presented for controller design of nonlin-
ear systems by integrating available classical as well as modern tools such as fuzzy
logic, and neural networks. The proposed approach is based on quasi-linear dynamic
models of the plant. Classical optimal controllers for each set of operating condi-
tions were developed. These controllers are used to construct a single fuzzy-logic
gain scheduling-like controller. Adaptive-neuro-fuzzy inference system was used to
construct the rules for the fuzzy gain schedule. This will guarantee the continuous
change in the gains as the system parameters change in time or space. This proce-

dure is systematic and can be used to design controllers for many nonlinear systems.
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Two degrees of freedom planar manipulator was chosen to show the effectiveness of
the proposed approach. A robot manipulator is inherently unstable and displays a
strong nonlinearity. The resulting system is stable for different reference trajecto-
ries. The system is robust for wide range of driving frequencies of the input. Also,
the proposed approach is applied on a well known bench mark system which is the

inverted pendulum.

4.1 Introduction

The cooperative use of fuzzy logic and neural networks to control a nonlinear dy-
namic systems found many publications [11,12,45,47,49,51,57,70,90-94] due to
their ability to deal with complex systems and effective in nonlinear mappings. In
spite of the learning ability of neural networks, it has some limitations. Its archi-
tecture depends on expert’s decision, and there is no guidelines to determine the
number of layers. Fuzzy logic can control the system with partial knowledge of the
systems dynamics, and provides a compact structure of rule representation, but it
lacks the learning ability. On the other hand, in many cases of more complex and
highly nonlinear systems, the conventional technology is not sufficiently strong to
represent and implement the knowledge needed for powerful solutions. Some of these
approaches have cornplementing»strengths that may overcome certain limitations.

Recent research trend indicates a use of combined approach.



The proposed approach is based upon using fuzzy logic to blend the individ-
ual point designs such that for any trajectory in the parameter space, the system
performs adequately. The ability to systematically design such a dynamic sched-
uler is a major contribution. The goal of this research is to derive and explore a
technique to design a fuzzy-logic gain scheduling-like controllers for nonlinear plants
using point-wise designs that adequately span the parameter space of the plant to
be controlled. The ability to base the controller on point-wise designs allows the
designer to use all available tools of classical, modern and robust control theory to
aid in the solution.

In this chapter, the proposed approach utilizes the advantages of gain schedul-
ing, fuzzy logic control, neural networks, and optimal control theory. This approach
starts with linearizing the plant dynamics about different equilibrium points. The
effect of various parameters can be introduced and studied. This results in a linear
model of the system. Using one of the optimal control algorithms such as LQR, a set
of gains are obtained for each equilibrium point. Subtractive clustering and ANFIS
are used to construct the rules for the fuzzy gain schedule. The fuzzy gain schedule
is used to continuously provide the controller with gains as a function of the states
of the system. Conventional gain schedule cannot work efficiently when controlling
a fast varying system, which is a major drawback. The fuzzy gain schedule provides
a smooth gains without any discontinuities. Therefore, there will be no spikes in the

response due to jumping from a set of gains to another.
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4.2 Linear quadratic regulator

LQR can be used to design an optimal controller. The LQR cost function is the sum
of the steady state mean square weighted state z, and the steady state mean square
weighted control effort u. The linearized system can be expressed in the state space

as follows

r= Acx + Bu (4.1)

The LQR. cost function is

Jigr = é/too(;t(t)TQ;v(t) +u(t)T Ru(t))dt (4.2)

2J1
where ) and R are positive semidefinite weight matrices; the first term penalizes
deviation of z from zero, and the second term represents the cost of using the
actuator effort. Standard assumptions are considered, (@, A) are observable, and
(A, B) are controllable. With these assumptions, there exists a controller ( [x’Iqr)
that achieves the smallest LQR cost, which is simply a constant state feedback.

This controller
Kipr = —R7'BT X, (4.3)
where X, denotes the unique positive definite solution of the algebraic Riccati

equation

ATXgr + XiorA — X4 BR™'BT X, =0 (4.4)
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then.

u=—Nygrz (4.5)

i= (4 — BK)z (4.6)

4.3 Subtractive Clustering

Subtractive clustering proposed by Chiu [71], is considered as an alternative to the
mountain clustering algorithm. In this algorithm all data points are considered as
candidates for cluster centers, this will solve the problem of computational complex-
ity in mountain clustering when the dimension of the problem under consideration is
increased. In subtractive clustering the computational complexity is proportional to
the number of data point and has nothing to do with the dimension of the problem.
The density measure at any point z; is equal to

N 2
vl — 25 -
P =3 exp(— i %l (4.7)

j=t T

where z; is the ’th data point and /N is the total number of data points, 7 is a
positive constant and is selected as 4, r, is a constant that define the neighbourhood
(data points outside this radius will contribute less to the density measure). The
data point with the highest potential (density measure) is selected as the first cluster

center. To find the next cluster center, we reduce the effect of the previous identified

cluster center and the data points near this center by revising the density measure,



this is done by subtraction as shown in the following equation:

T
Pi= P — Pexp(~ Izl (4.3)
b

ry, = n ¥ Ty (4-9)

where P is the potential of the &£’th cluster center and ¢ is the k'th cluster center.
ry is a constant defines the efficient subtractive range, 7 is a positive constant called
squash factor, r is a positive constant greater than r, which helps avoiding closely
spaced cluster centers.

After subtractions the second cluster center is selected based on its new poten-
tial in relation to an upper acceptance threshold € called accept ratio, lower rejection
threshold ¢ called reject ratio, and a relative distance criterion. This process is kept
repeated until a sufficient number of cluster centers is identified in the input and
output space (see [24,73] for more details). Subtractive clustering has four signif-
icant parameters, accept ratio €, reject ratio g, cluster radius r, and squash factor
7 (or rp). These parameters have influence on the number of rules and the error
performance measures. For example, a large value of r, generally results in fewer
clusters that lead to a coarse model. On the other hand, a small value of r, can
produce excessive number of rules that may result in an over-defined system. The
optimal parameters suggested by Chiu are 1.25 < n < 1.5, 0.15 < r, < 0.30, €=0.5
and €=0.15. The membership functions of all data points in each input space are
assigned exponentially as proposed by Chiu [71] with respect to all cluster centers
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as follows:

—v lloi — el

2
Ta

pij = exp( ) (4.10)

where |[2; — ¢¢[| is the distance measure between the #'th data point and &'th cluster

center.

4.4 Adaptive network-based fuzzy inference sys-

tem

Adaptive network-based fuzzy inference system (ANFIS) [95,96] combines the struc-
ture of fuzzy logic controllers with the learning aspects from neural networks. If
human expertise is not available, we can still set up intuitively reasonable initial
membership functions and start the learning process to generate a set of fuzzy if-
then rules to approximate a desired data set. ANFIS uses a highly efficient training
method that combines gradient descent and least-squares optimization to improve
training speed compared to standard backpropagation. Summarizing from [95],
ANFIS implements a first order Sugeno fuzzy system. ANFIS structure is shown in
Figure 4.1. Layer 1 consists of membership functions described by generalized bell
function. Layer 2 implements the fuzzy AND operator, while layer 3 acts to scale
or normalize the firing strengths. The output of the forth layer is a linear combina-

tion of the inputs multiplied by the normalized firing strength. Layer 5 is a simple
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summation of the outputs of layer 4. Layers | contains premise modifiable param-
eters. and layer 4 contains consequent parameters. The consequent parameters are
identified by a least squares estimator in the forward pass. In the backward pass.
the consequent parameters are held fixed. and the premise parameters are modified
using gradient descent. The user specified information is the number of member-
ship functions for each input, the membership type. and the input-output training

information.
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Figure 4.1: ANFIS structure



4.5 Continuous gain scheduling

The basic idea of gain scheduling is to linearize the system at different operating
regions. Using a linear control design approach, a gain matrix A is associated with
every region. A supervisor controller continuously monitors the state of the system
and identifies the operating region. Once a region is identified, the controller uses
the associated gain K as in (4.6) or interpolates between the gains. Similar to
conventional gain scheduling, continuous gain scheduling gains are obtained from
the corresponding linear models of the plant under consideration. However, the
continuous gains are obtained from finely spaced points over the operating domain
of the plant with the corresponding optimal gains used as points to be tabulated
as functions of the state of the system. This table of input-output data is used to
construct the rules for the fuzzy gain scheduler. This procedure will be repeated for
all elements of the gain matrix. Therefore, we will have n x m fuzzy systems that
approximate the gain matrix (n is the number of the states and m is the number of
inputs).

Note that this will effectively approximate the solution of the algebraic Ric-
cati equation over the state space. The solution of the algebraic Riccati equation
over the state space is complicated and expensive because to achieve optimality, the

equation has to be solved at every sample time. On the other hand, our approach



approximates this behaviour by solving the equation a number of times which cor-
responds to the number of operating regions and interpolates between these points
using a fuzzy approximator.

The stability of the proposed approach is better than that of both coarse
and fine gain scheduler. One can argue about stability of the system from the
improvements over the classical gain scheduling. Conceptually, when the system
moves from one operating region to another, the gains will evolve in a smooth
manner regardless of the speed of variation or motion. This overcomes the problem
of switching between gains in the classical controller, especially, with fast varying
systems. Consequently, if there exists a stable classical gain scheduling controller,

the corresponding continuous fuzzy one is also stable with smoother response.

4.6 applications

The proposed approach of fuzzy gain scheduling is used to control a two-link robot
manipulator. The system is tested for different reference trajectories and for a
wide range of driving frequencies of the inputs. Also, the proposed approach is

implemented on the unstable inverted pendulum, as shown in Chapter 6.



4.6.1 LQR-Neuro-Fuzzy controller of a two-link robot ma-

nipulator

Control of robotic manipulators is a difficult task, due to the complexity of the
dynamic model of the arm. The equation of motion of a robotic arm is of the

following general form:

M(0) 6 +c(0,0) + h(6) =T (4.11)

where Af(8) @ represents the inertia associated with the distribution of mass, c¢(8, )
is the velocity coupling due to the centrifugal and Coriolis forces, k() is the loading
due to gravity, and 7 is the applied torque. For an n-axis robot, the manipulator
is modelled as a simultaneous system of n highly coupled nonlinear second order
differential equations. A two link robot manipulator is shown in Figure 4.2. Almost
all of the advanced robot control methods are difficult to implement in reality. This
is due to the fact that obtaining an accurate mathematical model of the robot
is not an easy task. Also, implementation of these controllers is difficult because
it requires a lot of computations and needs a very fast microprocessors. Fuzzy
controller does not require the model of the system. It can control a robot without
solving complicated equations. In recent years, some papers have appeared in the
literature using a combination of fuzzy control and well-known control techniques,

This combination takes advantage of both controllers. One of the earliest studies
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Figure 4.2: Two dof planar manipulator

was conducted by Scharf and Mandic [97] in 1985. Also, a significant work was done
by Wakileh and Gill [59]. Lim and Hiyama [98] proposed a method which is based
on a conventional PI and a Fuzzy control in 1991. Two other methods which are
based on a combination of sliding mode and fuzzy control were presented by Tsay
and huang [61], and Hsu and Fu [62]. Most of the industrial robots are designed to
work in a well-structured envir‘onments. But they may still face parametric changes
such as friction and disturbance torques. For simplicity, it is assumed that the links
masses are concentrated either at the ends or at the centers of the links, which is
not the case in reality. As a result of these uncertainties, it is very difficult to obtain

the exact mathematical model of the robot. The closed form dynamic equations in
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terms of 8; and @, are given below:
di 01 +di2 G2 +hyi + 1 = 7

di2 61 +daa 02 +ha + P2 =72

From the above equations:

1
dzz(‘fl —hy — &) — d12(7‘2 — hy — ¢52)]

=< |

fa= % [di1(m2 — ha — ¢2) — dia(T1 — h1 — 1]

where

A = daadi; — C[fz

dip =md? +ma(B+ 1%, +201locos0,)+ [, + [,
dog = mal% + 1>

dis = 7722(132 + il cos8y) + I,

hy = —maliles 62 sin 0y — 2maliles f162 sin b,

he = malile 03 sin 8,

&1 = (mila + mali)g cos by + malog cos(; + 65)
b2 = malegcos(0; + 0,)

At equilibrium point

f1=6=0

hiy=hy, =0

This results in

(4.12)

(4.13)

(4.14)

(4.15)



doa(Ty — 1) — diz(T2 — $2) =0

dy1(m2 — &) — dia(11 — 1) =0 ;
(n=¢1) __ dy5 .
(r2—a2) = dap
(n—¢1) _ dy .
(r2—¢2) diz
Redefine the joints angles and their derivatives as follows
0, = f(z1, %2, 73,24, 71, T2)
Ty = 01
T =0,
T3z = 92
Ty =0,
9f _ 1 _8hy _ 3b1y _ dpa _ - _ __Oha __ J¢2
3ar = n o2 . 3:1:1) Ar (2 — ha — ¢2) — dia( 3z, _ ar,
A
1) — dia(12 — ha — ¢2)]31:1
Bhy _. dia __ Bha __ 3A =0
(7171 - 31’1 - 31‘1 - 37:1 -
af 1 |[_ by __ 3432]
3:31 - A (122 dr "2321
A —
dxy
a2 _ 1 _2h 8%y _diafe _h B — _Bhy _ J¢2
drxa — A (122( 3za 9 dzx3 (7'2 /7,2 qu) d12( dz3 dz3
aA
1) — dia(m2 — hy — ‘?{’2)]—81-3
Adhy __ Ghy 0
ax; ~ Axy
af _ 1 d¢) d 92
ﬂ% = -3 [dzz@x—a + 52 (12 — ha — o) — d12322
b2) 52
2 dxa
of
31’4 -

(2]
Ut

)] - 31?[6122(7'1 —hy—

J - KILT[(I22(7'1 —h;—

]—ﬁ [dog(my — by — 1) — dr2(m2 — ha—



02 = _(/(-Tls .172,’;173, T T1, T2)

g _ 1 lrs I
81’1 - K [—(lll 3.1:1 + (112 Eirl]

¢
s

a 1 ¢ d 91 diar_ __ — - L —
=i [—(luﬁ + G (2 = he — o) + di2 52 — (i ~ Iy ¢1)] az[du(m

aA
Az

hy — Pa) — dIZ(Tl —hy — (51)]

S
El.’l.‘;;

where

9 L
31-1 - A(l22

af

- L
i, = — a2

29—

1
EIT‘[ A (ll2

%’2— = ﬁdu

and

Q—du- = —nglllcg sin 02
diz —mylileysin 8,
9 —

P -2 ..
Ihy = —7712111,:2 92 COSs 92 - nglllcz 9192 COSs 92 =0

= 77'1,2[11,:2 9.]_2 COos 02 =0

= —mal.ogsin(6; + 63)

g—f% = -—-’ITl.glcgg sin(01 + 02)

7N adyy _ o4 9da
2 daz Gt — 2d12 51

fdyy _ Fdiz _ 3 _
dzxy Az ary
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At equilibrium points

&1 = Tio

P2 = Tag

1 = (myla + maly)gcos(8y) + malagcos(8; + 0,) = 1g
P2 = mylagcos(; + 03) = T

Thus

cos(8; + ;) = =20

malcag

— . T2 —
G20 :}:alccos(——-ﬂ—mzldg) 010

(myly + maly)g COS(GI) + ™20 = T10

TI0 —T2

COS(GI) = mila+mai)g

TI0—T> )

b0 =+ arccos((mlld_l,mzll)g

We have the following system specifications:
my = 1.9008 kg;

mo = 0.7175 kg;

i =0,=0.2 m;

Iy =0.18522 m;

l.o = 0.062052 m;

I, =0.0043399 kgm?;



[, = 0.0052285 kgm?2.

To=pif2; 230 =0.0; x30 =pi; 140 =0;

We chose, for each link, nine equilibrium points as follows

for 1=1,2,...,9;

0,(i) = 10 * i;

02(7) = —90 + 20 = ¢;

Then we used LQR to find the set of A”'s at each equilibrium point, then we tab-
ulated the results to get an input-output representation, which will be used later
in ANFIS to generate the fuzzy inference system. The above information has been

arranged in the proper matrix format to be used in LQR T

0 1 0 0 0 0
Ao oL L2 L) g_| T*de —Trdo
0 0 0 1 0 0
_di;:% % a—g;%‘ '5%'%_1 -—T*(llg T*(lu ]
( 1 000 00
C = ;. D=
0 010 0 0
where T = ((dzzdul—d'-l’._,)+s) . The result of running LQR for each equilibrium point

is shown in Appendix A. The Riccati equation was solved at 81 operating points.

In our simulation we used an output equation given by:

y=Cq+ Dt
< 0

where Q@ = 100CTC and R = | ' . With these values for @ and R, the
0 1

25
discrete gains at each operating point were obtained. The model for each gain is
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identified by using the joints angles as input data and the gain k as the output
data. The model building process is performed by using subtractive clustering in
both input and output spaces. Each cluster represent certain region of the system
state space. Then, the clusters are projected into each dimension in the input space,
where each projection forms an antecedent of a rule. Thus, the premise parameters
of the model are identified. The model are completed by LSE method which identi-
fies the optimal consequent parameters in Sugeno system. The identified first order
Sugeno fuzzy model is as follows:

R1 IF q1 is .’1% AND a2 is A.é THEN YL = g + a1 qy + d12¢2

Ry :IF q; is A¥ AND ¢, is A% THEN y. = aio + ar1q1 + Araqe

where the two input variables ¢; and ¢, are the joints angles while the output vari-
able y; for z = 1,2,..., i is the gain for rule k, and a;, i1, @2 (fori=1,2,....,k)
are regression parameters which are identified using the LSE algorithm. The least
squares estimation ensures the global optimization of the regression parameters for
the given set of clusters. ANFIS can modify the parameters of the membership
functions of the fuzzy control rules. ANFIS contains a hybrid learning rule which
combines gradient descent and the LSE for fast identification of parameters. In the
forward pass of the hybrid learning algorthim, the consequent parameters afe iden-
tified by LSE. In the backward pass, the error signals propagate backward and the

premise parameters are updated by gradient descent. By updating the membership
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1

R; oy, C} g5, Ch iy Uiz aig

Ry | 39.6, 10 0.285, 1.016 -0.003164 6.055 | 2.944
R, | 39.6, 10 | 0.3536, 0.3554 0.0114 9.345 | 0.5328
Rs | 39.6, 70 | 0.3843, 1.403 | -0.009241 | 0.9642 | 8.872
Ry | 39.6, -50 | 0.3685, 1.401 0.006041 2.615 | 6.228
Rs | 39.6, 90 | 0.3789, 0.5397 | -0.0006359 | 7.364 | 1.521
Rs | 39.6, -70 | 0.36, 0.7102 0.006813 6.658 | 0.8995

Table 4.1: 6 rules for k;; fuzzyv subcontroller

R; | o}, c 05, Ch agy @iz ig

Ry | 39.6, 10 | 0.3893, 1.029 | -0.00158S | 0.113 1.427
R, | 39.6, 30 | 0.3761, 0.3825 | -0.00109 | 0.8861 | 0.6491
R3 | 39.6, -50 | 0.4012, 0.525 | 0.0003032 | 0.9738 | 0.3397
R, | 39.6, 90 | 0.3535, 1.223 | -0.003694 | 0.1764 | 1.492
Rs | 39.6, -70 | 0.3746, 1.383 | 0.002209 | 0.5145 | 0.8219

Table 4.2: 5 rules for k5 fuzzy subcontroller

functions, we are actually tuning the fuzzy controller for better performance. The
rule bases of the models built by using subtractive clustering and ANFIS for all
eight gains are shown in Tables 4.1-4.8. Each row in the tables represents a rule.
For example, there are 5 rules identified in &;, model. The two antecedents of a rule
i are identified by cluster centers ¢} and ¢} in the table. Given the cluster centers one
can easily identify the corresponding exponential membership function from Figures
4.3-4.6. The fuzzy model of the gain as a function of the system parameters were
considered continuous gain and were used in the design of the fuzzy gain schedule.

Figure 4.7 shows the simulink diagram generated using Matlab. A detailed
diagram of the fuzzy gain schedule controller is given in Figure 4.8. Figure 4.9
shows the fuzzy subcontrollers for all gains. The simulation results of the gains show

smooth control surfaces, which is due to the combined effects of fuzzy controller and
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Figure 4.3: (a) and (b) Membership functions of joint angles in k;; fuzzy subcon-
troller. (c) and (d) Membership functions of joint angles in k5 fuzzy subcontroller.

R; o1, ¢ o5, & a1 G2 o
Ry | 45.25, 10 | 0.4209, 0.9098 | 0.003053 -0.3982 1.588
R, | 45.26, -30 | 0.4347, 0.339 | -0.0008713 | -0.03413 | -0.2402
R3 | 45.26, 90 | 0.4009, 0.5124 | 0.001816 0.1438 0.1351
Ry | 45.26, 50 | 0.4341, 1.526 -0.01159 0.02804 1.208
Rs | 45.26, -70 | 0.4242, 1.397 0.007449 0.6488 | 0.01376

Table 4.3: 5 rules for k;3 fuzzy subcontroller
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Figure 4.4: (e) and (f) Membership functions of joint angles in A3 fuzzy subcon-
troller. (g) and (h) Membership functions of joint angles in ky4 fuzzy subcontroller.

R; o, ¢} 0%, Ch a;y aiz aio

R, | 45.25, 30 | 0.4138, 0.9242 | -0.0003676 | -0.06789 | 0.2907
R, | 45.26, -30 | 0.4151, 0.3418 | 0.0004668 | 0.06597 | 0.05353
R3 | 45.26, -30 | 0.4181, 1.357 0.001467 | 0.06665 0.124
Ry | 45.26, 90 | 0.4316, 0.5013 | 0.0002443 | 0.01776 | 0.01751
Rs | 45.26, 90 | 0.4168, 1.566 -0.0012 0.03793 | 0.1244

Table 4.4: 5 rules for k14 fuzzy subcontroller




R; o1, € 03 €5 aii aiz a;o

R, | 45.26. 10 | 0.4286, 1.03S | -0.01598 | -3.16 4.261
R, | 45.25, 50 | 0.3943, 0.3564 | 0.006917 | 0.69SS | 0.3813
Rs | 45.25, -50 | 0.3759, 0.6896 | -0.01884 | -2.396 | -2.076
Ry | 45.26, 7 0.4553, 1.552 | -0.02313 | -2.024 | 3.905

Table 4.5: 4 rules for k»; fuzzy subcontroller
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Figure 4.5: (a) and (b) Membership functions of joint angles in ky; fuzzy subcon-
troller. (c) and (d) Membership functions of joint angles in ks, fuzzy subcontroller.
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Figure 4.6: (e¢) and (f) Membership functions of joint angles in ko3 fuzzy subcon-
troller. (g) and (h) Membership functions of joint angles in ka4 fuzzy subcontroller.

R; g1, G T35 Ch a1 aiz o

R, | 45.25, 10 | 0.3905, 1.052 | 0.0003359 | -0.2745 0.4384
R, | 45.25, 70 | 0.372, 0.5476 | -0.0005072 | -0.11 0.2956
Rs | 45.26, -50 | 0.4564, 0.666 | 0.0003307 | -0.3071 -0.0795
R, | 45.25, 70 | 0.4386, 1.544 | -0.002087 | -0.1154 0.1892
Rs | 45.25, -70 | 0.4007, 1.566 | 0.003254 | 0.09419 0.01254

Table 4.6: 5 rules for koo fuzzy subcontroller
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R; oi, €} o5, ¢ aiy a;z aio
R, | 45.25, 10 | 0.3894, 1.058 0.008044 | -0.3255 | 2.065
R, | 45.26, -50 | 0.4503, 0.6596 | -0.0006734 0.01165 | 0.654
R3 | 45.25, 70 0.3841, 0.55 0.00145 -0.2393 | 1.513
R, | 45.26, 70 | 0.4438, 1.542 | -0.003867 0.3952 | 0.5647
Rs | 45.25,-70 | 0.398, 1.566 0.009414 0.3324 | 1.272
Table 4.7: 5 rules for k3 fuzzy subcontroller

R; o1 ¢ b, Ch a;1 i ao
R; | 39.6, 10 | 0.3512, 1.206 | 0.0002743 -0.03133 | 0.1747
R, | 39.6,50 | 0.315,0.5599 | 0.000126 | -0.006454 0.1574
Rs | 39.6, -50 | 0.4053, 0.6688 | -7.987e-05 | -0.002551 0.08297
R, | 39.6,90 | 0.3849, 1.384 | -5.107e-05 -0.0259 0.1546
Rs | 39.6, -70 0.3483, 1.4 0.0004706 | 0.04371 | 0.08376

Table 4.8: 5 rules for k,s fuzzy subcontroller

the neural networks in the ANFIS architecture. In the simulation example eight
gains were used assuming full state feedback. These gains are associated with two
control torques at the joints and the state of the system represented by the angle of
each joint and its corresponding angular velocity. These gains are shown in Figure
410 and 4.11. The variation of the gain surface is very smooth. These gains are
functions of the state of the system. In this example, the gains are functions of the
joint angles of the robot arm. The gain surfaces are approximate solution of the
algebraic Riccati equation over the state space.

First the joint angles are required to track the following reference trajectories:

6, =% [2+6exp(—g5) — Texp(—g5 ]
pmt 1 st

where 0., and 8., are the reference trajectories. The robot configuration changes
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Figure 4.10: The first row of gain matrix as a function of the joint angles
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Figure 4.11: The second row of gain matrix as a function of the joint angles
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from the initial conditions (610 = 5.020 =0;0=050= 0) to the final condition (810 =
b0 = 25,9;():0;0: 0). The results of the simulation are shown in Figure 4.12 and
indicate that the joint angles track their corresponding reference trajectories very

closely. To test the performance of the controller with a different trajectories, let us

2 L] ] 1 1 3
1.5¢ B}
T
g
T
1r 4
0.5 5 1 1 ] 1
o] 1 2 3 4 5 6
time (sec)
2 H ] 1 1 T

" q2(rad)

O 1 1 1
0 1 2 3 4 5 6

time (sec)

Figure 4.12: Response of the joint angles to a reference trajectory

double the time constants of the reference trajectories:

B,y = 45 x [2+ 6exp(—g5) — 7exp(—g)]

0., = 45 x [1 + 6exp(—g5) — Texp(—af—s)]

It is seen in Figure 4.13 that the new reference trajectories are tracked very closely.

Now let us require that 6, follows a sinusoidal input and 0, follows the following
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Figure 4.13: Response of the joint angles to a reference trajectory
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trajectory:

8,2 = 45 x [1 + 6exp(—g5) — 7 exp(—g)]

Figure 4.14 shows that the new reference trajectories are tracked very closely. Figure
4.15 shows a satisfactory tracking performance of the joints angles to step inputs.

We conclude that this controller is robust against reference trajectory changes.
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Figure 4.14: Response of the joint angles to a reference trajectory

Figures 4.16 and 4.17 show the simulation results using two different inputs. These
inputs are sinusoidal inputs and square wave inputs. To demonstrate the stability
of the system, the frequency of the inputs was varied. In Figure 4.16(a), and Figure

4.16(b) we can see that the tracking performance is good for the two joints. The
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Figure 4.15: Response of the joint angles to a reference trajectory
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kinks in Figure 4.16(a) is due to the rapid switch in position of the second input.
At frequency of 1 Hz, Figures 4.16(c) and 4.16(d), the tracking is good. In Figure
4.17(a) and Figure 4.17(b) where frequency of the inputs is 2 Hz, we observe a phase
lag in addition to very small amplification of the output angles of the first and the
second arm. Another observation is a slight overshoot of the output of the first arm,
but the motion is very well damped. Figure 4.17(c) and Figure 4.17(d) show the
results of the simulation with 4 Hz inputs: frequency. The results of the simulation
shows a satisfactory tracking performance with different driving frequencies, noting

that the natural frequency of the system is close to 1 Hz.
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Figure 4.16: Joint angles (a) first arm with 0.5 Hz (b) second arm with 0.5 Hz (c)
first arm with 1 Hz (d) second arm with 1 Hz.
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4.7 Fuzzy modelling of hard nonlinearities in phys-

ical systems

Linearization is commonly used to analyze a nonlinear system for small departures
from an operating point. When the perturbations are small enough, their products
and powers are negligible, so discarding them reduces the system dynamics to linear
equations in the perturbed variables. The nature of nonlinearity plays an important
role in determining if there is a neighbourhood of validity. Continuous single valued
functions are good applications of small perturbation assumption. Discontinuous
functions which are not single valued are never the objects of small perturbation
analysis. In general, a function expandable in a Taylor series is a candidate for
small perturbation analysis, although success requires the truncation error after two
terms to be acceptably small. As long as the perturbation is small,. we can argue that
higher powers in Taylor series are infinitesimal and it can be truncated. Linearization
works well for continuous single valued functions. If the function is multi-valued or
contains a discontinuity in the neighbourhood of the operating point, no suitable
linearization is possible. In the following section we will investigate some types of
nonlinearities, and their modelling using a neuro-fuzzy approach.

System nonlinearities are often classified as inherent or intentional nonlinear-
ities. Inherent nonlinearities are those which exist in the components selected to

perform a function other than a nonlinear one within the system, often the designer
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would be happier if they did not exist. Tvpically such characteristics are saturation
in amplifiers and motors, dead zone in valves, nonlinear friction, and backlash in
gears. On the other hand, intentional nonlinearities are those which are deliberately
introduced into the system in order to compensate for the effects of other unde-
sirable nonlinearities, or to obtain a better performance. A simple example of an
intentional nonlinearity is the use of nonlinear damping to optimize response as a
function of the error. Limiters to restrict the rang of a variable is another case of

an intentionally introduced nonlinearities.

4.7.1 Simple nonlinearities

Saturation is probably the most common of all nonlinear phenomena. It is a contin-
uous single valued function (simple nonlinearity), as illustrated in Figure 4.18. The
output is not proportional to the input, and for sufficiently large input, the output
remains constant and is independent of input. Over a limited range, the output is
proportional to the input and the device is linear. The shape of the saturation curve
is common to many physical devices, though the input and output quantities may
be quite different. All amplifiers have a saturation limit, a two-phase motor has a
maximum shaft speed and a h.ydra,ulic transmission used as a motor device has a
maximum output speed. Saturation type nonlinearity can be modelled easily using:
the following set of fuzzy rules:

R;: IF z is small THEN vy is small
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Figure 4.18: Input-output characteristic of saturation nonlinearity

Ry: TF z is medium THEN y is medium

Rj3: IF z is high THEN vy is medium

where universes of the input and output are partitioned by using the linguistic terms
small, medium and high. The first two rules represent the monotonic increasing out-
put for small and medium values of the input variable; the third rule is related to
the saturation of the system output for high values of the input as shown in Figure
4.18.

The structure of Sugeno fuzzy logic models with the learning aspects from
neural networks combined in ANFIS will be considered to model selected types
of nonlinearities. ANFIS uses a highly efficient training method that combines
gradient descent and least-squares optimization to improve training speed compared

to standard backpropagation.
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4.7.2 Hard nonlinearities

Discontinuous multi-valued functions are considered hard nonlinearities, such as
hysteresis, gear train backlash and relays. They are complex to model and considered
failures to linear analysis. Hysteresis is a nonlinear phenomenon that is most usually
associated with magnetization curves or backlash of gear trains. A conventional
magnetization curve is the one whose path depends on whether the magnetizing
force is increasing or decreasing. An extremely complex form of nonlinear behaviour
to model is the backlash which exists in gears. Simply, backlash in gears is the free
space between.adjacent teeth, Figure 4.19. It permits one gear to move through a
finite angle with respect to another gear, without being in contact with the second
gear. The nonlinear effects of backlash are not easy to describe mathematically, and
the analysis of system performance when backlash is present may be quite difficult.
These types of nonlinearities are not easy to be modelled using clustering and ANFIS
approach. We present two examples on hard nonlinearities in this section and show
how this approach fails to model these nonlinearities. Also, modification to this
approach have been suggested to be able to model such types of nonlinearities.
Consider a system of one input (angle of attack («) and one output (normal
force coefficient (C, )). The input-output experimental data pairs are given in
Appendix A and shown in Figure 4.20. Figure 4.20 shows a hysteresis nonlinearity

which means that the path of the normal force coefficient depends on whether the
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Figure 4.20: Input-output experimental data plot

MATLAB are used to construct a fuzzy model of this system. All data in Appendix
A is organized and partitioned into 80% training and 20% checking data as shown
in Figure 4.21. Figure 4.22 shows a comparison of experimental to ANFIS output.
Grid partition and ANFIS could not model the hysteresis in the system, instead
it interpolated between the two output values in the increasing and the decreasing
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Figure 4.21: Input-output experimental data partitioned into 80% training and 20%
checking data

path. One way to solve this problem is to divide the system into two submodels one
for the increasing o and the other for the decreasing cv. Another way to deal with
it is by introducing another input to the fuzzy system, which is the time derivative
of . A plot of the time derivative of « and the normal force coefficient is shown in
Figure 4.23. ANFIS is applied on a system of two inputs (a and its derivative (&))
and one output (C, ). A comparison of experimental to ANFIS output is given in
Figure 4.24. The fuzzy model of C, is given in Appendix A.

Another common nonlinearity is dead zone, as shown in Figure 4.25. It arises
in mechanisms which are spring loaded to minimize backlash and in many other
devices which are insensitive to small signals. Another modelling problem can be

seen when the system has hysteresis and deadzone at the same time. For example,
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consider the input-output relationship given in Figure 4.26. We can see a hysteresis
loop as well as a dead zone. Following the same procedure as in the previous example.
ANFIS is capable of modelling the hysteresis loop but with a poor performance in
the deadzone region as shown in Figure 4.27. The time derivative of z is not zero
when y is zero in the deadzone region. This problem can be solved by forcing the

time derivative of = to be zero in this region, this modification will give a better

modelling performance -as shown in Figure 4.28.

0.8

¥ ) L} L} L} ¥ L T L
T T TT T T T T T
: R ,
-, . .,
06k ceeioes IREEEEET R Rt s A
° d . e
. 7 L < i’
. 7 M z ’-
: Vd z 7 -
[0 R R TR LR A LR r i -
s . 7’
[ . ’
. ,, . 4
-
0.2 - ,,’ B s -
N ’ : 4
: P S s
0 : : -7
>~ OoF ccerieeeee-n ,v.}./.... M e RIS s
; .
s, :
s L
P B .)/- ............. B R LT -
’
7 7
4 e
4 ,
04+ s B T U -
V4 . z Pl
s B Lo,
4 : 4
7. : ’,
06k - S 7 T T -
s s
4 -,
lr P
‘08~---'---:L—-—’ 1 L L L 1 1
~1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

Figure 4.26: A hysteresis loop and a dead zone
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Chapter 5

Fuzzy control of nonlinear systems
with unknown dynamics using
parameterized Sugeno fuzzy

approximators

In this chapter, an adaptive feedback control scheme for the tracking of a class of
continuous-time plants is presented. A parameterized Sugeno fuzzy approximator
is used to adaptively compensate for the plant nonlinearities. All parameters in
the fuzzy approximator are tuned using a Luapunov-based design. In the fuzzy
approximator, a first-order Sugeno consequent is used in the IF-THEN rules of the

fuzzy system, which is observed to have a better approximation capability compared
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with that of a constant consequent. Global boundedness of the adaptive system
is established. Finally, simulation is used to demonstrate the effectiveness of the

proposed controller.

5.1 Fuzzy approximators

5.1.1 Problem statement

In this Chapter, an adaptive control algorithm for a class of dynamic systems is to

be developed. The considered systems have the following equation of motion:
™ (t) + fz(t), & (2), -, 7)) = b(=(2), & (£), ..., "2 (E))u(t) (3.1)

where u(t) is the control input, f is an unknown linear or nonlinear function and &
is the control gain. The control objective is to force the state o = [v,%,..., 2"~ 1]T
to follow a specified desired trajectory =4 = [24, T4, --- ,x&n—”]T. In the case con-
sidered, an explicit linear parameterization of the function f(z) is unknown or not
possible, i.e., f(z) can not be expressed as f(z) = f:l 0;Y;(x), where 6; is a set of
i=
unknown parameters which appear linearly, and Y;(z) is a set of known regressors
or basis functions. Therefore, the unknown function f(z) will be approximated by
a parameterized fuzzy approximator. The required tracking control is achieved by

tuning the parameters of the fuzzy approximator.
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5.1.2 Fuzzy model

In the Sugeno model, a multi-input and single-output system with n antecedents
can be represented as a set of IV rules of the following format:

R;: IF z, is A] AND 2, is A}, ...,z is AL THEN w; = bj+ajri+... +ajz, for
7=1,....N

where R; denotes the jth fuzzy rule, x; (i = 1,2,...,n) is the input, w; is functional

consequent of the fuzzy rule R; and bj.al,...,a?; (7 = 1,2,..., N) are adjustable
{ J 7 7 J

it
design parameters. In this thesis, for simplicity, a MISO system is assumed. In
case of a multi output S).fstem, several output variables such as wf (k=1,2,....,m)
are used, where m represents the number of output variables. A{, A%,..-, Al are
fuzzy labels of the membership functions. To combine the membership values of
the input fuzzy sets in the rule antecedent, any type of fuzzy conjunction operator
(AND operator) may be used.

The output of a fuzzy system with Gaussian membership function, product

conjunction operator and functional consequent can be written as

N n
Clz)=>_w; (H i (m))
=1 =1

where C : R* = R, z = (21,%2,...,%s) € R"; w; is a functional consequent, and
fai (x;) is the membership value, when Gaussian membership function is evaluated
at z;, defined by

tas (2:) = exp [~(o}(z: — &))?] (5.2)
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where 0';:, EJ‘: are real-valued parameters. The FBF is defined as
gilo; ”-X’_fjll) =Hll_4;'($i)’ J=1L2....N
=1
where 0 = (0},02,...,02) € U and & = (€},€2,...,€7) € U, and w; is defined as

w; =y aj»:v; + b; (5.3)
=1

Then, the fuzzy system is equivalent to an FBF expansion:

Clz) = 5 S(aiz: +b))gi(a; |1 X — &)

Jj=Li=1

P

= &, E(@ro(;1X - 1) + T bigilos X — &)
Define
C(z) = ATXG(X,€,0) + BTG(X,¢,0)
C(2) = ATL(X.£,0) + BTG(X, £,0)
where A = [AT,AT,..., AL, AT = [d,d),...,ad]", X = [en,20,-.. el

B = [bi,bs,...,bn]", 0 = [o1,00....,08]T, & = [61.62r.... &7, G(X,€,0) =

|X = &), Xg2(o2 | X — &2ll), - - -, Xgn(on | X — EnID)T-

Remark

A Sugeno first-order consequent model is expected to result in at least the same
system performance with fewer rules when compared with a Sugeno constant con-
sequent model. This is due to a better approximation capability of higher order
Sugeno consequents [24]. From Equation (5.3) we can see that a Sugeno first-order
consequent model is reduced to a constant consequent model when aj— = 0. There-
fore, a Sugeno constant consequent model is a special case of the Sugeno first-order
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consequent model, which means that the approximation ability of a first-order con-
sequent rule is at least as good as that of a constant consequent one. This will be

demonstrated in an experimental comparison in Chapter 6.

5.1.3 Fuzzy systems as universal approximators

An important property to look for in the Sugeno fuzzy systems, when used as con-
trollers, is the universal approximation property. That is, can a Sugeno model always
be constructed to approximate any continuous and nonlinear control solution with
any arbitrary accuracy? The issue of fuzzy systems as universal approximators is
very important and many significant work has been done in this area. Many studies
in literature are for Mamdani fuzzy systems [13-17]. Recently, many researchers
have studied the universal approximation property of Sugeno. It is proven in [17]
that fuzzy systems with non-fuzzy consequents are universal approximators. Also, it
has been constructively proven in [99], in a two step approach using polynomials as
the bridge, that Sugeno first order fuzzy systems are universal approximators. The
Sugeno systems in [99] are general because they use any type of continuous fuzzy
sets, any type of fuzzy conjunction operator, and fuzzy rules with linear consequent.
The following theorem states that Sugeno fuzzy systems are universal approxima-
tors.

Theorem 1: [13,19] For any real continuous function f on a compact set and
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= T = P =
arbitrary ¢ > 0, there exist C (z) = 4 L(XN.&,0)+ B G(X.€,0) such that

sup

ﬂw—éwﬂ<s (5.4)

This theorem states that 5‘ (z) is a universal approximator, i.e., C () can ap-
proximate the unknown function f(z) with the required accuracy. This theorem is
proven in [17] for a general fuzzy system with a non-fuzzy consequent and proven
in [99] for a first-order Sugeno fuzzy approximator. The universal approximation
property of C (x) is characterized by the parameters of the fuzzy sets (£, o) and
the parameters of the linear consequents (b;,a3, ey @%). cC (z) can be called as a
nonlinearly parameterized fuzzy approximator since £ and o appear nonlinearly in

the fuzzy system as shown in (5.2).

5.2 Adaptive control using nonlinearly parame-

terized fuzzy approximators
Based on Theorem 1, the best possible fuzzy approximator is
£ *T L - ‘T * o«
f(z)=A L(X,{,0)+ B G(X,§,0)

The approximation error on the entire state space can be expressed as:

f(z)= f () = e(2)



Due to Theorem 1. it can be assumed that there exists a constant > 0 such that:

(LX)

lef(z)] <

= 13

To construct f () the values of the parameters 4, B, € and o are required. These

>

parameters are replaced with their estimates 3, é, £ and 3\', respectively, so }
AT A A AT A A

(z) =A L(X,§,0)+ B G(X,€ 0)is used to approximate the unknown function f.
In this chapter, all parameters in the estimate } (x) are tuned. This should provide a
better performance than tuning just the consequent parameters A and B and fix the
other parameters before controller design. The consequent parameters are easy to
tune because they appear linearly in the fuzzy approximator or in the approximation
error. It will be possible to update the parameters that appears nonlinearly in the
approximation error if it is possible to express the approximation error in a linear
parameterized form with respect to each parameter. The approximation capability
of the fuzzy approximator can be improved by using a first order Sugeno consequent
in the I[F-THEN rules of the fuzzy approximator instead of a constant consequent
used in [23]. Also higher order consequents will usually minimize the number of
rules to be constructed to describe and control the system under consideration [24].
Because ;1, é, E and o are unknown, the approximation function j; can not be used
to directly construct the control law. Using the estimation function } (z) of } , the
estimation error £(z) need to be formulated.

A
Theorem 2: The function approximation error between f and f (z), written as



is equivalent to

~T A . N A AT ;™ o~ ~T A P ;s A AT g
e(x)=A (L—-L¢§ —L,0)+ A (Le§+L,0)+ B (G-G:§—-G,0)+B (Ge¢&
+G;. 5’) +(lf

(5.5)

where the estimation errors of the parameter vectors are defined as

~ »* A
A=A - A
~ e A
B=B - B
~ = A
£=€—¢
~ * A
o=0 — O

4 ’ . - * o * = R = A

G and L, are derivatives of G(z,£,0) and L(z,&, o) with respect to £ at &, respec-
tively, also G, and L. are derivatives of G(z,€,0) and L(z, €, o) with respect to o
at &, respectively; dy is @ residual term that satisfies

T
[d] l =0 f ’Yf
where § ¢ is an unknown constant vector of optimal weights and bounded constants;
A
.

Proof: The approximation error between f and } is denoted by =y(x). The approx-

T
A . - L.
, lla’“] is a known function vector.

A A
andY}:[l,l B|.| €

A
imation error £(x) = f(a=)— f (z) can be written as

AT A T A

z)=f(zx)-AL—-B G

= ATA AT A
g(z)=f(z)— A L— B G +es(z)
T T« Iy AT A

AT A
' — A L—B G +es(x)
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«TA =T =T A «T A AT AT A
»(L)——lL AL-!-A L+BG~-BG+BG—AL — B G +&5(x)

~Tn AT ~T ~ AT ~Ta ~T A
@)=A L+AL+BG+BG+AL+DB G +ep(x)

= *" - A « ~ ~
Taking the Taylor’s series expansion of ¢ and [, at £=¢€ and 0'=3', G and L can be

expressed as

where o(.) is the sum of the high order terms in Taylor’s series expansion, G’E and

r . . * * x . b A
L¢ are derivatives of G(x, £,0) and L(x,£,0) with respect to € at & and expressed

as
" ) AA ac 1"2.‘;) * AN e A
GE = Gg(:l:,f, o) = —(——ag E=€,0=0
’ AN aL ) = A . A
Le = Le(.6,6) = 2H=82) 66, 6=

also, G, and L, are derivatives of G(z,€,0) and L(z,€,0) with respect to o at P

and expressed as

7] ¢ A a0 i = N . A
G, =G, (z,6,0) = 22 e, 5=0
’ 1 A AN aL - = A, A
Ly = Ly(z,£,0) = 282 6=, 5=0

Therefore,
~T ¢ o~ ~ o~ AT 0 7 '~ =~
e(z) =A (Ly € +L, & +h(x,&,3)+ A (L, € +L, & +h(z, £,5))+
~T ;Y s~ ~ ~ T Y r o~ ~ o~
B (G € +G, & +o(z,£,5)— B (G, € +G, & +0(2,6,5)) + A L+ B &
+ep(x)

~T , = A ~T _, . A ~T ~ AT |~ AT ., o
6(1') =A L{(g_E)+—4 LQ(O'—O')-{-A IZ(:Z:,E.‘O')-{-A L§§+-4 Laa
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AT
+ 4

~ o~ ~T _, = n ~T _, = A ~T ~ o~ AT , ~ AT

h(z.§.0)+ B Ge(§ — &)+ B G.(0 —0)+ B oz, £.0)+ B G; £ +B
I~ AT ~ o~ ~TA ~T A
G,0+ B o(z,§,0)+ A G+ B G +es(x)
~T A . N r A AT r o~ ~T A A A

e(@)=A (L—Lg§—L,0)+ A (L;§+L, o)+ B (G~G: €& -G, 7)+
AT 7 r ~
B (G¢ € +G,0)+ds

~T Pz ;= «T ~ o~ ~T r X ;7 = « T v o~
dr=A (LgE+L, o)+ A Mz, 6,50+ B (GLE+G 01+ B o(e.£.8) +24(x)
It was proven in [23] that higher order terms are bounded by
|-

| =zl 15] < e

~

< |G G,

+aald]

G

~ [zl |

where ¢, ¢z, €3, ¢4, ¢5 and cs are some bounded constants due to the fact that the

5] < evtes

o(w,6,5)| = |G -G € -6, & 5

— ”1”; ~LLE-L.5

£ +el2]

<[z

bz, E)l

FBF and its derivative are always bounded by constants.

There should exist constants &,&, A and B satisfying ”E “ <&, ”5“ <7,

|4

|<a

*

B

and

| <5

Based on the following facts

A

3

[+ 3] <7+ 4]

A

3

»

3 <€+

| <

E

S ||le

7 <]

B

E[s

v |l <5+ 5]

~

- A - A
Al <[4+ [4] <a+ 3]

The term d; can be bounded as

~ ’ he ~T ' - ‘T ~ ~T P ~T ; = .T ~ o
;d,|=“.4L5§+A LLo+A hz 650+ B G.e+B G.6+B 0(x,§,0‘)+sf(:v)"

st < ] fecl €] + |4 =20 1) | €+ ol + [B] Il ]

A

d

é, (cqy +cs
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57 @ te

4l < (A +[4

G,

o+ |5 e e JEl] e D2

- - - A
Jes T + A cat 4 cs(€ + ||

)+ A cs(F + "3“)—&-

Jes € +(A + Hi\ll

e+ B es(e + ,3”)+ g

Jes &+ B e+ Beaé+

(B +”§

Jez € +(B + ”g

IaS

3

A - - A
A” +cs A +cc A ”0” +

|ds| < 2¢s AE +2c5 AG +c5 A +(cs € +cs &) l

A

£

l+§

+c3 B “(/7\’

2¢, [35 +2c3 BG +c, B +(cs E +c3 o) ng’” +c2 B

BNk

=6, -Y;
éf],: 2¢s 215 +2c6 AG +cy A +2¢ BE +2¢3 BG +¢, B+ ¢

A
o

A
A

€

= [5f1,5f2,5f3, §f4,5fs] - [1, )
5f2'—‘ (cs € +cs o)
§f3= (c2 5 +c3 7)
§f4= cs A +c; B

§j5= cs A +c3 B

The approximation error is expressec! in a linearly parameterized form with respect

~ ~oo~ ~ A
to A, B, £ and o, which makes the updates of ?1, é, £ and & possible. Also, note

that the term dy is not a constant amd the assumption on the constant bound will

not be imposed in the developed control method. This will make the developed

controller more general and more applicable.
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5.3 Controller design
Before the introduction of the control law, we defined a filtered tracking error as:
d n—1 ~
s(t) = (ZZ + /\> X (t) with A>0 (5.6)

where s(¢) is an error metric, which can be rewritten as s(t) = AT X (t) with AT =
At (n—1)A""2, .. .,1], and X=X —Xy. The tracking error vector exponentially
approaches zero when s(¢) = 0, therefore the objective is to design a controller which

is able to drive s(t) to zero. It can be easily proven that
§()=—XP(t) + AT X () + bu — f(X) (5.7)

where AT = [0,A"! (n — 1)A™2, ... (n — 1)A]. Using

N /\T N A AT . , A A

f(X)=A L(X,§0)+ B G(X,¢0)
The Equation in (5.7) can be rewritten as:

~ A
§ (1) = =X + AT X () + bu— f (X) —(X)

where (X)) = f(X)— /f\ (X)), which is the fuzzy reconstruction error. The adaptive

control law, for a unity control gain case, is defined as

u(t) = —kas(t) + wsa(t) + usu(t) (5.8)
usa(t) = X§ () — AT X (1) | (5.9)
AT A A A A Al A
wrt) =4 LXE8)+ B G(X.8.8)= 8, Y, sea(s) (5.10)
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A AN r N r A
A= —s()C (L —L & —L, o) (5.11)
A /\T I3 /\T '\T
E=~s(t)T2(A Le+ B Ge) (5.12)
A AT 1 AT N
o= —s(t)I3(A L,+ B G,) (5.13)
A A PR r A
B=—s(t)Tu(& —G € -G, &) (5.14)
A - > -
8= Is(t)| TsY7 (5.15)
where I'y, ..., ['s are symmetric positive definite matrices which determine the rates

of adaptation.

Remarks:

1. Compared with [23], the controller given in this chapter has an additional

vector for each input that needs to be tuned. This will require more effort to

tune the parameters, but it is expected to enhance the tracking performance

due to a better approximation capabilities of the fuzzy approximator with a

first order Sugeno consequent than that of a constant consequent.

S\D

Compared with [22], which also uses a Sugeno approximator, the controller

design approach is quite different. In [22], an optimal controller is firstly

designed and the fuzzy approximator was used to approximate the designed

optimal controller, while our approach just approximates the unknown plant

by a fuzzy model and uses this plant approximator for the controller design.



In this case. no assumptions are required and control performance is superior

(see simulation example).

5.3.1 Stability analysis

The stability of the closed-loop system with the developed adaptive control law is
shown by the following theorem.

Theorem 3: If the control law in (5.8-5.15) is applied to a plant with a unity control
gain, then all states in the adaptive system will remain bounded and z(¢) — 0 as
t — oo.

Proof: Consider the Luapunov function candidate:

Vit) =

2 N B S A
s+ A T{PA+E IV E+0 I5'c+B 7' B+6o, L5t oy

| —

Taking the derivative of both sides:

. . ~T A A~ A M ~T A AT A
V(t)ZS(t)S(t)—fl FI -’1—6 Pz f—O’ Fs c—B F4 B—Offs 9]
(5.17)
Equation (5.10) can be rewritten as:
AT

Recall that
~T A A A AT r o~ ~T A PR o N /\T g
exz)=A (L-L§—~-L,0)+ A (L& +L,0)+ B (G—-G:€{~G,a)+ B (G: &+
G;, 5’) + (lf
(5-19)
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Then

~T P r A N AT 7 r o~ ~T PEEA y A A
up(t) = f(z)+ A (Le E+L, 0 —L)— A (LE §+L,0)+ B (GE £ +G, o — G)—
T ~ - T
B (Gi€ +G, 5) —ds— 8, Y7 sgn(s)
(5.20)
r{n) T < ~T A A I AT r r o~
u(t) = —kgs(t) + X7 () = AL X (8) + f(z2)+ 4 (Le&+L,0 —L)— A (Lg E+L, o)+

~T PEEA o N A AT P ;7 ~ A -
B (G¢&+G,0-G)— B (Ge € +G, 0) —ds— 6 fTY} sgn(s)
(5.21)

From (5.7) and (5.21)

. ~T r N r A A AT . r o~ ~T A r A A
$()=—kas(t)+ A (Le€+L,0—L)— A (LgE+L,0)+ B (Ge E+G, o —G)—
T ~ - T
B (GLE+G, 5)—ds— 8, Yy sga(s)

Then

A

- ~T ;N r A A T ¢ o~ ~T A
V(1) = —kas®(t)+s(t) A (LeE+L,0 —L)—s(t) A (L€ +L, a)+s(t) B (G, €

r A

AT '] ~ r v T -
+G, o0 — 8,') —s(t) B (Ge¢ € +G, o) — s(t) [(lf+ 3, Y sgn(s)} + A4 Trls(&)Lu(L
A AN AT I AT ' ~ AT [ AT ’ ~
—Le & —L, o)l +s(t)(A Le+ B G)TDI! € +s()(A Lo+ B G.)TIsl3t o
~T -1 A v A ' A ~T -1 -
+B I [s(I& G € G, 8)] —1s(0) 8, T5'TsY
. T ~T
V(1) = —kas?(t) — s(t)d; — s(t) B, Y7 sgn(s) — [s(t)| 8, ¥
AT T AT
= —kdsz(t) - S(t)(lf - ls(t)l Of Yf - [|s(t)| of Yf - I.S(t)l 9{ 1’_[:'
«T
= —kqs?(t) — s(t)d; — |s(t)] 6, Y7
< —kd.sz(t)

T
where the facts [d;| <6, Y} and s(t) sgn(s) = |s(t)| have been used. Therefor, all
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signals in the system are bounded. [t is important to note that s(¢t) — 0 as { — 20
has been established in [23], which completes the proof and establish asymptotic

convergence of the tracking error.

5.3.2 Nonunity control gain

We extend the result to plants with nonunity control gain. The following assump-

tions should be stated first:

1. The control gain is finite and non zero.

E\')

The functions A(X) = {—%)1 and g(z) = b(l—\) are bounded by known positive

functions Mp(X) and M;(X).

3. There exist a known positive function M>(X') such that

d
%g(x)’ < My(X) | X]]

A -~ /\T , N A /\T . AN A A , /\T . A A /\T
Let h (X) =Ay L(X,&x00)+ By G(X,6,,84) and § (X) =4, L(X,E,.6,)+ B,

A - T
G(X, fg,é\'g) be the estimates of the optimal fuzzy approximators A (X) =4,

- . T - . «T . T - .
L(‘X’gh’o’h)-l- By G(‘Yaghvo—h) and ¢ (‘\,) =Ag L(‘Yv g,O'g)-l- Bg G(-ngg’o'g)v

respectively. We can still get the following approximation error properties

~ A ~T A ] A r A AT ’ ~ ’ ~ ~T N of A

h= h— h=A, (Ln —Lse & —Lio on)+ A (Lae En +Lay on)+ By (Gh —Ghre &
" A AT o ~ " ~

—Ghd Gh)+ By (th Eh +Gha o-h-) + dp

also
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A ~T A

~ ;N A AT , o~ . o~ ~T A , A
g= qg— gz.‘ig (L_q '-Lgf fg —L_qo’ Gg)+ -{g (Lgf fg +Lya’ Jg)‘*‘ Bg (Gg _GQE fg
o A AT "4 ~ o ~
_chr 09')+ B_q (Gg£ Eg +G_qo' 0—9) + dﬂ
xT tT
Furthermore, |dn| <8, Yi. and [d,| <6, Y;. The robust adaptive control law for the

case of the nonunity control gain is:
1 R _
u(t) = —kqs(t) — 31\/[2(.X) HX]] s(8) + wrul(?) (5.23)

AT A A AT LA A AT LA A
ufu(t) =Ah L(}\v ghva-h)'{_ Bh. G(‘Xv gh?a.ll)-!— .«49 L(—'\7 ggyo'g)ar

AT s N A AT AT (5.24)
+ Bg G(‘X’ vao—y)ar - (0}1 Y’l+ eg }SI) Sgn(s(t))
j\ A PR I3 AN
Ar= —s(t)Tui(Ln —Lye €y — Ly, Tn) (5.25)
A AT . AT ‘T
En= —s(t)Th2(An Lagt+ B Ghre) (5.26)
A AT I} AT ' T —
Tr= —5(t)Cha( Ay Lp,+ By Gpo) (5.27)
A N . A ’ A
Bi= —5(t)Lra(Gr —Ghe & =Gy O1) (5.28)
A .
Or=|s(t)| Crs¥% (5.29)
A A A ' N
Ag= —s(t)[‘gl(Lg —Lgé fg —Lga, Ug)a,- (5-30)
A /\T ’ /\T B T
6.9: —S(t)FgQ(Ag LQE+ Bg Ggf) ay (5-31)
A '\T I AT i T
gg= —5(t)les(Ay Lyt B, Gy, ) ar (5.32)
/-\ A " A ’ A -
Bg= —S(t)Fg4(Gg —Ggf Eg _Gga' ag)ar (3'33)
A . -
6,= 1s(t)| TgsY; lar| (5:34)



-

A A A A A A A A R = = - = =
where An. &, On, B, Ag, &, 09, B, are the estimates of Ax, €,. Oh. Bh. Ag- €,

Ggr By, ar = X(t) — AT X (2) with AT = [0, A", (n — 1)A""2.. .. (n — 1)A],
Chi.....Dhs and [gy,...,Tys are symmetric positive definite matrices which deter-
mine the rates of adaptation. The stability of the closed loop system with nonunity
control gain is established in the following theorem.
Theorem 4: If the control law in (5.23-5.34) is applied to a plant with a nonunity
control gain, then all states in the adaptive system will remain bounded and z(t) —+ 0
as { = oo.

Proof: Consider the following Luapunov function candidate:

) ~T ~ ~T ~ ~T ~ ~T ~ ~T ~
V(t) = 3lg(=)s*()+ Ax Ty An + &, Tis €n + 04 Uiz O + By Tid B + 05 g 0n
AT A+ TR E, 48T T G, 4 B Tk By 46, T2 0]

(5.35)
Taking the derivative of both sides:
. T T
; 1§ 2 : ~T A 2 1y A g ~T
V(@t)=39(z)s*(t) +s(t)g(x) 5 (t)— 4, Uiy An — &4 Tha €4 — 04 Uiz 0n — By
. . . .T T . .
A ~T A ~T A A ~ A ~ ~T A ~T A
Cid Br— 0, Tid 0n — A, Ty Ag — &, Ty €, -3, T3 &, — B, [7d By — 0, Ty 6,
(5.36)
Equation (5.7) can be rewritten as:
9(z) s (t) = —h(z) + u(t) — g(z)ar (5.37)

From (5.23) and (5.37)
g(z)'s (t) = —kds(t)—-%j‘/fg(X) X s(t) 42 po(t) +rusu(t) —A(2) —g(x)ar (5.38)
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A AT A AT
upu(t) =h (x)— 0, Yhr sgn(s(t))+ 9 (x)a.— 6, Ygla-| sgn(s(t)) (5.39)

~ AT ~ AT )
uru(t) = h(z)— h (z)— 0 Yh sgn(s(t)) + (g9(z)— 9 (z))a-— 8, Y, |a.| sgn(s(t))

(5.40)
~T A ’ A [ A /\T ’ ~ s ~ ~T A
upu(t) =h(z)— Ay (Ln —Lpe En — Ly, 0n)— Ay (Lye € +Ly, 61)— By (Gh —
o N o A AT WA g~ AT . ~T A
Ghre €n —Ghro Th)— By, (Ghe &n +Ghy 0n) — di— 8, Yr sgn(s(t)) + [g(x)— A, (Lg —
’ N ’ A AT ’ ~ ’ ~ ~T N " A "4 A AT ") ~
Lsf 59 _Lya ag)— Aq (Lgf 69 +Lycr 09)_ Bg (Gg _Ggf 69 _chr Og)— By (Ggé é-9 +
~ T
Gy F9) = dgla,— 8, ¥i sgn(s(2))

go

(5.41)

From (5.35). (5.38) and (5.41)

V (1) = —kas®(t) + £ (9 (2) — Ma(X) IX]) $2(2) — s(t)dn — |s(2)] éf Yi + usu(t)s(2)

.T
—s(t)dga, — |s(t)| 8, Y, |a-l < —kqs?(2)

=T =T
where the facts [dx| <8, Y and |dg| <4, Y3, s(¢) sgn(s) = |s(¢)] have been used.

5.4 Simulation

The effectiveness of the proposed approach is shown by applying the developed
adaptive fuzzy controller to control the unstable system used in [22,23], . The
system is:

i 1 — ==

The adaptive fuzzy controller is used to drive the system state z(¢) to the origin.

First, we define seven membership functions over the state space which is chosen to
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be [-3. 3]. The simulation is carried out with Sugeno first order fuzzy rules. The

.. A A A A A
initial values 4, B, £, ¢ and gy are selected to be:

A

T

A= [ —2.04 —4.08 —-1.02 0 0.36 1.53 2.04 ]
A T
B= [ —-08 —-06 —-04 0 0.4 06 038 ]
A T
5=[—3 -2 -1 01 2 :3]
A T
o= [ 0.5 05 0.5 05 0.5 0.5 0.5 ]
A T
fs= [ 4 1 1 11 ]
We chose the initial state 2{0) = 2. In Equation (5.8) k; = 10. Figures 5.1 and 5.2
show z(¢) and u(f). We can observe an improvement in the tracking performance
compared with the results in [23], for the same number of rules using the same
initial conditions. Also, we have a superior transient performance compared with
[22].

Figures 5.3 and 5.4 show z(t) and w«(t¢) using five rules instead of seven. The
initial values are:
A

T
A=[—4.32 —~1.08 0 0.37 1-62]

A T
B=[—0.6’ —04 0 04 0.6}

A T
&= [ -2 -1 0 05 1 ]

N T
o= [ 0.5 0.5 0.5 05 0.5 ]
A T

5= [ 4 1 111 ]

Also, we can observe an improvement on the system performance comparing it with

that in [23] for different initial conditions with less rules. This improvement was
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Figure 5.1: Closed-loop z() using the developed controller with 7 rules
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Figure 5.2: Control signal u(t) using the developed controller with 7 rules
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expected since a Sugeno first-order consequent model has a better approximation
capability than a Sugeno constant consequent model that is used in [23]. Figures
5.5 and 5.6 show the initial and the final membership functions for the system of

five rules.

x(t)

05 : s A . ; : . !
[¢] 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09 1
Time [Sec}

Figure 5.3: Closed-loop z(t) using the developed controller with 5 rules
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Figure 5.4: Control signal u(¢) using the developed controller with 5 rules
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Chapter 6

Experiments

In this chapter, the LQR-Neuro-Fuzzy controller will be implemented on the unsta-
ble inverted pendulurr_1. The experiment is carried out in the Fuzzy System Research
Laboratory at Concordia university. Also, an experimental comparison between the
proposed approach ir} Chapter 5 and that proposed in [23] is presented. This com-
parison shows that the performance of a Sugeno fuzzy approximator can be improved

by using a first order consequent instead of the constant consequent used in [23].

6.1 LQR-Neuro-Fuzzy controller of the unstable

inverted pendulum system

The inverted pendulum system consists of a cart and a rod mounted on the cart.

The cart slides on a ground stainless steel shaft. The cart is equipped with a motor
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and a potentiometer. These are coupled to a rack and pinion mechanism to input
the driving force to the system and to measure cart position, respectively. The
motor shaft is connected to a 0.5 inch diameter gear while the potentiometer shaft
is connected to a 1.16 inch diameter gear. Both these gears mesh with the toothed
rack. When the motor turns, the torque created at the output shaft is translated
to a linear force which results in the cart’s motion. When the cart moves, the
potentiometer shaft turns and the voltage measured from the potentiometer can be
calibrated to obtain the track position. The rod’s axis of rotation is perpendicular
to the direction of motion of the cart. A potentiometer mounted on the axis of
ro.tation allows us to measure the angle of the rod with the vertical axis. A picture
of the inverted pendulum setup is shown in Figure 6.1. The state equations for this
system are:

(mp, + M) E +m, § l,cos § —m,, 6 [,sinf = F (6.1)
mply cos @ — mypl,sin @ & +my, 6 12 — mygl,sing =0 (6.2)

where

M (Mass of the cart)=0.455 kg

m, (Mass of the pendulum)=0.210 kg

[, (Length of the pendulum’s center of mass)=0.305 m
F' (Impulse force applied to cart) in N

0 (Angle from upright position) in degrees
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Figure 6.1: A picture of the inverted pendulum setup in the Fuzzy System Research
Laboratory at Concordia university

x (Position of the cart) in meters
g (Acceleration due to gravity)=9.81 m?/s

The above information has been arranged

in LQR :
T 0
T3 0
E R
where

= f(ay, 22, T3, T4, )

ry =

o

l.S [en] [@w]
N M)

Qo
3
o
| -

[0
(2}
[n5)
fle ~

)

Q
D
Q

:

Y]

[

in the proper matrix format to be used

T
I3

T2

Ty

o O

S -

3|~



Ty =T

T3 =20

Ty =9

ny = (M + m,) — my(cos z3)% + eps
ng = —(M + mp)l, + myl, cos 3 + eps
ny 2m, cos T3sin x3

S22 = —myplysin T3

[—nimpg((cos x3)? — (sinz3)?) + a—"’-m,gg cos zzsinxz + Q"—LF] 50 =0

QD
§
EYS

|‘°\
I

L[—g(M +my)ns + 2F + (M +m,)g(Sae2)dm _ (A7 4 mp)g((iﬁ,‘;’;ﬂ ]

dz;3 2 cosrz / Bz

29

To convert to voltage input, the following relationship is derived in [100]:

KmK K% K2
F=2z2ay, _R_mmT?l

where
K (Motor torque constant)=0.00767 Nm/amp

K, (Internal gear ratio)=3.7:1
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R, (Armature resistance)=2.6 ()
r (Motor gear radius)=0.635 cm
Vin (Input voltage) in volts.

Substituting this into the matrix equation we have:

T 0 0 1 0 Ty 0
$.3 0 0 0 1 T3 0
= 2 pe2 +] | Vi (6.4)
2o 2f 2f Zhmhy af 2 KmKy
< EEY 8z3 Rmr2ng dzy 2 Rmrn,
. g 29 —KLK; ag - KmK,
| 4 ] | 9z dzx3 Rmr2ny 9z | | ° 4 ] [ Rmrng ]

which is the desired representation. Using MATLAB (LQR design) we obtain the
optimal feedback gains for the feedback law:

Vin = —(k1(xy — 14) + k23 + kaza + kyzy)

such that the closed loop system:

A=A - BKXK

minimizes the quadratic performance index:

J = [(X QX + RV2)dt

with _ .
0.25 0 0 O
0 200
Q= and R = 0.0003.
0 000
0 00O

L J
These linearized equations have been used to design LQR at 115 operating
points as shown in Table A.9-A.12 (in appendix A ). Then, input (§) has been tab-

ulated with outputs (gains). Subtractive clustering and ANFIS have been applied
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R; ot c aiy aig -
R; ] 0.06325 { -7.315e-13 | -5.086e-08 | -28.87
Ry | 0.05579 -0.1735 0.7406 -28.8
Rs | 0.05579 0.1735 -0.7406 -28.8
R4 | 0.05665 -0.4397 440.1 214.4
Rs | 0.05665 0.4397 -440.1 214.4
Rs 1 0.06092 0.5392 -281.7 193.1
R | 0.06092 -0.5392 281.7 193.1
Rs | 0.03051 0.3584 -456.6 181.9
Ry | 0.03051 -0.3584 456.6 " 181.9
Rio | 0.01914 0.2775 -215.4 23.84
Ry, | 0.01914 -0.2775 215.4 23.84

Table 6.1: 11 rules for k&, fuzzy subcontroller

T

R; o c a1 @io

R; | 0.06497 | -S.071e-08 | -0.1573 | -106.6
R, 1 0.06113 -0.4681 4.911 | -79.43
Rz | 0.06113 0.4681 -4.606 | -79.59
R, | 0.06147 -0.1554 -27.12 | -108.2
Rs | 0.06147 0.1554 26.81 | -108.1
Rg | 0.05209 0.366 -19.93 | -71.79
R | 0.05209 -0.366 21.19 | -71.33
Rg | 0.01487 0.2781 1409 -441.8
Ry | 0.01492 -0.278 -1425 | -447.3
Rio | 0.01484 -0.292 -2548 | -886.8
R, 10.01492 0.292 2580 -896.7

Table 6.2: 11 rules for k; fuzzy subcontroller

on these data. As a result we obtained four different fuzzy inference systems for the

input () and the four outputs (gains) (see Tables 6.1-6.4). These fuzzy systems are

used to stabilize and control the inverted pendulum.

In Figures 6.2 and 6.3, a disturbance force is applied after about 3 seconds in
each trial. We can observe that the controller is able to drive the system states back

to zero. Note that the two traces in Figures 6.2 and 6.3 are not obtained at the

145




R; o' c @iy aig
R; 0.0403 | -7.403e-14 | -3.818e-06 | -269.3
Ry | 0.04021 0.08011 1619 -355.3
Rs | 0.04021 | -0.08011 -1619 -385.3
Ry | 0.03935 0.1404 -8652 902.8
Rs | 0.03935 -0.1404 S652 902.8
Re | 0.03899 0.4795 -4217 2231
R- | 0.03899 -0.4795 4217 2231
Rg | 0.03829 0.4293 -8525 3592
Ry | 0.03829 -0.4293 8525 3592
Rip | 0.03655 -0.1897 9399 2040
Ry 1 0.03655 0.1897 -9399 2040
Ri2 | 0.04018 0.53 -318.5 216
R,3 | 0.04018 -0.53 318.5 216
R, | 0.04027 | -0.04001 29.62 241.7
Rys5 | 0.04027 0.04001 -29.62 241.7
Ris | 0.02557 0.3912 -2108 661.5
R;- | 0.02557 -0.3912 2108 661.5
Ris | 0.02272 0.2277 S12.1 -90.64
Ris ] 0.02272 -0.2277 -812.1 -90.64
Ry {10.01543 0.3439 -1378 467.4
R, | 0.01543 -0.3489 1378 467.4
R, 1 0.01165 -0.2614 -2737 -762.8
Ry3 1 0.01165 0.2614 2737 -762.8

Table 6.3: 23 rules for k3 fuzzy subcontroller

same time and are not from the same trial, this is due to hardware limitations of the
inverted pendulum setup (please see [100] for more details). Figure 6.4 shows that
the fuzzy controller is able to stabilize the pendulum. In this trial the pendulum is

tapped to about 16 degrees.
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R; o' c ai aio

Ry | 0.0611 |-1.02e-13 | 1.326e-07 | -11.66
R, | 0.06377 | 0.4622 -38.25 20.43
R3 | 0.06377 | -0.4622 38.25 20.43
R, [ 0.05382 | -0.1689 -9.959 | -14.01
Rs | 0.05382 0.1689 9.959 -14.01

Rs | 0.01266 | 0.3349 -1413 499.5
R+ | 0.01266 | -0.3349 1413 499.5
Rg | 0.04269 | 0.2504 -84.55 0.3567

Ry | 0.04269 | -0.2504 34.55 0.3567

Table 6.4: 9 rules for ky fuzzy subcontroller

Pendulum angle (degrees)

L 12 L l: L l L 1 1
o] 1 2 3 4 s 6 7 8 9 10
Time (sec)

Figure 6.2: Disturbance response of pendulum angle
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Figure 6.3: Disturbance response of cart position
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Figure 6.4: Disturbance response of pendulum angle



6.2 Adaptive fuzzy control of the unstable inverted

pendulum system

The effectiveness of the proposed approach in Chapter 5 is shown by applying the
developed adaptive fuzzy controller to control the unstable inverted pendulum sys-
tem. Also, the approach presented in [23] is applied on the inverted pendulum
system. The objective of this implementation is to compare it with that of the
proposed approach in Chapter 5. This comparison is expected to demonstrate the
improvement in approximation ability of a first order Sugeno approximator when
compared with constant consequent Sugeno approximator.

The adaptive fuzzy controller is used to drive the system states z(t) (cart
position) and 6(¢) (pendulum angle) to the origin. First, we define seven initial
membership functions over the state space of § which is chosen to be [-30, 30]. The
initial values of the Sugeno fuzzy consequent (2 and Zé), the parameters of the

A A
Gaussian membership functions (¢, & and § r) are selected to be

A T
A=[—-0.6 —04 —-02 0 0.2 04 0.6'] )

A

T
B=[—0.6 —04 —-02 0 0.2 04 0.6’] 3

AN

T
€=[—30 —20 =10 0 10 20 30],
A T
a=[5555555],
A T
0f=[4 1 1 1 1] .

In Equation (5.18) ky = 10. A disturbance force is applied on the pendulum angle
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after about 7 seconds. Figure 6.5 shows the disturbance response of pendulum angle
using the controller in Chapter 5. We can observe that the controller is able to drive
the system states back to zero. The same trial is repeated using the approach
presented in [23]. The initial values of the Sugeno constant consequent ( é) are
chosen to be the same as those shown above. Also, the same initial values for the
parameters of the Gaussian membership functions (2 , & and 9 7) are selected. Figure
6.6 shows the disturbance response of pendulum angle using the controller in [23].
We can observe an overshoot when the controller is strated and it took a longer time
for the system to settle down after a disturbance force which is applied at about 7

seconds.

10

n H [2)

Pandulum angle (degrees)

[=])

-2

o
-
n
w
FS
~
®
wh

» A SR S
5 10
Time (sec)

Figure 6.5: Disturbance response of pendulum angle using the proposed controller
in Chapter 5

Another trial is presented in Figures 6.7 where the controller in Chapter 5 is
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Figure 6.6: Disturbance response of pendulum angle using the controller in [23]
applied and in Figure 6.8 where the controller in [23] is applied. In each trial, the
cart is placed at 5 cm distance from the origin and the pendulum is held in upwright
position. This trial shows the effect of the initial cart position on the response of the
pendulum angle. We observe that the overshoot in Figure 6.8 is three times that in
Figure 6.7. Also, the settling time is longer in Figure 6.8 than the one observed in
Figure 6.7.

Next, the pendulum is tapped to about 15° and the adaptive controller in
Chapter 5 is applied to stabilize the pendulum. Figure 6.9 shows that the controller
is able to drive the angle back to zero in less than 1 second. The same trial is
repeated using the controller in [23], where the controller is able to stabilize the

pendulum in about 3 seconds as shown in Figure 6.10.
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Figure 6.8: Response of pendulum angle for = 5 cm using the controller in [23]
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Figure 6.9: Response of pendulum angle for §o = 15° using the proposed controller
in Chapter 5
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Figure 6.10: Response of pendulum angle for 8, = 15° using the controller in [23]
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Finally. the pendulum is tapped to about 7° and the cart position is being
recorded. This trial shows the effect of the initial pendulum angle on the response
of the cart position. Figure 6.11 shows the response of the cart position when the
controller in Chapter 5 is used, which has a better settling time and less overshoot
when compared with that in Figure 6.12 { which shows the response of the cart
position when the controller in [23] is used). Asexpected in Chapter 5, using Sugeno
system with a first order consequent instead of a constant consequent enhanced
the controller performace , as oserved in all trials presented above, which can be

attributed to a better approximation capability of the first order Sugeno systems.

2 T T T T T T T T T

Cart position (cm)
&
T

14 : : ﬂ : : : § LT
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-18 L
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(>]

Figure 6.11: Respomnse of cart position when pendulum angle is tapped by 7° using

the proposed controller in Chapter 5

154



Cart position (cm)
3
i

1 2 3 4 s 6 7 8 9 10
Time (sec)

Figure 6.12: Response of cart position when pendulum angle is tapped by 7° using
the controller in [23]
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Chapter 7

Discussions and conclusions

In this thesis, modelling and control of certain classes of dynamic systems is studied.
First, modelling and control approach of dynamic systems that can be well defined
and modelled using mathematical equations, is developed. The proposed approach
for these systems is a fuzzy-logic gain scheduling-like approach. Also, modelling of
some known simple and hard nonlinearities is discussed. Finally, control of systems
with unknown dynamics or are difficult to transform into closed form mathematical
model (equations of motion), are considered in this study. The proposed approach
for these systems is an adaptive fuzzy approach using parameterized Sugeno fuzzy
approximators. Sugeno fuzzy model is used for modelling and control of nonlinear
systems in all applications presented in this thesis. Details of these contributions
are explained helow.

The interpolation properties of Sugeno fuzzy system are discussed in Chapter
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3. [n this chapter the influence of the shape and the distribution of the membership
functions and the order of the functional consequent on the interpolation behavior
of the Sugeno fuzzy systems is investigated. In general, it can be shown by induc-
tion that for a controller with any number of inputs, product conjunction operator,
constant consequent and 0.5 complementary triangular membership functions, the
output is a linear function with respect to each input. Increasing the order of Sugeno
consequent by one will increase the interpolation order by one. For a controller with
any number of inputs, product conjunction operator, constant consequent and non-
complementary triangular membership functions, the output is a rational function,
which is a linear function with respect to each input in the numerator as well as
in the denominator. Increasing the order of Sugeno consequent will increase the
order of the function in the numerator by one with respect to each input, while the
denominator will remain a linear function with respect to each input. Taking the in-
teraction terms into consideration in the rules consequent is a more general case than
that of Sugeno. Ignoring the interaction terms is usually the case, which will reduce
the number of modifiable parameters in a Sugeno system. In some processes the
interaction between variables is more pronounced and the interaction terms should
be considered.

Gain scheduling is an effective way of controlling systems whose dynamics
change with the operating conditions. It is normally used in the control of nonlinear

plants where the relationship between the plant dynamics and operating conditions
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is known, and for which a single linear time invariant model is insufficient. Three
main issues are involved in gain scheduling namely partitioning of the state space
into several linear operating regions, linearizing of the plant and designing of the
linear controller in each of the linear regions and interpolation of control action
between the linear regions. The restriction to slow variations in the scheduling
variables is crucial in the gain scheduling practice. If the time variations in the
operating conditions are ignored, instability may result.

[n Chapter 4, fuzzy-logic gain scheduling-like controller synthesis technique is
developed for MISO nonlinear systems. The resulting controller does not require on
line adaptation, estimation, or prediction. Fuzzy logic is used to smoothly schedule
independently designed point controllers over the operational and parameter spaces
of the system’s model. These point controllers are synthesized using techniques
chosen by the designer, thus allowing unprecedented amount of design freedom. The
proposed approach utilizes the advantages of gain scheduling, fuzzy logic control,
neural networks, and optimal control theory.

The result of this research is a systematic methodology resulting in a contin-
uous schedule which provides smooth transitions between point controllers. The
use of point controllers based upon established linear control theory allows for the
handling of plants whose complex dynamics require dynamic compensation. Non-
linear control action is brought in by fuzzy logic schedule. The proposed approach

is based on using fuzzy logic to blend the individual point designs such that for any
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trajectory in the parameter space, the system performs adequately.

This approach starts with linearizing the plant dynamics about different equi-
librium points. This results in a linear model of the system. Using one of the
optimal control algorithms such as LQR. a set of gains are obtained for each equi-
librium point. Subtractive clustering and ANFIS are used to construct the rules for
the fuzzy gain schedule. The fuzzy gain schedule is used to continuously provide
the controller with gains as a function of the states of the system. The drawbhacks,
mentioned before, for conventional gain scheduling are where to place the point con-
trollers in the operational state space. how to switch between controllers and when
to switch. In the proposed approach, the drawbacks of switching are now avoided by
the smooth transition a cross a bank of parallel controllers, all now under continuous
full operation as determined by the fed back plant’s state trajectory. Furthermore,
conventional gain schedule cannot work efficiently when controlling a fast varying
system, which is a major drawback. The slow variation restriction is not imposed
during the development of the fuzzy gain schedule. The fuzzy gain schedule provides
a smooth gains without any discontinuities. Therefore, there will be no spikes in the
response due to jumping from a set of gains to another.

The effectiveness of the proposed approach is demonstrated by the simulation
results of a two dof robot manipulator. A robot manipulator is not stable and dis-
plays a strong nonlinearity. The resulting system is observed to be stable for different

reference trajectories. The system is also robust for different driving frequencies of
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the input. We believe that this approach has great potential in various applications
to control different nonlinear systems. The proposed controller is implemented on
the unstable inverted pendulum system, as shown in Chapter 6.

For further development on fuzzy gain scheduling approach. the question of
system stability should be addressed. In this research stability is addressed by
extensive simulation over the operational envelop. One could attempt a general
stability analysis of either the general fuzzy controller structure, or a stability proof
of a specific controller after the design has been made. An important improvement
towards a better fuzzy gain scheduled control is to achieve the gain scheduling in
closed loop form, which means providing corrective action to inappropriate schedule
on-line.

For nonlinear systems with poorly understood dynamics, various adaptive con-
trol schemes have been proposed. Such systems are approximated by parameterized
fuzzy approximators which are expressed as a series RBF expansion. Tuning or
changing the parameters of the RBF' will change the shape of the RBF. This prop-
ert)} could be employed to capture fast varying system dynamics, reduce approxima-
tion error and improve control performance. In Chapter 5, the controller is designed
based on the well known Sugeno first-order fuzzy system. The consequent part of
IF-THEN rules is a linear combination of input variables and a constant term, and
the final output is the weighted average of each rule’s output. This introduces addi-

tional parameter vectors to be updated, but improves the tracking performance due
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to a better approximation ability of a higher order Sugeno model. Global bounded-
ness of the adaptive system is established. Finally, simulation results, in Chapter 5.
are used to demonstrate the effectivgness of the proposed controller. The simulation
example shows an improvement in the control performance. This improved perfor-
mance has been achieved with less number of rules compared with that in [23]. A
comparison between the implementation of the proposed approach in Chapter 5 and
that of the approach in [23] on the unstable inverted pendulum system is shown in
Chapter 6. This comparison verifies that a higher order Sugeno model has a better
approximation ability compared with a lower order model.

The proposed adaptive fuzzy approach in Chapter 5 can be further improved by
developing a general controller which guarantees stability of the system regardless of
the structure of the fuzzy approximator. Also, neural networks can be incorporated
to enhance the ability of the proposed controller in updating the parameters of the

fuzzy approximator.
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Appendix A

Input-output data for LQR-fuzzy

control

A.1 Input-output data for LQR-fuzzy control of

a robot manipulator

The LQR gains are computed for a two link manipulator by linearizing the system
at various equilbrium points. The A and B matrix coefficients were calculated as
shown in Chapter 4. This Appendix contains the gains computed using LQR for
several equilibrium points for each link. 8, is the angular position of the first link
in radians, 8 is the angular position of the second link in degrees. The LQR gains
are claculated for each combination between equilibrium points of each link. For
example, for §; = .175 rad. and §, = —70 degrees k;; = 1.5875. Tables A.1-A.4
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6; (rad.) | 0.175 0.349 0.524 0.698 0.570 1.050 1.220 1.400 1.570
62 (deg.)
-70 1.5875 2.8665 4.2695 5.6418 6.9096 8.0203 3.9271 9.5875 9.9655
-50 1.6992 3.0819 4.5665 5.9976 7.3010 S8.4231 9.3182 9.9475 10.2805
-30 1.8901 3.3892 4.9454 6.4138 7.7236 8.8247 9.6769 10.2481 10.5155
-10 2.1462 3.7298 5.3229 6.7977 8.0882 9.1481 9.9425 10.4452 10.6396
10 2.4074 4.0203 5.6150 7.0749 8.3346 9.3486 10.0840 10.5184 10.6396
30 2.6111 4.2121 5.7872 7.2221 8.4481 9.4174 10.0969 10.4659 10.5155
50 27374 4.3068 5.8506 7.2532 S.4417 9.3655 9.9905 10.2974 10.2805
70 2.7944 4.3235 5.8270 7.1886 8.3333 9.2091 9.7821 10.034S 9.9655
90 2.7899 4.2736 5.7295 7.0427 S8.1390 8.9679 9.4975 9.7136 9.618T7
Table A.1: Gain k;; computed using LQR for different combinations of 8, and 6,
6, (rad.) | 0.175 0.349 0.524 0.698 0.87 1.050 1.220 1.400 1.570
8, (deg.)
-70 0.5684 0.7666 0.9393 1.0848 1.2071 1.3083 1.388S 1.447S 1.4838
-50 0.6102 0.8251 1.0076 1.158S 1.2835 1.3844 1.4623 1.5168 1.5474
-30 0.6662 0.8946 1.0822 1.2342 1.3565 1.4526 1.5241 1.5714 1.5946
-10 0.7255 0.9577 1.1443 1.2931 1.4104 1.5001 1.5642 1.6039 1.6195
10 0.7699 0.9969 1.1791 1.3237 1.4364 1.5206 1.5784 1.6111 1.6195
30 0.7891 1.0073 1.1845 1.3256 1.4346 1.5144 1.5669 1.5933 1.5946
50 0.7868 0.9957 1.1675 1.3047 1.4100 1.4855 1.5328 1.5531 1.5474
70 0.7715 0.9709 1.1361 1.2680 1.3684 1.4389 1.4808 1.4953 1.4838
90 0.7489 0.9387 1.0960 1.2210 1.3153 1.3802 1.4170 1.4273 1.4127

Table A.2: Gain k2 computed using LQR for different combinations of 8, and 8,

are the LQR gains (k;, — ky4) for the first control input (the torque on the first
arm). Tables A.53-A.8 are the gains (ky; — k24) corresponding to the second input
torque. Table 4.2 is the fuzzy inference system for the first gain corresponding to
the first input, columns 2 and 3 represent the rule antecedents while columns 4,5

and 6 represent the coefficients of first order Sugeno consequent.

163



0; (rad.) | 0.175 0.349 0.524 0.698 0.870 1.0530 1.220 1.400 1.570
02 (deg.)
-70 -0.0946 -0.0542 0.0092 0.0865 0.1732 0.2663 0.3623 0.4567 0.5444
-50 -0.0490 0.0351 0.1412 0.2560 0.3736 0.4891 0.5977 0.6945 0.7740
-30 0.0155 0.1463 0.2910 0.4348 0.5708 0.6941 0.3002 0.8348 0.9440
-10 0.1088 0.2699 0.4395 0.5963 0.7347 0.8505 0.9407 1.0024 1.0338
10 0.1953 0.3839 0.5598 0.7130 0.8391 0.9355 1.0006 1.0333 1.033S8
30 0.2797 0.4675 0.6329 0.7683 0.8707 0.9391 0.9733 0.9743 0.9440
50 0.3402 0.5105 0.6512 0.7570 0.8267 0.3609 0.8614 0.8312 0.7740
70 0.3697 0.5087 0.6127 0.6794 0.7100 0.7074 0.6756 0.6193 0.5444
90 0.3622 0.4588 0.5174 0.5399 0.5303 0.4938 0.4365 0.3648 0.2852
Table A.3: Gain k13 computed using LQR for different combinations of 8; and 8-
0, (rad.) | 0.175 0.349 0.524 0.698 0.870 1.050 1.220 1.400 1.570
0, (deg.)
-70 0.0375 0.0538 0.0684 0.0813 0.0928 0.1032 0.1124 0.1202 0.1263
-50 0.0535 0.0762 0.0956 0.1122 0.1264 0.1385 0.1485 0.1564 0.1619
-30 0.0701 0.0980 0.1210 0.1397 0.1551 0.1675 0.1771 0.1840 0.1881
-10 0.0848 0.1154 0.1397 0.1590 0.1741 0.1858 0.1942 0.1996 0.2020
10 0.0939 0.1242 0.1480 0.1665 0.1806 0.1909 0.1977 0.2014 0.2020
30 0.0949 0.1229 0.1448 0.1615 0.1739 0.1825 0.1875 0.1893 0.1881
50 0.0885 0.1127 0.1316 0.1457 0.1556 0.1619 0.1649 0.1648 0.1619
70 0.0765 0.0959 0.1106 0.1212 0.1281 0.1317 0.1324 0.1305 0.1263
90 0.0607 0.0744 0.0843 0.0907 0.0942 0.0950 0.0937 0.0905 0.0859
Table A.4: Gain k14 computed using LQR for different combinations of 4, and 6,
8, (rad.) | 0.175 0.349 0.524 0.698 0.870 1.050 1.220 1.400 1.570
0>(deg.)
-70 -0.6981 -1.0483 -1.3804 -1.6376 -1.7S63 -1.8073 -1.6943 -1.4548 -1.1090
-50 -0.6068 -0.8908 -1.1519 -1.3441 -1.4405 -1.4277 -1.3048 -1.0817 -0.7775
-30 -0.4256 -0.6009 -0.7649 -0.8871 -0.9476 -0.9365 -0.8526 -0.7018 -0.4963
-10 -0.1319 -0.1763 -0.2464 -0.3224 -0.3860 -0.4243 -0.4297 -0.3995 -0.3348
10 0.2530 0.3195 0.3094 0.2395 0.1315 0.0049 -0.1236 -0.2403 -0.3348
30 0.6489 0.7770 0.7829 0.6834 0.5039 0.2712 0.0112 -0.2520 -0.4963
50 0.9632 1.1012 1.0867 0.93583 0.6769 0.3424 -0.0339 -0.41832 -0.7775
70 1.1359 1.2446 1.1862 0.9768 0.6466 0.2322 -0.2263 -0.6370 -1.1090
90 1.1456 1.2007 1.0882 0.8255 0.4446 -0.014S -0.5084 -0.9900 -1.4154

Table A.5: Gain k2; computed using LQR . for different combinations of 8; and 4,
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0, (rad.) { 0.175 0.349 0.524 0.698 0.870 1.030 1.220 1.400 1.570
3;(deg.)

-70 -0.1346 -0.1820 -0.2155 -0.2335 -0.2363 -0.2242 -0.1985 -0.1606 -0.1129

-50 -0.1046 -0.1420 -0.1672 -0.1790 -0.1776 -0.1638 -0.1389 -0.1046 -0.0630

-30 -0.0523 -0.0746 -0.0903 -0.0980 -0.0971 -0.0880 -0.0715 -0.0486 -0.0206

-10 0.0229 0.0158 0.0059 -0.0032 -0.0094 -0.0119 -0.0105 -0.0052 0.0037

10 0.1083 0.1104 0.1006 0.0847 0.0665 0.04S1 0.0310 0©0.0160 0.0037

30 0.1819 0.1863 0.1723 0.1472 0.1157 0.0811 0.0457 0.0113 -0.0206

50 0.2273  0.2292 0.2094 0.1753 0.1322 0.0840 0.0337 -0.0161 -0.0630

70 0.2401 0.2370 0.2111 0.1698 0.1182 0.0607 0.0008 -0.0581 -0.1129

90 0.2241 0.2145 0.1833 0.1370 0.0810 0.0194 -0.0436 -0.1043 -0.1592
Table A.G: Gain ko; computed using LQR for different combinations of 8; and 8,
6, (rad.) | 0.175 0.349 0.524 0.698 0.870 1.050 1.220 1.400 1.570
0,(deg.)

-70 0.7198 0.7356 0.7554 0.7828 0.8204 0.8699 0.9321 1.0067 1.0920

-50 0.7699 0.7971 0.8305 0.8736 0.9276 0.9928 1.0679 1.1504 1.2370

-30 0.8593 0.9050 0.9567 1.0154 1.0805 1.1506 1.2230 1.2943 1.3612

-10 0.9949 1.0627 1.1294 1.1944 1.2562 1.3132 1.3631 1.4036 1.4330

10 1.1704 1.2518 1.3199 1.3741 1.4145 1.4406 1.4522 1.4495 1.4330

30 1.3567 1.4329 1.4834 1.5099 1.5145 1.4994 1.4669 1.4198 1.3612

50 1.5117 1.5623 1.5795 1.5677 1.5314 1.4753 1.4043 1.3232 1.2370

70 1.5990 1.6099 1.5863 1.5350 1.4627 1.3761 1.2816 1.1851 1.0920

90 1.5986 1.5657 1.5038 1.4217 1.3273 1.2281 1.1303 1.0392 0.9585
Table A.7: Gain ka3 computed using LQR for different combinations of 8, and 8,
6, (rad.) | 0.175 0.349 0.524 0.698 0.870 1.050 1.220 1.400 1.570
f2(deg.)

-70 0.0895 0.0876 0.0872 0.0884 0.0912 0.0956 0.1013 0.1083 0.1162

-50 0.0900 0.0889 0.0894 0.0916 0.0954 0.1005 0.106S 0.1139 0.1216

-30 0.0965 0.0972 0.0990 0.1018 0.1056 0.1102 0.1153 0.1209 0.1265

-10 0.1099 0.1127 0.1151 0.1175 0.1199 0.1224 0.1249 0.1273 0.1294

10 0.1282 0.1321 0.1340 0.1347 0.1347 0.1340 0.1329 0.1313 0.1294

30 0.1465 0.1499 0.1504 0.1489 0.1460 0.1420 0.1373 0.1321 0.1265

50 0.1602 0.1621 0.1606 0.156S 0.1514 0.1448 0.1374 0.1296 0.1216

70 0.1669 0.1666 0.1632 0.1576 0.1505 0.1424 0.1336 0.1248 0.1162

90 0.1663 0.1638 0.1587 0.1521 0.1443 0.1360 0.1275 0.1193 0.1118

Table A.8: Gain k24 computed using LQR for different combinations of 6; and 8,
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a (rad) k (V/m) ky (V/rad) ks (V/m) kg (V/rad)
-0.5700  28.8675 -82.1423 10.3574 0.1308
-0.5600  28.8675 -82.1447 10.6880 0.2357
-0.5500  28.8675 -82.1361 11.0383 0.3468
-0.5400 28.8675 -82.1166 11.4102 0.4646
-0.5300  28.8675 -82.0859 11.8063 0.5899
-0.5200  28.8675 -82.0438 12.2291 0.7235
-0.5100  28.8675 -81.9903 12.6819 0.8664
-0.5000  28.8675 -81.9249 13.1685 1.0197
-0.4900 28.8675 -81.8475 13.6933 1.1847
-0.4800 28.8675 -81.7575 14.2617 - 1.3631
-0.4700  28.8675 -31.6546 14.8800 1.5568
-0.4600  28.8675 -31.5381 15.5561 1.7680
-0.4500  28.8675 -81.4073 16.2997 1.9999
-0.4400  28.8675 -31.2614 17.1229 2.2560
-0.4300 28.8675 -81.0993 18.0411 2.5409
-0.4200  28.8675 -80.9198 19.0744 2.8607
-0.4100 28.8675 -80.7213 20.2494 3.2234
-0.4000  28.8675 -80.5016 21.6019 3.6398
-0.3900  28.8675 -80.2580 23.1825 4.1250
-0.3800  28.8675 -79.9872 25.0642 4.7011

Table A.9: Gains computed using LQR for inverted pendulum control problem

A.2 Input-output data for LQR-fuzzy control of

the inverted pendulum

The LQR gains are computed for the inverted pendulum by linearizing the system
at various equilbrium points. The A and B matrix coefficients were calculated as

shown in Chapter 5. Tables A.9-A.12 are the LQR gains (k; — ky).
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a (rad) k& (V/m) ky (V/rad) k3 (V/m) k4 (V/rad)
-0.3700  28.8675 -79.6841 27.3584 5.4015
-0.3600  28.8675 -79.3418 30.2443 6.2800
-0.3500 28.8675 -78.9499 34.0348 7.4304
-0.3400  28.8675 -78.4914 39.3387 9.0354
-0.3300  28.8675 -77.9354 47.5609 11.5160
-0.3200  28.8675 -77.2126 63.0695 16.1803
-0.3100  28.8675 -76.0760  115.1212 31.7835
-0.3000 -28.8675 -93.8883  -129.5948  -41.3937
-0.2900 -28.8675 -95.5291 -79.6144  -26.4992
-0.2800 -28.8675 -96.7188 -63.8333 -21.8150
-0.2700 -28.8675 -97.7077  -55.4572  -19.3385
-0.2600 -28.8675 -98.5713 -50.1027  -17.7614
-0.2500 -28.8675 -99.3444 -46.3262 -16.6534
-0.2400 -28.8675  -100.0469  -43.4949 -15.8259
-0.2300 -28.8675  -100.6909  -41.2826 -15.1817
-0.2200 -28.8675  -101.2851  -39.5015 -14.6650
-0.2100 -28.8675  -101.8353  -38.0352  -14.2413
-0.2000 -28.8675  -102.3460 -36.8074 -13.887
-0.1900 -28.8675  -102.8207 -35.7654  -13.5885
-0.1800 -28.8675  -103.2620 -34.8717  -13.3329
-0.1700 -28.8675  -103.6721  -34.0991 -13.1126
-0.1600 -28.8675  -104.0528  -33.4267 -12.9215
-0.1500 -28.8675  -104.4056  -32.8339 -12.7549
-0.1400 -28.8675  -104.7315  -32.3233 -12.6092
-0.1300 -28.8675  -105.0317 -31.8703 -12.4815
-0.1200 -28.8675 -105.3070  -31.4719 -12.3695
-0.1100 -28.8675  -105.5581  -31.1220 -12.2713
-0.1000 -28.8675 -105.7856  -30.8154 -12.1855
-0.0900 -28.8675  -105.9901  -30.5479 -12.1108
-0.0800 -28.8675  -106.1720 -30.3161 -12.0462
-0.0700 -28.8675  -106.3317  -30.1173 -11.9909
-0.0600 -28.8675  -106.4695  -29.9491 -11.9441

Table A.10: Gains computed using LQR for inverted pendulum control problem
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a (rad) k; (V/m) Kk (V/rad) k3 (V/m) kg (V/rad)
-0.0500 -28.8675 -106.5857  -29.8096 -11.9054
-0.0400 -28.8675 -106.6805 -29.6974 -11.8742
-0.0300 -28.8675  -106.7540 -29.6113 -11.8504
-0.0200 -28.8675 -106.8065 -29.5503 -11.8335
-0.0100 -28.8675 -106.8379  -29.5140 -11.8235
0.0000 -28.83675 -106.8434  -29.5020 -11.8201
0.0100 -28.8675 -106.8379  -29.5140 -11.8235
0.0200 -28.8675 -106.8065 -29.5503 -11.8335
0.0300 -28.8675 -106.7540 -29.6113 -11.8504
0.0400 -28.8675 -106.6805 -29.6974 -11.8742
0.0500 -28.8675 -106.5857  -29.8096 -11.9054
0.0600 -28.8675 -106.4695  -29.9491 -11.9441
0.0700 -28.8675 -106.3317  -30.1173 -11.9909
0.0800 -28.8675 -106.1720 -30.3161 -12.0462
0.0900 -28.8675 -105.9901  -30.5479 -12.1108
0.1000 -28.8675 -105.7856  -30.8154 -12.1855
0.1100 -28.8675 -105.5581  -31.1220 -12.2713
0.1200 -28.8675 -105.3070 -31.4719 -12.3695
0.1300 -28.8675  -105.0317 -31.8703 -12.4815
0.1400 -28.8675 -104.7315 -32.3233 -12.6092
0.1500 -28.8675 -104.4056 -32.8389 -12.7549
0.1600 -28.8675 -104.0528  -33.4267 -12.9215
0.1700 -28.8675 -103.6721  -34.0991 -13.1126
0.1800 -28.8675 -103.2620  -34.8717 -13.3329
0.1900 -28.8675  -102.8207 -35.7654  -13.5885
0.2000 -28.8675 -102.3460 -36.8074 -13.887
0.2100 -28.8675 -101.8353  -38.0352 -14.2413
0.2200 -28.8675 -101.2851  -39.5015 -14.6650
0.2300 -28.8675 -100.6909  -41.2826 -15.1817
0.2400 -28.8675 -100.0469  -43.4949 -15.8259
0.2500  -28.8675 -99.3444 -46.3262 -16.6534
0.2600 -28.8675 -98.5713 -50.1027 -17.7614

Table A.11: Gains computed using LQR for inverted pendulum control problem
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a(rad) k (V/m) k, (V/rad) k3 (V/m) kg (V/rad)
0.2700 -28.8675 97.7077 -55.4572 -19.3385
0.2800 -28.8675 -96.7188 -63.8333 -21.8150
0.2900 -28.8675 -95.5291 -79.6144 -26.4992
0.3000 -28.8675  -93.8883  -129.5948  -41.3937
0.3100  28.8675 -76.0760 115.1212 31.7835
0.3200  28.8675 -77.2126 63.0695 16.1803
0.3300  28.8675 -77.9354 47.5609 11.5160
0.3400 28.8675 -78.4914 39.3387 9.0354
0.3500  28.8675 -78.9499 34.0348 7.4304
0.3600  28.8675 -79.3418 30.2443 6.2800
0.3700  28.8675 -79.6841 27.3584 5.4015
0.3800  28.8675 -79.9872 25.0642 4.7011
0.3900  28.8675 -80.2580 23.1825 4.1250
0.4000 28.8675 -80.5016 21.6019 3.6398
0.4100  28.8675 -80.7213 20.2494 3.2234
0.4200  28.8675 -80.9198 19.0744 2.8607
0.4300  28.8675 -81.0993 18.0411 2.5409
0.4400  28.8675 -81.2614 17.1229 2.2560
0.4500  28.8675 -81.4073 16.2997 1.9999
0.4600 28.8675 -81.5381 15.5561 1.7680
0.4700  28.8675 -81.6546 14.8800 1.5568
0.4800 28.8675 -81.7575 14.2617 1.3631
0.4900  28.8675 -81.8475 13.6933 1.1847
0.5000  28.8675 -81.9249 13.1685 1.0197
0.5100  28.8675 -81.9903 12.6819 0.8664
0.5200  28.8675 -82.0438 12.2291 0.7235
0.5300  28.8675 -82.0859 11.8063 0.5899
0.5400 28.8675 -82.1166 11.4102 0.4646
0.5500  28.8675 -82.1361 11.0383 0.3468
0.5600  28.8G675 -82.1447 10.6880 0.2357
0.5700  28.8675 -82.1423 10.3574 0.1308

Table A.12: Gains computed using LQR for inverted pendulum control problem

169



Appendix B

Derivatives of GG and L with

*
respect to £ and

[ . . " pl i . ol N
G;, and L are derivatives of G'(2,€,0) and L(z,£,0) with respect to € at £ , ex

pressed as
Y I A A 3 pl AT
Ge = Gel(x,£,0) = =82 e=g =0
3
’ ‘ A A aL ",. * N A
Lf - Lf(tv E? O') (Z; 2) é.:f’ o=0

also, G, and L, are derivatives of G(z.€,0) and L(z,&,0) with respect to & at & ,

expressed as

G, = Gy(2.6,6) = 2= £, 55
A . Y -
L, = Ly(2,€,8) = 2H=id|E2 55
A - a A A ’ A . B T
Gy = Gi(2.6,8) = g (6: | X = &), a2 | X = &[0 . otn B 3= &x])]
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%@ | X= &) = Fastd; | X &))| é=E.6=2
- @l exp [—(5{- (zi— Ej—))z}) l £=¢,6=5
=2-gi(o; | X~ gj ) - (3;‘ (zi— g;) =9¢

=2 (g exp [_(9§ (i §§>>2D (8 (i £)

i At
where a =3'j (zi— &;), It is easy to show that g; is bounded with the parameter,
- - - Ai
i.e.. g¢ is bounded with respect to ; .

. y A A , A L, A , A L, A , A oA T
G, = Gy2.6.8) = g8 [ X &) alBa [ X= &]). . gon(Bx [~ &])]
gaj(oj ‘\—6_7 )= E,g_gJ(O.J ‘X_gj )l€=610-=0
J

9 4] wl i 2 It N AN
= & ([ |05 (mim G )[E=8.6=5

J =

AL

. A
X— g

P N
=—2-gj(o;
n Al Al Al At
Jo = —2- (I:Il exp l:—(o'j (z:i— fj))2}> : (Uj (zi— fj)z)
o B (mi=£,)%
= —2. H ————1‘—
=1 e_\-p(‘-‘-‘—/f\])zbz
also we can see that g, is bounded with the parameter, i.e., ¢, is bounded with

N
respect to £; .
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Appendix C

Fuzzy model of Hysteresis

nonlinearity

Cousider the system of one input a and one output C, described in Chapter 4. The
input-output experimental data pairs are given in Tables C.1-C.5. The input-output
experimental data is modified by adding another input which is &, as discussed in
Chapter 4. ANFIS is applied on a system of two inputs (« and &) and one output
(Cr). Table C.6 shows the fuzzy model of 8 rules for C,,. Figures C.1 and C.2 show

the membership function of & and &, respectively.



« & Cha
0.9344 0.3974 0.0033
0.9399 0.3985 0.0053
0.9483 0.4003 0.0079
1.0195 0.4149 0.0128
1.3937 0.4341 0.0256
1.7180 0.5365 0.0332
2.0915 0.5908 0.0451
3.0653 0.7114 0.0642
3.6455 0.7733 0.0900
4.2799 0.8350 0.1178
4.8996 0.8903 0.1435
5.5608 0.9449 0.1661
6.2633 0.9988 0.1832
7.0021 1.0516 0.2127
T.7672  1.1027 0.2407
11.2094 1.2979 0.3751
12.0196 1.3374 0.4169
13.0410 1.3S43 0.4600
13.9882 1.4252 0.5015
14.9514 1.4646 0.5407
16.0385 1.5064 0.5794
17.0632 1.5435 0.6219
18.1248 1.5797 0.6706
19.2166 1.614S 0.7259
20.2172 1.6452 0.7349
21.3406 1.6773 0.8446
22.4767 1.707S 0.9037
23.7463 1.7397 0.9631
24.9264 1.7673 1.0242
26.134S 1.7936 1.0875
27.2465 1.8163 1.1521
28.5038 1.8401 1.2176
29.77958 1.8623 1.2838
31.0711 1.8830 1.3511
32.3760 1.9020 1.4188
33.6924 1.9193 1.4S64
34.8842 1.9335 1.5542
36.2130 1.9476 1.6225

Table C.1: Input-output data for hysteresis modeling problem
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«a a Cn
38.8952 1.9708 1.7494
40.1218 1.9792 1.7940
41.5017 1.9868 1.8172
42.7542 1.9923 1.8173
44.1508 1.9966 1.7964
43.5464 1.9992 1.7594
46.8023 2.0000 1.7130
48.2041 1.9992 1.6650
49.6193 1.9966 1.6224
50.9067 1.9926 1.5874
52.3496 1.9863 1.5584
53.6457 1.9790 1.5310
55.0773 1.9691 1.5029
56.5131 1.9572 1.4736
57.9540 1.9433 1.4436
59.3998 1.9272 1.4127
60.8434 1.9090 1.3812
63.7547 1.8657 1.3250
65.2165 1.8404 1.3042
66.6821 1.8125 1.2883
68.1431 1.7821 1.2763
69.5902 1.7493 1.2680

71.0190 1.7141 1.2636
72.4316 1.6763 1.2625
73.8324 1.6359 1.2624
75.2225 1.5925 1.2625
73.8324 1.6359 1.2624
75.2225 1.5925 1.2603
76.5976 1.5462 1.2542
77.9503 1.4970 1.2439
79.2734 1.4450 1.2323
80.5625 1.3903 1.2225

81.8134 1.3328 1.2161
83.0207 1.2729 1.2103
84.1764 1.2106 1.2002
85.2721 1.1465 1.1827

Table C.2: Input-output data for hysteresis modeling problem
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86.3031 1.0809 1.1601
87.2692 1.0139 1.1382
88.1721 0.9453 1.1215
89.0117 0.8752 1.1109
S89.7840 0.8040 1.1052
90.4839 0.7322 1.1047
91.1095 0.6604 1.1113
91.6621 0.3886 1.1251
92.1432 0.5173 1.1408
92.5507 0.4473 1.1495
92.8793 0.3811 1.1448
93.1257 0.3222 1.1285
93.2047 0.2744 1.1112
93.4010 0.2394 1.1050
93.4636 0.2161 1.1144
93.4948 0.2035 1.1331
93.7380 -0.0000 1.1480
93.6730 -0.1053 1.1494
93.5197 -0.1928 1.1363
93.2614 -0.2845 1.1168
92.8998 -0.3766 1.1011
92.4482 -0.4660 1.0959
91.9172 -0.5520 1.1002
91.3065 -0.6358 1.1077
90.6080 -0.7186 1.1120
89.8166 -0.8008 1.1107
38.9373 -0.8817 1.1080
37.9828 -0.9602 1.1098
86.9673 -1.0355 1.1200
35.9020 -1.1071 1.1356
84.7969 -1.1750 1.1594
83.6623 -1.2389 1.1594
82.5094 -1.2988 1.1628
81.3469 -1.3548 1.1631
80.1778 -1.4070 1.1619
78.9993 -1.4561 1.1600

Table C.3: Input-output data for hysteresis modeling problem
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77.8044 -1.5025 1.157
76.5857 -1.53466 1.1579
15.3365 -1.5888 1.1616
74.0529 -1.6292 1.1695
72.7359 -1.667S 1.1802
r1.3936 -1.7043 1.1914
70.0396 -1.7385 1.2014
68.6876 -1.7701 1.2078
67.3443 -1.7991 1.2095
66.0072 -1.8257 1.2062
64.6668 -1.8502 1.2003
63.3118 -1.8729 1.1948
61.9354 -1.8938 1.1919
60.5373 -1.9131 1.1920
59.1240 -1.9304 1.1947
57.7052 -1.9458 1.2001
56.2892 -1.9592 1.2100
54.8797 -1.9706 1.2262
53.4755 -1.9800 1
52.0718 -1.9876 1
50.6755 -1.9934 1
492978 -1.9973 1
48.2978 -1.9991 1
46.6624 -2.0000 1
45.4150 -1.9990 1.3143
44.0341 -1.9963 1.3215

1
1
1
1
1
1
1

42.7950 -1.9924 1.3281
41.4171 -1.9864 1.3304
40.0344 -1.9786 1.3278
38.6468 -1.9690 1.3215
37.3967 -1.9587 1.3123
36.0129 -1.9456 1.2993
34.6365 -1.9307 1.2808
33.4033 -1.9157 1.2566
32.0360 -1.8972 1.2277
30.5324 -1.8746 1.1949

Table C.4: Input-output data for hysteresis modeling problem
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29.1646 -1.8518 1.1583
27.7956 -1.8269 1.1165
26.4261 -1.7997 1.0687
25.0578 -1.7702 1.0143
23.6949 -1.7384 0.9546
22.3427 -1.7043 0.8917
21.0049 -1.6679 0.8275
19.6814 -1.6291 0.7633
18.3706 -1.5878 0.6998
17.0738 -1.5439 0.6377
15.7972 -1.4973 0.57S3
14.5497 -1.4484 0.5228
13.3361 -1.3973 0.4714
12.1546 -1.3437 0.4226
10.8863 -1.2815 0.3744
9.7620 -1.2218 0.3257
8.6776 -1.1593 0.2772
7.6521 -1.0952 0.2318
6.7001 -1.0305 0.1929
5.7387 -0.9589 0.1618
4.9364 -0.8934 0.1368
4.2286 -0.8302 0.1135
3.4319 -0.7512 0.0888
2.7432 -0.6742 0.0622
2.1854 -0.6036 0.0374

1.6510 -0.5262 0.0181
1.1947 -0.4487 0.0057
0.8032 -0.3687 -0.0021
0.4343 -0.2716 -0.0089
0.6948 -0.3431 -0.0166

Table C.5: Input-output data for hysteresis modeling problem
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Ty, Cy 05, Ch a1 iz o

13.2, 0.4387 | 1.643, 2.024 0.16 -3.4 4.565
13.18, 31.5 | 1.645, -2.021 | 0.02543 | 0.6001 | 1.177
13.18, 31.5 | 1.643,2.024 | 0.1382 | -2.529 | 1.917
13.17, 62.59 | 1.645, -2.021 | 0.02096 | 0.7288 | 3.208
13.17, 62.59 | 1.643.2.024 | 0.1137 | 9

13.18, 93.68 | 1.645, -2.021 | 0.01959 | -2.
13.18, 93.65 | 1.643,2.024 | -0.294 | -4.

33.75

13.2, 0.4387 | 1.645, -2.021 | -0.1203 | -3.471 | -4.785

9.075 | -23.74

6 |-5.132
2

Table C.6: 8 rules for hysteresis fuzzy model
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