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ABSTRACT

A Case-Based Reasoning Approach
To Building Envelope Design

Serban lliescu

Building-envelope design is an information-intensive process that requires experiential
knowledge. Confronted with such a process, a human expert adds to well-known domain
knowledge his own experience, or the experience of others, to support his reasoning process and
guide him in typical situations.

The problem-solving paradigm where reasoning is supported by reusing past experiences
is called Case-Based Reasoning (CBR), and it was added to the Artificial Intelligence (Al)
methodology following research in cognitive psychology. Instead of relying solely on general
knowledge of a problem domain, or making associations along generalized relationships between
problem descriptors and conclusions, CBR is able to utilize the specific knowledge of previous
experienced problem situations called cases. CBR is a technology that solves problem by storing,
retrieving, and adapting past cases. CBR systems have been proposed as an alternative to
rule-based systems whenever the knowledge engineering process of eliciting rules is difficult or
unmanageable. Instead, many experiences (or cases) with solutions, warnings, plans, and so forth
are collected and new situations are related to a stored recollection of these past cases. New
solutions are adapted from the old ones.

Research in Knowledge-Based Expert Systems (KBES) for building-envelope design has

shown a similar trend. While computerized assistance was imposed by the large amount of data
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to be processed, the success of rule-based implementations was hampered by the lack of abstract
domain knowledge. Such fields where most of the knowledge is based on experience are often
labeled as “weak theory domain&,” and they are prime candidates for adopting a CBR approach.

This thesis proposes a CBR framework for selecting the construction alternatives during
the preliminary stage of the building-envelope design process. The methodology presented aims
to find the most suitable design for a new building envelope from a library of prototypical
building cases and adapts it to meet the requirements of ASHRAE Standard 90.1/1989 for energy
efficient building design. The study outlines the potential benefits of using CBR technology and
the key issues encountered while attempting to define the CBR model for building-envelope
design. Developing a hierarchy of building-envelope components identifies cases and features
for design. The envelope design problem is solved through decomposition, and by combining
case-based and rule-based reasoning methods. In searching for a best match to achieve a higher
degree of case filtering, a connection between case-based reasoning and Artificial Neural
Networks (ANN) is proposed. An ANN-based filtering mechanism is designed to improve the
quality of case-matching outcome while enforcing the economy of case representation.

The framework proposed by this research has been implemented into the CRED software
system demonstrating the feasibility and advantages of using CBR methodology for building
envelope design. CRED blends several Al techniques (such as ANN, CBR and KBES) while
aiming to offer expert assistance to building design professionals for browsing and selecting

building-envelope alternatives.
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1. INTRODUCTION AND OVERVIEW

1.1. RESEARCH MOTIVATION

Faulty designs account for a large percentage of the building-envelope failures. In their quest to
eliminate design-induced failures, building professionals in growing numbers are relying on
computerized tools offering some form of design assistance, from performance simulations to
actual design recommendations.

Assessing the most suitable envelope for a given building design is a complex process
involving the analysis of huge sets of parameters related to material and energy costs, structural
and environmental requirements, durability, maintenance, and aesthetics. Moreover, the new
design should comply with established construction practices, building codes, and standards.

The first step to enable computer-based designs is to identify the mathematical models
that can be used to simulate the building-envelope performance for different construction
alternatives. In this direction, a comprehensive simulation model is provided by the ASHRAE
Standard 90.1/1989, "Energy Efficient Design of New Buildings Except New Low-Rise
Residential Buildings". Based on extensive research in energy conservéltion in buildings, the
Standard includes new or refined principles for building design, having the capacity to recognize
advances in the performance of various components and equipment. The Standard fosters
innovative energy-conserving designs by encouraging the designers to take into consideration the
dynamics that exist between the many components of a building through the use of the System
Performance Criteria (SPC) or the Building Energy Cost Budget Method. Using the ASHRAE

Standard 90.1/1989 for efficient thermal performance of a new building means making changes
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and reassessments in the approaches used in building design. In addition to thermal performance
requirements, it is often necessary to accommodate owner's preferences with respect to certain
aspects of the building envelope, such as exterior and interior finishes, durability, and
maintenance costs.

The second step in enabling computer-based designs is to identify the procedures that
link the complex design requirements that a building envelope must satisfy. Successful building
designs are fueled by good knowledge and in-depth experience. No one has succeeded so far in
capturing the building-envelope domain knowledge in a limited set of general rules that can be
applied to any situation. Field experience through analysis of known solutions is one of the keys
to designing better building envelopes.

Building-envelope practitioners are currently missing a computerized design tool that
enhances the well-established domain knowledge with the expertise elicited from a collection of
proven design cases. The preliminary stage of the building-envelope design process can benefit
from a computer tool developed around a case-based reasoning model for recommending the
most suitable construction alternative based on a library of prototypical building-envelope cases.
This conclusion is supported by the following observations:

e The building-envelope design is an information-intensive process (i.e. the number of

parameters and/or features to be considered is large);

e Experiential knowledge has a major impact on the building design outcome;

e Usually, the design problem is not completely described in the initial stage;

e The compliance checking is mathematically intensive and requires computer

assistance (see for example, in Appendix A, the equations recommended by the
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System Performance Criteria for assessing the thermal performance of the building
envelope);

e The design process is based on successive trial and error iterations, with failure rates

relatively high, so facilities for repair and recovery are necessary.

In summary, the building-envelope design process follows a reasoning model anchored
on past experiences, and it requires computer assistance for validation and performance
simulation. Therefore, there is a definite need for a computerized model including a case
reasoner enhanced by a set of advanced compliance checking tools. This research aims to

address that need.

1.2. OBJECTIVES

The general objective of this study is to develop the computer model of a Case-Based Reasoning
(CBR) framework for recommending the most suitable construction alternative for a new
building envelope based on a library of prototypical building-envelope cases. The specific
objectives of this research are as follows:

Q To assist the preliminary building-envelope design process through a software design
tool incorporating the ability to recall previous known design solutions and to adapt
them to fit different sets of requirements.

a To develop a Case-Based Reasoning framework for selecting construction
alternatives during the preliminary stage of the building-envelope design. The
methodology presented is geared toward finding the most suitable design for a new
building envelope starting from a library of prototypical building-envelope cases.

o To demonstrate several concrete solutions to some the major design roadblocks
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encountered while attempting to computerize the building-envelope design process.
The major design decisions encountered while developing the case-based approach
are:
e Selecting the appropriate model to represent a building-envelope case;
e Compromising the case description to avoid unnecessary encoding
complexity;
e Simplifying the classification criteria to facilitate retrieval;
e Defining a set of heuristics to improve the best matching procedure;
¢ Inferring missing information from the available construction guidelines;
¢ Producing the mechanisms to transform, test, and eventually repair a building-
envelope case.

a To implement the proposed CBR framework in a software system that will validate
the model, and which can be further used by building design professionals to browse
and select building-envelope alternatives. The proposed system integrates several Al
techniques, such as Artificial Neural Networks (ANN), CBR and Rule-Based
Inference, and it incorporates a knowledge-acquisition facility that dynamically
updates the knowledge base.

This research aims to offer a significant improvement over the existing Knowledge-Based Expert
Systems (KBES) in terms of the level of assistance a computer tool can provide during the
preliminary stage of building-envelope design. It is known that designers often learn from the
experience of completing each design, thus, improving their understanding and ability to solve

future design problems. The integratiom of knowledge-based and case-based reasoning
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approaches will provide an environment in which the dynamic updating of the knowledge base

as well as incremental refinements of a first, best-fit solution can be realized.

1.3. DOMINANT LITERATURE

Commonly used approaches to automate the building-envelope design process are KBES that
employ a set of general rules to generate a new design (Fazio, Bedard, and Gowri, 1989, Bedard
and Gowri, 1990).

CBR (that is, the technology that is used to exploit experience in problem solving)
evolved from theoretical discussions (Schank, 1982, Carbonell, 1983, Kolodner, 1993) to actual
implementation such as CYRUS (Kolodner, 1983), MEDIATOR (Simpson, 1985), CHEF
(Hammond, 1989), PROTOS (Bareiss, 1989), CASEY (Koton, 1989), CLAVIER (Hennessy and
Hinkle, 1992), etc.

Engineering design was an early target for CBR (KRITIK — Goel, 1989). However, in
building design, CBR had a lower impact, and was limited to simple tasks such as browsing

alternatives (ARCHIE — Domeshek and Kolodner, 1992) rather than suggesting solutions.

1.4. LIMITATIONS OF PREVIOUS KBES MODELS
KBES encode general concepts and domain knowledge in a set of rules that are furthered used to
infer design recommendations.

CBR systems favor experiential knowledge encapsulated in previous design cases to
derive recommendations for a new design through a process that has at least two steps: one,

matching, and two, adaptation.
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Though KBES proved to address many issues of representing symbolic information,
previously developed systems (Fazio, Bedard and Gowri, 1989) have serious limitations due to
the static nature of their knowledge base. It is known that designers often learn from the
experience of completing each design and, thus, improve their understanding and ability to solve
future design problems.

There is no fully qualified CBR approach to building-envelope design. All previous
attempts were either limited in scope (i.e. confined to a single step), or could not offer solutions

when confronted with common problems such as incomplete description of the design problem.

1.5. PROPOSED APPROACH
This research proposes to combine the benefits of both techniques (i.e. KBES and CBR) in a
unified methodology:
e Employ a CBR approach to account for experience by identifying in a database of
previous designs the closest match for the current set of requirements.
e Employ an ANN-based filtering mechanism to improve the quality of CBR while
preserving the economy of knowledge representation.
e Employ a KBES approach to infer missing information, to adapt and eventually repair
the retrieved case.
e Use the well-established domain knowledge to validate the envelope design and to
predict its performance.
Historically, the proposed approach evolved from two sources:
a) The decomposition model for a building-envelope case developed by Gowri, Fazio,

and Bedard at the Centre for Building Studies (1988-1990).
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b) The performance simulation techniques recommended by the System Performance
Criteria of ASHRAE Standard 90.1/1989.

The main advantage of the new model consists in integrating the general building-

envelope concepts with experiential knowledge. However, this approach has not been validated

yet by practitioners and was not fully tested under real-life conditions.

1.6. METHODOLOGY
This research combines three aspects as follows:
e Analytical work to develop a CBR model for building-envelope design.
e Data acquisition work to collect a set of prototypical building-envelope cases, and to
encode them according to the above model.
e Implementation effort to transfer the model into a software program for building-
envelope design (and thus to validate the concept).
A computerized model of the building-envelope design process is developed within a CBR
framework. The model includes:
e The minimal set of features and properties identified to capture the essential
characteristics of a building-envelope entity.
e The encapsulation model required for encoding a building-envelope case along the
above-identified features.
e The modality to store and classify building-envelope cases accounting for experience.
e The mechanism to retrieve and adapt an existing building-envelope case when

provided with a new design context.
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With respect to data acquisition work, a comprehensive set of building-envelope cases
was assembled through discussions with practitioners, and from the available literature. The
cases are selected to cover most of the common design situations encountered for buildings of
different types and sizes.

The model validation is attempted by implementing it in a computer program for the
preliminary building-envelope design. The program uses a database of known building-envelope
cases to suggest design recommendations when fed a set of requirements for a new building. The
developed model demonstrates how experiential knowledge can be incorporated to enhance a
computer-generated envelope design, and how the integration of the KBES and CBR approaches

can be realized.

1.7. ANTICIPATED VALUE OF THE WORK
This research presented herein has lead to:
e A CBR framework that can be used as a guideline for implementing a computerized
tool for building-envelope design.
e A methodology for mixing several Al technologies (ANN, CBR, KBES) with
compliance-checking procedures to enhance the building-design outcome.
e A database of successful building-envelope cases that can be further augmented and
refined.
e A software program able to assist practitioners during the preliminary stage of the
building-envelope design process in browsing and evaluating different design

alternatives.



2. PROBLEM DEFINITION AND DOMAIN KNOWLEDGE

The primary goal of the building envelope is to protect and maintain the comfort conditions of

the indoor environment from the rapidly fluctuating outdoors climatic conditions. In achieving

these objectives, the building envelope must fulfill the following functions:

control of heat flow,

control of water vapor flow,

control of rain penetration,

controlled admittance of natural light and solar radiation,
control of air movement through wall,

stability against wind pressure and the regulation of differential air pressures,
protection against fire,

control of differential thermal expansion,

control of vibrations and seismic stress,

durability combined with low maintenance,

control of outdoor noise, and

economy.

In designing an envelope to conform to these requirements, it is essential to examine each

condition in detail to understand the principles and mechanisms involved. Though a wide variety

of design guidelines, research reports, and trade literature is available, there does not yet exist a

methodology by which this information can be used in comprehensive manner to assist designers

in evaluating building-envelope performance. In the present study, a comprehensive set of
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literature sources has been identified to develop a knowledge base, which can be implemented in

a computerized system.

2.1. BUILDING ENVELOPE DESIGN FOR ENERGY EFFICIENCY

The quest for energy conservation led to the increase of building insulation. Reducing the heat
flow through the assembly by increasing the thermal resistance of the envelope raises questions
about how much insulation is really necessary and cost-effective. According to the ASHRAE
Standard 90.1/1989, the optimal values for all building-envelope thermal parameters are to be
calculated based only on the general building characteristics (such as type of building, geometry,
orientation, and so forth) and the average climatic data of the selected location (such as heating
and cooling degree-days, average incident solar radiation, and so on).

Using the average weather data of the building site, and other additional information
concerning the type, geometry, and orientation of the building, one may generate, based on
ASHRAE Standard 90.1/1989, a theoretical model of the building, called the prototype building,
and use it as the reference for achieving energy efficiency. The new building design will be
considered to meet the Standard requirements if, and only if, its thermal performance will be at
least as good as the thermal performance of the associated prototype building; that is, the
following relation holds:

Heipe *+ Caioe < Herotorvee + CeroToTYPE
where Hpipe and Cprpg, are respectively the wall heating and cooling load values (i.e.
cumulative annual heating and cooling energy flux) for the new building, and Herororyee and

CrrororypE are respectively the wall heating and cooling compliance values (i.e. cumulative
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annual heating and cooling energy flux) for the prototype building. More details about the

calculations required by the ASHRAE Standard 90.1/1989 are to be found in Appendix A.

Design requirements are further complicated by the existence of local construction codes,
such as the Quebec Law for energy efficiency. Hence, any new building design should not only
respect all regulations found in local building codes but also paés the energy efficiency tests.
Appendix B provides details on how ASHRAE Standard 90.1/1989 could be combined with the
Quebec Law in generating the theoretical envelope for a prototype building in Montreal.
The prototype building provides sufficient data for employing simulation tools such as BESA,
DOE-2, BLAST, and so forth, to assess the impact of varying the insulation value on the overall
thermal performance of the building. For example, Appendix C shows how the total energy
consumption of a sample building is affected by modifying the thermal insulation of the walls.

The total energy consumption of the building decreases with the increase of the overall
thermal resistance of the walls as shown in Figure 2-1.

Using regression analysis on the data gathered by studying the energy consumption of the
building with respect to the overall thermal resistance of the walls, a non-linear relationship can

be obtained:

e-b xR kVV;h

m

Energy Consumption = Ey x (1 +a x

where R is the thermal resistance of the wall, E; is the minimum value expected for energy
consumption, and a and b are two constants in the 0 ... 1 range.

In the example of Appendix C, an increase of the total thermal resistance of the wall from
0.5 to 5 times the recommended value of ASHRAE Standard 90.1/1989 (that is, 2.5 m*C/W)

reduces the overall energy consumption by about 13%. A simple explanation is that increasing
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thermal resistance improves heating performance, but deteriorates cooling performance. The
conclusion emerging from the above analysis is that the impact of increasing the thermal
resistance of the wall over and above the ASHRAE recommended value on the energy

performance of the building is limited (in general, to less than 20%).
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Figure 2-1. Energy Consumption vs. Wall R-value

Therefore, even if energy efficiency of the building is a desirable trait, increasing it
through improvements in the thermal performance of exterior walls should be carefully
considered. Analysis of energy savings should be accompanied by analysis of material costs
implied by any improvements. The question to answer is how much money should be invested
towards achieving the energy efficiency of the building through envelope improvements. In this
direction, one recommended method is the life cycle cost analysis of the relationship between the

insulation cost and the energy saved (Masonry Council of Canada, 1982). Appendix D contains a
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sample of such life cycle cost analysis showing that the R-value should not be increased more

than 36% over the ASHRAE recommended value. The 0.36 value will be later used as a heuristic
threshold to limit the wall R-value modification range when attempting to repair a building
envelope that fails the energy-performance requirements.

By combining the recommendations of ASHRAE Standard 90.1/1989 with other forms of
economic analysis, an optimal thermal resistance of the wall can be obtained, a value that takes
into account the energy savings over the entire life of the building (usually estimated to be about

20 years).

2.2. PRACTICAL CONSIDERATIONS

Traditionally, in cold climates, the air-vapor barrier has been placed on the warmer side of any
insulation. This is intended to prevent moisture from entering the wall where cooling can cause
condensation. However, in energy-efficient houses, it is desirable to place the air-vapor barrier
between layers of insulation. This protects the barrier from damage during construction. Instead
of being penetrated by plumbing and electrical outlets, or damaged during drywall installation
(particularly common for walls), the barrier can remain intact. Hence, Canada Mortgage and
Housing Corporation (CMHC) suggested the arrangement shown in Figure 2-2 in 1982 as a safer
alternative toward lowering the maintenance costs and improving the overall performances of the
wall. The installation costs will be higher, however, due to the increase in complexity. In our
computerized approach to building-envelope design, embedding vapor barrier within layers of
insulation will be the preferred layout whenever the insulation thickness exceeds the threshold of

76 mm (3 inches).
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Figure 2-2. Insulation Placement

Thermal and moisture performances of any buildings, whether a simple dwelling or a
complex multi-story building, are heavily affected by poorly installed insulation and by
structural penetrations providing thermal bridges for heat flow. A series of tests performed by
CMHC has shown the impact of insulation placement on the temperature profiles for Veneer
Wall Systems, and, consequently, on the resulting dew point locations (Johnson, 1991). Of the
five tested assemblies, only the one having the insulation located on the exterior of the sheathing
had all temperatures above the dew point.

It was not until the 1980s that the thermal bridge occurring at each stud location became a
serious concern. Most, if not all, recent structures have a layer of insulation applied to the face of
the sheathing in order to reduce the effect of that thermal bridge. This provides a number of
advantages, such as:

e The air-vapor barrier is in the same location, on the warm side of the insulation.

e There is virtually no thermal bridging at stud location or slab edge.
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e By being applied on the exterior face, there are fewer obstructions to maintaining a
complete seal.
e The interior face of the wall can be penetrated at will for such things as convenience
outlets, without fear of damaging the building envelope.
Following this idea, in an optional reasoning path of our computerized approach to building-
envelope design, rather than insulating the space between studs, the entire insulation is placed
outside the studs, thus avoiding the problems caused by thermal bridges. There are, however,
some disadvantages in this approach, such as:
e The assembly is quite thick although the stud size may be reduced as it is now
dependent on wind load and not on insulation thickness.
e The cladding must be supported at some distance from the main structural frame.

e If problems occur, the assembly can only be accessed by removing the outer cladding.

2.3. MOISTURE FLOW THROUGH THE BUILDING ENVELOPE

The recent requirements for increased thermal efficiency have introduced some new problems to
be considered. Disregarding comfort and energy costs, older, poorly insulated assemblies had
few problems since the entire wall was constantly kept warm and air movement was relatively
unimpeded. If moisture did gain entry to the assembly, either by rain penetration or
condensation, it would not freeze since the air movement provided a good drying mechanism. In
new assemblies with high thermal resistance, some components of the assembly will be below
the dew point, and, in some circumstances, below the freezing point. Walls have low drying

potential, and if moistare is allowed to accumulate in such an assembly, whether by vapor



transport, air leakage, or rain penetration, substantial damage to the components is bound to

occur. Therefore, to avoid damage in well-insulated assemblies, control of vapor transmission,

air leakage, and rain penetration must be a priority.

The two possible mechanisms of vapor flow through a wall are:

(a) vapor diffusion (under vapor pressure gradient);

(b) vapor transport (under air pressure gradient, i.e. air flow).

The amount of air moving through any opening in the envelope is directly proportional to

the pressure difference across that opening. Pressure differences can arise from wind, stack

effects, and mechanical ventilation systems:

Wind will cause an overpressure on the windward face of a building and a suction
pressure on the leeward face. Although the effects of wind are well understood, little,
if anything, can be done to control these natural effects of building pressurization.

In cold seasons, the stack effect in buildings is the same as the stack effect in
chimneys; i.e. the hot air rises. The result is that the upper portion of the building
becomes positively pressurized and the lower portion negatively pressurized. While
the stack effect might not be eliminated, the airflow through the openings can be
reduced through various methods such as increasing air tightness of exterior
enclosures and interior separations, and adjusting air-handling systems to provide an
imbalance of supply or exhaust.

Building pressurization is affected if the ventilation system exhausts more or less air
than is taken in. Management of pressurization is dependent upon the sophistication

of the system and its controls.



It is clear that pressure differences across the envelope cannot be avoided. Airflow and vapor
flow by themselves cause little concern (if the energy loss aspect is overlooked). It is only with
the introduction of heat flow via a temperature gradient that it becomes possible for the vapor to
condense into water or frost. Water within walls is a prime factor in the deterioration of wall

systems.

2.3.1. Surface condensation

Thirty years ago, the major concern was to ensure that visible or surface condensation did not
occur on interior wall surfaces (Hutcheon and Handegord, 1989). Glazing was designed to
provide sufficient thermal resistance to maintain the inner surface above the temperature that
would cause condensation to occur. That is, temperatures were kept above the dew point. Air
spaces in multiple glazing were sealed to minimize moisture content. Building codes specified
that sufficient insulation must be provided to maintain the interior wall surfaces above the dew
point. Thus, the first problem that was addressed and essentially solved was visible or interior

surface condensation.

2.3.2. Concealed condensation
Unfortunately, the majority of severe serviceability problems result from concealed
condensation, which is the condensation of water vapor occurring within the wall system.
Central to the issue of concealed condensation are the mechanisms of vapor transfer, that is,
vapor diffusion and air leakage.

Air leakage is the uncontrolled movement of air through the walls, both into a building

(infiltration) and out of it (ex-filtration). Condensation resulting from ex-filtration during cold
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weather can cause rapid deterioration of the building wall elements. In a cold climate, the
infiltration of cold dry air is less damaging to the wall assembly than ex-filtration of warm moist
air. Therefore, it would be preferable to maintain a slightly negative building pressure. If the
envelope is poorly sealed against air leakage, even the most sophisticated ventilation system
would not be sufficient to maintain a negative pressure. This leads to the conclusion that
uncontrolled airflow across the envelope must be reduced to an absolute minimum, especially in
tall structures where wind and stack effects have the most impact.

As a result of growing concern regarding the effect of uncontrolled air leakage in

buildings, an "effective" air barrier within the building envelope is required in all new buildings.

2.3.3. Air barriers
To effectively accomplish the control of air movement, the air barrier should be linked
continuously within the building envelope. Continuous air barriers at corners of buildings are
essential to resist greatly increased wind pressures. This, however, is not always achieved in
reality. Based on recently reported research (Johnson, 1991), the air barrier assembly should be
considered as a separate element within the building envelope and designed to meet the
following criteria:

e Support and transfer the air pressure to the structure of the building.

e Materials used as air barrier should be as ““air impermeable” as possible (e.g. gypsum

board, concrete, reinforced sheet membrane, and so on) but not necessarily vapor

impermeable.



e Though complete air tightness is not possible, the air leakage should be limited by
avoiding any visible openings, cracks, fissures, or holes on the surface of the air
barrier.

e The air barrier assembly should be rigid so that, when it is subjected to an air pressure
difference, it can resist the structural forces. The joints between different elements of
the air barrier, however, may be flexible.

e The air barrier should perform for the life of the building, or provision should be
made to allow the maintenance of the assembly.

It must be remembered that for an air barrier to be "effective" it must be continuous. This means
that the barrier is not simply a membrane but a system of components that provides resistance to
air movement. Those components might include the roof membrane, wall sheathing, door and
window frames, and the foundation walls. Not only the air permeance of components is
important, but also the seal of the connections between these components requires careful
attention. The connections may be caulked or have a flexible membrane or gasket applied. The
nature of the connection is dependant upon whether it is exposed to weather, extreme
temperature differences, structural movement, and whether the joints are accessible for

maintenance.

2.3.4. Vapor retarders

Vapor diffusion is the result of vapor pressure difference that causes water vapor molecules to
migrate through most materials. The amount of water vapor passing through the building wall
will depend upon the permeance of the wall assembly and the vapor pressure difference between

the inside and outside air.



All building materials offer some resistance to water vapor diffusion; some materials,
called vapor retarders (or vapor barrier), offer more resistance than others and are used to reduce
the diffusion of water vapor. The most common available vapor retarders include polyethylene,
asphalt coated felts, asphalt-laminated papers, metal foils (copper, aluminum), paints, and
coatings.

The vapor barrier should control the movement of air through the wall such that no warm
moist air will pass far enough into the wall system to sufficiently cool down and condense. This
implies that the vapor barrier must be on the warm side of the insulation.

In contrast with air barriers, the continuity of vapor retarders is not critical. Typically,
material overlaps at joints are sufficient to reduce vapor diffusion and, hence, sealing of the

overlaps is not required.

2.3.5. Potential for moisture-related problems

In many buildings, air leakage through the building envelope has been identified as the number
one problem. The volume of air involved in air leakage may not be significant in terms of
heating and ventilating the building, but the amount of moisture carried out by air from inside a
humidified building can be large enough to cause serious performance problems.

Although most new buildings have more wall and roof insulation than older buildings,
the cladding, wall, and envelope damage due to air leakage through the building envelope has
increased significantly. With more insulation in walls, cladding is subject to wider extremes of
temperatures; the outer wall elements are maintained at or near the outside temperature. The
colder cladding triggers more condensation with subsequent water damage. Under freezing

conditions, the water migration can grow into ice lenses, causing expansion and displacement of
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exterior veneers. Humid air flowing through a building envelope in an uncontrolled fashion often
results in the above-mentioned problems, thereby causing damage to the cladding and exterior
walls of new buildings. The most common moisture-related problems in wall systems include the
following:

e deterioration of exterior sheathing;

e deterioration of insulation;

o freeze-thaw damage of exterior facing;

e excessive efflorescence;

e mortar-joint spalling;

e masonry discoloration;

e corrosion of metal components.

2.3.6. Water penetration

Rain penetration through exterior walls occurs all too frequently despite advances in building
technology. The combination of water and the wall surface fissures, which allow its passage,
propels the water inward producing rain penetration. Rain penetration cannot occur without all
these conditions being present.

During heavy or persistent rain, a film of water will form on the exposed exterior wall
surface. Air current, surface texture, and gravity govem the flow of this water, generallyin a
downward diagonal flow that collects in protected vertical joints. Structural and thermal
movement in the exterior wall surface, when not considered in design, may produce cracks,

fissured joints and weakly bonded interfaces, which, combined with porous materials, provide



many opportunities for water penetration. Impermeable facings have furthered the development
of impervious wall surfaces but site application techniques and solar radiation on exposed sealant
make it impossible to maintain a wall permanently free from cracks and openings. The exterior
wall should be designed using proven rain-screen design principles where water entering the wall
will be drained using appropriate flashing details.

Most cavity walls adopt the open rain-screen principle in which the wall consists of three
distinct parts:

(a) a vented outer layer or wythe,

(b) and an insulated inner airtight wall, and

(c) an air chamber (air cavity) separatiﬁg the two layers.

The air pressure in the air chamber space must be equal to the pressure on the exterior wall. This
is accomplished by providing combination of weep holes and drainage vents in the outer wall.
Flashing is located along the entire wall at the bottom of the weep holes to permit any water that
has entered the rain-screen to escape to the atmosphere.

Openings such as windows, doors, and grilles in multi-layer walls must be sealed to the
air barrier inner walls with projection or bulkheads connecting with the outer rain-screen. The air
barrier must prevent major air leakage and resist wind loads on the building. The air space
should be closed at corners to prevent air from going around the corners and feeding possible
high suction on the adjacent wall face.

A complete rain-screen design approach can result in the following advantages:

e permits rapid drying of cladding material,

e permits cladding movement and crack control,

e permits better positioning of insulation minimizing condensation risk within the wall,
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e structural elements are maintained at a more uniform temperature, with minimized

expansion-contraction range.

2.4. AUTOMATING THE BUILDING ENVELOPE DESIGN
The complexity of the building envelope design process is due to several factors such as:

e the large number of parameters to be considered (parameters related to building
materials, energy efficiency, structural and environmental requirements, durability,
maintenance, aesthetics and costs),

e the overlapping and competing nature of compliance guidelines (construction practices,
building codes, standards, etc.),

e the lack of methodology for processing design information in a comprehensive manner,

e the need to combine well-established domain knowledge with experiential knowledge
(that is, expertise elicited from proven design cases).

To successfully handle that complexity and to avoid design-induced failures, the building
professionals need computer assistance.

Ideally, any computerized tool involved in engineering design aims to reach a level of
human expert competence. Human problem solving and learning are processes that involve the
representation of several types of knowledge, and the combination of several reasoning methods.
In the case of building-envelope design, a high level of expertise cannot be achieved without
acquiring good quality knowledge through experience. The better the quality of previous design
experience, the higher the likelihoqd of future fault-free designs. The problem-solving paradigm

where reasoning is supported by reusing past cases is called Case-Based Reasoning (CBR), and it
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emerged as an Al area of interest following research in cognitive psychology. Next section
presents an overview of the CBR methodology, that is the approach adopted by this research to
automate the designing of building envelopes.

If cognitive plausibility is a guiding principle, an architecture for knowledge-based
systems where the reuse of cases is at the center, should also incorporate other and more general
type knowledge in one form or another. This is an issue of current concern in CBR research.
Following the general trends of knowledge-based systems (shown in Figure 2-3), this thesis
attempts to address that concern by balancing the CBR methodology with other AI techniques

such as ANN and rule-based inference.

Figure 2-3. Trends in Knowledge-Based Systems

Some of the major reasons for applying a CBR approach to an engineering problem (such
as the designing of building envelopes) are the following:
e Being reminded of previous experiences is a powerful way to solve new problems.
e Learning by sustained adaptation of past problem-solving solutions is valuable.

e Learning of generalizations is more difficult than learning of specialized cases.



3. CASE-BASED REASONING PARADIGM

Case-Based Reasoning (CBR) is a problem-solving paradigm where a new problem is solved by
remembering a previous similar situation and by reusing the information and knowledge of that
situation. In CBR terminology, a case usually denotes a specific problem situation including its
interpretation, solution, and possible annotations. A case is a previously experienced situation,
which has been captured and learned in such a way that it can be reused in solving future
problems.

CBR emerged initially as an Al paradigm following research in Cognitive Psychology,
but it was further adopted as a technology for various industrial and business applications. CBR
became an alternative not only to rule-based expert systems, but also to analysis tools based on
statistics and information retrieval. CBR technology is suitable to domains that exhibit
characteristics such as (Althoff, Aurial, and al, 1995):

e Domain has weak or unknown causal model;

e Contradictory rules apply in different situations;

e Domain formalization requires too many rules;

e There exists records of previously solved problems, and historical cases are viewed as

an asset that ought to be preserved;

e Specialists talk about their domain by giving examples;

e Experience is at least as valuable as textbook knowledge.

All the above criteria apply to the building-envelope design process.



3.1. CBR PREMISES
CBR suggests a model of reasoning that incorporates problem solving, understanding, and
learning and integrates them with memory processes (Kolodner, 1993). CBR emphasizes the use
of instances, called cases, over abstract demain knowledge as the starting point for reasoning.
Simpson (1985) showed that the CBR model is based on the following five fundamental
premises:
(@) Reference to previous cases is possible through a dynamic memory accounting for
experience.
Thus, remembering a case to use in later problem solving (and integrating the case
with what is already known) is a mandatory learning step. However, the library of
cases should be kept at a reasonable size by limiting it to the so-called "paradigm"
cases, which are past experiences linked to relevant and unique information
regarding either success or failure.
(b) Capabilities to recognize similarities between cases are available.
Because descriptions of the problem are often incomplete, a good understanding
or interpretation of the problem is a necessary prerequisite for reasoning. A
case-based reasoner cannot recall a relevant case unless it understands the new
situation. Moreover, as problem-solving progresses, a reasoner may gain a better
understanding of a situation, allowing more relevant cases to be recalled. This
suggests that understanding or interpreting the new situation is a necessary part of
the reasoning cycle. In conclusion, an efficient CBR mechanism should:
e recall only those cases that are potentially applicable, and retrieve the same

cases no matter how many cases were screened;
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e while searching for similar cases, rather than looking for individual goals and

then merging the results, select only those cases that satisfy many of the
required goals at once.

(c) Mechanisms to transfer information between cases are at hand.
Since no existing case will ever be exactly the same as the new one, it is usually
necessary to adapt an old solution to fit a new situation. Adaptation compensates
for the differences between an old situation and a new one. The reasoner must be
able to transform the "best match" case according to current requirements using:
o aknowledge base of modification rules, and
e domain knowledge about the design constraints.

(d) Learning occurs as a natural consequence of reasoning.
If a novel case is derived following a reasoning process, then the new case is
saved in the dynamic library of cases, and indexed according to its salient
features, such that a later retrieval will benefit from it. So, rather than discarding
the cases it builds, a case-based reasoner has to save them in memory for later
use. If problems are encountered while applying an old case to a new situation,
the reasoner must be able to recover from reasoning errors. In the process of
recovery, the case-based reasoner should treat these errors as opportunities to
learn more about its domain and the problems that arise in it.

(e) Feedback and analysis are part of the complete reasoning/learning cycle.
Without the evaluation process based on feedback, learning could not happen, and
references to previous experiences during reasoning would be unreliable.

Complete and/or partial design solutions are checked through simulation to reveal
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inconsistencies. Testing is applied recursively till the design is complete. Errors
may arise from:
¢ wrong selection of similar cases;
¢ unacceptable adaptation;
¢ initial goals are either contradictory or too restrictive to be achieved.
The above premises suggest that the reasoning quality in a CBR system depends on several
factors such as:
¢ the amount and diversity of cases supporting the reasoning system;
o the ability of the system to understand a new situation, relative to those old cases;
e the capability to adapt old cases to new contexts;
e the level of evaluation and the capacity for repairing selected cases;
e the ability to filter new experiences and to integrate the significant ones within the
dynamic memory of cases.
Key issues when building a CBR system are:
¢ representing the case so as to capture its true meaning;
e indexing cases to retrieve them quickly;
e assessing the similarity between a current case and the retrieved ones;
e adapting a solution that worked in the past to the new problem;
e checking the validity and conformity of the new solution.
In conclusion, the central problem of case-based reasoning is what exactly is meant by a “case”,
and how to represent it. The main processes of case-based reasoning are case retrieval, including

input pattern matching, and case storage, linked to memory update and case evaluation.
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3.2. DEFINING A CASE MEMORY
It is often said (Riesebeck and Schank, 1989) that a case-based reasoning system can be only as
good as its memory of cases. The case memory includes not only the library of cases but also the
set of access procedures defined to store and/or retrieve information from that repository of
cases. Therefore, one of the important problems to be solved in implementing a CBR system is
the case representation, which will raise several major design issues (Hammond, 1989):
e What knowledge should a case encode?
e What are the relevant features of a case, or in other words, why is a particular case a
meaningful one?
e How should the cases be indexed and linked within the library of cases?
e What methodologies are used to access the cases, retrieve their information, and,
eventually transform them to fit a new context?
e Why is a case "worth remembering" and how will be the library of cases dynamically
updated?
In a general definition, a case is a contextualized piece of knowledge embedding a domain
specific lesson about how to achieve a given goal (Kolodner, 1993). For instance, in the
building-envelope design domain, a case could include not only the full description of building-
envelope elements but also some detailed design knowledge about what strategies should be
applied to achieve energy efficiency, or how general guidelines derived from well-established
building-construction practice should be considered in the given context.

A case can be regarded as having three major features:
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e its description;

e its associated solution (also called as its diagnosis, its class, or its target);

o the justzﬁcatz’on of its solution.

The description includes all the relevant attributes (or features) of the case. Those case attributes
with a significant impact on the case behavior and performance are usually called salient
Sfeatures.

One has to distinguish between cases that augment the system's knowledge and are worth
being remembered (that is, stored in the library of cases) and cases that duplicate existing
information, without making a significant difference to what is already known. Therefore, a
design instance that is to be kept in the case library, usually called protosypical or paradigm
case, has several characteristics, such as:

e [Itrepresents a specific piece of knowledge tied to a context, recording that knowledge

at operational level rather than at conceptual level.

e It records an experience that is different from expected, either by how it achieves a

goal or by how it avoids a failure.
It is important to note that the value of a case is directly linked to the appropriate circumstances
in which the case was defined. In other words, a case is indexed by its functionality context that
will govern the condition under which the case may be retrieved. For example, a high-rise
building désign will be a case so indexed that its retrieval for the design of a one-story family
house will be, at best, unlikely if not impossible.

Therefore, to define and organize a library of cases, one should address the following

CBR issues:



a) Establish a selection criteria
Accumulating a very large number of cases is restricted by available storage and
increases the difficulty of retrieval. So, cases worth remembering should be
properly identified.
b) Select case's indexes
Indexes are those "salient" features of a case which specify the appropriate
circumstances to retrieve that case (that is, the context in which case information
provides some meaningful solutions).
¢) Enforce economy of representation
Store only useful information from a given case.
The organization of the case memory can follow one the following models:
e flat representation, where each case is described by the same attributes;
e structured representation, where each case is indexed in a hierarchy tree, the
arguments used to described being defined by the indexing tree;

e hybrid representation (a mixture of flat and structured representation).

3.3. FEATURE SELECTION

At the core of case representation lies the problem of feature extraction, since features are the
attributes (or characteristics) that distinguish a given case from the others. Those features that
encapsulate the case functionality and delineate its most important characteristics are usually
called salient features. The salient features used to index the case in the memory are called
indexes. There are two major approaches to features selection:

(a) automated feature extraction (i.e. features are selected by a computer), and
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(b) manual feature extraction (i.e. features are selected by a domain expert).

In the first approach, the design domain (in our case, building envelope) is described along some
important parameters, and each case is represented according to those selected parameters. The
case, so encoded, is then submitted to a computerized classifier (e.g. an artificial neural network)
that will extract the appropriate feature vector. In the second approach, the library of cases will
be analyzed by a domain expert, who will decide the case representation by indicating which are
the relevant features.

Neither solution is perfect; the machine may focus on some meaningless features, while
the human expert may overlook some of the not so obvious patterns. This research recommends
employing both approaches, with the human expert making an initial, coarse, selection of
features, while the machine will be further used to fine tune that set of features. In essence, initial
selections made by a computer are avoided, since the human experts have a better understanding
of their given design domain, and the potential bias of the human experts is eliminated by using
the machine to map the selected features into a vector that will finally encode the case. Given a
library of cases, the following method is proposed for features extraction:

(a) Let a human expert select an initial set of features.

(b) Represent all cases along those features.

(c) Associate a conceptual hierarchy tree to be used as criteria for generalization.

(d) Let the computer browse the stored cases and explore the generalization options until

the optimal set of features is selected; in other words, let the machine filter the cases

based on the conceptual hierarchy tree provided.
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3.4. MAJOR STEPS IN CASE-BASED REASONING

Starting with case retrieval as primary process and ending with memory update, the CBR flow
has the following four basic steps:

(a) Access and Retrieval;

(b) Mapping (or Transformation);

(c) Evaluation and Repair;

(d) Leamning and Updating.
Hammond presented a reasoning flow (Hammond, 1989) that starts with a TARGET case
(representing the problem to solve), continues with the SOURCE case (accounting for best match
found in the case library), produces a MODIFIED case (obtained after applying the modification
rules to the SOURCE case), and ends with the SOLUTION case (the MODIFIED case after
passing the evaluation steps, including repairing, if necessary). Figure 3-1 details the reasoning

model proposed by Hammond.
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Figure 3-1. Basic Steps in Case-Based Reasoning
(From K. Hammond, “Cased-Based Planning”, 1989)
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3.4.1. Access and Retrieval
In general, it consists of two sub-steps:
(a) Recall previous cases.
A target case is assembled from the input data and is used as criteria for accessing
the case library. Retrieval of similar cases from the case library is achieved by
using features of the new case as search criteria. Cases that could trigger the
retrieval mechanism are those that have the potential of being adapted to the new
situation.
(b) Select the best case or subset of cases.
If sub-step (a) collects all cases that may be suitable to the input requirements,
sub-step (b) narrows down that list to the most likely choices (a "best-match" case
or, at most, a couple of cases called "best subset" of cases).
For the retrieval to happen, the computer needs to be provided with a similarity metric and a goal
hierarchy, the first parameter (or function) gives the computer a means of recognizing if a case is
applicable to the new situation, while the second parameter allows for weighting the usefulness
of the retrieved case (or cases).
Another issue is the selection of a retrieval algorithm capable of searching a massive
library of cases without slowing down appreciably the retrieval process as new cases are added
to the memory. This research proposes to employ here an Artificial Neural Network (ANN)

classifier for fast and reliable filtering of cases.
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3.4.2. Mapping

The retrieved case, selected as the starting point for the reasoning process, should be so
transformed as to match as many—if not all—input requirements as possible. That process, also
called case adaptation or case transformation, should be performed along similar features, which
are features that could be swapped without changing the functionality or the main characteristics
of the case.

To map unmatched features into the retrieved case, the computer should rely on some
mechanism enabling the transfer of information, consisting of adaptation rules and validated by
the existing domain knowledge. For instance, the computer should know that a curtain wall is not
to be transformed into a masonry wall, and, in general, that the structural layer of an envelope
component can be mapped only under some particular circumstances.

The reliability and quality of adaptation rules are essential for the success of the whole
reasoning process. A bad case transformation will have a negative impact on further steps,
increasing the chances of failure. At this stage, it is appropriate to raise the issue of combining
case-based reasoning with other reasoning models such as rule-based reasoning. Instead of
looking at the two models as competitive alternatives, this study subscribes to the opinion of
those authors who have seen in case-based reasoning a way to enhance rather than replace
rule-based expert systems. The adaptation step could be the intersection point of the two models,
with case-based reasoning submitting the SOURCE case to a rule-based system that will

transform it into a MODIFIED case required by the next reasoning steps.
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3.4.3. Evaluation and Repair

Usually, a solution cannot be validated until it is tried out in the "real" world; however, when the
knowledge exists to simulate the validation process, we may be able to reveal inconsistencies
through computerized methods. For example, it can be assessed if a given envelope component
will have moisture-induced problems by simulating its dynamic behavior at different humidity
levels that could occur at the given building location. Hence, performance evaluation, either
through simulation or using real world tests, is a mandatory validation step for providing the
CBR system with the feedback required to trigger either a repairing procedure or a learning

phase.

3.4.4. Learning and Updating
A case-based reasoner has to acquire knowledge through the reasoning process, and, eventually,
save it in memory. In other words, if the case built was marked either as an unique instance, or
an improved one, it will become a case "worth remembering” and, accordingly, saved in the case
library. The most important part of case library update is choosing the ways to "index" the new
case so that during later reasoning it will be recalled when it can be most helpful.

Another aspect of learning in a CBR system is that knowledge acquired through
evaluation feedback might be eventually generalized to derive empirical knowledge in a given

domain.

3.5. CBR VERSUS OTHER REASONING METHODS
It is obvious that case-based reasoning is recommended for those reasoning processes that

require experiential knowledge (such as the building-envelope design process). It is very useful
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where there is a lot of information available but not systematically organized into hierarchies of

concepts and rules. CBR is also useful when domain knowledge is incomplete or sparse as

opposed to more traditional AI systems, which use certainty factors to account for inexact

reasoning. It is well known that those methods based on certainty factors are computationally

expensive and not intuitively plausible. CBR offers an alternative method for dealing with

incomplete information, a method where missing knowledge is derived from previous experience

embedded in the case description.

From the above discussion, it can be concluded that some of the benefits of using CBR

technology over other AI methods are as follows:

discovering knowledge in data;

delivering consistent and valid solutions even when the target domain and its
constraints are not fully understood by the reasoner;

solutions could be obtained relatively fast compared with other AI methods where the
problem is solved by starting from scratch;

preserving the know-how of the most talented domain experts by capturing their
experience and transferring that experience to the novice;

providing means for dynamic evaluation and improvement of the reasoning outcome;
helping the reasoner to focus on the important parts of the problem to solve, by
pointing out what the important features of the problem are.

building a domain memory by sharing individual experience; previous experiences
augment the power of the reasoning process by avoiding past mistakes and by

retrieving already found solutions.



Case-based reasoning has its share of disadvantages, such as:
e Solving problems exclusively based on previous solutions could fail in novel
situations (very much different from those stored in the case library).
e CBR may introduce a reasoning bias (linked to the "best match" selected from the
case library) that often leads to a non-optimal outcome.
e The quality of the solutions proposed by a case-based reasoning system is very much

influenced by quantity and diversity of the set of cases available in the case library.

3.5.1. CBR versus rule-based reasoning
There are some striking similarities between rule-based and case-based systems (Barletta, 1991).
Cases are indexed according to carefully chosen features that may resemble rules, and,
frequently, they are generalized to eliminate irrelevancies and to limit the scope of the search.
Kolodner (1993) considers that, at some level, we can think of case-based reasoning as a
type of rule-based reasoning in which the rules are very large, the antecedents need to be only
partially matched, and the consequents need to be adapted before they are applied. A case's
problem description might correspond to a rule's antecedent and the solution to its consequent.
Rather than requiring a perfect match, we can apply the case when the antecedent partially
matched. Despite those similarities, there are obvious differences between the two methods as

listed in Table 3-1.

3.5.2. CBR versus pattern recognition
Both case-based reasoning and pattern recognition use a common methodology, where finding

the solution is based on an initial set of exemplary cases, each case being labeled as belonging to
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a particular class. As in pattern recognition, cases are identified by their "features" and classified

accordingly. What pattern recognition calls "classification" or "recognition,” case-based

reasoning calls "matching”. Beyond similar terminology, however, there are some significant

differences as listed in Table 3-2.

Table 3-1. Case-based reasoning versus rule-based reasoning

-] ‘Case<Based Reasoning

Rule-Based Reasoning

1. Size

adapted and repaired till it fits the

input problem (if possible).

Cases are large chunks of domain Rules are desired to be fairly small,
knowledge that usually overlaps independent, and consistent pieces of
with other cases information. domain knowledge.

2. Meaning Cases in case library are constants. Rules in a rule base are patterns.

3. Matching | A case could be retrieved if it A rule can be "fired", if and only if; its
matches the input partially. antecedent matches the input exactly.

4. Usage Problem is solved almost at once by | A problem is solved step-by-step by
retrieving a case approximating the applying rules in iterative cycles of
entire solution then adapting it. micro-events controlled by an agenda.

5. Flow For a given input set, the retrieved For a given problem, the firing order
case should be always the same, no of “heated” rules (that is, rules enabled
matter how many other cases exist in | for firing) depends on the inference
the case library, and independent of | mechanism, their ranking and storage
the storage order of those cases. placement in the rule base.

Table 3-2. Case-based reasoning versus pattern recognition
. il T Case-Baséd Reasoning __Pattern Recognition’

1. Matching Usually, the "best-match" case is Usually, the retrieved pattern is the
only an approximation of the final final solution (with no attempt to
solution, later steps adapting and modify a pattern, if it does not fit all
refining it. the input requirements).

2. Retrieval Cases are retrieved if they partially Patterns are retrieved based on some
match the problem at hand. probabilistic assessment of their

feature sets.

3. Adaptation | A partially matching case could be Cases that do not fit the input

requirements are rejected.
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3.6. CASE-BASED REASONING IN DESIGN
The range of reasoning tasks that can be supported by a case library are roughly of two types:

(a) problem-solving tasks, including design, planning and diagnosis, and

(b) interpretive tasks, including understanding, justification, and classification.

In design, problems are defined as a set of constraints, and the problem solver is required to
provide a concrete solution that accommodates all those constraints. Usually, for a set of given
constraints, there are many possible solutions (the constraints are said to under-specify the
problem). There are situations, however, when the problem is over-constrained, that is, no
solution could be found to fulfill all input requirements, therefore, some of the less important
constraints should be relaxed (i.e. compromised).

Solving the problem by adapting an old solution allows the problem solver to avoid
dealing with many constraints, and keeps him from having to break the problem into pieces
needing recomposition. Case-based reasoning, therefore, is suitable to solve design problems that
are barely decomposable (such as building-envelope design problems). Rather than solving those
problems by decomposing them into parts, solving for each, and recomposing the parts, a case
suggests an entire solution, and the pieces that do not fit the new situation are adapted.

Though considerable adaptation might be necessary to make an old solution fit a new
situation, this methodology is preferable to generating a new solution from scratch when there
are many constraints and the solutions to parts of the problem are not easily recomposed. For
example, in the case of building-envelope design, given a set of building materials where each
material satisfies an unique requirement of the building envelope, such as structural load, water

and thermal resistance, and so forth, it is not always possible to combine those materials into a



m
viable building envelope (or in other words, solving the building-envelope design problem

through decomposition is not always practical).

The experience a designer has in "framing" a problem could make all the difference from
an ordinary to an outstanding design. This observation leads to the conclusion that case-based
reasoning has a lot to offer in solving design problems, but its outcome is very much linked to
the understanding of the problem, including ranking the design priorities and carefully indexing

the previous cases along some significant features.

3.7. HISTORICAL PERSPECTIVE AND PREVIOUS WORK

The last fifteen years have seen a growing interest in case-based reasoning research, primarily in
fields such as law, medicine, and strategic planning, where large libraries of cases have been
collected.

The case-based reasoning methodology can be considered as an evolved and refined form
of the nearest neighbor classification of pattern recognition. The theoretical framework of
case-based reasoning is influenced by Schank's work on Memory Organization Packets (MOP),
which is one of first forms of memory representation of cases (Schank, 1982). Schank's ideas
were further developed by his students, most notably Janet Kolodner (1989, 1993), and Kristian
Hammond (1989). Some of the most significant case-based reasoning systems developed from

1980 onwards are summarized in Tables 3-3 and 3-4.
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Table 3-3. Landmark CBR systems

Year: “ Domain . . Reference
1983 Information retrieval Kolodner- 1983
1985 | MEDIATOR Dispute mediation Simpson - 1985
1988 | PERSUADER Conflict resolution Sycara - 1988
1989 CHEF Cooking planner Hammond - 1989
1989 PROTOS Medical diagnosis (auditory diseases) Bareiss - 1989
1989 CASEY Medical diagnosis (heart failures) Koton - 1989
1989 KRITIK Mechanical design Goel - 1989
1991 HYPO Law interpretation Ashley — 1991
1991 CREEK Mud diagnosis (oil-well drilling) Aamodt — 1991
1991 PATDEX Technical diagnosis (CNC machines) Richter, Weiss —1991
1992 JULIA Meal planning Hinrichs, 1992
1992 | CABARET Law interpretation (continues HYPO) Skalak, Rissland —1992
1992 CLAVIER Lockheed: Autoclave loading configurator | Hennessy, Hinkle —1992
1992 CADET Design of electromechanical devices Sycara et al. — 1992
1993 BOLERO Medical diagnosis Lopez, Plaza — 1993
1995 INRECA Decision support for industrial systems Althoff, Auriol, Weiss
(www.inreca.org)
1997 CARICA Managing forest fires emergencies Terral, Avesani, Ricci
(sra.itc.it/projects/carica)
1998 | COMPOSER Assembly sequence planning design Purvis, Pu —1998
3.7.1. CYRUS

CYRUS (Kolodner, 1983) was based on Schank's dynamic memory model and MOP theory of
problem solving and learning. It was basically a question-answering system with knowledge of

the various travels and meetings of former US Secretary of State Cyrus Vance.

3.7.2. MEDIATOR
MEDIATOR (Simpson 1985, Kolodner and Simpson, 1989) is one of the first case-based
reasoning systems, and it was developed to solve problems in the domain of dispute mediation.

MEDIATOR attempts to offer solutions to disputes by assessing the new situation, and matching
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it against its case library. By including a diagnosis of reasoning errors and repair cycles,

MEDIATOR outlined the basic architecture of a CBR system.

3.7.3. CHEF

CHEF (Hammond, 1989) is a case-based planner in the domain of recipe creation. Given a set of
planning goals, it assesses a situation by remembering cases that can help it anticipate what
might go wrong. CHEEF is an early example of including in the case library not only previous

successful solutions but also some past failures that should be avoided in the furture.

3.7.4. PROTOS

Bruce Porter and his group at the University of Texas, Austin, attempted to address the machine-
learning problem of concept learning for classification tasks (Porter, Bareiss and Holte, 1990).
This lead to the development of the PROTOS system (Bareiss, 1989), which emphasized on
integrating general domain knowledge and specific case knowledge into a unified representation

structure.

3.7.5. CASEY

CASEY (Koton, 1989) is a case-based diagnosis system for providing explanations regarding
heart disease symptoms. A CASEY diagnoses patient by applying model-based matching and
adaptation heuristics to the case that it has available. CASEY is a demonstration of how to use
case-based reasoning for optimizing the performance of an existing knowledge-based system,

where the domain (heart failure) was described by a deep, causal model. In CASEY system a
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case-based and a deep model-based reasoning are combined to produce an effective expert

system in significantly less time.

3.7.6. HYPO and CABARET

Another early significant contribution to CBR was the work by Edwina Rissland and her group
at the University of Massachusetts, Amhearst. With several law scientists in the group, they were
interested in the role of precedence reasoning in legal judgments. Cases (precedents) are here not
used to produce a single answer, but to interpret a situation in court, and to produce and assess
arguments for both parties. This resulted in the HYPO system (Ashley, 1991), and later the
combined case-based and rule-based system CABARET (Skalak and Rissland, 1992). Phyllis
Koton at MIT studied the use of case-based reasoning to optimize performance in an existing
knowledge based system, where the domain (heart failure) was described by a deep, causal
model. This resulted in the CASEY system [Koton-89], in which case-based and deep model-

based reasoning was combined.

3.7.7. KRITIK

KRITIK (Goel, 1989, 1991) is a design problem solver for the domains of mechanical devices
and electrical circuits. KRITIK creates new designs by adapting old designs while making
extensive reference to a casual model describing how the old designs work. Thus, every design
also holds a casual explanation of how its components work together to produce the indicated
effect. While a functional representation shows how the pieces are connected to each other and
shows the general effects of those connections, a casual model shows how the underlying

physics allows those effects to happen.



3.7.8. JULIA

JULIA (Hinrichs, 1992) is case-based designer in the domain of meal planning. It uses cases to
propose plausible solutions, decomposing the problem as necessary. Heuristic matching rules
permit partial matching of types, components, and ranges while the network of previous cases is
being traversed. Special-purpose structure-modifying heuristics are used for adaptation in order

to meet the constraints of the current problem.

3.7.9. CADET

CADET (Sycara, Guttal, Koning, Narasimhan and Navinchandra, 1992) is a system that aids
conceptual design of electromechanical devices. It consists of sub-systems called CARD (CAse-
based Retrieval for Design). CADET was further refurbished and enhanced to include a device
model. In its later incarnation (now called WATT), the system integrates case-based reasoning

with model-based reasoning.

3.7.10. CLAVIER

CLAVIER (Hennessy and Hinkle, 1992) applied case-based reasoning to a real-world problem
by trying to generate autoclave load schedules in an interactive dialogue with its user. It matches
cases based on the number of parts matched and the priorities of matched parts. The user is
required to manually adapt the chosen case, thus, providing an environment where the user could

dynamically interact with the knowledge base.



%
Table 3-4. CBR systems for the construction industry

Year | System™| ‘.. <. -Domain. . - - Reference

i UName s e

1992 | ARCHIE Architectural case browser Domeshek, Kolodner - 1992

1993 | CADSYN Analogical transformation of old cases Maher, Zhang — 1991, 1993

1994 | CASECAD Innovative building design with Maher, Balachandran - 1994
AutoCAD

1994 SEED Conceptual building design Flemming - 1994

1995 | BRIDGER Bridge design Reich, Fenves — 1993, 1995

1996 IDIOM Spatial planning and layout design Smith, Stalker, Lottaz - 1996

1997 FABEL | Complex architectural and building design | Gebhardt, Voss, et al - 1997

3.7.11. ARCHIE

ARCHIE (Domeshek and Kolodner, 1992) is a case-based design aid for the conceptual design
of buildings developed by a research group lead by Janet Kolodner at Georgia Institute of
Techology. Its main focus is to provide the user with an effective navigation tool through a maze
of descriptions of previous design cases. ARCHIE emphasizes case presentation and
decomposition of a large case for easy understanding by the user. The matching process uses the
highest matching score as the ranking criteria, and the retrieval algorithm is based on using the
nearest-neighbor approach. Archie does not generate or provide any design solutions, but serves
as a reference tool for the designer. The goal was to capture and disseminate lessons learned

from design experience so that future designers could avoid repeating known mistakes.

3.7.12. CADSYN and CASECAD
In CADSYN (Maher and Zhang, 1991/1993), the contribution made to the representation of
cases is to have cases decomposed into subparts; by representing knowledge hierarchically in

this fashion, the reuse of cases is made more flexible and efficient, since irrelevant information is
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pruned from consideration for each given design problem. In CADSYN the emphasis is not on

case retrieval but on case adaptation, where constraints are used as the knowledge that guides the
analogical transformation of an old case to a new problem-solving context. The adaptation of a
case is thus performed using a constraint-satisfaction.

In CASECAD (Maher and Balachandran, 1994), the information held in design cases is
represented using multiple media: attribute-value pairs are used to indicate the specific value that
the case has for different design variables; text strings are used to provide natural language
explanations of certain aspects of the design; drawings are used to represent the physical
appearance of the design; etc. In addition, flexible strategies for case retrieval were proposed in
the CASECAD project which allow for the revision and reformulation of the design problem

requirements, thus making the overall design process more innovative.

3.7.13. SEED

SEED project was developed at Carnegie Mellon (Flemming, 1994) with the goal to achieve a
software environment that supports the early phases of building design and thus, in principle, to
augment all aspects of the early design process that can benefit from such support. During the
early phases of design of similar building types, architects tend to rely on previously established
solutions and solution strategies. SEED is intended to provide a systematic computational
support environment for the rapid generation of designs with respect to recurring building types.
Consequently, it is necessary to enable the storage and retrieval of past solutions and their reuse
as prototypical designs in similar problem situations. In this respect SEED is an application of
case-based design systems. It has been envisioned that initially SEED will consist of three

modules that support the following tasks: 1) architectural programming, 2) schematic layout
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design, and 3) schematic configuration design. The tasks of the second and third module are,

respectively, to generate two-dimensional and three-dimensional configurations of spatial
elements and building components. The task of the first module, which is the primary focus of
our work (SEED-Pro), is to develop an architectural program (AP) in order to initiate a design

process in SEED and to support modifications and evaluations of this program.

There are many other case-based reasoning systems, covering all aspects of problem solving or
problem understanding. However, their overall architecture is built on the same generic four
steps: matching, adaptation, evaluation, including repair, and learning. The above selection of
CBR systems included CYRUS, MEDIATOR and CHEF due to their historic value (they setup
the design guidelines used by most, if not all, other case-based reasoning systems that followed),
JULIA for its pioneering work to employ heuristics into a CBR system, CASEY, CADET, and
CLAVIER, which demonstrate the steps of applying case-based reasoning to design, and
ARCHIE which was one the first reported case-based reasoning system that addresses a

building-design problem.
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4. CASE REPRESENTATION FOR BUILDING ENVELOPE DESIGN

4.1. KNOWLEDGE ACQUISITION

The aim of any learning system involved in engineering design is to reach a level of expert
competence. In this direction, the success of the case-based reasoning approach depends very
much on the classification of cases and the quality of knowledge acquisition. The better the
classification of previous experience (the indexing of cases) the more successful will be the
retrieval of best match and subsequently the final outcome.

Competence of classification can be improved by combining it with explanation (Porter,
Bareiss and Holte, 1990). A case is described by a collection of features but all these features
must be further explained to facilitate case classification. For example, let us consider a wall
(that is, a building-envelope "case") including a list of known building materials (that are
"features" of the wall case). To increase the knowledge encapsulated into the wall case, the
presence of each building material should be accompanied by an explanation with respect to its
intended function (i.e. "polyethylene" is a vapor barrier to prevent vapor diffusion; "expanded
polystyrene" is an insulation material to prevent heat losses, and so forth). Explanation adds
importance to features making them mandatory, desirable, optional, or unwanted thereby
facilitating the matching process.

The quality of knowledge acquisition is characterized by:

e the amount of training samples required for reaching reasonable levels of competence

in classification and explanation, and

o the degree of autonomy gained by the system through knowledge acquisition.

Autonomy is defined by the program-issued requests for knowledge.
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The desirable behavior of a learning system is to pass from individual instances to general
concepts, that is, to aid generalization by linking cases within a broader context. In building-
envelope design domain, there are many possibilities for generalizations by extracting the most
important features of any item. For example, a "built-up roof" is an instance of the more general
concept of "roof”, which may be seen as a mandatory feature of the "building” concept. That
hierarchy of concepts and features, including their abstraction and interdependence, is an
important part of the domain knowledge known by the system (Sycara and Navinchandra, 1989).
There are two basic ways to feed such information into a case-based reasoning system:

(a) the first alternative supposes that the human expert, acting as "teacher" for the system,
pre-processes the training examples so that all features of a case are clearly
differentiated and their relationships explained,

(b) the second possibility is to eventually include in the system some domain theory in
the form of rules or constraints.

If the first method accounts more for experience acquired in the field by the human expert, the
second method relies on the general theories applicable to the field (i.e. proven physics laws),
mandatory constraints imposed by legislation, generally accepted knowledge (common-sense
engineering theories), handbooks, codes, and so on. Hence, the knowledge base of the system

should be a combination of pre-processed cases and domain rules.

4.2. CASES AND FEATURES IN BUILDING-ENVELOPE DESIGN
4.2.1. Indexing building-envelope cases
As a prerequisite to implementing a CBR system for the building-envelope design, a reasonable

number of known building-envelope cases should be available for inclusion in the system’s
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database. These cases are to be indexed into the case library according to their features. The

indexing vocabulary used will have a major impact on the retrieval of the appropriate case for a
given design context.

Research on indexing over the past decade has led to the conclusion that good indexes are
features that distinguish cases based on some important attributes in the case description. A good
indexing mechanism has to be driven by the concepts that are normally used to describe the
items being indexed, whether they are surface features or something more abstract. For example,
a given wall will be better indexed by its construction type (cavity wall, masonry wall, and so
forth), which may be used as a retrieval key, than by its number of layers, which has less
retrieval significance.

The following guidelines are used in choosing indexes for particular cases:

o Index vocabulary should be a subset of the vocabulary used for the fully symbolic
representation of cases (that is, the indexes that are used to map a case in the case
library are extracted from the set of features that describe the case within the case
library).

e Indexes should be predictive by addressing the purposes for which the case will be
used.

e Indexes should be abstract enough to make a case useful in a variety of future
situations (features of a case that are useful as indexes often go beyond the surface
representation of the case).

o Indexes should be concrete enough to be easily recognizable in future situations.
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e Indexes should provide a unique access key to a case (that is, a given set of indexes
should always lead the retrieval process to the same case, or group of cases, no matter
how many cases are stored within the library.

e Indexes should be linked to features encoding essential functional characteristics of
the case so that a mapping mechanism to transfer information between cases can be
implemented.

This research anchored the choice of indexes for building envelope cases on the building features
identified by the ASHRAE Standard 90.1/1989 "Energy Efficient Design of New Buildings
Except New Low-Rise Residential Buildings" (ASHRAE, 1989). The Standard is based on
extensive research in energy conservation in buildings, and includes new or refined principles for
building design, with the capacity to recognize advances in the performance of various
components and equipment. The Standard fosters innovative energy conserving designs by
encouraging the designers to take into consideration the dynamics that exist between the many
components of a building through the use of the System Performance Criteria or the Building
Energy Cost Budget Method compliance path. Using as guidelines the recommendations made
by the ASHRAE Standard 90.1/1989, the following parameters are identified as salient features
for preliminary building-envelope design:

e building type (intended usage of the new building),

e building height (total number of floors),

e building size (the total floor area),

e building aspect ratio (the ratio of building width over the building depth),

e window-to-wall ratio (the percentage of glazing area of the total wall area), and



e building location (the average climatic data for building location).
Additional parameters (also known as secondary features) have an impact on the design
outcome. These include:
e building occupancy (that is, the average number of persons per unit of floor area),
e internal loads (that is, the general electrical service loads including lights and
equipment),
e shading coefficient, and
e projection factor (that is, the external horizontal shading projection depth).
To simplify the design methodology, but without loosing the generality of the solution, the
following three assumptions are made:
e The secondary features could always be set to the values recommended by ASHRAE.
e The energy performance of each building envelope varies linearly within the scale of
the climatic data. Therefore, any two building-envelope designs may be compared,
with the System Performance Criteria, by simulating their relative behavior for a
given location. This assumption is made to avoid storing climatic information into the
case library and it can be accepted only in the context of a limited geographical area
(such as that covered by the SPC equations).
e Building features with large input ranges, such as the building height and the building

size, could be clustered to fit into a smaller number of discreet categories.
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4.2.2. Mapping the salient features of the building envelope

As mentioned above, aiming to achieve the energy efficiency of the new building leads to
selecting the salient features based on ASHRAE 90.1/1989 recommendations. In ASHRAE
Standard 90.1/1989, the building type is classified according to the intended usage of the
building (that is, its occupancy type) based on one of the following categories:

1) Assembly,

2) Office,

3) Retail,

4) Warehouse,

5) School,

6) Hotel,

7) Restaurant,

8) Health Institution,

9) Residential.
In addition to the building occupancy type, the geometry and dimensions of the new building are
important parameters for classifying the cases. For instance, the height of the building
determines the suitable structural types for that building, while the size of the building is a
primary criterion in selecting the appropriate HVAC system. Recording the building dimension
characteristics as continuous values would increase the difficulty of matching and transforming
an envelope case. A digitized feature mapping is therefore recommended. Rather than recording
the actual number of floors as the building-height feature, the following four building-height
categories are defined:

1) lowrise : buildings with 3 or less stories
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2) medium-low rise :buildings with 4 to 10 stories
3) medium-high rise :buildings with 11 to 20 stories
4) high rise : buildings with more than 20 stories
Similarly, for the building's size, and guided by the ASHRAE suggested ranges for the selection

of the HVAC systems, the following size categories can be established:

1) size type 1 : 0 ft* < total floor area < 5,000 > (< 464.52 m?)
2) size type 2 : 5,000 ft” < total floor area < 10,000 > (< 929.03 m?)
3) size type 3 : 10,000 fi* < total floor area < 15,000 f* (< 1,393.55 m?)
4) size type 4 : 15,000 fi*< total floor area < 20,000 f* (< 1,858.06 m?)
5) size type 5 : 20,005 fi2< total floor area < 50,000 ft* (< 4,645.15 m?)
6) size type 6 : 50,000 ft* < total floor area < 75,000 ft* (< 6,967.73 m?)
7) size type 7 : 75,000 fi* < total floor area (= 6,967.73 m?)

4.2.3. Building-envelope cases

In building-envelope design, a case may be seen as the instance of a conceptual object called
Envelope. The Envelope object might be decomposed into three smaller component objects:
Wall, Glazing, and Roof. In addition to its components, an Envelope object has a feature vector
labeling its functionality. That feature vector should include the main characteristics of the
envelope such as the structural requirements, the size and the geometry of the building (total wall
and roof area, building height, shape, orientation, window-to-wall ratio, and so forth), and the
building occupancy type (office, residential, school, warehouse, hospital, to name a few). These

features are not necessarily linked and their relative importance is quite difficult to quantify. In
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general, the problem to solve is the following: given a collection of n known Envelope objects,
such as:

Envelope; = {Wall; , Glazing; , Roof; , vector;}
where i = 1,2,...,n, find the suitable indexing strategy to organize these objects into a case
repository.

A previous knowledge-based approach to building-envelope design (Fazio et al, 1989,
Gowri, 1990) has demonstrated the need for problem decomposition. In that approach, the
complex Envelope object is decomposed into component objects; therefore, instead of storing the
Envelope cases as complex entities described by large feature vectors, three different libraries of
components are assembled: a first one for Wall objects, a second one for Glazing objects, and a
third one for Roof objects. Case decomposition allows enforcing the economy of representation

since the same component may be linked to several Envelope instances.

4.2.4. Building-envelope case representation

In Dynamic Memory (Schank, 1982), Schank proposed organizing structures, called Thematic
Organizational Packets (Units), or TOP, as organizers of cases that are thematically similar to
each other, that is, those that share common goals, plans, and goal/plan interactions.

The building-envelope cases can be represented according to the TOP concept by
defining a set of frames (or classes), each frame being the class abstraction for groups of
envelope components. Cases are then represented along two types of specifications:

i. the Content Grid is the representation mechanism that captures the content of that

case (such as the layers included in an envelope element), and



ii. the Context Grid is that part of the case representation keeping track of relationships
between cases (such as their suitability for a given building type, structure, height, size,
and so forth).

While the content grid is linked to the composition of envelope elements, the context grid is
linked to the indexing mechanism that designates under which circumstances the case should be

retrieved.

Library traversal is possible through links established between frames, and, at a given

frame level, through links between instances.

4.3. LIBRARY OF BUILDING-ENVELOPE CASES

There are two approaches to establish the set of indexes suitable to encode library cases:

& Functional Approach:

The corpus of available cases is examined (often through computerized means)
and some similarity patterns are established.

& Expert Approach:

A human expert selects a set of features most likely to be considered as relevant

for a case.

4.3.1. Building vector

Following the recommendations put forward by the ASHRAE Standard 90.1, the building
attributes identified as primary features for a building-envelope case (such as building type,
height, size, aspect ratio, and window-to-wall ratio) are assembled into a building vector that will

be further used to bundle together building-envelope cases:
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Building Vector = {Type, Height, Size, Aspect Ratio, Window-to-Wall Ratio}
The same vector could be matched by a large number of buildings, therefore, to implement an
effective reasoning methodology, it is necessary to further differentiate the cases within the
building class represented by a given building vector. Moreover, it is often needed to bypass the
building categories when looking for specific features. One approach to the case classification
problem is to adopt an additional clustering mechanism based on the physical signature of the

building envelope that is described later.

4.3.2. Encoding a building-envelope case

The encapsulation model used for encoding a building-envelope case is related to the amount of
relevant data required to fully describe the case while preserving a certain level of abstraction. A
compromise must be made between the wealth of information required to make the case unique,
and the need to keep the retrieval and matching process within reasonable limits of computation
time.

In the proposed model, a building-envelope case consists of three major parts (or sub-
cases): wall, roof, and glazing. These basic parts are described along the constituent layers of
building materials. Each layer is labeled according to its specific functionality as belonging to

one of the following nine functional categories:

1) cladding: cladding for walls and exterior face for roofs
2) cavity: air cavity for walls and glazing

3) coating: coating and sheathing

4) membrane: vapor barriers, air barriers, roof water proofing
5) panel: exterior panels for walls
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6) insulation: all type of wall and roof insulation (rigid or non-rigid)

7) structure: wall structures (including studs), roof framing, and decks
8) finish: interior finish, wallboards

9) other: glazing, glass blocks, gravel, mortars, and so on

Moreover, for each layer of building material, the case records a relevant set of physical
parameters such as thickness, density, thermal resistance, vapor resistance, specific heat, etc. To
keep the case description at a minimum, details such as joints, appearance, durability,
maintenance costs, and so on, are not included. The building vector that will be used as the
primary classification criteria augments the case information. As an example, Table 4-1 shows
the simplified description of a building-envelope case sample (without including the building
vector and the information regarding the physical properties). The roof and wall subsystems for
the building envelope case of Table 4-1 are graphically shown in Figures 4-1 and 4-2

respectively.

Table 4-1. Example of a building envelope case

s Masonry.Cavity Wall::%427 = Dolble Glazing 2| £z Hollow Core:Roof:: +
Gypsum board Panel Glass Other Gypsum board Panel
Furring Other Air space Cavity Furring Other
Concrete block Structure | Glass Other Hollow core slab Structure
Polyethylene sheet | Membrane Polyethylene sheet | Membrane
Glass fiber R-16 Insulation Polystyrene Insulation
Air space Cavity Roofing Membrane
Brick Cladding Stone ballast Other
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4.3.3. Classes of envelope components
An extensive analysis (including computerized pattern-recognition methods) of building-
envelope cases lead to the conclusion that the Wall and Roof components can be classified
further into the following generic categories:
a Five Wall classes:
1) Non-Cavity Wall
2) Masonry Cavity Wall
3) Curtain Wall
4) Framed Wall (ak.a. stud walls). The stud walls can be further classified
according to the level of protection provided to the air cavity into the
following two types:

o Type I: Exposed Air Cavity (the air cavity the is facing directly the
cladding layer)

e Type 2: Prorected Air Cavity (the air cavity layer is protected from
the outdoor condition by at least one additional layer such as an air
barrier or a sheathing layer).

a Four Roof classes:
5) Low-Pitch Wooden Roof
6) High-Pitch Wooden Roof
7) Metallic Roof

8) Concrete Roof
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The class identifiers used for each MWall or Roof type are mostly symbolic and conform to the

current terminology that can be easiily understood by the designers. As examples, Figure 4-2
shows an instance of a Masonry Cawity Wall class, while Figure 4-1 displays an instance of a
Concrete Roof class. Figures 4-3 and ~4-4 detail the description of each envelope component type.
It should be noted that layers marked -with (*) are optional. Attaching a class label to an envelope
component will facilitate envelope case matching and enable a better case-transformation

mechanism.

4.3.4. Embedded knowledge-basse hierarchy
A building-envelope case has an emlbedded object hierarchy structured from top to bottom as
follows:
Q Building envelope
Q Envelope components
Q Building material layers
O Physical properties of buil«ding materials
Figure 4-5 details this knowledge-base hierarchy and outlines the building-envelope features at

each decomposition level.
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4.4. CLUSTERING BUILDING ENVELOPE CASES

While the selected salient features could be useful in classifying groups of building cases, they
are not adequate for case selection. To overcome this limitation, a secondary selection criterion is
employed for matching and transforming library cases based on similarity metrics. Along that
direction, the concept of the physical signature was developed for a building-envelope case.
Each building envelope case is associated with a numerical pattern that describes the envelope
cross-section along a set of predefined physical parameters. The idea behind the physical-
signature concept is to define a mapping mechanism between the building envelope case and its
cross-section pattern, so that the building-envelope case classification and retrieval problems can

be further addressed through pattern recognition techniques.

4.4.1. “Physical signature” of the building envelope
The parameters selected to define the physical signature of the building envelope were among
those with a significant impact on the compliance checking process. Therefore, without limiting
the generality of the solution, the selection was confined to four parameters as follows:

1) structural characteristics,

2) heat capacity,

3) thermal resistance, and

4) vapor resistance.
The heat capacity and the thermal resistance are critical for checking the envelope compliance
with the energy efficiency requirements, while the vapor resistance plays a major role to avoid

moisture condensation within the envelope.
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The physical signature of the entire building envelope is assembled out of the physical

signatures of its main components: the wall component and the roof component. To avoid using
the absolute numerical values for properties that might vary within a large range, a normalization
technique was adopted to limit a signature value between O and 1. Each physical signature is a
two-dimensional vector, one dimension associated with the normalized value, and the other one
with the normalized relative position of the signature. For an envelope component (that is, a wall
or a roof) having n layers, the signature vector associated with the physical parameter k (where &

is 1, 2, 3 or 4) is defined as follows:

Signature Vector® = {Signature Value®, SignaturePosition"}

max ( Param Value!')
Signature Value* = —=1 .
OverallParamValue
k k
- )2
SignaturePosition" = (Xext + Xine )

OverallThickness

The signature value associated with parameter & is defined as the number representing the
maximum value encountered for that parameter in any of the n layers of the envelope subsystem
divided by the overall value of parameter k for the whole envelope subsystem. The signature
position is the relative depth within the cross-section of the envelope component where the
signature value reaches its maximum level (x. and x;, are the cross-section coordinates of
respectively the outer and the inner borders of the maximum level area). Usually, a physical

signature points toward the layer (called anchor layer) having the most impact in the overall
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performance of the envelope with respect to a given physical characteristic. As an example,

Table 4-3 shows the physical signature values for the sample wall of Table 4-2.

4.4.2. Case filtering

The physical-signature concept was defined to enable a technique for mapping the envelope

cross-section to a numerical vector. This vector can be considered as the digital footprint of the

envelope, and it can be further used to assimilate the case ranking as a pattern-recognition

problem.

Table 4-2. Wall sample

: N (rn secPa/ng)fff,
1. Gypsum board X 0.00060
2. Concrete block Structure 190.00 0.00730
3. Polyethylene sheet | Membrane 0.15 0.29000
4. Glass fibre Insulation 51.00 0.00029
5. Air space Cavity 25.00 0.00000
6. Asbestos Cement Panel 6.00 0.05200
7. Parging Cement Cladding 13.00 0.00400
Overall Wall Properties 301.15 0.35000
Table 4-3. Physical signatures for a wall sample
igna Anchor: Eayer::7| % Signature Value: Signature Position” 5
Structure 2 (Concrete block) 1.00 (1.0/1.0) 0.37 (016 + 206)/(2*¥301)
Heat Capacity 5 (Air Space) 0.50 (35.21/70.8) 0.90 (257 + 282)/(2*301)
Thermal Resistance | 4 (Glass fiber) 0.70 (1.54/2.21) 0.77 (206 +~257)/(2*301)
Vapor Resistance 3 (Polyethylene) 0.83 (0.29/0.35) 0.68 (206 + 206)/(2*301)
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One classification method employed by pattern recognition is the nearest neighbor approach,
where the similarity of two patterns is assessed based on the Euclidean distance between the
feature vectors of the patterns. For instance, the Euclidean distance between the physical-

signature vectors of two envelope cases, 4 and B, is defined as follows:

DISTi - 5 = /2":(/1,._ B,-)Z
=l

The maximum size “n” of the physical signature vector for the entire envelope is 16 (4*2 for
both wall and roof). If the building-envelope case is considered to be described by the building
vector (whose size is 5), and the physical signature is the set of features extracted from the case,
then the matching problem is reduced to the mapping of two vectors: the building vector as
input, and the physical signature as output. This type of problem can be solved by an artificial
neural network (ANN) implementation. An ANN can be trained to accept as input the building
vector and to deliver as output the physical signature vector of the envelope (Table 4-4). Given a
comprehensive set of building-envelope cases, following a proper selection of the network
topology, and after the appropriate training procedure, the ANN is supposed to associate with

each building class a generic physical signature (also known as class signature).

Table 4-4. In/Out vectors of the ANN-based case filter

Building Height Category Structural Type Structural Type
Building Size Category Heat Capacity Heat Capacity
Aspect Ratio Thermal Resistance Thermal Resistance
Window-to-Wall Ratio Vapor Resistance Vapor Resistance
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To outline how the ANN filter is intended to work, let us suppose that the case library has, under
a given building class, only three building-envelope cases: A, B, and C. In other words, all three
cases fit the same general description of the building: same type, same height, same size, and so
forth. If a simple matching function is employed to further classify the three cases, then all of
them will yield the same score. Now, if the above ANN is trained to match the three envelope
cases with their physical signatures, then further ranking can be achieved by comparing the case
signatures against the class signature. The advantages of using that clustering mechanism are as
follows:
¢ Buildings within the same class (i.e. same building description) can be differentiated.
e A preliminary description of the building envelope is already provided (the physical
signature is to a certain extent an image of the building-envelope cross-section).
e When a suitable match is not found within a given class, the physical signature is a
good starting point to initiate the searching procedure that will go beyond the class
boundaries.

It should be noted that the physical signature method is based entirely on heuristic knowledge.



5. CBR FRAMEWORK FOR BUILDING ENVELOPE DESIGN

5.1. RETRIEVING A BEST-MATCH CASE FROM CASE LIBRARY
The process of retrieving the most suitable design alternative for a given design context is called
case matching.

The retrieval of cases from a case library can be seen as a massive search problem, but
the search process in case-based reasoning could result in a close partial match rather than a full
match. No case in the library can ever be expected to match a new situation exactly, so a search
will always result in the retrieval of the closest possible match. Partial match algorithms are quite
expensive (that is, complex and time consuming), and, therefore, the retrieval must be directed in
some way so that matching is only attempted on those cases with potential for adaptation to a
new situation.

Algorithms for searching a case library are associated with the organizational structure of
the library. When a case library is large, there is a need to organize cases hierarchically so that
only some small subset needs to be considered during retrieval. This subset, however, must be
likely to have the best matching or most useful cases in it.

The two basic types of case library organization are (i) the flat model, when cases are
placed in a linearly linked list, and (ii) the network model, when cases are hierarchically
organized. A recommended approach is to have a mixed organization, combining both the flat
and the network models. Then, a breadth-first initial search, to delineate all potential cases, is
followed by a case filtering procedure to narrow down the matching scope to a smaller subset of

cases that are the most likely to fit the target requirements.
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5.1.1. Assessing similarity between building envelope cases

Assessing whether a building envelope case is similar to a new design context requires
determining whether other envelope cases are more similar. Comparing two envelope cases, C;
and C;, with respect to a given set of design requirements can be graphically represented in terms
of Venn diagrams as shown in Figure 5-1. The comparison should be performed along the case

attributes relevant to the design outcome.

Bulldmg Envelope -
Case C;

Bmldmg Vector
: Physical Slgnature
Y 4Component Layout L

Figure 5-1. Comparing Building Envelope Cases

Three basic methods have been identified (Ashley, 1989) for ranking the relative importance of
individual features in the analysis of cases: 1) analytical, 2) statistical and 3) precedent-based.
The analytical model defined for the building envelope (and shown in Figure 4-5) can be used to
infer the relative importance of some features. For instance, the structural characteristics of an
envelope case should be considered more important than its appearance-related attributes. The

statistical analysis of cases can lead to assigning numerical weights to features and thus to
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discriminate among them. For example, the physical signature ranking can be considered a

statistical method. The precedent-based methods address the need of ranking competing and/or
conflicting attributes. The ASHRAE-based building vector is an example of precedent-based

approach.

5.1.2. Matching strategy
Selecting the appropriate matching strategy has a significant impact on the design outcome. The
strategy adopted here has three steps as follows:
Q@ Select a list of suitable design alternative cases by using the building vector as the
primary matching criteria.
o Cases sharing the same building vector are ranked according to the Euclidean
distances between their physical signatures and the class signature.

@ The matching metrics is augmented with a cross-section analysis component.

5.1.3. Defining a subset of suitable design alternatives
To define the subset of suitable design alternatives, all cases in the library are ranked according

to an evaluation function having the following form:

i[w,.xcompare(fir,fic)] .
Fre=4! =Y [w; xcompare( f,, f)]

n
i=1
2w
i=1

where w; is the weight associated with feature i, while ;' accounts for the value of feature i in the

target case T (our design goal), and £C is the value of feature i in the library case C. If the
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evaluation function yields a value above a predefined threshold, then the case at hand can be
considered to be part of the list of suitable design alternatives.

The list of features to be included in the evaluation function has to be carefully
determined to allow a comprehensive and meaningful selection of cases. While the evaluation
function should filter out all non-practical solutions, no suitable alternative is to be discarded.
The list of features recommended for the evaluation function should include the salient features
of the case such as:

¢ Building occupancy type

¢ Building geometry (height, size, and aspect ratio)

¢ Window-to-wall ratio

¢ Generic class type for the wall, glazing, and/or roof components

5.1.4. Filtering cases

The System Performance Criteria of ASHRAE Standard 90.1/1989 allows building designers to
assemble a theoretical model of the building, called the prototype building, as the target to meet
in terms of energy efficiency for a given building type at a given geographical location (see
Appendix A for additional details).

The prototype building defines the heating and cooling criteria to be met by the new
building design. Among the parameters with an important impact on the calculation of the
heating and cooling loads are some of the overall physical parameters such as the total thermal
resistance and the total thermal mass of the building envelope; consequently, those physical

parameters are prime candidates for defining the physical signature of the envelope.



The physical signature of the new envelope design can be used to rank similar cases in
the list of suitable design alternatives, cases that otherwise would have been equally
recommended. Filtering cases based on the physical signature is possible only if all library cases
record a physical signature for the target geographical location. Figures 5-2 and 5-3 present how
case filtering based on the physical signature is made possible.

First, as shown in Figure 5-2, a back-propagation neural network is trained to match the
building vectors of library cases with their associated physical signature vectors (computed for a

target location).

Figure 5-2. Training ANN Filter

The normal outcome of the training procedure should be the clustering of envelope cases
into classes. An average physical signature called Class Signature characterizes each class.
Next, as shown in Figure 5-3, the new envelope case is processed by the ANN to

determine its matching class signature.
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Figure 5-3. Case Filtering

Finally, the class signature of the new case is compared against the physical signatures of

cases in the list of suitable design alternatives, and those cases are further ranked accordingly.



e
5.1.5. Matching algorithm

The case matching procedure includes the following steps:

L Define two matching thresholds n/ and n2 (n2 < nl), where n! is the maximum number
of cases to be retained for matching analysis, and n2 is the maximum number of cases to
be considered as suitable design alternatives for the current requirements.

IL Browse through the entire case library to identify building cases suitable for the current
design context.

1. Rank the list of suitable cases according to their building vectors. Rank cases sharing the
same building vector according to their physical signatures.

Apply the matching criteria to the n/ building cases having the highest-ranking score.

Retain the first n2 cases with the highest matching score as suitable design alternatives.

<

Label the top case in the list of suitable design alternatives as base building case. It

should be noted that, initially, the base case is actually the best match case.

5.1.6. Cross-section analysis
The case-matching outcome can be improved without adding more complexity to the building-
envelope case description by including a cross-section analysis anchored on a lexical content-
parsing mechanism.

First, a list of meaningful keywords is identified. The keywords in the list should have
either a functional meaning (such as “DECK”, “CURTAIN”, “PANEL”, “MASONRY”) or are
marked as structural qualifiers (such as “WOOD”, “STEEL”, “CONCRETE”, “BRICK>, and so

forth).
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Second, the keywords identified in the design specs are compared with the keywords
found in description of the library case currently under scrutiny, and the degree of similarity is
assessed based on lexical content matching.

This lexical analysis strategy will limit (if not eliminate altogether) the need to expand
the case description with more information such as the structural and/or the construction model.
The cross-section analysis is completed by a layer-type checking where the matching score is
increased for the library cases that fit the cross-section description of the design case along
certain layer types. Moreover, additional matching weight is associated with layers difficult to

replace such as the structural and/or cladding layers.

5.2. CASE ADAPTATION

The retrieval process yields a set of potentially useful cases, all of which partially match the new
situation. Through matching and ranking, we achieve the best case to start to reason with. Next,
we need to replace those unmatched parts to meet our design requirements. That step is called
case adaptation, or transformation. Features in the target case are mapped into those of the
retrieved case by a transformation technique that works along similar features (i.e. features that
could be swapped without a change in functionality or general characteristics).

The case transformation is required to adapt the base case to fit as close as possible the
design requirements. The outcome of that process is the modified building case, a case
preserving the usefulness of the base case while exhibiting a different set of features. The
transformation process might involve major steps such as the replacement of an entire envelope

component (that is, either the wall or the roof), or minor modifications such as changing a given
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layer. It might even include the re-instantiation of the retrieved case by looking into the case
hierarchy at its class abstraction.

The main challenge of implementing a set of reliable adaptation procedures lies in the
lack of well-defined theoretical rules. Therefore, one approach. is‘ to adopt as transformation
strategy a technique that relies on the information encapsulated in the case library. The envelope
elements are to be replaced through an iterative process during which the adjacent elements are
analyzed as well. For instance, before replacing a given layer “x” with another layer “y,” the
following analysis steps are to be performed:

o Both layers “x” and “y”” should have the same functional role within the envelope

component.

e The layers currently adjacent to “x” (i.e. “x+/” and “x-1"") should be acceptable
neighbors for layer “y”. A case library-wide search can identify those instances where
“y” is paired with “x+/>° and/or “x-1”.

e By swapping layer “x” with layer *“y,” the current envelope case should better fit the
design requirements. In other words, a layer is not replaced unless there is a benefit in
doing so.

The same approach is employed for replacing entire envelope components. For instance, before
replacing either the roof or the wall, the CBR system has to check that the two elements can be

paired. Transforming the base case into the modified case follows several steps:

I Define the similarity threshold to be used as the criterion for ending the adaptation
process.
IL Select as source (or base) case the case currently placed at the top of the suitable design-

alternatives list.
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Establish the design requirements not currently matched by the base case.

Assign the transformation priorities. Since the System Performance Criteria checks more
thoroughly the wall performance than the roof compliance, a lower priority is assigned to
roof transformation than to wall transformation. Moreover, the layers more difficult to
match (such as the structural layer), are to be replaced first, and are assigned a higher
priority.

Modify the base case towards conforming to current design context.

Assemble the modified case as a version of the base case that conforms to the design
requirements within the selected similarity threshold.

Verify, through a case library-wide search, that the modified case is a valid design
alternative: check the current roof-wall pairing, and check the coexistence of adjacent

layers.

If the case transformation failed, then the current base case is removed from the list of suitable

design alternatives, and the transformation procedure is restarted.

5.3. CASE TESTING

The modified cased should comply with the local construction practices, and it should meet the

predefined performance level. Envelope performance usually relates to the thermal performance

of the envelope and the control of the moisture migration through the envelope. The thermal

performance of the envelope can be assessed through the heating and cooling equations of the

System Performance Criteria from ASHRAE 90.1/1989 (see Appendix A), while the potential

for moisture induced problems can be evaluated through the well-known building-science

equations (see Appendix E).
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The well-known construction practices and the building standards can be encoded in a set

of knowledge-based rules such as:

a The vapor barrier should be placed on the warmer side of the insulation.

a Ifthere is more than one layer of insulation, then the vapor barrier could be
sandwiched between insulation layers, on the warmer side of the rigid insulation (as
recommended in Section 2.2).

It is obvious that, the above rule should be applied only if, and only if, the envelope component
has two different layers of insulation (one rigid and the other one non-rigid).

The envelope performance is checked through numerical simulation, and all the

following three conditions should hold:

a No concealed and/or surface moisture condensation occurs.

0 The thermal resistance of the roof should be within the limits recommended by
ASHRAE (see Appendix B).

o The wall should pass the System Performance Criteria for energy efficiency.

If the testing is successful, then the modified case is labeled as the verified building case;

otherwise, on failure, the case is marked as needing further repair.

5.4. CASE REPAIR
Whenever a modified case does not meet the design requirement and/or constraints, it has to be
repaired. A design failure is usually linked to either a thermal performance below the acceptable
level or to the potential for moisture condensation within the envelope.

The same procedures and rules employed to check an envelope case can be expanded to

be used for repairing it. It is, however, possible that the repair procedure fails as well. For
] Page 82



e -~
example, by trying to increase the thermal insulation of a wall, we might exceed the upper limit

established for the wall thickness. The information sources available for defining a set of repair
rules are as follows:

e building-science equations,

e ASHRAE recommendations,

e local construction requirements, and

e well-established construction guidelines.
Based on that information, a knowledge-based engine for case repair could be assembled. The
engine would rely on a set of rules to repair a case that fails the validation tests. For example,
some of the rules used in the attempt to repair an envelope case that exhibits moisture
condensation problems are as follows:

Q Increase the vapor resistance.

Q Modify the position of the vapor barrier within the wall and/or roof.

Q Modify the thermal resistance.
Similarly, an envelope case failing the energy efficiency tests is to be repaired by using rules
such as:

0 Increase the thickness of the thermal insulation layer.

O Modify the type of the thermal insulation for increased protection.

0 Reduce the window-to-wall ratio below the design requirements.
The repair could fail if the simulation tests are not passed, while the case is modified beyond a
given threshold. For instance, the attempt to repair an envelope case is stopped if any one of the

following conditions occurs:
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e the overall wall or roof thickness exceeds the design limits,
e the window-to-wall ratio is reduced below a given design threshold,
e the overall building costs exceed a predefined limit, and so forth.

If the envelope case is successfully repaired, then it is labeled as the repaired building case.

5.5. RECOMMENDED CASE
If the case testing was successful, then the CBR system ends up with a verified case, which is
submitted as the recommended building design solution; otherwise, on failure, the current base
case is eliminated from the list of suitable design alternatives, and the system restarts with the
case transformation procedure. A successful design solution might be appended to the case
library with the same indexes used for the retrieval of the base case.

Figure 5-4 outlines the entire data processing flow that occurs within the CBR

framework.
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Figure 5-4. Envelope Design Flow in a CBR Framework
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6. CBR MODEL FOR BUILDING ENVELOPE DESIGN

6.1. MODEL CHARACTERISTICS AND ASSUMPTIONS
The analysis of the building-envelope design process identified the following requirements for a
computerized tool:
e Recover from design errors (while the design process passes through several
iterations).
e Handle incomplete design specifications.
e Assess the design performance.
To build a CBR model for building-envelope design, the following assumptions were made:
e There is no uncertainty attached to the experiential knowledge embedded in previous
design cases (or, in other words, all cases in the reference library are equally valid).
e ASHRAE 90.1 recommendations can be extended to cover Canadian locations as well
(and not only US locations).
e The simplified simulation technique employed to assess the design performance will
not favor any building design. In other words, by limiting the complexity of the
calculations involved, the error associated with each performance assessment is

within the same range of magnitude for all materials, components, and systems.

6.2. THE MODEL ARCHITECTURE

The proposed CBR model for building-envelope design includes the following components:
¢ Envelope Data-Acquisition module.

¢ Building Case-Library.



¢ Envelope-Designer module.

¢ Performance-Analysis module.
According to the design flow presented in Figure 5-4, the data acquisition part delivers the so-
called “building-design case” that will be further matched against the cases stored in the
reference database (i.e. the case library). Then, the CBR designer module will attempt to
associate the design specifications (embedded into the design case) with a real building-envelope
design case (the so-called “adapted building case”). Finally, the performance-analysis module
will check if the proposed design conforms to the required performance criteria, and it will
attempt to repair if below a given performance threshold. Figure 6-1 presents the interaction
between the major parts of the proposed CBR model.

The technical aspects of the methodology proposed will be further clarified through a

building-envelope design example starting with the following requirements:

0 Building location: Montreal, Quebec, Canada

o Building-occupancy type: office

g Number of floors: 10

o Total floor area: 25,600 m’ (~275,556 f£)

Q Additional requirements: Concrete walls and roof, double glazing windows

Appendix C evaluates the preliminary performance of the building-envelope model that matches
the above requirements while conforming to the Quebec Construction Law and to the ASHRAE
Standard 90.1/1989. Based on the above design requirements, a design target, also known as

Design Case, will be further defined.



Figure 6-1. CBR Model for Building Envelope Design



g
6.3. ENVELOPE DATA ACQUISITION

The data-acquisition module is responsible for defining the design context under which the new
building envelope is generated. It starts with a minimal set of user-specified requirements, and it
ends with a full specification for the Design Case. The complete set of design specifications is
established as a function of the input requirements, and a target design case is generated
accordingly. The design case is assembled around the building vector to be matched by the new
envelope.

The input data to be considered while designing a building envelope include:

e Average climatic data for the building location.

e Local regulations imposed by construction bylaws.

e Design requirements for the new building (including size, structural needs, aesthetic

preferences, cost margins, and so forth).

e Performance recommendations (such as those in ASHRAE 90.1).

The climatic data for the target location is usually available from the local weather station
or can be inferred from the data available for neighboring sites. The weather data for building-
envelope design include the average temperatures and the humidity on the coldest and the
warmest months. Appendix A details the types of climatic data employed for building-envelope
performance analysis by the System Performance Criteria of ASHRAE Standard 90.1/1989, and
Figure 6-2 shows the average weather data for Montreal, Quebec, Canada.

It is not unusual to find that the preliminary design requirements for a new building
envelope are incomplete. Even some of the parameters included in the building vector might yet
to be specified. In that case, the available domain knowledge could be used to infer the missing

information. A very good source of information is the prototype building description generated



by the System Performance Criteria. For instance, the design example proposed in Section 6.2
lacks specifications such as the aspect ratio amd the window-to-wall ratio. For the aspect ratio,
the System Performance Criteria suggest a desfault value of 2.5. The window-to-wall ratio has
recommended values not only in the System Performance Criteria, but in the local construction

bylaws (such as Quebec Construction Law) a:s well.
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Figure 6-2. Averages weather data for Montreal
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The knowledge base includes three types of design information:

(a) Building-geometry data (such as building shape and orientation, average floor height,
window-to-wall area, and so on);

(b) Occupancy-related data (such as number of persons per square meter, schedules of
operations, average lighting, and equipment loads, to name just a few);

(c) Energy-performance data (such as recommended U-values for walls, glazing and
roof, average heat generation per person, standard thermostat settings, average
ventilation rates, and so forth).

Appendix C shows how the initial (and incomplete) design specifications can be augmented to
provide all the information required for a preliminary assessment of the energy performance for
the building envelope.

In summary, by employing the digitized categories defined in Section 4.2.2, the design

example of Section 6.2 can be re-mapped into a design context as follows:

Q Building location: Montreal, Quebec, Canada

a Building type category: 2 (office)

a Building height category: 2 (medium-low rise: 4 to 10 stories)
a Building size category: 7 (25,600 m* > 75,000 f£)

Q Aspect Ratio: 2.5

a Window-to-Wall ratio: 0.25 (average value)

Q Wall type: Concrete

o Fenestration type: Double glazing

@ Roof type: Concrete
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Accordingly, the new building-envelope design is to be associated with the following building

vector:
Building Design Vector = {2, 2, 7, 2.5, 0.25}

This vector will be used as primary selection criteria while searching for building-envelope cases
that match the design context.

Another part of the data acquisition process is to define the envelope-performance level
to be reached. The System Performance Criteria of ASHRAE 90.1 offers a performance target
based on a Prototype Building. The prototype building is assembled as a theoretical model of the
real building currently designed by using the same general description parameters such as the
building type and the building location. The prototype building description corresponding to the
current Design Case is shown in Figure 6-3.

The objective here is to find the most suitable building envelope for the design
requirements of Section 6.2 while reaching the performance level of the equivalent Prototype

Building. The solution will be based on a library of validated envelope-design cases.

6.4. CASE-BASED ENVELOPE DESIGNER
The case-based designer starts with a Design Case and attempts to find the closest match in a
library of known cases. Furthermore, the best match (also known as Source Case) is modified to

fit the new design context and becomes the Adapted Case.



Figure 6-3. Prototype Building Parameters

Usually, the matching operation implies a set of math-intensive computations, therefore, it is
advisable to narrow the matching to a subset of cases obtained through an intelligent filtering
procedure. As described in Section 5.1, the filtering mechanism proposed here is anchored on the
concept of a physical signature. The physical signature associated with a building-envelope case
is a vector including up to 16 elements (i.e. there are 4 position and 4 value parameters defined

for both the roof and the wall components of the envelope). Prior to any matching attempt, a
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back-propagation artificial neural network (ANN) filter is trained to associate the building vector

with the physical signature for all the cases in the library.

6.4.1. Matching the design case
The matching process has three steps that are triggered incrementally as follows:
L Design building vector is used for a coarse filtering of library case.
II. Design physical signature (also known as Class Signature) is used to rank cases sharing
the same building vector.
1. The highest-ranking are submitted to an extended evaluation procedure where the
envelope composition is being considered as well.
The top-ranking cases, up to a pre-defined maximum number n (known as the matching
boundary threshold), are assembled in the so-called set of suitable design alternatives (SDA) and
compared with the Design Case. The comparison is performed through an extended evaluation
function summing three terms as follows:
Fpoc=F'pc+ Fpc+ Fpic

where the three terms represents:

F'poe : matching component associated with the building vector
F’poe : matching component associated with the physical signature vector
Fpae : component accounting for layer type and material-class matching

The first two terms (F'p_,c and F°p_,¢ respectively) are the weighted Euclidean distances from
the Design Case (D) to the library case under scrutiny (C) computed with respect to the building

vector and physical signature vector as shown below:

Page 94



F¥pac =Zw,d,/|D,§. - i

where wy, is the weight associated with the component i of vector k.
The last term ( F°p_.c) accounts for layer class and type matching through the following

formulae:

Fipse=2 (WaL; +wyM;)

where w;3 and wy are the weights associated with the layer i for the layer type (Boolean
parameter L) and the material class (Boolean parameter M) respectively. For example, if the
Design Case includes a requirement for a concrete wall, and the library case under scrutiny has
as structural layer a concrete block, then both parameters L ((Structure layer is present) and M
(CONCRETE type matched) are 1. If, however, the library case has the structural layer specified
as steel studs, then L is 1 (Structure layer is present) but M is 0 for the layer type (CONCRETE
type not matched). Finally, if the library case includes a curtain wall type, then L is O (Structure
layer is not present).

Note that the matching score yielded by the evaluation function is highly dependent on
the weighting coefficients w. The proper selection of those coefficients has a major impact on the
CBR outcome and it should be based on expert analysis.

Not all the building characteristics assembled into the building vector carry the same
weight. Normally, the building occupancy type and aspect ratio are less important than the
building height classification and/or the window-to-wall ratio. The building designer can alter
the weight associated with each feature to direct the similarity assessment according to his/her
preference. That is one of the major benefits of employing a CBR methodology: the capability to

shift the design focus from one feature to another by fine-tuning the retrieval process.
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This research identifies the following guidelines for selecting the weighting coefficients:
Coefficients associated with the building vector should significantly outweigh those
associated with the physical signature vector. The physical signature vector is used to
facilitate further ranking among cases sharing the same building vector.

The values of the weighting coefficients for the building vector parameters should
decrease according to following scale: 1) building height and building size, 2) building
occupancy type, 3) window-to-wall ratio, and 4) building aspect ratio. Since the building
dimensions (height and total floor area) have the most noticeable impact on selecting the
envelope structure, they should be associated with the biggest values for weighting
coefficients. Window-to-wall ratio is a very important parameter as well, but its
recommended value is usually compromised vis-a-vis the building occupancy type and
the custom preferences.

Weighting coefficients associated with layers more difficult to replace (such as the
structural layer) or with layers defining the envelope type (such as the air cavity and/or

the cladding) should have larger values than other layers.

As an example, the above evaluation function was employed to retrieve the best match for the

Design Case proposed in Section 6.2 from a set of approximately 25 building-envelope cases.

The top three cases in the list of suitable design alternatives are shown in Tables 6-1, 6-2,

and 6-3. Note that the only case fully matching the design building vector is ranked third.

Moreover, a case classified as Residential is ranked above a case classified as Office (the

building type required in design specifications).
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Table 6-1. Top ranked case in the list of suitable alternatives

B T R R ET0 S VAR 1 i

Out Brick
Office Air space T hree-ply build-up roof
Medium-low rise | Glass fiberboard rigid P*henolic foamboard
Size type 6 Concrete block Double glazing (Glass fiber sheathing
12.7 mm
Polyethylene sheet S.teel deck
Furring Gypsum board
In Gypsum board Aacrylic paint

Table 6-2. Case ranked second in the list of suitab:le alternatives

TR

S BuildingiVector & S S Wa
Out Stucco
Residential Plain cement panel (Geotextile membrane
Medium-low rise | Air space Peolystyrene rigid
Size type 5 Glass fiber Double glazing Peolyethylene sheet
12.7 mm
Polyethylene sheet RRoofing membrane
Concrete block Concrete slab
Furring Prlaster on gypsum
In Gypsum board Aacrylic paint

Table 6-3. Case ranked third in the list of suitable alternatives

AT Building Vector =] SESGlhazing SRESEROGOL T
Out Brick RRoofing membrane
Office Air space Glass fiber rigid
Medium-low rise | Glass fiber rigid P*olyethylene sheet
Size type 7 Exterior sheathing Double glazing | Concrete slab
12.7 mm
Steel studs PParging Finish
Batt insulation Acrylic paint
Polyethylene sheet
Furring
In Gypsum board
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The explanation of that ranking is linked to the cross-section analysis. While the case
ranked second has a concrete wall, the case ranked third has a steel stud wall. Concrete is a
keyword identified among the additional input requirements for the wall design (at the beginning
of Section 6), and is a structural qualifier that is usually associated with the structural layer.
Since a structural layer is more difficult to replace, more weight was allocated for matching it (as

a feature difficult to adapt) than for the type of building and/or the physical signature.

6.4.2. Adapting the matched case

The best-match case is modified towards the design requirement through an iterative process as

described below:
L The layers that do not match the custom requirements are marked for replacement.
II. The case library is searched to identify potential replacement layers.

I Replacement alternatives are ranked according to the level of similarity between the
envelope component containing them and the envelope component to modify.

IV. The highest-ranking alternatives are used to replace the unmatched layers.

<

A cross-section analysis is performed to validate the new envelope.

If the cross-section analysis failed, then the entire envelope component (that is, wall or
roof) is marked for replacement.

The outcome of a successful case transformation is the Adapted Case. The new envelope is then
submitted to a set of compliance checking tests before being labeled as the Recommended

Solution Case.



6.5. ENVELOPE COMPLIANCE ANALYSIS
There are two types of tests performed for evaluating the envelope performance:
1. Validation tests (checking that the envelope case under scrutiny is a feasible design

alternative), and

2. Performance tests (qualifying if the envelope case reached the desired level of

performance).

The validation tests are performed first (because they can discard the envelope as a design

alternative), and include:

1. Checking that there is no water vapor condensation within any envelope component and
that there is no surface condensation as well.
2. Verifying that the new envelope case has some of the overall parameters such as cost and
thickness within prescribed limits.
3. Assessing that the envelope case under scrutiny is a valid construction alternative.
The performance simulation routines adopted by this research are based on the System
Performance Criteria of ASHRAE Standard 90.1/1989 (ASHRAE, 1989). The performance tests
are linked to the energy conservation and focus on the overall thermal resistance of the envelope:
1. The overall R-value of the roof is below the ASHARE recommended value.

2. The sum of total heating and cooling loads for the wall is lower than the value computed

for the prototype building.

6.6. REPAIR STRATEGY

An adapted envelope case is considered as a FAILURE if any of the following two conditions is

met:
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1. There is concealed or surface moisture condensation.

2. The thermal performance of the envelope does not reach the level recommended by

ASHRAE Standard 90.1.

The attempts to repair a failed envelope case will focus on the overall vapor and thermal

resistance of the envelope component that exhibits the problems. The algorithm to repair an

envelope case is the following:

L

H

Evaluate the moisture performance by computing the water vapor flow through the
envelope component, VF (not including the concealed condensation). The heat and water
vapor flows are computed based on the equations of Appendix E.
If there is no moisture condensation, then go to step (V).
Compute the required overall vapor resistance, R, , with the following formula:

R, = |Pin — Poul/VF
where water vapor pressure P is obtained by multiplying the relative humidity with the
water vapor pressure at saturation for the given inner or outer temperature:

P; = RH; * Psol(T)
If the vapor barrier resistance is less then R,, then attempt to increase the vapor barrier
layer. If that is not possible (already too thick), then attempt to move the vapor barrier
toward the warmer side of the envelope. If the vapor barrier cannot be further moved,
then go to step (XI), otherwise, go to step (ID).
Evaluate the thermal performance by applying the System Performance Criteria of
ASHRAE 90.1.

If the envelope meets the criteria, then go to step (X).
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If the overall thermal resistance of the failed envelope component is below the equivalent
value recommended for the prototype building, then modify the insulation layer
accordingly.

If the insulation-layer thickness exceeds a pre-defined threshold (say 89mm), then split
the insulation layer into two parts as suggested by the practical considerations of Section
2.2.

If the insulation layer cannot be modified anymore, then try to adjust the window-to-wall
ratio. If that is not possible, then go to step (XI), otherwise go to step (V).

Declare the envelope case REPAIRED and stop.

Discard the envelope case as DESIGN FAILURE and stop.
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7. MODEL IMPLEMENTATION

The proposed model has been implemented in a prototype system known as CRED (Case
Reasoner for Envelope Design) aimed at providing computerized assistance in the preliminary
stage of the building-envelope design process. It includes three databases as follows:
e adatabase recording the average weather information for target building sites as
required by the System Performance Criteria of ASHRAE Standard 90.1/1989 (Site
DB),
¢ adatabase of construction materials recording the values of physical parameters such
as thickness, density, thermal and vapor resistance, specific heat, and emittance
(Material DB), and
e adatabase of verified building-envelope design cases (Case DB).
The reasoning core of the CRED system consists of three Al modules as follows:
e an artificial neural network (ANN) filter used for ranking alternatives during the
matching phase,
e acase-based reasoning (CBR) engine used not only for identifying the most suitable
design alternative (that is, matching), but for case adaptation as well, and
¢ arule-based engine implemented by an automatic reasoning module (ARM) and used
to process the domain knowledge rules employed for case transformation and repair.
Moreover, CRED includes a reporting utility capable of generating, displaying and printing a full
report regarding the building-envelope case currently under scrutiny.
The architecture of CRED is shown in Figure 7-1. All the components of CRED were

completely implemented without any support from a commercial of-the-shelf software program.
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Developing from scratch all major software pieces (that is, ANN, CBR and KBES) insured the

flexibility required to integrate them seamlessly.
The building-envelope design process starts with an input set that defines the design
context and includes all the envelope requirements, and ends with the design outcome that is

either a proposed building envelope or a failed attempt to generate one.

7.1. COMPUTING ENVIRONMENT
The system is implemented using object-oriented design principles and is written in C++ for the
Win32 environment (Windows 9x or Windows NT/2000). The C++ classes are built on top of
MFC (Microsoft Foundation Classes) and the message-passing mechanism is following the
COM (Component Object Model) architecture. The hardware requirements are as follows:
Pentium-based personal computers with 32 MB of RAM.

The CRED implementation includes an approximate number of 30,000 lines of C++
code. Appendix H details the main constants and the class templates, while Table 7-1 lists the

major components and their respective code sizes.
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Table 7-1. CRED code size

User mterface

» Wm32 ﬁleséage handlmg T

Main application window

Setup dialogs and property pages

Reporting utility

Report generation and viewer
Print utility

Common utilities

Global operations
Tracing and debugging utility

Case-based reasoning kernel

Reasoning flow control

Case matching control

Case adaptation

Learning and updating module

Case matcher

Physical-signature filter
Ranking modules
Matching module

1,100

Artificial neural network

ANN model
Training utility

2,500

Automated reasoning module

Rules loader
Horn clauses processor
Resolution strategies

5,200

Building envelope modeling

Building case

Layer & System model
Envelope verification module
Case database model

2,800

ASHRAFE System
Performance Criteria

Prototype building model
SPC recommended values
Cooling & Heating criteria

1,200

Building envelope
performance evaluation

Moisture migration equations
Air-cavity calculations
Air-film calculations

800

Material Database

Physical properties evaluation
Database access mechanism
Search engine

1,400

Site Database

Weather data encoding
Database access mechanism

500

CRED

29,700




7.2. MODEL COMPONENTS
CRED includes the following major components:

e User interface (Win32 GUI),

e Reporting utility,

¢ Envelope case library (Case DB),

e Database of weather-related information for all major Canadian locations (Site DB),

e Database of common building materials (Material DB),

¢ Building-envelope knowledge base of adaptation, checking and repair rules,

e Performance simulation module (including the procedures for calculating the heat and

vapor flow through the envelope, and the implementation of the System Performance
Criteria of ASHRAE),

e Artificial neural network,

e CBR-based case matcher,

e (ase adaptation and validation module.

e Automated reasoning engine,

¢ Building envelope designer (controlling the reasoning flow).
For case adaptation and envelope validation, the CBR engine is enhanced with a rule-based
engine. That rule-based engine is actually an automated reasoning module (ARM) that infers
facts through resolution. It is implemented to support both forward and backward chaining to
include predicate logic techniques, such as demodulation and paramodulation, and various

strategies as detailed in Appendix G.
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7.3. DESIGN PREREQUISITES

Before attempting to use CRED for building-envelope design, the case library should be filled
with a comprehensive collection of successful building-envelope design cases. Then, the ANN
filter should be trained to match the building vectors of those cases with their physical signatures
computed for a target-building location. The training algorithm and its associated heuristics are

detailed in Appendix F.

7.3.1. Training the ANN case filter
The artificial neural network employed by CRED for filtering the cases is a back-propagation
feed-forward layered network. The ANN yields a more reliable outcome if trained on a larger
number of significant (i.e. diversified) samples. Training the network involves the following
steps:
e Selecting the network architecture (meaning selecting the number of cells in the
middle layer since the input and output layers are usually imposed).
e Selecting the training constants such as the learning rate (also known as beta
constant), the momentum (or alpha) constant, the noise factor, the type of training
(case or epoch updating), and the error threshold used as a stopping condition.
Figure 7-2 shows the default values of the training constants, and Appendix F describes in more
details the algorithm and the heuristics applied for training the neural network. Following
extensive training and testing experiments, the optimal layout for the neural network filter was
found to include two middle layers of five and respectively four cells each as shown in Figure 7-

3.
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7.3.2. Setting up the design case

L Select a building location from the Site DB, and collect the necessary weather related data
(Figure 6-2).

IL. Establish the salient features of the new building design:

building type (intended usage of the new building)

building height category (total number of floors)

building size category (total floor area)

building aspect ratio (building width over building depth ratio)

e window-to-wall ratio (percentage of glazing area of the total wall area)
II. Interpolate missing information and secondary features from the associate knowledge
base (based on the data extracted from ASHRAE 90.1/1989):
e building occupancy (the average number of persons per unit of floor area),
e internal loads (general electrical service loads including lights and equipment),
e shading coefficient,
e projection factor (external horizontal shading projection depth).
IV. Include construction preferences such as structural type, interior and/or exterior finish,
roof pitch, etc.
V. Assemble the Design Requirements of the new design case
For instance, the design-case setup for the design example of Section 6-2 is shown in Figure 7-4.
The shading coefficient, the projection factor, and the internal loads were inferred based on the

System Performance Criteria of ASHRAE 90.1/1989.



Figure 7-4. Design Case Set-up

7.4. DESIGN CASE PRE-PROCESSING
Prior to “firing” the case-based reasoning process, the design context should be checked for
validity. For instance, if the wooden-wall type is required for a building with more than three

stories, then there is a reasoning conflict since such an envelope is not a practical solution.
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The set of verification rules fed into the rule-based engine includes:

IF (Number of floors <= 3) THEN Curtain Wall is not allowed.

IF (Number of floors > 3) THEN Wooden Wall is not allowed.

IF (Mumber of floors > 10) THEN Simple Glazing is not an option.

IF (Wall is not of Framed Type) THEN Batts Insulation is not an option.

IF (Cladding and Structure cannot be paired) THEN Cladding is to be replaced.

IF (Wall and Roof cannot be paired) THEN Roof is to be replaced.

The design case pre-processing includes the following steps:

e Check the design context for validity.

e Discard and/or replace conflicting specifications.

e Assemble the prototype building (as specified by System Performance Criteria of
ASHRAE), and establish the design requirernents to be achieved (shown in Figure 6-
3)

e Retrieve the Design Signature by feeding the building vector of the design case into
the ANN filter.

e Adjust the matching metrics and establish the similarity metrics for matching (that is,
assemble the list of keywords to be used for cross-section analysis).

e Assemble the Design Case Context.

7.5. CASE MATCHING

e Initialize the search-engine.
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e Establish the preliminary matching-threshold error (that is, the acceptable error at

building vector level).

e Sort the existing Building Case Library, according to current design specs, to
establish the list of building cases suitable to current design context (within the above
error threshold).

e Rank the list of suitable alternatives in the descending order of their Euclidean
distance to the design requirements (distance computed based on the general building
characteristics included in the building vector and the physical signature).

e Establish the maximum number of building cases to be further considered for
matching (that is, select a filter threshold).

e  For all the retained buildings, calculate the matching score according to the
established similarity metrics (i.e. matching polynomial function with adjustable
coefficients).

e Rank building cases according to their matching score.

e Label the top case as Best Match Case.

The data structures and the C++ class templates used by the CBR engine are detailed in
Appendix H. Appendix J shows a sample trace of the execution steps in CRED required for the

designing of a new building envelope.



8. CONCLUSIONS AND RECOMMENDATIONS

8.1. SUMMARY

This thesis presents an alternative approach for automating the building-envelope design process

by using the case-based reasoning methodology. A conceptual model is proposed for employing

the experience embedded in known building-envelope cases while designing a new building

envelope. The steps to be taken in this case-based framework for building-envelope design are

summarized below:

Previous design experience is stored in building-envelope cases by limiting the
description to avoid unnecessary encoding complexity.

A comprehensive case library includes cases covering most of the possible design
alternatives. Since the building-envelope design outcome depends upon the size and
quality of the case library, the information embedded in an envelope case has to be
verified and validated before adding that case to the library.

The CBR model is equipped with capabilities to rapidly identify the library case that best
matches the current design requirements. The matching process is computationally
intensive and it is limited to a subset of suitable cases by using the physical signature to
further rank cases sharing the same building vector.

The matching mechanism is enhanced with a cross-section analysis component. The
proposed CBR model facilitates the comparison between two envelope cases by
considering both the layer type matching and the material class matching.

The case adaptation has to be verified through a validation mechanism. A newly

generated building-envelope case is usually the result of modifying an existing case along
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certain layers. A library-wide search is performed to ascertain if the newly introduced or
modified layers can coexist within their current neighborhood.

The adapted case is checked against the performance requirements through a simulation
procedure. The test procedure checks that the adapted case has no surface or concealed
moisture condensation and that its energy performance level conforms to the
recommendations of the System Performance Criteria of ASHRAE 90.1/1989.

An adapted case failing the performance tests is submitted to rule-based repair engine.
The case-repair mechanism includes rules of how to modify the overall vapor and/or

thermal resistance of the envelope until the performance requirements are met.

8.2. CONCLUSIONS

The major conclusions of the present investigation are the following:

a

Learning from past experiences through a computerized framework is beneficial in
the preliminary stage of the building-envelope design process. The envelope designer
has an opportunity to explore and analyze various design alternatives before
committing to an envelope design detail.

The complexities in the building-envelope design process recommend a computer-
driven design process. If the quest for energy efficiency is to meet the performance
level recommended by the ASHARE 90.1 Standard, then the amount of computation
required is staggering (for an unassisted designer using manual calculations). In
addition to a large number of performance attributes to be considered, the selection of
building materials is subject to conflicting performance requirements depending on

the climatic conditions, construction regulations, and custom objectives. The analysis
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of various design alternatives (as defined by changing the construction materials)

implies a large amount of calculations to re-assess the overall performance of the
envelope.

a There is a need for a knowledge-driven mechanism to infer missing information when
the building-envelope design specifications are incomplete. Building-envelope design
decisions are often made prior to the preparation of the schematic drawings. At that
preliminary stage, it is critical for the designer to investigate several design
alternatives to eventually choose an optimal solution. Missing design specifications,
however, hamper the analysis of alternatives. Domain knowledge, construction
bylaws, and renowned standards (such as ASHRAE 90.1) can be employed by a
computerized reasoner to fill the information holes in incomplete design
specifications. For instance, CRED infers missing data from the parameters defined
for the prototype building in the System Performance Criteria of ASHRAE 90.1.

Q Economizing knowledge representation is required to keep the case-based reasoning
process within reasonable limits of computational time. Alternative mechanisms,
such as the lexical parsing associated with the cross-section analysis, might be used to
compensate for the lack of case description details.

Q Computer- generated designs should be validated through simulation and eventually
repaired if they fail to deliver the expected performance. Testing and repair are an
integral part of the case-based reasoning framework. System Performance Criteria of
ASHRAE Standard 90.1 offered a useful methodology for integrating the

performance-compliance checking within a computerized system.
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8.3. CONTRIBUTIONS

The present study improves the quality of future building-envelope designs by incorporating the
heuristic knowledge from past successful designs and enabling designers to exploit
computationally-intensive performance checking during the conceptual design stage. The main
achievement of this research is the development of a systematic CBR framework for modeling
the decision-making during the building-envelope design process as detailed below.

a Comprehensive review of the research work related to applying case-based reasoning
for building engineering design. The review includes a detailed analysis of previous
approaches as well as a comparative assessment of the advantages and disadvantages
associated with the case-based reasoning approach.

a Detailed analysis of the building-envelope design process with emphasis on the
techniques to automate and computerize the process. The analysis focused on the
main problems to be solved, the incompatibilities and the complexity of the
information faced by the designer.

Q Successful development of a knowledge-representation model for building-envelope
objects. The proposed model is built around the hierarchy of building-envelope
objects facilitating problem decomposition at the component level. The knowledge-
representation model was geared toward an economy of encapsulation and focused on

information transfer from one envelope object to another.

Q Development of a complete CBR framework for automating the building-envelope
design process.
= Resolving all major problems encountered when adopting CBR methodology for the

building-envelope design domain. The present thesis achieved the following goals:



¢ Expanding the classification criteria to facilitate retrieval by introducing the
concept of physical signature.

e Mixing several techniques to optimize the results: artificial neural networks to
filter the building-envelope cases, case-based reasoning to find the best-match
case, and rule-based inference for repairing failed cases.

e Improving the matching metrics through cross-sectional analysis and proprietary
heuristics (such as lexical parsing) without adding unnecessary encoding
complexity.

e Increase the quality of the case adaptation by employing the case library for
component adjacency validation.

e Checking the computerized design through a set of simulation and performance
tests based on ASHRAE Standard 90.1.

Q Validation of the developed model through a software implementation. The CRED
prototype implements the CBR framework for building-envelope design using the
current object-oriented programming techniques and user-interface technologies. As a
software tool, CRED demonstrates that the objective of the research—provide
computerized expertise for building-envelope design assistance—is indeed

achievable.



8.4. RECOMMENDATIONS FOR FURTHER RESEARCH

This study models the envelope as an independent entity (without conceptual links to the rest of

the building). Further research efforts can build upon this work to address other aspects of the

computer-aided building-design process.

Q

Q

Provide a conceptual model for the interaction between the envelope and the rest of
the building that integrates the envelope design within the building design process.
Link the HVAC system and the selection of other building systems to the building-
envelope design.

Improve the data acquisition mechanism (to support CAD based descriptions) and
expand the case library.

Enable the model to support distributed architectures (to prepare for an eventual
Internet-based implementation).

Validate and improve the model by collecting input from experienced practitioners.

This thesis is a step in the direction of computerizing the building design. The thesis does not

dispute the impact of human creativity during the design process, it is clear now that the future

will bring more and more powerful software tools for assisting building engineers and architects

to generate consistently high-quality designs. The present thesis can be considered as a part of

this effort to fully automate the building design.
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D~
APPENDIX A: SYSTEM PERFORMANCE CRITERIA

CRED employs the System Performance Criteria of ASHRAE 90.1/1989 as one of the major
tests for checking if a building envelope is passing the design requirements.

To assess the energy efficiency of a new building through the System Performance
Criteria, one must first define a theoretical model of the building, called the prototype building,
whose parameters are based on general building characteristics (such as type, geometry, and
orientation) and on average climatic data for the selected location. Then, to achieve the Standard-
based requirements, the thermal performance of the new building design should be at least as
good as the thermal performance of the associated prototype building:

Heog + Cape < Herotorvee + CeroTOTYPE
where Hpipg, CsLpe, HrroToTyrE, @and CproToTyPE are respectively the real wall heating load, the
real wall cooling load, the prototype wall heating load (also called heating criteria) and the
prototype wall cooling load (also called cooling criteria). Heating and cooling loads (either for
real building on the prototype building) are calculated, respectively, with the heating and cooling

equations presented below.

A1. HEATING EQUATION

H=3 [HLUO;+ HLXUO:; * HLG:+ HLS:+* HLC:+ Y, (HLU; + HLM )]

i=] J=1
where:
n is the number of wall orientations;

m; is the number of wall mass types for /th orientation;
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m
HLU, HLUO, HLXUO relate annual heating load with thermal transmittance of the wall;

HLM relates annual heating load with thermal capacity of wall;
HLG relates annual heating load with internal gains;
HLS relates annual heating load with incident solar gains;

HLC relates annual heating load with local weather data.

A2. COOLING EQUATION
C= ﬁ;,[ CLUO; + CLXUO; +CLG; +CLS: + CLC: i{( CLUy+CLM ;)]
i= =
where:
n is the number of wall orientations;
m; is the number of wall mass types for ith orientation;
CLU, CLUO, CLXUO relate annual cooling load with thermal transmittance of the wall;
CLM relates annual cooling load with thermal capacity of wall;
CLG relates annual cooling load with internal gains;
CLS relates annual cooling load with incident solar gains;
CLC relates annual cooling load with local weather data.

The following weather parameters are used by the Standard to evaluate the climatic

characteristics of the location:

HDDI8: Heating degree-days below 18.3 C (65 F)
HDDI0: Heating degree-days below 10 C (50 F)
CDD18: Cooling degree-days above 18.3 C
CDDI10: Cooling degree-days above 10 C



CDH27: Cooling Degree-Hours above 26.67 C (80 F)

VSN: Annual average daily solar energy on North facade

VSEW: Annual average daily solar energy on East & West facades
VSS: Annual average daily solar energy on South facade

DR: Daily range average for temperatures of warmest month

For example, the values of these weather-related parameters, for Montréal, are as follows:

HDDI8 =4538
HDDI0 = 2439
CDDI8 =178
CDD10 =1124
CDH27 =326
VSN =33.86
VSEW =73.51
VSS =104.12
DR =9.87

It should be noted that the requirements of the System Performance Criteria are achieved if, and
only if, the sum of the heating and cooling loads are less than the sum of heating and cooling
criteria, even if individual loads, either for heating or for cooling, are greater than in the

corresponding prototype building.

REFERENCES

ASHRAE, (1989), “Energy Efficient Design of New Buildings Except New Low-Rise
Residential Building”, Standard 90.1/1989, American Society of Heating, Refrigerating and
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APPENDIX B: PROTOTYPE BUILDING ENVELOPE
The parameters recommended by the System Performance Criteria of ASHRAE 90.1/1989 for
the theoretical model of the building (the so-called prototype building) are used by CRED not
only to check the validity of the new design but also to infer missing information. Those

parameters are as follows:

B1. MAXIMAL U-VALUE FOR THE ROOF

5.68 W
<
Uroor = 53 5 00324 % HDD18 +0.00234 * CDDI8 + 0.000468 * CDH27 m2°C

For Montréal:
m- C
From Québec Law:
w
U <0.23 —;
ROOF 2°C

B2. MAXIMAL U-VALUE FOR THE WALL BELOW GRADE

Uwarr sc = 268 I:V
4.5+0.0004167HDDI8 m~°C

For Montréal:

<0.89
Uwart sc 2 °C



B3. MAXIMAL U-VALUE FOR THE WALL ABOVE GRADE

Uniee <159.92 x (HDD18)"" - __
m”°C
For Montréal:
|74
Uwarr <0.4 ZoC

B4. OPTIMAL PARAMETERS FOR THE GLAZING SYSTEM

Uiz < 2.954 ———
m”°C
GLAZING AREA

<0.48-33.345x 10° x CDD10 x VSEW =0.275
WALL AREA

From Québec Law:

W
Ucrizme < 2.86 ——
m

GLAZING AREA <0.22
WALL AREA

All climate related parameters (such as HDDI8, HDDI10, CDDI18, CDDI10, CDH27, VSEW)
were explained in Appendix A which includes a detailed description of the System Performance

Criteria from ASHRAE 90.1/1989.
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Conditioning Engineers, 1989.
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APPENDIX C: EXAMPLE OF BUILDING-PERFORMANCE SIMULATION

The tool selected to simulate the building-envelope performance is BESA, a program that could
yield the complete thermal-performance analysis of a given prototype building that is specified
along some general parameters such as building location, building geometry, total floor area,
number of stories, building functionality (or type), and so forth.

The simulation sample presented below is for an office building. Additional data and
missing information is inferred from either the ASHRAE Standard 90.1/1989 or from the Quebec

Construction Law.

C1. BUILDING DESCRIPTION

C1.1. Primary Building Data

Location: Montréal

Type: Office

Number of Stories: 10

Floor Area: 2560 m’ per floor

Orientation: Larger walls face East & West

C1.2. Geometry Data

Floor Height: 4dm

Building Shape: rectangular with 1/2.5 aspect ratio
Floor Dimensions: 32m x 80m

Wall Area: 896 m*/floor

Wall-to-Floor Ratio: 0.35
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C1.3. Internal Loads
Occupancy: 25.55m’ per person

Schedules of operation: Jrom ASHRAFE 90.1/1989

Lighting: 22 Wim® (Québec Law)

Ballast Factor: 1.2 (110 W lamps in BESA)
Equipment: 8 Wim’

Envelope

Ground reflectivity: 0.2 (from ASHRAE)

Solar absorptivity: 0.7 (from ASHRAE)

Shading coefficient: 0.7 (from ASHRAE)

Glazing U-value: 2.86 W/m’C (Québec Law: R=0.35)
Roof U-value: 0.23 Wim’C (Québec Law: R=4.4)
Glazing-to-Wall ratio: 22% (Québec Law)

U-value for walls: 0.4 Wim’C (from ASHRAE)

C1.4. Thermal Parameters
Heat Generation per Person:
Sensible heat gain: 68 W/person (ASHRAE: 230 Btu/h)
Latent heat gain: 56 Wiperson (ASHRAE: 190 Btu/h)
Thermostat Settings:
Cooling: 24 degrees C (75 degrees F)

Heating: 21 degrees C (70 degrees F)



Night Setback: 13 degrees C (55 degrees F)
Ventilation Rate: 0.4 L/m2sec (ASHRAE: 10 L/s/person)

Infiltration Rate: 0.17 ach (ASHRAE: 0.038 cfm/f?)

C1.5. HVAC System

Packaged Rooftop VAV with Perimeter Reheat

C2. RUN ANALYSIS
Average Energy Consumption: 684 MJ/m’ (190 kWh/m’ )

Average Energy Cost: 11.81 8/m’

The dependency of the energy consumption of the building on the overall thermal resistance of

the wall is shown on Table C-1.

Table C-1: Unit energy consumption function of wall R-value




L
Statistical regression analysis (with STATGRAPHICS software package) of these data yields to

the following fitted function:

-0.723 xR) kWh

2

Energy Consumption = 180.56 x (I + 0.345 xe

where R is the thermal resistance of the wall (Figure C-1).

E

=

§ 210
§ 200
s

£ 190
-

2

S 180
O
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Wall R-value (m°C/W)

Figure C-1. Energy Consumption vs. Wall R-value

If the minimum R-value is considered to be 1.25 m’C/W (50% less than ASHRAE
recommendations of 2.5 mZC/W'), then the one obvious conclusion deriving from the above
analysis is that the overall impact of the thermal characteristics of the wall on the energy

performance of the building is limited to at most 13%.
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Therefore, even if energy efficiency of the building is a desirable trait, increasing it
through improvements in the thermal performance of exterior walls should be carefully
considered. Analysis of energy savings should be accompanied by an analysis of material costs

implied by any improvements.

REFERENCES
ASHRAE, (1989), “Energy Efficient Design of New Buildings Except New Low-Rise
Residential Building™, Standard 90.1/1989, American Society of Heating, Refrigerating and
Air-Conditioning Engineers, 1989.

BESA 2.2, (1987), Building Energy Systems Analysis, CanadaPlan Group Inc, 1987.



APPENDIX D: LIFE CYCLE COST ANALYSIS

While attempting to repair a building envelope case failing the energy efficiency requirements,
CRED limits the increase of the thermal resistance of the wall to at most 36% over the value
recommended by the System Performance Criteria of ASHRAE 90.1/1989. The reasoning
behind this limit is supported by the life cycle cost analysis that follows.

Considering the example of Appendix C, the maximum of energy savings that could be
achieved through increasing the thermal resistance of the wall is:

MAXIMUM ENERGY SAVED =180.56 x0.345 x %% <62.3 ﬂh—
m* year

Studies have shown that the "present worth" of energy savings are given by a formula that takes
into account the long-term value of money currently invested in the building envelope. It is
possible to calculate the actual benefits of investing the money in an interest-bearing bank
account instead and watching the investment grow over time. Therefore, the concept of present

worth (PW) or present value should be introduced as:

L-t+a) where a=——2
a I+e

PW=C

where n is the number of years under consideration, i is the cost of money (i.e. the average
interest of banks), e is the rate at which the energy cost are expected to increase, and C is actual
cost of energy saved per year.

The below formula defines a "present worth factor™:

=1-(1+a)'"
a

F



M
Considering a lifetime estimation of 20 years (n = 20) and supposing that i = 8%, e=5.5% we

obtain a = 0.023, and, subsequently, F = 15.87.
The average cost of the energy per kWh, EC, may be approximated with (see in
Appendix C the results yielded by BESA):
EC=11.81/190 = 0.062 $/kWh
Studying the price of different insulation materials, one notices that the cost of the insulation, IC,
increases linearly with its thermal resistance, independent of the insulation type, according to the
following relationship:

3

IC=10xR
m’ of wall area

where R is the insulation R-value in m*C/W.

A case study carried out by the Masonry Council of Canada for which the average ratio
of wall-to-floor area was assumed to be 0.36, concluded that the insulation cost (/C) can be
roughly approximated by:

5

m’ of floor area

IC=3.6xR

Hence, the real savings in cost through the increase of the thermal resistance of the wall are
given by the long-term savings of energy costs (over the estimated period of 20 years) minus the
losses due to additional insulation costs:

TOTAL COST SAVED =61.3x%"#”?-3.6 xR [8]

where

61.3=180.56 x0.345x ECx F



“
The optimal thermal resistance of the wall, at which maximum cost savings are to be obtained

over a span of 20 years, is given by:

1 61.3 m2°C
oot = —In—==3.92
Ropr 0.723" 3.6

Since the r-value recommended by the ASHRAE Standard 90.1/1989 is

1 m>°C
=L =25
RsHrAE 0.4 w7

then the maximum variation range for the wall R-value is [2.5, 3.92] or 36%.

REFERENCES

Masonry Council of Canada, Guide to Energy Efficiency in Masonry and Concrete
Buildings, 1982.



APPENDIX E: MATHEMATICAL EQUATIONS USED TO SIMULATE THE
BUILDING ENVELOPE BEHAVIOR

To simulation the performance of a building envelope case, CRED needs to compute the
transversal heat and vapor flow across the envelope components. For that purpose, CRED

employs the set of mathematical equations shown in this appendix.

E1. TEMPERATURE GRADIENT ACROSS THE BUILDING ENVELOPE
The overall heat flow traversing the building envelope, in steady-state conditions, is directly
proportional to the magnitude of the total temperature difference and the thermal transmittance

(i-e. inversely proportional to the thermal resistance):

Temperature Difference
Heat Flow« P ff

Thermal Resistance
It follows that temperature drop through each component of the envelope is proportional to the
component's thermal resistance. The temperature gradient through the i-th layer may be

computed, in steady-state conditions, with the following formula:

dr= RoX AT
L= Ri

Z Ri
where:

dt; = temperature drop across layer i,

R; = thermal resistance of layer i.



E2. WATER VAPOR DIFFUSION ACROSS THE BUILDING ENVELOPE
The water vapor pressure difference that exists between material surfaces and the permeability of
the material determines the water vapor diffusion across a building material. In general, the
permeability of a building material subjected to a pressure difference varies with the relative
humidity of the material, but for most practical situations, the material permeability could be
considered constant.

The water vapor flow produced through diffusion can be determined, assuming steady-
state flow conditions, with the following formula:

W= H(Bp) _Ap
L R

The water vapor pressure drop through each component of the envelope is proportional to the
component's water vapor resistance. The water vapor gradient through the i-th layer may be

computed, in steady state conditions, with the following formula:

A
dp’_ = Ri X _L
Y Ri
where:
dpi = water vapor pressure drop across layer i,
R; = water vapor resistance of layer /.

E3. PROPERTIES OF ATMOSPHERIC AIR

Temperature:

T = temperature+273.15 °K



Density:

p _101325 1 35293 kg
RT 2871 T T m

Coefficient of thermal expansion:

Conductivity:

2.6443T  , W
k=——2—475—7]0 ['O—K]
]+T107 m

The approximation is valid when air temperature is within the range of -183 ... 900 degrees

Celstus.

Dynamic air viscosity:

}J.=(Co+C1T+02T2+C3T3+C4T4)10.7 —lfg—
m secC

where
co =4.0201,
c1=7.4582x 107,
c2=-5.7171 x 107,
c3=2.9928 x 107,

cs=-6.2524x 1071,



“
The approximation is valid when air temperature is within the range of -53 ... 1577 degree

Celsius. The above equation was produced through statistical analysis and it fits the experimental

data with a precision of 2%.

Kinematic air viscosity:

Grashof number:

2 3
Gr=88P (2AT)L
H

where L is the width of air space, or the height of air film, in mm.

Prandtl number:

pr=Ce#
k
where cp is 1005 J/kgC.
Rayleigh number:
gBp (AL c,

Ra=PrxGr=

ke

Nusselt number:
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where /. is the coefficient of convective heat transfer.

References

ROHSENOW, W. M., HARTNETT, J. P., (1973), Handbook of Heat Transfer, chapter 2:
Thermophysical Properties, page 2-80, McGraw-Hill, 1973.

VINES, R. G., (1960), “Measurement of Thermal Conductivity of Gases at High
Temperature”, Journal of Heat Transfer, Transactions ASME, 82:48, 1960.

E4. PRESSURE OF WATER VAPORS AT SATURATION
Fitting experimental data for temperature of water vapors within the range of -100 ... 200 degrees

Celsius is calculated by using the following equation:
In(p,,) ‘_“%*'Cz tesT+e T +esT +esTF + e, I(T) Pa

where the coefficients ¢ are given in the table shown below.

Table E-1: Coefficients used for vapor pressure at saturation

c -5674.5359 -5800.2206

s 6.3925247 1.3914993

c3 -0.9677843 x 10™ -0.04860239

Ca 0.62215701 x 10° 0.41764768 x 10™
Cs 0.20747825 x 107° -0.14452093 x 107"
Cé 0.9484024 x 107'¢ 0

c7 4.1635019 6.5459673
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ES. HEAT TRANSFER COEFFICIENT FOR OUTSIDE AIR FILM

The outside air-film coefficient, accounting for convective and radiative heat transfers occurring

at the outer surface of the envelope assembly, is calculated using the following formulas taken

from the ASHRAE Handbook of Fundamentals (1989):

E5.1. Winter Coefficient

fow =34.08 —; (Wind speed = 6.7 m/sec)
m °C
E5.2. Summer Coefficient
Souw=22.72 Tog (Wind speed = 3.4 m/sec)
m

E6. HEAT TRANSFER COEFFICIENT FOR INSIDE AIR FILM
The inside air-film coefficient should account for both convective and radiative heat transfers
occurring between the inner surface of the envelope assembly and the room air. Hence, the

thermal conductance of the so-called st#ill air is calculated using the following formula taken

from the ASHRAE Handbook of Fundamentals (1989):

TR4'TS4 w
Tz-Ts m’°C

fin=hc+hr=l.77(TR_TS)0.25+0_8
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where

o is the Boltzmann constant

TR, Ts are respectively the room and surface temperatures,

£ is the emissivity of the inner surface.
Since the surface temperature is necessary to calculate the conductance of still air, the
computation of f;, is an iterative process that will start with an initial approximation of f;; and
will continue with successive determinations of Ts and fn, till the differences between two
consecutive iterations will fall below a given threshold.

Better approximations for the coefficient of convective heat transfer, 4., are based on the

Nusselt number and take into account the height of the air film and its inclination with respect to

the vertical:
Nuxk
he %
E6.1. Vertical Plate in Laminar Range
0.67 Ra3
Nu=0.68 +— 07 Ras (0 <Ra<10%:
EAr]
]+(0.492)16
Pr



E6.2. Vertical Plate Outside the Laminar Range

I
Nu=|0.825 +—0387 Ras

8

9 \a7
( 0.492 jﬁ
I+
{ Pr

E6.3. Slanted Plate with Warmer Inner Side (heat loss from the room)

!
Nu=0.56 (Ra cos(8 ))+

E6.4. Horizontal Plate with Warmer Inner Side (heat loss from the room)

7
Nu=0.58(Ra);

The equations for plates with warmer outer side (i.e. when the room gains heat) are not presented

since in those cases we expect to have no moisture-induced problems.
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E7. HEAT TRANSFER COEFFICIENT FOR AIR SPACE CAVITY

As in the case of inside air film, the air space coefficient is the sum of convective and radiative

heat transfer coefficients:

_kNu+ 1 T,‘-T;

w

Er &2

where indices 1 and 2 represents the two boundary surfaces.

E7. 1. Vertical Air Space
For Ra <2000:

Nu=1.0

For 2000 <= Ra < 200000:

4 I
Nu=0.197 Raji (H | L)5

For Ra >= 200000:

14 1
Nu=0.073(Ra)5(H/L)5

E7.2. Horizontal Air Space

For Ra < 1700:

o —
L L_*_i_]T[’Tz m °C



Nu=10

For 1700 <= Ra < 7000:

Nu=0.059(Ra)**

For 7000 <=Ra < 320000:

1
Nu=0.212(Ra)+

For Ra >=320000:

/
Nu=0.061(Ra)3

E7.3. Slanted Air Space

For inclination angles with respect to horizontal in the range of O ... 70 degrees:

l
- 1.6 -
Nu=1+1447-—2708 |, |, 1708sin(1.80)" |, (RaCOS(G))S_l
Racos(6) Racos(8) 5830

For inclination angles in the range of 70 ... 90 degrees:

1
Nu =Nugo° (Sin(e))-;
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APPENDIX F: ARTIFICIAL NEURAL NETWORK FILTER

This research focused on back-propagation feed-forward layered neural networks with one or
two hidden layers. The mathematical equations and the training heuristics used for the ANN

implementation in CRED are listed in this appendix.

F1. FUNDAMENTALS
Activation function is logistic (sigmoid):

1
l+e™

f(x)=

Output function is usually the identify function:
f(x)=x
Differential of input-output function is:
dlf()]=cf (x)A - f(x))
The generalized Delta Rule for weight adjustment in back-propagation is:
Awy = BE; x; +c(Awg) prey

where [ is the learning rate constant and o is the momentum constant.

F2. TRAINING ALGORITHM

Let / be an input specimen generating the output O instead of target value 7 when fed into a
neural network. The training algorithm is shown below.

L Initialize weights w;, to random values.

II. Feed one training specimen to the neural network.

II1. Calculate the output error for each cell k of the output layer L as follows:
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E¢ =d[fINOF ~T)
Begin back propagation. For each cell k£ of middle layer L calculate the error as follows:

EkL = d[f([kL )] Z Wiii-lEiL-i—l

Compute the amount of weight adjustment function of the previous adjustment value as
follows:
Awy = BEgx{ +a(Awg) ppey

For case updating, update the cell weights as follows:

w,-ﬁ = w,-fc + Aw,fE
For epoch updating, accumulate the weight adjustments for each training specimen:

c,-‘f( = c,.ﬁ + Aw,.‘;'c
At the end of one training pass, for epoch updating, adjust the cell weights as follows:
wk =wk +ck

At the end of one training pass, if the overall error is below the preset threshold, then

stop. Otherwise, restart feeding the network with training specimen.

F3. TRAINING HEURISTICS

The number of passes required to train the neural network and the quality of the training is

determined by:

e the learning rate constant,
e the momentum constant,

e the size of the middle layer with respect to the input layer,



e the initial weight values

e the amount of noise added to the training specimen, and

e the size of the training set.

A set of heuristic relationships between the training parameters was identified by applying
regression analysis to the training behavior of networks with various configurations. For a given
network configuration, and the same initial values of cell weights the conclusions are:

0 Learning Rate

¢ In the absence of noise, the number of passes to train decreases following a non-linear
function with the increase of the learning rate.

e Learning rate should be small (0.1 ... 0.2) to avoid high oscillation of the back
propagated error (due to large modifications applied to the cell weights), and to
increase the chances of reaching the absolute minimum during the gradient-descent
learning. Making the learning constant too small may exponentially increase the
learning rate.

e The learning rate should be decreased when the amount of noise is larger. It is
unusual but quite possible to dynamically lower the learning constant as the training
progresses.

Q Momentum Constant

¢ The number of passes necessary to train the network is linearly dependent on the

value of the momentum constant (if that one is below 0.9). The momentum constant

should be kept at a higher value (i.e. close to 0.9) to compensate for lower learning
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constants and to speed up the training. Increasing the momentum above 0.9 does not
improve the speed of training and may adversely affect the gradient descent learning.
a Middle Layer Size
® Apparently, the number of passes to train increases following a non-linear
relationship with the size of the middle layer. The time-per-training pass increases as
well, due to the linear increase of the number of weights to adjust.
® The size of the middle layer should be significantly smaller in size than the input
layer to extract the features of the training specimen. An optimum size of the middle
layer increases the noise rejection and keeps the training time within reasonable
limits. Networks with middle layers that are too small either do not train or tend to
over-generalize the training specimen, and, consequently, do not clearly separate the
classes.
@ Error Threshold
¢ [tis impossible to say if the absolute minimum was achieved as long as the error is
below the set threshold. Hence, the set threshold should be carefully selected.
Q Training Noise
¢ The number of passes to train increases following a non-linear relationship with the
amount of noise added to the training specimen.
¢ Adding noise to the training specimen improves the robustness of the network by
artificially enlarging the training set. The smaller the training set, the higher should be
the amount of added noise (as high as 60 to 80%). Too much noise, however, may

thwart the training.
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e Minimizing the learraing constant not only optimizes the gradient-descent learning but

also allows more passes to better cover noisy specimen.

e Itis recommended to gradually reduce the noise amount as the training progresses.
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APPENDIX G: AUTOMATED REASONING (RULE-BASED) MODULE

CRED uses a rule-based engine for adapting and repairing building envelope cases. The rule-
based part of CRED, the so-called the Automated Reasoning Module (ARM), was designed to
support two operating modes:

1) Resolution Refutation, where a set of input clauses is processed through resolution
refutation, until either the desired goal is reached (the theorem is proved) or no more
resolutions are possible, and

2) Expertise Modeling, where a set of production rules (prodrules) are sequentially fired,
to infer new facts from the existing ones, until either the solution of the reasoning
problem is achieved or no more rules may be fired.

Each mode of operation is further split, based on the constraints established at the very
beginning, into running sessions. Hence, ARM may function in one of the following four
running sessions:

1) Resolution refutation toward a goal,

2) Resolution refutation toward answering questions,
3) Expertise modeling with "regular"” forward or backward chaining,
4) Expertise modeling with plausible reasoning.

The session type is defined at the beginning, when the problem to solve is loaded.

G1. FUNDAMENTALS
Q Rules of inference are used to deduce consequences from premises (valid for both

propositional and predicate logic). The list of such rules includes:
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e Introducing conjunction,
e Eliminating conjunction,
e Introducing disjunction,
e Modus ponens,
e Modus tollens,
e Chaining,
e Universal specialization (or instantiation).
a Formulae are converted into clauses. A clause is a disjunction of zero or more literals,
and a literal is an atom or a negation of an atom.
a Clauses are standardized (no two clauses contain the same variable).
a The resolution-refutation procedure includes the following steps:
e The input set is assembled from the premises and the goal converted into clause form.
e Two clauses selected to be resolved are first standardized.
e The equality literal is handled through demodulation and paramodulation.

The resolution is refined with ordering, pruning, and restriction strategies.

G2. RESOLUTION STRATEGIES
The strategies implemented by CRED are shown in Table G-1. The different types of strategies
are combined to obtain a more complex strategy such as “Breadth-First with Unit Resolution and

Negative Support” or “Fewest Literals with Unit Resolution and Positive Support”.
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Table G-1. Resolution strategies implemented by CRED

SiiStrategy Class S en iStrategy Name -
ORDERING Breadth-First (Depth Saturation)
Fewest Literals Preference
Weighting
PRUNING Deleting Chaste Clauses
Deleting Tautologies
Deleting Subsumed Clauses
Evaluating Ground Literals

RESTRICTION Goal Supported Strategy

Negative Resolution

Positive Resolution

Negative Hyper-resolution

Positive Hyper-resolution

Unit Resolution

SLD (Linear Resolution with Selector on Definite Clauses)
LBS (linear Back-Chaining with Selector on Assertions)

G3. BASIC DATA STRUCTURES

For resolution refutation, ARM employs three main data structures as follows:
o TERM, referring not only to constants, variables, and functions but also to predicates
(any term is labeled as either CONSTANT, VARIABLE, FUNCTION, or PREDICATE),
o (CLAUSE, which represents a clause as a set of literals (where a literal is a TERM of
PREDICATE type), and
e SUBSTITUTION, which is a pair of terms, one being the term to be introduced, and the
other one the term to be replaced.
Both TERMs and SUBSTITUTIONs are not stand-alone data structures but linked within the

CLAUSE using them. Clauses are grouped into four lists identified as follows:
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e DEPTH list: clauses are ranked according to their generation order (their ID numbers).

Earlier generated clauses (lower ID numbers) are closer to the head of the list.

e LENGTH list: clauses are ranked based on their length, where the length of a clause is
defined by the number of literals within the clause. Shorter clauses are placed ahead of
longer clauses. Hence, the NIL clause will always be found at the head of that list.

e SET _OF_SUPPORT list: clauses that are part of the set-of-support. Defining which
clauses are parts of the set-of-support depends on the strategy selected.

o CONSISTENT list: clauses that cannot be part of the SET_OF_SUPPORT list.

All clauses are to be found in both the DEPTH and LENGTH lists but only in one of the
SET_OF _SUPPORT or CONSISTENT lists. The SET _OF SUPPORT and CONSISTENT ate
complementary (if a clause is in one of the two lists, then it is not in the other list).

There are four types of set-of-support options defined as follows:

¢ Goal Support: the set-of-support is derived from the goal clause (which is actually the
negation of the goal). In the SE7_ OF SUPPORT list will be found, in addition to the
goal clause, all the clauses having the goal clause among their ancestors. The remaining
clauses are to be found in the CONSISTENT list. It is obvious that this kind of support
may be employed only if the running session is one of resolution refutation toward a
goal (no tautologies found in the input set of clauses).

e Positive Support: the set-of-support is provided by the positive clauses. Hence, if a
clause is positive it is to be found in the SET OF SUPPORT list; otherwise, (a mixed or

negative clause) it is to be found in the CONSISTENT list.



Negative Support: the set-of-support is provided by the negative clauses. A negative
clause is to be found in the SET_OF SUPPORT list and a mixed or positive clause is to
be found in the CONSISTENT list.

Weight Support: the hierarchy of clauses is based on their weight values. This is not a
set-of-support type in the real sense of its definition, but an extension of it to facilitate
the access to the CONSISTENT list, when the weighting strategy is employed. When the
weighting strategy is used, all clauses are pushed into the CONSISTENT list (the

SET OF SUPPORT list will remain empty), and ranked so that the clauses with higher

weight values are closer to the head of the CONSISTENT list.

G4. IMPLEMENTATION DETAILS

During the resolution refutation procedure, as well as in the expertise modeling, the processing of

the clauses includes the following operations (or strategies):

Chaste clauses are deleted (a chaste clause being defined as a clause containing a
chaste literal, while a chaste literal is a literal for which no complementary unifiable
literal may be found anywhere within the set of clauses). The operation to delete the
chaste clauses is performed only once, at the very beginning (immediately following the
loading of the input set of clauses). In forward chaining, where the goal is not known at
the very beginning, the chaste clauses are not deleted.

Tautologies are deleted. The only tautologies preserved are those present in the input
set and having exactly two literals (one positive and the other negative). That type of

tautology is to be considered a question to be answered.
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e All duplicate or subsumed clauses are deleted.

¢ Ground literals are evaluated and deleted (if false). When a ground literal is found to
be true, then the clause can be deleted as a tautology. This option is dismantled during
SLD and LBS strategies, to avoid some unwanted side effects such as backtracking to a
shallower than expected level.

e Clauses are factorized (and all subsumed literals are deleted).

¢ Clauses are standardized, so that no two clauses share the same variable.

e Hyper-resolution is employed whenever it is possible (whenever more than one
satellite may be found).

e All clauses containing functions (shown by the nesting level of the clause stored in
field deep of the CLAUSE data structure) are forward demodulated or
paramodulated, if that is possible.

e Ifanewly generated clause (called resolvent) contains a non-negated equal predicate,
then an attempt is made to use this clause either as a demodulator (if it is an unit clause)
or as a paramodulator for backward demodulation or paramodulation.

e [fanewly generated clause is a unit clause whose single literal is grounded, then an
attempt is made to use this clause for reducing that ground literal from all previously
generated clauses. If the newly produced ground literal is located in any of the previous
clauses, then that clause is marked as DEAD (and eventually deleted), and it is replaced
by an instance of it from which the ground literal was deleted (only if the ground literal

found within the clause evaluates to FALSE).



Some remarks about the type of hyper-resolution employed are required. Most of the time, we
have either a negative or positive hyper-resolution, where a nucleus is associated with a set of
either negative or positive satellites. However, a third type of hyper-resolution is often allowed,
called mixed hyper-resolution, where within the set of satellites involved in the resolution, there
are both negative and positive unit clauses (a constraint was adopted for mixed hyper-resolution
such that the satellites should be unit clauses).

ARM includes some built-in "knowledge” such as:

EQUAL[x,x] is always TRUE,

EQUAL[x,y] is identical to EQUAL[y,x]

Once a new clause is produced, all the required checking for the clause is performed, including
factorization, elimination of evaluated ground literals, testing if the clause is not subsumed by a
previous one, and so forth. If the clause passes the whole checking procedure, then it is declared
to be valid and it is inserted in three of the four lists (DEPTH, LENGTH and one of either
SET OF SUPPORT or CONSISTENT lists); otherwise the clause is deleted and its storage de-
allocated.

ARM has an embedded "daemon" triggered whenever some meaningful events are
happening such as passing to a new depth level in the breadth-first strategy or to a new length
level in the fewest literal strategy. This daemon will start a global ground elimination and
demodulation/paramodulation process meant to promote the resolution refutation by doing some
additional simplifications to the existing clauses. For example, some of the previous
demodulators or paramodulators may have been later simplified (through reduction of ground
literals and additional demodulation or paramodulation), so that it is fully justified to re-use them

for a new backward demodulation or paramodulation process.
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The resolution refutation stops successfully when either NIL clause is generated (always
found at the head of LENGTH list) or all the questions asked in the input set have been answered.
The resolution refutation returns with a failure message when the problem was not solved and no

more resolvents may be generated.

G5. EXPERTISE MODELING
In the expertise-modeling mode of operation, ARM acts like an inference engine, trying to prove
consequents given a set of antecedents and a set of rules which define the truthfulness or
falseness of each consequent in terms of the antecedents.

Rules (also called prodrules) are defined as a set of antecedents paired with a consequent.
Each antecedent and consequent is a simple statement, consisting of leading keyword followed
by a predicate (or literal). The most general form of a prodrule supported by this inference
engine is the following:

IF literal(l) antecedent
AND literal(2)

................

AND literal(9) antecedent

THEN literal(0) consequent

WITH p certainty value of the rule (0 <p < 1)

STOP optional (stopping the inference when fired)
Any of the statements starting with AND, WITH, or STOP keywords are optional. If the WITH
statement is not in place, then the certainty value of the prodrule is assumed to be 1. If the STOP
keyword is present in the prodrule layout, then the prodrule is called a stop prodrule because it

will stop the inference engine after it fires (in forward chaining only). The prodrules of this type

(with both antecedents and consequent) are called regular prodrules. There are some other, more
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simplified forms, of prodrules, called facts. A fact is defined as a prodrule without any
antecedent, and it is identified by the keyword IS. The general form of a fact is shown below:

IS literal(0)
WITH p

Any prodrule (or fact) is transformed into clause having the following form:
literal(0) + ~literal(l) + ... + ~literal(9)

That clause is associated with the prodrule through a pointer linkage (see field clause in the
RULE data structure). Apparently, the clause linked to a prodrule is a definite clause, but this is
not a requirement. The forward chaining may succeed even without a set of definite clauses.
However, in backward chaining, which employs the LBS strategy, all the clauses associated with
prodrules should be definite clauses. This set of definite clauses will be transformed into a set of
Horn clauses, by appending the negation of the goal that is not associated with any prodrule. It is
obvious, from the above definitions, that facts are linked to unit clauses while regular prodrules
are linked to longer clauses (having at least two literals).

To prevent the stalling of the inference engine (when no prodrules can fire), default
prodrules are sometimes necessary. A default prodrule is similar to a fact, in the sense that it has
no antecedent (or, in other words, its antecedent is always true), but it will not be fired unless no
other prodrule can fire. A default prodrule is introduced by the keyword ISD, as follows:

ISD  literal(0)

WITH p

STOP
For problems to be solved in backward chaining, a goal is required. The goal is introduced by the
keyword IS? as it is shown below:

1S?  literal(0)
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The goal is transformed into a negative unit clause (the negation of the goal), and it is stored not
as a rule but only as a clause (to participate in LBS resolution but to have no part in any form of
forward chaining).

When any of the certainty values p is less than 1, we have a plausible reasoning session
requiring that all the clauses concluding on the same fact should be fired (to get the cumulative
certainty value of the inferred fact).

Rules are linked into four different lists, in accordance with their status (see status field

in the RULE data structure). A rule may be found in one, and only one, of the following four

lists:
e UNUSED some of the prodrule's antecedents are yet to be known
e CHILLED : prodrule was chilled (it is refractory or it has a false antecedent)
e HEATED all the antecedents are true and prodrule is ready to fire
e FIRED : prodrule was fired

In each of these lists (with the exception of the FIRED list), the rules are organized according to
the following principles:
e A factis placed closer to the head of the list than a regular prodrule.
e A default prodrule is always pushed at the tail of the list.
e A prodrule having a given literal among its antecedents is always placed after (closer to
the tail of the list) a prodrule having that literal in its consequent; in other words, the
prodrules concluding on some given facts are placed ahead of the prodrules using those

facts.
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® Prodrules concluding on same facts are clustered together, if that is possible (to fire them

one after the other in plausible reasoning).

¢ When all the above-mentioned guidelines are respected, a longer regular prodrule

(supposed to be more specific) is placed ahead of a shorter regular prodrule (here we
discuss regular prodrules, which do not include facts).

¢ Prodrules, having in their antecedent more recently inferred facts, are placed ahead of

prodrules with less recently inferred facts in their antecedent; the recency of a fact may

be assessed by exploring the position of the associated prodrule within the FIRED list.
The organization of the FIRED list is based on the firing order of the prodrules, therefore, the
most recently inferred facts are linked to the prodrules placed at the tail of the FIRED list.

Whenever a prodrule is fired (meaning that all its antecedents are true), the new inferred
fact, derived from its consequent, is transformed into a unit clause and checked as any other
clause. If it duplicates one of the existing unit clauses, it is deleted but not before the weight of
the existing unit clause is accordingly updated.

The computation of the certainty value of any new fact is performed when the prodrule is
heated; that is, the prodrule is moved into the HEATED list, and the propagation of this certainty
value (if more than one prodrule concluded on the same fact) is achieved when the prodrule is
actually fired; that is, the prodrule is moved into the F/RED list.

The two strategies employed by the inference engine are backward chaining and forward
chaining. Backward chaining has two alternatives: one in which the inference is stopped
immediately after the first answer is reached, and the second in which all possible answers are

delivered.
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G5.1. Backward Chaining Algorithm

L

=

Append the negation of the goal (the question asked) to the set of clauses associated with

prodrules.

Delete all chaste clauses (to simplify the inference).

Employ the LBS strategy to solve the problem (force LBS to return all possible answers if it

is a plausible reasoning session).

WHILE (LBS resolution refutation fails) DO

e Enable one of the default prodrules (the first one), by making its fact available to the
resolution refutation procedure (default prodrule is transformed into a fact).

e Ifno default prodrule is found, then return with a failure message.

If no solution was found by the LBS strategy, then return failure; otherwise, mark all clauses

leading to the proof and continue.

For all the clauses leading to the proof, mark the associated prodrules (if any) by moving

them into the CHILLED list (used here as temporary storage for useful prodrules).

Delete all the clauses not associated with prodrules; that is, all the clauses that are not part of

the input set.

WHILE (CHILLED list is not empty) DO:

e Browse the CHILLED list from head to tail and move into the HEATFED list those
prodrules having all the antecedents evaluated to be true.

e Ifitis a plausible reasoning session, search the UNUSED list for refractory prodrules
(prodrules concluding on known facts), and move them into the HEATED list (if

possible).
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e Fire all prodrules from the HEATED list; that is, move them into the FIRED list.

G5.2. Forward Chaining Algorithm
WHILE (no stop rule was fired yet) DO the following three steps:
L Browse the UNUSED list from head to tail and:
e Move into the HEATED list the prodrules having all the antecedents evaluated to be
true.
e Move into the CHILLED list all the prodrules with an antecedent evaluated to be false.
e [fitis not a plausible reasoning session, then move into the CHZILLED list all the
refractory prodrules (prodrules concluding on known facts).
II. If the HEATED list is empty, then move into the HEATED list the first default prodrule (if
any) from the UNUSED list.
II. If HEATED list is empty, the return failure; otherwise, fire the rule placed at the head of
HEATED list.
e [fitis a plausible reasoning session, then fire all additional rules concluding on the same

fact with the first one.
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APPENDIX H: CONSTANTS AND C++ CLASS TEMPLATES

H1. BUILDING ENVELOPE CONSTANTS

// Building Occupancy Types (as defined by ASHRAE 90.1/1989)

#define BT NONE 0 // Undefined

#define BT ASSEMBLY 1 // Large unpartioned spaces (hall, church)
#define BT OFFICE 2 // Office buildings, banks and alikes
#define BT RETAIL 3 // Mercantile oriented buildings

#define BT WARFEHOUSE 4 // storage facilities

#define BT SCHOOL 5 // Educational buildings

#define BT HOTEL 6 [// Hotel & motel type buildings

#define BT _RESTAURANT 7 // Restaurant, Fast Food , Cafeteria, etc
#define BT HEALTH 8 // Hospitals & other health care buildings
#define BT RESIDENTIAL 9 [/ Residential buildings excepting low rise
#define BT DWELLING 10 // Detached single or two family dwelling

// Building Height Types (as defined by the number of floors)

#define LOW _RISE 0 // 3 floors or less
#define MEDIUM LOW  (LOW_RISE + 1) // 3 < floors <= 10
#define MEDIUM HIGH (MEDIUM_LOW + 1) // 10 < floors <= 20
#define HIGH RISE (MEDIUM _HIGH + 1) // over 20 floors
// Building Size Types (as defined by the total floor area)
#define AREA SMALL 0 // 5000 ft2 or less
#define AREA 10 (AREA SMALL + 1) // 10000 ft2 < area <= 10000 ft2
#define AREA 15 (AREA_10 + 1) // 10000 ft2 < area <= 15000 ft2
#define AREA 20 (AREA_15 + 1) // 15000 ft2 < area <= 20000 £t2
#define AREA 50 (AREA 20 + 1) // 20000 ft2 < area <= 50000 ft2
#define AREA 75 (AREA_50 + 1) // 50000 £t2 < area <= 75000 ft2
#define AREA LARGE (AREA 75 + 1) // over 75000 ft2 of floor area
// Envelope System Types
#define ST NONE 0 // none
#define ST WALL 1 // wall
#define ST GLAZING 2 [/ glazing
#define ST ROOF 3 // roof
#define ST FLOOR 4 // floor
// Envelope Layer Types
#define LT _NONE // none

// interior finish

// coating (sheathing)
// roofing membrane
// wall cladding

// exterior panel

// insulation

// structural member
// glazing & others
// airspace

#define LT FINISH
#define LT COATING
#define LT MEMBRANE
#define LT CLADDING
#define LT PANEL
#define LT INSULATION
#define LT STRUCTURE
#define LT OTHER
#define LT CAVITY

VWO d WNHO

// Insulation Positions (as used by System Performance Criteria)
#define IP EXTERIOR 0
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#define IP INTEGRAL 1
#define IP_INTERIOR 2

// Layer/System PFace Position
#define INNER TRUE // inner side (closer to the indoor environ.)
#define OUTER FALSE // outer side (closer to the outer environment)

// Flow Directions
#define IN20OUT TRUE // indoor -> outdoor
#define OUT2IN FALSE // outdoor -> indoor

// Load Types
#define COOLING FALSE
##define HEATING TRUE

// Types of HVAC Systems
#define CVHC // Constant Volume Heating & Cooling System
#define CVR // Const. Volume with Terminal Reheat System
#define CVDD // Constant Volume Double Duct System
#define VAV // Variable Air Volume System
#define FPFC // Four Pipe Fan Coil System
#define WLHP // Water Loop Heat Pump System
#define RCHP // Reverse Cycle Heat Pump System

Nk W

// ASHRAE Schedule Types
#define OCCUPANCY 0 // occupancy schedule
#define LIGHTING 1 // lighting schedule
#define HVAC 2 // HVAC system schedule
#define SWH 3 // service hot water schedule

// ASHRAE Day Types
#define WEEKDAY 0
#define SATURDAY 1
#define SUNDAY 2

// Canadian Location Types (Provinces)

#define P_NONE 0 // None

#define P_ALTA 1 // Alberta

#define P_BC 2 // British Columbia
#define P _MAN 3 // Manitoba

#define P_NB 4 // New Brunswick
#define P_NFL 5 // New Foundland
#define P_NS 6 // Nova Scotia

#define P_NWT 7 // North Western Territory
#define P_ONT 8 // Ontario

#define P_QUE 9 // Quebec

#define P_PEI 10 // Prince Edward Island
#define P_SASK 11 // Saskatchewan
#define P_¥YT 12 // Yukon Territory

// Location Data
#define LD _WT25 1 // Winter temperature 2.5%
#define LD WT10 2 // Winter temperature 1.0%
#define LD SDBT25 3 // Summer dry-bulb temperature 2.5%
#define LD SWBT25 4 // Summer wet-bulb temperature 2.5%
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#define LD HDDI8 5 // Heating degree-days above 18.3 degree C

// Degree-Days & Degree-Hours Types
#define HDD18 // Degree-Days below 18 degrees
#define HDD10 // Degree-Days below 10 degrees
#define CDD18 // Degree-Days above 18 degrees
#define CDD10 // Degree-Days above 10 degrees
#define CDH27 // Degree-Hours above 27 degrees C

B W R o
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// Annual Average Daily Incident Solar Energy Types

#define VSN 0 // on NORTH facade
#define VSEW 1 // on EAST/WEST facade
#define VSS 2 // on SOUTH facade

// Facade Orientations

#define NORTH o]
#define EAST 1
#define SOUTH 2
#define WEST 3

// Miscellaneous Constants

const double dZeroTemp = -273.15; // Zero-absolute (degrees C)
const double dGravity = 9.80665; // gravity constant (m/sec2)
const double PI = 3.14159; // number PI

const double dTempError = 0.001; // error for temp. calculations

const double dAirSpaceHeight = 0.3048; // 304.8 mm (1 ft)
const double dAirFilmHeight = 0.3048; // 304.8 mm

// Physical Signature Parameter Types
typedef enum

{
SIGN_STRUCTURE, // structural signature
SIGN_MASS, // mass signature (heat capacity)
SIGN_THERMAL, // thermal resistance signature
SIGN_MOISTURE, // vapour resistance signature

} SIGNATURE;

// Matching Types for Cross-Section Analysis
typedef enum

{
MT_NONE, // No match
MT_ATIR, // Air cavity
MT_WOOD, // Wood
MT_METAL, // Metal, Steel, Aluminium, etc
MT_STONE, // Concrete, Cement, Gypsum, Masonry, Mortar
MT_OTHER, // Composite

} MATCH TYPE;



H2. C++ CLASS HIERARCHY

-51__: Crlla‘ss hierarchy iﬂ CRED

ed:Class i} Top:Class. =Description .
CObject CfcBldgMaterial CfcLayer Building Material Layer
CPrrList CfcSvstem Envelope Subsystem
CObject CfcPrototypeBldg CfcBuilding Building Envelope
CObList CfcBldgDB Building Envelope Database

(Case Library)
CObject CfcSite Building Location Descriptor
CObject CfcLayerNN CfcInputLaver Neural Network Layer
CfeQutputLayer CfeMiddleLayer

CPrrList CfeNeuralNetwork | Neural Network
CObject CfcFilter Neural Network Filter
CObject CfeMatcher Case Matcher
CObject CfcReasoningEngine Automatic Reasoning Engine

H3. BUILDING MATERIAL CLASS

CfcBldgMaterial is the encapsulation of the generic building material used for building envelope
layers.

class CfcBldgMaterial : public CObject

{
protected:
CString sMatName; // material's name
CString sPattern; // material's bitmap
double dThickness; // thickness of material (m)
double dDensity; // density (kg/m3)
double dThermalRes; // thermal resistance (r-value) (m2C/W)
double dVapourRes; // water vapour resistance (m2secPa/ng)
double dSpecificHeat;// specific heat (kJ/kgC)
double dCost; // material cost ($/m2)
double dEmIn; // inner side emisivity (0 ... 1)
double dEmOut; // outer side emisivity (0 ... 1)
public:

// Constructors/Destructor
CfcBldgMaterial (const char* pszName = NULL) ;
CfcBldgMaterial (const CfcBldgMaterial& BldgMat) ;
virtual ~CfcBldgMaterial (void) ;

// Overridables
virtual void Serialize (CArchive& ar);

// Operations
const char* GetName (void) ;
void GetName (CString& sName);



void SetName (const char* pszName) ;
void SetName (CString& sName) ;

const char* GetPattern(void) ;

void GetPattern (CString& sName) ;

void SetPattern (const char* pszName) ;
void SetPattern (CString& sName) ;

// Physical properties
double GetThickness (void) ;
void SetThickness (double dvValue) ;
double GetDensity (void) ;
void SetDensity (double dvalue) ;
double GetThermalRes (void) ;
void SetThermalRes (double dvalue) ;
double GetVapourRes (void) ;
void SetVapourRes (double dValue) ;
double GetSpecificHeat (void) ;
void SetSpecificHeat (double dvValue);
double GetHeatCapacity(void) ; // heat capacity (kJ/m2C)
double GetCost (void) ;
void SetCost (double dValue) ;
double GetEmissivity (BOOL bSide) ;
void SetEmissivity(double dvalue) ;
void SetEmissivity (double dvValue, BOOL bSide) ;

// Cloning
void Copy (const CfcBldgMaterial& BldgMat) ;

private:
CfcBldgMaterial& operator = (const CfcBldgMaterialg) ;
}:

H4. ENVELOPE LAYER CLASS

CfcLayer is derived from the building material class (i.e. CfcBldgMaterial) and encodes the
generic behavior of building envelope layer.

class CfcLayer : public CfcBldgMaterial

{

protected:
int nLayerType; // layer Etype
double dTin; // inner surface dry-bulb temperature (deg.C)
double dTout; // outer surface dry-bulb temperature (deg.C)
double dRHin; // inner surface relative humidity (0 ... 1)
double dRHout; // outer surface relative humidity (0 ... 1)
double dHeatFlow; // heat fZow In->Out (W/m2)
double dVapourFlow; // water vapour flow In->Out (ng/m2sec)
double dCondense; // concealed condensation (ng/m2sec)

public:

// Constructor/Destructor
CfcLayer (int nType, const char* pszName = NULL);



CfcLayer (int nType, const CfcBldgMaterial& BldgMat) ;
CfcLayer (const CfcLayer& Layer);
virtual ~CfcLayer (void) ;

// Overridables
virtual void Serialize (CArchive& ar);

// Operations
int GetLayerType (void) ;
void SetLayerType (int nType) ;
BOOL GetTypeName (CString& sName) ;

// Dynamic properties
double GetTemperature (BOOL bSide) ;
void SetTemperature(double dValue, BOOL bSide) ;
double GetRH (BOOL bSide) ;
void SetRH (double dvalue, BOOL bSide) ;
double GetHeatFlow(void) ;
double GetVapourFlow(void) ;
double GetDP (BOOL bside) ;
double GetCondense (void) ;
BOOL HasCondense (void) ;

// Calculations
void HeatFlow(double dHeatFlowIn) ;
BOOL VapourFlow(double dFlowIn, double dFlowOut, double& drh);
void AirCavityFlow(double dHeatFlowIn, double dTiltAngle);

// Cloning _
void Copy (const CfcLayeré& Layer);

private:
CfcLayer& operator = (const CfcLayeré&);
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HS5. ENVELOPE SUBSYSTEM CLASS

CfcSystem is an ordered list of layers (class CfcLayer) counted from inside toward outside. Class
CfcSystem is used to encode envelope subsystems such as Wall, Roof, and Glazing.

class CfcSystem : public CPtrList

{

protected:
CString sSystemName; // system name
int nSystemType; // system type

double dTiltAngle; // tilt angle with horizontal (degrees)
double dRfin, dRfout;// r-value for inside/outside air films
BOOL bSCondense; // TRUE for surface condensation

// Design environment

double dTin; // inner surface dry-bulb temperature (deg.C)
double dTout; // outer surface dry-bulb temperature (deg.C)
double dRHin; // inner surface relative humidity (0 ... 1)



double dRHout; // outer surface relative humidity (0 ... 1)

public:
// Constructor/Destructor
CfcSystem(int nType = ST_NONE, const char* pszName = NULL);
CfcSystem(const CfcSystem& System);
virtual ~CfcSystem(void) ;

// Overridables
virtual void Serialize(CArchive& ar);
virtual void RemoveaAll (void) ;

// Operations
void Init(void) ;
int GetSystemType (void) ;
void SetSystemType (int nType) ;
BOOL GetTypeName (CString& sName) ;

const char* GetName (void) ;

void GetName (CString& sName) ;
void SetName (const char* pszName) ;
void SetName (CString& sName) ;

double GetTiltAngle (void) ;

void SetTiltAngle (double dValue) ;

double GetTemperature (BOOL bSide) ;

void SetTemperature (double dvalue, BOOL bsSide);

double GetSurfaceTemperature (BOOL bSide) ;

double GetSurfaceHumidity (BOOL bSide) ;

double GetRH (BOOL bside) ;

void SetRH(double dvalue, BOOL bSide);

void SetDesignEnvironment (double dtin, double drhin,

double dtout, double drhout);

// Layer manipulation

int GetLayerIndex(int nPos, BOOL bSide);

BOOL AddLayer (CfcLayer* pLayer, BOOL bSide) ;

BOOL InsertlLayer (CfcLayer* pLayer, int nPos, BOOL bSide};

BOOL SwapLayers (int nPosl, int nPos2, BOOL bSide);

BOOL MoveLayer (int nOldPos, int nNewPos, BOOL bSide) ;

BOOL RemoveLayer (int nPos, BOOL bSide) ;

BOOL Removelayer (CfcLayer* pLayer, BOOL bDelete = TRUE);

CfcLayer* GetLayerByPosition(int nPos, BOOL bSide);

CfcLayer* GetLayerByType (int nType, BOOL bSide) ;

// Overall physical properties
double GetAirFilmResistance (BOOL bSide) ;
double GetAirFilmResistance (double dThermalRes, BOOL bSide);
double GetThickness (void);
double GetThermalRes (BOOL bAirFilms = TRUE);
double GetVapourRes (void) ;
double GetVapourRes (int nStartIndex, int nEndIndex);
double GetRequiredVapourRes (void) ;
double GetHeatCapacity (void) ;
double GetCost (void) ;
double GetEmissivity (BOOL bSide) ;



// Dynamic properties
double GetHeatFlow(void) ;
double GetVapourFlow(void) ;
double GetConcealedCond (void) ;
BOOL HasConcealedCond (void) ;
BOOL HasSurfaceCond (void) ;
BOOL HasCondense (void) ;

// Flow Calculations
void HeatFlow(void) ;
void VapourFlow(void) ;
void Flow(void) ;

// Matching functions
CSize GetSignature (SIGNATURE nType);
MATCH TYPE GetMatchingType (int nLayerType) ;
BOOL HasCavity (void) ;

// Cloning
void Copy (const CfcSystem& System) ;
void Transform(CfcSystem& System) ;

protected:
int CheckVapourFlow(double dFlow, int nStartIndex, int nEndIndex);

private:
CfcSystem& operator = (const CfcSystemé&) ;
H6. ASHRAE PROTOTYPE BUILDING CLASS

class CfcPrototypeBldg : public CObject

{
protected:
int nBuildingType; // building type (BT_..)
double dFloorArea; // total floor area (m2)
double DD[5]; // degree-days & degree hours
double VvS[3]; // annual avg. daily solar energy on facade
double DR; // average temperature range for warmest month
public:

// Constructors/Destructor
CfcPrototypeBldg (int nType = BT _NONE, double dTotalArea = 0.0);
CfcPrototypeBldg (const CfcPrototypeBldg& Building):;
virtual ~CfcPrototypeBldg (void) ;

// Overridables
virtual void Serialize (CArchive& ar);

// Operations
virtual void Init (void);
int GetBuildingType (void} ;
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void SetBuildingType (int nType) ;

double GetFloorArea (void) ;

void SetFloorArea(double dValue);

void GetClimaticEnvironment (double dd[5], double vs[3], double& dr);
void SetClimaticEnvironment (double dd[5], double vs[3], double dr);
void SetClimaticData (CfcSite& Site) ;

// ASHRAE System Performace Criteria
static double GetDefaultAspectRatio (BOOL bPrototype) ;
static double GetDefaultHC (void) ;
double GetWallArea (double dAspectRatio = (double)d);
double GetWindowToWallRatio (double dIntermalLoads = (double)0);
double GetShadingCoeff (void) ;
double GetInternalLoads (void) ;
double GetUvalue (int nSystemType) ;

// Building Loads
double GetHeatingLoad (double dw2WR, double dAspectRatio,
double dUwall, double dUglazing, double dHCin,
double dShaddingCoeff, double dProjFactor,
double dInternmalLoads,
int nInsulationPosition = IP_INTEGRAL) ;
double GetCoolingLoad (double dw2WR, double dAspectRatio,
double duwall, double dUglazing, double dHCin,
double dShaddingCoeff, double dProjFactor,
double dInternalLoads,
int nInsulationPosition = IP_INTEGRAL) ;
double GetBuildingLoad (double dW2WR, double dAspectRatio,
double dowall, double dUglazing,
double dHCin,double dShaddingCoeff,
double dProjFactor, double dIntermalLoads,
int nInsulationPosition = IP_INTEGRAL);
// System Performance Criteria
double GetCriteria(BOOL bCriteria,
int nInsulationPosition = IP_INTEGRAL) ;
double GetCoolingCriteria(int nInsulationPosition = IP_INTEGRAL);
double GetHeatingCriteria(int nInsulationPosition = IP_INTEGRAL);
double GetPrototypeLoad(int nInsulationPosition = IP_INTEGRAL);
BOOL SystemPerformanceCriteria(double dWw2wWR, double dAspectRatio,
double dowall, double dUglazing,
double dHC, double dShaddingCoeff,
double dProjFactor,
double dInternalLoads,
int nInsulationPosition) ;
// Cloning Operations
void Copy(const CfcPrototypeBldgs& Building) ;

private:
CfcPrototypeBldg& operator = (const CfcPrototypeBldg&) ;

}:
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H7. BUILDING ENVELOPE CLASS

class CfcBuilding : public CfcPrototypeBldg

{
protected:
CString sBldgName; // building name
CfcSystem Roof; // ROOF System
CfcSystem Wall; // WALL System
CfcSystem Glazing; // GLAZING System
int nBldgFloors; // number of floors
double dBl1dgW2WR; // Window-to-Wall ratio
double dBldgAR; // aspect ratio
double dB1ldgSC; // Shadding coefficient
double dB1dgPF; // Projection factor
double dB1ldgIL; // Internal loads
// Design environment
double dTin; // inner surface dry-bulb temperature (deg.C)
double dTout; // outer surface dry-bulb temperature (deg.C)
double dRHin:; // inner surface relative humidity (0 ... 1)
double dRHout; // outer surface relative humidity (0 ... 1)
double dMatchScore; // Matching score
public:

// Constructors/Destructor
CfcBuilding(int nType = BT _NONE, double dTotalFloorArea = (double) O,
int nFloors = 0, const char* pszName = NULL);
CcfcBuilding (const CfcBuilding& Building) ;
virtual ~CfcBuilding (void) ;

// Overridables
virtual void Serialize (CArchive& ar):;

// Operations
int GetHeightType (void) ;
int GetSizeType (void):;
BOOL IsEmpty (void) ;

virtual void Init(void) ;

CfcSystem* GetRoof (void;

CfcSystem* GetWall (void) ;

CfcSystem* GetGlazing(void) ;

static const char* GetTypeName (void) ;

const char* GetName (void) ;

void GetName (CString& sName) ;

void SetName (const char* pszName) ;
void SetName (CString& sName) ;

int GetNumFloors (void) ;
void SetNumFloors (int nFloors);
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double GetW2WR (void) ;

void SetW2WR (double dValue) ;
double GetAR(void) ;

void SetAR(double dvalue) ;
double GetSC(void) ;

void SetSC(double dvalue) ;
double GetPF(void);

void SetPF(double dvalue) ;
double GetIL(void) ;

void SetIL (double dValue) ;

double GetTemperature (BOOL bSide) ;
void SetTemperature (double dValue, BOOL bSide) ;
double GetRH(BOOL bSide) ;
void SetRH(double dValue, BOOL bSide) ;
void SetDesignEnvironment (double dtin, double drhin,
double dtout, double drhout);
void SetClimaticData (CfcSite& Site, BOOL bSetDefault = FALSE);

// Flow Calculations
void Flow(void) ;
BOOL HasRoofCondense (void) ;
BOOL HasWallCondense (void) ;
BOOL HasCondense (void) ;

// ASHRAE Criteria
BOOL CheckRoof (void) ;
BOOL CheckWall (int nInsulationPosition = IP_INTEGRAL) ;
BOOL CheckCriteria(int nInsulationPosition = IP_INTEGRAL);
BOOL CheckBuilding(BOOL bFull) ;
double GetLoadType (BOOL bCriteria,

int nInsulationPos = IP_INTEGRAL);

double GetLoad(int nInsulationPos = IP_INTEGRAL) ;

// Matching Operations
double GetMatchScore (void) ;
void SetMatchScore (double dScore) ;

// Cloning Operations
void Copy(const CfcBuilding& Building) ;
void Transform(CfcBuilding& Building) ;

private:
CfcBuilding& operator =(const CfcBuilding&);

}:

H8. BUILDING ENVELOPE CASE LIBRARY (DATABASE)

class CfcBldgDB : public CObList

{

protected:
CString sDBFile; // full path to the storage file
int nSelIndex; // index of selected building
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public:
// Constructor/Destructor
CfcBldgDB (void) ;
CfcBldgDB (const CfcBldgDB& BldgList);
virtual ~CfcBldgDB(void) ;

// Overridables
virtual void Removeldll (void) ;
virtual void Serialize (CArchive& ar);

// Operations
const char* GetDBFile(void) ;
void GetDBFile (CString& sName) ;
void SetDBFile (const char* pszName) ;
void SetDBFile (CString& sName) ;
int GetSelIndex(void) ;
void SetSelIndex(int nIndex);

int GetIndex(CfcBuilding* pBldg = NULL);
// Load/Save operations

BOOL LoadDB (const char* pDBFile = NULL);

BOOL SaveDB (const char* pDBFile = NULL);

// Operations
CfcBuilding* GetBuilding(int nPos = -1);
BOOL AddBuilding(CfcBuilding* pBldg = NULL, BOOL bTail = TRUE);
BOOL AddBuilding(const CfcBuilding& Building);
BOOL InsertBuilding(CfcBuilding* pBldg, int nPos);
BOOL RemoveBuilding(int nPos) ;
BOOL RemoveBuilding (CfcBuilding* pBldg);

// Matching Operations
BOOL Sort (BOOL bAscending = FALSE);
void SetupBldgName (void) ;

// Cloning Operations
void Copy(const CfcBldgDB& BldgList);

protected:
BOOL Order (POSITION nPosl, POSITION nPos2);

private:
CfcBldgDB& operator = (const CfcBldgDB&) ;

}:

H9. BUILDING SITE (LOCATION) CLASS

class CfcSite : public CObject

public:
// Location
int nProvince; // province code
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CString sProvince; // name of selected province
int nCity; // city index within province list
CString sCity; // name of the location

// Temperatures (degrees C)

double dTin; // design indoor temperature
double dTout; // design outdoor temperature
double dWT25; // winter temperature 2.5%
double dWT10; // winter temperature 1.0%
double dSDBT25; // summer dry-bulb temperature 2.5%
double dSWBT25; // summer wet-bulb temperature 2.5%

// Relative humdities (%)
double dRHin; // design indoor relative humidity
double dRHout; // design outdoor relative humidity

// ASHRAE-related data
double 4dHDD18; // heating degree-days below 18.3 deg.C
double dBDD10; // heating degree-days below 10 deg.C
double dCDD18; // cooling degree-days above 18.3 deg.C
double dCDD10; // cooling degree-days above 10 deg.C
double dCDH27; // cooling degree-hours below 26.67 deg.C
double dVSN; // avg. daily solar energy on North facade
double dVSEW; // avg. daily solar energy on East & West
double dVSS; // avg. daily solar energy on South facade
double dDR; // avg. daily range for the warmest month

public:

Cfcsite(void) ;
CfcSite(const CfcSite& Site) ;
virtual ~CfcSite (void) ;

// General overrides
virtual void Serialize (CArchive& ar);

// Operators
const CfcSite& operator= (const CfcSite& Site);

// Helper functions
static const char* GetProvinceName (int nProvinceCode);
static CStringList* GetProvinceList (int nProvinceCode);
static BOOL GetLocationData (int nProvinceCode,
const char* pszCityName,
int nDataType, double& dData) ;
// Operations
const char* GetProvince (void) ;
const char* GetCity(void);
void SetProvince (int nProvinceCode) ;
void SetCity(int nCityIndex) ;
void SetCity(const char* pszCityName) ;
void SetlLocation(int nProvinceCode, int nCityIndex);
void SetlLocation (int nProvinceCode, const char* pszCityName) ;
CStringList* GetLocationList (void);
void CheckLocationData (void) ;
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protected:
void Init(BOOL bFull = FALSE);
void UpdateLocationData (void);

}:

H10. ARTIFICIAL NEURAL NETWORK CLASSES

// Artificial Neural Network Layer Types
typedef enum

{
NN_NONE, // unknown type
NN _INPUT, // input layer
NN_MIDDLE, // middle layer
NN_OUTPUT // output layer

} NN_LAYERTYPE;

class CfcLayerNN : public CObject

{

protected:
int nLayerType; // layer type
int nNumInputs; // number of inputs for this layer
int nCells; // number of outputs for this layer
double* pCells; // Array of outputs for this layer
CfcLayerNN* pInLayer; // input layer (if any)

public:
CfcLayerNN(int nInputs = 0, int nOutputs = 0);
virtual ~CfcLayerNN(void) ;

// Overridables
virtual void Serialize(CArchive& ar);

// Operations
int GetLayerType (void);
BOOL IsValid(void) ;
void SetInputLayer (CfcLayerNN* pLayer) ;
int GetlLayerSize (void);
double GetCellValue (int nIndex);
virtual void Init(void) ;

// Functional methods
virtual BOOL CalculateOutput (void) = 0;

// Tracing functions
void TraceOutputs (void) ;
virtual void TraceCell (int nIndex) ;

protected:
virtual BOOL SetuplLayer (int nInputs, int nOutputs);
virtual void Cleanup (void);
friend class CfcNeuralNetwork;
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private:
CfcLayerNN (const CfcLayerNN&) ;
CfcLayerNN& operator =(const CfcLayerNN&) ;

}i

class CfcInputLayer : public CfcLayerNN

{

protected:
double dNoiseFactor; // noise factor
double* pInputVector; // origimal inputs

public:
CfcInputlLayer (int nInputs = 0, int nOutputs = 0);
virtual ~CfcInputLayer (void) ;

// Operations
void SetNoiseFactor (double dvalue) ;
virtual void Init(void) ;

// Functional methods
virtual BOOL CalculateOutput (void) ;

protected:
virtual BOOL SetupLayer(int nInputs, int nOutputs);
virtual void Cleanup (void) ;
friend class CfcNeuralNetwork;

private:
CfcInputLayer (const CfcInputLayer&) ;
CfcInputlayer& operator ={(const CfcInputLayer&);

}:

class CfcOutputLayer : public CfcLayerNN

{

protected:
double* pWeights; // layer's weights
double* pOutputVector; // expected output to a given input
double* pOutputErrors; // array of errors at output
double* pBackErrors; // array of errors back-propagated
double* pCumDeltas; // for momentum calculations
double* pPastDeltas; // for momentum calculations

public:

CfcOutputLayer (int nInputs = 0, int nOutputs = 0);
virtual ~CfcOutputLayer (void) ;

// Overridables

virtual void Serialize(CArchive& ar);
// Operations

virtual void Init(void);

// Functional methods
virtual BOOL CalculateOutput (void) ;
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virtual BOOL CalculateError (double& dError):

BOOL RandomizeWeights (void) ;

BOOL CaseUpdating(const double dBeta, const double dAlpha,
BOOL bUpdateWeights) ;

BOOL EpochUpdating (BOOL bUpdateWeights) ;

// Tracing functions
void TraceWeights (int nIndex) ;
void TraceErrors (void) ;
virtual void TraceCell (int nIndex) ;

protected:
virtual BOOL SetupLayer(int nInputs, int nOutputs);
virtual veoid Cleanup (void) ;
friend class CfcNeuralNetwork;

private:
CfcOutputlLayer (const CfcOQutputLayer&) ;
CfcOutputLayer& operator = (const CfcOutputLayeré&) ;

}:

class CfcMiddleLayer : public CfcOutputLayer

{

public:
CfcMiddleLayer (int nInputs = 0, int nOutputs = 0);
virtual ~CfcMiddleLayer (void) ;

private:
CfcMiddleLayer (const CfcMiddleLayeré&) ;
CfcMiddleLayer& operator = (const CfcMiddleLayeré&) ;

}:
class CfcNeuralNetwork : public CPtrList
{
protected-

BOOL bEnabled; // TRUE when network is operational
public:

CString sNetworkFile; // Storage file for this neural network
public:

CfcNeuralNetwork (void) ;
CfcNeuralNetwork (const CfcNeuralNetwork& srcNeuralNet) ;
virtual ~CfcNeuralNetwork (void) ;

// Overridables
virtual void Serialize(CArchive& ar);
virtual void Removeldll (void) ;

// Operations
BOOL IsEnabled (void);
const char* GetNetworkFile (void) ;
void GetNetworkFile (CString& sFileName) ;
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void SetNetworkFile(const char* pszFileName) ;
void SetNetworkFile (CString& sFileName) ;

void Init(void);

void Copy (const CfcNeuralNetworké& srcNeuralNet) ;

// Layers manipulation
CfcLayerNN* Getlayer (int nIndex);
CfcInputLayer* GetInputLayer (void);
CfcOutputLayer* GetOutputLayer (void) ;
BOOL AddLayer (int nOutputs = 0);
int GetInputSize (void);
int GetOutputSize (void) ;
void SetNoiseFactor (double dValue) ;
void SetInputVector (double* pInputVector);
void SetOutputVector (double* pOutputVector);

// I/0 method
BOOL SaveToFile(const char* pFileName = NULL) ;
BOOIL LoadFromFile(const char* pFileName = NULL);
BOOL MemoryTransfer (CMemFile& MemFile, BOOL bLoad);

// Functional methods
BOOL TrainingPath(double* pInput, double* poOutput, double& dError);
BOOL TestingPs.ch(double* pInput, double* pOutput) ;
BOOL ForwardProp (void) ;
BOOL BackwardProp(double& dError);
BOOL RandomizeWeights (void) ;
BOOL CaseUpdating(const double dBeta, const double dAlpha,
BOOL bUpdateWeights) ;
BOOL EpochUpdating (BOOL bUpdateWeights) ;

// Tracing functions
void GetInfo (CString& sInfo, BOOL bFull = FALSE);
void OnTraceNetwork (BOOL bFull = FALSE);
void OnTraceData (void) ;

protected:
BOOIL CheckNetwork (void) ;

private:
CfcNeuralNetwork& operator =(const CfcNeuralNetworké&);:
}:

H11. NEURAL NETWORK FILTER CLASS

class CfcFilter : public CObject

{

protected:
CfcNeuralNetwork NeuralNet;// neural network filter
CString sFilterFile; // storage file
CString sTrainInFile; // input set file for training
CString sTrainOutFile; // output vectors file for training
CString sTestInFile; // input set file for testing



CString sTestOutFile; // output vectors file for testing
public:
int nFilterCount; // maximum count of selected buildings

// Building parameters: Type, Height, Size, W2W Ratio, AR
BOOL bBldgParams[5] ;

// Wall & Roof Signatures
BOOL bWallParams([8];
BOOL bRoofParams [8] ;

// Training parameters

double dBeta; // learning rate

double dAlpha; // momentum

double dNF; // noise factor

double dThresholdError; // threshold error (to stop training)

int nMaxCycle; // maximum number of training cycle

BOOL bRandomize; // TRUE to randomize the weights

BOOL bCaseUpdating; // TRUE/FALSE for case/epoch updating
public:

CfcFilter(void) ;
CfcFilter (const CfcFilter& srcFilter);
virtual ~CfcFilter(void) ;

// General overrides
virtual void Serialize(CArchive& ar):;
const CfcFilter& operator =(const CfcFilter& srcFilter);

// Filtering operations
BOOL IsEnabled(void) {return (NeuralNet.IsEnabled()):}
void DoPrepareTraining(CfcSite& Site, CfcBldgDB& BldgList);
void DoPrepareTesting (CfcSite& Site, CfcBldgDB& BldgList);
BOOL DoTrain(void) ;
BOOL DoTest (CfcBuilding* pBuilding, CfcSite& Site,

CfcBldgDB& BldgListIn, CfcBldgDB& BldgListOut);

// Load/Save operations
void Init (void):;
BOOL Load(const char* pszFileName = NULL) ;
BOOL Save(const char* pszFileName = NULL) ;

// Editing Neural Network filter
void OnClearNN(void) ;
void OnInitNN (void) ;
void OnAddLayerNN (int nCells;
void OnGetInfoNN (CString& sInfo, BOOL bFull = FALSE);
void OnCopyNN(const CfcFilter& srcFilter);

protected:
void SetupFiles(void) ;
int DoPrepareInVector (CfcBuilding* pBldg, double* dVector):;
int DoPrepareQutVector (CfcBuilding* pBldg, double* dVector);
void Copy (const CfcFilter& srcFilter);

}
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H12. CASE MATCHER CLASS

class CfcMatcher : public CObject

{

protected:
CString sWeightsFile; // storage file

public:

// Building matching (Type, Floors, Floor Area, W2W Ratio, AR)

double dBuildingWeights[5];

// Layer type matching
double dGlazingWeights[10] ;
double dwallWeights[10];
double dRoofWeights[10];

// Building material type matching
double dGlazingWeightsEx[10] ;
double dwWallWeightsEx[10];
double dRoofWeightsEx[10] ;

public:
CfcMatcher (void) ;
CfcMatcher (const CfcMatcher& srcMatcher);
virtual ~CfcMatcher (void) ;

// General overrides
virtual void Serialize (CArchive& ar);
const CfcMatcher& operator = (const CfcMatcher& srcMatcher);

// Matching operations
BOOL DoMatch(CfcBuilding* pRefBldg, CfcBldgDB& BldgList};

double GetMatchingScore (CfcBuilding* pBldgl, CfcBuilding* pBldg2):;
double GetMatchingScore (CfcSystem* pSysteml, CfcSystem* pSystem2);

// Load/Save operations
void Init(void);
BOOL Load(const char* pszFileName
BOOL Save (const char* pszFileName

NULL) ;
NULL) ;

protected:
void Copy(const CfcMatcher& srcMatcher);
}:

H13. AUTOMATIC REASONING MODULE (ARM) CONSTANTS

// Options flags

#define E_CGROUND 0x01 // reduce clause ground
#define E_GROUND 0x02 [/ reduce global ground
#define E_DEMOD 0x04 // demodulation

#define E_PARAMOD 0x08 [/ paramodulation
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#define E _HYPER 0x10 // hyper-resolution
#define E_HRLTD 0x20 [/ constrained hyper-resoclution

// Features of clauses & literals

#define CL_NONE 0x00

#define CL_EQUAL 0x01 // equal predicate within clause

#define CL_NON_EQUAL 0x02 // negated equal predicate within clause

#define CL_GROUND 0x04 // literals are grounded

#define CIL_FGROUND 0x08 // literals are fully grounded

#define CL_DEAD 0x10 // clause is useless

#define CL_USED 0x20 // clause was used to answer a question

#define CL_CHASTE 0x40 // chaste clause flag (chaste literal)
// Features of rules

#define R_DEFAULT 0x01 [// default rule

#define R_STOP 0x02 [/ stop rule (if fired, inference stops)

#define R_LINK 0x04 // inferenced fact is linked to more than

// one prodrule consegquent
// Execution mode

#define EXPERTISE MODELLING FALSE // Expertise modelling
(expert system)
#define RESOLUTION_ REFUTATION TRUE // Resolution refutation

// Size Constants
#define MAX ARGS 5 // max. number of arguments within literals
f#fdefine MAX LITERALS 10 // max. number of literals within clauses
#define MAX CLAUSES 1000 // maximum preset number of clauses
#define MAX LISTS 4 // number of lists for clauses
#define MAX STATUS 4 // number of status alternatives

// Global typedefs for ARE
typedef enum

{ // CLAUSE source
CS_NONE = 0, // clause of unknown origin
CS_PREMISSE = 1, // premisse <= input set
CS_QUESTION = 2, // question to be answered (input set)
CS_GOAL = 3, // goal <= input set
CS_INSTANCE = 4, // specialization
CS_RESOLVENT = 5, // resolution
CS_HYPER RESOLVENT= 6, // hyper-resolution
CS_ANSWER = 7, // answer to question
CS_DEMODULANT = 8, // demodulation
CS_PARAMODULANT = g, // paramodulation
CS_FACT = 10, // produced through inference

} CLAUSE_SOURCE;

typedef enum

{ // CLAUSE type
CT_MIXED 0, // mixed clause
CT_POSITIVE = 1, // positive clause
CT_NEGATIVE = 2, // negative clause

} CLAUSE_TYPE;

typedef enum
{ // SET-of-SUPPORT employed



S0S_NONE = o,
SOS_WEIGHT SUP = 1, // clause hierarchy based on weight
SOS_GOAL_SUP = 2, // support is derived from the goal
S0S_POS_SUP = 3, // support provided by pos. clauses
SOS_NEG_SUP = 4, // support provided by neg. clauses
} SET_OF SUPPORT;
typedef enum
{ // Types of lists for packing clauses
PL_DEPTH = 0, // identifies depth-oriented list
PL_LENGTH = 1, // identifies length-oriented list
PL_SET OF_SUPPORT = 2, // identifies set-of-support list
PL CONSISTENT 3, // list of clauses not in set-of-support
} PACK_LIST;
typedef enum
{ // TERM type
TT_NONE = 0, // unknown type
TT_CONSTANT = 1, // constant
TT_VARTABLE = 2, // variable
TT_FUNCTION = 3, // function
TT _PREDICATE 4, // predicate
} TERM TYPE;
typedef enum
{ // RULE status
RS _UNUSED = o0, // not yet browsed
RS _CHILLED = 1, // READY/CHILLED in BACK/FWD chaining
RS_HEATED = 2, // ready to be fired
RS_FIRED = 3, // rule was fired
} RULE_STATUS;
typedef enum
{
FWD_CHAINING, // Forward Chaining
BACK_CHAINING, // Backward Chaining
} EM_STRATEGY;
typedef enum
{
UNIT_ RESOLUTION, // Unit Resolution
FEWEST LITERALS, // Fewest Literals Preference
BREADTH FIRST, // Depth Saturation
LBS, // Linear Back-Chaining with Selector on
// Assertions
SLD, // Linear Resolution with Selector on Definite
//Clauses
} RR_STRATEGY;
typedef struct SYMBOL
{
TERM_TYPE nType; // symbol's type
char* pszName; // symbol's name
struct SYMBOL* pPrev; // previous link
struct SYMBOL* pNext; // next link



} symBoOL;
typedef struct TERM
{
TERM _TYPE nType;
UINT nFeature;
SYMBOL* pSymbol;
UINT nArg;
struct TERM* pArgs[MAX ARGS];
} TERM;

typedef struct SUBSTITUTION

TERM* pTermIn;
TERM* pTermOut;
struct SUBSTITUTION* pPrev;
struct SUBSTITUTION* pNext;

} SUBSTITUTION;

typedef struct CLAUSE

{

CLAUSE _SOURCE nOrigin;
CLAUSE _TYPE nType;

UINT nFeature;

UINT nID;

UINT pID[MAX LITERALS + 1];
UINT nDepth;

UINT nDeep;

UINT nLength;

UINT nCnum;

UINT nCindex;

float fWeight;

BOOL bUsed;

BOOL bSign [MAX__LITERALS] ;
TERM* pLiteral [MAX LITERALS] ;
SUBSTITUTION* pSub;

// term's type

// additional features for the term
// term's symbol

// no. of arguments for complex terms
// argument list for complex terms

// term to be introduced
// term to be replaced
// previous link

// next link

// clause origin

// clause type

// features for the clause

// clause id (generation index)

// id for clause's parents

// depth level of the clause

// maximum depth of clause's terms
// number of literals within clause
// number of remaining consorts

// current consort index

// weight/certainty factor

// TRUE if clause part of proof tree
// list of literals signs

// list of literals within clause
// substitutions (if any)

struct CLAUSE* pPrev[MAX LISTS]:; // previous link in clauses list
struct CLAUSE* pNext [MAX LISTS]; // next link in clauses list
} crausk;

typedef struct RULE

RULE_STATUS nStatus;
UINT nFeature;
CLAUSE* pClause;
CLAUSE* pFact;

UINT nID;

float fRuleProb;
float fFactProb;

// rule's status

// rule's features

// Horn clauses in the rule

// new fact produced by "firing"

// ID number (generation order)

// probability (certainty) of the rule
// contribution to fact's probability

struct RULE* pPrev[MAX STATUS]; // previous link in rules lists
struct RULE* pNext [MAX STATUS]; // next link in rules lists
} RULE;
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H14. AUTOMATIC REASONING MODULE (ARM) CLASSES

class CfcReasoningEngine :
{
public:
BOOL bExecutionMode;
UINT nStrateqgy;
UINT nSupport;
UINT nOptions;

CLAUSE ClauseList;
RULE RuleList;

protected:
BOOL bReasoningMode;
SYMBOL ConstList;
SYMBOL VarList;
SYMBOL FuncList;
SYMBOL PredList;
int nResolventCount;

public:

public CObject

/’/
/7’
V4
/7

V4
//

/7
4
/7
4
/’/
//

CfcReasoningEngine (void) ;
virtual ~CfcReasoningEngine (void) ;

// Overridables

Expertise Modelling/Resolution Refutation
Strategy type

Set-of-support

Options flags

Clauses list
Rules list

Plausible Reasoning: certainty factor < 1
Constants list

Variables list

Functions list

Predicates list

number of generated resolvents

virtual void Serialize (CArchive& ar);

// Operations

CLAUSE* GetFacts (BOOL ball);

// Expertise Modelling Strategies

BOOL ForwardChaining(void) ;

BOOL BackwardChaining (BOOL bAllAnswers); [/ Uses LBS

// Resolution Refutation Strategies
BOOL BreadthFirst (UINT nSetSupport) ;
BOOL FewestLiterals (UINT nSetSupport) ;
BOOL WeightingStrategy (void);

BOOL UnitResolution(void) ;
BOOL OnePassUnitResolution (void) ;
BOOL ModifiedUnitResolution(void) ;
BOOL SetOfSupportResolution (void) ;
BOOL StrategyLBS (BOOLEAN bAllAnswers) ;

BOOL StrategySLD (void) ;
protected:
void Init (void);

void Cleanup (void) ;

pbrivate:

CfcReasoningEngine (const CfcReasoningEngineg) ;
CfcReasoningEngine& operator =(const CfcReasoningEngine&);

}:



APPENDIX J: SAMPLE TRACE OF CRED EXECUTION STEPS

J1. CASE LIBRARY

Libsary of Building

Office #0308
Cffice #0303
Office #0402
Office #0403
Office #0405
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J3. ANN-BASED FILTER SETUP
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JS. DESIGN CASE
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eS| Office #0509 [score. 0. 2245?3]
Office #0503 [score: 0.23823)
4 Office #0505 (score: 0.23823)
Off' ice #0508 [score. 0.23823)

Uffce #0302 (score: 0.238881]
Office #0303 (score: 0.239881)]

4 Office #0305 (score: 0.239881)
] Office #0306 (score: 0.239881)
Office #0502 {score: 0.233881)
Office #0403 (score: 0.240159)

3 Office #0611 (score: 0.240325)
Office #0308 (score: 0.245738]
Office #0403 {score: 0.2457398)
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J7. FULL MATCHING

Selected Buildings (20}
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Office #0408 (score: 5.25]
Office #0503 (score: 5.17308)
Office #0906 (score: 5.06818)
Office #0303 [score: 5.04787)
Office #0306 (score: 5.04787)
Office #0403 (score: 5.04245)
Office #0405 (score: 4.75]
Office #0308 (score: 4.75]
QOffice #0308 (score: 4.25)
Office #0805 (score: 4.17308)
Office #0508 {score: 4.17308)
Office #0302 [score: 4.04787)
Office #0305 (score: 4.04787)
Office #0502 (score: 4.04787)
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J9. RECOMMENDED ENVELOPE
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GLOSSARY OF TERMS AND ABBREVIATIONS

Access

Activation Function

Adaptation

Adapted Case

Adjacency Validation

Al

Anchor Layer

ANN

ARM

Aspect Ratio

ASHRAE

Automated Reasoning

Back Propagation

D ————————————————————EEE——— )

A step in the CBR flow when the available case library is
browsed for best-matching cases.

Mathematical relationship defining how the input flow is
passed through an ANN node (or cell).

CBR phase during which the retrieved cased is modified to
meet the input requirements. Also known as
Transformation or Mapping.

Outcome of the Adaptation (or Transformation) phase. It is
a case that preserves the characteristics and usefulness of
the retrieved library case while conforming to most (if not
all) design requirements. Also known as “modified” case.

Mechanism to validate a new building envelope by
matching adjacent layers within the cross-section.

Artificial Intelligence (computer science field concerned
with solving problems through means that attempt to
simulate human thinking).

Wall/Roof layer having the most impact on the physical
signature associated with a given parameter.

Artificial Neural Networks (a computerized model for
neural connectivity found in the human brain).

Automated Reasoning Module. The rule-based engine of
CRED.

The ratio of building width over the building depth.
American Society of Heating, Refrigerating, and Air-
Conditioning Engineers.

Process of generating a reasoning outcome by eliciting new
facts through firing rules based on a predefined control

strategy.

ANN learning method (Rumelhart et at, 1986) that
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Base Case

BESA

Best-Match Case

Breadth-First Search

Building Class

Building Vector

Building Type

Building Height Type

Building Size Type

CAD

CBR

Case

Case Library
(Memory)

computes an error at each layer of a feed-forward network
and propagates this error backwards to determine
appropriate immprovements to the weights.

Library case selected for adaptation. It also known as
“source” case. If selection is based on matching, then the
base case is usually the best-match case.

Building Energy Systems Analysis (Software program)

Library case deemed to be the closest match for a given set
of input requirements.

Search strategy that examines all the rules or objects on the
same level of the hierarchy before examining any rules or
objects on the next lower level.

A set of buildings sharing the same building vector.

The set of building attributes (such as building type, height,
size, aspect ratio, and window-to-wall ratio) identified as
primary features for a building-envelope case.

ASHRAE-based building classification according to the
preferred occupancy type.

Building classification according to the number of floors.

ASHARE-based building classification according to the
total floor area (i.e. ranges used for selecting the HVAC
system).

Computer-Aided Design

Case-Based Reasoning (Al paradigm where old situations,
called cases, are recalled to find solutions to new problems)

A contextualized piece of knowledge embedding a domain
specific lesson about how to achieve a given goal. It
usually denotes a specific problem situation including its
interpretation, solution, and possible annotations.

Collection of cases related to a given domain (such as
building-envelope design).
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CcDD
CDH

Class Signature

Clause
CMHC
COM

Comparison Function

Compliance Checking

Cooling Criteria

CRED

DB

Demodulation

Depth-First Search

Design Case

Cooling Degree-Days
Cooling Degree-Hours

The average physical signature for the set of buildings
sharing the same building vector.

Disjunction of literals
Canada Mortgage and Housing Corporation

Component Object Model evolved from OLE paradigm
(Microsoft architecture for distributing computing where
components expose binary interfaces for dynamic binding
at run-time).

Function used to assess the degree of similarity between
two entities (i.e. cases). See as well Evaluation Function.

Set of methods used to verify if a given envelope case
complies with the design requirements as recommended by
the ASHRAE Standards and by local construction lows.

System Performance equation for testing if the average
cooling load of a given building is below the recommended
value (i.e. building prototype load) for the location.

Case Reasoner for Envelope Design

Database (Collection of data records structured according
to a predefined model and organized in an orderly fashion).

Automated reasoning technique used in resolution
refutation to resolve clauses and to demodulate from one
clause into another clause. It can be found as either
backward or forward demodulation.

Search strategy in which rules or objects on the highest
level of a search branch are examined prior to moving to
the next search branch (immediately below the rule or
object currently examined).

Incomplete case initially assembled based on design
requirements and further refined to define the Target Case.
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Design Context

Design Signature

Design Vector

Digitized Feature

DOE-2

DR

Envelope Component
(Subsystem)
Envelope Layer

Epoch Updating

Euclidean Distance

Evaluation Function

Exemplar (Case)

Updating

Experiential
Knowledge

The set of design requirements including building location,
building type, and building geometry.

The physical signature associated with the design case. It is
actually the class signature corresponding to the design
vector.

The building vector associated with the Design Case.

Case feature having a numerical value that is encoded as an
enumeration (that is, as belonging to a one group from a
limited set of possible value groups).

Building energy performance simulation software created
by the U.S. Department of Energy and used by ASHARE to
infer the System Performance Criteria.

Daily range average for temperatures of warmest month.

One of the major parts of the building envelope such as
Wall, Roof, or Glazing.

Building material component to be found in the cross-
section of a building-envelope subsystem.

ANN training method that updates the cell weights only
after all the data samples in the training set are examined
once by the network.

Method to assess the degree of similarity of two patterns
based on the geometric distance between the individual
features exhibited by those patterns.

Function used to assess the total matching distance between
the target case and a library case. It is a refined version of
the Comparison Function.

ANN training method that updates the cell weights each
time a data sample from the training set is examined by the
network.

Knowledge gained from hands-on experience, usually
known as surface knowledge (in contrast to the deep
knowledge of formal principal and theories).
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Filtering

HDD

Heating Criteria

Heuristic Rule

HVAC System

Inconsistency

Index

Indexing

Inference

Input Set

KB

KBES

Knowledge Acquisition

Knowledge
Representation
Learning

Processes of narrowing down the number of cases to
consider for matching through an ANN driven selection
anchored on the design signature.

Heating Degree-Days

System Performance equation for testing if the average
heating load of a given building is below the recommended
value (i.e. building prototype load) for the location.

Rule capturing the heuristics an expert uses to solve a
problem.

Heating, Ventilation and Air Conditioning System

Formula that is false under all of its interpretations (as
opposed to a tautology).

Feature of a case linked to the context in which thzt case
teaches a unique lesson.

Operation of identifying those salient features of the case
that are further used as primary retrieval criteria.

Process by which new facts are derived from established
facts.

Initial set of input parameters for a reasoning process, or
the input data to an ANN.

Knowledge Base (collection of information and rules
encapsulating the facts and heuristics about a domain and

used throughout a reasoning process).

Knowledge-Based Expert Systems (Al software programs
solving problems through a KB inference process).

Process of locating, collecting, and refining knowledge.
Method used to encode facts and relationships in a KB.
Dynamic process through which an Al software is updating

its Knowledge Base to enhance the quality of its reasoning
outcome.
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Learning Rate

Learning Rule

Lexical Parsing

Literal
Mapping

Matching

Matching Threshold

Message Passing

MFC

Modified Case
MOP

Nearest-Neighbor

Algorithm

Object

ooP

Paradigm Case

ANN training parameter (a.k.a. Beta), usually constant with
a value between 0 and 1, that affects the updating rate
applied to cell weights.

Algorithm used by an ANN during the training phase to
update the weights associated with each network cell.

Decomposition operation applied to an input text to identify
and isolate “words” and “structures” corresponding to a
pre-defined grammar.

Atom or a negation of an atom.

See Adaptation

Process of identifying within a case library the case that
best fits a given set of input requirements.

Maximum numbers of cases to be retained for/after the
matching process.

OOP method in which an object sends a “message” to
another object by triggering a procedure stored within it.

Microsoft Foundation Classes (collection of generic C++
classes for the Winl16 and Win32 environments).

See Adapted Case.

Memory Organization Packet (see Schank, 1982)

Pattern recognition method to find the closest entity to a
given target by computing the distance between that target
and all the entities in its neighborhood.

Conceptual entity that has a collection of attributes and
methods that might be either private or exposed to the
outside world.

Object-Oriented Programming

Case encapsulating a significant and unique piece of
information that makes it worth remembering (and a prime

candidate for the case library).
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Paramodulation

Pattern Recognition

Prototype Building

Performance

Simulation

Performance Tests

Physical Signature

Prodrule

Propagation Rule

Proposition

Ranking

Recommended Case

Repair

Repaired Case

Automated reasoning technique used in resolution
refutation to resolve clauses and to paramodulate from one
clause into another clause. It can be found as either
backward or forward demodulation.

Al paradigm concerned with identifying and matching data
patterns within a raw stream of information.

Collection of building-envelope parameters recommended
by the System Performance Criteria as either target values
when aiming for energy efficiency, or as average values to
be used as replacemenst when faced with missing data.

A computerized process modeling the behavior of
something in the real world to retrieve a theoretical
estimation of its performance.

Collection of test procedures included in the Performance
Simulation.

Heuristic parameter attempted to encode the cross-section
description of an envelope system along a predefined
physical parameter.

Production rule (and defined as a set of antecedents paired
with a consequent).

ANN rule defining how outputs from network layer cells
are combined into the overall input of a cell from the next
network layer.

Automated reasoning declaration that can have either a true
or a false value.

Sorting operation based on the score achieved during a
matching step.

Successful outcome of a CBR system (a valid library case
modified to match a different set of input requirements).

CBR step attempting to correct the failures detected within
a Modified Case.

Case successfully “repaired” during a CBR Repair phase.



Resolution Refutation
Resolvent

Retrieval

Rule-Based System

R-value

Salient Feature

Similarity Metrics

Solution Case
Source Case
SPC

SDA

Signature Vector

Target Case

Tautology

TOP

Training Phase (ANN)

Transformation

Transfer Mechanism

Procedure by which resolution proves theorems.
Clause deduced by resolving two “parent” clauses.

Process of accessing the case library to retrieve suitable
cases, usually for matching purposes.

Program representing knowledge by means of rules.

Thermal resistance of a building-envelope element (layer or
subsystem).

Primary feature of a case usually employed to classify the
case, or to index the case in the library.

Set of comparison strategies and functions used to assess
the degree of similarity between two cases.

See Recommended Case.

See Target Case.

System Performance Criteria

Suitable Design Alternative

Set of physical signature values assembled for a given case.

The initial case (usually incompletely described) defined as
the goal to be matched throughout the CBR process.

Formula true under all of its interpretation (as opposed to
an inconsistency).

Thematic Organization Packet (or Unit). See Schank, 1982
Process of adjusting the weights of an ANN by feeding the
network with input data that should be matched by known
output vectors.

See Adaptation

Collection of rules and procedures used to modify a case to
fit a different set of input requirements.
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Term

Testing Phase (ANN)

Unmatched Feature

Updating

U-value

Validation Tests

Verified Case
VSEW

VSN

VSS

Weak Theory Domain

Weighting Coefficient

Window-to-Wall Ratio

Constant, variable, function, or predicate

Process of feeding a trained ANN with input data in order
to retrieve the corresponding output vectors.

Case feature identified as not matching the input
requirements.

Process of dynamically refining the case library following
reasoning processes that yielded significant outcomes.

Thermal conductance of an envelope element (the inverse
of R-value).

Collection of procedures used to check if a new case
conforms to the commonly accepted domain knowledge.

Case passing the validation and performance tests.

Annual average daily solar energy on East & West facades.
Annual average daily solar energy on North facade.

Annual average daily solar energy on South facade.

A subject matter area or a problem solving task that cannot
be fully formalized through a set of knowledge rules and/or
mathematical relationships.

Constant numerical value (usually between 0 and 1)
defining the weight associated with a given parameters

within the Evaluation Function.

The percentage of glazing area of the total wall area.
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