INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Maximum Cliques and Vertex Colorings in
Random and k-partite Graphs

Thomas Hughes

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

November 2000

©Thomas Hughes, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fle Votre rélérance

Our Be Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cefte thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the ~ droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59327-4

Canadi

ABSTRACT

Maximum Cliques and Vertex Colorings in
Random and k-partite Graphs

Thomas Hughes

In this project we search for maximum cliques in some random graphs and
random k-partite graphs, using either the greedy coloring algorithm or the
Dsatur coloring algorithm as bounding functions. We compare the efficiency
of the algorithms by looking at the sizes of the resulting state space trees, as
well as the number of colors required by the respective coloring algorithms.
Finally, we implement a bichromatic interchange algorithm in an attempt to

improve the coloring algorithms.

Acknowledgments
I would like to thank my supervisor, Professor Clement Lam, for his support,
guidance, and encouragement. He has offered many valuable suggestions in. all

phases of this project. He has been more than generous with his time.

I would also like to thank my wife Claudia for her encouragement and support.

Table of Contents

Chapter 1 — Overview
1.1 The Maximum Clique Problem.............ceceieciininiinrocincnnsoncnncnes 1
1.2 Basic Definitions.....c..coccvemeeerennecnrincreceeecescescrreceecessecnsennees 3
1.3 Bounding Functions........cccoceevereeninienieieerereeeecerereeesenseenen 7
14 The Coloring Problem.ccccceeiereirnrenrercnrereceececeenansnnenns .10
L5 SUMMALY..c.cumiiiiieinieiiceitiieeeteetriereesneeeenensnsseesennens 12
Chapter 2 — Coloring Algorithms
2.1 Greedy....oouiiiiiiiiiiiinictiietieeee et ececreeer e e cnennesnnsenaseenannn 13
22 DSAUI...ccuieiuiiiitiieiiiniceiieieratenseieesseseresensessesessenansennnns 15
Chapter 3 — State Space Tree Size Comparisons
3.1 Random Graphs (Greedy vs. Dsatur Algorithm)........cceveeveenneen 17
32 K-Partite Graphs (Greedy vs. Dsatur Algorithm)........c.ccecunnnnn 20
Chapter 4 — Coloring Random k-partite Graphs
4.1 Greedy vs. Dsatur Coloring Algorithm...........cccoeenneenncrneaennnes 24
42 Application to the Maximum Clique Problem........c.ccccueeeneennens 33

Chapter 5 — Interchange Algorithm

S.1 DeSCHPHON.....ccvuiuriniieirerstiicenitrererenemessnsorsessesnnsacnons 35

52 Comparison with Previous Results........c.cccceeenvreenvencnecececnnne 38
Chapter 6 — COnCIUSION.c.cvverrnreerierierrereerererreenersseseensressansesessnsnsnensd 42
REfEIBICES. ...cucviiiniitiiiiiiiiiiiiciiicei et e e ereecennsnesnsasnsensens 45
Appendices(program listings)

Appendix 1 defS.h...cceiriniiiiniiiiiii e e e 47

Appendix 2 SethibO.h....cccvneeiiinniiiiiiiiereririrerercrereeee e e cens 48

Appendix 3 SEthbO.C...cuvvririiiiiiiiiiriiiri e e e eaee e 49

Appendix 4 MAXC_iNt.C...cvvrrrrienririciiineiieniececencenceresnceremnsnens .56

s

Chapter 1 - Overview

1.1 The Maximum Clique Problem

A graph G = (V, E) is an ordered pair consisting of a finite set of vertices and a set of
unordered pairs (u, v) of distinct vertices, called edges. The cardinality of the graph IV1
is equal to the number of vertices. Given an undirected graph G =(V, E), a clique isa
subset of vertices S ¢ V such that (u, v) € E forall u, v e S. A clique is 2 maximal
clique if it is not the subset of a larger clique. A clique that has the largest cardinality
among all cliques of G is called a maximum clique. In general, a graph may have more

than one maximum clique.

The problem of finding 2 maximum clique in a graph G is known as the maximum clique
problem. Although this problem is known to be NP-complete [7], many algorithms
which give a slightly less than optimal solution have been found that perform well in:

practice.

The maximum clique problem has several important applications, including computer
vision, information retrieval, cluster analysis, classification theory, and signal

transmission [4].

One of the earliest papers on practical clique algorithms is from 1970, by Auguston and

Minker [1]. Most recent maximum clique algorithms are based on the branch and bound:

algorithm CACM457, from Bron and Kerbosch in 1973 [5]. The most important of these
were by Balas and Yu [3] and Babel [2]. The algorithm of Balas and Yu uses a greedy
coloring together with the concept of a maximally triangulated subgraph(MTIS). Their
algorithm was among the fastest until Babel's algorithm in 1990, which made use of the
Dsatur coloring method due to Brelaz [4]. In 1998, Myrvold, Prsa and Walker [10]
introduced a dynamic programming approach for timing and designing clique algorithms

on very large graphs.

In order to find the maximum clique in a graph G, we present a backtracking algorithm in
Section 1.2 to exhaustively search through all possible solutions in the state space tree.
To reduce the number of nodes which we must process in the state space tree it is often
useful to apply a bounding function, which we present in Section 1.3. One of the
bounding functions is based on a coloring of G. The related coloring problem is

discussed in Section 1.4.

1.2 Basic Definitions

Given a graph G = (V, E), two vertices u and v are adjacent or neighbours if (u,v) € E.
The neighbourhood of a vertex vis N(v)={ue Vi(u, v) € E}. The degree of a vertex
v is deg(v) = IN(V)l. For X ¢V, we define degx(v) = IN(v) nXl. Ife =(u, v) € E, then
vertex v is incident to edge e. Two edges are adjacent if they share a common vertex.
For W ¢ V, the induced subgraph G[W] has vertex set W and edge set E' = {(u,v) | (u,v)

eE,ue W,veW}.

A vertex coloring of a graph G is an assignment of colors to the vertices of G such that no
two adjacent vertices are assigned the same color. More formally, given a graph G = (V,
E), a coloring of G is a function color: VM ¢ {0, 1, 2,...} such that color(u) #
color(v) for all (u, v) € E. Ifcolorisontoand M= {0, 1, 2, ..., k-1} the color is called a
k-coloring of G and denoted by color(G). A partial vertex coloring of G is a coloring of
a subgraph of G. Given a partial vertex coloring of G, let cdeg(v) denote the number of

colored neighbours of any vertex v, and the saturation degree, satdeg(v), the number of

different colors adjacent to v.

The general algorithm we use for finding maximal cliques is a type of backtracking
algorithm. A backtracking algorithm is a recursive method for generating feasible
solutions to a combinatorial optimization problem one step at a time. A solution is called

Jfeasible if it satisfies the constraints of the problem, for example, that it forms a clique. A

backtracking algorithm is exhaustive, in that all possible solutions are considered, so that

eventually the optimal solution will be found.

Recursive calls to the backtracking algorithm produce a tree of possible solutions which
is called the state space tree. Each node of the tree is a partial solution to the
optimization problem. A leaf of the state space tree is a full (but not necessarily optimal)
solution. A ncde at the k'™ level of the tree is a k-tuple X = [xo, X1, ...,Xx]. In the case of
the maximum clique algorithm, at the k™ level of the tree, the current partial solution

consists of a list X = [xy, X1,Xx] Where each x; is a vertex.

If we have a partial solution X = [xg, Xi, ..., X¢.1], the requirement that X be a clique will
restrict the possible values for x, to a subset C, ¢ V which we refer to as a choice set.
The computation of the choice set C, is referred to as pruning, since if a vertex y is in.

W\C,, then nodes in the subtree with root node [xg, X1, ..., Xe-1, y] Will not be considered by

the backtracking algorithm. We say that this subtree has been pruned from the original

state space tree.

Algorithm 1, from Kreher and Stinson [8, page 139] is an implementation of the
maximum clique algorithm, using bounding functions. C, is the choice set at a particular
step in the program. Each time the function is called, we first check whether the current
clique (partial solution) X = [Xg, Xi,..., X¢.1] is larger than OptSize. If so, OptSize is

replaced by £ and OptClique is replaced by [xo, X1,..., Xe.1]-

Next, the choice set C, is computed recursively as follows. Let Ay = {ue VI(u, v) € E}

be the set of vertices which are adjacent to vertex v. Let B, = {ue V lu> v} be the set
of vertices which are higher than v in our ordering of the vertices. If we are at level 0, the
choice set C, =V, the set of all vertices in our graph G. Otherwise we define

C,=Cr1 N Ay, | N By, . The first term C,, requires that any vertex in the choice set

must be adjacent to all of the vertices in the current clique X = [Xq, Xi,..., X¢1]. The

second term Ay, | requires that any vertex in the choice set C, be adjacent to the current
vertex X..,. The third term B, , guarantees that we only consider vertices which come

after x, in our vertex ordering. This last condition prevents us from reconsidering

previously found cliques. For example, if the node [0 3] at level two leads to a clique

[0 3 6], then the vertex 3 will not be part of the choice set for the node [0 6].

Next, the bounding function B is applied to the current clique, and the result is stored in
variable M. For each vertex x in the choice set C, we first check whether the bound M is
less than or equal to OptSize. If so, we exit the function, since the current branch of the
state space tree cannot possibly lead to a maximum clique. Otherwise, we set x, equal to
X, and recursively call the function Maxclique2(¢4-1). In the main program at the bottom,

we Initialize OptSize to 0, and then call the function MaxClique2(0), which indicates that

we start at level O.

Algorithm 1: Maximum Clique Algorithm (with bounding function): MaxClique2(¢)
global C,(£=0,1,...,n-1)
if £ > OptSize then
{
OptSize « ¢
OptClique & [xo, Xi,..., Xe1]
}
if{=0thenC, &V
else C,=C,; N Ax,; N Bx,y
M & B([xq, X15---» Xe-1])

for each x in C,do

{
if M < OptSize then return
X X

MaxClique2(¢-1)

OptSize ¢« 0
MaxClique2(0)
Output (OptClique)

1.3 Bounding Functions

A bounding function is a function that allows us to prune the size of the state space tree
by not processing branches that have no chance of improving the optimal solution found
so far. For any partial solution (i.e. clique) X = [xq, X1, ..., X¢.1] let MC(X) be the size of a

maximum clique of any descendent of X in the state space tree. In general, a bounding

function is a real-valued function B defined on the set of nodes in the state space tree
such that for any partial solution X, B(X) 2 MC(X). Thus, B(X) gives an upper bound on

the size of any feasible solution that is a descendent of X in the state space tree.

We can use a bounding function as follows. Suppose at some stage of the backtracking
algorithm, we have a current partial solution X = [Xy, Xi, ..., X¢.1], and an OptSize which is
the size of the maximum clique found so far. If it is the case that MC(X) < B(X) <

OptSize, then no descendents of X in the state space tree can improve the current

maximum clique. This allows us to prune the entire subtree below X.

It helps if our bounding function B(X) is both easy to compute, and close to the actual
value of MC(X). These two properties work against each other. (For example, MC(X) is.
itself a bounding function, but difficult to calculate.)

Let X = [xq, Xi, ..., X¢.1] be a partial solution (clique) at some point in the maximum clique
algorithm. Suppose that X’ = [xq, X1, ..., X;] is a clique which extends the partial solution

X, where j 2 £-1. Then {x;,..., x;} must be a clique in the induced subgraph G{C,]J. Thus

we can obtain a bounding function by finding an upper bound on the size of a maximum

clique in G[C,].

With respect to the maximum clique problem, the simplest bounding function to use is

the size bound. Let MC(£) denote the size of a maximum clique in G[C,]. We obtain a

size bound by observing that MC(¢) < IC,l. In other words, if the choice set C, contains r
vertices, then the maximum clique in its induced subgraph cannot contain more than r

vertices. This is a rough bounding function, but it has the advantage that it is easy to

compute.

Other bounding functions can be derived from vertex colorings of the graph. Every
vertex in a clique is adjacent to every other vertex of that clique. Hence, in a colored
graph, all vertices of a clique must have different colors. Therefore, if a graph G has a
vertex k-coloring, then the maximum clique in G has size at most k. Thus, vertex

coloring gives rise to a useful bounding function for the maximum clique problem.

To calculate the sampling bound, we first obtain an approximate vertex coloring of the
entire graph, which uses, say, k colors. Let C, be the choice set, at any particular point in
the backtracking algorithm for finding the maximum clique. If the approximate vertex k-~
coloring is restricted to the induced subgraph G[C,, it gives a coloring of G[C,] (using
possibly less than k colors), which is an upper bound on the size of 2 maximum clique in

G[C,. In particular, the upper bound calculated is (£ + I{color[x] : x € C, })

Another way to use vertex coloring as a bounding function is to apply the coloring
algorithm to the induced subgraph G[C,] each time a new choice set is used. We call this
a greedy bound. The upper bound computed this way is (£ + lcolor(G{C,DI), which is

usually better than the sampling bound (i.e. less than or equal to the sampling bound).

Note the difference between the sampling bound and the greedy bound. With the
sampling bound, the coloring algorithm is applied just once to the entire graph G at the
beginning of the program. Bounds are obtained by restricting this coloring to the induced
subgraph G[C,] each time a new choice set used. With the greedy bound, a fresh coloring
is obtained for each new choice set by applying the coloring algorithm to the induced

subgraph G[C,]. In the next section we discuss the coloring problem in more detail.

14 The Coloring Problem

A well-known problem in combinatorial analysis is to color the vertices of a graph G
such that no two adjacent vertices are assigned the same color. We call this the coloring
problem. The chromatic number of G is defined to be the smallest k such that a vertex k-

coloring exists.

The graph coloring problem is related to the problem of scheduling final exams at a
university, so that no student has two exams at the same time [12]. Let each course be
represented by a vertex, with an edge between a pair of vertices if a student is in the two
courses represented by the vertices. Each time slot for a final exam is represented by a
different color. A scheduling of the set of exams corresponds to a coloring of the
associated graph. If the chromatic number of a graph is k, then at least k time slots are

required to schedule the exams.

Another application of graph coloring is in the channel assignment problem [12]. In
North America, television channels 2 through 13 are assigned to stations such that no pair
of stations within 150 miles of each other can be assigned the same channel. We can
associate this problem to graph coloring as follows. Assign a vertex to each station. Two
vertices are adjacent if the stations they represent are within 150 miles of each other.

Each channel is represented by a different color. An assignment of channels corresponds

to a coloring of the graph.

10

Yet another application of graph coloring is in the area of compiler design [12]. To speed
up execution time for loops, it is helpful to store frequently used variables in index
registers, rather than in regular memory. Graph coloring can be applied to compute the
number of index registers required for a given loop. Represent each variable in the loop
with a vertex. Connect two vertices with an edge if the variables they represent must be
stored in index registers at the same time during execution of the loop. Thus, if two
vertices are adjacent in the graph, the variables they represent must be assigned different

registers. The chromatic number of the graph gives the number of index registers needed.

The coloring problem is relevant to the maximum clique problem. As explained in
Section 1.3, vertex coloring can be used as a bounding function for the maximum clique
problem. One problem with this approach is that it is NP-hard to find an optimal coloring
of a graph [7]. However, it is easier to find colorings which may not be optimal. Yet,
non-optimal colorings are still useful as bounding functions. Two possible non-optimal
coloring methods are the greedy coloring algorithm and the Dsatur algorithm, each of

which will be discussed in Chapter 2.

11

1.5 Summary

In this project we look at some results in finding maximum cliques in various graphs. In
Chapter 2, we present the greedy and Dsatur coloring algorithms, and use them as

bounding functions with the maximum clique backtracking algorithm.

In Chapter 3, we compare the size of the state space trees between greedy and Dsatur
coloring algorithms. First we look at the results on some random graphs, then we

generate some random k-partite results, and compare results on these graphs.

In Chapter 4, we look more closely at the coloring problem, and compare the number or
colors required by the greedy versus the Dsatur algorithm on some random graphs, and

random k-partite graphs.
In Chapter 5, we present a bichromatic interchange scheme within the coloring
algorithms, in an attempt to reduce the total number of colors required to color a graph.

We investigate the performance of the coloring algorithms with the bichromatic

interchange.

In Chapter 6 we give a brief conclusion to this report.

12

Chapter 2 - Coloring Algorithms

2.1 Greedy Coloring Algorithm

Although it is NP-hard [7] to find a vertex k-coloring in which k is minimized, it is often
possible to find an approximate coloring in a reasonable amount of time. One way to do
this is to color the vertices sequentiaily using a greedy coloring algorithm. This is not to
be confused with the greedy bound, which a type of bounding function, as discussed in
the previous chapter. With a greedy strategy, the vertices are colored in order, each
vertex receiving the lowest available color. The greedy coloring algorithm has the
advantage that it does not require a large amount of calculation, yet still yields graph

colorings that are reasonably close to being optimal.

Algorithm 2, from Kreher and Stinson [8, page 137] is an implementation of the greedy
coloring algorithm. V is the set of n vertices in the graph, in some predefined order 0, 1,
2, ...,n-1. A is the adjacency matrix, and color is an array, with color[i] equal to the
color of the i vertex. ColorClass is a list of sets, with ColorClassfh] containing the set of
vertices colored using color h. This Greedy Coloring algorithm returns the number of
colors used to color the graph, which is represented by the variable k. Initially, k is zero.
For each vertex i in the graph, we attempt to color i with the smallest possible color h
such that no vertex adjacent to i is already colored using color h. If a new color is
required, then we update the number of colors used k. When the entire graph has been

colored, we return k, the total number of colors used.

13

Algorithm 2 [8]: GreedyColoring Algorithm: GreedyColor(G = (V, E))
global color
comments: V={01,...,n-1}
A; = set of vertices adjacent to vertex i
color[i] holds the color of the i vertex
ColorClassfh] contains the set of vertices colored using color h
k0
fori<~-Oton-1ldo
{
he0
while h <k and (A; " ColorClassfh)) #@doh e h+1
if h = k then
{
kek+1
ColorClass[h] ¢ @&
}
ColorClass[h] « ColorClass[h] U {i}
color{i] «h
}
return (k)

14

2.2 Dsatur Coloring Algorithm

Another sequential coloring algorithm, due to Brelaz [4], is called the Dsatur algorithm,
because it uses saturation degrees. Recall that given a simple graph G which has been
partially colored, the saturation degree of a vertex w is defined to be the number of
different colors that w is adjacent to. As with the greedy algorithm, the vertices are
colored sequentially with the smallest possible color. The difference is that rather than
using a pre-defined order, the order is determined by choosing at each step a vertex of

maximal saturation degree.

Dsatur coloring algorithm

1) Arrange the vertices by decreasing order of degrees.
2) Color a vertex of maximal degree with color 1.

3) Choose a vertex of maximal saturation degree.

4) Color the chosen vertex with the least possible color.

5) If all vertices are colored, stop. Otherwise, return to step 3.

In case of a tie among several vertices at step 3, there are several possible ways of
selecting the next vertex to be colored. Brelaz [4] suggests choosing any vertex of
maximal degree in the uncolored subgraph. Babel [2] suggests the following. Let X be
the set of all vertices of maximal saturation degree. To choose among several vertices of
maximal saturation degree either

a) Choose a vertex v € X such that cdeg(v) 2 cdegx(w) for all w e X, or

b) Choose a vertex v € X such that degx(v) > degx(w) for all w € X.

15

By successively coloring the vertices of maximum saturation degree with the least
possible color we begin by the coloration of a clique. This provides a lower bound on the
chromatic number of the graph. In addition, because the Dsatur algorithm makes use of
the graph structure, it often finds cliques of almost maximal dimension [4]. The Dsatur
algorithm can be extended without the increasing order of complexity to find the
connected components of the graph and at the same time compute upper and lower

bounds for the clique number of each component [2].

16

Chapter 3 — State Space Tree Size Comparisons

In this chapter we compare the size of the state space trees in finding the maximum
cliques in a graph using either the sampling bound or the greedy bound, in combination
with either the Dsatur coloring or the greedy coloring algorithm. Thus, there are four

possible combinations of bounding function/coloring algorithm.

3.1 Random Graphs (Greedy vs. Dsatur Algorithm)

In Table 1 and Table 2 we list the number of nodes in the state space trees for some
random graphs. The bounding function used is either the sampling bound or the greedy
bound, which are each used with either the Dsatur coloring algorithm or the greedy
coloring algorithm. The results with the greedy coloring algorithm come from Kreher
and Stinson [8]. We have added the additional rows containing the results when the

Dsatur coloring algorithm is used.

In Table 1, the random graphs have an edge density of 0.5, with the number of vertices
ranging from 50 to 250. When the sampling bound is used, the Dsatur algorithm requires
slightly fewer nodes to find the maximum clique for all five graphs, although the
difference is not large. For example, for a graph of 250 vertices the difference is less

than 1%.

17

When a greedy bound is used, the Dsatur coloring algorithm performs significantly better

than the greedy coloring algorithm, usually requiring less than half the number of nodes

in the state space tree.

In Table 2, the random graphs have an edge density of 0.75, with the number of vertices
ranging from 25 to 125. The results are similar to the results in Table 1. When using the
sampling bound, there is little to choose between the greedy coloring algorithm and
Dsatur algorithm. The Dsatur coloring algorithm requires slightly fewer nodes for
smaller graphs, but for graphs with more vertices, the greedy coloring algorithm requires
slightly fewer nodes. Overall, neither algorithm appears to perform significantly better

than the other.

When the greedy bound is used, the Dsatur coloring algorithm again gives a much

smaller state space tree than the greedy coloring algorithm, with the number of nodes

from two to five times less.

Based on these results, it appears that for random graphs, when the sampling bound is
used, there is no advantage in using the Dsatur coloring algorithm instead of the simpler
greedy coloring algorithm. However, when the greedy bound is used, the Dsatur coloring

algorithm does result in a state space tree with significantly fewer nodes than the greedy

coloring algorithm.

18

Table 1

Size of state space trees for random graphs with edge density 0.5

Number of vertices 50 100 150 200 250

Number of edges 607 2535 5602 9925 15566

Size of maximum clique 7 9 10 11 11
Bounding Function

Sampling Bound/Greedy 2268 44072 266246 1182514 4093535

Coloring

Sampling Bound/Dsatur 2055 40529 251373 1147409 4072615

Coloring

Greedy Bound/Greedy 430 5734 22599 91671 290788

Coloring

Greedy Bound/Dsatur 238 2229 8542 37329 110899

Coloring

Table 2

Size of state space trees for random graphs with edge density 0.75

Number of vertices 25 50 75 100 125

Number of edges 236 959 2045 3720 5780

Size of maximum clique 11 14 15 17 18
Bounding Function

Sampling Bound/Greedy 794 37218 195567 2225982 15615755

Coloring

Sampling Bound/Dsatur 497 34180 210336 2264085 17769063

{Coloring

Greedy Bound/Greedy 91 2843 10476 70404 413421

|Coloring

Greedy Bound/Dsatur 46 1083 2142 19583 105695

Coloring

19

3.2 k-partite Graphs (Greedy vs. Dsatur Algorithm)

A graph G is called k-partite if its vertex set V can by partitioned into k disjoint
nonempty sets Ay, Ay, ..., Ay, called components, such that every edge in the graph
connects a vertex in A; with a vertex in A; for i #j, (and no edge in the graph connects
two vertices in the same component A;.) k-partite graphs are of interest in combinatorial

analysis because they arise naturally from block design searches.

We generated random k-partite graphs of edge density p as follows. For simplicity, we
limited our graphs to the special case where k divides n, where n is the total number of
vertices in the graph. For each possible edge between a pair of vertices in two different
components of the graph, we generate a random number r in the interval (0, 1). Ifris
between O and p, then we add an edge to the graph (by placing a 1 in the corresponding
position of the adjacency matrix of the graph). Otherwise, if r is between p and 1, then
no edge connects the two vertices. This scheme allows us to generate k-partite graphs,

where k divides n, with a particular edge density p, with0<p < 1.
In this section we apply the maximum clique algorithm to randomly generated k-partite
graphs. In the best case, we would find a clique of size k, but of course a k-clique does

not always exist. Note that the chromatic number for the graph is at most k.

Although the graphs were randomly generated, the vertex ordering was such that all

vertices in the same partition were together. Such an ordering guarantees that the greedy

20

algorithm will not use more than k colors. For example, vertices in the first partition can
each be colored using color 1, since no two vertices in the same partition are adjacent to
each other. In the worst case, each vertex in the second partition can now be colored
using color 2, but in general we will be able to use a mixture of color 1 and color 2 in this
partition. Similarly, in the third partition we can always color each vertex using color 3
in the worst case, but in general we will be able to color some of these vertices with
colors 1 or 2. Continuing in this way it is clear that for a vertex ordering in which all
vertices in the same partition are together, the greedy algorithm will never require more
than k colors on a k-partite graph. In fact, for graphs of low density, the greedy coloring

algorithm will frequently require less than k colors when this vertex ordering is used.

In Table 3 we apply the maximum clique algorithm to some randomly generated k-partite
graphs, comparing the use of the greedy and Dsatur algorithms as bounding functions. In
each graph, we have 100 vertices, with the edge density ranging from 0.5 to 0.75, and the

number of partitions ranging from 5 to 20.

21

Table 3
Size of state space trees for random k-partite graphs

Number of vertices (n) 100 100 100 100 100
Number of partitions (k) 5 20 10 20 20
Edge Density(p) 0.6 0.5 0.6 0.6 0.75
Size of maximum clique 5 9 10 11 15

Bounding Function/Coloring Algorithm

Sampling Bound/Greedy Coloring 6 25381 2139 91178 238467
Sampling Bound/Dsatur Coloring 6 29866 27318 130546 1198148
Greedy Bound/Greedy Coloring 6 3099 972 8186 41361
Greedy Bound/Dsatur Coloring 6 1459 1730 4215 21898

When the sampling bound is used, the greedy coloring algorithm performs better than the
Dsatur coloring algorithm. For the graph with 100 vertices, 10 partitions, and edge
density 0.6, this difference is more than a factor of 10. The fact that the greedy coloring
algorithm requires significantly fewer nodes in all (but one) cases suggests that it requires
fewer colors to color the graph. This translates into a better bounding function for the
clique algorithm. We will see in the next chapter that this is generally true for k-partite

graphs with “high” edge densities.

When the greedy bound is used, the Dsatur algorithm performs significantly better,
usually requiring only about half as many nodes to be searched. Recall that with the
greedy bound, the bounding function is called once during each step of the clique
algorithm. The superior performance of the Dsatur algorithm suggests that it requires
fewer colors when coloring subgraphs of the full graph, when the number of vertices is
smaller.

Table 3 gives a brief comparison of the greedy coloring algorithm and the Dsatur
coloring algorithm, when they are used in conjunction with either the sampling bound or
the greedy bound, on some k-partite graphs. It is in no way comprehensive in
considering all possible combinations of the number of vertices, the number of partitions,
and the graph density. The table compares the size of state space trees, which of course
are influenced by the number of colors used by the respective coloring algorithms. It is
not immediately clear from the results under which combinations of n, k, and p would
one coloring algorithm perform better than the other. This is what we will investigate in

more detail in the next chapter.

Chapter 4 — Coloring Random k-partite Graphs

4.1 Greedy vs. Dsatur Coloring Algorithm

In this section we compare the greedy and Dsatur algorithms with respect to the number
of colors required for some randomly generated k-partite graphs. In the first set of
experiments, we keep the ratio n / k (number of vertices / number of partitions) fixed,
while varying the edge density p. As mentioned in the previous chapter, a vertex
ordering in which vertices in the same partition are consecutive guarantees that the

greedy algorithm will never require more than k colors for such graphs.

In Figure 4.1, we have n = 72, k = 18, while the edge density p varies from 0.1 to 0.9.
When p is small, the Dsatur algorithm used fewer colors, while for larger values of p, the
greedy algorithm is superior. The crossover point appears to be about 0.6. Note that the
greedy coloring algorithm “flattens out” when it reaches 18 colors, whereas the Dsatur
algorithm uses more than 18 colors for an edge density above 0.6. Of course this is less
than optimal, since any k-partite graph can be colored using at most k colors by coloring

all of the vertices in each of the k partitions A; with the same color i.

24

72 Vertices, 18-partitions

]

3

-
4]

—eo—Greedy

10 —a—Dsatur

Number of Colors Used

01 02 03 04 05 06 07 08 09
Edge Density

In Figure 4.2 we consider graphs with 144 vertices and 36 partitions, again varying p. As
before, the Dsatur algorithm requires fewer colors for graphs with low edge density, but

above a certain point the greedy algorithm performs better. In this case, the crossover

point occurs near p = 0.7.

144 Vertices, 36-Partitions

60
g
3 50
240
;6 30 —e—Greedy
S 20 —a—Dsatur
3
E 10
o0

01 02 03 04 05 06 07 08 09
Edge Density

In Figure 4.3 we fix n = 288, k = 72 and vary p. The Dsatur coloring algorithm performs

better for graphs of low density. In this case the crossover point is near p = 0.75.

288 Vertices, 72-Partitions

120

8

80

—eo—Greedy
—&—Dsatur

40
20

Number of Colors Used
3

o

01t 02 03 04 05 06 07 08 0.9
Edge Density

In Figure 4.4, with n = 576, k = 144, the crossover point occurs at p = 0.8.

576 Verties, 144-Partitions

—eo—Greedy
—a—Dsatur

Number of Colors Used

0i 02 03 04 05 06 07 08 09
Edge Density

Each of the above graphs demonstrates that for random k-partite graphs with a fixed ratio

n/k, (so the number of vertices in each partition is n / k), the Dsatur algorithm requires

26

fewer colors for graphs of low density, while beyond a certain point the greedy algorithm
performs better. Overall, the four graphs suggest that as the size of the graph increases,

so does the crossover point between the Dsatur algorithm and greedy algorithm.

In the next set of experiments, we fix the number of partitions k, but vary the number of
vertices in the graph, starting from n = 288. For each value of n, we vary the edge

density p, starting from p = 0.1, until we find a crossover point between the greedy and
Dsatur algorithms.

In the first example, we have 288 vertices. As before, the Dsatur algorithm performs

better on graphs of low density. Beyond an edge density of about 0.45 the greedy

algorithm is superior.

288 Vertices, 36-Partitions

—o— Greedy

—&—Dsatur

Number of Colors Used
cnoadSR8EEH

0.1 0.2 0.3 04 0.5
Edge Density

In the next example, with 576 vertices, the Dsatur algorithm performs better for graphs of

edge density below 0.25. Beyond that value, the greedy algorithm is superior.

576 Vertices, 36-Partitions

- N
o O

_§so

2 50

2 40

S 20 —Greedy
s —&— Dsatur
| .

[

=

£

1

=

o

0.1 0.2 0.3 0.4
Edge Density

With a graph of 1152 vertices, the greedy algorithm is superior for graphs with an edge

density larger than about 0.13.

- N
Qo O

1152 Vertices, 36-Partitions

60
§ 50
2 4
3 30 —e—Greedy
s —a—Dsatur
3
E
3
2

o

Edge Density

Each of the above graphs confirms that for random k-partite graphs, the Dsatur algorithm
needs fewer colors for graphs of low density. Taken together, the graphs show that for a
fixed number of partitions k, the crossover point between greedy and Dsatur algorithms

decreases as n increases. In other words, as n increases, the range of edge densities for

which the Dsatur algorithm outperforms the greedy algorithm becomes ever more

narrow.

Also, as the number of vertices increases, the range of edge densities for which the
greedy algorithm is able to improve upon its worst case situation of using k colors
decreases. In other words, since we know a priori that a 36-partite graph can be colored
using at most 36 colors, unless there is a chance that a particular coloring algorithm can
improve on this number, it makes no sense to use up computing time by calling the

coloring algorithm.

In our third set of experiments, we fix the number of partitions k (at 36) and the edge
density p, and compare the performance of the greedy and Dsatur coloring algorithms
while varying the number of vertices n. We repeat the experiment for values of p ranging
from 0.1 to 0.5.

With an edge density of 0.5, the Dsatur algorithm performs better for small graphs, with a

crossover point of about 150.

Number of Colors Used
cunoca3Sh8884E

72

36-Partitions, Edge Density 0.5

—eo—Greedy

~a~Dsatur

144 288
Number of Vertices

With an edge density of 0.4, the crossover point is about 300.

Number of Colors Used

72

36-Partitions, Edge Density 0.4

—eo—Greedy

—a— Dsatur

144 288 576
Number of Vertices

30

With an edge density of 0.3, the crossover point is about 400.

36-Partitions, Edge Density 0.3

o
2
1
g
g —e—Greedy
5 ~@— Dsatur
]
2
E
S
2
72 144 288 576
Number of Vertices

With an edge density of 0.2, the crossover point is about 700.

36-Partitions, Edge Density 0.2

_§ 60
3 50
£ w0
8 30 —o— Greedy
s —a—Dsatur
= 20
£
§ 10

0

72 144 288 576 1152
Number of Vertices

With an edge density of 0.1, the crossover point is about 1400.

31

36-Partitions, Edge Density 0.1

—
o O

E 60

3 50

2 40

8 0 —e—Greedy
s —u— Dsatur
&

=2

E

1

2

o

72 144 288 576 1152 2304
Number of Vertices

Each of the above five graphs suggest that for fixed values of k and p, the Dsatur coloring
algorithm performs better for smaller graphs, but as n increases, the greedy algorithm

requires fewer colors beyond a certain point.

Taken together, the results show that as the graph density p increases, the range of values
for which the Dsatur algorithm outperforms the greedy algorithm narrows. For example,
when p = 0.5 the Dsatur algorithm is superior only for graphs of less than 150 vertices,

while for graphs of edge density 0.1, the Dsatur algorithm needs fewer colors for graphs

of up to 1400 vertices.

32

42 Application to the Maximum Clique Problem

As mentioned in the previous section, as the number of vertices n increases, the range of
edge densities for which the greedy coloring algorithm is able to improve upon its worst
case situation of using k colors decreases. We can use this last fact as follows. Suppose
we know the crossover point N, where N is the largest number of vertices for which the
greedy coloring algorithm requires fewer than k colors on a particular k-partite graph.
Suppose that we are using the greedy bound as our bounding function. In that case, if we
are at a point in the maximum clique algorithm for which the choice set C[L] has N or
more vertices, then there is nothing to be gained by calling the greedy coloring algorithm,
since above the crossover point the greedy algorithm usually requires the worst case of k
colors. Thus if we only call the coloring algorithm if the condition C[L] <N is satisfied,

we can reduce the time required to find a maximum clique.

In Table 4 we see that this is indeed the case. We are using the greedy bound, with
greedy coloring algorithm, but not calling the coloring algorithm if the number of vertices.
in the choice set C[L] is larger than the crossover value N. In the first column, with 720
nodes, we have a time reduction from 215 seconds to 188 seconds. In the last column,

there is still a modest time saving, from 12 seconds to 11 seconds.

Note that the number of nodes in the search tree is not affected by this optimization
procedure. That is because we are not calling the greedy bound function only in cases in

which we know that the greedy coloring algorithm is unlikely to improve on a worst case

scenario of using k colors on a k-partite graph. Calling the greedy bound function in such
cases would not eliminate any nodes from the state space tree, so the number of nodes in

our state space tree is not reduced.

Table 4 Optimization with Greedy Bound
Number of vertices (n) 720 576 540 360
Number of partitions (k) 18 18 18 18
Edge Density 0.3 0.2 0.3 0.3
Maximum Clique Size 9 6 8 7
Nodes 420971 37908 120390 43450
Crossover Point(N) 180 250 180 180
Execution Time(seconds) 215 17 51 12
Time with Optimization(seconds) 188 15 50 11

Chapter 5 - Bichromatic Interchange Algorithm

5.1 Description

We attempted to improve the performance of the coloring algorithms by implementing
the bichromatic interchange algorithm as described in a paper by Matula [9]. This
method seeks to make an interchange of colors in a bipartite subgraph each time a new
color has to be introduced. If this interchange is successful, the new vertex can be
colored using an existing color rather than a new color. This interchange method can be
used for any algorithm with coloration of the vertices by the smallest possible color in a
given order. It is hoped that by introducing the bichromatic interchange scheme into a
sequential coloring scheme such as the greedy algorithm or Dsatur coloring algorithm,
the total number of colors used on the graph will be reduced. Of course this will be at a

cost of increased computing time.

Here is a more detailed description of the bichromatic interchange. Suppose in a graph G
that the subgraph G{vg, V1,..., Vi.2] has already been colored using (k-1) colors. A k™
color is needed for the next vertex only if vertex v;., is adjacent to vertices with colors

0,1,2,..., k2

If the neighbours of v; (among the set {vg, Vy,..., Vi2}) contains a complete subgraph with:
k-1 vertices, then certainly the chromatic number %(Gfvy, V1,..., Vi.t]) =k, and a2 new

color is undoubtedly necessary. If not, it may be possible, before coloring v;, to change

the colors on some of the neighbours of v; in a way that the coloring of G[vo, v2,..., Vi1]
still uses (k-1) colors, and leaves at most (k-2) colors adjacent to v;. This would free a

previous color for v;, avoiding the necessity of introducing a new color.

With the bichromatic interchange, each time in a sequential coloring algorithm that a new
vertex has to be colored, we first check to see if such a color interchange is possible on
the previously colored vertices. It is hoped that performing a sequential coloring with

interchange, the total number of colors required for the entire graph is reduced.

The steps of a sequential graph coloring with bichromatic color interchange are as

follows:

Let vy, vi,..., Vp-1 be an ordering of the vertices of G. (This ordering may be in
descending order of degrees, or it may be random.)

1) Assign color O to vertex vo

2) If G[vq, v1,..., vi2] has been j-colored (colored with exactly j colors) using each of the
colors 0, 1, 2, ..., j-1, and if m is the minimum positive integer not occurring on vertices
Vo, V1, ..., Vi-2 adjacent to v; in G, then

a) If m <j then an interchange is not necessary. We assign v;.; color m, while each of v,
V1, ..., Vi:2 retain their original colors. This gives a j-coloring of the subgraph G{vy, vi,...,
Vil

b) If m =j, then, before assigning a new color to v;, we check to see if a bichromatic

interchange is possible.

36

First, we find the set K ¢ {0,1, 2, ..., j-1} which is the set of colors such that xe K=
exactly one vertex adjacent to v; in G[vy, vy,..., Vi.1] has color 0. Suppose that we can
find two colors o, f € K, % . Let Ay and Ag be the sets of vertices which have been
colored with o and B respectively. We define an o, § component of G[vy, vi,..., Vi4] to

be a connected component of the subgraph G[Aq LU Ag].

If there exists an ¢, § component of G[vq, Vi,..., Vi.1] which has only one vertex w
adjacent to v; , then on that component we interchange the colors & and B. If this changes
the color of vertex w from o to 8, then we can now assign color « to v;. If the
interchange causes vertex w to have its color switched from B to o, we can now assign

color B to v;. In either case, a j-coloring of G[vg, V1,..., Vi.1] is obtained.

If no such bichromatic interchange is possible for any o, § component of G{vy, v1,..., Vi.2]

then we must assign color j to v; , obtaining a (j+1)-coloring of G[vo, V1,..-, Vi.1].

37

5.2 Comparison with Previous Results

In this section we compare the number of colors used by the greedy coloring algorithm
and Dsatur coloring algorithm with and without the bichromatic interchange, when used
by a sampling bound. When coloring random k-partite graphs, it appears that the
interchange scheme generally results in a small improvement when combined with the
greedy coloring algorithm. That is, with the interchange the number of colors required is
usually reduced by one or two. With the Dsatur algorithm however, the results are less
consistent, with the interchange scheme sometimes reducing the number of colors, and

sometimes increasing the number of colors, but always by a small amount.

Greedy vs. GWI Algorithm

40
g 35
» 30
S 25
g 20 —eo—Greedy
% 15 ~—a—Creedy/Interchange
2 10
€s
€9

01 02 03 04 05 06 07
Edge Density

In the first graph we compare the performance of the greedy coloring algorithm with and:
without the interchange, for a 36-partite graph with 144 vertices. We see that applying

the interchange provides a slight reduction in the number of colors used.

38

In the second graph we compare the Dsatur Algorithm, with and without the interchange,
for the same 36-partite graph of 144 vertices. In this case, there does not appear to be any

significant difference. If anything, with the interchange the algorithm seems to perform

slightly worse.

Dsatur vs. DWI

30 —o—Dsatur

—a—Dsatur/Interchange

20

10

Number Of Colors Used

0.1 02 03 04 05 06 07 08
Edge Density

In the next example we compare the Dsatur algorithm with and without interchange on
random graphs of density 0.75. In this case there does seem to be a clear improvement

when the interchange scheme is introduced. (Note that the y-axis uses a logarithmic scale

in the graph.)

39

Dsatur vs. DWI on Random Graphs

P 1000000
3 100000 —e— Sampling
z Bound/Dsatur
© 10000
2 ~&— Sampling/Dsatur/
§ 1000 Interchange
Z

100

25 50 75
Number of Vertices

However, in the final example below we see that on random graphs with edge density 0.5
there does not appear to be any significant improvement when the interchange scheme is

used with the Dsatur algorithm.

Dsatur vs. DWI Algorithm on Random Graphs of

1000

Density 0.5
g_ 1000000
@ —&— Sampling
§ 2 100000 Bound/Dsatur
n -
sF 10000 —— Sampling/Dsatur/
o Interchange
2

50 100 150
Number of Vertices

These results suggest that for k-partite graphs, when the sampling bound is used, the
interchange does improve performance of the greedy coloring algorithm, but not the

Dsatur coloring algorithm.

For random graphs, the interchange did improve the performance of the Dsatur algorithm
for graphs of density 0.75. However, for a graph density of 0.5 the interchange made

little difference.

41

Chapter 6 - Conclusion

In this project we have implemented a Dsatur coloring algorithm, and applied it towards
coloring random graphs and random k-partite graphs. We have compared performance

with a greedy coloring algorithm by looking at the number of colors used to color the

graphs.

We have also used these coloring algorithms within a maximum clique algorithm, in
combination with either a sampling bound or a greedy bound, and compared the number

of nodes in the corresponding state space trees.

Finally, we implemented an attempted improvement to the coloring algorithms known as

a bichromatic interchange, and compared results both with and without the interchange.

In searching for maximum cliques in random graphs, we found that when a greedy bound
was used, the Dsatur coloring algorithm resulted in fewer nodes in the state space tree
than did the greedy coloring algorithm. However, when a sampling bound was used,

there was little if any improvement.

When we compared the two Dsatur coloring algorithm with the greedy coloring

algorithm on random k-partite graphs, we found that the results are sensitive to the

number of vertices, the number of partitions k, and the edge density p.

42

Such graphs can always be colored with at most k colors, by coloring the vertices in each
partition by the same color. Hence, if the coloring algorithm requires more than k colors,
it is not very useful. The greedy coloring algorithm never requires more than k colors for
such graphs for a vertex ordering such that vertices in the same partition are consecutive.

However, for graphs of “large” density, the Dsatur algorithm does require more than k

colors.

It is always the case that for graphs of low density, the Dsatur coloring algorithm requires
fewer colors than the greedy coloring algorithm. The question then becomes for which
range of edge densities does the Dsatur coloring algorithm improve upon the greedy

coloring algorithm. We call this value a crossover point.

For graphs with a constant number of vertices in each partition (n / k fixed), the value of
the crossover point increases as the number of vertices in the graph increases. For graphs
with a constant number of vertices in each partition (k fixed), the crossover point
decreases as the number of vertices in the graph increases. Finally, for graphs with a
fixed number of partitions, the range of graph sizes n for which the Dsatur coloring

algorithm decreases as the graph density increases.

We note that knowing such crossover points can be useful in reducing the computation.
time (but not the number of nodes) in finding maximum cliques using a greedy bound.
By not invoking the coloring algorithm in cases where we know in advance that it will

not help in pruning the state space tree, we avoid some irrelevant calculations.

43

Finally, we implemented a bichromatic interchange scheme to be used with the coloring
algorithms and a sampling bound. We found that for k-partite graphs, the interchange did
result in a slight improvement for the greedy coloring algorithm, but made little
difference to the Dsatur algorithm. For random graphs, the interchange did significantly
improve performance of the Dsatur algorithm for graphs of high density (0.75), but made

little difference for graphs of moderate density (0.5).

Further study in this area could involve applying the results to specific rather than
random graphs. Other coloring algorithms could be investigated. One might also try
different vertex orderings when performing the graph colorings, for example, ordering
the vertices in reverse order of degrees, or perhaps randomly. Work could also be done

to optimize the implementations of the existing algorithms.

References

[1] J.G. Auguston and J. Minker. An analysis of some graph theoretical cluster

techniques. Journal of the ACM, 17(4):571-588, 1970.

[2] L. Babel. Finding maximum cliques in arbitrary and special graphs. Computing,
15:321-341, 1991.

[3] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM J.

Computing, 15(4):1054-1068, 1986.

{4] Daniel Brelaz. New methods to color the vertices of a graph. Communications of the

ACM, 22:251-256, 1979.

[5] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph
H. Comm. ACM, 16(9):575-5717, 1973.

[6] N. Deo. Graph Theory with applications to engineering and computer science.

Prentice Hall, 1974.

[71 M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

45

[8] D.L. Kreher and D. R. Stinson. Combinatorial Algorithms, Generation, Enumeration,

and Search. CRC Press, 1999.

[9] David W. Matula, George Marble, & Joel D. Isaacson. Graph Coloring Algorithms.

In Graph Theory and Computing, Academic Press, New York, 1972, pp. 109-122.

[10] W. Myrvold, T. Prsa and N. Walker. A dynamic programming approach for testing
clique algorithms, preprint, 1997.

[11]L Pohl, A. Kelly. A Book on C, 4th edition. Addison Wesley, 1998.

[12] K. Rosen. Discrete Mathematics and Its Applications, 4th edition. McGraw-Hill,
1999.

Appendices

Here we provide a listing of the C language implementations of the algorithms. These

are based on programs made available by Kreher and Stinson [8].

Appendix 1 defs.h

This header file lists some symbolic constants used in the program.

#define WORDSIZE 32

#define false 0

#define true 1

#define BETTER 1

#define EQUAL 0

#define WORSE -1

#define BLANK ' °

#define CcOMMA °*,°*

#define T v

#define NEWLINE '\n'
#define SEMICOLON ';°
#define RBRACE ‘'}°*

#define LBRACR ‘'(°

#define ComputeWords(n) (WORDS=n/WORDSIZE+l)
#define decreasing -1
#define increasing 1
#define Min(x,y) ((x<y)?x:y)
#define red ‘'R’

#define black 'B*

47

Appendix 2 setlibO.h

This header file gives the interface for the set operations.

typedef unsigned int UINT;
typedef UINT * set;
typedef set* setlist;

extern int WORDS;
extern set V;
extern set _AuxSetl;

// SetlInit(n) sets the universe V to be Vv={0,1,2,...,n-1}. It
// must be executed at least once before other operations are
// executed.

extern void SetInit(int);

extern void ClearSet(int);

// The following operations do allocation/deallocation of sets and setlists.
extern set NewSet(void);

extern void FreeSet(set *);

extern setlist NewSetList(int);

extern void FreeSetList(int,setlist *);

extern void free_and _null (char **);

// Input/Output

extern void ReadSet (FILE *, set *);
extern void OutSet (FILE *,int, set);
extern void OutSetByRank(FILE *, set);

// Initialization
extern void GetEmptySet(set);
extern void GetFullSet(set):;

// Operations

extern void SetInsert(int,set);
extern void SetDelete(int,set);
extern void Intersection(set, set, set);
extern void Union(set A,set B,set C);
extern void GetSet(set, set);

extern void SetMinus(set,set,set);
extern int SetOrder(set);

extern int FindLargestElement (set);
extern void Complement (set, set);

// tests

extern int MemberOfSet (int, set);
extern int IntersectTest (set,set);
extern int Empty(set);

extern int CompareSets(set,set);

// timing
extern void start_time(void):
extern double prn_time(void);

Appendix 3 setlibO.c

This file gives the implementations for the set operations.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “defs.h"
#include "setlib(0.h"
#include <time.h>

#define MAXSTRING 100

int WORDS;
set V=NULL;
set _AuxSetl=NULL;

// Allocation/Deallocation

void free_and null (char **ptr)
(if (*ptr != NULL)

(free {(*ptr);

*ptr = NULL;
}}/* free_and _null */

set NewSet (void)

// Allocate storage for set.

{

set S;
S=(set)calloc (WORDS, sizeof (UINT));
return(s);

}

void FreeSet (set *S)
// Deallocate storage for set.
{
free_and_null ((char **) S);
}

setlist NewSetList(int m)

// Allocate storage for a list of m sets.
{

int i;

setlist L;

L=(setlist)calloc(m,sizeof(set));
for(i=0;i<m;i++) L[i}=NewSet();
return(L) ;

}

void FreeSetList(int m, setlist *S)
// Deallocate storage for a list of m sets.

49

int i;

if ((*S)==NULL) return;
for(i=0;i<m;i++)

{

FreeSet (&((*S)[i]));

}

free_and_null ((char **) S);
}

void SetInit(int n)
// Initialize environment with universe v={0,1.2,...,n-1}
{
int i;
ComputeWords (n) ;
V=NewSet();
for(i=0;i<n;i++) SetInsert(i,V);
_AuxSetl=NewSet () ;

}

void ClearSet (int n)
{
PreeSet (&V) ;
PreeSet (&_AuxSetl);
}

/*
** Input\Output
*/

void OutSetByRank(FILE* F,set S)
// Write to file F the rank of the set with SusetlLexrank S.
{
int i;
for(i=0;i<WORDS;i=i+l) fprintf(P," %x",S[i]):;
}

void OutSet(FILE* F,int n, set S)
// Write to file F the set with SusetLexrank S.
{
int u,v;
fprintf(F,"(");
u=0; while((u<n) && !MemberOfSet(u,S)) u=u+l;
if(ui=(n))
{
fprintf(F, *%d4",u);
fox (v=u+l;v<n;v=v+1l)
if (MemberOfSet(v,S)) fprintf(F,",%d",v);
}
fprintf(F,"1"*);
}

wvoid ReportBadSet(char * X)
{

fprintf (stderr, *Error: Read Bad Set: %s\n®,X);
exit(l):;

50

}

void ReadSet(FILE *P, set *S)
// Read a set from the file F and return its SubsetLexRank in S.
{
int i,L,u;
char X[1000];
GetEmptySet(*S) ;
fgets(X,1000,F); if (X[0]=='\n') £fgets(X,1000,F};
L=strlen(X):;
i=0;
while(i<L && X[i}] !=LBRACE) i=i+1;
if (i==L) ReportBadSet(X);
while(i<L && X[i] !=RBRACE)
{
if (i==L) ReportBadSet(X);
i=i+l;
u=atoi (X+i);
SetInsert(u, *S);
while((i<L) && ! (X[i}==COMMA || X[i)==BLANK || X[i)}==RBRACE)) i=i+l;
}
}

// Operations
/*t********t****k*******t***i****t*********t********/

int look([256]=

{
0'1'112I102'2I3'l'2l2'3'203'3l4l112'2I3'213l3041213131413'4141Sl
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5.2,3,3,4,3,4,4,5,3,4,4,5.4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
11272'3'21313t4'2r3l3'4'3:4'4'5'2,3,3,4,3,4,4,5'3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2'3131403141405131414'51415'5161314,4,5,4,5;5;6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7.,8

};

/*t****'*****t************f#***********************/

int SetOrder(set S)
// Algorithm 1.8 Return the number of ones in the set with //
// SubsetLexRank S.
{
int ans,i;

UINT x
ans =
for(i=

{
x=S[i];
while (x)
{
ans += look{x& (UINT)0377];
x >>= (UINT)S8;
}
}
return(ans);
}

0;
0;i<WORDS; i++)

51

void SetInsert(int u, set A)

/*

** Algorithm 1.3 Replaces A with the SubsetLexRank of
i SubsetLexUnrank(A) union (u}.

*/
{
int i;
UINT 3j;

j=WORDSIZE-1-(u % WORDSIZE);
i=u/WORDSIZE;

A[i)}=A[i]| ((UINT)1<<3);

}

void SetDelete(int u, set A)
/t

** Algorithm 1.4

** Replaces A with the SubsetLexRank of SubsetLexUnrank(A)\{u}.
*/

{

int i;

UINT 3j;

j=WORDSIZE-1-(u % WORDSIZE);
i=u/WORDSIZE;
Af[il=A(1i)&~((UINT)1<<j);

}

int MemberOfSet (int u, set A)
/*
** Algorithm 1.5
** Returns true if u is in the set with SubsetLexRank S.
*/
{

int i;

UINT 3;

j=WORDSIZE-1-(u % WORDSIZE):;
i=u/WORDSIZE;

if(A[1]&((UINT)1l<<]j))

{

return(true);

}

else

{

return(false);

}
}

void Intersection(set A,set B,set C)

l// Algorithm 1.7 C gets A intersect B

{

int i;

for(i=0;i<WORDS;i++) _AuxSetl([i]=A[i]&B[i];
for(i=0;i<WORDS;i++) C[i]=_AuxSetl({i]:

}

void Union(set A,set B,set C)
// Algorithm 1.6 C gets A union B

52

int i;

for(i=0;i<WORDS;i++) _AuxSetl([i] = A[i] | BIil;
for(i=0;i<WORDS;i++) C[i]=_AuxSetl([i];

}

>

int IntersectTest(set A,set B)

/*

** Returns true if A intersect B

** is nonempty; otherwise false is returned.

*/

{

int i;

for(i=0;i<WORDS;i++) if(A[i)&B[i]) return{true);
return(false);

}
void SetMinus (set A,set B,set C)
/*
** Cgets A \ B
*/
{
int i;

for(i=0;i<WORDS;i++) _AuxSetl{i]=A[i]1&~B(i];
for(i=0;i<WORDS;i++) C[il=_AuxSetlli];
}

void GetEmptySet (set A)
/*
** A gets (}
*/
{
int i;
for(i=0;i<WORDS;i++) A[i]=0;
}

void GetFullSet(set A)
/t
** A gets the universe set,
** j.e. A gets V.
*/
{
int i;
for(i=0;i<WORDS;i++) A[i}=VI[i];
}

void GetSet(set A, set B)
/*
** A gets B.
*/
{
int i;
for(i=0;i<WORDS;i++) A[i]=B([i];
}

53

int Empty(set x)

/t

** Returns true if x is (}; otherwise false is returned.
*/

{

int i;

for(i=0;i<WORDS;i++) if(x[i]!=0) return(false);
return(true);

}

int CompareSets(set A,set B)

/*

** Returns -1, 0, or 1 if the SubsetLexRank(A) is
hadd less than, equal to, or greater than the
** SubsetLexRank(B) respectively.

*/

{

int i;

i=WORDS-1;

while((A[i)==B{i]) && (i>0)) i=i-1;
1f((i==0) && (A[0)}==B(0])) return(0):;
i1£(A{1i]1>B({i]) return(l);

return{-1);

}

int PindLargestElement (set S)
/*
hdd Returns the largest element u in the set S
*/
{

int i,3;

UINT a.d;

i=WORDS-1; while(!S[i]) i=i-1; a=S[i];
d=(UINT)1;

j=0;

while(! (d&a))

{

d=(d<<1);

j=j+1;

}

return((WORDSIZE-1-3j)+(i*WORDSIZE));
}

void Complement (set A, set B)
// B gets the complement of A.
{
int i;
for(i=0;i<WORDS;i++) Bl[i]=V[i]&~A[i];
}

// code to time program, from [12]
typedef struct
{
clock_t begin_clock, save_clock;
time_t begin_time, save_time;
}
time_keeper;

static time_keeper tk; /* known only to this file */

void start_time()
{
tk.begin_clock = tk.save_clock = clock():;
tk.begin_time = tk.save_time = time(NULL);
}

double prn_time()
{
char sl1[MAXSTRING), s2[MAXSTRING];
int field_width, nl, n2;
double clocks_per_second = (double) CLOCKS_PER_SEC,
user_time, real_time;
user_time = (clock() - tk.save_clock)} / clocks_per_second;
real_time = difftime(time(NULL), tk.save_time);
tk.save_clock = clock();
tk.save_time = time(NULL);

/* print the values found, and do it neatly */

nl sprintf(sl, "%.1f", user_time);
n2 sprintf(s2, "%.1f", real_time);
field_width = (nl > n2) ? nl : n2;
printf("%s%*.1£%s\n%¥s%*.1f%s\n\n",
*User time : ", field_width, user_time, * seconds",
*Real time : ", field_width, real_time, * seconds");
return user_time;
}

55

Appendix 4 maxc_int.c

This file contains C language implementations of the algorithms discussed in this report.
// maxc_int.c

// library files

#include <iostream.h>
#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>// for £loor
#include <time.h>// for time
#include *defs.h*

#include "setlib0.h"*

#define false 0
#define true 1

// a graph is an array of sets
// actually an array of adjacency lists
typedef set * graph;

PILE *£; // input file

// global variables

int NODES; // number of nodes in graph

int n; // number of vertices in graph

int kp = 1; // number of partitions in graph

double p = 0.5;// density of graph

int NumColors; // number of colors used

int Optsize; // size of largest clique found so far

int cross_over = 216; // lowest value where greedy beats dsatur coloring for
fixed p, k

typedef int BOOL;
// £lags used for debugging purposes

BOOL debugl = false;
BOOL debug2 = false;
BOOL debug3 = false;

BOOL debug4 = false;

BOOL interchange = false; // set to true to implement interchange
BOOL color_change = false;

char bounding_function;
char WBOUND([80}; // name of bounding technique used

graph A; // contains the adjacency matrix for the graph

// lists of sets

setlist C, B;

setlist ColorClass; // contains list of vertices with the same color
setlist Component; // contains list of vertices in same component

// arrays

int * X; // contains list of vertices in optimal clique so far
int * OptClique; // maximum clique

int * Color; // array of colors

int * Degree; // degree of ith vertex

int * Mark; // component number that vertex is in

// function pointer to bounding function for pruning search tree

56

int (*BOUND) ();

// sets

set Uncolored; // set of uncolored vertices

set used; // set of colors used

// set of colors with one vertex of that color adjacent to v_new
set Adj_Colors;

// £ind the maximum degree of any vertex in the set S from a to n
int find_max_degree(int a, int n, set S, int* Degree)
{
int i, max_degree = 0;
for (1 = a; 1 < n; i++)
{
if (MemberofSet(i, S))
{
if (Degreel[i] > max_degree)
max_degree = Degree(i];
}
}
return max_degree;
}

BOOL Valid_Coloring()
{
int i, 3;
// for each pair of vertices in the graph
// if i and j have the same color, then
// if they are also adjacent, coloring is invalid
for (L = 0; 1 < n; i++)
for (j =i + 1; § < n; j++)
if ((Color[i] != -1) && (Color[i] == Color(jl)
&& (MembexrOfSet(j, A[i])))
{
printf(*Brror: vertex 3d and vertex %d are adjacent, and \n are both
colored using color %d\n*, i, j, Color(il):;
return false;

}
printf(*Coloring is valid\n*);
return true;

}

// print values of an array in set S from a to n
void print_array(int a,int n,int *A, set §)
(
int i;
printf(*{ *);
for (i = a; i < n; i++)
if (MemberofSet(i, S))
printf("sd =, A(i]);
else
princf(* - * };
printf(*]");
printf({*\n");
}

void WaitForUsex()

{
int x = 0;;
printf(*Enter any integer to continue\n®);
scanf("%d", &x):

}

// print values of a set from a to n
void print_set(int a, int n, set S)
{

int i;

print£(*[*);

for (i = a; 1 < n; i++)

if (MemberOfSet(i, S))
printf("%d *, i);

printf("]1*);

printf£(*\n");
}

// choose next vertex from set S of maximum degree from a to n
int choose_vertex(int a, int n, set S, int max_deg, int* Degree)
{
typedef int BOOL;
BOOL found = false;
int i = a, v_new = a;
while ((i < n) && (!found))
(
if (MemberOfSet(i, S) && (Degree([i) == max_deqg))
(

v_new = i;
found = true;
return v_new;
}
else
i+e;
}
if (!found)
{

printf("Brror: vertex not found in set S\n");
return -1;
}
return v_new;
}// end if

// uses a depth-first search to find the connected
// components in a graph
void DPS_component(int v, int comp_count, set S)
{
int i;
Mark(v] = comp_count; // vertex v is marked with comp_count
// vertex v inserted into Component set
SetInsert(v, Component([comp_count]};

for (i = 0; 1 < n; i++)

{

if (MemberOfSet(i, S) && MemberOfSet(i, A[vl))
if (Mark{i] == 0) // vertex i not in any previous component
DPS_component (i, comp_count, S);

}

}

// finds the component in a set S containing vertex
void Find_Component(int vertex, set S, int n)
{
int v; // vertex loop counter
int comp_count = 1; // number of components in the graph
GetEmptySet (Component [1]);
for (v=0; v<n; vet)
{
if (Memberofset(v, S))

58

Mark(vl = 0; //vertices start in no component
}
comp_count = 1;// counter for current component

// f£ind component of vertex
DFS_component (vertex, comp_count, S);
)]

// implements the bichromatic interchange
int Interchange{int max_color_used, int colour, int v_new)
{
int i, J, v;
int num_components = 0; // number of components in graph
int x; // vertex

set temp_set;

set temp_setl;

// subset of vertices colored using exactly two colors
set Bi_Colored;

setlist UA; // uniquely adjacent to v_new
UA = NewSetList(n);

temp_set = NewSet();
temp_set2 = NewSet():;
Bi_Colored = NewSet();

GetEmptySet (Adj_Colors);

// first step: find the set of colors Adj_Colors which are
// uniquely adjacent to the next vertex v_new

for (i = 0; i <= max_color_used; i++)

{

Intersection(ColoxClass{i], Alv_new}l, temp_set);
if (SetOrder(temp_set) == 1)
{
SetInsert(i, Adj_Colors):
Union(UA(v_new], temp_set, UA(v_new]);
}
}

//£ind connected <i,j> components of subgraph which are
// colored using only the colors in the set Adj_Colors
if (SetOrder(Adj_Colors) >= 2)
{
// £ind an <i,j> component of vertices colored so far
// such that exactly one vertex in the component is
// adjacent to v_new
for (i = 0; 1 < colour; i++)
{
if (Memberofset(i, Adj_Colors))
(
for (j =1 + 1; j < colour; j++)
{
if (MemberoOfSet(j, Adj_Colors))
{
Union(ColoxClass([i], ColoxClass{j], Bi_Colored):;
// Bi_Colored is the set of vertices colored
// with either i or j

// test if we can do an i,j interchange
// on some i,j component

59

// first, f£ind the vertex of color i adjacent to v_new
Intersection(ColorClass(i], Alv_new],temp_set);
for (v = 0; v < n; v++)
{
// true only for one vertex in the set
if (MemberoOfsSet (v, temp_set))
{
Pind_Component (v, Bi_Colored, n):
Intersection(Component[l], A(v_new], temp_set2);
//Intersection(ColorClass[j}, temp_set2, temp_set2);
if (SetOrder(temp_set2) == 1) // if true, we interchange
{
// exchange colors i and j on all vertices in Component(l]
for (x = 0; x < n; xX++)
{
if (MemberoOfSet(x, Component(1l]))
{
if (MemberOfSet(x, ColorClass(i]))
(
Colox(x] = j;
SetInsert(x, ColorxClass(jl)
SetDelete(x, ColorClass([i])
}
else if (MemberOfSet (x, ColorxClass(j]))
{
Colorx(x] = i;
SetInsext{x, ColorClass[i}]):;
SetDelete(x, ColoxClass{jl);
}
else
{

-
’
-
’

printf (*Brror:Bi_Colored set should contain only i and j\n*);

exit(l);
}
}
}// end for
return i;
}// end if

}// end if
// end for
/ end if

} end for
}// end if

}// end for
}// end if

}
Y/
17
/

// de-allocate memoxry

PreeSet (&Bi_Colored);

PreeSet (&temp_set) ;

FreeSet (&ktemp_set2);

FreeSetLisgst(n, &UA);

return -1; // if we got this far, no interchange was possible

}

int NoBound()

{
// no bounding function used

return(n);
}

int SizeBound(int L)

// Algorithm 4.15

{
int k;
k = SetOrder(CIL]);
return (k+L);

}

int GreedyColor(set U, int a)
/t
Algorithm 4.16
color the vertices of the graph using a greedy algorithm
use the result in a bounding function

*/

{

int h; // color used on current vertex

int i; // counter in for loop

int k = 0; // numbexr of colors used for graph is initialized to zero

// initialize colors
for (i = 0; 1 < n; i++)
Color(i] = -1;

for (i = a; i < n; i++) // for each vertex in the graph, color it in turn
{
if(MemberofSet(i,U)) // Color vertex i, if i is in the set U
{
// try to color with lowest available color
h =0;
// keep trying until lowest possible color is found for vertex
while ((h < k) && IntersectTest(A[i],ColorClass({h]))
h =h + 1; // increment color h as long as necessary
if(h == k) // if a new color is necessary
{
k = k + 1; // number of colors used so far is incremented
GetEmptySet (ColoxClass(h]); // new color class is initially empty
}
// add vertex i to set of vertices colored using color h
SetInsert(i, ColorClass(h]);
// color vertex i with color h
Colorl[i] = h;
}
}
return (k); // return the number of colors needed to color the graph
}

int GreedyColor_Int(set U, int a)
/*
Algorithm 4.16
color the vertices of the graph using a greedy algorithm
use the result in a bounding function
*/
{
int h; // color used on current vertex
int i; // counter in for loop
int k = 0; // number of colors used so far is initialized to zero
int new_color = 0;

for (i = 0; 1 < n; i++)

Color(i] = -1;
/! for each vertex in the graph, color it in turn
for (i = a; 1 < n; i++)

C

61

// Color vertex i, if it has not yet been colored
if({ MemberofSet(i,U))
{
// txy to color with lowest available color
h = 0;
// keep trying until lowest possible color is found for vertex
while { (h < k) && IntersectTest(A[il,ColorClass(hl))
h =h + 1; // increment color h as long as necessaxy

// interchange if possible

if ((h == k) && (k > 0)) // new color necessary
(.
new_color = Interchange(k - 1, h, i);

// if interchange occurred, v_new is colored using value
// returned by Interchange function
if (new_color >= 0)
h = new_color;

if (h == k) // if a new color really is necessary
{
k = k + 1; // number of colors used so far is incremented
// new color class is initially empty
GetEmptySet (ColorClass[h]);
}
// add vertex i to set of vertices colored using color h
SetInsert(i, ColorClass(h]));
// color vertex i with color h
Color([i] = h;
}
}
Valid_Coloring(); // checks if coloring obtained is valid
return (k); // return the number of colors needed to color the graph
}

int SamplingBound(int L , int a)
// Algorithm 4.17
{
int u, k;
if(L == 0)
return NumColors;
GetEmptySet (used) ;
for(u = a; u < n; u++)
if (MemberofsSet (u,C[L]))
SetInsert(Color({u],used);
k = SetOrder(used):;
return (k + L);
}

/tf*ﬁtt*tt*t**tﬁt*tk*t*tt*t#***t**ttt*t* **t**t*tti"k*,

int Dsatur(set U, int a)
// DSatur Algorithm to color graph vertices
{

// dsatur algorithm defs

// variables

BOOL found = false:;

// true if maximum clique found, else false
int clmax = false;

int 1, jJ, ii;

int max_sat_deg:;

int max_degree;

62

int v_new;

int max_col_neighbors;
int colour = 0;

int new_color;

int max_color_used = 0;

// dynamic arrays

int *cdeg:; // number of colored neighbours

int *gatdeg; // saturation degree

int *Degree_x; // degree of ith vertex in set XX

// sets of vertices
set neighbour;
set temp_set;
set W; // set of uncolored vertices
set XX; // set of uncolored vertices of maximum degree
// from which new vertex is selected
// list of sets
setlist neighbcol; // set of colors in neighbourhocod of vertex

// allocate memory for dsatur algorithm structures

// arrays of degrees of vertex set

cdeg = (int *)calloc(n,sizeof(int));
satdeg = (int *)calloc(n,sizeof(int));
Degree_x = (int *)calloc(n,sizeof(int)):;

// sets of vertices
neighbour = NewSet();
temp_set = NewSet():;
W = NewSet();

XX = NewSet();

// lists of sets
neighbcol = NewSetList(n);

// initialize colors

for (i = 0; i < n; i++)

{

Color(i] = -1;

GetEmptySet (ColoxClass([i]);
}

// step 1 - initialize arrays
for (i = a; i < n; i++)
{
cdegli]l = 0; // number of colored neighbors of vertex i
satdeg(i] = 0; // number of different colored neighbors of vertex i
Degree_x{i] = 0; // degree of vertex i in set XX
GetEmptySet {neighbcol(il);
}

clmax = false; // true when max clique is found
GetSet (W, U); // assign set U to set W

while (!Empty(W)) // continue until all vertices have been colored
{
// XX is a set containing the uncolored vertices (in W)
// of maximum saturation degree
// first f£ind maximum saturation degree
max_sat_deg = 0;
max_sat_deg = £ind_max_degree(a, n, W, satdeg):

63

// next insert any vertices of maximum saturation
// degree into the set XX
for {1 = a; i < n; i++)
{

if (MembexOfSet(i, W))

{

if (satdeg(i] == max_sat_deg)
SetInsert(i, XX);

}
}
// the above has defined the set XX of vertices of
// maximum saturation degree in W
// next we must choose the new vertex to be colored
// from the set XX

if (!clmax) // clmax == false choose v_new with max degree in XX
{
// first find the degree of each vertex within set XX
for (i = a; 1 < n; i++)
{
if (MemberOfSet(i, XX))
{
Intersection(A(i]l, XX, temp_set);
Degree_x(i] = SetOrder(temp_set);
}// end if
}// end for
// choose new vertex from set XX with maximum degree
// first find the maximum degree of colored neighbours
max_degree = 0;
max_degree = find_max_degree(a, n, XX, Degree_x);
// next choose a vertex from XX with maximum degree
v_new = choose_vertex(a, n, XX, max_degree, Degree_x);
}// end if
else
{
// choose new vertex from set XX with maximum number of colored neighbours
// first find the maximum number of colored neighbours
max_col_neighbors 0;
max_col_neighbors find_max_degree(a, n, XX, cdeg):;
// next choose a vertex from XX with max number of colored neighbours
v.new = choose_vertex(a, n, XX, max_col_neighbors, cdeg):;
}// end else
GetEmptySet (XX) ; // re-initialize set XX
// color vertex v_new with lowest available color
colour = 0; // start with lowest possible color
// increment color until it is not equal to
// the color of a neighbour of v_new
while (IntersectTest(A[v_new]l, ColorClass([colour]))
colour ++;

if (interchange)
{
// interchange if necessary
if (colour > max_color_used}
{
if (debug3)
14
printf("\nCalling Interchange: Coloring used so far: *);
print_array(a, n, Color, U);
for (ii= 0; ii < colour; ii++)
{
printf("Vertices colored with color %d = *, ii);
print_set (0, n, ColorClass[ii));

}
printf("Saturation degrees = *);
print_array(0, n, satdeg, U);
}
}
new_color = Interchange(max_color_used, colour, v_new);

if (new_color >= 0)

{
// if interchange occurred, v_new is colored using the
// value returned by Interchange function
colour = new_color;

new_color = -1; // reset to -1
coloxr_change = true;

if (debug3)

{

printf("\n Interchange did take place: *);
printf("Next vertex to be colored = $d\n", v_new);
}
}
}

Color(v_new] = colour;
/ /GetEmptySet (ColorClass [colour]);
SetlInsexrt(v_new, ColorxClass([colour]);
if (colour > max_color_used)

max_color_used = colour;
// remove vertex from list of uncolored vertices
SetDelete(v_new, W);

// update saturation degrees of each vertex i
for (i = 0; 1 < n; i++) // for each vertex i
{
cdegli} = 0;
satdeg(i] = 0; // reset to zero
GetBmptySet (neighbcol[i]);
for (j = 0; j <= max_color_used; j++) // for each color used
{
// update arrays after coloring vertex
// if vertex i has a neighbour with color j,
// then increment saturation degree of i
if (IntersectTest(Al[i], ColorClass{jl))
{
Intersection(Af[i}, ColorClass([j], temp_set);
cdeg(i] = cdeg[i] + SetOrder(temp_set);
satdeg(i] ++;
SetInsert(j, neighbcol{i]);
}
}
}
} // end while

// Finally, de-allocate memory used by DSatur
// function in reverse order of allocation

// Pirst: lists of sets
PreeSetList(n, &neighbcol);

// sets of vertices
PreeSet (&XX) ;
FreeSet (&W) ;

FreeSet (&temp_set) ;
PreeSet (&neighbour);

// arrays

free (Degree_x) ;
free(satdeg);
free(cdeq);

print€(*\n*);
return (max_color_used + 1);
}

/t*kttt***********t****Q******ti*t**tt*t******ttt**tt/

int GreedyBound(int L , int a)

/t

** Algorithm 4.18

*/

(
int bound = 0;
bound = (GreedyColor(CIL], a) + L);
return bound;

}

int GreedyBound_DSatur(int L , int a)
// Algorithm 4.18
{
int bound = 0;
bound = (DSatur(C{L}), a) + L);
return bound;
}

void MaxClique2(int L)
// Algorithm 4.19
{
int start,i,x;
NODES++;
// L = depth of current node in search tree = length of list X
if (L == 0)
(
GetSet(C[L], V);
start = 0;
}
else
{
// WORDS = (n/ 32) + 1, defined in “defs.h"
for(i = 0; i < WORDS; i++)
ClLI[i] = A[X({L~1]]1(i] & BIX[L-1]]1[i) & C[L-11(i];
start = X[{L-1] + 1;
}

for(x = start; x < n; x++)
if (MemberofSet(x, C{L]))
{
if (SetOrder(C[L]) < cross_over)
{
if (BOUND(L, start) <= OptSize)
{
return;
}
}/7/ end if cross over
{
X(L] = x;
if ((L + 1) > OptSize)

{
OptSize = L + 1;

for(i = 0; L <= L; i++)
OptCliquefi} = X[i];
} // end if
MaxClique2 (L + 1});
}// end
} // end if
} 7/ end MaxClique2

l*i**t***t*****t*tt*tttiiti*tt*itttttt***t**ft*tt*i**/

graph NewGraph(int n)
// Allocate storage for a graph on order n
{
int i;
graph A;
A = (graph)calloc(n, sizeof(set));
for(i = 0; 1 < n; i++)
{
A(i] = NewSet():;
}
return(a) ;
}

void FreeGraph(int n, graph A)
// Allocate storage for a graph on order n

{
int i;
for(i = 0; 1 < n; i++)
PreeSet (&A([i]);
free(d);
}

void ReadGraphEdges (FILE *F, graph *A, int *n)
/t
Read and allocate storage for a graph from the file
P which contains a list of edges. The order of the
graph is returned in n.
*/
{
int i,u,v,m;
// input number of edges (m) and vertices (n)
fscanf (P, "%d %d*, &m, n);
ComputeWords (*n) ;
*A = NewGraph(*n):;

/! set up symmetric adjacency matrix for graph
for(i = 0; i < mpi++)

{
fscanf (P,"* %¥d %d",&u,&v);
SetInsert(u, (*A)[v]); // vertex u is adjacent to vertex v
SetInsert(v, (*A)[u]); // vertex v is adjacent to vertex u
}

}

void RandomGraph(graph *A, int m, double p, int k)
/t
Create a random k-partite graph with n vertices,
k partitions, and probability p that any two
vertices in different partitions are adjacent
*/
{
double random;
int u, v; // loop counters
int start;

67

int size; // size of each of the k partitions

// Seed the random number geneator

// int seed = time (0); // variable seed value

int seed = 100; // use a fixed seed to compare results
srand(seed); // seed the random number generator

n =m;
// assume for simplicity that n is a multiple of k
size = n / k;

// allocate memory space for adjacency matrix A
ComputeWoxds (n) ;
*A = NewGraph(n);

// set up symmetric adjacency matrix for graph
for{(u = 0; u < n - gize; u++)
(
start = size + (int)floor(u / size) * size;
for (v = start; v < n; v++)
{
// generate a random number p between 0 and 1
random = rand() * (1.0 / RAND_MAX);
if (random > 0.0 && random < p)
{
SetInsert(u, (*A) (v]); // vertex u is adjacent to vertex v
SetInsert(v, (*A)[ul]); // vertex v is adjacent to vertex u

}
}
}
}

/*t**t*'*ttt****t**t*k**kt**iiﬁ***it*ttiﬁitQitit*i*tt/
int main()
{

int v;

int i, 3;

interchange = false;

// select which graph to color
// £ = fopen(*a:\\clique\\graphs\\small_graph_7_5.txt*, *r");
f = fopen(*a:\\clique\\graphs\\sample®*, "r*);
/7 £ = fopen(*a:\\clique\\graphs\\small_graph_10_7.txt®, *r®);

/1 £ = fopen(*a:\\clique\\graphs\\rand50_5.txt", *r");

// £ = fopen(“"a:\\clique\\graphs\\rand100_5.txt"*, *r");
/7 £ = fopen(®a:\\clique\\graphs\\rand150_5.txt", *r*);
// £ = fopen(*a:\\clique\\graphs\\rand200_5.txt", *r*);
// £ = fopen("a:\\clique\\graphs\\rand250_5.txt", *r*);
/7 £ = fopen(~a:\\clique\\graphs\\rand25_75.txt*, *r*);
/7 £ = fopen(*a:\\clique\\graphs\\rand50_75.txt*, *r");
// £ = fopen(*a:\\clique\\graphs\\rand75_75.txt*, °*r*);
/7 £ = fopen(*a:\\clique\\graphs\\rand100_75.txt*, *r*);
/7 £ = fopen(*a:\\clique\\graphs\\rand125_75.txt"*, °r*);

ReadGraphEdges(f, &A, &n); // read input file
fclose(f); // close input file
Optsize = 0; // size of largest clique found so far

/! n = 100;
SetInit(n); // initializes the set V to (0, 1, 2, ..., n~1}

// allocate memory for dynamic arrays, sets, setlists

68

// set lists

B = NewSetList(n);

C = NewSetList(n);
Component = NewSetList(n);
ColorClass = NewSetList(n):;

// sets

Uncolored = NewSet();
used = NewSet();
Adj_Colors = NewSet():;

// arrays

X = (int *) calloc(n,sizeof(int));
OptClique = (int *) calloc(n,sizeof(int));
Color = (int *) calloc(n,sizeof(int));
Degree = (int *) calloc(n,sizeof(int));
Mark = {int *) calloc(n,sizeof(int));
// p = 0.5;

// kp = 20; // number of partitions
// RandomGraph(&A, n, p, kp);

// set debugging flags
interchange = false;

debugl = false;
debug2 = false;
debug3 = false;
debugd = false;
if (debug3)

for (i = 0; i < n; i++)
print_set(0, n, A(i}); // display adjacency matrix

// initialize degrees of vertices O{n squared)
for (L = 0; i < n; i++)
for (j = 0; § < n; j++)
if (Memberofset(i, A[jl))
Degree{il++;

// prompt user for bounding function to be used

printf("Please enter the type of bounding function you wish to use\n®);
printf(*N for no bound\n*):;

printf(*Z for size bound\n®*);

printf ("G for greedy bound with greedy coloring algorithm \n");

printf ("R for greedy bound with DSatur coloring algorithm\n*):;
printf(*S for sampling bound with greedy coloring algorithm\n");
printf("I for sampling bound with greedy coloring algorithm with
interchange\n*);

printf("D for sampling bound with DSatur coloring algorithm\n");

//read in user's choice of bounding function
scanf(*%c*, &bounding function);
start_time(); // start timing of program

switch(bounding_function)}
{
case ‘'N':
case 'n':
sprintf (WBOUND, "$s", *None *);
BOUND = NoBound;
break;
case 'Z‘':
case ‘'z':
sprintf (WBOUND, "$s8*, "Size ")

69

BOUND = SizeBound;
break;
case 'G':
case ‘'g':
sprintf (WBOUND, "%s°, "Greedy *);:
BOUND = GreedyBound;
break;
case 'R':
case ‘r‘:
sprintf (WBOUND, "%$s*, "Greedy using DSatur Coloring Algorithm *);
BOUND = GreedyBound_DSatur;
break;
case *'S':
case ‘s':
sprintf (WBOUND, "$s*, "Sampling using Greedy Coloring Algorithm °*);
NumColors = GreedyColor(Vv,0);
BOUND = SamplingBound;
break;
case 'I':
case *i‘:
sprintf (WBOUND, *$s", "Sampling using Greedy Coloring Algorithm with
Interchange *);
NumColors = GreedyColor_Int(V,0);
BOUND = SamplingBound;
break;
case ‘D':
case 'd’':
sprintf (WBOUND, "$s8", *Sampling using DSatur Coloring Algorithm ")
NumColors = DSatur(V,0);
BOUND = SamplingBound;
break;
default:
printf(*Illegal sort method\n®);
exit(1l);
break:;

// initialize set B[v] to the set of vertices numbered higher than v
GetSet(B[0], V),
SetDelete(0, B[0]);

for (v = 1; v < n; v++)
{
GetSet (B[v], Blv-1]);
SetDelete(v, Bivl);
}

NODES = 0; // number of nodes in search tree initialized to zero
MaxClique2(0); // call maxclique function
printf("Number of vertices in the graph = %11d \n*, n);

if (kp > 1)
{
printf("Graph density = %29.2f \n*, p);
printf (*"Number of partitions = $11d \n*, kp):
}

printf(*Type of bound used = $35s \n*,WBQUND) ;
printf(*Maximum clique size found = %164 \n",OptSize);
printf(“Number of nodes in search tree = $11d\n*,NODES);

// print the vertices in the maximum clique
printf("Max. Clique = *);

print_array(0, OptSize, OptClique, V);
prn_time();

70

printf(" \n");

// de-allocate memory in reverse order of allocation

// lists of sets
FreeSetList(n, &B):
FreeSetList(n, &C):;
FreeSetList(n, &Component);
PreeSetList(n, &ColorClass);

// sets of vertices
PreeSet (&Adj_Colors);
PreeSet (&used) ;
PreeSet (&Uncolored) ;

// arrays
free(Mark) ;
free(Degree) ;
free(Color);
free(OptClique);
free(X);

return (0);
}

71

