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Abstract

Data Mining with Bilattices

Xiaohong Wang

Data mining has become a key research area in database after Agrawal and Sirkant
introduced association rules in data mining and proposed Apriori for mining associa-
tion. However, most of the works focuses on finding patterns on itemsets, especially
associations between items. With the fast development of high technologies and large
scale of information collection tools, the need for data miring has gone far beyond
association mining. In this thesis, a new framework is established that largely extends
the current existing data mining field. While the traditional data mining problems
can be viewed as computing itemset lattice, vet another equal important data mining
problem is mining circumstance which forms a second lattice: circumstance lattice.
In itemset lattice, extensive work is done to introduce constraints in correlatiors min
ing and algorithms for computing different useful correlation queries are provided.
For the new concept of circumstance mining, a close relationship is set up between
computing circumstance lattice and data cube. Several algorithms, including new
algorithms and modification of existing data cube algorithms, are given to answer
circumstance mining queries. Finally, algorithms for the dual mining on bilattices—
from itemset lattice to circumstance lattice and back, or vise versa are presented to
compute the Armstrong Basis for a given transaction database.
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Chapter 1
Introduction

With the opening of the new millenium, our needs for information processing and
analysis have become a basic necessary. As I was writing this thesis, one article
from September 10th’s “The Detroit News” came cross my eyes. The first sentence
from this article was: “When Bill Clinton and his staffers vacate the white House in
January, they’ll leave behind a historic mess: eight years’ worth of memos, snapshots
and bureaucratic bric-a-brac that must be preserved for posterity by the National
Archives, the government'’s official record keeper. And oh yes, there is also the little
matter of 40 million e-mails.” While people believe that this historic mess could be
a gold mine for future historians, just imaging the difficultiés to store all of this, let
alone to mine the useful information from this mess, if it is not impossible.

This simple news raises a very important issue, called data mining. Data mining,
also known as knowledge discovery in database, could be defined as a broad range of
activities that attempt to discover new information from existing information, where
usually the original information is gathered for a purpose entirely different from the
way it is used for data mining. With the coming of the digital age, data mining is
becoming more and more important.

1.1 Introduction to Data Mining

Data mining has been introduced as a new area in database research for more than 7
years. Before the introducing of data mining, massive amounts of data were largely
left unexplored and either stored primarily in an off-line store or on the verge of being



thrown away. This is because normal database systems offer little functionality to
support such “mining” applications. On the other hand, machine learning techniques
which do have such functionality, usually perform poorly when applied to very large
data sets. With the wide applications of computers and automated data collection
tools, people start to realize the importance of data mining. The basic problem is:
how could people find useful information from massive amounts of data collected and
stored in database. Typically, these applications involve large-scale information banks
such as data warehouses or datacubes.

One of the fundamental operations behind the common data mining tasks is to
find patterns in database. The first introduced pattern in data mining is assuciations
[AIS93]. The discovery of interested association relationships among huge amounts
of data will help marketing, decision making, and business management. Since then
several other patterns including correlations, causality, sequential patterns, episodes,
multidimensional patterns, max-pattern, partial periodicity, and emerging pattern
are also been introduced.

Over these years, researchers have studied various problems related to mining
interested patterns from large databases. They developed faster (both sequential and
parallel) algorithms for associations, its quantitative variants, sequential patterns,
extensions, and generalizations ([AS94, Klem+94, HKK97, SBMU98, KLKF98] are
some representative works).

Most of the work has emphasized on techniques for improving the performance of
algorithms for association rules in large database. Numerous algorithms have been
proposed for association rule mining. Among these, one particularly well-studied
problem is the search for association rules in market basket data. In this setting, the
base information consists of register transactions of retail stores. The query to be
answered is “which items are bought together often?”

In 1997, Brin et al [BMS97] proposed correlations, which generalized beyond mar-
ket baskets and associations used with them. In their setting, association rules were
but one of the many types of recurring patterns that could or should be identified
by data mining. Queries now can be extended to not only items that are bought
together often, but any items that have dependency with each other. So the query to
be answered becomes “which items are related to each other?”. The first part of this
thesis is based on correlations.



However, a more interesting query could be “under what conditions or circum-
stances a certain pattern holds?” An obviously example is: customers will buy lots
of ice creams and cold drinks in a hot day, while the sale for these items will drop
dramatically in a freezing day. So it is not only important to find out the patterns,
but also the circumstances under which these patterns hold. This thesis introduces
the new concept of circumstance mining, and establishes the relationship between
itemset mining and circumstance mining.

1.2 Current State of Research on Data Mining

In 1994, Agrawal and Srikant [AS94] proposed the concept of association rule as the
following;:
We say that i, = i if

1 i, and i, occur together in at least s % of the n baskets ( the support );

2 and, of all the baskets containing i, , at least ¢ % also contain 1, ( the confi-
dence).

They also proposed an algorithm, calied Apriori, to discover all significant association
rules between items in a large database of transaction. They compared Apriori with
two previously known algorithms, AIS and SETM. Experimental results showed that
Apriori always outperformed the previous algorithms. The performance gap increases
with the transaction size, and ranges from a factor of three for the small problems to
more than an order of magnitude for large transaction.

Apriori achieves good performance by possibly significantly reducing the size of
candidate sets. However, in situations with prolific frequent patterns, long patterns or
quite low minimum support thresholds, it still suffers. Because the cost of Apriori is
exponential to the number of items, and it is tedious to repeatedly scan database and
check a large set of candidates by pattern matching. This is especially true for mining
long pattern. So Han et al [HPY00, PHMOO] proposed a new algorithm using frequent
pattern tree (FP-tree) for mining frequent patterns without candidate generation.
The efficiency of their algorithm, FP-growth, is achieved with three techniques: (1)
a large database is compressed into a highly condensed, much smaller data structure
to avoid costly, repeated database-scans; (2) FP-growth adopts a pattern fragment
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growth method to avoid the costly generation of a large number of candidate sets;
(3) a partitioning-based, divide-and-conquer method is used to decompose the mining
task into a set of smaller tasks for mining confined patterns in conditional databases,
which dramatically reduces the search space. The performance study showed that
FP-growth method was efficient and scalable for mining both long and short frequent
patterns, and was about 10 times faster than Apriori.

Bayardo [Bay98] showed a different approach to solve the same problem. He
proposed an algorithm, called Maz-Miner, which scaled roughly linearly in the number
of maximal patterns embedded in a database irrespective of the length of the longest
patteru, while Apriori based algorithms scaled exponentially with the longest pattern
length. Experiments on real data showed at least 10 times faster than the Apriori
based algorithms.

Yet Ng et al [NLHP98] noticed that from the standpoint of supporting human-
centered discovery of knowledge, all the above models of mining association rules suffer
from the following serious shortcomings: (1)lack of user exploration and control, (2)
lack of focus, and (3) rigid notion of relationships. In effect, these models function
as a black-bax, and admit little user interaction in between. So they proposed an
architecture that opened up the black-box, and supported constraint-based, human-
centered exploratory mining of associations. The foundation of this architecture is
a rich set of constraint constructs, including domain, class, and SQL-style aggregate
constraints, which enable users to clearly specify what associations are to be mined.
They also proposed an algorithm called CAP. The introducing of constraints into
mining, not only solves the above shortcomings, but also restricts the number of
candidate sets needed to be generated. So experimental performance shows great
improvement on several previous algorithms.

While lots of researchers working on association mining, others realize that asso-
ciation is not the only rule needed to be mined from large database. The need for
mining queries beyond association may give even more interesting results. So Brin
et al [BMS97] introduced correlation mining using chi-squared metrics. However, ei-
ther association or correlation infers with a statistical relationship such as confidence
and chi-squared test between items, to better understand the nature of the relation
between items, Silverstein et al [SBMU98] introduced causality in 1998.



1.8 Current State of Research on Datacubes

By the definition of data mining, the applications need to perform data mining nor-
mally involve with datacubes and they are closely related to On-Line Analytical
Processing (OLAP). This is another database research area that attracts a lot of
attention recently. As the basic operation of datacubes, CUBE operator general-
izes the standard group-by operator to compute aggregates for every combination of
group-by attributes. This results in huge computation and memory requirements. So
researchers also did a lot of work on improving the perfermance of CUBE operator
to make the computation as efficient as possible.

In 1999, Beyer and Ramakrishnan [BR99! proposed an algorithm called BUC
for cube operator. BUC avoids computation of larger group-bys that do not meet
the minimum support. The pruning in BUC is similar to the pruning in Apriori
for associations, except that BUC trades some pruning for locality of reference and
reduces memory requirements. The pruning in BUC, combined with an efficient
sort method, enables BUC to outperform most of the previous algorithms for sparse
CUBES, and dramatically improves another type of cube computation, called Iceberg-
CUBE. The Iceberg-CUBE problem is to compute all group-by partitions for every
combination of the grouping autributes that satisfy an aggregate selection condition,
as in the HAVING clause of an SQL query. BUC works actually quite well even for
unconstrained cubes.

Zhao et al [ZDN97] proposed another approach to compute CUBE using chunked
array. They used minimum memory spanning tree to reduce the memory requirement.
Their method overlaps the computation of different group-bys, and by optimizing the
dimension order the total memory requirement is minimized. Experimental results
show great performance.

1.4 Structure and Contributions of the Thesis

As mentioned at the beginning of the introduction, associations answer queries such
as which items are bought together often. Correlations extend the queries to which
items are related to each other. Actually, all such previous work on data mining has
been done on one lattice, called itemset lattice. Yet an even more interesting query
should be under what circumstances (conditions) certain items have a special pattern.
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These conditions or circumstances form a new lattice called circumstance lattice. In
Chapter 2, the concept of itemset lattice, circumstance lattice and the relationship
between these two !attices are introduced. !

Although there has been an extensive amount of work done on mining associations,
people have so far realized that associations are not appropriate for all situations (for
example, see [BMS97]). Alternate patterns/rules need to be explored as well. Some
examples are given in the previous section. Same as introducing constraints in asso-
ciations, applications for mining minimal correlated sets satisfying given constraints
should also be considered. In Chapter 3, an extensive work on correlation mining is
proposed. Brin et als [BMS37] algorithm for mining correlations has been modified
to cooperate with constraints. Several different algorithms are proposed for different
type of constraints and experimental evaluations are presented. The performances
are greatly improved.

The new concept of circumstance mining and its close relationships with datacube
are discussed in Chapter 4. Two existing algorithms for CUBE operation are modified
for circumstance mining and a new algorithm is proposed. Experimental comparison
is conducted to summarize the conditions under which a certain algorithm should be
chosen.

In general, mining is exploratory in nature. An analyst might wish to find the
circumstances under which a pattern holds for an itemset and then find out which
other itemsets satisfy the pattern under those circumstances. Chapter 5 presents data
mining on bilattice. In this chapter, a new notion of Armstrong Basis is proposed
as a basis for supporting a variety of the above queries. A couple of algorithms are
presented to compute the Armstrong Basis.

In this thesis, the concept of bilattice is defined, constrained correlations for item-
set lattice are then studied, and the circumstances under which a given pattern (or
set of patterns) holds in a large database in the circumstance lattice are then deter-
mined. Finally, algorithms for computing Armstrong Basis - a bilattice computation
are provided. The following is the contributions made in this thesis:

1. Formalize the notions item, transaction, and circumstance (Chapter 2). This
abstraction helps make the results useful for a wide variety of applications.

IBriefly speaking, each transaction can contain a set of items, but can only contain a unique
value for each circumstance. For more detail, see Chapter 2



2. For constrained correlation queries, in general, the answer set (i) valid minimal
correlated and CT-supported itemsets is a proper subset of (ii) minimal valid
correlated and CT-supported itemsets, they coincide whenever all constraints
in the user query are anti-monotone. Techniques are developed for computing
either of the answer sets above and a series of experiments are conducted to
validate the analysis.

3. For many applicationé, the space of circumstances forms a lattice, which is called
the circumstance lattice (Chapter 2). This lattice generalizes the cube lattice
[G*96]. (See also [BRS9]. for example). So a close relationship is established
between the problem of finding all circumstances under which a given pattern
holds, and data cube computation (Chapter 4). Given the similarity to cube,
adaptations of two representative popular algorithms for cube computation are
made for circumstance mining, including BUC ([BR99]) and chunked array cube
([ZDN97]); For patterns satisfying either the monotone or the anti-monotone
property, an algorithm, called minCirc, is developed to determine the strongest
(resp., the weakest) circumstances under which they hold (Chapter 4).

4. For queries going beyond merely finding circumstances under which a pattern
holds, a notion called Armstrong Basis is proposed and we have showed that a
variety of useful queries can be answered from this Armstrong Basis (Chapter 5).
The motivation for the Armstrong Basis is similar to that of cube. While one
does not expect a user to necessarily want a complete cube, the utility of the -
cube comes from its ability to quickly service a whole class of queries involving .

TG ]

(possibly multiple) group-bys. In a similar manner, Armstrong Basis can be
huge and is unlikely to be interested in its entirety. Yet, given its utility, it is ~*
useful to devise algorithms for its efficient computation. The last contribution

of this thesis is a couple of algorithms for this purpose (Chapter 5). e

L

Selected publications related to this thesis: Before closing this chaptet, the';,__:_'f; ;
selected publications from this thesis are listed below. %

2. G. Grahne, L. V. S. Lakshmanan, Xiaohong Wang. Efficient Mining of Con- 5
strained Correlated Sets. [CDE 2000, pages 512-521 San Diego, CA, 2000. :
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3. G. Grahne, L. V. S. Lakshmanan, Xiaohong Wang. Interactive Mining of Cor-
relations - A Constraints Perspective. ACM SIGMOD workshop on research
issues in data mining and knowledge discovery, pages 7-1, Philadelphia, 1999.



Chapter 2

Data Mining on Itemset Lattice,

Circumstance Lattice and Bilattice

This chapter proposes the concept of bilattice on data mining. Many data mining
problems could be generally viewed as computing lattice. The traditional data mining
such as associations and correlations is based on itemsets, which form a lattice, called
itemsets lattice. A new issue of data mining is discussed in this chapter which is based
on circumstance instead of itemset. This new problem of mining circumstance can
form another lattice called circumstance lattice. Thus data mining becomes mining
information on either lattices or on the bilattice.

2.1 Problem Definition

It is well known that traditional framework of data mining regards each attribute-
value pair as an “item” and attempts to discover patterns such as associations between
sets of items using measures such as support and confidence. However, given a set of
transactions, not all attributes are alike. Some attributes may have a unique value
per transaction while others may have multiple values in a given transaction. As an
example, items bought from a supermarket naturally correspond to an attribute that
has a set of values per transaction. On the other hand, the timestamp associated
with a transaction typically has a unique value per transaction. While treating all
attributes in the same way is certainly possible, we contend that it misses out on
the opportunities of exploring and exploiting the different structures and properties



associated with dissimilar attributes. For example, for an attribute such as time,
different values are mutually exclusive in that a transaction can only have one value
for it. By distinguishing among such attributes, people can formulate queries like
“what are the intervals during which there is a significant volume of sales on dessert
items”. As another example, user can ask “which are the locations where there
is a strong association among a set of items being purchased”. Mining queries of
this form can be best facilitated by developing a framework where attributes that
are inherently like items (They are called “item attributes” below), i.e. have a set of
values per transaction, are distinguished from those that are more like time (They are
called “circumstance attributes” below), which have a unique value per transaction.
If we have the following transaction:

# 1: Sept. 20, sunny, Detroit, milk $2.99, pork $3.98, biscuits $1.59

Obviously, Sept. 20, sunny, and Detroit are “circumstance attributes”, while milk,
pork, biscuits are “item attributes”. The potential “item attributes” need further to
be distinguished from “descriptive attributes,” such as price or quantity. The above
considerations motivate some definitions.

Consider a table over a set of attributes, tuples, or possibly sets of tuples, in
this table can be viewed as transactions. Here, it is possible to designate any set of
attributes in the table as a transaction id, as long as this attribute set uniquely deter-
mines the transaction. For example, the set {customerID, timeID} might constitute
the transaction id for the transactions of a table containing a supermarket sales data.
As another example, {locationID, prodID, timeID} might serve as a transaction
id for tuples in a fact table of a data warehouse containing sales data. In general,
given a table 7 over a set of attributes R, users can specifies a subset of attributes, say
K C R, as its transaction id. This induces a partition on the table with tuples sharing
the same K-value being in the same cell of the partition. ! An attribute A€ R\ K
is called circumstance attribute provided the functional dependency K — A holds
for r. For other attributes A € R\ K, it follows from the axioms of functional and
multivalued dependencies that the multivalued dependency K —— Y, where A€Y,
will hold in r. If in addition the functional dependency KA — Y \ A holds, A is an
item attribute, otherwise A is a descriptive atiribute.

IBach cell might be a singleton set.
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Consider a table sales(tid, location, time, product, quantity) with tid acting
as the transaction id, in the sense that each tid-value uniquely determines a set of
tuples, in which a set of products is sold at a given time and location. We also have
{tid}——{product, quantity}, and {tid,product} — {quantity}. Thus product
is an item attribute and quantity is a descriptive attribute, while location and time
are circumstance attributes. In the constrained data mining framework of [LNHP99,
GLWO00], constraints would typically be formulated from circumstance and descriptive
attributes.

An itemset is then a set of attribute-value pairs, where the attribute is an item at-
tribute and the value comes from its domain. A circumstance, indicates a conjunction
of predicates of the form atirfvalue, where atir is a circumstance attribute, and value
comes from its domain. Here, typically, 8 is set to be equality. When dealing with to-
tally ordered circumstance attributes (for example, time, distance, etc.), 0 is allowed
to be <. since on such domains, intervals over which patterns hold are of interest. A
transaction satisfies a circumstance ¥, provided it satisfies the predicate .

Given a support threshold s, 2 an itemset S is frequent in a transaction database
provided at least s transactions contain S. More generally, given an itemset S and
a circumstance ¥, S is frequent under the circumstance ¥ provided s transactions
among those satisfying the circumstance 1 contain 5.3 The traditional notions of
support and confidence in association mining can be relativized to circumstances:
the support of S under 9 is the number of transactions satisfying ¥ that contain S;
for itemsets S and T, the confidence of a rule S = T under ¥ is the proportion,
among the transactions satisfying 1, the number of transactions containing SuT
over those that contain S. Other patterns in data mining could be reformulated in a
similar way.

2.2 Structure of the Bilattice

For a given set of transactions, the domain of items forms a lattice called ifemset
lattice. The traditional data mining is to search relationships between items in this
lattice. An example of itemsets lattice is showed at Figure 1.

2Recall, an absolute count number is used.
3Thus, if fewer than s transactions satisfy ¥, S is infrequent under .
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empty

Figure 1: An Example Itemsets Lattice

For simplicity, there are only three items, namely i; and ¢, , and ¢3. The bottom
of the lattice is the empty itemset, and the top of the lattice is the all itemset.

It is quite common that there is a taxonomy ( is-a hierarchy) on the items. This
taxonomy normally comes from the descriptive attribute. As an example of a taxon-
omy, Jacket is-a Quterwear, Ski Pants is-a Quterwear, and Outerwear is-a Cloths,
etc. So it is easy to extend the concept of traditional data mining into different level
of taxonomy hierarchy. A rule may be held at the higher level of taxonomy, but does
not hold at the lower level of taxonomy. A couple of papers have studied this problem
[AS95, HaFu95].

Meanwhile, the space of circumstances forms another lattice, called the circum-
stance lattice. To see this, recall that circumstances are conditions comparing at-
tributes with values. Define a partial order < on the set of all circumstances ¥, by
setting ¢ < ¢ exactly when 1 logically implies ¢. It is well-known that a collection
of sentences ordered this way forms a lattice. In particular, true is the top element
and false is the bottom element. Figure 2 shows an example circumstance lattice
for two circumstance attributes A, B each with two values in its domain. Suppose A
represents location and B represents time, and al is Detroit, a2 is Montreal. Similarly,
bl is morning, b2 is afternoon. Then we have the combination of the following cir-
cumstances: { Detroit }, {Montreal }, { morning }, {afternoon }, { Detroit, morning
}, { Detroit, afternoon }, etc. For simplicity, the figure only considers circumstances

12
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Figure 2: An Example Circumstance Lattice

involving equality conditions.

Circumstance attributes sometimes come with Hierarchies as well. For example,
locations may have the hierarchy storeld-city-state. It is a straightforward matter
to see that the notion of lattice extends to circumstance attributes with hierarchies,
as well as to circumstances involving inequalities. However, for simplicity, in the rest
of the thesis, unless otherwise specified, circumstances involving equality conditions
and no attribute hierarchies are considered. "

With the introducing of both lattices, mining queries such as “under what cir-
cumstance beer’s sale is high, and what else also has a high sale?” could be answered
by mining both lattices back and forth. Figure 3 gives a scratch view of mining in
both lattices. From a given point in the circumstance lattice to mine itemset lattice,
first filter out all the transactions that satisfy the given circumstance, then use the
traditional mining algorithms such as Apriori to find the appropriate itemsets. For
example, user may want to find the associations for a market basket in { Montreal,
afternoon }, and get one of the result rules as { beer, diaper }. From a given point
in the itemset lattice to mine circumstance lattice, first filter out all the transactions
that contain the given itemset, then use the algorithms provided in Chapter 4 to
mining circumstance. * For example, user may want to find out under what circum-
stances { beer, diaper } is bought frequent, and actually get results as { Montreal,
afternoon } and { Detroit, afternoon }.

Let (Z,C) denote the itemset lattice for a given application and (C, <) denote
the circumstance lattice w.r.t. the circumstances pertaining to the application. A
new structure C x T can be constructed by taking the direct product of the two

“Most of the datacube algorithms can be modified to do circumstance mining, for details see
Chapter 4.
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Figure 3: An Scratch View of Mining on Both Lattices

lattices. On this structure, two alternative orders can be defined: the first order
<4 is defined as (¥, S)<PR(¥,S") iff ¥ < ¢ and § C S'; the second order <down I8
defined as (¢, S)<{P.. (¢, S") iff ¥ < ¥ and §' C S. A structure (£, <, <2) with
two partial orders is called a bilattice [Fit91], provided each of (£, <,) and (£, <p) is
a lattice, and a certain condition relating the two orders hold. It can be shown that
(C x I, <{P, <gown) is actually a bilattice, which is called the circumstance-itemset
bilattice.

The bilattice formulation gives a semantic basis for known mining problems and
inspires newer ones too. For example, the classical problem of mining frequent item-
sets from a given transaction database reduces to finding all itemsets S such that S is
frequent under true. More generally, to find all frequent sets in a selection view (not
involving aggregates) defined by conditions over the transaction database, will become
to find the set {S | S is an itemset frequent under 1}, where ¥ is the conjunction of
conditions defining the view. Let F denote the subset of the bilattice containing pre-
cisely those pairs (¢, .S) such that S is frequent under 1. Then frequent set mining
for a given ¥ corresponds to finding {S | (¥, S) € F}. Circumstance mining for a
given itemset S corresponds to finding the set {¢ | (¥, S) € F}.

The bilattice structure also allows people to prove some identities which can be
helpful in pruning the search space. This issue will be illustrated later in this section.
Besides, the bilattice structure is instrumental in shaping the concept of an Armstrong
Basis, which is the main object of Chapter 5.
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2.3 Properties of Bilattice and General Pruning
Strategy

In this section, general patterns involving itemsets are classified according to the
properties they satisfy. Since circumstances are also involved, some notations need to
be defined first. Let a pattern over the bilattice (C x Z) as any predicate over it, i.e.
any subset of the elements of the bilattice. For example, frequency corresponds to the
collection of elements (1, S) € (C x T), such that S is frequent under 9; Correlation
corresponds to the collection of elements (3, S) such that S is a correlated set under 1.
As another example, consider the statement minpurchase(S) that says each item in
itemset S must be bought in sufficient quantity over the set of transactions, the total
dollar value of the purchase on items in S must exceed a threshold, or purchasecap(S)
that says the total dollar value of the purchase on items in S must be below a
threshold. Each of these defines a subset of the bilattice. pp(, S), or simply p(%, S)
is used as the notation to indicate pattern p holds for the element (3, S) in database
D. For example, when p is purchasecap, this means over those transactions satisfying
circumstance ¥, the total dollar value of purchase of items in S does not exceed the
given threshold.

A pattern p is c-monotone, provided whenever p(%, S) holds, p(¢, S) holds as well,
for every ¥ < ¢. It is c-anti-monotone, provided whenever p(y, S) holds, (9, S)
holds as well, for every ¢ < 1. The notions i-monotone and i-anti-monotone are
defined analogously and correspond exactly to what was referred to as monotone and
anti-monotone in the frequent set mining literature [NLHP98]. In general, a pattern
may be monotone or anti-monotone w.r.t. either lattice. For example, frequency is
c-monotone and i-anti-monotone. The pattern purchasecap is c-anti-monotone and
j-anti-monotone, while minpurchase is i-monotone and c-monotone. Being correlated
as defined in {(BMS97] is i-monotone but neither c-monotone nor c-anti-monotone.

Many of these patterns satisfy interesting identities. The following Proposition is
proved using the axioms of bilatticies.

Proposition 1 Let p be any pattern. Then we have the following:

1. if p is i-anti-monotone, then {¥ | p(¥,S)}N {¥ |p(¥,T)} C (¥ | p(¥,SNT)};

a similar identity holds w.r.t. union.

15



2. if p is c-monotone, then {S | p(W A ¢,5)} C {S | p(¥,5)} N {S | p(4,S)}; @
similar identity holds w.r.t. disjunction.

3. similar identities hold for i-monotone and c-anti-monotone patierns.

Proof Sketch: Let’s take the first part in proposition as an example. Suppose p
is frequency, then {SNT} C {T}, and {SNT} C {T}. By definition, p(¥, S) means
1 is the strongest circumstances in which p(S) holds, and S is the maximal itemset
that is frequent in ¥ . So {¢ | p(¥,T)} C {¥ | p(¥,SNT)}, and {¥ | p(¥,5)} C
{¥ | p(¥,S NT)}; if we take the intersection of {¢ | p(¥,T)} and {¥ | p(¥.T)}, of
course it will be the subset of each individual one and we have the proof.

As an example, frequency satisfies the two identities in the proposition. On
the other hand, purchasecap satisfies the first identity as well as the identity: {S |
purchasecap(y, S)} N {S | purchasecap(¢, S)} C {S | purchasecap(v A 9, S)}.

The identities above illustrate what kind of pruning opportunities exist when
processing complex queries. For instance, to find itemsets that are frequently bought
in northeast and in fall. If we already have itemsets corresponding frequent purchases
in northeast and frequent purchases in fall, one way of processing this query is to
verify each itemset in the intersection for frequency in the circumstance “northeast
and fall.” A strategy like this makes sense when processing queries corresponding to
circumstances at multiple granularities.
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Chapter 3
Data Mining on Itemset Lattice

In this chapter, we will focus on mining patterns on itemset lattice. As mentioned
in the previous chapter, from bilattice point of view, the traditional data mining
problem is actually itemset mining under true circumstance [GLWO00]. Although
there has been a lot of work done on association mining, there is relatively little work
on other patterns, such as correlations. This chapter will introduce constraints into
correlations, which has not yet been studied.

3.1 Introduction and Motivation of the Problem

Besides association mining, it has been recognized that there is a need to explore alter-
nate patterns/rules. One such notion is correlation. Brin et al. [BMS97] have studied
the problem of efficiently finding (minimal) correlated (or dependent) sets of objects
from large databases. Their definition of correlation is based on the chi-squared met-
ric, which is widely used by statisticians for testing independence. The idea is that
an itemset is said to be correlated with probability o provided its chi-squared metric
exceeds the expected chi-squared value corresponding to the probability .. In analogy
to the classical framework of associations, where frequency (support) of itemsets is
used as a measure of statistical significance, Brin et al. used a notion of CT-supported
! as a measure of statistical significance of an itemset.

However, this frame work of correlation has the following fundamental problems as
association mining before the introduce of constraints: (i) lack of user exploration and

ICT stands for contingency table, explained later.
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guidance (for example, expensive computation undertaken without user’s approval),
and (ii) lack of focus (for example, cannot limit computation to just a subset of
rules of interest to the user). Many of a time, users are just interested in a subset
of the whole answers. To solve these problems, user need to be allowed to express
his/her focus, using constraints drawn from descriptive attributes including domain,
class, and SQL-style aggregate constraints which capture the application semantics.
The properties of these constraints can also be used in pruning the search space,
for efficiently computing frequent sets that satisfy user-specified application-specific
constraints.

So applications for mining minimal correlated sets satisfying given constraints
naturaﬂy arise. For example, a manager of a supermarket may want to verify whether
customers who do not want to spend a lot of money overall, only buy cheaper items.
2 The conjunction of constraints S.price < ¢ & sum(S.price) < mazsum captures
this situation. Both constraints are anti-monotone, meaning if a set satisfies the
constraint, then so does every subset. In addition, the first constraint satisfies a
property called succinctness, first defined in [NLHP98]. This intuitively means that
the constraint can be pushed deep down into an Apriori-style level-wise algorithm so
that it affects pruning even before anti-monotonicity takes effect. As another example,
the manager may just want to find whether there is any correlation among items of
a single type, which can be useful in mapping items to departments and in shelf
planning. The constraint |S.type| = 1 corresponds to this situation. This constraint
is also anti-monotone. In a third case, the manager may especially be interested in the
correlations of those items whose total price is greater than a certain value, described
by the constraint sum(S.price) > minsum. This constraint is neither anti-monotone
nor succinct. (See [NLHP98, LNHP99] for a thorough analysis of various constraints
and their use in pruning optimization of constrained frequent set queries.)

This chapter addresses the pruning optimization of constrained correlation queries
as the following question: given a set of constraints, how to efficiently find itemsets
that are CT-supported, correlated, and are valid w.r.t. given constraints? At first
sight, a straightforward extension of the techniques in [NLHP98] might seem te solve
this problem. If asking for all such itemsets, this is indeed the case. However, Brin et
al. [BMS97] showed that being correlated was a monotone (upward closed) property:

2For the same total price, they prefer to buy more cheap items than fewer expensive items.
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- Figure 4: The Borders of Correlation and CT-support in the Itemset Lattice

all supersets of a correlated set were also correlated, while being CT-supported was
an anti-monotone (downward closed) property: all subsets of a CT-supported set
were CT-supported. Based on this observation, they made a case for computing just
the minimal correlated (and CT-supported) sets. Figure 4 shows the solution space
corresponding to itemsets that are both correlated and CT-supported. The lower
border of the figure corresponds to the minimal itemsets in this space. The rationale
then is that the user might be interested in the smallest “objects” in the space rather
than the whole of them. Indeed, knowing that bread and butter are correlated is
informative, while given this, it is less interesting to know additionally that bread,
butter, and cereal are correlated, or that the set consisting of bread, butter, cereal,
and toothpaste is statistically insignificant.

Now, consider the problem of finding all itemsets that are CT-supported, corre-
lated, and valid w.r.t. given constraints, which in addition, are minimal The first
difficulty is that there are two ways of interpreting this minimality. This leads to
two notions of answer sets — (i) valid minimal correlated and CT-supported itemsets
and (ii) minimal valid correlated and CT-supported itemsets. These are not always
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[ CT | Doughnuts | Doughnuts | Row Sum
[ coffee ]| 30 39 69
coffee | 20 11 31
Col Sum || 50 50 100

Table 1: Example Contingency Table.

identical. There might be interest in computing either of these answer sets, depend-
ing on the applications. Different techniques are called depending on which of these
answer sets is desired by the user. However, there are situations under which both
answer sets coincide. A second difficulty comes from constraints which are mono-
tone. Two examples of monotone constraints from the market basket domain are
sum(S.price) > 1000 and min(S.price) < 50, for itemset S. We will see that a di-
rect application of the techniques in [NLHP98] for the problem studied here may yield
incorrect answers when monotone constraints are considered. Intuitively, monotone
constraints exhibit a behavior similar to the property of being correlated, and this
should be reflected in the way they are handled in pruning the search space. There
is no analog of this in the framework of [NLHP98, LNHP99). '

3.2 Constrained Correlations

3.2.1 Correlation queries

Brin et al. [BMS97] approached correlation through the notion of dependence. Two
items are dependent provided the probability of occurrence of one given the other
is different from the absolute probability of the first. They showed that dependence
was monotone in that every superset of a dependent itemset was also dependent.
Thus, there is an interest in finding minimal dependent itemsets. For measuring
dependence, they use the chi-squared statistics. This can be obtained by constructing
a contingency table for the itemset in question. Intuitively, the contingency table
of an itemset S is a table that lists the count, in a given database D, of every
minterm involving S. For example, Table 1, adapted from [BMS97], shows a possible
contingency table for the itemset {coffee, doughnuts}.

The chi-squared statistic itself is calculated from a contingency table as =

20



= rcminterms(s)(O(r) — E(r))?/ E(r), where O(r) is the observed number of occurrences
of the minterm r, while E(r), its expected value, is calculated under the independence
assumption [BMS97]. Corresponding to each contingency table, there is a degree of
freedom, which is always 1 for boolean variables. In addition, there is a corresponding
p value, a value in [0, 1], which indicates the probability of witnessing the observed
counts if the items in question were really independent. A low p value is thus grounds
for rejecting the independence hypothesis. More concretely, an itemset is dependent
(or correlated) at significance level & provided the p value corresponding to the chi-
squared statistic calculated for this set is at most 1 — a.

Besides being correlated, a set must exhibit some kind of statistical significance.
In [BMS97], the authors impose the following measure of significance. Let s be a user
specified minimum support threshold and p% be a user supplied cutoff percentage
value, to be considered statistically significant, an itemset S must be such that at
least p% of the cells in the contingency table for S having their support not less than
s. This is a property called CT-supportedness which, like frequency, can be readily
shown to be anti-monotone. Brin et al. BMS97] gave an efficient algorithm for finding
all minimal correlated and statistically significant sets, where the parameters a, s, p%
were all chosen by the user.

3.2.2 Adding constraints

Intuitively, a constrained correlation query asks for itemsets that are CT-supported
and correlated, and further satisfy a set of constraints. [NLHP98] gives an exposition
of the constraint language. Here, an example is showed to illustrate it. The query {5 |
S is CT-supported and correlated & snacks  S.type & {soda, frozenfood} C S.type
& maz(S.price) < 50 & sum(S.price) > 100} asks for CT-supported and corre-
lated itemsets which do not include any snack items, include at least one soda item
and at least one frozen food item, and further with a maximum price less than $50
and a total price of at least $100. Formally, a constrained correlation query is an ex-
pression of the form {S | S is correlated and CT-supported & S satisfies C}, where
C is a conjunction of constraints drawn from the class of domain, class, and SQL-style
aggregation constraints.

Recall that a constraint C is monotone provided every superset of a set that satis-
fies C also satisfies C. It is anti-monotone provided every subset of a set that satisfies
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C also satisfies C. Here only constraints that either anti-monotone or monotone are
considered. The following lemma shows that this still allows for a rich variety of
constraints to choose from.

Lemma 1 Let C be any constraint of one of the following forms:
1. agg(S.A) 8 c, where agg is one of maz, min, sum, count § is one of <, <, 2, >,
and A is an attribute with a non-negative domain, and c is a value from it.

2. CS 0 S.A, where CS is a constant set drawn from a domain compatible with
that of attribute A, and @ is one of C, Z.

3. CSNS.A 60, where CS is a constant set drawn from a domain compatible
with that of attribute A and @ is one of =, #.

Then C is either anti-monotone or monotone.

Proof Sketch: We will only show the proof of min(S.4) > c¢ is anti-monotone
here, the proof of other cases is similar. Because the constaint is anti-monotone, if
min(S.A) > ¢, and S'.A C S.A, we have min(S'.A) > c. Suppose this is not true,
there must exist an element e € S'.A such that e < ¢. But then the same element
e is contained in every superset of §'.4, including S.4. Thus it is necessary that
min(S’.A) > c.

Indeed, a large portion of the constraints allowed in the constraint language intro-
duced in [NLHP98] is either monotone or anti-monotone, according to Lemma 1. Two
notable kinds of exceptions are: (i) constraints involving average and (ii) those of the
form agg(S.A) = c, where agg is one of min, maz, sum, count. average constraints will
be discussed in Section 3.4.3. Note that a constraint of the form agg(S.A) = c can be
broken into agg(S.4) < ¢ & agg(S.A) > c. From the proof of the lemma above, it can
be shown that one of the conjuncts must be monotone and the other anti-monotone.
The techniques that developed can handle any conjunction of such constraints. Thus,
the focus on constraints which are either monotone or anti-monotone does not restrict
the expressive power too much.

Next, let’s define answer sets for constrained correlation queries. Brin et al.
[BMS97] argued that minimal CT-supported and correlated sets captured the essence
of answering correlation queries (without constraints). In keeping with this rationale,
it is appropriate to build in some notion of minimality in defining the answer sets.
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The first definition is obtained by taking the definition of Brin et al. and imposing
the condition that itemsets must be valid w.r.t. the constraints in the query.

Definition 1 Let Q = {S | S C Item & C} be a constrained correlation query.
Then the set of wvalid minimal answers of Q is given by VALIDMIN(Q) = {S |
S is a minimal correlated and CT-supported itemset & S satisfies C}.

As an example, consider the query @; = {S| S C Item & maz(S.price) > IOO}V,
VALIDMIN(Q; ) consists of all those minimal correlated and CT-supported itemsets,
which in addition, have their maximum price not less than $100.

A second definition of answer sets is obtained by considering the space of all
correlated, CT-supported, and valid itemsets and asking for the minimal ones among
them. This is meaningful only when the space of all answers is in a single region
bounded from above and below by well-defined borders. This is indeed the case for
the scenario studied by Brin et al. wherein correlation forms the lower border and
CT-support forms the upper border (see Figure 4). When throwing in constraints,
such a well-defined space will still hold as long as each constraint considered is either
monotone (like correlation) or anti-monotone (like CT-support). Constraints of this
type form either a lower or an upper border as the case may be and the answers
looking for are within the region bounded by all these borders. It thus makes sense to
ask for the minimal answers in this space, as they intuitively give the smallest objects
which are interested.

Definition 2 Let Q be a constrained correlation query @ = {S | S C Item & C}
such that each constraint in C is either monotone or anti-monotone. Then the set of
minimal valid answers is given by MINVALID(Q) = {S | S C Item & S satisfies C &

S is CT-supported and correlated & S is minimal}.

For the query Q, above, MINVALID(Q,) consists of all answers which are valid,
CT-supported, and correlated, and are minimal among all such objects, i.e. none of
their proper subsets satisfy these properties.

The two sets VALIDMIN and MINVALID are illustrated in Figure 5. It is easy to see
that for any query Q, VALIDMIN(Q) C MINVALID(Q): any minimal CT-supported
and correlated sets that are also valid must be minimal sets that satisfy all three
of these conditions. Still, there are cases where VALIDMIN(Q) is a proper subset of
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Figure 5: The Valid Minimal Solutions and Minimal Valid Solutions.

MINVALID(Q). To illustrate this, let’s consider an example where the domain of Item
has five items, 1, ..., 5, representing milk, bread, butter, cereal, cheese. For simiplicity,
let item i have price $i. Suppose that all itemsets of size 2 are CT-supported and
correlated, and further assume that all itemsets up to size 4 are CT-supported. Let the
constraint be C = maz(S.price) > 5. Then VALIDMIN(Q) = {{i,5} |1 > 5Vvj > 5}
In particular, the set {milk, bread}, which is both CT-supported and correlated, is
not valid. However, the set {milk, bread, cheese} is valid. It is also CT-supported and
correlated. So, {milk, bread, cheese} € MINVALID(Q) but {milk,bread, cheese} &
VALIDMIN(Q). In summary, the following result could be found:

Theorem 1 Let Q be a constrained correlation query @ = {S | S C Item & C} such
that each constraint in C is either monotone or anti-monotone. Then

1. VALIDMIN(Q) C MINVALID(Q).

2. If all constraints are anti-monotone, then VALIDMIN(Q) = MINVALID(Q).

Proof Sketch: Figure 5 shows a very clear proof of the theorem. If the valid
minimal answers are interested, according to its definition, we first find the mini-
mal correlated border, then check the monotone constraint to eliminate the invalid
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sets, and get the correct answers. If the minimal valid answers are interested, then
according to its definition, we will check the monotone border and the correlation
border, then to minimize the answers, which will give us the additional minimal valid
solutions. If there is no monotone constraints, the monotone border will not exist.
And obviously, we will get the same solution space for both interesting answer sets.

An additional property of constraints that should be exploited is succinctness
[NLHP98]. Let us denote the solution space of a constraint C as SATc(Item) =
{S|S c Item & S satisfiesC}. A constraint C is succinct provided there
are itemsets I;,...,Ix C Item such that: (i) each I; can be expressed as I; =
op;(Item) for some selection condition pj;, 1 < j < k, and (ii) the solution space
SATc(Item) can be written as an expression involving powersets of I3, .. ., I using
union and minus. An example is the constraint C, = maz(S.price) < 100. Let I, =
ap,ic.-swo(ltem). Then SAT¢, (Item) = 2113 As another example, for the constraint
Ca = {beer, chips} C S.type, define I; = Orypezteer(Item), Iz = Teype=chips (Item), and
I3 = Orypestieer & typezchips(Item). Then SAT,(Item) = Qitem _oh _9h _ols _9hul _
9hUls I this expression, all itemsets that violate C; are eliminated from 2t The
main value of succinctness is that for a succinct constraint C, all and exactly the
itemsets can be generated in the solution space SAT¢(Item) without recourse to gen-
erating all possible itemsets and testing them one by one for constraint satisfaction.
It was shown in [NLHP98] that all succinct constraints C have a member generating
function (MGF) of the form SAT¢(Item) = {X; U---U X; | X; C 0p(Item),1 <
i<k&X;#0,1<j<m, forsomem < k}. As an example, SATc,(Item) = {X |
X C Oprice<ioo(Iten). As another example, SATc, (Item) = {XHUX2UX3 | X1 C
Crypebeer(Item) & Xy C Oeypechips (Item) & X3 C Oeypestbeer & typezichips (Item) & X1 #
0 & X, # 0}. It was also shown that MGFs for individual succinct constraints can
be combined into an MGF for their conjunction [NLHP98].

3.3 Algorithms for Constrained Correlations

Let’s first review Brin et al’s algorithm showed in Figure 6, refer as Algorithm BMS
below, for computing minimal correlated and CT-supported sets. This algorithm
exploits the properties that CT-supportedness is anti-monotone and being correlated

3Excluding empty sets is a simple technicality.
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Algorithm BMS (Brin-Motwani-Silverstein)

Input: A chi-squared significance level a, support s, support fraction p, and basket data D.
Output: The set of all valid minimal correlated itemsets from D.

Method:

1 Initialize CAND2 = SiG = §;
2 for each i € [ count O(i);

3 for each pairi;,i2 €/
3.1 if (O(i1) > s && O(i2) > s) add {i1,i2} to CaND2;

4 k=2

5 while (CaND, # @) {

5.1 Notsic :=0;

5.2 for each S €CAND; {
5.2.1 construct the contingency table CT(S);
5.2.2 if (S has CT-support > p)

5.2.2.1 if (chi-squared value of CT(S) is 2 a)
add S to SiG;
else add S to NoTsIG; }

5.3 k+ +;
5.4 Set CAND; to be the set of all itemsets S of size k, such that every k — 1-subset of S is in NoTsIG; }

6 output SIG;

Figure 6: Algorithm BMS.

is monotone. The former property is exploited in an Apriori-style pruning: processing
sets in the itemset lattice from the bottom up, level by level, pruning candidate sets
which cannot be CT-supported. The latter property is exploited by arguing that
minimal sets capture the essence of the answers to correlation queries. Thus, the
moment a (minimal) correlated and CT-supported set is found, there is no need to
consider its supersets.

3.3.1 Computing valid minimal answers

The first algorithm for computing valid minimal answers of a constrained correlation
query is obtained by a straightforward adaptation to Algorithm BMS. First run the
original BMS algorithm, then check the output for constraints validation.

Clearly, Algorithm BMS+ is naive in that it completely ignores the selectivity
and potential pruning power that may be provided by the constraints. The second
algorithm is, however, obtained by taking these effects into accounts and making the
following modifications to Algorithm BMS.
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Algorithm BMS+

Input: A chi-squared significance level a, support s, support fraction p, a set of constraints C, and basket data D.
Output: The set of all valid minimal correlated itemsets from D.

Method:

1 Run Algorithm BMS up to step (5) and compute the set SIG containing all minimal CT-supported and
correlated sets;

2 output those sets in SIG that satisfy the constraints C;

Figure 7: Algorithm BMS+.

I. Preprocessing: Algorithm BMS considers all pairs of frequent items as can-
didate sets of size 2. When constraints are present, some improvement can be made.
Firstly, split the set of query constraints into C = Cams UCamsUCms UCm3, respectively
into constraints that are succinct and anti-monotone, anti-monotone but not succinct,
succinct and monotone, and monotone but not succinct. Sometimes Cgpns U Coms is
denoted as C,n, the set of anti-monotone constraints and C s UCpms as Cpy,, the set of
monotone constraints.

Goob; = {i | i € Item & {i} satisfies C,n} denotes the 1-itemsets that satisfy all
anti-monotone constraints. Let CAND} = {i | i € Goob, & {i} satisfies Crns} and
let CAND] = Goobp, — CANDY. Now, let L} = {i | i € CAND] & O(i) > s} and
Ly ={i] i € CanDpy & O(3) 2 s}.

In the preprocessing stage, the new algorithm computes the sets L and L; as
suggested above. This can be done in one scan of the database.

II. Forming candidate sets: For the sake of easy exposition, let’s assume that
the MGF for the conjunction of all succinct constraints in the query is of the form
{X1U Xz | Xi C op,(Item) & X, C 0p,(Item) & X, # 0}. Extension to the general
forms of MGF's (see Section 3.2) is straightforward.* Candidate sets of size two are
formed as follows.

CaND, = {{é),42} | i1 € LT & iy € (LT ULY)}-

More generally, for k > 2, set CAND; to contain all k-itemsets S such that:

VS': (' CcS&|S|=k-1&S'NLT #0 = S’ € NOTSIG). The rationale is below.
Consider a k-itemset S and two (k — 1)-subsets of S — Sy, Sz such that S, N LT #0
and S, N L} = . Now, by virtue of the way LT and L{ are computed and the way
candidate sets are formed, we can see that S; € CAND;_;, but Sy € CANDg_,. In

4A subtle point, however, is that if a monotone succinct constraint requires more than one
witness, then it cannot be included in L{. It should be enforced later, much like Cpnz, so valid
minimal answers can be correctly computed.
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while CAND; # 0 {

for each S € CAND; {

if (S satisfies C,pn3) {
construct CT(S);
if (S has CT-support > p)
if (CT(S) has chi-squared value > x2) {
if (S satisfies Cpz3) {
add S to SiG; }
else add S to NotsiG; } }

Figure 8: S1G and NoTsIG for Algorithm BMS+-+.

other words, we would construct contingency tables for all subsets of S that are valid
with respect to Capm UCms, and for none of its subsets which are invalid with respect to
these constraints. Thus the candidate formation logic of Algorithm BMS is modified
to reflect this.

I1I. Computation of the SIG and NOTSIG sets: The main difference is that
each potential member of SIG set needs to be checked for satisfaction of all non-
succinct constraints. Of these, the anti-monotone constraints are handled similarly to
the way CT-support test is performed, while the monotone ones are handled similarly
to the way correlation is checked. Figure 8 summarizes this modification.

The algorithm obtained by applying modifications I-III above is refered as Algo-
rithm BMS++, or “Constrained BMS for valid minimal answers.”

3.3.2 Computing minimal valid answers

A straightforward algorithm for computing minimal valid answers is given first. In
this algorithm, the sets SIG and NOTSIG are used in a context different from that
used by Algorithm BMS. Assume the sets used by Algorithm BMS are renamed to
S1¢’ and NoTsiG’. The idea is that when Algorithm BMS finishes, it computes all
minimal CT-supported and correlated itemsets and leaves them in SIG’. Of these,
we can add those that satisfy the constraints to the set SiG, which will eventually
contain all minimal valid answers. At this point, SIG will contain all valid minimal
answers.? The difficulty now is that the remaining minimal valid answers cannot be

5Recall that all valid minimal answers are also minimal valid answers.
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Algorithm BMS*

Input: A chi-squared significance level @, support s, support fraction p, a set of constraints C, basket data D.
Output: The set of all minimal valid correlated itemsets from D.

Method:

1 Run Algorithm BMS to compute the sets SiG and NOTSIG; rename those sets to Si16’ and NoTsIG’;
2 Nortsic = Sic = 8;

3 foreach S € Si6’ {

3.1 if (S satisfies Cam)
if (S satisfies Cm)
add S to SIG;
else add S to NOTSIG;}

4 Let k = (the least cardinality of any set in NoTsiG) + I;

5 Set CANDy to contain ail k-sets § such that (VS': S’ C S & |S'| =k~ 1 = §' € NoTsiG);
(i.e. all (k — 1)-subsets of S satisfy Cam but not Cm.)

6 while CAND, # 0 {

6.1 for each S € CAND; {

6.1.1 construct CT(S);

6.1.2 if (S has CT-SUPPORT 2 p)
if (S satisfies Cm)
add S to SiG;
add S to Norsic; }

7T k++;
8 Set CAND, to contain all k-sets S such that all (k — 1)-subsets of S are in NoTsIG;}

9 output SiG;

Figure 9: Algorithm BMS*.

found directly from SIG’ and NoTsIG'. For this, once again, an upward, level-by-level
sweep of the itemset lattice is needed for the checking of CT-support and satisfaction
of all monotone constraints. Notice that we do not need to check for correlation (i.e.
chi-squared test) since the sets being examined now are supersets of sets known to
be correlated. The complete naive algorithm is given in Figure 9.

The next algorithm exploits the pruning affected by the query constraints as
early as possible. As with Algorithm BMS++, this algorithm will be presented by
describing the modifications to be made for Algorithm BMS.

I. Preprocessing: This step is identical to that for Algorithm BMS++. In
particular, we compute the sets L, LT as outlined early. 6

II. Formation of candidate sets: The formation of CANDg, for £ > 2, is

SRegardless of the number of witnesses involved, here all succinct constraints can be incorporated
in L}, unlike for Algorithm BMS++.
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1 k=2
2 while (CAND, #0) {

2.1 SuPPe =0;
2.2 for each § € CANDg {

2.2.1 if (S satisfies Copn3)
2.2.1.1 construct CT(S);

2.2.1.2 if (S has CT-support > p)
add S to Suppe; } }

23 k++;
2.4 Form CANDy; }

3 k =2; Sic = NoTsIG = @; Cj, = SUPP:;

4 whileC, #0 {

4.1 foreach S € Ci {

4.1.1 if (CT(S) has chi-squared > x3 && S satisfies Crn3)
add S to SIG;
else add S to NoTsIG; }

4.2 k++;
4.3 Set Cj to contain all k-sets in SUPP;, such that VS’ : §' C S& [S'| =k — 1 = 5’ € NoTsIG; }

Figure 10: SiG and NOTsIG for Algorithm BMS**.

identical to that in Algorithm BMS++.

III. Computation of the SiG and NOTSIG sets:

Instead of the SIG and NOTSIG sets, supported sets, SUPPg, k£ > 2 are computed
as follows. Use only CT-support and anti-monotone constraints and then use it along
with the monotone constraints to compute NOTSIG and SIG (see Figure 10).

The algorithm obtained by applying modifications I-IIT described in this section
is refered as Algorithm BMS** or “Constrained BMS for minimal valid answers.”

The following results show the correctness of the various algorithms presented in
this section.

Theorem 2 The following is true:

1. Algorithms BMS+ and BMS++ correctly compute all and only valid minimal
answers.

2. Algorithms BMS* and BMS** correctly compute all and only minimal valid
answers.
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Figure 11: The Interplay Between Constraints and Correlation

3.3.3 Analysis of the algorithms

The number of sets each of the four algorithms needs to consider is analyzed here.
Clearly, it is the dominating parameter since it involves database scanning. Comput-
ing CT-support etc. are cpu operations, and much less expensive.

Assume a fixed set I, a fixed database D, and some fixed cut-offs a, s, and p. Let
¢; be the number of correlated sets at level ¢ in the itemset-lattice. Likewise, let v;
be the number of valid sets at level i. Also, let cv; be the set of correlated and valid
sets at level i. Clearly cv; < ¢; and cv; < v;, for any level . This is illustrated in
Figure 11. The lattice on the left uses anti-monotone (downward closed) constraints,
while the lattice on the right uses monotone (upward closed) constraints. In both
lattices, the interval [b,d] corresponds to c;, the interval [a, | corresponds to v;, and
the interval [b, ] corresponds to cv;.

Let k be the highest level on which there are (minimal) correlated sets, and let
[ be the highest level on which there are valid sets Let {BMS+| be the number of
sets algorithm BMS+ needs to consider. The meaning of [BMS++}, and |BMS*|,
|BMS**| is similar, mutatis mutandis. Then, [BMS+| = 2‘_1 ¢, [BMS++| =

min(kl) oy BMSH| = S5, ¢+ Shet, [BMS##=FL,u.

The following conclusions can be drawn: If query Q contains monotone con-
straints, algorithms BMS+ and BMS++ compute the set VALIDMIN(Q), while algo-
rithms BMS* and BMS** compute the set MINVALID(Q). From the formulas above
it can be seen that |BMS + +| < |BMS+|. The relatioﬁs?higi between BMS* and
BMS** depends on the relative distributions of the ¢;:s and w:s. 'If the selectivity of
the constraint is low, it means that ¥;v; < ¥;¢;- Then lBMS# *] < |BMS#{, and
Algorithm BMS** is expected to perform better than Algorithm BMS*. If constraint
selectivity is high, the inverse quantitative telatlonshxp holds and Algonthm BMS*
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is expected to perform better.

When the query @ contains only anti-monotone constraints, VALIDMIN(Q) =
MINVALID(Q). It is observed that |BMS + +| < [BMS+/|, and that [BMS + +| <
|[BMS * #|. The relationship between between BMS* (BMS+) and BMS** depends
on the above constraint selectivity. With high selectivity, Algorithm BMS** should
perform better than Algorithm BMS¥*, and with low constraint selectivity Algorithm
BMS* is expected to perform better.

Indeed, as showed in the next section, the experimental evaluation verifies these
expectations.

3.4 Experiments

3.4.1 Test data

To evaluate the various algorithms presented, synthetic data is used, generated by two
different methods. The first method is developed at IBM Almaden Research Center
by Aggrawal and Srikant [AS94]. The second method follows the standard practice in
machine learning experiments [CN89, CF88], where test data is generated according
to a set of prespecified correlation rules. While the purpose of the first method is to
simulate the “real world”, that of the second is to verify that the algorithms do really
correctly mine out all the correlation rules, which are known in advance.

In Agrawal and Srikant’s method, synthetic baskets are formed by simulating a
retailing environment. The model of the “real” world is that people tend to buy sets
of items together. According to their result, the basket size is first decided according
to a Poisson distribution, then a set of “large itemsets” is defined. These large
itemset is then assigned to the basket. Each large itemset in the basket has a weight
associated with it. The weight corresponds to the probability that the itemset will be
picked. This weight is chosen from an exponential distribution and is normalized. If
a large itemset is inserted into a transaction, a few random elements are furthermore
deleted from the set and some other randomly chosen items are inserted. The number
of baskets is varied from 10,000 to 100,000 to study the pruning effect of different
algorithms on basket numbers. The average basket size is set to be 20, the average
size of large itemsets is set to be 4. The number of items is 1000.
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In the second method, the synthetic data was generated based on ten given cor-
relation rules. For each rule r;, the significance level ¢; is set to 0.95, the support
threshold s; is a random value between 70% and 90% of the number of baskets. There-
fore, each basket contains a subset of the correlation rules. All other parameters are
the same as mentioned above. Randomized items are picked up in case the correla-
tion rules do not generate enough items for a particular basket. To see the effects
of different constraints on mining correlations, constraint selectivity was also varied
through separate experimental sets, using the same data.

In all experiments the minimum support and CT- support are kept constant. The
threshold for support and CT- support are set to be 25%.” The confidence level is
set to 0.9 for the x2-tests. All the experiments are conducted on a Pentium PC with
a 200 MHz processor and 64 MB of memory.

3.4.2 Experimental evaluation

Anti-monotone and succinct constraint: In the first set of experiments, the
anti-monotone and succinct constraint max(S.price) > v is used to compare the
algorithms. Figure 12 shows the cpu usage as a function of the number of baskets for
the three algorithms when the constraint-selectivity (proportion of items with price
at least v) is set to be 50%, and the number of items is 1000. A conservatively high
selectivity is chosen to test the behavior of the algorithms. As mentioned previously,
for such constraints, BMS* becomes BMS+, and all four algorithms compute the
same results.

For all the algorithms, the results show a similar linear trend of the cpu usage. The
correlations that mined out only contained sets with less than four items. Figure 12 (a)
(resp., 1(b)) & shows the result using synthetic data generated according using method
1 (resp., method 2). For method 2, all the correlations that used in generating the
data are indeed found in the results, as well as some other weak correlations. which
caused by the randomly distributed items in the transactions. As the number of
baskets increases, the cpu usage of BMS-++ in Figure 12(a) becomes much smaller
than the other two algorithms. Compared to BMS+, BMS++ can speed up the

TWe ran the experiments for other thresholds too and observed little variation in the trends of
the results. Only these results are showed here.
8For all the experiments, (a) stands for data generated using method 1, (b) for date method 2.
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Figure 12: Effect of Transaction Number with Anti-monotone & Succinct Constraints

process by a factor of 10 to 50 for the experimental range tested. In Figure 12(b), the
cpu usage for BMS** is close to BMS++, which is much lower than BMS+. This is
caused possibly by the method of generating data.

Figure 13 shows the results of cpu usage as a function of the selectivity of con-
straints when the basket number is 100,000. In the constraint max(S.price)} > v,
different values of v is used to correspond for different selectivities of the constraints.
An z — % selectivity means that z — % of the items have a price larger than v, what-
ever that value may be. The y-axis represents the cpu time the various algorithms
needed to complete the mining. For BMS+, the cpu usage stays constant as the
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Figure 13: Effect of Selectivity with Anti-monotone & Succinct Constraints

selectivity increases. On the other hand, the cpu usage for BMS** and BMS++ de-
crease dramatically as the selectivity decreases. When the selectivity is below 30%,
the speed-up from using anti-monotone and succinct constraints can be as high as 50
to 100. Even when the selectivity is 80%, the performance for BMS++ is still much
better than BMS+, which demonstrates that anti-monotone and succinct constraints
can greatly improve the mining performance.

Anti-monotone constraint: Figure 14 (2) and (b) show the amount of cpu usage as
a function of basket number, for the two types of synthetic data, respectively. In this
experiment series, the anti-monotone but not succinct constraint sum(S.price) <
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Figure 14: Effect of Transaction Number with Anti-monotone Constraints

Mazsum is used. Recall that for anti-monotone constraints, all four algorithms
compute the same answer. The results presented in Figure 14 (a) and (b) have
a constraint selectivity of 50%. Similar to Figure 12, a linear increasing trend is
exhibited for all the algorithms. As the number of baskets increases, the difference
of cpu usage between BMS++ and BMS+ increases. At a basket number of 100,000,
the cpu usage for BMS++ is about 1/3 of BMS+, while for BMS** is either the same
as the results for BMS+ or about 3/4 of that for BMS+ depending on the data set
used.

The effect of constraint selectivity is also examined. Figure 15 (a) and (b) show
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these results when the basket number is set to be 100,000. Unlike the previous
constraints, the notion of constraint selectivity does not directly make sense in this
case. Instead, the price of each item is assigned to be its item number. So for example,
item 1 has a price of $1. At lower values of Maxsum, both BMS** and BMS++ have
better performance than BMS+. When the value of Maxsum is close to 4000, there
is no pruning effect from the constraint anymore. So BMS+ and BMS++ begin to
have the same performance, and the performance for BMS** is much worse than -
the other two. However, under all circumstances, BMS++ always gives the best
performance. BMS** and BMS+ have a cross-over point, below which BMS** has a
better performance, and above which BMS+ becomes better.

Succinct and monotone constraint: When the constraint is not anti-monotone,
the results of valid minimal computation and minimal valid computation do not
coincide. So, the four algorithms need to be examined separately. As in Theorem 2,
Algorithm BMS+ and BMS++- correctly compute all and only valid minimal answers.
Algorithm BMS** and BMS* correctly compute exactly the minimal valid answers.
The constraint that used is min(S.price) < v, which is monotone and succinct.

(i) Valid minimal answers. Figure 16 shows the performance of Algorithms
BMS+ and BMS++. The selectivity is set to be 50%. Figure 16 (a) is the result using
the first synthetic data set. And Figure 16 (b) corresponds to the result using the
second synthetic data set. At a basket number of 100,000 the cpu usage for BMS++
is about 70% of the cpu usage of BMS+, in spite of this high selectivity. °

Figure 17 shows the selectivity effect on these two algorithms when the basket
number is 100,000. When the selectivity is 10%, the cpu usage for BMS++ is only
1/3 of that for BMS+. But when the selectivity is above 70%, the pruning effect of
the constraint is negligible, and the performance of BMS++ becomes similar to that
of BMS+.

(ii) Minimal valid answers. Figure 18 shows the performance of Algorithms
BMS* and BMS**. The selectivity is set to be 50%. Figure 18 is the result using the
first synthetic data set. Figure 18 (b) is the result using the second synthetxc data
set. Unlike Figure 5, the gap between the two algonthms is much blgger

Figure 19 shows the selectivity effect on these two algonthms when the basket
number is 100,000. Unlike the computation of valid minimal answers, where BMS-++

"Note that the higher the sclectivity is, the less selective the constraint has.
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always performs better than BMS+, for minimal valid answers both algorithms BMS*
and BMS** are affected by the selectivity. When the selectivity is below 20%, BMS**
has better performance. Above this point, the performance for BMS* becomes better.
In Figure 18, we deliberately show this situation when the selectivity is unfairly high
at 50%. Figure 19 shows the cross-over point.

3.4.3 Summary and conclusions

From all the experiments, it can be concluded that for BMS+, the constraint type
does not influence the overall performance. Algorithm BMS* is slightly affected by
the selectivity. With the increase of the selectivity, the cpu usage of BMS* decreases.
The performance of algorithm BMS** is heavily dependent on the constraint for prun-
ing. So when the constraint selectivity is low, BMS** has better performance than
BMS+, especially when the constraint is both anti-monotone and succinct. When
constraint selectivity is high, BMS** does not perform well, it can become 2 to 3
times slower than BMS+ in the worst case. BMS++ shows the best performance
under all circumstances. When constraint selectivity is low, BMS++ relies on ‘the
constraint to prune the candidate itemsets, and when the constraint selectivity is
high, it relies on the upward closed property of being correlated to do the pruning.

3.5 Related Work

In this chapter, only Brin et al’s work [BMS97] and the constrained frequent set
framework of [NLHP98, LNHP99] are compared. Brin et al. [BMS97] defined their
answer set as minimal correlated and CT-supported sets. They claimed that this
completely characterizes the solution space. Technically, this is true only when one
also returns, as part of the answer, some description of the upper border (in their case,
CT-support border). When different kinds of constraints are added to this framework
(for example, monotone, anti-monotone, etc.), a proper understanding of the solution
space is needed before we can even advance minimal sets as a meaningful definition of
the answer set. Notice that simply returning minimal sets does not completely cover
all answers, unless it is clear where the upper border is. On the other hand, when the
solution space is a single region (this is the case when all constraints are monotone or
anti-monotone), there is an intuitive appeal to return minimal answers, as they are
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in some sense the “smallest objects” in the solution space.

In [NLHP98, LNHP99], monotonicity is not exploited, since the answer sets in
the studies are all frequent valid sets. This is in keeping with the classical framework
of associations, where all frequent sets are computed (and used for forming associa-
tions). Handling both monotone and anti-monotone constraints is a novelty to this
work. One may argue that [BMS97] has already handled such constraints (since be-
ing correlated is monotone and being CT-supported is anti-monotone). Still, in this
work, the interaction between monotone and anti-monotone with succinct constraints
is handled, which to the best of my knowledge, is done for the first time.



Chapter 4

Data Mining on Circumstance
Lattice

In Chapter 2, the new data mining model on bilattice is proposed. Chaptef 3 explains
the extensive work of correlations on itemset lattice. In this chapter, we will change
our focus to circumstance lattice, and try to determine the circumstances under which
a given pattern (or a set of patterns) holds in a large database [GLWO1]. So far in
data mining area, the most widely used threshold is frequency. The frequent itemsets
are the basis of a lot of patterns such as associations and correlations. Therefore
instead of using correlations for consistency from Chapter 3, frequency is chosen as
the given pattern on circumstance mining for the purpose of generality and simplicity.

4.1 Motivation and Background

4.1.1 Motivation

As mentioned in Chapter 1, all of the data mining studies up to date are concerned
with answering the question “which patterns hold in the database.” However many of
a time, it is at least as interesting and useful to ask “when a given pattern holds in a
database”. Here the word when can be interpreted to mean, but need not be restricted
to, temporal conditions, conditions involving locations, demographics, etc., and more
generally, the “underlying circumstances” under which the pattern of interest holds
in a database.

But still why should people care about this question? Here are a few motivating
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example queries.

Q,: Under what circumstances (say, on time of purchase) is the itemset {beer, dia-
per} bought frequently?

. Q.: Under what circumstances (e. g. time, location) are interstate calls totaling over
$50 made by a customer?

Q;: Under what circumstances (e. g. season, weather) are ice cream sales high?
Which items(ets) have high sales under those circumstances?

Q4: Which itemsets are seasonal favorites, i.e. they are bought frequently in fall
but not in summer or vice versa?

Qs: For each itemset bought frequently in fall, find further circumstances under
which they are bought frequently.

Just as associations, correlations, and other mined patterns are useful in sales
planning etc., knowing the circumstances under which one or more patterns hold can
be useful in “tuning” the plans around these circumstances. For example, if certain
patterns hold for NJ locations and not for NY locations, then a2 manager might want
to incorporate this in his planning. The examples above illustrate that one might be
interested in a specific pattern (for example, a specific frequent itemset {beer, diaper}
in Q:), or in a set of patterns generated from another query (for example, the set
of frequent itemsets bought in fall in Q,), and ask for further circumstances under
which they hold.

The problem that addressed in this chapter is to find all circumstances in which a
given pattern holds for a given itemset, when the pattern satisfies some monotonicity
properties. For the sake of concreteness, frequency is picked as a prototypical example.
Since it is a c-monotone pattern, knowing an itemset is frequent under a circumstance
tells us it is frequent in all circumstances implied by it. Thus, the real goal is to find
the minimal circumstances under which a given itemset is frequent, in the sense
that the itemset is not frequent in any stronger circumstance. For c-anti-monotone
patterns such as purchasecap, the set of mazimal circumstances in which the pattern
holds w.r.t. a given itemset summarizes the whole space of circumstances where this
pattern holds for that itemset.

46



4.1.2 Theoretical background and relations with datacube

First, it is interesting to notice that the circumstance lattice bears a strong similar-
ity to the lattice used for data cube computation, which once again illustrates that
data mining is closely related to datacubes. Indeed, when we limit ourselves to cir-
cumstances involving only equality from its definition in Chapter 2, the circumstance
lattice is identical to the lattice corresponding to the (instances of) various group-bys.
This.suggests any of the algorithms developed for cube should be useful for mining
circumstances. Actually, applying data cube algorithms on circumstance lattice will
give us the computation result of the whole circumstance lattice. On the other hand,
if absolute support count is used as the chosen pattern, a traditional Apriori-style
level wise pruning strategy should be relevant as well, except the circumstance lattice
is used to replace the itemset lattice. This interesting connection among circum-
stance mining, datacube and Apriori-like algorithms will be further discussed later in
Section 4.3.

Another interesting observation is that for certain patterns, if they hold under a
given circumstance c, they necessarily hold in a weaker circumstance ¢/, where weaker
means c implies ¢. As an example, consider frequent itemset as a pattern. Let ¢ be
the circumstance city = ‘westfield’ & state = ‘nj’ & month = ‘october’ and ¢’ be
state = ‘nj’. Clearly, ¢ is weaker than c in the sense that every transaction that sat-
isfies ¢ necessarily satisfies ¢’. Equivalently, c is stronger than ¢/. Let S be any itemset.
Suppose S is frequent under ¢. Then it must be frequent under ¢. ! In the termi-
nology of Ng et al. [NLHP98, LNHP99], such patterns is called monotone. For these
patterns, there is an intrinsic interest in determining the “strongest” circumstances
under which they hold. For example, suppose the set of strongest circumstances C
under which an itemset S is frequent is given. Intuitively, this covers the space of
all circumstances under which S is frequent, since S is frequent exactly under those
circumstances that are weaker than some circumstance in C. Another example of a
pattern that has this property occurs in (Q2): if interstate calls totaling over $50 are
made under a given circumstance (for example, over a week), then under a weaker
circumstance (for example, over a month containing that week), the total cannot be
less.

Yhere frequency is the absolute support count. This count can come from a specified fraction,
say 0.1%, of the total database size, for example.
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Some patterns tend to be anti-monotone in that whenever they hold in a cir-
cumstance, they necessarily hold in a stronger circumstance. A natural example is
the pattern “interstate calls made total under $25.” Clearly, if this holds for a given
circumstance, it must hold for any stronger circumstance?. For such patterns, the
intrinsic interest is to ask for the weakest circumstances under which they hold.

4.2 A Special Circumstance — Time

In this section, a special circumstance attribute - time is studied. Let’s first define
the notion of a basic time window, which is the smallest granularity of time the user
cares about, and assume this is specified by the user. For example, the transactions
could be by the minute, while the basic time window might be an hour or a day. So
the problem becomes: given an itemset S, find all time intervals under which S is
frequent, w.r.t. a user-specified support threshold s. Notice that the support of S over
an interval is always greater than or equal to that over any of its subintervals. Thus,
if S is frequent in an interval I, obviously it is frequent in all intervals including /.
Hence, it is interesting to ask, “what are the minimal intervals, in integral multiples of
the user-specified basic time window, in which S is frequent?”. An efficient algorithm
is given for answering this question. The algorithm is applicable to any circumstance
attribute whose domain is totally ordered. In the algorithm of Figure 20, it is assumed
the transactions are ordered by time. If they are not, they should be sorted first.
Call an interval I = [¢,r] left-extreme provided for a fixed right endpoint r, ¢
is the closest left endpoint such that S is frequent in [¢,7]. Right extreme intervals
are analogously defined. The algorithm consists of 3 passes. In the first pass, the
count of S in each interval of unit length u supplied by the user, is computed. In the
second pass, a forward sweep is made, from the first transaction to the last, and all
left-extreme minimal intervals in which S is frequent are found. In the third pass,
a backward sweep is made and all right-extreme minimal intervals is found where S
is frequent. The correctness of the algorithm follows these observations, since every
minimal interval in which S is frequent must be either left-extreme or right-extreme. It
is possible to avoid the first pass of the algorithm, and roll the count computation into
each of the subsequent passes. Also, as long as the (set of transactions corresponding

2The strongest circumstace is false, which verifies this pattern vacuously.
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to the) intervals scanned by the algorithm fit in main memory, the number of passes
remains the same even for disk resident data.

4.3 Algorithms for General Circumstance Mining

In this section, simple adaptations to some existing cube algorithms are discussed,
and a new algorithm is proposed to find minimal circumstances under which a given
itemset is frequent.

As mentioned in Subsection 4.1.2, due to the similarity of data cube lattice and
circumstance lattice, all the datacube algorithms can be used to compute the circum-
stance lattice. The representative cube algorithms that picked up here are the BUC
(bottom-up cube) algorithm proposed by Beyer and Ramakrishnan [BR99] and the
chunk array-based algorithm (which is top-down) due to Zhao et al. [ZDN97]. Of
these, BUC is also designed to incorporate constraints on groups such as count(*) > n,
which says the group must have at least n elements. However, the express goal of
BUC is to find all groups satisfying given constraints (as opposed to minimal ones).
On the other hand, the main efficiency of chunk array-based algorithm comes from
using a multi-dimensional address space for storing the base table and the cube it~
self. This affords great compression. It uses the minimum weight spanning tree data
structure to optimize cube computation. In addition, it also uses techniques for han-
dling sparse data. Figure 21 shows the adapted chunk array algorithm for finding
minimal circumstances in which a given itemset S is frequent. The basic idea is to
perform a search in the circumstance lattice from the strongest circumstances to the
weaker ones. As soon as S is found to be frequent in a circumstance, it is garanteed
to be minimal. Clearly, all minimal circumstances can be found in this way. The
correctness follows from these observations.

Figure 22 shows the original BUC algorithm and Figure 23 shows the adaptation
to it for finding minimal circumstances. In the original BUC algorithm, “numDims”
represents the total number of dimentions. “OutputRec” represents the current out-
put record. And “dataCount[numDims]” stores the size of each partition. There is
a minor modification consists in BUC adaptionin in computing the support of S in
every group (i.e. circumstance). Just like original BUC, whenever S is found to be
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Algorithm Stretch-Slide-Shrink;

Input' a set of transactions F, ordered by time, a basic window width u, a min. support threshold s, and a specific
temset S;

Output: the set of all minimal time intervals I such that § is frequent in [;

1 make one scan of F and compute count(c), the no. of hits for S in ¢, for each consecutive wmdow c of size u;
initialize ¢ to the first window of size u; make a forward sweep as follows:

2 repeat {

2.1 if (count(c) > s)
add ¢ to output;
2.2 else { // need to stretch;
2.2.1 repeat {
stretch(c);
until ((count(c) > s) or (c.right = lastTrans.time)); } //stop stretching;
2.2.2 if (count(c) > s) { //try shrinking;
¢’ = shrink(c);
while (count(c’} > s) {
c=d;
¢ = shrink(c); }
add c to output: } } //can’t shrink ¢ any more;
2.3 slide(c); //go to next window;

until (c.left = lastTrans.time - u); } //all windows have been examined;
make a backward sweep from the last transaction to the first, to find remaining minimal intervals;
procedure stretch(c);
if (c.right != lastTrans.time) {
let d be the window immediately to the right of c, i.e. d.left = c.right and d.right = c.right + u;
count(c) = count(c) + count(d);
c.right = d.right; }
//stretch(c) stretches current ¢ by one window of length u to the //right and adds up the appropriate count;

function shrink(c);
local var ¢: window

cd.left = cleft + u;
return(c);

/ /shrink(c) shrinks current ¢ by one window of length u from the left;
procedure slide(c);

cleft = cleft + u;
if (eright == cleft) { c.right = c.right + u; }

Figure 20: Pseudo Code for Algorithm for Finding Minimal Intervals Where an Item-
set is Frequent.
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Algorithm Modifled Chunk Array;
Input: an itemset S, a support threshold s, and a transaction database D;
Output: the set of minimal circumstances in which S is frequent;

1. run chunk array algorithm, with the following modifications:

(a) no aggregate computation (other than verifying the support constraint) is needed;

(b) when processing a circumstance ¥, compute the support of S in ¥; if it exceeds s, add ¥ to the output;
circumstances that are implied by ¥ are pruned;

Figure 21: Adaptation to Chunk Array Algorithm for Finding Minimal Circum-
stances.

infrequent in a circumstance, all stronger ones are pruned away. A final modifica-
tion consists in post-processing: BUC (modified as above) finds all circumstances in
which S is frequent; for circumstance mining, it is necessary to efficiently detect and
eliminate non-minimal ones. Correctness of modified BUC is straightforward.

Post-processing: Circumstances are processed in increasing order of their length
(for example, A = a; AB = b; is of length 2) in BUC. In addition, within each length,
make sure they are processed in lexicographical order (by assuming some arbitrary,
but fixed order on circumstance attributes and their domains). Let n be the number
of circumstance attributes. Then all circumstances of length n found by the modified
BUC algorithm are minimal, by definition. For each circumstance of length k¥ < n,
we check if it is implied by any circumstance of length k + 1. The implication test
is syntactic and checking length (k + 1)-circumstances for implication can be done
efficiently using binary search.

The last algorithm, minCirc which proposed for circumstance mining is in some
sense inspired from Apriori. The basic idea is that since frequency is c-monotone, it
is possible to scan the transactions repeatedly and compute the support of S corre-
sponding to all circumstances of a given length in each iteration, starting from length
1. When S is infrequent in a circumstance, prune away all circumstances of which
it is a “prefix”. For example, when S is infrequent in A = @, A B = by, ignore
A=a;AB = b AC = ¢, etc. A literal implementation of this idea, however,
can lead to a poor performance. The reason is when several circumstance attributes
are presented, each with a domain of reasonable cardinality, the effort required for
candidate generation (even with this pruning) is appreciable. This algorithm instead
imposes an order on the dimensions and exploits this order in quickly pruning away
many candidate circumstances early. As an example, if S is found to be frequent in

51



Algorithm BUC(input, dim);
Input: the relation to aggregate, dim: the starting dimension for this iteration

Output: One record that is the aggregation of input. Recursively, outputs CUBE(dim,..., numDims) on input (with

minimum support).

1 Aggregate(input); //Place result in outputRec

2 ifinput.count() == 1 then //Optimization
WriteAncestors(input[0], dim); return;

2.1 write outputRec;
2.2 ford = dim; d { numDims; d++ do
2.2.1 let C = cardinality[d};
2.2.2 Partition(input, d, C, dataCount(d]);
223 letk=0;
2.24 fori=0;¢i < C;i + + do //For each partition
2.2.4.1 let c = dateCount{d][/]
2.2.4.2 if ¢ >= minsup then //The BUC stops here
2.2.4.3 outputRec.dim|d] = input[k].dim{d};
2.2.4.4 BUC(input[k...k+c}, d+1);
2.24.5 endif
2.24.6 k+=¢;
2.2.5 end for
2.2.6 outputRec.dimd = All;

2.3 end for

Figure 22: Algorithm BottomUpCube(BUC).

Algorithm Moadified BUC;
Input: an itemset S, a support threshold s, and a transaction database db;
Output: the set of minimal circumstances in which S is frequent;

1. run BUC algorithm, with the following modifications:

(a) no aggregate computation (other than verifying the support constraint) is needed;

(b) when processing a circumstance ¥, compute the support of S in ¥; if it is below s, circumstances that

are imply ¥, including v, are pruned; otherwise, ¥ is retained;

2. do post-processing to eliminate non-minimal circumstances;

Figure 23: Adaptation to BUC Algorithm for Finding Minimal Circumstances.
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A = a; AD =d;, where D is the last circumstance attribute, there is no need to check
“suffixes” of this circumstance. Figure 24 shows the algorithm. It uses the following
notions.

Suppose Dy, ..., D, is a chosen order on the circumstance attributes and and let
¢ and d be values of any circumstance attributes. Then ¢ < d iff ¢ is a D;-value
and d is a Dj-value, for some ¢ < j; c and d are said to be incomparable otherwise.
Sometimes it is convenient to write circumstancessuchas A=a; AB=0AC =¢,
simply as a;b,¢;, relying on the fixed chosen order of circumstance attributes. Linked
lists are used with heads and nodes (head is not a node). For a linked list, its
length represents the number of nodes it has. Each list represents a set of candi-
date circumstances of a given length. For example, a list with head a;b; and nodes
€1, - - -, Cs, da, dg, d7 (Where ¢; € dom(C) and d; € dom(D)) represents the set of cir-
cumstances abicidp, a1bicds, - . .,a1b1csd7. A circumstance z; ---z; appears in a
linked list provided its head contains z; - - - 7x—.; and one of its nodes contains the circ
zx. In the algorithm, a circumstance is frequent in which S is frequent.

The last step of the algorithm invokes post-processing, as discussed earlier. In
particular, since the circumstances are processed in increasing order of length, the
same post-processing as used for BUC can be used. The correctness of the algorithm
follows from the following facts: (i) a circumstance is never explicitly pruned unless
S is infrequent in it; (ii) circumstances that are suffixes of those ending in the last
circumstance attribute value are never considered for counting, for example, if cir-
cumstance attributes are ordered as ABCD, then there is no need to consider suffixes
of byd,; every suffix of such circumstances are covered by some circumstances that
already considered somewhere else; for example, the suffix bydic; = bycyd;, and one
of its (not necessarily proper) prefixes, for example, by, is always considered by the
algorithm.

4.3.1 Relevance to CUBE

A significant feature of the chunk array and BUC algorithms (with modifications) is
that they can be used to compute not only (minimal) circumstances where a pattern
holds for an itemset, but also any required aggregate measure value at each such cir-
cumstance. Then what about algorithm minCirc, inspired by Apriori-style intuition?
It turns out that by associating a field for computing the aggregate measure with
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Algorithm minCirc;
Input: an itemset S, a support threshold s, and a transaction database D;
Output: the set of minimal circumstances in which S is frequent;

1 choose some circ attribute order, say Dy,...,Dn;

2 scan D once and obtain counts of S in all atomic circumstances, i.e. in all D)-circumstances, ..., Dn-
circumstances;

3 let F; be the set of all atomic circumstances in which S is frequent;
4 hash the circumstances and write the counts;
5 create a linked list of candidates as follows:

51 for(1 <=i<=n;i+ +) {
5.1.1 let z; € F\ be any D;-value;
3.1.2 create a linked list with head z;;
513 for(i<j<=n;i++){
let z: € F1 be any Dj-value;
append a node containing z; to the linked list with head z;; } }
52 k=12;
5.3 while the current set of linked lists is non-empty {

5.3.1 scan D and obtain counts of all k-circumstances appearing in the linked lists;
5.3.2 purge each node corresponding to a circumstance in which S is infrequent;
5.3.3 construct linked lists for (k + 1)-circumstances (candidates) as foilows:
5.3.4 [or each linked list L with head H of size k {
if (length(L) >=12) {
for each node (containing a circ) zin L {
temporarily create a new list with head Hz, which contains all nodes of L after node

z, that correspond to later circumstance attributes;
//since length({L) ;= 2, there will be at //least one such node;

delete from this list those nodes y such that some k-subset of Hzy does not appear
in any linked list with head size k;
//this test can be performed quickly by sorting;

}E1}

6 eliminate non-minimal circumstances via post-processing;

Figure 24: A Linked List Based Mining Algorithm for Finding Minimal Circum-
stances.
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each node, the aggregate can be computed incrementally. This argument holds for all
distributive and algebraic aggregate functions, for which the most known fast cube
algorithms have been developed. This establishes an interesting tight connection be-
tween frequent set mining and cube computation. This framework is applicable not
only just to frequent sets but also to more general itemset patterns with monotone
or anti-monotone properties w.r.t. itemsets or circumstances.

4.4 Experimental Results

A series of experiments are conducted to evaluate the effectiveness of the algorithms
presented for mining minimal circumstances in which an itemset is frequent. More
specifically, the three algorithms are compared in order to find out how they perform
under different conditions. For the given three algorithms, BUC is a bottom up algo-
rithm and uses a “height first” principle; minCirc is also a bottom up algorithm but
uses level wise principle; Chunk Array by nature is a top-down algorithm and it also
uses the level wise principle. So these three algorithms represent three different ways
in mining minimal circumstance sets from different directions of the circumstance
lattice, and using different search strategies.3 The performance of the algorithms are
compared not only by total cpu time, but also by the number of candidate sets that
each algorithm generated and tested.

4.4.1 Test data

A Pentium IT 200 processor with 64 KB memory is used for all the experiments. All
the algorithms are implemented in C++ running on a Windows NT platform. Test
material is synthetic sets of transactions generated for various cases. A Zipf distri-
bution is used to control the skewness of the data, as commonly used in experiments
of this kind, see e. g. [BR99]. To be fair to all the algorithms, both cases where
the transaction database fits in main memory and resides on disk are tested. 1 to
7 circumstance attributes are used, and each attribute had a domain of cardinality
100. The number of transactions varies form 10,000 to 500,000, the support threshold
is from 5 to 1000, and skewness is varied from 0, which is the uniform distribution,

3The fourth way would be top-down, depth-first, which is BUC applied to an i-anti-monotone
pattern.
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to 3. In each of the experiments, the number of candidate sets generated, the peak
memory allocation, the total time, the I/O time, and the number of passes over the
transaction database are recorded for analysis. However, for the sake of space and
simplicity, not all of the experiment results are showed.

4.4.2 Experimental evaluation

The first set of experiments is conducted where transaction databases can fit in main
memory. All other parameters are varied as described above. The total cpu time is
measured as a function of the number of transactions. We have chosen 5 circumstance
attributes, threshold 100, and skewness 1, as a typical representative of this set of
experiments. The results are shown in Figure 25. It is fairly uniform. With the
increase of the number of transactions, there is a linear increase in the total time for
all three algorithms. But the slope for minCirc is steeper than the slope for BUC
and Chunk Array. This is due to the fact that BUC and Chunk Array make only one
pass over the transaction database, whereas minCirc makes up to as many passes as
the number of circumstance attributes. Other results that have been observed from
this set of experiments are: with the increase of support threshold, the number of
candidates generated and the total time are decreasing for both BUC and minCirc.
For Chunk Array, on the other hand, with the increase of the support threshold, the
number of candidate sets generated is slightly increasing and the total time is almost
constant. When skewness is increased, the total time for both BUC and minCirc is
increasing while the total time for Chunk Array is decreasing. This is because Chunk
Array works top-down, the number of atomic circumstances (the ones directly above
false) will dominate the number of candidate sets generated, and the total time will
mainly be affected by the number of circumstance attributes and their cardinalities,
once the number of transactions is fixed. As the data becomes more skewed, the
number of atomic circumstances that need to be considered decreases. The overall
performance nevertheless only increases slightly..

The second set of experiments conducted is on disk resident transaction databases.
When the data is uniformly distributed (skewness = 0), minCirc gives the best per-
formance among the three algorithms. Figure 26 displays the results for support
threshold at 100, and number of circumstance attributes at 5. With the number of
transaction increases, the total time increases rapidly for BUC. When the number
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Figure 25: Algorithms Comparison (memoryresident, skewness = 1, threshold =
100, No.ofCirc. = 5)

of transaction is equal to 500,000, the total time for BUC is 50 times larger than
minCirc. Even for Chunk Array the total time is 5 times bigger than minCirc. For
minCire, the upper bound of the number of passes over the transaction database
equals to the number of circumstance attributes. On the other hand, for BUC the
only upper bound is the size of the circumstance lattice. Furthermore, as the data is
uniformly distributed, Chunk Array has to do much more computations for each of
the atomic circumstance sets, so minCirc also performs better than Chunk Array.

However, with the increase of the skewness, as the data is not uniformly dis-
tributed, the performance of Chunk Array will improve quite drastically since some
of the atomic circumstance sets will not appear in the transaction database. Fig-
ure 27 gives the results for the same condition as Figure 26, except that the skewness
is equal to 1. Similar performance can be observed for BUC and minCirc. Under
these conditions, Chunk Array is the algorithm of choice. Note that the time scale is
different in Figure 26 and Figure 27.

Another factor that affects the performance of these algorithms, especially Chunk
Array, is the number of circumstance attributes. When the number is 5, and the
domain of each circumstance attribute has cardinality of 100, there is potentially 10'°
atomic circumstance sets appearing in the transaction database. If increasing the
number of circumstance attributes to 6, there might be up to 10'2 atomic circumstance
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Figure 26: Algorithms Comparison (diskresident,skewness = 0, threshold =
100, No.ofCirc. = 5)
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Figure 27: Algorithms Comparison (diskresident,skewness = 1, threshold =
100, No.ofCirc. = 5)
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Figure 28: Algorithms Comparison (diskresident,skewness = 1, threshold =
100, No.ofCirc. = 6)

sets. This is a large increase for Chunk Array, but for minCirc this just implies at
most one more pass over the transaction database. For these conditions minCirc
becomes the best choice. Figure 28 shows the results for 6 circumstance attributes.
When the number of transactions is smaller than 300,000, the total time for BUC
and Chunk Array is similar, and both about twice the total time of minCirc. When
the number of transactions increases to 500,000, the total time for minCirc is 5 times
smaller than the other two algorithms.

So it is interesting to observe the effect of varying number of circumstance at-
tributes. Figure 29 shows such an experiment. When the number is smaller than 5,
Chunk Array has the best performance and the slope of the curve is very gradual.
However, once the number of circumstance attributes is greater than 6, there is a dra-
matic decrease in the performance of Chunk Array and it becomes the worst among
the three algorithms. With the increase of the number of circumstance attributes, the
total time for both BUC and minCirc increase much more slowly compare to Chunk
Array.

In the third and last set of experiments the effect of the skewness of the data is
tested. In Figure 30, when the data is uniformly distributed and is disk resident,
minCirc has the best performance and BUC gives the worst performance. When
skewness is greater than 1, the curve for all three algorithms become flat. Chunk Array
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Figure 29: Algorithms Comparison (diskresident, skewness = 1, threshold =
100, No.ofTrans. = 100000)

shows the best performance while BUC is still the worst one. However, in another
experiment, as showed in Figure 31, main memory resident transaction databases is
tested, while keeping the other parameters the same as in Figure 30, it is observed that
BUC is almost unaffected by the skewness of the data, and gives the best performance
among the three algorithms.

In other experiments in this set, the number of candidate sets generated is tested.
This measure is not affected by the residency of the transaction database. The skew-
ness of the data does affect the performance, but slightly. Two experiments, namely
Figure 32 and Figure 33 are showed for the number of candidate sets generated vs. the
number of transactions. Skewness is at 1, and the number of circumstance attributes
is 5. Figure 32 shows the result for the threshold at 1000, and Figure 33 shows the re-
sult for the threshold at 5. When the threshold is high, the pruning strategies for BUC
and minCirc are very effective, so at 500,000 transactions the number of candidate
sets minCirc is over 500 times smaller than that of Chunk Array, and BUC generates
80 times fewer candidate sets than Chunk Array. However, when the threshold is
small, the pruning strategy for BUC loses its efficiency, and the number of candidate
sets becomes the biggest. minCirc also lose some of its pruning efficiency, but it still
comparable to Chunk Array.
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Figure 32: Algorithms Comparison (memoryresident, skewness = 1, threshold =
1000, No.ofCirc. = 5)
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Figure 34: Decision Tree for Choosing a Mining Algorithm.

4.4.3 Summary and conclusions

The prescriptions emerging fromn our experiments are described in the decision tree
of Figure 34.

4.5 Related Work

As previously noted, mining for circumstances in which a given pattern (like frequent
itemset) holds has a close relationship with cube computation, with or without con-
straints, and hence the huge body of techniques and algorithms developed for cube
is relevant. Among all these works, the recent paper [BR99] surveys many of them,
and also describes the BUC algorithm.
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Chapter 5
Data Mining on Bilattice

So far, the work that has been done only concerns with on one lattice. In Chapter 3,
constraints are introduced on correlations for itemset lattice mining. In Chapter 4, al-
gorithms are provided to find circumstances where a pattern holds for a given itemset.
This chapter will introduce data mining on bilattice.

5.1 Introduction and Motivation

Mining is exploratory in nature. An analyst might wish to find the circumstances
under which a pattern holds for an itemset and then find out which other sets sat-
isfy the pattern under those circumstances (Query Q; in Chapter 4 Section 4.1.1 is
an example involving such exploration). Or s/he might start with a circumstance
(say, fall in northeast), find the itemsets that satisfy a pattern, and then attempt to
characterize the circumstances under which these latter sets satisfy the pattern (e.g.,
see query Qs from the same section as above). Queries of this kind require to be
able to freely move between the worlds of itemsets and circumstances. The bilattice
of itemsets and circumstances developed in Chapter 2 is ideal for supporting such
“migration”. In this chapter, the notion of an Armstrong Basis is proposed as a basis
for supporting a variety of queries involving such migration.



5.2 Theory of Armstrong Basis

Recall the bilattice (C x Z, <5, <gb.,) defined in Chapter 2, where for any two el-
ements (¥, S),(4,T) € (C x I), (¥, S)<up(#,T) exactly when ¢ logically implies ¢
and S C T, and (¢, S)<'®(¢,T) exactly when 1 logically implies ¢ and T C S. An

element (3, S) in the bilattice is <}P-minimal w.r.t. a property p provided it satis-
fies p and whenever (¢, T) satisfies p and (¢, T)<35(%, S), we have (¥,S) = (4,T).
Minimality w.r.t. the other order and maximality w.r.t. either order are defined

analogously.

Definition 3 (Armstrong Basis) Let p be a pattern over circumstances and item-
sets, and D be a transaction database. Suppose p is c-monotone and i-anti-monotone.
Then the Armstrong Basis of p w.r.t. D is defined as AB(pp) = {{¥,S) € (CxI)|.
(¥, S) is <P, — minimal w.r.t. p}.

The significance of Armstrong Basis is clear from the following facts.

Proposition 2 Let D be a transaction database, p be a c-monotone eand i-anti-
monotone pattern, and AB(pp) be the Armstrong Basis of p w.r.t. D. Then the

following statemnents are true.

1. For every element (y,S) € AB(pp), pattern p does not hold for any proper
superset of S at circumstance ; similarly, p does not hold for S at any circum-
stance that is strictly stronger (i.e. it implies, but is not equivalent to, 1) than

.

2. Every element of the bilattice (C x I) which satisfies the above statement belongs
to AB(pp)-

8. For every element (¢,T) in the bilattice, pp(¢,T) holds if and only if there is
an element (¥, S) € AB(pp), such that T C S, and ¢ is logically implied by ¥.

Proof Sketch: We will just show the proof for part 1 as an example. According
to the definition of Armstrong Basis, 9 is the strongest circumstance in which p(S)
holds and S is the maximal itemset that p(3) holds. If there exists a S’ that is a
superset of S, and p(1, S’) holds, then p(¥, S) is not an element in the Armstrong
Basis, instead, p(v, S') should be in it.
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The proposition above also explains the reason behind the terminology used for
this notion. Indeed, Armstrong Basis has a structure that is very similar to the
notion of Armstrong couples introduced for families of functional dependencies by
Armstrong, almost three decades ago [W74].

The notion of Armstrong Basis is applicable to any pattern that satisfies some
monotonicity properties w.r.t. itemsets and circumstances, either by defining mini-
mality or maximality w.r.t. the appropriate order in the bilattice. For example, for
minpurchase, a c-monotone and i-monotone pattern, the Armstrong Basis should be
defined as the set of <UP-minimal elements satisfying minpurchase. Note that for
such a pattern the Armstrong Basis has the complete information about the space
of circumstance-itemset pairs valid w.r.t. this pattern, as stated in part (3) of the
proposition.

5.3 Algorithms for Computing Armstrong Basis

For a typical transaction database and a pattern such as frequency, the size of the
Armstrong Basis can be substantial. So why should anyone want to compute it?
The analogy that is given is cube. For large databases, cube is a time- and space-
expensive operation. Indeed, a user may not be interested in-seeing a cube in its
entirety. Its utility comes from its ability to service a variety of aggregation queries
involving multiple group-bys. In a similar manner, if the Armstrong Basis for a
pattern is available, queries (such as those in Chapter 4 Section 4.1.1) involving
migration between itemsets and circumstances can be answered efficiently. Thus, it
is worth investigating efficient algorithms for its computation. Here, the c-monotone
and i-anti-monotone patterns p are used. Similar notions exist for other patterns.
Let p be a c-monotone and i-anti-monotone pattern. Define a function p; : C—=T as
pi(¥) = {S | p(¥, S)AVS' : 8’ D S = —p(¥, S')}, and a function p. : I-C as p(S) =
{¥ | p(4,S) AV : ¢ < = —p(¢,S)}. These functions have obvious extensions to
collections of circumstances or sets: for a set of circumstances ¥, p;(¥) = Uyew 2i(¥),
and for a collection of itemsets S, p.(S) = Uses P-(S). Note that with such extensions,
the functions p; and p. can be composed. For example, let p be frequency. Then for a
collection of circumstances ¥, the composite function p. o p; does the following: first,
it finds all maximal itemsets frequent under any circumstance in ¥; secondly for each
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Algorithm ArmBase;
Input: a transaction database D, a c-monotone and i-anti-monotone pattern p.
Output: AB(pp)

L. the Armstrong Basis is initially empty;

2. do a level wise sweep of the itemset lattice and do the following:

3. for each set S at the current level, if S is not a subset of S’ for some (3, S’') in the current Armstrong Basis,
then find the collection of minimal circumstances CIRCs at which the pattern holds for S;

4. for each circumstance ¥ € CIRCs, find the collection of maximal sets ITSETSy, for which the pattern holds
under 9; let ITSETS be the union of ITSETSy, over all Y € CIRCSs;

5. each pair in CIRCg x ITSETS is an element of AB(pp);

6. terminate when all levels are processed, or when no itemset at a given level makes it to AB(pp);

Figure 35: Algorithm for Computing the Armstrong Basis of a Pattern in a Transac-
tion Database

of such itemsets, it finds all minimal circumstances under which it is frequent. Similar
remarks hold for other patterns. A set of circumnstances W is said to cover another set
® provided V¢ € ®, 3y € ¥, such that ¥ implies ¢. Similarly, a collection of itemsets
S covers collection T provided VT € T, 35S € S, such that T C S. Notice that the
Armstrong Basis AB(pp) is itself a cover of the set of all pairs (¥, S) for which the
pattern p holds. Here are the results.

Proposition 3 Let p; and p. be functions as defined above, w.r.t. a c-monotone and
i-anti-monotone pattern p. Then the following holds:

1. for every collection of circumstances ¥, p.(p:(¥)) covers ¥; furthermore,
Pe(pi(pe(pi(¥)))) = pe(pi(¥))-

2. for every collection of itemsets S, p;(p.(S)) covers S; furthermore,
Pi(p(pi(pc(S)))) = pi(pc(S))-

Proof Sketch: The proposition can be proved by appealing to the definitions of
p; and p.. It immediately suggests the algorithm in Figure 35 for computing AB(pp)-

This algorithm relies on the following facts: CIRCSs = p.(S) and ITSETS =
pi(p(S). For each pair (¢, T) € (p(S) x pi(pc(S), if p holds for T at a stronger
circumstance, then it would hold there for S too, which contradicts the minimality of
¢ w.r.t. S. Similarly, if p held for a proper superset of T at ¢, this would contradict
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Figure 36: An Example FP-tree (support threshold assumed to be 2)

the maximality of T w.r.t. circumstances in p.(S). The correctness follows from this.
Unfortunately, this algorithm can be prohibitively expensive. In particular, it does
not share any effort between successive iterations. There is, of course, a dual algo-
rithm which works off the circumstance lattice, sweeping it level-wise. It is omitted
since it is very expensive as well. The question remains how people can efficiently
compute the Armstrong Basis.

This problem can be solved by inspiration from the FP-tree algorithm, recently
proposed by Han et al. [HPY00]. First, let's quickly recall their algorithm.

The FP-tree is a compact data structure for storing all information about frequent
itemsets in a database (under the circumstance true). The idea is frequent items,
obtained from an initial scan of the database are ordered in decreasing order of their
frequency. In the next (and last) scan, as each transaction is scanned, the set of
frequent items in it are arranged on a tree incrementally, by ensuring that prefixes
among sets of frequent items contained in different transactions are maximally shared.
In addition, a count is associated with each item % on this tree and it represents the
number of transactions containing the itemset corresponding to the prefix terminating
at i. Figure 36 shows an example of FP-tree. Note that there may be more than one
node corresponding to an item on this tree. Nodes corresponding to the same item
are linked together and there is a table of items with a pointer to the first item in
the list. The frequency of any one item ¢ is the sum of the count associated with all
nodes corresponding to .

The FP-tree method relies on the following principle: the support of an itemset
apf in the database is exactly that of B in the restriction of the database to those
transactions containing a, called the conditional pattern base of a. The idea is to use
an FP-tree to represent all this conditional pattern base in turn efficiently. Once an
FP-tree is constructed for the original database, process it bottom-up. For each leaf in
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the current FP-tree representing some frequent item i, obtain its support by summing
the counts of all nodes associated with ¢, then construct the conditional pattern base
for this item and its FP-tree representation. This representation can be used to find
all frequent patterns in this pattern base. Let F; be this set, then the set of frequent
itemsets in the original database that contains ¢ are exactly {ai | @ € F}. The
exit condition for this recursion is an FP-tree containing a single path (i.e. only one
branch) a. In this case, every subset of « is frequent (in the appropriate conditional
pattern base).

The algorithm for Armstrong Basis is inspired from this algorithm. Before describ-
ing it, let’s discuss how FP-trees can be used to efficiently extract maximal frequent
itemsets. As processing the nodes in an FP-tree bottom-up, consider the FP-tree
representation of the conditional pattern base associated with a pattern a as well. If
this FP-tree is a single path, say £, it can be directly concluded that Sa is a frequent
itemset and is maximal among those containing . However, this may or may not
be a globally maximal frequent itemset. One way to ensure its maximal is to check
that there is no proper superset that generated previously. A second idea, suggested
by Jian Pei [P0O}, is to use the FP-tree algorithm to check that there are no fre-
quent items in the conditional pattern base of Sa. This is clearly more efficient, since
it avoids explicit subset checking. However, it incurs the overhead of checking the
conditional pattern base of B« for possible frequent items.

Noiw, for computing the Armstrong Basis, first make a scan of the database and
determine all atomic circumstances of the form A = a; (we write simply a; when A is
understood, as before), and the frequent items they contain. Sort them according to
the decreasing number of frequent items they contain. For example, if a; contains 5
frequent items while b, contains 6, a; comes after b;.! The rationale for this order will
be clear shortly. Next, scan the database again. For every transaction, incrementally
build a circumstance prefic tree (CP-tree), using the same principle as the FP-tree,
using maximal sharing of prefixes, as follows. Initially, the CP-tree is empty. For each
transaction ¢ with circumstance a, if there is a branch in the tree which shares a non-
empty prefix 8 of « (let @ = f7), create a new branch from the node in the tree branch
where the maximal shared prefix « ends. Then create a new branch corresponding to
B from this node. For example, if the circumstance « is a;b>¢; and there is a branch

11t is of course possible that a; comes after b but before bs.
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a1bscy, a new branch will be created at the node a; corresponding to bac;. At each leaf
of this tree (which represents a circumstance involving all circumstance attributes), a
pointer is made to an (itemset) FP-tree, which represents all sets of frequent items that
occur in (transactions satisfying) this circumstance. ? As scaning the transactions,
the latter trees are also incrementally built. Specifically, if the circumstance o of
transaction ¢ is fully shared by some branch of the CP-tree, then let T be the FP-tree
pointed to by the leaf of this branch. (T is possibly empty.) Then we incorporate
the list of frequent items in ¢ incrementally in this tree exactly using the FP-tree
method. Once complete the scan, a CP-tree will have been built where each of whose
leaves pbints to an FP-tree, representing all sets of frequent items associated with
that circumstance. Recall that the FP-trees themselves maintain count at each node.
It is ensured that the counts are local to the circumstance, in that the sum of counts
associated with all nodes for item i in a circumstance should be precisely the support
count of 1 in that circumstance.

Once this composite tree is built, the Armstrong Basis can be generated as follows.
First, for each leaf of the CP-tree, generate all maximal frequent sets associated with
it, as outlined above, using the FP-tree. A technicality here is that the FP-tree
at a circumstance leaf may well contain items that are not necessarily frequent in
that circumstance, although they are frequent (under “tree”). So, an extra detail
in generating maximal frequent itemsets at a given circumstance is first checking if
the support count for the itemset, as it is being considered, adds up to or above the
support threshold. Notice that any maximal frequent itemset associated with a leaf
circumstance in the initial CP-tree, is by definition a pair in the Armstrong Basis,
since the leaves represent circumstances for which the only stronger circumstance in
the lattice is “false”.

Next, having processed all leaves of the CP-tree, delete its leaves, and move up the
FP-trees pointed by them to their parent. Two or more FP-trees might get merged in
so that their roots may get identified in this process. Repeat the process for the leaves
of the current FP-tree. Let « be a leaf of the current CP-tree and S be any maximal
frequent itemset generated for it. Then (a, S) should be an element of the Armstrong
Basis only if the set S was not generated as a maximal frequent set for any stronger.
circumstance. This check is needed. Repeat these steps iteratively, bottom-up until

2An item i in the FP-tree associated with a circumstance a is frequent but need not be frequent
in a itself.
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Figure 37: An Example Circumstance Prefix Tree with Leaves Pointing to Itemset
FP-trees

the CP-tree becomes empty (in which case, its null root will point to one FP-tree).
The algorithm then terminates. The following is drawn:

Proposition 4 The algorithm for Armstrong Basis outlined above correctly computes
precisely those pairs of circumstances and itemsets that belong to the Armstrong Basts.

Proof Sketch: The Proposition follows from the following observations. For each
leaf of the original CP-tree, every pair computed is indeed a pair of the Armstrong
Basis, and every pair involving a circumstance involving all circumstance attributes
is computed this way. For the remaining circumstances, a simple induction can show
that all and exactly those pairs that involve them will be computed by the iterative
procedure above.

5.4 Summary and related Work

This chapter has defined Armstrong Basis — a new concept of data mining on bilat-
tices. A couple of algorithms are provided for Armstrong Basis computation. The
importance of computing Armstrong Basis is similar to CUBE operation. While the
computation is huge, it can provide effective support for queries involving migration
between itemsets and circumstances.

Recently, there are interests in mining long patterns. Algorithms for mining maxi-
mal frequent sets have been proposed in this context [Bay98, AAP00]. This is relevant
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because of the interest in minimal circumstances. However, these algorithms operate
in a different lattice and the mechanisms of the algorithms appear different. Given
the interest in the Armstrong Basis, these algorithms might offer yet another way
to efficiently find maximal frequent itemsets associated with a circumstance. As an
example, the FP-tree method [HPY00, PHMOO] have already been discussed.
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Chapter 6
Conclusions and Future Work

The contributions of this thesis are summarized in this chapter. Then the future
research opening related to this topic is discussed.

6.1 Conclusions

With formalizing the notions of item, transaction, and circumstance, the traditional
data mining can have a even more wide variety of applications. The setup of itemset
lattice and circumstance lattice helps us to distinguish the difference and yet realizes
the close relations with itemsets and circumstances.

The introducing of constraints in corrrelations can help users to focus and control
the mining task undertaken by the system. Brin et al.’s [BMS97] principle of finding
minimal sets is extended to two useful semantics of answering constrained correlation
queries — (i) all minimal answers that are valid, and (ii) all minimal valid answers. The
former are in general a proper subset of the latter, but for one of the important class
where all constraints are anti-monotone, the two coincide. A basic algorithm as well
as an efficient algorithm are proposed for computing either answer set—Algorithms
BMS+ and BMS++ for answer set (i) and BMS* and BMS** for answer set (ii).
Analytical articulation is given for the reason why Algorithm BMS++ (resp., BMS**)
is more efficient than Algorithm BMS+ (resp., BMS*). Besides, for the case where
all constraints in the user query are anti-monotone, Algorithm BMS++ is the most
efficient among the four.

A series of experiments is conducted to validate the analysis, using synthetic data
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generated by two different methods. These experiments bring out their relative per-
formance and the tradeoffs. From all the experiments, it can be concluded that for
BMS-+, the constraint type does not influence the overall performance. Algorithm
BMS* is slightly affected by the selectivity. On the contrary, the performance of algo-
rithm BMS** is heavily dependent on the constraint for pruning. Generally speaking,
BMS++ shows the best performance under all circumstances. When constraint se-
lectivity is low, BMS++ relies on the constraint to prune the candidate itemsets,
and when the constraint selectivity is high, it relies on the upward closed property of
being correlated to do the pruning.

The new concept of circumstance lattice shows a clear separation between item
attributes and circumstance attributes and pays its dividends: the close ties with
the cube computation paradigm, and between cube computation and mining of i-
anti-monotone patterns opens up new and promising directions for future work. As
motivated earlier, finding minimal (for c-monotone patterns) circumstances under
which a pattern holds for a specific itemset is useful in its own right. Two existing
cube algorithms, BUC and Chunked Array, are modified and a new algorithm, called
minCirc, is given for determining the strongest (resp., the weakest) circumstances
under which a pattern (a frequent itemset) hold. The summary of the decision tree
shows that minCirc is competitive in that there are conditions under which each
algorithm is the algorithm of choice (Section 4.4).

The framework developed in this thesis goes far beyond just support-based min-
ing of frequent itemsets. This is achieved using properties of patterns on the bilattice
of circumstances and itemsets. Finally, a useful notion of Armstrong Basis is pro-
posed with which people can find (say, minimal) circumstances where a pattern holds
for an itemset, and then find which other itemsets satisfy the pattern under these
circumstances. This is in the spirit of mining the result of mining, one of the impor-
tant problems identified by Imielinski and Mannila in their seminal paper [ImMa96].
Just as data cube is an important operator for supporting queries involving multiple
group-bys, for queries involving migration between itemsets and circumstances, Arm-
strong Basis can provide effective support. A couple of algorithms are provided for
computing the Armstrong basis.
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6.2 Future Work

Several questions remain open. Firstly, it is not clear how some of the constraints such
as avg(S.price) 6 ¢, which are neither monotone nor anti-monotone, can be handled
for the contrained correlations. The solution space may not be a single region and
instead may have holes in it. Under these conditions, blindly returning only minimal
valid answers does not make sense. Defining meaningful answer sets and computing
them efficiently for such constraints is an interesting issue. Another question is how
constraints can help in mining patterns other than associations and correlations?

With the introducing of circumstances and establishment of bilattices, more work
needs to be done to search efficient algorithms for computing circumstance lattice,
especially for Armstrong Basis. Experiments are needed to evaluate the performance
of the algorithms since the efficient computation will be very useful in answering a
wide range of mining queries.

75



Bibliography

[AIS93]

[AS94]

[AS95]

[AAPOO]

[BMS97]

[Bay98]

[BR99]

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-

- tween sets of items in large databases. In 1993 ACM-SIGMOD Proc. Spe-

cial Interest Group on Management of Data (ACM-SIGMOD’93), pages
207-216.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94), pages 487-
499, Santiago, Chile, Sept. 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995
Int. Conf. Data Engineering (ICDE'95), pages 3—-14, Taipei, Taiwan, Mar.
1995.

R. Agrawal, C.C. Aggarwal, and V. Prasad. Depth first generation of long
patterns. In Knowledge Discovery and Data Mining 2000 (KDD 2000),
to appear.

S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: General-
izing association rules to correlations. In 1997 ACM-SIGMOD Proc. Spe-
cial Interest Group on Management of Data (ACM-SIGMOD’97), pages
265-276, Tucson, Arizona, May 1997.

R. J. Bayardo. Efficiently mining long patterns from databases. In 1998
ACM-SIGMOD Proc. Special Interest Group on Management of Data
(ACM-SIGMOD’98), pages 85-93, Seattle, WA, June 1998.

K. S. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and
Iceberg CUBEs. In 1999 ACM-SIGMOD Proc. Special Interest Group on

76



[Chau98]

[CF8s)

[CN89]

[DL99]

[Fito1]

[GLW99]

[GLW00]

[GLWO1]

[G*96]

Management of Data (ACM-SIGMOD’99), pages 359-370, Philadelphia,
PA, June 1999.

S. Chaudhuri. Data mining and database systems: Where is the intersec-
tion? Data Engineering Bulletin, 21:4-8, March 1998.

J. Cheng, U. M. Fayad, K. B. Irani, and Z. Quian. 1988. Improved Decision
Trees: A Generalized Version of ID3. In Proc. of the Fifth International
Conference on Machine Learning. 1988. Morgan Kaufmann. San Mateo,
California. pages 100-107, 1988

P. Clark, and T. Niblett. The CN2 Induction Algorithm. Machine Learn-
ing 3: 261-283, 1989.

G. Dong and J. Li. Efficient mining of emerging patterns: Discovering
trends and differences. In Proc. 1999 Int. Conf. Knowledge Discovery and
Data Mining (KDD'99), pages 43-52, San Diego, CA, Aug. 1999.

M. Fitting Bilattices and the semantics of logic programming. J. Logic
Programming 11, 91-116.

G. Grahne, L. V. S. Lakshmanan, Xiaohong Wang. Interactive Mining
of Correlations - A Constraints Perspective. ACM SIGMOD workshop
on research issues in data mining and knowledge discovery, pages 7-1,
Philadelphia, 1999.

G. Grahne, L. V. S. Lakshmanan, Xiaohong Wang. Efficient Mining of
Constrained Correlated Sets. In International Conference on Data Engi-
neering 2000 (ICDE 2000), pages 512-521 San Diego, CA, 2000.

G. Grahne, L. V. S. Lakshmanan, Xiaohong Wang, Minghao Xie. On
Dual Mining: From Patterns to Circumstances, and Back. Accepted by
International Conference on Data Engineering 2001 (ICDE 2001).

Jim Gray, Adam Bosworth, Andrew Layman, Hamid Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Total. In International Conference on Data Engineering
1996 (ICDE’96), pages 152-159.

7



[HPY00]

[HKK97]

[HaFu95]

[ImMa96]

[Klem+94]

[KLKF98]

[LNHP99]

[LSWo7]

[MTV94]

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candi-
date generation. In 2000 ACM-SIGMOD Proc. Special Interest Group
on Management of Data (ACM-SIGMOD 2000), pages 1-12, Dallas, TX,
May 2000.

E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for
association rules. In 1997 ACM-SIGMOD Proc. Special Interest Group
on Management of Data (ACM-SIGMOD’97), pages 277-288.

J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB’95),
pages 420-431. '

Tomasz Imielinski, Heikki Mannila A Database Perspective on Knowledge
Discovery. In Communications of the ACM 39(11): 58-64 (1996).

M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.lL
Verkamo. Finding interesting rules from large sets of discovered asso-
ciation rules. In Proc. 3rd Int. Conf. Information and Knowledge Man-
agement, pages 401-408, 1994.

F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new
paradigm for fast, quantifiable data mining. VLDB 1998. In Proc. 1998
Int. Conf. Very Large Data Bases (VLDB’98), pages 582-593.

L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of
constrained frequent set queries with 2-variable constraints. In 1999 ACM-
SIGMOD Proc. Special Interest Group on Management of Data (ACM-
SIGMOD’99), pages 157-168, Philadelphia, PA, June 1999.

B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc.
1997 Int. Conf. Data Engineering (ICDE’97), pages 220-231, Birming-
ham, England, Apr. 1997.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for
discovering association rules. In Proc. AAAI'94 Workshop Knowledge
Discovery in Databases (KDD’94), pages 181-192, Seattle, WA, July 1994.

78



[MTV97]

[NLHP98]

[PCY95]

[PCY95b)

[PHMOO]

[P00]
[STA98]

[SONg5]

[SiZd97)

H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery,
1:259-289, 1997.

R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory min~
ing and pruning optimizations of constrained associations rules. In 1998
ACM-SIGMOD Proc. Special Interest Group on Management of Data
(ACM-SIGMOD’98), pages 13-24, Seattle, WA, June 1998.

J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm
for mining association rules. In 1995 ACM-SIGMOD Proc. Special Inter-
est Group on Management of Data (ACM-SIGMOD’95), pages 175-186.
SIGMOD 1995.

J.S. Park et al. Efficient parallel mining for association rules. In Proc. {th
Int. Conf. Information and Knowledge Management, pages 31-36, 1995.

J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining
frequent closed itemsets. In Proc. 2000 ACM-SIGMOD Int. Workshop
Data Mining and Knowledge Discovery (DMKD’00), pages 11-20, Dallas,
TX, May 2000.

Jian Pei. Personal Communication, August 2000.

S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule
mining with relational database systems: Alternatives and implications.
SIGMOD 1998. In 1999 ACM-SIGMOD Proc. Special Interest Group on
Management of Data (ACM-SIGMOD’99), pages 343-354.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. In Proc. 1995 Int. Conf. Very
Large Data Bases (VLDB’95), pages 432-443.

A. Silberschatz and S. Zdonik. Database systems — breaking out of the
box. SIGMOD Record, 26, pages 36-50, 1997.

[SBMU98] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques

for mining causal structures. In Proc. 1998 Int. Conf. Very Large Data
Bases (VLDB’98), pages 594-605.

79



[SVA9T]

[Toiv6)

[Tsur+98]

[W74)

[ZaHs99]

[ZDN97]

R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Proc. 1997 Int. Conf. Knowledge Discovery and Data Min-
ing (KDD’97), pages 67-73, Newport Beach, CA, Aug. 1997.

H. Toivonen. Sampling large databases for association rules. In Proc.
1996 Int. Conf. Very Large Data Bases (VLDB’96), pages 134=145.

]j. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and
S. Nestorov. Query flocks: A generalization of association-rule mining.
In 1998 ACM-SIGMOD Proc. Special Interest Group on Management of
Data (ACM-SIGMOD’98), pages 1-12. SIGMOD 1998.

William Ward Armstrong: Dependency Structures of Data Base Relation-
ships. IFIP Congress 1974: 580-583. '

M.J. Zaki and C. Hsiao. Charm: an efficient algorithm for closed associ-
ation rule mining. Tech. Report., RPI, 1999.

Yihong Zhao, Prasad Deshpande, Jeffrey F. Naughton. An Array-Based
Algorithm for Simultaneous Multidimensional Aggregates. In 1997 ACM-
SIGMOD Proc. Special Interest Group on Management of Data (ACM-
SIGMOD’97), pages 159-170.

80





