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.ABSTRACT

Dynamic Analysis and Buckling of Variable Thickness Laminated Composite Beams

Using Conventional and Advanced Finite Element Formulations

Abd EL-Maksoud, Mohamed A.

The use of uniform composite beams has been ever growing since the 1940s.
Recently, the tapered composite beams formed by terminating or dropping off some of
the plies in some primary structures have received much attention since the mid-1980s
because of their structural tailoring capabilities, damage tolerance, and their potential for
creating significant weight savings in engineering applications. Design of mechanical
components using composite beams requires a better understanding of their behavior in
the static and dynamic analyses. The behavior of variable thickness laminated composite
beams has not so far been fully understood. In the present thesis, a finite element
formulation is established for uniform and variable thickness composite beams
(externally and mid-plane tapered composite beams). First the conventional formulation
is used to establish the stiffness, geometric stiffness (for constant axial load, uniformly
distributed axial load, and non-uniformly distributed axial load), and mass matrices.
Second a new formulation (advanced formulation) is established, which considers not
only the geometric boundary conditions, but also the natural boundary conditions. This

means that at each node there will be four degrees of freedom, that are deflection, slope,
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bending moment, and shear force, such that all physical parameters that can be
encountered in any practical situation can be included in the element formulation. The
new stiffness, geometric stiffness, and mass matrices corresponding to the new
formulation are set up. These matrices are provided into the MATLAB® environment to
obtain the natural frequencies and the critical buckling load. The results show that the
new formulation provides higher accuracy with lesser number of elements. The dynamic
response and the buckling of variable thickness composite beams are investigated using
both the conventional and advanced finite element formulations. A parametric study
encompassing the influences of boundary conditions, laminate configuration, taper angle
and type, and beam discretization on the response of the beam is conducted. The NCT-
301 graphite epoxy composite material is employed in the analysis and in the parametric

study.
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Chapter 1

Introduction

1.1 Dynamic Analysis and Buckling in Mechanical Design

Mechanical components and structures are subjected to forces of a time-dependent
nature. Analysis and design of such components and structures subjected to dynamic
loads involve consideration of time-dependent inertial forces. Hence, the term ‘dynamic’
may be defined simply as ‘time-varying’. Thus a dynamic load is any load the
magnitude, direction, or position of which varies with time. Similarly, the structural
response to a dynamic load, i.e., the resulting deflections and stresses, is also ‘time-
varying’, or dynamic. Hence, it is evident that a dynamic problem does not have a single
solution, as a static problem does, instead the analyst must establish a succession of

solutions corresponding to all times of interest in the response history.

There are several ways in which a component or structure can become damaged or
useless; one of them is through a dynamic response to time-dependent loads, resulting in
too large deflections or too high stresses, or fatigue damage, and another way is through

the occurrence of an elastic instability (buckling). In the former case, the dynamic



loading on a structure can vary from a reoccurring cyclic loading of the same repeated
magnitude, such as a structure supporting an unbalanced motor that is rotating at one
hundred revolutions per minute, for example, to the other extreme of a short time intense,
non-reoccurring load, termed as shock or impact loading, such as a bird striking an
aircraft component during flight. A number of different types of dynamic loads exists
between these two extremes of harmonic oscillation and impact. In both the cases, the

free vibration response of the component becomes a controlling aspect.

A simple way to describe the buckling phenomenon is to use an example of an
ideally straight bar with uniform and axisymmetrical cross section subjected to a
compressive force along the center axis of the bar. Under such force, the bar will be
slightly shortened but remains straight with no bending. If a small lateral load is applied,
the beam will be bent infinitesimally but return to its original straight form when the
lateral load is removed. If the axial force is gradually increased, a condition will be
reached in which a small lateral force will cause a deflection, which remains when the
lateral force disappears. Such an unstable phenomenon is called buckling and the critical
force is called the buckling load or Euler load. Buckling usually occurs when the

compressive stress is well below the material stress limit.

Buckling can happen in components and structures in many forms, such as
columns, truss members, components of thin-walled beams and plate girders, walls,
arches, and shell roofs. Buckling can also happen to torispherical shells under internal

pressure. In aerospace structures, minimum-weight design is an important criterion so



that the structures are made of skins and thin members. Buckling is a predominant failure

mode in these structures.

1.2 Composite Materials and Structures in Mechanical Design

In the most general terms, a composite is a material that consists of two or more
constituent materials or phases. Traditional engineering materials (steel, aluminum, etc.)
contain impurities that can represent different phases of the same material and fit the
broad definition of a composite, but are not considered composites because the elastic
modulus or strength of the impurity phase is nearly identical to that of the pure material.
In the present thesis, a composite material is considered to be one that contains two or
more distinct constituents with significantly different macroscopic behavior and a distinct
interface between each constituent (on the microscopic level). This includes the
continuous fiber-reinforced laminated composites that are of primary concern herein, as

well as a variety of composites not specifically addressed.

Composite materials have been in existence for many centuries. No record exists
as to when people first started using composites. Some of the earliest records of their use
date back to the Egyptians, who are credited with the introduction of plywood, papier-
maché. and the use of straw in mud for strengthening bricks. Similarly, the ancient Inca
and Mayan civilizations used plant fibers to strengthen bricks and pottery. Swords and

armor were plated to add strength in medieval times.



The composites have experienced steady growth since about 1960 and are
projected to continue to increase through the next several decades, and they are
considered now as one of the great technological advances of the last half of the twentieth
century. By the term composite it is usually referred to materials that are combinations of
two or more organic or inorganic components, of which one serves as a matrix and the
other as reinforcement. The purpose of the matrix is to bind the fibers together and keep
them in proper orientation, transfer the load to and between them and distribute it e\{enly,
protect the fibers from hazardous environments and handling, provide resistance to crack
propagation and damage, provide all the interlaminar shear strength of the composite, and
offer resistance to high temperatures and corrosion. The individual fiber is usually stiffer
and stronger than the matrix. The most powerful concept behind composites is that the
fibers and the matrix can blend into a new material with properties that are better than
those of the constituent parts. In addition, by changing the orientation of the fibers, the
composites can be optimized for strength, stiffness, fatigue, heat and moisture resistance,
etc. It is therefore feasible to tailor the material to meet specific needs. Furthermore, a
preferred fiber orientation may be used to increase the modulus and strength well above
isotropic values; the resulting lightweight material may have much higher strength /

weight ratios than the conventional materials.

Modern composite materials are used in weight sensitive structures, and in
applications where high stiffness / weight ratios are required. Fiberglass was widely used
in the 1950s for boats, and for automobiles such as the Chevrolet Corvette. The aircraft

industry uses composites to meet performance requirements beyond the capabilities of



metals. The first large, commercial aircraft to use composites extensively was the Boeing
777. It uses approximately 760 ft® of composites in its body and wing components, with
an additional 361 ft’ used in rudder, elevator, edge panels, and tip fairings. The B-2
bomber contains carbon and glass fibers, epoxy resin matrices, and high-temperature
polyamides as well as other materials in more than 10,000 composite components. The
British Aerospace-McDonnell Douglas Av-8B Harrier has 25 % of its structural weight in

composites.

1.3 Analysis and Solution Methods in Mechanical Design

The analysis of laminated composite beams is usually based on three approaches,
classical theory of elasticity, theory of mechanics of materials, and variational methods
and strain energy statements. In general, laminated composite beams have been studied
to a lesser degree than isotropic beams, and laminated plates and shells as well. Work is
still needed to understand the behavior of these structures under complicated loading and
harsh environmental conditions and to maintain active control of these structures, which

may be suffering degradation.

The governing equations of motion of the dynamic systems are generally nonlinear
partial differential equations, which are extremely difficult to be solved in a closed form.
The availability and sophistication of modern digital computers has made possible the
extensive use of the finite element method for analyzing complex structures. This

method consists of representing a complex structure by an assembly of simple discrete



elements, such as rods, beams, plates, or two-force truss members. Finite Element
Method (FEM) is one of the most powerful numerical analysis tools in the engineering
and physical sciences. It is widely accepted as a mathematical technique for the

numerical solution of the partial differential equations.

1.4 Literature Survey

1.4.1 Literature Survey on Vibration Analysis

The mathematical Theory of Elasticity is occupied with an attempt to calculate the
state of strain, or relative displacement, within a solid body which is subject to the action
of an equilibrating system of forces, or is in a state of slight internal relative motion, and
with endeavors to obtain results which shall be practically important in applications to
architecture, civil and mechanical engineering, and all other fields in which the material

of construction is solid.

The first mathematician that considered the nature of the resistance of solids to
rupture was Galileo in his initial inquires in 1638. In the history of the theory, started by
the question of Galileo, undoubtedly the two great landmarks are the discovery of
Hooke’s Law in 1660, and the formulation of the general differential equations by Navier
in 1821. Hooke’s Law provided the necessary experimental foundation for the theory.
When the general equations had been obtained, all questions of the small strain of elastic

bodies were reduced to a matter of mathematicai calculation. In the interval between the



discovery of Hooke’s Law and that of the general differential equations of Elasticity by
Navier, the attention of those mathematicians who occupied themselves with our science
was chiefly directed to the solution and extension of Galileo’s problem, and the related

theories of the vibrations of bars and plates, and the stability of columns.

Side by side with the statical developments of Galileo’s enquiry there were
discussions of the vibrations of solid bodies. In 1744 Euler and in 1751 Daniel Bernoulli
obtained the differential equation of the lateral vibrations of bars by variation of the
function by which they had previously expressed the work done in bending. They
determined the forms of the functions, which are called the “normal functions”, and the
equation, which is called the “frequency equation™ in the six cases of boundary
conditions, which arise from free, clamped, or simply supported conditions. Chladni
investigated these modes of vibratiom experimentally, and also the longitudinal and
torsional vibrations of bars. James Bernoulli’s attempt in (published in [787) appears to
have been made with the view of discovering a theoretical basis for the experimental
results of Chladni concerning the nodal figures of vibrating plates. These results were
still unexplained when in 1809 the French Institute proposed as a subject for a prize the
investigation of the tones of a vibrating plate. After several attempts the prize was
adjudged in 1815 to Mdlle Sophie Germain, and her work was published in 1821. She
assumed that the sum of the principal curvatures of the plate when bent would play the
same part in the theory of plates as the curvature of the elastic central-line in the theory of
rods, and she proposed to regard the work done in bending as proportional to the integral

of the square of the sum of the principal curvatures taken over the surface. From this



assumption and the principle of virtual work she deduced the equation of flexural
vibration in the form now generally admitted. Later investigations have shown that the

formula assumed for the work done in bending was incorrect.

During the first period in the history of our science (1638 till the end of the year
1820), the fruit of all the ingenuity expended on elastic problems might be summed up as:
an inadequate theory of flexure, an erroneous theory of torsion, an unproved theory of the
vibrations of bars and plates, and the definition of Young’s modulus. But su;h an
estimate would give a very wrong impression of the value of the older researches. The
recognition of the distinction between shear and extension was a preliminary to a general
theory of strains, and the recognition of forces across the elements of a section of a beam,
producing a resultant, was a step towards a theory of stress, the use of differential
equations for the deflection of a bent beam and the vibrations of bars and plates was a

foreshadowing of the employment of differential equations of displacement.

Navier in 1827 was the first to investigate the general differential equations of
equilibrium and vibration of elastic bodies. He set out from the Newtonian conception of
the constitution of bodies, and assumed that the elastic reactions arise from variations in
the intermolecular forces, which result from changes in the molecular configuration. He
deduced, by an application of the Calculus of Variations, not only the differential
equations of equilibrium and vibration. but also the boundary conditions that hold at the
surface of the body. The material is assumed to be isotropic. Objection has been raised

against Navier’s expression for the forces between two molecules, and to his method of



simplifying the expressions for the forces acting on a single molecule. These expressions
involve triple summations, which Navier replaced by integrations, and the validity of this
procedure has been disputed. This dispute was over when Cauchy in 1828 verified
Navier’s equations, and Poisson in 1829 got equations of equilibrium and motion of
isotropic elastic solids, which are identical to Navier’s, but by the aid of a different
assumption. Clausius in 1849 held that both Poisson’s and Cauchy’s methods could be

presented in unexceptionable forms.

The theory of elasticity established by Poisson and Cauchy on the then accepted
basis of material points and central forces was applied by them and also by Lamé and

Clapeyron to numerous problems of vibrations and of statical elasticity.

The theory of the vibrations of thin rods was brought under the general equations
of vibratory motion of elastic solid bodies by Poisson. He regarded the rod as a circular
cylinder of small section, and expanded all the quantities that occur in powers of the
distance of a particle from the axis of the cylinder. When terms above certain order (the
fourth-order power of the radius) are neglected, the equations for flexural vibrations are
identical with Euler’s equations of lateral vibration. The equation found for the
longitudinal vibraticns had been obtained by Navier. The equation for the torsional
vibrations was first obtained by Poisson. The application of Poisson’s theory has been
extended to the vibrations of curved bars, the first problem to be solved being that of the

flexural vibrations of a circular ring, which vibrates in its own plane.



The theory of the free vibrations of solid bodies requires the integration of the
equations of vibratory motion in accordance with prescribed boundary conditions of
stress or displacement. Poisson gave the solution of the problem of free radial vibrations
of a solid sphere, and Clebsch founded the general theory on the model of Poisson’s
solution. The analysis of the general problem of the vibrations of a sphere was first

completely given by P. Jaerisch, who showed that the solution could be expressed by

. . . [ .
means of Bessel’s functions of order integer + 5 H. Lamb obtained the result

independently, and gave an account of the simpler modes of vibration and of the nature of
the nodal division of the sphere, which occurs when any normal vibration is executed.
He also calculated the more important roots of the frequency equation. L. Pochhammer
has applied the method of normal functions to the vibrations of cylinders, and has found

modes of vibration analogous to the known types of vibration of bars.

In 1889 Lord Rayleigh published his celebrated work on the vibration of an infinite
elastic plates [1]. He formalized the idea of normal functions, as introduced by Daniel
Bernoulli and Clebsch, and also the ideas of generalized forces and generalized
coordinates. He, further, introduced systematically the concepts of potential energy and
the approximate methods in vibration analysis, without solving differential equations.
Rayleigh improved the classical theory by allowing for the effects of rotary inertia of the
cross-sections of a beam. In 1921 Timoshenko extended the theory to include the effects
of shear deformation [2]. The resulting equations are known as the Timoshenko beam
equations. Sutherland and Goodman [3] have given solutions of Timoshenko equations

for a cantilever beam of rectangular cross section. In 1951 Mindlin included the
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transverse shear and rotary inertia effects [4]. This made the Timoshenko’s and
Mindlin’s beam and plate theories capable to handle much higher frequencies than the
classical theories. Mindlin further compared and coordinated the results for an infinite
plate given by his plate theory and those derived from the exact elasticity theory by
Rayleigh. This was the first attempt to establish a connection between an engineering

plate theory and the exact elasticity theory.

The innocent-looking frequency equation of the infinite plate given by Rayleigh
was not fully explored until almost 70 years later, again by Mindlin when he in 1960
gave a thorough treatment of Rayleigh’s exact frequency equation of an isotropic plate
[5]. On the other hand, Mindlin in 1955 had started developing approximate plate
theories so that problems involving high frequencies in finite-sized crystal plates can be
solved [6]. Mindlin’s results on anisotropic plates have a close bearing upon laminated

composites [7].

In the early years in the history of laminated composites, the transverse shear effect
was usually neglected, and laminated composite plates were generally treated as
anisotropic plates of the classical type. Thus, for instance, solutions for vibration of
orthotropic plates, such as given by Hearmon [8], become immediately applicable to
composite plates. Recently, Toledano and Murakani developed a new laminated

composite plate theory for an arbitrary laminate configuration [9].
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In the dynamic theory of elasticity, the variational equation of motion is the end
result obtained by carrying out the variation process in Hamilton’s principle. The Euler’s
equation written from the variational equation constitutes the governing equation in
elasticity. The variational equation has been applied to a variety of linear and nonlinear
dynamic and vibration analysis of structures including layered plates and shells [10],

which can be applied to laminated composites.

Several investigators have studied the free vibration of fiber-reinforced composite
beam structures. In 1977, Teoh and Huang [11] presented a theoretical analysis of free
vibrations of fiber-reinforced composite beams. Natural frequencies and mode shapes of
a cantilevered composite beam (glass/epoxy) were determined. In the analysis, a
continuous model was used and both shear and rotary inertias were included. The effects
of shear deformation and fiber orientation on the free vibrations were given. Teh and
Huang [!12] formulated a finite element approach to determine the natural frequencies of
generally orthotropic composite beams (graphite/epoxy) with the cantilevered boundary
conditions. Earlier, Abarcar and Cunniff [13] developed a numerical method to analyze
the free vibration of a cantilevered beam, which also includes both shear deformation and

rotary inertia, using a discrete model based on Myklestad’s method.

In 1980, Crawley and Dugundji [l14] studied free vibrations of composite
cantilevered plates (beams) based on a partial Ritz (Kantorovich) analysis, in which the
mode shapes are assumed only in the cord-wise direction. Thus, the problem is reduced

to a set of uncoupled ordinary differential equations. Their efforts were concentrated on



the estimation of both the bending and torsional frequencies and the development of non-
dimensionalizing frequency data. The resulting non-dimensional frequencies are not only
more consistent than the original data, but also are in better agreement with the
eigenvalues of the Ritz analysis. Later, Jensen and Crawley [15] developed frequency
determination techniques for cantilevered plates with bending-torsion coupling. These
techniques include partial Ritz analysis, Rayleigh- Ritz analysis assuming mode shapes

both in span-wise and cord-wise directions, and the finite element analysis.

In view of the important roles of the individual layers in overall performance of
composite laminates, a layer-wise approach was presented by Barbero and Reddy [16,17]
in 1989. By assuming both translational and rotational displacement components for
each composite later, the displacement of the whole laminate is nothing but the assembly
of the individual components. Lu and Liu [18], and Lee and Liu [19] further employed
the continuity conditions of interlaminar shear stresses and interlaminar normal stress for
composite layer assembly. Di Sciuva [20] evaluated a new displacement model for
bending, vibration, and buckling of simply supported thick multilayered orthotropic

plates.

1.4.2 Literature Survey on Elastic Stability

Whenever very thin rods or plates are employed in mechanical components or

structures it becomes necessary to consider the possibility of buckling, and thus there
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arises the generzil problem of elastic stability. The work on elastic stability started by
Daniel Bernoulli when he suggested to Euler (in a letter in 1742) that the differential
equation of the elastica could be found by making the integral of the square of the
curvature taken along the rod a minimum; and Euler, acting on this suggestion, was able
to obtain the differential equation of the curve and to classify the various forms of it. One
form is a curve of sines of small amplitudes, and Euler pointed out (in 1757) that in this
case the line of thrust coincides with the unstrained axis of the rod, so that the rod, of
sufficient length and vertical when unstrained, may be bent by a weight attached to its
ﬁpper end. Further investigations led him to assign the least length of a column in order
that it may bend under its own or an applied weight. In 1773 Lagrange followed and
used his theory to determine the strongest form of column. These two writers found a
certain length which a column must attain to be bent by its own or an applied weight, and
they concluded that for shorter lengths it will be simply compressed, while for greater
lengths it will be bent. These constitute the earliest research in the field of elastic
stability. Then a number of isolated problems have been solved. In all of them two
modes of equilibrium with the same type of external forces are considered to be possible,
and the ordinary proof of the determinacy of the solution of the equations of elasticity is
employed. G. H. Bryan has proposed a general theory of elastic stability. He arrived at
the result that in all cases where two modes of equilibrium are possible the criterion for
determining the modes that will be adopted is given by the condition that the energy must

be a minimum.
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The failure of Euler’s formula in the case of short and medium-length columns
was the primary cause of its almost complete abandonment, together with the reasoning
by which it was derived. In 1921, Salmon gives a lively account to reconcile Euler’s

theory with the observations of column buckling tests [21].

The first buckling analysis of cylindrically orthotropic circular plates of uniform
thickness has been presented by Woinowsky-Krieger in 1958 [22]. Patel and Broth have
given the first buckling analysis of cylindrically orthotropic circular plates of variable
thickness in 1970 [23]. A broad literature survey on buckling of laminated composites is
given in Ref. [24] up to the year 1985. More recently, studies of dynamic buckling of

anisotropic shells have received much attention, as given in detail in Ref. [25].

1.4.3 Literature Survey on Finite Element Method

An analysis of complex structures and other systems in a matrix formulation is now
unthinkable without the finite element method. It is believed that the origins of such a
rich and applicable method cannot be attributed solely to one person or a school of
thought but rather to a synergy of various scientific developments at various research
establishmenfs. The notion of geometrical division can be tracked back to the Greek
natural philosopher Archimedes who in order to compute the area of a complex shape
divided it into triangles and quadrilaterals whose areas could be easily computed as the

assembly of the individual areas provided the total area of the complex shape. More
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recently, Courant used variational and minimization arguments for the solution of
physical problems. Courant [26], and Prager and Synge [27] had both proposed the
concept of regional discretization that is essentially equivalent to the assumption of
constant strain fields within the elements. The adaptation, however, and development of
these concepts for structural analysis and other physical and technical problems were not

conceptually achieved until during and shortly after World War II.

During World War I the demand for more efficient aeronautical structures and
methods for the analysis of complex structural systems provided John Argyris with the
incentive for developing the matrix displacement method, a concise matrix presentation
of the equilibrium equations governing a skeletal structure. It was wartime that
necessitated this sudden explosion of knowledge, and it was published later after the war
in 1954 [28]. By 1945 the breakdown of the continuum into triangular elements had been
accomplished, and engineers had started to apply the matrix displacement method to the
analysis of swept-back wings. It was not immediately realized that these developments

had led to the birth of the finite element method.

Essential contributions to the finite element method were made at Boeing during
the summer of 1952 and 1953 under the direction of M. J. Turner. He saw the need for
“an improved way taking into account of the contributions of the wing skin to the stiffness
of airplane wings or arbitrary configurations, and he recognized that Ritz-type procedure
could be used to evaluate the contributions of individual skin elements if the wing was

represented as an assemblage of such discrete structural components [29]. At Boeing
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they were inspired to name this method as finite element method, and that name appeared

first in a paper presented at the 1960 ASCE Conference.

Most of the numerical methods developed before the era of electronic computers
are now adapted for use with these machines. Perhaps the best known is the finite
difference method. It was used by Thomas [30] to obtain frequencies of vibration of
uniform, tapered and pre-twisted Timoshenko beams with fixed-free end conditions.
Other types of classical methods are the method of least squares and such variational
methods as the Ritz method. In addition to the direct and variational approaches, the
finite element equation can be formulated by employing the residual methods such as

collocation, least squares, and Galerkin’s methods.

It might be of interest to mention that the Finite Element Method now has three
approaches, displacement method (in which displacements are assumed as primary
unknowns in it), equilibrium method (in which stresses are assumed as primary
unknowns in it), and mixed method (in which some displacements and some stresses are

assumed as primary unknowns in it).

A number of finite element models have been presented for the analysis of Euler-
Bemnoulli and Timoshenko beams by various investigators. Just the main points on the
literature survey of higher-order finite element formulation will be mentioned here, as a

comprehensive and very recent survey is given in Ref. [31].
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Cook, Malkus and Plesha [32] have mentioned that for achieving the minimally
acceptable degree of inter-element compatibility, it is necessary to define essential
degrees of freedoms as the particular nodal degrees of freedoms (more details about
essential nodal degrees of freedoms are discussed in chapter 3). Pestel studied the effect
of imposing nodal continuity of successively higher derivatives of deflection and noted
that such family of elements can be formulated simply by the use of Hermitian

polynomials of orders higher than the fourth [33].

Many authors have shown the desirability of using higher order finite element for
vibration problems. The development of higher order tapered beam element was carried
out to study first the vibration analysis of uniform beams by Fried [34] in1971, and the
transverse impact problems by Sun and Huang [35]. They all claim that improved
accuracy can be obtained more efficiently with an increase in the number of degrees of
freedom in the element. Thomas and Dokumaci have shown that the higher order finite
element-modeling yields improved results for the vibration of tapered beams [36]. In
1979, C. S. To had developed expressions for mass and stiffness matrices of two higher

order tapered beam elements for vibration analysis [37].

Four years earlier Thoinas and Abbas developed an element model that is capable
of incorporating all the forced and natural boundary conditions associated with various
end conditions, deflection, slope, bending slope and the first derivative of bending slope
as nodal co-ordinates [38]. Again, this model is proven for dynamic analysis of

Timoshenko beam element only.
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Akin has developed a more accurate solution by using a fifth order Hermite
polynomial [39]. Reddy suggested that if higher order (higher than cubic) approximation
of deflection w is desired, one must identify additional dependent (primary) unknowns at
each of the two nodes [40]. Houmat presented a 2-node Timoshenko beam finite element
with variable degrees of freedom [41]. Hou, Tseng, and Ling developed a new finite
element model of a Timoshenko beam to analyze the free vibration of uniform beams
[42]. The results of the above-mentioned two models show that using one or two-
variable order Timoshenko beam element with a few trigonometric terms yields better
accuracy with fewer degrees of freedom than using many polynomials. R. Ganesan, J.
A. Selliah, and R. B. Bhat formulated a finite element model that involves all boundary

conditions for vibration analysis of structures [43].

1.5 Objective of the Thesis

The objective of the present thesis is to consider two aspects: (i) The dynamic
analysis and buckling of variable thickness composite beams (externally tapered and mid-
plane tapered composite beams) using the conventional formulation, a formulation that
takes into account the geometric (essential) degrees of freedom (deflection and slope).
(i) Development of an efficient and powerful method to obtain the natural frequencies
and the critical buckling load of these composite beams; a method that is called herein as
advanced formulation. In the advanced formulation both categories of degrees of

freedom are considered, the geometric and the natural (shear force and bending moment)
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degrees of freedom. The interpolation polynomial was chosen such that it adapts with the
new definition of the nodal degrees of freedom matrix. It is an algebraic equation of the
seventh order. The stiffness, geometric stiffness, and mass matrices are established.
These matrices are provided to the MATLAB® environment to obtain the eigenvalues,
which are the natural frequencies or the critical buckling load of the beam. The
superiority of this method is illustrated by comparing the results with the conventional

finite element model.

The present study aims at modifying the conventional finite element model such
that it accepts the natural boundary conditions right in the element formulation. Thus,
this model fully represents all the physical situations involved in any practical case. This
development is hoping to achieve higher accuracy by increasing the degrees of freedom
rather than increasing the number of elements. This was obvious in the output of the
MATLAB® program when its results were converging with the results of the exact

solution faster than the results obtained using the conventional formulation.

1.6 Layout of the Thesis
The present chapter provides a brief introduction and a literature survey regarding

the dynamic analysis and buckling of variable thickness composite beams that are studied

using finite element methods.
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Chapter 2 develops the basic finite element mathematical formulations including
free vibration, forced vibration, .and buckling for externally tapered and mid-plane
tapered composite beams. The finite element formulation consists of the determination
of the equation of motion and its solution. The finite element formulation is basically to
determine the stiffness, geometric stiffness, and mass matrices for each element in local
coordinates using the geometric degrees of freedom at the nodes (deflection and slope),
which is called the “conventional formulation”. Then, these matrices in global
coordinates are assembled, and the eigenvalues of the dynamic matrix are obtained in

order to get the natural frequencies of the structure, or the critical buckling load.

Chapter 3 gives a basic and reasonably complete development of higher order beam
finite elements and interpolation functions. In this new method of formulation, natural
(force) degrees of freedom (shear force and bending moment) along with the geometric
boundary conditions are embedded in the interpolation functions, which is called
“advanced formulation”. Also, the applications of the advanced formulation to the

transverse vibration and buckling of variable thickness composite beams are explained.

Chapter 4 is devoted to the parametric study, which includes the effects of the
boundary conditions, the laminate configuration, the beam element discretization, and the
taper angle on the natural frequencies of the beam for both types of tapers. Both the
conventional and advanced finite element formulations are employed. In addition, the

buckling of externally tapered composite beams is considered.
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The thesis ends with chapter 5, which provides the conclusions of the present thesis

work and some recommendations for future work.
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CHAPTER 2

Dynamic Analysis of Variable Thickness Composite Beams Using Conventional

Finite Element Formulation

2.1 Introduction

Composite materials are increasingly used in aerospace, mechanical, and
automotive structures.  The application of composite materials to engineering
components has resulted in a major effort to analyze structural components made from
them. Composite materials provide unique advantages over their metallic counterparts,

but they also present complex and challenging problems to analysts and designers.

Variable thickness composite structures (see Figure 2.1) are a natural choice
because of the saving in material and hence cost. Since most composite laminates are
composed of a number of layers, it is possible to construct variable thickness composite

structures by terminating each ply in such a way as to meet the design requirements [54].
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Design of such structures requires an understanding of their dynamic behavior,
which involves the determination of their natural frequencies. Accordingly, the dynamic
response, dynamic bending moments, and dynamic stresses can be evaluated as final

steps of design process.

TAPERS
| | !

External taper Mid-plane taper

A

|
]

Figure 2.1 Basic types of tapers in composite beams

Tapered composite beams have not so far been analyzed for their dynamic
response using exact analytical methods, since they require solutions to more complex
mathematical problems. Hence, it is necessary to employ the approximate methods to
study the dynamic behavior of such beams. In this regard, the finite-element method
provides a powerful, convenient and reliable idealization of the composite system and

further, it is particularly effective in digital-computer analyses [55].

In this chapter, a weak formulation based on the Euler-Bernoulli theory of
bending of composite beams is developed first for both uniform and externally tapered
composite beams. The formulation is then modified so as to be appropriate and

applicable for mid-plane tapered composite beams. These formulations are based on the
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conventional method. That is, two degrees of freedom are considered at each node,
which are, the deflection (w) and the slope (4). The analysis considers the coupling of
bending and axial deformations due to the axial forces. Based on the above-mentioned
formulations, the stiffness, geometric stiffness, and mass matrices are determined for

variable thickness composite beams.

The MATLAB® computer program that incorporates the above-mentioned
formulations is developed and demonstrated using example laminates. Also, the aspects
related to the input data and the subroutines that form this program are described in

detail.

2.2 Weak Formulation Based on Euler-Bernoulli Theory

qxt

Figure 2.2 A beam-column with static axial force and dynamic lateral load
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The differential equation of motion for a beam (shown in Figure 2.2) made of an
isotropic material with lateral loading and axial load, based on the assumption that the

transverse shear deformations are negligible, is given below:

5 (er&w). 03w o -4 FPw _
2 (er 2y W)y p P 4 pA G = g(x, 1) @2.1)

The significant physical properties of this beam are assumed to be the flexural
rigidity (stiffness) £/ (x) and the mass per unit length p4 (x), both of which may vary
arbitrarily with position x along the span L. The transverse loading g (, ¢) is assumed to
vary arbitrarily with position x and time ¢, and the transverse-displacement response w (X,
¢) also is a function of these variables. The axial force, P, is parallel to the beam axis
before deformation and is assumed to be constant with respect to both time and position
(in principle, it could vary as an arbitrary function, but the case of constant P will be
considered here). The end-support conditions for the beam are arbitrary, although they
have been shown as simple supports for illustrative purposes. The case of uniform cross-

section can then be given as:

EI %“Wf +P g W 4 pA %?;’ =q(x,t) (2.2)

The assumption of neglecting the transverse shear strains is valid if the thickness
of the beam, 4, is ‘small’ relative to the length, L. The difference between a beam and a

plate is that the width, b, of the beam is ‘small’ compared with the span L.
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This one-dimensional structural element is called a beam-column when lateral
loads act upon it. When this element is loaded only by an axial loading, it is called as a

rod if the loading is tensile, and a column if the loading is compressive.

+z
+ / .b<< L
* h<< L

ty

Figure 2.3 Typical rod or beam

Consider a beam made of composite material under lateral loading acting in the x-
z plane. The overall dimensions are shown in Figure 2.3. For simplicity, the thermal and
hygrothermal effects are ignored. Since the composite beam is so narrow, all Poisson’s
effects are neglected, conforming to the classical beam theory. With these assumptions,

the force-displacement equations are reduced to [52]:

[Nx-l [All Blli|{8mi|
MxJ B, Dy,
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In the above equation, N, denotes the normal force in the x direction per unit
width, M, denotes the bending moment in the x direction per unit width, &, denotes the
strain component in the x direction on the reference plane, and «. denotes the curvature in

x direction.

If the beam has mid-plane symmetry, there is no bending-stretching coupling so

that B,; = 0, and equation 2.3 becomes

Ny = A1 &0 (2.4)
M.=Dx. or, (2.5)
M, =D, 2.6)

Then from equations 2.3 - 2.6, equation 2.1 can be written as:

:r' (bD,, 0 W) +bN, 3 + pa aa W = g(x,¢) @.7)

This is the governing equation of motion for the variable thickness composite beam.

The static buckling load of a column, (bN,) ., is obtained from equation 2.7 after
setting the lateral load, q (x, ¢), to be zero, and dropping out the inertia term. For free

vibration analysis, the relevant equation can be written as:

o (bD 0 W)+bNx Qw_ ,y0w g 2.8)
ox? ox? ox? e’
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2.3 Weak Formulation of the Problem
2.3.1 Weak Formulation for Uniform and Externally Tapered Composite Beams

In the finite element formulation an integral statement is to be established to

develop algebraic relations among the coefficients w; of the approximation [53]:
w(x, 1)~ >w; )N (x) (2.9)
=

Here w (x, t) represents the solution of the governing differential equation in hand. The
use of an integral statement equivalent to the governing differential equation is
necessitated by the fact that substitution of equation (2.9) into the differential equation of
motion does not always result in the required number of linearly independent algebraic
equations for the unknown coefficients w; (¢). One way to insure that there are exactly the
same number ‘n’ of equations as there are unknowns is to require that the “weighted

integrals” of the error involved in approximating the equation have to be zero.

There are three basic steps in the development of the weak form, if it exists, of

any differential equation.

STEP I:
In order to facilitate the mathematical modeling, move all expressions of the governing
differential equation to one side, multiply the entire equation with a function v (x, ¢)

’

which is called as the “weight function”, and integrate over the domain 2 = (0, L) of the

problem. The domain is divided into a set (say, #) of line elements. In this step a typical
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element ¥ = (x,, x.+;) is isolated (see Figure 2.4) and the variational form of equation
2.7 over the element is constructed. For simplifying the analysis, the axes are taken at the
first node so x. equals to zero, and the element length (x.+; - x.) is denoted by ‘/." or /"
Therefore, the limits of integration are 0 and /. For the case of forced vibration, the
variational formulation leads to the following equation. For simplicity, g(x,¢) will be

written as q.

! 2
0= (6D, & pN BW  ,yO W _ ]dx 2.10
J[ 11" Gt * 52 P PYE q ( )

Then multiplying equation 2.10 by the weight function v,

X a x.’

l 7
0= [v|bD, EW 1 pN BW  pg O W :Idx 2.11
,!v[ " ox p ot” d ( )

Primary variables

——T’ I *T
Secondary variables

Q ! Os
R~ R~
0> oy

Figure 2.4  Finite-Element Discretization and a Typical Element
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The statement 2.11 is called as the “‘weighted-integral”, or “‘weighted-residual
statement” equivalent to the equation 2.9. It may be noted here that for uniform
composite beam and for each uniform segment of an externally tapered composite beam,

bDy; is constant.

STEP 2:
i) Integration by parts the weighted integral statement twice, one can get the

following equation:

l 2
0=[/v2%5 (D, 2% )+ vbN LW L ypd PW _ T gy 2.12
(J;[ ax-(b 1 ax_) * Ox2 P. o12 q] ( )

The approach of separation of variables is being applied for w (x, ¢), and it can be
expressed as the product of two functions one in displacement ' and the other in time

“t’as
w(x,2) = W(x)(e) = W(x)e™ (2.13)

where w is the natural frequency of the transverse motion and # (x) is the mode shape of

this transverse motion. Substituting equation 2.13 into equation 2.12, and noting that

*wlx,1) _

Py —@*W(x) ¢ and that & can never be zero, then
2
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o 2 2 2 )
0 =™ £ »E% oD, b )+vbN, W —vpAw™ W —vq] dx (2.14)

i 2 Y
0=-— dv d bD“ﬂ—}{pAvW+vq dx+vi bDnil—V;V— -
; dx dx dx” dx de” ),
[ !
[ong. A o, Y (2.15)
0 T dx dx S odx 0
In the above equations A = &
, o 2|
0=- _j bD“d—,V-g—,z—lpAvW-i-vq' dx+-d—V—bD @
; dx” dx” de ! di?
o
Lo dvdW d d’wW aw|
j’bN‘—v—dx"' v—| bD,, —5 |+ VDN —— (2.16)
o dx dx dx dx” odx |
! 2 2
0=I d ‘,/bD“ d I/f/_vafd—vf—i—pK—/1.,0-_/le—1/¢] dx +
5 dx- dx” T dx dx
2 2 !
vi bD.lM —i‘ibD“d—_fK+vbNt£—ﬂi 2.17)
dx ©odx” dx d’x " odx 0

Note that, the first term of the differenti al equation is integrated twice by parts to trade
two differentiations to the weight function v, while retaining two derivatives of the

dependent variable W, i.e. the differentiation is distributed equally between v and W.
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ii) Boundary conditions:

An important part of step 2 is to identify the two types of boundary conditions associated

with the governing differential equation.

Examination of the boundary terms indicates that the essential boundary

conditions involve the specification of the deflection W, and slope dW/dx, and the natural

boundary conditions involve the specification of the bending moment 6 D, ‘ii”x—PE/ and the

shear force %(bD,, %_E/—) at the end points of the element (see Figure 2.4). The

following notation is introduced:

‘| L —le aw ¢ _ d*w
Q) = {dx (bDll x> )+b.N_,r dx :Ix=o 0, = [bD“——dxl :]FO (2.18)
d dZW dW dZW
S P Gl A y=—| 6Dy — = 2.19
Q3 [dx (bDll dx? )'*‘b < :lx=[ Q4 [ 1 e :Ix=[ ( )

iii) Interpolation Functions:

Since there are four boundary conditions in an element (two per node) a four-

parameter polynomial is selected as:

W(x)=c, +c,x+c,x” +c,x’° (2.20)
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This approximation is needed in order to satisfy the essential boundary conditions,
and further this approximation automatically satisfies the continuity conditions (i.e. the

existence of a non-zero second derivative of # in the element).

First, let us define the slope & (x) as:

dW(xJ )
0(x)= — =6t 2c;x + 3c,x” (2.21)

Now it is needed to express ¢; in terms of primary variables, W;, 8;,, W, and 6,,

and secondary variables (generalized displacements and forces) in the following manner.

w(0)=w, =c, (2.22)
0(0)=6, =c, (2.23)
W({)=W,=c, +c,l +c,I” +c I’ (2.24)
0()=6, =c, + 2c,l +3c,I’ (2.25)

In matrix form, the above four equations can be given as:

w,) [1 0 0 07fc
0, _ 0 1 0 0 ||c, (2.26)
W, 11 F Fle
o, 0 1 21 3|,

Inverting this matrix equation so as to express ¢; in terms of W, 6,, W, and &, and

substituting the results into equation 2.20, one can show that:

34



W(x)= NW, + N6, + N;W, + N0, (2.27)

To sum up:

From (2.12), [W (X)] 11 = [X] 14 X [C] 4x1.

But from (2.26), [d] 4xi = [1] 4x¢ X [€] 4x1s

And from (2.27) [W ()] 1xt = [N] 1x4 X [d] [ 41’

Therefore, [x] 1x¢ X [c] 4xt = [N] 1x¢ X [I] 4x¢ X [c] 4x1, and hence

[N] 1xs =[:’C] Ix4 X[[]-I x4

The interpolation (shape) functions denoted by N;, N2, N3, and N, are given as:
3x? 2%’ 2x? X! 3x? 2x° x? X
Nl=||I-="H—+— X———+ = — — -+ 2.28
[ ] l:[ I’ I J ( [ I'J ( l° I’ [ [° ( )

which satisfy the following interpolation properties:

Nl =1, Nlww=0 (=) (2.29)

NJ x={ = 1’ Ni x=I = 0 (i * 3) (2'30)

D=1, Flw=0 (=2) @31)
dN. )

Bl =1 =0 (=4) (2.32)

i=1...4
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STEP 3: Finite Element Model

The Finite Element Model of the governing differential equation 2.7 is obtained by

substituting the finite element interpolation functions for W, and the interpolation

functions N; in equation 2.28 for the weight function v in the weak form given by

equation 2.13. Since there are four nodal variables W;, four different choices are used for

v, that is v = N, _, to obtain a set of four algebraic equations. The i-th algebraic equation

of the finite element model (for v =N is:

N d*N, d’N, dN. dN
0= bD —t i i_2
,Zl('[ odkt dx? T dx dx
4
Or’Z(Ki/'—nij—Mij)uj_F‘izo

]
—

J

Here u is a common variable for all nodal variables such that,

(= W(0) u, =47,
uy =Wl uy = e
K, = fbD,, d(;x]\,[ dz{ dx
n; = ib . % dé\/x’ dx
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Ju}dx - IN,.q dx —Q,
0

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



Here Kij is the stiffness matrix coefficient, #-.

(2.41)

ij is the geometric stiffness matrix

coefficient, and M i is the mass matrix coefficient.

7

As one can see, the forms of K i n

,and M i are the same as for isotropic materials,

and further, £7 is replaced by D, and P by bN,. The stiffness, geometric stiffness, and

mass matrices are now given:

12 61 =12
_bD,, 41> -6l
[K]=22 i
sym
12 —12
P LT
[n]= bN 4?1' —1
"1=To 12
i
sym
156 221 54
2
41 131
[ar]= 22
420 156
sym

~

_ 131

—3?
— 221
412

(2.42)

(2.43)

(2.44)
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For the case of constant ‘g’ over an element, the element matrix of generalized forces F;

will be:
6 O,
-y R
-4 Q (2.45)
12|16 |0,
[ Q.

It can easily be verified that the term _%[] in F; represents the “work equivalent”

& | ..

forces and moments at nodes 1 and 2 due to the uniformly distributed load over the
element. When ¢ is an algebraically complicated function of x, the mechanics of
materials type approach becomes less appealing, whereas equation 2.40 provides a

straightforward way of computing the generalized “work equivalent” force components.

2.3.2 Weak Formulation for Mid-plane Tapered Composite Beams

The classical lamination theory states that [57]:

n — =
D, = p2=:1|:tp Z, +—}( Il)p (2.46)

where Dy, is the bending or flexural laminate stiffness relating the bending moment M, to

curvature K, (Q—”)p is the transformed stiffness coefficient of a ply, ¢, is the ply

thickness, Z_p is the distance between the centerline of the ply and the centerline of the
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whole laminate, and n is the total number of plies. The derivation of equation 2.46 is

summarized in Appendix II.

For tapered composite beams the height of the centerline of each ply (Z_p) is a

function of x (as shown in Figure 2.5). The equation for Z is:

Z,=mx+g (2.47)

In equation 2.47 ‘m’ is the slope of the straight line (= tan ), and ‘g’ is its intercept at

x = 0. Then equation 2.46 can be written as:

D, = [tp (mx+g),* sz‘:l (Qu )P (2.48)

p=!

Figure 2.5  Variation of Z_p with

x-axis

Hence, the ply stiffness coefficient D;, will be a function of x too. In the previous
section the three matrices, /K], [n], and [M] required for the dynammic analysis of
composite beams were established (equations 2.42, 2.43, and 2.44). By examining them
one can find that only the stiffness matrix [K] will be affected by this change because it is
a function of bD;;. Mathematically, this involves the calculation of the integration

(equation 2.37) after replacing D;; in the integration by the equation 2.48. This
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integration is performed using the software Maple® V Release 4, and the stiffness matrix

for the mid-plane tapered composite beam has been obtained as:

[0.24 0.1B ~0.24 0.1C
Sm’l’ +30gim +60g” +5¢6; o 26m’L’ +60glm +60g” + 515
151 ] 301
[x]=H
0.24 —-0.1C
38m’I’ +90gim+60g” +5¢2
sym
I 151 i
(2.49)
where
24m313 / 2 2
A+ 60g113n +60g° +5y, (2.50)
g l4m + 40gif;1 +60g" +5¢, (2.51)
242 / 2 2
Co34m + 80glr:1 +60g" +5¢, (2.52)
H=6(0, )ptp (2.53)

2.3.3 Assembly of Elements and Imposing the Boundary Conditions

As there is no change in the number of degrees of freedom at each node, the

procedures for assembling the elements and imposing the boundary conditions on the
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structure will be the same, as in the case of metallic beams. The relevant details are

available in chapter 4 of Ref. [53], and they are not repeated here.

24 Modeling Variable Thickness Composite Beams

24.1 Modeling Externally Tapered Composite Beams

8]

Actual Beam

ll [2 13

OlOJONO,

‘®D) *®D1) @D,y
® @- . 4 L g

Finite Element Model

Figure 2.6  Modeling of Externally Tapered Composite Beam

This type of beams is modeled using uniform one-dimensional finite elements. In
the present case, the geometry requires selecting the locations of nodes, and consequently
the elements where the thickness changes. Therefore, the beam shown in Figure 2.6 is
divided into three elements with a total of four nodes, and eight global degrees of

freedom (before imposing the boundary conditions). The actual beam is represented
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using homogenous beam elements. The 6D/, values for different elements corresponding
to the actual beam are shown in Figure 2.6. The numbering of plies starts from the
bottom, so the common ply in all elements will have the same number. To simplify the

analysis the coordinates are taken at the first node, so the x-coordinate of node 1 is zero.

The present configuration is merely an example, but the number of plies for each
element, the number of elements, and the length of each element can be modified

according to the structures used in industry.

One should note that the finite element solution of a similar problem for metals is
also defined element-wise (because of the discontinuity in the flexural rigidity). In other
words, this way of modeling is not far from the solution employed for similar metallic

beams of variable thickness.

24.2 Modeling Mid-plane Tapered Composite Beams

This type of beams is modeled using non-uniform one-dimensional finite
elements that are made of symmetric type of laminate. Again, the geometry of the
present case requires selecting the locations of nodes, and consequently the elements
where the plies are terminated (see Figure 2.7). Therefore, the beam shown in Figure 2.7
is divided into three elements with a total of four nodes, and eight global degrees of

freedom (before imposing the boundary conditions). The numbering of plies starts from
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the top ply, so that the common ply in all elements will have the same number. The
origin of the coordinates is located at the first node, and so the x-coordinate of node 1 is
zZero.

The present configuration is merely an example, but the number of plies for each
element, the number of elements, and the length of each element can be modified

according to the structures used in the industry.

drop-off plies [
(plies 6 & 7) e iy Sa—

OO

Figure 2.7  Modeling of Mid-plane Tapered Composite Beam

There are two approximations that are involved in the modeling. First, by
examining the configuration shown in Figure 2.7, one can notice that the terminated plies
(plies 4, 5, 6, 7, 8, and 9) have larger cross-sectional areas at the axis of symmetry. The

effect of this on the bending and shear response is ignored. Secondly, the cross-sectional
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area of each drop-off ply (plies 6 & 7) is approximated by the cross-sectional area of a

ply that is common to all elements.

It is believed that these two approximations in the modeling do not violate any of the
basics of the governing differential equation or its weak form for the following reason.
The slight change in thickness is very small. It is of the order of 10 m; hence its effect

on the calculations will be of minor significance.

2.5 Solution of Equilibrium Equations in Dynamic Analysis

The equations of equilibrium governing the linear dynamic response of an

undamped system of finite elements are [49]:

Mw+Kw=gq (2.54)
where M and K are the mass and stiffness matrices, g is the vector of externally applied
loads, and w and w are the displacement and acceleration vectors of the finite element
assemblage. Mathematically, equation 2.54 represents a system of linear differential
equations of second order. In practical finite element analysis two methods of solutions

are employed: direct integration method and mode superposition method.
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In direct integration method the equation 2.54 is integrated using a numerical
_step-by-step procedure. The term “direct” means that prior to the numerical integration,

no transformation of the equations into a different form is carried out.

One of the direct integration methods is the Newmark method where its scheme can
also be understood to be an extension of the linear acceleration method. The following

assumptions are used:

sty 4 (1= 8) o+ 8 M)A (2.55)

. . ! . -
A ="w+"W Ar +I:(;— a') "Ww+o ”A’w} Ar? (2.56)
where o and & are parameters that can be determined so as to obtain the desired

integration accuracy and stability. In Newmark method values of 6 = //2 and = {/4 are

proposed to obtain an unconditionally stable scheme.

Another method of direct integration methods is the Wilson-8 method, which is
essentially an extension of the linear acceleration method. In this method a linear

variation of acceleration from time ¢ to time ¢ + 84r is assumed, where 8 = . A value of

@ = [.4 is used for unconditional stability in the Wilson-6 method.

Let Tdenote the increase in time, where 0 < 7 < 6A4t. Then for the time interval ¢

to r + G4r, it is assumed that:
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+7 1:1:’=,W + L (r+6A1 w_tw) (2.57)

The two methods are employed in the MATLAB® program to obtain the dynamic
response of the structures. The subroutines for both methods are included in the

MATLAB® program in Appendix I under the names FORVNM and FORVWT,

respectively.

2.6 Program Development For Vibration Analysis

In this section a detailed description of the program that computes the natural
frequencies of a variable-thickness composite beam using finite element modeling will be
given. Furthermore, the program can also compute the structural dynamic response (for

the forced vibration case) using two different methods that are, the Newmark method and

the Wilson-6 method.

The program can analyze structures made of metals and composites. Further,

both the uniform and the tapered laminates can be analyzed.
The following types of analyses can be perforrmed using the developed program:

free vibration analysis, forced vibration analysis, and bucking due to constant and

variable axial loads.
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It is based on the use of the six-degrees-of-freedom frame element described in

Figure 2.8.

This program has been developed using MATLAB® software. The program

structure is shown in Figure 2.9 and the complete code is given in Appendix L

Figure 2.8 Six-Degrees-Of-Freedom Frame Element

The one-dimensional beam element and truss bar element are treated as special
cases of the general plane frame element. Provision is given for inextensible members
with relatively large axial stiffness. Further, options are provided for both the lumped

and the consistent mass matrix formulations.

Here is a description of [nput Data:
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NNOD - Number of nodal points

NELE - Number of elements

NMOD - Desired number of modes to be printed

Flag to select lumped or consistent mass matrix:

LMAS =1 for lumped mass matrix

LMAS =2 for consistent mass matrix

Flag to select type of element:

ICAS =1 for truss bar element

ICAS =2 for general frame element

ICAS =3 for inextensible frame element with infinite axial rigidity.
N - Nodal point number

Boundary condition for axial displacement in x direction:
IBOU (N, 1) =1 free to move

IBOU (N, 1) =0 restrained

Boundary condition for lateral displacement in y direction:
IBOU (N, 2) =1 free to move

IBOU (N, 2) =0 restrained

Boundary condition for rotation in xy plane:

IBOU (N, 3) =1 free to rotate

IBOU (N, 3) =0 restrained

X coordinate [XNOD (N)]

Y coordinate [YNOD (N)]

Mass in x direction [CMAS (N, 1)]
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Mass in y direction [CMAS (N, 2)]

Mass moment of inertia [CMAS (N, 3)]

N - Element number

First-end nodal point number [NODN (N, 1)]
Second-end nodal point number [NODN (N, 2)]
Cross-sectional area [AREA (N)]

[SMOI (N)] Moment of inertia of a metal beam (I)
[EMOD (N)] Modulus of elasticity of a metal beam (E)
Mass density per unit volume [EROW (N)]

QT- Laminate stiffness matrix for an element (Q)

FLRI-Flexural Rigidity of composite beam (bD,;)

The following subroutines constitute the program:

2.6.1 Subroutines of the Program

2.6.1.1 Subroutine TRANMAT

This subroutine is to compute the transformation matrix. This matrix will transform the

element stiffness and mass matrices from local coordinates into global ones. It is stored

as [T].
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2.6.1.2 Subroutine ELEFREX

The function of this subroutine is the computation of the transformed ply stiffness matrix
Q—. Also, it computes the laminate stiffness matrices: 4, B, and D. From these

computations one can get the flexural rigidity of the laminate.

2.6.1.3 Subroutine ELESTF

The function of this subroutine is to calculate the entries of the element stiffness matrix
(in local coordinates). This matrix is named “ESTF”.

2.6.1.4 Subroutine ELEMAS

This subroutine is to compute lumped or consistent element mass matrix (in local

coordinates). It is named “EMAS”.

2.6.1.5 Subroutine CONTRN

The function of this subroutine is to perform the congruent transformation. In other

words, the element stiffness and mass matrices in local coordinates corresponding to
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different elements in the frame structure are converted to their corresponding element
stiffness and mass matrices in the global coordinate system. Mathematically, this
transformation can be expressed as C = (Transpose of T) x G x T, where G is either

stiffness or mass matrix.

2.6.1.6 Subroutine EIGZF

This subroutine calculates the eigenvalues, the eigenvectors, and the square root of

eigenvalues, which are the natural frequencies, rearranges them in an increasing order of

magnitude, and prints all these values for each node and for each mode.

2.6.1.7 Subroutine FORVNM
This subroutine computes the dynamic displacements and rotations of a structure using
Newmark method, which is one of the direct integration methods. Provisions are made to

calculate the maximum displacement, maximum velocity, and maximum acceleration at

each node.

2.6.1.8 Subroutine FORVWT
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The function of this subroutine is the same as the previous one. It just differs in the
assumptions employed for obtaining the solution. It is based on the Wilson-6 method. It

is added to verify the results of the previous subroutine, as explained in the next section.
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INPUT <

Generation of numbers for assembling global stiffness

matrices and calculating the no. of degrees of freedom

WR NV R WN -~

No. of elements

No. of nodes

No. of modes to be printed
Flags (LMAS, ICAS)
Boundary Conditions
Nodal Coordinates
Lumped Masses
Numbering of Nodes
Material Properties

!

Initializing global stiffness and mass matrices to zero

4

_<l‘:J—| Starting a loop for total no. of elements

l

Call Functions
1. TRANMAT
2. ELEFR
3. ELESTF
4
5

ELEMAS
CONTRN

I

Assembling the global stiffness and mass mautrices

End

I

Adding the nodal concentrated
masses into the global mass matrix

4

Call function
EIGZF
FORVNM
FORVWT

Figure 2.9  The structure of the MATLAB® program for determining the natural

frequencies and the dynamic response of metallic and composite

beams
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2.7 Example problems and Validation

In this section a complete set of all example problems that were solved using the
developed program will be covered. It will be divided into two sub-sections, one for
problems involving metals, and the other one for problems involving composites.

Solutions are validated by comparing them with existing results and the results obtained

using the exact solution or other approximate methods.

2.7.1 Beams Made of Metals

2.7.1.1 Free Vibration of Simply Supported Beam

Problem description [43] :

@1 l I ]
gy A

OO
L 96 in. ’L 96 in. »‘1 96in.a‘

Figure 2.10 Free vibration analysis of a simply supported beam
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Figure 2.10 shows an A-36 steel I beam with a cross section of 8123 [43] and with both
ends simply supported. The problem is defined by the following parameters: cross-

sectional area 4 = 6.71 in.%, cross-section moment of inertia / = 64.2 in*,

modulus of
elasticity £ = 30 Mpsi, and mass density of the beam p = 0.0002734 [b / in.” . The beam
is modeled using three beam elements. The natural frequencies and corresponding mode
shapes are sought. The input data necessary for a free vibration analysis of this beam

were provided into the MATLAB® program and the results were obtained. The first three

natural frequencies are obtained to be: 74.52, 301.37, and 743.81 rad./sec respectively.

Validation of the results:

There is an exact solution for this type of structure and loading, which is [43]:

iz’ [EI
w; —[TJ \/—7: (2.58)

in which i=1,2,3,... is the mode number, and L is the span of the beam.

The results obtained using the program were compared with the closed form

solution, and the percentage of errors (The error is calculated as follows:

/
error=LMJx100) is tabulated in Table 2.1 below. Also, the percentage of
1)

exact

errors for the same problem solved by FORTRAN program given in Ref. [43] is shown in

the same table.
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It was noticed that the percentage of error in the third mode is relatively high
(10.99 %). It was suggested to increase the number of elements from three to six to make
sure that this high percentage of error is due to the approximation in the modeling and not
in the program codes themselves. The percentage of error in the third mode was
significantly reduced (from 10.99% to 0.4 %) as shown in the same table. The table also
shows that the results obtained from MATLAB® program are as accurate as they are from

FORTRAN program given in Ref. [43].

Table 2.1 Percentage of Errors in Natural Frequencies

- MATLAB®program |- FORTRAN program

7 results 0 | results -
1 0.08 0.08
3 2 1.18 1.18
3 10.99 11.00
1 0.01 0.01
6 2 0.08 0.08
3 0.40 0.39

2.7.1.2 Free Vibration of a Portal Frame

Figure 2.11 shows a four-node, three-element steel portal frame with both ends fixed and

with a cross section of 3I5.7 [43]. The problem is thus defined by the following
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parameters: 4 = 1.64 in.%, [ = 2.5 in*, E = 30 Mpsi, and p = 0.0002734 1b / in.> The

frame is assumed to be inextensible with very large axial stiffness for each member.

@)

o

O

—a

80 in.

EnsEs e —L
@ '< 80 in. >' @
Figure 2.11 Free Vibration Analysis of a Portal Frame with Both Ends Fixed

The natural frequencies and modes are sought. The input data necessary for the free
vibration analysis of this frame were provided into the MATLAB® program and the
results are obtained. The first two natural frequencies are: 125.30 and 590.72 rad./sec.,

respectively.

Validation of the results:

From the eigenvectors printed, it is seen that the first mode is of antisymmetrical shape.
That is, the axial displacement at node 2 (u;) is equal to the axial displacement at node 3

(u3) and further, the rotation at node 2 () is equal to the rotation at node 3 (&;). The
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second mode is of symmetrical shape. That is, &, is equal to -&;. The results for the same
problem obtained in Ref. [43] based on FORTRAN program were 125.30 and 590.72
rad./sec., respectively. Obviously, they both match with the results obtained using the

MATLAB® program.

2.7.1.3  Elastic Buckling of Columns

2.7.1.3.1 Simply Supported Beam Under Constant Axial Force

Solving the same problem of section 2.7.1.1 with the addition of an axial force of
magnitude 320 Ibf., the results are obtained to be: 74.42, 301.30, and 743.75 rad./sec.,
respectively. It is noted that there is a slight difference between these values and their
corresponding ones in case of no buckling. Accordingly, an axial force of a higher value
was tried to see the effect of the axial force on the natural frequencies. So another value
of the axial force (1000 Ibf) was tried and the results are: 74.39, 301.12, and 743.60

rad./sec., respectively.

Validation of the results:

The closed-form solution for such a problem is given as [45]:

. 1 (ir\'[P272Er
. — _P 2.59
w m([,)[ VE :l (2.59)
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Table 2.2 Percentage of Errors in Natural Frequencies that Correspond to

Constant End Axial Loading

0.09 0.12
1.17 1.15
10.99 10.99
0.25 0.76
0.08 0.09
0.39 0.39

Table 2.2 shows the percentage of errors obtained by comparing the results obtained
using the MATLAB® program with that obtained using the closed-form solution for both
values of the axial load. Again the percentage of error in the third mode is high. This
was improved by increasing the number of elements from three to six. Notably, the

accuracy is improved in the case of six-element model.

Validation of the results using static buckling analysis

Applying equation 2.34 for static buckling analysis (i.e. neglecting the terms associated
with the mass matrix and considering no external forces (£; = 0)) the following equation
is obtained:

0=[K-nl{u,} (2.60)
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But the axial force in [n] is & common factor for all its entries as it is shown in equation
2.38. The matrix /#]/P is demoted as [n’ J. Then equation 2.60 can be written as:

0=[K-Pn'lu, (2.61)
This is an eigenvalue probleem, in which the buckling load P is the eigenvalue A;. The
problem was solved again w=ith this approach and the lowest eigenvalue, i.e. the critical

buckling load, was obtained.

The exact solution for the critical buckling load is [45]:

p T El (2.62)

] »—@ ] .
The error is calculated as foElows: error = (—ﬂ] x 100 . The error associated with
w

exact

the critical buckling load is esqual to 0.01029 %.

2.7.1.3.2 Fixed-Free Bearm Under Linearly Varying Axial Force

Let the intensity of the distributed axial load be represented as [43]:

p(x)=po[1+r(§)aJ (2.63)

in which x is measured from mode 1, and p (x) acts in the direction from node 2 to node 1.
Comments:

1) This way of expressirag the intensity of axial force is the most appropriate one for

the finite element mo-deling for a common loading case because it is based on an

element-wise represertation.
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2) Always x is measured from the node / of the element and / is the element length.

3) po is always the intensity at the node 7 of the element.

or —F

Figure 2.12 Fixed-Free Beam @ ¢

Subjected to its Own Weight @ ‘

p(x)3 \ i /
8 ‘ p(x):z \ £
@ ‘ p(x)1=Q=1 NI 2

4) a is expressing the nature of how the load is varying. For example:

a = 0 for uniformly distributed axial load.
o = 1 for linearly varying axial load.

o =2 for parabollicaly varying axial load,
and so on.

5) Calculation of the coefficient ‘r’

As this coefficient is a function of the intensities of the axial load at the node j and
node i of each element, and since these intensities differ from one element to another,
the coefficient ‘r’ should be evaluated generally for any element under general

intensities of axial loads. This formulation is done as follows (see Figure 2.13):
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The intensity at the node i (bottom) of the element=p (x);,andatx =/, p (x) =p (x);.

Then,

p(x); = p(x){l + rGﬂ (2.64)

e (P(x)f J —1 (2.65)

().

I o)
Figure 2.13 Formulation for an element under i T
linearly varying axial load ¢ !
EEAVE
i p(x);

For example, for analytical solutions where a one-element modeling can be
considered, for a linearly varying axial load, p (x) =0 atx =/, and p (x) =p, atx = 0.

Substituting these values into equation 2.40, one concludes that » = -/.

6) As it might be noticed that for modeling using more than one element, a pile of
axial forces will be accumulated at the top of each element from the elements
above it. The axial load at the top node ; is denoted as P,. This was taken into

consideration, and hence the final form of the axial forces is given as:

P(x)=P, +P,(x) (2.66)

where 2,(x) = pol{l - % +- :a [1 - (ﬂa }} (2.67)
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1)

2)

This new form of the axial forces was substituted into the equation 2.38, and the new

geometric stiffness matrix was set up.

Solution Process:

Generally, the geometric stiffness matrix can be expressed as:

n; =¢,F, +c,p, (2.68)

in which ¢; and c; are constants of the element (f (/, r, @)). Now let us multiply and

divide n; by ‘Q’, where Q is the intensity of the axial load at the base of the structure.

Then equation 2.68 can be written as:

n, = Q[C—gpi + %’] (2.69)

Then equation 2.34 can be written as:

0= [K - Q‘:% + C—Qp—} }{ u,} (2.70)

This is again an eigenvalue problem, where Q is the eigenvalue A;. So if O is given a
value of unity, it will not affect the values inside the brackets, and the resulting
eigenvalue A; is a scale factor of Q. Accordingly, the total axial load will be 0.5 x 4;
x total length of the structure (TL).

The material constants are chosen as in the problem described in section 2.7.1.1. The
beam is modeled using six elements. From Figure 2.12, the following relation can be

deduced, which is used in solving the problem. At any node i:

p(g).- _T LT; X, @2.71)
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Finally, the critical buckling load (the lowest eigenvalue) was found to be 373912.2

Ibf.

Validation of the results:

The closed-form solution for the beam with the loading and boundary conditions
shown in Figure 2.12 is [47]:

P 16.1ET

cr 12

(2.72)

The percentage of error associated with the calculated critical buckling load was then

calculated to be 0.02 %.

2.7.1.3.3 Fixed-Free Beam Under Uniformly Distributed Axial Force

The same problem as in the last section was solved for a different loading
condition, that is, the uniformly distributed axial force (here » = « = 0). The exact
solution is given by an equation similar to the equation 2.47 wherein the constant 16.1 is
replaced by the constant 7.84. The percentage of error in the present case was then

calculated to be 0.09 %.

2.7.1.4 Dynamic Response of a Fixed-Fixed Beam

Problem description:
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For the fixed-fixed beam shown in Figure 2.14, a) the natural frequencies and mode
shapes, and b) the response to a concentrated force of 10000 Ib suddenly applied at the
center of the beam for 0.1 sec. and removed linearly as shown in Figure 2.15 are sought.

A time step of integration At = 0.01 sec. [48] is used. The properties of the beam are: L =

200 in., I = 100 in®, E = 6.58 Mpsi, and mass per unit length m =0.0371b/in. The beam

is divided into four elements of equal length as shown in Figure 2.14.

OF——=

() (
50" 50" l 50" >'< 50"

Figure 2.14 Modeling the Fixed-Fixed Beam for Forced Vibration Analysis

F )

Figure 2.15 Force Applied on the Beam
10000 Ib

» time (sec.)

0.1 0.2
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Validation of the results:

Table 2.3 Comparison of the Maximum Displacement

] e soluion with | Presentsofution wik

: [48] | NowmarkMetiod | Wilsonmethod
l 0.654 0.6551 0.6505
2 0.019 0.0186 0.0187
3 1.243 1.2426 1.2332
4 0.000 0.0000 0.0000
5 0.654 0.6551 0.6505
6 0.019 0.0186 0.0187

I) A Newmark method was used to find the dynamic response with & = 0.5 and a =

2)

0.25. The results for the maximum displacement in inches at nodes! to 6 are 0.654,

0.019, 1.243, 0.000, 0.654, and 0.019, respectively. These results of the MATLAB®

program are compared to the results given in Ref. [6] as shown in Table 2.3 above.

Obviously, they are almost identical as they start to differ in the third decimal place.

Another validation was done by using another method of direct integration methods

which is the Wilson-0 method, with 8 = [.4.

The results for the maximum

displacements in inches at nodesl to 6 are 0.6505, 0.0187, 1.2332, 0.000, 0.6505, and

0.0187, respectively. Again, these results of the MATLAB® program are compared
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to the results given in Ref. [48] and the ones obtained by the Newmark Method as

shown in Table 2.3. Apparently, they converge with the other two sets of results.

2.7.1.5 Application To Tapered Beam

P
OO &
L L
. s,
':—: L2 —P¢— L2

Figure 2.16 Tapered Cantilever Beam Modeled by Two Tapered Elements

A tapered cantilever beam is shown in Figure 2.16. The moment of inertia is assumed as

defined by the following equation [43]:

I(x)= 10[1 + r(%)a} (2.73)

This is similar to equation 2.63, with replacing the axial force p (x) by the moment of
inertia / (x). In the present case, r = 8 and ¢ = /. Let it be desired to find the deflection
and slope at the free end by finite element modeling and compare it with the exact

solution.

Validation of the results:
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The percentage of error in the response obtained using the MATLAB® program in
comparison with the exact solution mentioned in Ref. [43] is shown in Table 2.4. As can

be observed from the table, there is an excellent agreement between the results.

Table 2.4 Percentage of Error in Deflection and Slope at the Free End of a

Tapered Cantilever Beam

- No- of Elements | Error in Tip Deflection (%) | Error in Tip slope (%)

I -0.62 2.82
2 -0.17 0.77
2.7.2 Example Problems and Validation for Composite Beams
2.7.2.1 Example Problems and Validation for Uniform Composite Beams

2.7.2.1.1 Free Vibration of Simply Supported and Fixed-Fixed Composite Beams

A composite beam, shown in Figure 2.10, made up of NCT-301 graphite/epoxy material
with the following ply material properties is considered: £;; = [13.9 GPa, Ez; = 7.985
GPa, vi; = 0.288, v3; = 0.018, and p = 1480 kg/m3 . The laminate is cross-ply symmetric
[0/90] s and the number of plies is 30. Both the simply supported and the fixed-fixed

boundary conditions are considered.
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Validation of the results:

The closed-form solution for simply supported composite beam is [50]:

w{:(i_”.) ﬂl_ (2.74)
L VpA

The results for the natural frequencies obtained using the MATLAB® program are
615.81, 2490.32, and 6146.46 rad./ sec., respectively. These results were compared with
the closed form solution in equation 2.74, and the percentage of error is calculated as 0.08
%, 1.18 %, and 10.99 %, respectively. Clearly, the MATLAB® program results are of
high accuracy, except in the third mode. This can be quickly understood by the fact that
it is a matter of modeling. In other words, the approximation in the MATLAB® program
is not reduced enough by modeling using three elements. To confirm what was just
mentioned, let us check Table 2.5 below. One can see that the percentage of error in the
third mode is significantly reduced from 10.99 % to 1.83 % by modeling using four

elements instead of three.

The closed-form solution for the fixed-fixed composite beam is [45]:

W, = (ﬁ] & (2.75)
L pA

in which k; = 4.730041, k; = 7.853205, and k3 = 10.995607.

The results for the natural frequencies obtained using the MATLAB® program are
1400.54, 3921.67, and 9121.16 rad./ sec., respectively. These results were compared

with the closed form solution in equation 2.75, and the percentage of error is calculated
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as 0.41 %, 2.00 %, and 21.01 %, respectively. Noticeably, the MATLAB® program
results are of acceptable accuracy, except in the third mode. This can be reasoned by the
fact that for this type of boundary conditions with just three-element modeling, the beam
has just four degrees of freedom (at nodes 2 and 3). Hence, the solution of the
MATLAB® program will have a significant amount of approximation. Consequently, the
results starting from the third mode will show high percentage of error. This can be
assured by checking Table 2.5 below, where it is shown that the percentage of error is
drastically reduced from 21.01 % to 2.14 % by modeling using four elements instead of

three.
Table 2.5 below shows the percentage of errors associated with the natural

frequencies obtained using the MATLAB® program in comparison with the closed-form

solutions, for different number of elements and different boundary conditions.
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Table 2.5 Percentage of Errors Associated with the Natural Frequencies for

Different Boundary Conditions

No. of Elements Mode e  Ea —
imply supported | . Fixed-fixed *..
1 0.3947 1.6209
2 2 10.9918 32.9201
3 23.9942 -
1 0.0810 0.4091
3 2 1.1820 1.9965
3 10.9918 21.0095
1 0.0260 0.1327
4 2 0.3947 0.9250
3 1.8273 2.1357
| 0.0107 0.0548
5 2 0.1657 0.3991
3 0.7942 1.3838
1 0.0052 0.02656
6 2 0.0810 0.1963
3 0.3947 0.7166

! For the case of fixed-fixed beam modeled by two elements, there will be two degrees of freedom (at the
node in the middle). Hence, there will be only two modes (two values of natural frequencies).
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2.7.2.1.2 Free Vibration of A Fixed-Fixed [0/90] s Composite Beam

A beam (see Figure 2.14) made of T 300/5208 graphite/epoxy material with the following
mechanical properties at 70° F is considered: £; = 21 Mpsi, E> = 1.76 Mpsi, G;; = 0.65
Mpsi, vi; = 0.21, vz; = 0.017, and the mass density p = 0.06 Ib/in’. The beam is
considered to be made of a 0/90 lay up, with 4 plies each 0.006” thick. The beam is one
inch wide (b = /") and twelve inches long (L = /2"). The beam is fixed at both ends.

The lowest natural frequencies are to be determined.
The beam was modeled using four elements and the lowest three natural
frequencies are: 9.00, 25.00, and 49.59 rad./sec., respectively. They can also be

expressed as circular frequencies: 1.43, 3.98, and 7.89 cycles/sec., respectively.

Validation of the results:

1) The results for the natural frequencies obtained using the MATLAB® program are
compared with the exact solution given by equation 2.75, and the percentage of error
associated with the natural frequencies are 0.13 %, 0.92 %, and 2.14 %. Apparently,
the results of the MATLAB® program are accurate enough to rely on. Furthermore, it
is noticed that the percentage of error in the third mode is relaﬁvely low, which was
not the case for the same problem in the last sub-section. This is because of the

difference in the material used and the number of plies, which means that the material
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2)

properties as well as the number of plies have their remarkable effect on the results of
the natural frequencies.

The results were validated again based on the results obtained using the software
ANSYS® 5.4. The results for the circular frequencies using software ANSYS® 5.4
are 1.43, 3.94, and 6.97 cycles/sec., respectively. The percentage of error is
calculated as -0.13 %, -0.14 %, and -9.81 %, respectively. As one can see, the
percentage of error in the results obtained using software ANSYS® 5.4 are very close
to the ones obtained using the MATLAB® program. It may be of importance to
mention that the results of the ANSYS® software are always of lower values than the
exact solution, which explains the negative sign in the results. On the contrary, the

results of the MATLAB® program are always higher than the exact solution.

Below is given Table 2.6, which summarizes the above-mentioned resuits.

Table 2.6 Percentage of Error in Natural Frequencies of [0/90] ; Composite

Beam

Tl mm o oo RS vS®
- No. Of Elements MAT LAB’ program ANSYS soﬁware”
sresules ] S Cresulf
1 0.1327 -0.1347
3 2 0.924 -0.1426
3 2.1357 -9.8145
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2.7.2.1.3 Buckling of Uniform Composite Beams

Problem description:

A composite beam, shown in Figure 2.10, made up of the same material used in section
2.7.2.1.1 with the same mechanical properties and the same laminate configuration, but
with 100 plies instead of 30 is considered. The critical buckling load is to be determined.
The beam was modeled using six elements. The method of solution was identical to the
method used for metals (given in section 2.7.1.3.1). The critical buckling load was

calculated as 8790.8 N.

Validation of the result:

1) The closed-form solution for such a structure and loading is [50]:

n"n"’
£, ===
L

bD,, (2.76)

So the exact value of critical buckling load is 8789.9 N. Correspondingly the
percentage of error is 0.01 %.

2) The second validation was done using ANSYS® software. First with free mesh
tool, P., is obtained to be 8543.8 N, which gives a percentage of error of 2.8 %. With
mapped mesh on 3 or 4 sides, P, is 8546.4 N, and correspondingly the percentage of

error is 2.77 %.
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2.7.2.1.4 Dynamic Response of Composite Beams (Forced Vibration Case)

The same problem of last sub-section is considered with a concentrated force of 1000 N
applied at the mid-span of the beam (see Figure 2.15). The same way of modeling the
last problem was followed. The Newmark method was used to find out the maximum

displacement at each node (with ¢ = 0.32 and & = 0.5), and further, the Wilson-0 method

(with @ = [.4) was used to verify the results.

Table 2.7 Maximum Displacement of the Fixed-Fixed [0/90]  Composite Beam

- |- Result corresponding - | -Result corresponding

|| to Newmark method- | - to Wilson-6 method
1 0.0005 0.0006
2 0.0084 0.0704
3 0.0010 0.0040
4 0.0000 0.0000
5 0.0005 0.0006
6 0.0084 0.0704

75



2.7.2.2 Example Problems and Validation for Tapered Composite Beams

2.7.2.2.1 Free Vibration of Fixed-Fixed [0/90] ; Externally Tapered Composite

Beams

An externally tapered composite beam of the same material used in section 2.7.2.1.1 with
the same mechanical properties and the same laminate configuration is considered to
determine its natural frequencies. The number of plies in each element is 4 and 2
respectively (see Figure 2.17). The beam is modeled using two elements. The
MATLAB® program provided the following results for the first two natural frequencies:

322.34 and 1457.00 rad./sec., respectively.

Figure 2.17 Modeling Fixed-Fixed
%—P X Externally Tapered
an Composite Beam
18 cm 18 cm

ONOMO

N

Validation of the results:

As there is no exact solution, nor any other solution in any reference for such a problem,
the validation for this problem was done by hand calculation. Therefore, the beam was

modeled using two elements each of 18 cm length to facilitate the calculations. The
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subroutine ELEFREX was used to obtain the flexural rigidity (6D;;) for each element,
and the results are 6.113 N/ m? and 0.954 N / m?, respectively. Then the stiffness and

mass matrices were calculated for each element using equations 2.41 and 2.43 as follows:

12 1.08 -12 1.08

1 6113 0.1296 —1.08 0.0648
~(0.18) 2 -1.08
sym 0.1296

(12 1.08 —-12 1.08

o 0954 0.1296 —1.08 0.0648

-K:___3
(0.18) 12 -108
0.1296

With p = 1480 Kg / m® and the cross-sectional areas are 'd;" = 6.096 x 10~ m* and '4,' =

3.048 x 107 m?, the mass matrices are given by:

_ 1480%6.096x 107 x0.18

‘M
420 156 —3.96
—3.96 0.1296
156 3.96
2hf o 1480%x 3.048x 107 x0.18|3.96 0.1296
420

In the mass matrices only the entries that will be used in the assembly of the elements are

mentioned.
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Assembling these matrices after considering the fact that for this structure there are only

two degrees of freedom at node 2, the results are as follows:

i _| 14540.65 ~955.305
"1 -955.305 157.04

0.0905 —7.655x 1077
-7.655x107" 7.51x 107"

These two matrices were inputted into the MATLAB® software, to get the dynamic

matrix 'a' which is:

a=inv(M)x K

0.0058 0.0008
The matrix ‘a’ will be given by a =|: }x 7

—-1.2128 0.2171

Then the eigenvalues of this matrix were calculated as 0.1039 x 10° and 2.1248 x 10°.
The two natural frequencies of the structure are the square root walues of these
eigenvalues, which are 322.3 and 1457.7 rad./sec., respectively. By compparison, one can

find that they are almost identical to the results obtained using the MATL.AB® program.

2.7.2.2.2 Free Vibration of Mid-plane Tapered Composite Beam

A mid-plane tapered composite beam of the same material used in sectxon 2.7.2.1 with

the same mechanical properties and the same laminate configuration is considered to
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determine its natural frequencies. The number of plies in each element is 12, 10, and 8
respectively (see Figure 2.7 with // = [2 = [3 = 0.12 m and simply supported type of
boundary conditions), and taper angle 6 = -6°. The beam is modeled using three
elements. The MATLAB® program provided the following results for the first three

natural frequencies: 1640.48, 6972.14, and 17927.65 rad./sec., respectively.

Validation of the results:

If the taper angle ‘@’ is given a very small value such as 0.4 °, the mid-plane tapered
composite beam can be considered as an externally tapered composite beam. So in the
MATLAB® program, the value of 6’ was changed to 0.4 °, and the values for the number
of plies were changed to 8,6, and 4 respectively, keeping the same values as before for all
other parameters. The results for the first three natural frequencies are 87.09, 397.37, and
905.41 rad./sec., respectively. For the externally tapered composite beam with the same
number of plies and the same boundary conditions, the results of the MATLAB® program
are 77.48, 332.32, and 885.64 rad./sec., respectively. As one can see, the two results for
each kind of taper are of good match and acceptable. It is believed that the shown
difference between the two sets of the results will not underestimate the accuracy of the
MATLAB® program. This is emphasized by the fact that the stiffness and mass matrices

for each kind of taper are based on different formulations.
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2.8 Conclusions and Discussion

In this chapter, the concepts of free and forced vibration analysis, and buckling analysis
as applied to beams of composite materials are summarized. The formulation employing
the conventional finite element modeling and analysis for evaluating the stiffness,
geometric stiffness, and mass matrices, is described. This analysis is done for both
uniform and externally tapered composite beams, and for mid-plane tapered composite
beams. The corresponding computer program is developed in MATLAB® software
environment. A detailed explanation of the program development is given. Example
problems are solved using the developed program to obtain the natural frequencies and
the critical buckling load, which demonstrate the developed program. The developed
program can also obtain the natural frequencies and the critical buckling load for beams
made of isotropic materials. The example problems for the case of metals were also
worked out. The program was verified by comparing its results with the results obtained
from the exact solution, if it exists, or by another software such as ANSYS® 5.4, or by
comparing them with another similar problem. The results obtained using the developed
program are in excellent agreement with the results obtained using other methods. The

formulation will be extended in the next chapter for advanced finite element analysis.
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Chapter 3

Dynamic Analysis of Variable Thickness Composite Beams Using Advanced Finite

Element Formulation

3.1 Introduction

It was introduced in the last chapter how the approximate methods can be applied for
vibration analysis and buckling analysis. The procedure as to how the finite element
techniques can be used to solve the Euler-Bernoulli’s differential equation (governing
equations 2.7 and 2.8) numerically, rather than theoretically has been explained. The

technique used was called the conventional finite element formulation.
The limitation of the conventional finite element formulation method is obvious:
the beam has to be discretized into many elements to get the desired accuracy as can be

verified from problems 2.7.1.1 and 2.7.1.3.1.

It has been shown [31] that the accuracy can be improved by increasing the

number of degrees of freedom in the element.
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A finite element model that considers both the essential (i.e. geometric) boundary
conditions (deflection and slope), and natural (i.e. force) boundary conditions (bending
moment and shear force) at each node of the beam element is to be established now. This
will require a total of eight degrees of freedom per element (that is, four per each node).
Accordingly, a polynomial of the seventh order (an algebraic equation of eight terms) is

needed for use as the interpolation function.

In this chapter, a weak formulation based on the Euler-Bernoulli’s theory of
bending of composite beams is developed first for both uniform and externally tapered
composite beams. The formulation is then modified so as to be appropriate and
applicable for mid-plane tapered composite beams. The present formulation is performed
only for free vibration analysis. Hence equation 2.8 will be the governing equation that

will be considered in this chapter.

The resulting formulation, which is based on higher order polynomial, is called
herein as the advanced finite element formulation. The analysis considers the coupling of
bending and axial deformations due to the axial forces (buckling analysis). Based on the
above-mentioned formulation, the stiffness, geometric stiffness, and mass matrices are

determined for variable thickness composite beams.

The MATLAB® computer program that has been developed in the last chapter is

modified further so as to incorporate the new formulation, specifically the two

subroutines for the element matrices. The program is demonstrated using many example
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problems. These example problems cover both types of materials, metallic and

composite.

3.2 Formulation Based on Euler-Bernoulli Theory

The present formulation will follow the same steps used in chapter 2 for the

construction of the weak form. The governing equation for forced vibration is the same

as in equation 2.7. Accordingly, the basic differential equation is given as:

9° g° ow 3’ w_
—(bD, )+bN‘ S5+ pATY % =q(x,t) (3.1)

33 Weak Formulation of the Governing Equation
3.3.1 Weak Formulation for Uniform and Externally Tapered Composite Beams

The displacement w (x,2), which is the solution to the differential equation 3.1 can

be approximated by developing algebraic relations among the coefficients w; as follows:

w(x, ) = ; w,(e)N; (x) (3.2)
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The formulation is achieved through the following steps:

Step 1:

The weight function v (x, #) is used to construct the integral statement for uniform

composite beam, and for each uniform segment of an externally tapered composite beam.

Mathematically, this means that 56D, is constant, so agzy[bD i Z—W,ﬁ] in equation 3.1 can
x* b

&

4
be expressed as bD,, % So, moving all the expressions of the governing differential
X

equation to one side, multiplying the entire equation with the weight function, and

integrating over the domain £2 = (0,L), one can get:

1 4 2 2
0= J.v[bD“a—W+bN OW , ou2 W—q:'dx (3.3)
- 0

ox* * oxt ox?

The statement 3.3 is called the “weighted-integral” equivalent to the equation 3.1.

Step 2:

i) After integrating by parts the weighted integral statement, and applying the approach of

separation of variables as given by equation 3.2, equation 3.1 will become as:
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! 2 2
0= 2o, W _pn VA ot —vg |+
N dx? dx’ dx dx

{

vi bD,,d.—Vf/ —ﬂdD,,ﬂ+vbN aw 3.4)
dx dx” dx dx” X dx

0

ii) Boundarv conditions:

Examination of the natural boundary conditions (bending moment and shear
force) at the boundary points, x = 0, and x = / will lead to the following notations (which

are the constants of the integrations and can be deduced from equation 3.4):

o;=| L 6D, L | ov, 2L s=| 60, L (3.5)
dx dx* Cdx | - de® ) _,
d d°wW dw d’w
Q°=—|—| bD,, —— |+ bN_—- ¢ =_| pD,, —— 3.6
o] 2o, L) ] g 0, %) 6o

tii) Interpolation functions:

In the advanced finite element formulation, eight degrees of freedom are
considered for each element. That is to affiliate the shear force and the bending moment
at each node in the finite element formulation. Accordingly, this will add four more
degrees of freedom to an element. So now, it is no longer needed to make an equivalency

for bending moment and shear force, as it used to be done in the conventional
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formulation. For example, a distributed load over an element in the conventional finite
element formulation is approximated by two concentrated loads at both ends of the beam
element (i.e., at the nodes), and two bending moments. Surely, this equivalency is an
approximation in itself, which will be of inferior quality in the finite element solution, i.e.
less accurate and higher percentages of error. As it appeared in the last chapter, in
section 2.7, it was necessary to discretize the beam into many elements to converge the
solution of the conventional finite element formulation to the closed form solution. By
applying the advanced formulation approach, all the possible degrees of freedom in the
structure are implemented in the analysis. Hence, there is no necessity for any
equivalency, and further, the accuracy of the solution will improve. As it will be shown
in section 3.7 when solving different problems using both formulations, conventional and
advanced, the accuracy with the advanced finite element formulation is improved

significantly.

The analysis starts by writing a new polynomial function for # that consists of a

total of eight terms as follows:

W(x)=c, +ex+c,x* +¢,x° +e,x* +e.x° +ex® +c,x (3.7)

Then, one can show that

0(x) = ﬂg;(t—) =c, +2c,x +3c,x’ +4c,x’ +5c,x* +6¢c,x” +7c,x° (3.8)
d°w(x) 2 3 ‘
F(x)=-bD,, —5— =bD, l6c, + 24¢ %+ 60c,x* 120c,%* + 210¢,x ] (3.9)
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M(x)=bD,, d'Zz(x) =bD,,[2¢, + 6c,x + 12¢,x7 + 20,5’ +30c,x* +42¢,x°]  (3.10)

Applying the notation of '/ for the degrees of freedom at x = 0, and 2" for those at x =/,

one can get the following equations:

wO)=W, =c, _ (3.11)
0(0)=6, =c, (3.12)
F(0)=F, =-6bD,c, (3.13)
M0)=M, =2bD,c, (3.14)
W({l)=W,=c, +cl+c,l” +c,I’ +c ' +e,l° +c,l° +c,l (3.15)
0(1)= 06, =c, + 2¢,l + 3¢c,I* +4c, I’ +5c,* +6¢,0° +7¢,1° (3.16)
F(l)=F, =-|-bD, [6c, + 24c,l +60c,l® +120c,l* +210c,0* | (3.17)
M(l)=M, =—|bD, [2¢, + 6¢, +12¢,1% +20c,0* +30cl* +42¢,1 || (3.18)

To get the equilibrium of an element, the shear force and the bending moment at x =/
have to be equal in magnitude and opposite in direction to the ones at x = (. This is the

reason for the negative signs that appear in the right sides of equations 3.17 and 3.18.

In matrix form, the above equations can be written together as:
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To sum up the analysis of finding the interpolation function /N/ in matrix form:

(w,] [1 0 0 0 0 0 0 0

6, o1 0 0 0 0 0 0

F, 0 0 0 -6bD, 0 0 0 0

M, |0 0 2bD, 0 0 0 0 0

{ = J

W, I & r I r’ [° r

9, 0o 1 2 3 4/’ 5t 61° 71°

F, 0 0 0 -6bD,, ~-24bD,I -60bD,I> —120bD,I° —210bD,I"

\M,| |0 0 2bD, 6bD, I2bD,I* 206D, 306D, 26D,,1° |
(3.19)

J

Equation 3.7 that defines the new polynomial W (x) (a 1 x 1 matrix) can be expressed as
the multiplication of two matrices, the first one is a 1 x 8 matrix consisting of the terms in
variable x, and the other one is an 8 x 1 matrix of the constants of the polynomial, ¢’s.

Mathematically, this can be written as:

[W ()] 11 =[X] 1x8 % [c] 8xi

Also, if all the degrees of freedom at both the nodes of the element are put into an 8 x |
matrix, which is called [d], and by the definitions obtained using equations 3.11 - 3.18,

one can define this matrix [d] as the multiplication of two matrices, one for the constants
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[c] sxi1, and the other matrix is an 8 x 8 matrix that contains the coefficients associated
with the constants, c’s, which can be called as matrix [{]. Mathematically, this can be
written as:

[d] sxi = [i] 8x8 > [C] 8xi (as shown in equation 3.19)

But the matrix of W (x) can be expressed as the multiplication of the interpolation

function matrix [V] by the nodal matrix [d] as follows:

(W] 10 =[N] 1x8 % [] 1xs (3.20)

Substituting the matrix [d] from equation 3.19 into equation 3.20, then

[W ()] 11 =[N] [i] [c] (3.21)

Substituting the matrix [¢] from equation 3.7 into equation 3.21, one can get,

[W )] 1a = [N] [(][W )] [’ (3.22)

Finally, the matrix of the interpolation function can be expressed as:

N, = [, <k (3.23)

The two matrices [i/ and /x] were inputted into the software MAPLE® V Release

4, and the resulting matrix of interpolation functions, //V/ is obtained as follows:
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4 5 6

7

N, = 1-35-+84>——70°_+202 (3.24)
[ [ [ [
4 5 6 7
N, =_r—20x—3+45%—36%+10% (3.25)
3 o) 4 h) 9) 6 7
N3 - _ X + 2X _ X _ + X —— X - (326)
6bD,, 3bD, [ bD,l* 3bD,l° 6bD,,l
2 4 5 6 o) 7
N, = x 5x 4+ 10x __ 15x 4 2x ! (3.27)
2bD,, bD,I* bD, I’ 2bD,l* bD,!
35x* 84x® 70x® 20x’
Ng = Tt (3.28)
~15x*  39x° 34x®  10x’
Ne == T 29
4 5 6 7
Ny=—— = = (3.30)
6bD, [ 2bD,I*> 2bD, ! 6bD,l
K3 hY 6 o) 7
N, = Sx . Tx __ 13.x 4 2x : (331)
2bD,,I*  bD,l* 2bD,l* bD,I
These interpolation functions satisfy the following boundary conditions:
N _ =1 N|._, =0 (i=1) (3.32)
Ny _ =1 N, _ =0 (i=5) (3.33)
AEI aNd _p (i #2) (3.34)
dx | ., dx | _,
IN .
dNs| _, Ny ) (i #6) (3.35)
dx |, dx |,
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bD, —4 =1 bD L =0 4 _
sl =l (=) (3.36)

d*N d*N

-bD,—4 =1 -bD,—=H =0 ([=8) (3.37)
dx x={ x=[
d’N, bD d’N, —0 (i

- bD,, = x=o=1 —bDi — = (i=3) (3.38)
3 d’N,

bD“d Af’ 1 bD,—=H =0  (i=7) (3.39)
d,\'.' x={ X x={

wherei =1/...8

The interpolation functions that represent the moments at the two boundaries of
the element do not equal to zero, as shown in equations 3.36 and 3.37. The signs in
equations 3.36 and 3.37 are opposite to each other to get the equilibrium. Similarly, the
same can be noticed on the interpolation functions that represent the shear force,

equations 3.38 and 3.39 (check the note right after equation 3.18).

In the following, equations 3.24 — 3.39 are plotted in the Figures 3.1 — 3.7 to
demonstrate how the interpolation functions and their derivatives, which represent the
bending moment and the shear force, change with respect to x. All these figures are

obtained using unit flexural rigidity and unit beam span (bD,; = [/ and L = [).
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Figure 3.1 Variations of N; and Ns With Respect To x

Both the curves for N, and N5 together are symmetric as shown in Figure 3.1.
Also, N; is of a negative slope, where N; is of a positive slope (V; and N5 are expressed
on the graph as N/ and N5). N; and N; are grouped together in one figure because they

represent the deflection W in the nodal matrix [d].

Figure 3.2 Variations of N, and Ng With Respect To x

025 ————————
02{ L A
015 | i -

0.1 |

0.05 {.z

N2, N6
o

-0.05 Q-
0.1 4
‘ -0.15 1-
i -0.2 4.
: -0.25
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It is shown in Figure 3.2 that N, is of something like a “sinusoidal” nature in the
positive side of the axes, where Nj is also “sinusoidal”, but shifted from the origin, and is

in the negative side of the ordinate (they are shown on the graph as N2 and N6).

Figure 3.3 Variations of N3 and N7 With Respect To x
Figure 3.3 shows that the variations of N3 and N; (appear on the graph as N3 and
N7) are also “sinusoidal-wise”, but in the negative side of the ordinate. The peak of Nj is

more shifted to the left than N,.

Figure 3.4 shows that the variations of Ny and Ny are of “sinusoidal” nature,

where Ny is in the positive side of the axis, and Ny is in the negative side.
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N4, N8

Figure 3.4 Variations of Ny and Ng With Respect To x

The following graphs in Figures 3.5 and 3.6 are for the bending moment, recalling

that the flexural rigidity is equal to 1.

d2N1, d2N5

d-A_,/’ and dd-:_,/j With Respect To x

Figure 3.5 Variations of
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Figure 3.5 shows that both the second derivatives of N; and Ns are changing
“sinusoidally”. The second derivative of N; (expressed on the graph as d2N1) is of a
positive slope, where the second derivative of N5 (expressed on the graph as d2N5) is of

a negative slope.

d2N4, d2N8

ZN 2N
Figure 3.6  Variations of ddx’4 and ddxzs With Respect To x

2

4
2

The variation of as shown in Figure 3.6 is of a complete cycle of the semi-

d’N,
dxl

cosine wave plus another half one, where is as a “sinusoidal” wave plus one-

quarter. Each graph has its own frequency.

The following graph (Figure 3.7) shows the variation of the shear force with
respect to x (the third derivative of N3 and N; are chosen because they represent both the
shear forces in the nodal matrix [d]), with the consideration that the flexural rigidity is

unity. Also, the negative sign that appears in equations 3.38 and 3.39 is considered.
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3 3
d]\ij anddAjfj
dx dx

The rates of change of with respect to x, as shown in Figure

3.7 below, cannot be described in terms of the known standard curves.

d3N3, d3N7

3 3
d 1\3/’ and ddx]\3[7 With Respect To x

Figure 3.7  Variations of
dx

To conclude, in steps 1 and 2 an establishment of the interpolation function has

been done to be able to set up the element matrices in the coming step, step 3.

Step 3: Finite Element Model

In this step, the element stiffness, element geometric stiffness for both constant
and variable axial loads, and element mass matrices can be found out. The Finite
Element Model of the governing differential equation 3.1 is obtained by substituting the
finite element interpolation functions for W, and the interpolation functions »; in

equations 3.24-3.31 for the weight function v in the weak form given by equation 2.13 as:
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wlx,t) = W (x)(e) = w(x)e™ (3.40)
Since there are eight nodal variables W}, eight different choices are used for v, thatis v =
N _g to obtain a set of eight algebraic equations. The -tk algebraic equation of the finite

element model (for v=N,) is:

(. d’N,d’N, dN, dN; :

O=;{JbD“—dxz - —bN, L= ApdW u,cir—ojN,,qu—Q,. (3.41)
8

or, (K, —n, —M, )Ju, —F, =0 (3.42)

Here u is a common variable for all nodal variables such that,

u, = W(0) U, = %”L:,, (3.43)
s = W{l) Uy = %]F, (3.44)
3 2
u, =F(0)=—5D,, illj(x—) u, =m(0)=6D,, 27 2(“) (3.45)
x=0 dx x=0
3 2
u, =F([)=bD,,dLj(x) u, =M(l)=-bD,, d Z Z(X) (3.46)
x={ x={

Using the equations 2.36, 2.37, and 2.38 from the last chapter, which defined the various

element matrices as:
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.~ d’N,d’N,

— J
K, oij,, St (3.47)
‘ dN,
n, = jpﬁ—fdx (3.48)
. dx
!
M, = [pAN,N dx (3.49)
0
{
and F; = [N,qdx +Q, (3.50)
0
[ d(,p dW aw]
{dx(bD” o +bN dx:IFO
d*w
D 5
_ [b "odx® Lo (3.51)

The element matrices obtained are consistent to the new interpolation functions given by

equations 3.22-3.29.

The above-mentioned integrations were evaluated with the new interpolation

functions using MAPLE® V Release 4, and the results are given in the following:
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For evaluating the geometric stiffness matrix corresponding to the variable axial
load, the axial load ‘P’ is now written as a function of x’. Its equation is stated in

chapter 2 as:

P(x)= P, + P,(x) (3.55)

a+l/
. . X r X
in which P,(x)= p01{1 Tt [1 - (7) }} (3.56)

Substituting this value of P (x) with the new interpolation functions into the integration of

equation 3.48, one can obtain the matrix of geometric stiffness coefficients (nd) using the
software MAPLE® V Release 4. There are repeated terms throughout the coefficients of
the matrix (nd) such as, A...O, which are given right after the coefficients. The results

are as follows:

nd, =200 L 350 700 o 141120004 (3.57)
429 1 429 429°

2 2
ndy=22Lp e B o1 270 e 3024008 (3.58)
858" 4297 " 358
2 3
2 B 5 PIs ies00c (3.59)

nd,, =— -
5148 bD,, 5148 bD,,

23 P, 1 pl*(14 +69s)

nd,, = — 100800F (3.60)
858 bD,, 2574  bD,,
700 P 350 700
__T00F _ +141120004 3.61
" T T20 7 T a29f T a9 ?t (3-61)
271 173 271
nd,. = P+ [ + Is + 840G 3.62
6= 858" T g5 T 8358 ” ¢.62)
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i —__ 5 P* 5 PP(+s)
" 5148 bD,, 5148 bD,,

+8400H (3.63)

. 23 1P 1 pl*(55+69s)
'* 858bD,, 2574  bD,

+3360J (3.64)

nd,, = 300 [P + 61 pl’ +——pl’s—
= 100! 286 1001

2592001° psO
U+ fXa+fUS+ K6+ X7+ S8+ fX9+ fN10+ fFX11+ fX12+ fFXI3+ )

(3.65)

d. = 25 PP 1 pl"(301+500s)
¥ 18018 bD,, 360360 bD,,

28801" (3992 + 110.f° + 10f* + 1500 + 767 f )ps
BD,, Y3+ X4+ XS+ N6+ X7+ K8+ X9+ fX10+ fX11+ fFXI2+ fXI3+ F)

(3.66)

nd. < 423 PP 1 pl’(238+369)
* 4004 bD,, 12012 bD,,

216001°(2952 + 20 f* 1454 f + 841 f* + 235 )ps
bD,, 2+ fX4+ fXS+ X6+ X7+ XS+ N9+ fXI0+ fX11+ fXi2+ fXI3+ f)

(3.67)

ndyy =-22p B b1 271 it 3024008 (3.68)
858 4297 " 858
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97 97 2

nd,s = [P+ pl” + 4
6006 12012 6006

3601°(= 63720 f + 15552 % — 46560+ 1583 f* +11602f° +62f° + f° )ps

3.69
7 (3.69)
3 4 2 4
nd,, = s PP I pl (127 + 300s) _ 3601° psO (3.70)
12012 bD,, 720720 bD,, bD,,T
d. =47 r’p L1 pl’(52+141s)
* 12012 bD,, 36036 bD,,
36013 (4752f + 65217 + 11280+ 215 f* + 2148 f° +4f° )ps 370
bD,,T )
g oL PP 1 plfF+12s) 160(4+ fXr+18+27%)°ps @72
7 90090 (bDII)-7 1081080 (bDll )-7 (bDII)zT .
nd. —__ 37 I'P 1 pI°(I33+2225)
180180 (bD,,Y 1081080  (bD,,)
2400 (213f + 1257 + 888+ 2017 )ps 373
(bDll)zT
2 3
S P 3 s ies00c (3.74)

35

T 5148 bD,, " 5148 bD,,

__s 1310+ I pl'(173+300s)
12012 bD,, 720720 bD,,

36
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404+ X5+ FN5400 - 1104 + £ +986 f + 51 )ps
eD,,)T

(3.75)

- PP 1 pl°(1+2s)
7 144144 (pD,,) 288288 (bD,,)

200(f + 18+ 212N + X5+ f)ps (3.76)
&D,)T |

ndo o 73 _U'P 1 pl’(110+219s)
® 720720 (bD,,Y 2162160  (bD,,)

4°(1314+39F + 1692 +4.£° )4+ £) 5+ f)ps

3.77
GOTT G0

73 PP 1 pl'(91+146s)
nd,, = 7+ 2 -
18018 (bD,,y 36036  (bD,,)

144000 (3512 + 513 + 219+ 49 )4 + f)ps
6D, )3+ )T

(3.78)

nd . =23 P 1 pl*(14 + 69s)
7 858(D,) 2574 (bD,,)

+ 100800 F (3.79)

47 I’P 1 pl’(89+141s)
nd, =— - +
12012 (bD,,) 36036  (bD,,)

600° (57 £% + 1295 3 —5760 f + 16920 + 4959 f* + f3 )¢+ fps
(6D, )T

(3.80)
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73 I'P I pl*(109 +219s)
nd,, = 7T 2 -
720720 (pD,, "~ 2162160  (bD,,)

1200°(2£7 + 97 £ + 521f + 2940 + 556 )(4 + f)ps

6D, )'T

7 PP 7 pl*(1+2s)
nd, = -+ — —
5148 (bD,,Y 10296 (bD,,Y

1200 (2 1% + 971 + 521 + 2940 + 556 /2 )(4 + f)ps

(6D, )'T

700 P 350 700
nass = -+ p+
429 1 429 429

ps—141120004

271 173 . 271
d. =-27Lp_ /- Is — 840G
" = g5t T 858 Y T 558t

5 1-’1.0+ 5 pl(l+s)

nd,, = +8400H
5148 bD,, 5148 bD,,

23 P 1 pl?(55 + 69s)

nd,, = +3360
858 bD,, 2574  bD
11 1)

ndy =300 1p 173 o 300
100"~ 2002 1001

S —

1-’(2592000 + 256966 f° +31323f° +2017f +69f° f° + 806904 f)ps

T+ )8+ )0+ £)0+ fYUL+ f)12+ £)U3+ f)

nd. =25 PP I pl'(199+500s)
“ 18018 bD,, 360360 bD,,

1*(12000+ 851f% + 481 + f* + 1548 f )ps

bD, (7 + )8+ )9+ £)U0+ £)1+ f)U2+ f)U3+ f)
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(3.86)

(3.87)

(3.88)



w423 PP I pl’131+369s)
“ 4004 bD,, 12012 bD,,

I (265680 +20597 f* +1763f° + 67 f* + 54612 f + f’)ps
6D, (7 + f)8+ f)O+ f)10+ )1+ f) 12+ £)(i3+ f)

! I’P [ pl°(5+12s)
nd,, = =+ ——
90090 (bD,, Y 1081080 (bD,,)

21(48+3F2 +5f)ps
6D, )y 7+ )8+ )0+ )10+ )11+ f)i2+ F)U3+f)

37 I'P I pl°(89+2225)
nd78 = >+ 3 -
180180 (bD,,)’ 1081080  (bD,,)

(1776 + 116 7 +3F° + 233 f )ps

6D,y 7+ )8+ )9+ )0+ )i+ f)u2+ f)U3+ 1)

73 I°P I pl*(55+1465)
nd&? = > + 3 -
18018 (bD,,)* 36036  (bD,,)’

21°(17520+ 12117 +3044.f + f* + 64 f )ps

6D, YT+ )+ )0+ )0+ )+ )2+ )03 +7)

T=+ )5+ )6+ 1)7+1)8+ )9+ )0+ £+ )2+ f)U3+ f)

_ ps '
4= 7+ )8+ )9+ )10+ )1+ fYu2+ £)I3+ f)
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(3.91)

(3.92)
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1(1053.f + 265 7 + 1084 + 20 £ )ps

B= = (3.95)
C= 13(3+4f)g4D+.§:)(5+f)p5 (3.96)
Fe 12(4+f)((7;lj)’;;9+10f2) (3.98)
I(—3252+48f% + £85I f)ps (3.99)
T NEF N+ N0+ NUT+ 112+ )3+ /) '

1/~ Dps (3.100)

“ D)7+ )8+ B+ O+ N0+ 11T+ )2+ £)U3+ /) '
12(f2 +40f - 69)ps (3.100)

(bDu)(7+f)(8+f)(8+f)(9+f)(10+f)(11+f)(17+f)(13+f) '
O=1200+463f2624f +125f° +10f" : (3.102)
s=1+a | (3.103)

The other coefficients of this matrix can be deduced from the above-described

coefficients since the matrix is symmetric.

For the case of constant °q’ over an element, the element matrix of generalized

forces F; will be:
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_ / - o
‘é‘ Ql
3
28 Q.
— [4 0
1680bD,,
I 0
84bD,,
F=q +
[
'5 QJ
3°
- 28 Q4
14
1680bD,, 0
v . (3.104)
i 84bD,, | - -

It can easily be verified that the first part of the right side of equation 3.104 (let us
give it symbol as Fl, since it is coming from the interpolation functions N;) represents the
“work equivalent” forces and moments at nodes | and 2 due to the uniformly distributed
load over the element in the advanced formulation. When g is an algebraically
complicated function of x, equation 3.50 provides a straightforward approach of

computing the generalized “work equivalent” force and moment components.

By examining Fy, one can see that not all the coefficients of it represent forces or
moments. The coefficients Fy (3,1), and Fy (7,1) represent deflection (this can be
verified by checking the units), and Fy (4,/), and Fy (8,1) represent slope. This means

that this part of the force matrix is not purely force matrix. It also means that in the
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advanced formulation, as the shear force and bending moment are becoming degrees of
freedom the same as deflection and slope in the nodal matrix [d], the deflection and slope
convert to forces, in a sense, in the force matrix [F]. This is exactly what creates
confusion in the processing the problem in MATLAB software, while adding the shear
force in the nodal matrix [d] (it will be discussed in detail in section 3.7.1.1. This
becomes more evident by checking the units of the results of product of the coefficients

of the stiffness matrix [k] by the nodal matrix [d], they all the units of force. This makes

sense, because the basic rule is: kx=F .
3.3.2 Weak Formulation for Mid-Plane Tapered Composite Beams
The classical lamination theory states that [57]:
n [3
— =2 2 {{~
D, = El[zp z +7§} @), (3.105)

where Dy, is the bending or flexural laminate stiffness relating the bending moment M, to

curvature r, (Q_”)p is the transformed stiffness coefficient of a ply, ¢, is the ply

thickness, Z is the distance between the centreline of the ply and the centreline of the

whole laminate, and » is the total number of plies.
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For tapered composite beams the height of the centreline of each ply (Z) is a

function of x (as shown in Figure 3.8). The equation for Z is:

Z,=mx+g (3.106)

In equation 3.106 ‘m’ is the slope of the straight line (= tan @), and ‘g’ is its intercept at

x = 0. Then equation 3.105 can be written as:

n 5 3 S
D, = {[p (mx-!-g); '*“lt—;‘:I(Qu )p (3.107)

p=l

Figure 3.8  Variation of Z with

x-axis

Hence, the ply stiffness coefficient D;; will be a function of x too. In the previous section
the three matrices, /K/, /n], and [M] required for the dynamic analysis of composite
beams were established (equations 3.52-3.104). By examining them one can find that the
element matrices will be affected by this change because they are functions of 6Dy;.
Mathematically, this involves the calculation of the integrations (equations 3.47-3.49)
after replacing D/, in the integration by the equation 3.107. This integration is performed
using the software Maple®™ V Release 4, and the stiffness matrix for the mid-plane tapered
composite beam has been obtained as:

70
k, =——Al 3.108
" 429 ( )
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5
k,, =——A42 3.109
=g (3.109)

where

13tp* +481°m* + 156 Ilgm+156g”)

Al = Zb(Q”)p p( IE

(3.110)

n O, ) ¢t (91tp? +2581°m? + 936lgm + 109227
A2 = (2.1), 4,010 = & g’) G.111)

It may be noted that the coefficients are evaluated using symbolic manipulation.
As a result, long equations are obtained in Maple for each coefficient. For instance, the
coefficient &;3 alone took two pages in the printout, and the whole matrix was printed out
on 90 pages. Accordingly, the stiffness matrix is difficult to be provided here within this
text. Therefore, the stiffness matrix will be given as an attachment to this thesis in a

floppy disc.

In a similar manner, the mass matrix should also be changed. As in the advanced
formulation the mass matrix is a function of flexural rigidity (bD;;), it will be a function
of x too. The mass matrix was determined using Maple® V Release 4. The coefficients
M;; and M, are given below as:

521

M, =222 104 3.112

11 1287 P. ( )
51 .,

M, 12 p4 3.113

2= 5002 P (3.113)
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Again the entry M;; alone took 8 pages, and the whole matrix was printed out on 122
pages. As it was done for the stiffness matrix, the mass matrix will also be provided as

an attachment to the thesis in a floppy disc.

34 Assembly of Element Equations and Imposing the Boundary Conditions

3.4.1 Assembly of Element Equations -

The assembly of elements is based on: a) interelement continuity of the primary
variables (deflection and slope) and (b) interelement equilibrium of the secondary
variables (shear force and bending moment) at the nodes common to the elements. To

demonstrate the assembly-procedure, a two-element model is selected (see Figure 3.9).

There are three global nodes and a total of twelve global generalized

displacements and forces. The continuity of the primary variables implies the following

relations between the element degrees of freedom ;¢ and the global degrees of freedom

Us as follows:

'u,=U, , "w, =U, , "u; =U, 'u,=U, 3.114)
‘ug=u,=U, , "ug = 2u, =U, 'u, =u, =U, , (3.115)
"ug =u, =U, , ‘u; =U, (3.116)
‘ug=U,, , u,=U,, , ‘uy, =U,, (3.117)
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Figure 3.9 Assembling Two Elements in Advanced Finite Element Formulation

Since there are four degrees of freedom per node, and node 2 is repeated in
elements | and 2, the associated degrees of freedom will add up. Then in the global
stiffness matrix, the entries that correspond to whatever common nodes between the

elements will add up.

In general, the assembled stiffness matrix for the assembly of beam elements has

the form shown in the following equation 3.118.

114



(811°¢)

98
e

ﬁv\

o

99
1

S11

me\

o

Q.v\

o1

Sy\

o

:«N
s$+;.<_
:«m.ffx_
Q«Nto«_

m_«~+nmy\_

™, ™y
¥ Y,
Noy\N _o.,\N
Nm»\m _nu\m
A e Ao
mmv\~+£¢\_ _mu\m.*. 2&\_
AT AT,
N_V\N.*.cn«_ __V\N.TQJ\_
ovu\_ wf\_
omv\_ nm»\_
K1 A,
o_V\_ n_»\_

Y



3.4.2 Imposition of Boundary Conditions

Table 3.1 Geometric and Natural Boundary Conditions For Different Supports

ety wioy=o, aa%’(o)=0 =0, 2%0=0
Pinned r W(0)=0 %-vf/ 0)=0 . aa'rW (=0
Roller E W(0)=0 aazfvy ©)=o0, 8;:2’ (=0
Free a;:_f’ ©0)=0, aa:V (t)=o0

aa’:y ©)=o0 , aa{g ()=0

Sliding B> L aa:f’ 0)=0 . %%’_(mzo

At this step of analysis, a specification of the particular boundary conditions must
be executed, i.e. geometric constraints and forces applied on the particular structure have
to be specified. The type of essential (also known as geometric) boundary conditions for
a specific beam problem depends on the nature of the geometry. The natural (also called

force) boundary conditions involve the specification of the generalized forces when the

! '¢’ is measured zero at the left end, and is equal to *I" at the right end of any type of support
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corresponding primary variables are not constrained. Table 3.1 given above, contains a

list of commonly used geometric and natural boundary conditions.

3.5 Modeling Variable Thickness Composite Beams

3.5.1 Modeling Externally Tapered Composite Beams

zZ
A
» X
44—t
11 [2 13

OO ®

Figure 3.10 Modeling of Externally Tapered Composite Beam

This type of beams is modeled using uniform one-dimensional finite elements- In
the present case, the geometry requires selecting the locations of nodes, and consequemntly
the elements where the thickness changes. Therefore, the beam shown in Figure 3.10 is
divided into three elements with a total of four nodes, and sixteen global degrees of
freedom (before imposing the boundary conditions). The numbering of plies starts firom

the bottom, so the common ply in all elements will have the same number. To simplify
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the analysis the coordinates are taken at the first node, so the x-coordinate of node 1 is

ZCro.

The present configuration is merely an example, but the number of plies for each
element, the number of elements, and the length of each element can be modified

according to the structures used in industry.

One should note that the finite element solution of a similar problem for metals is
also defined element-wise (because of the discontinuity in the flexural rigidity). In other
words, this way of modeling is not far from the solution employed for similar metallic

beams of variable thickness.

3.5.2 Modeling Mid-plane Tapered Composite Beams

This type of beams is modeled using non-uniform one-dimensional finite elements that
are made of symmetric type of laminate. Again, the geometry of the present case
requires selecting the locations of nodes, and consequently the elements where the plies
are terminated (see Figure 3.11). Therefore, the beam shown in Figure 3.11 is divided
into three elements with a total of four nodes, and eight global degrees of freedom (before
imposing the boundary conditions). The numbering of plies starts from the top ply, so
that the common ply in all elements will have the same number. The origin of the

coordinates is located at the first node, and so the x-coordinate of node 1 is zero.
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The present configuration is merely an example, but the number of plies for each
element, the number of elements, and the length of each element can be modified

according to the structures used in the industry.

There are two approximations that are involved in the modeling. First, by
examining the configuration shown in Figure 3.11, one can notice that the terminated
plies (plies 4, 5, 6, 7, 8, and 9) have larger cross-sectional areas at the axis of symmetry.
The effect of this on the bending and shear response is ignored. Secondly, the cross-
sectional area of each drop-off ply (plies 6 & 7) is approximated by the cross-sectional

area of a ply that is common to all elements.

drop-off plies |
(plies 6 & 7) e e e———

ONOI0N0

Figure 3.11 Modeling of Mid-plane Tapered Composite Beam

It is believed that these two approximations in the modeling do not violate any of

the basics of the governing differential equation or its weak form for the following
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reason. The slight change in thickness is very small. It is of the order of 10™ m; hence

its effect on the calculations will be of minor significance.

3.6 Program Development For Advanced Formulation

The developed program explained in chapter 2, in section 6 is used here for vibration and
buckling analyses. One can conclude from the analysis in the previous sections that the
stiffness and mass matrices are modified. Hence, the two subroutines ELESTF and
ELEMAS in the last chapter are going to change to ELESTF8 and ELEMASS. Here is

the explanation of both of them.

3.6.1 Subroutine ELESTFS8

The function of this subroutine is to calculate the entries of the element stiffness matrix
for advanced finite element formulation (it is a 8 x 8 matrix) (coefficients are calculated

using local coordinates). It will be given in Appendix L.

3.6.2 Subroutine ELEMASS
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This subroutine is to compute the consistent element mass matrix (it is a 8 x 8 matrix)
(coefficients are calculated using local coordinates) for the advanced formulation, and it

will be described in Appendix L.

3.7 Example Problem and Validation

The problems solved using the conventional finite element formulation in the last chapter
are worked out here using the advanced finite element formulation to highlight the
improvement of the results. There are tables provided to compare the results obtained
usiné both the formulations, and how the finite element analyst can obtain more accurate

results by employing the advanced finite element formulation.

3.7.1 Example Problems Involving Metallic Material and Validation

3.7.1.1 Free Vibration of Simply Supported Beam

Consider the beam described in section 2.7.1.1 with the same data and the same method
of modeling as depicted in Figure 2.10. First, the shear force is considered as a degree of
freedom, and for a three-element modeling the values of percentage of errors in natural

frequencies are obtained to be — 6.8, -14.25, -25.88 %, which are very high. The

calculation of the error is based on the following definition:
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error = (9“—“’“—) x 100 (3.119)
[0)]

where @ is the natural frequency calculated using the MATLAB® program, and e is

the natural frequency calculated using the exact solution given in Ref. [43] as:

®, =(’3) =L (3.120)
L j\pA

in which i = /, 2, 3,...is the mode number, and L is the beam span.

With excluding the shear force as a degree of freedom, the resulting values of the
lowest three natural frequencies obtained from the MATLAB® program are: 74.48,
298.45, and 677.89 rad./sec., respectively. The values of the percentage of error were

significantly reduced to 0.03, 0.20, and 1.15 %.

Shearing force is repeated twice throughout the analysis, once in the matrix of
external forces ‘Q’ as in equations 3.3 and 3.4, and again in the interpolation functions as
a degree of freedom. This repetition affects the calculation of the natural frequencies.
Hence, all the forthcoming problems of uniform beams (both metallic and composite)

will be solved with dropping the shearing force as a degree of freedom.
Table 3.2 given below shows a comparison between the values of the

percentage of error in the natural frequencies obtained using the advanced formulation

and that obtained using the conventional formulation.
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One can now see how the advanced formulation remarkably reduces the
percentage of error. In other words, the analyst can use a two-element model with the
advanced formulation to get the natural frequencies with much higher accuracy (1.15 %
as a percentage of error in the third mode) than the conventional formulation (the

percentage of error is 24 % in the third mode).

Table 3.2 Comparison Between the Percentage of Error in the Natural frequencies

Obtained Using the Advanced Formulation and the Conventional Formulation

Formul;ltlonMetho i

Advanced Formulation ™ -~ [+ C°”V°nu°“alF°mﬂan° n =
2 0.09 0.66 1.15 0.39 10.99 23.99
3 0.03 0.20 [.15 0.08 1.18 10.99
4 0.01 0.09 0.28 0.03 0.39 1.83
5 0.01 0.05 0.15 0.01 0.17 0.79
6 0.01 0.03 0.09 0.01 0.08 0.40
7 0.00 0.02 0.06 0.00 0.04 0.22
8 0.00 0.01 0.04 0.00 0.03 0.13
9 0.00 0.01 0.03 0.00 0.16 0.08
10 0.00 0.01 0.02 0.00 0.01 0.05
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3.7.2 Example Problems and Validation For Composite Beams
3.7.2.1 Example Problems and Validation For Uniform Composite Beams
3.7.2.1.1 Free Vibration of Fixed-Fixed [0/90] s Composite Beam

The same problem solved in section 2.7.2.1.2 is solved here using the advanced

formulation to see its contribution to the accuracy of the results.

Table 3.3 given below shows the comparison between the two types of modeling.
Apparently, the analyst can get results with higher accuracy using lesser number of

elements that are based on advanced formulation.

In Table 3.3 the percentage of error is calculated using equation 3.105, where

@exace €an be deduced from the following equation given in Ref. [45] as:

o, =(£‘-j,fw—” (3.121)
L pA

in which k; = 4.730041, k> = 5.853205, and k; = 10.995607.

By checking the table above, one can find that the percentage of error in the third
mode using the conventional formulation is 21.0 %, whereas using the advanced
formulation it is reduced to 1.1 % (for three-element modeling). Such results urge the

use of the advanced finite element formulation.
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Table 3.3 Comparison of the Percentages of Error in Lowest Three Natural

Frequencies Obtained Using Conventional and Advanced Formulations

1 0.91 0;516 - - - 2

2 0.10 0.31 1.13 1.62 32.92 -

3 0.10 0.12 1.10 0.41 2.0 21.01
4 0.05 0:14 0.13 0.13 0.93 2.14
5 0.04 0.09 0.19 0.06 0.40 1.39
6 0.025 0.06 0.13 0.03 0.20 0.72
7 0.018 0.04 0.09 0.01 0.11 0.40
8 0.014 0.03 0.067 0.01 0.06 0.24
9 0.01 0.03 0.05 0.01 0.04 0.15
10 0.01 0.02 0.04 0.00 0.03 0.10

' For the case of fixed-fixed beam modeled by one element in the advanced formulation, there will be two degrees of
freedom. Hence, there will be only two modes (two values of natural frequencies).

? In the conventional formulation for this case, a one-clement model will lead to no degrees of freedom. Hence, there
are no values for the natural frequencies.
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3.7.2.1.2 Buckling of Simply Supported [0/90]  Composite Beam

With the same input of the problem given in section 2.7.2.1.3, and using the model with
the advanced formulation, the critical buckling load and the associated percentage of

error are determined.

The closed-form solution for the critical buckling load is [50]:

P =”—'L’f—'-bD,, (3.122)

cr

The critical buckling load calculated using equation 3.122 is 8789.9 N, and the resulting
percentage of error (calculated as stated in equation 3.119) is — 0.012 %. The percentage
of error associated with the buckling load calculated using the conventional formulation
has been — 0.010 %, as can be seen from the last chapter, section 2.7.2.2. It may be noted
that the difference in the percentage of error values is not much and is in the third

decimal place.

3.7.2.2 Example Problems and Validation For Tapered Composite Beams

As it might be expected, still the insertion of the shear force into the MATLAB

program does not give favorable results with the tapered composite beams.
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3.7.2.2.1 Free Vibration of Simply Supported [0/90] s Externally Tapered

Composite Beam

An externally tapered composite beam made up of the same material described
in section 2.7.2.1.1 and with the same mechanical properties and the laminate
configuration is considered to determine its natural frequencies. The beam is modeled
using three elements, and the number of plies in each element is 12, 10, and 8

respectively.

The MATLAB® program provides the following results for the lowest three

natural frequencies: 137.74, 527.87, 1072.96 rad./ sec., respectively.

Validation of the results:

The same problem was solved using the conventional formulation, and the results for the
natural frequencies are: 141.20, 578.74, 1479.38 rad./sec., respectively. Notably, the
natural frequencies obtained using the advanced formulation are lower in magnitude than
that obtained using the conventional formulation. This observation emphasizes the

conclusion about the higher accuracy one can get by using the advanced formulation.

As it might be recalled from the problems solved in the last sections, where there

were exact solutions for them, always the results of the percentage of error obtained using
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the advanced formulation were lower than the results of the percentage of error obtained
using the conventional formulation. This means that the output of the advanced
formulation is closer to the exact solution than the output of the conventional

formulation.

3.7.2.2.2 Free Vibration of Fixed-Fixed [0/90] s Mid-Plane Tapered Composite

Beam

A mid-plane tapered composite beam made up of the same material described in section
2.7.2.2.2 and with the same mechanical properties and the same laminate configuration is

considered to determine its natural frequencies. The only difference here is that the taper

angle 8 =-2°.
Because of the very big size of the mass and stiffness matrices, as it was
mentioned before, these matrices were not provided into the MATLAB ® program

symbolically. Hence, the problem was solved for this specific input data of this problem.

The MATLAB ® program provides the following results for the lowest three

natural frequencies: 1089.15, 2710.46, 5899.42 rad./ sec., respectively.

Validation of the results:
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The same problem was solved using the conventional formulation, and the results for the

natural frequencies are: 1060.24, 4856.23, 13988.63 rad./sec., respectively.

As one can see, the values of the natural frequency corresponding to the first
mode obtained using both the formulations are close to each other, and they start to
deviate from the second mode. This should not underestimate the efficiency of the
advanced formulation for mid-plane tapered composite beam, rather confirm it. This is
due to the fact that the problem was solved numerically, i.e. the entries of the stiffness

and mass matrices were inputted numerically and not symbolically.

3.8 Conclusions and Discussion

In this chapter, an advanced finite element formulation has been developed and
described. Eight degrees of freedom are employed into the interpolation functions (four
degrees of freedom per each node for a two-node element modeling). Mathematically,
the interpolation function is an algebraic equation consisting of eight terms. The
evaluation of the element matrices that are the stiffness, geometric stiffness and mass
matrices has been performed. The analysis is done for both uniform and externally

tapered composite beams, and also for mid-plane tapered composite beams.

The computer program developed in MATLAB® software environment provided

in the last chapter has been further modified so as to adapt to the advanced formulation.
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The applications of the advanced formulation to the free vibration analysis, and
buckling analysis have been carried out. Example problems are solved using the
developed program to obtain the natural frequencies and the critical buckling load, for
demonstration purposes. The developed program can also perform the same analyses for
beams made of isotropic materials. The example problems for the case of metals were

also worked out.

The program was verified by comparing its results with the results obtained from
the exact solution, if it exists, or by comparing them with the problems solved using the
conventional formulation. The results obtained using the advanced formulation show

superiority over the results obtained using the conventional formulation.
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CHAPTER 4

Parametric Study on Variable Thickness Composite Beams

4.1 Introduction

In the previous two chapters, the finite element modeling procedures for external
and mid-plane tapered composite beams were established. First, in chapter 2 the
conventional finite element formulation was used, that is to consider the geometric
(associated with essential boundary conditions) degrees of freedom in the interpolétion
functions. Second, in chapter 3 the advanced finite element formulation was established,
which considers not only the geometric degrees of freedom, but also the generalized force
(associated with natural boundary conditions) degrees of freedom. Then the element
stiffness and mass matrices were set up. The analysis is now completed with a

comprehensive parametric study that employs the developed formulations.

In this chapter, in section 4.2 a parametric study on the externally tapered
composite beams is provided. The material chosen is NCT-301 graphite/epoxy, which is
currently available in our lab. The specifications of the composite laminate, regarding

the mechanical properties and geometric characteristics were first given. All the
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problems are solved using both the finite element formulations, conventional and

advanced.

The external type of taper is examined for all possible variations: variations in the
boundary conditions, variations in the stacking sequences, and variations of the beam
discretization. For each variation, the results for the lowest three natural frequencies are
plotted in figures to elaborate on the interpretations. These figures are plotted once for
the results obtained using conventional formulation, and again for the results obtained
using the advanced formulation. Right after each figure, concise and elaborating
interpretations are provided to explain how and why these variations affect the natural
frequencies of the composite beams. For example, how the variations in the boundary
conditions are related to the global degrees of freedom, and how this will affect the
natural frequencies, how the variations in the inclination angles affects the natural
frequencies through changes in the flexural rigidity of the laminate, and so on are
detailed. Also, a comparison between the results obtained using both the methods of
formulation is done with the help of the figures. Each sub-section ends by a table that

summarizes the results mentioned in it.

In section 4.3 the variations in the boundary conditions, variations in the stacking

sequences, and the variations in the taper angle were considered for the mid-plane tapered

composite beams.
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In section 4.4 a parametric study on the buckling of the externally tapered composite
beams is performed considering various changes in the fiber orientations using

conventional and advanced formulations.

In the last section, section 4.5 overall conclusions that relates between the two types
of tapers and the different changes within the same kind of taper are provided that serve
as the design aspects. These conclusions can guide the designer on the choice of the type

of taper, and other parameters involved in the problem such as the boundary conditions.

4.2 Parametric Study on Dynamic Analysis for Externally Tapered Composite

Beams

Problem Deseription:

A composite beam (see Figure 2.6) made up of NCT-301 graphite/epoxy material with
the following ply material properties is considered for the present parametric study: E£;; =
113.9 GPa, Ez; = 7.985 GPa, v;; = 0.288, v,; = 0.018, and p = 1480 kg/m3. The number
of plies for each portion is /00, 80, and 60 respectively. The beam span is taken to be
1.08 m, and the ply thickness is taken to be 0.5 mm (for analysis purposes). The laminate
is cross-ply, and the element length is 0.36 m. The beam is modeled using three

elements. This fully matches with the geometric nature of the beam, where the ply
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thickness changes due to the change in the number of plies. The lowest three natural
frequencies are to be determined for all possible changes that can be performed on the
composite beam such as, the change in the boundary conditions, the change in the
inclination angle, and the change in the element discretization. The results of the natural
frequencies are obtained using both the methods of formulations, conventional and
advanced as described in chapters 2 and 3. There will be tables and figures provided for

comparison and commenting purposes.

4.2.1 The Effect of Boundary Conditions on the Natural Frequencies

First, the conventional formulation is considered. The data of the problem were
inputted into the MATLAB® program. The results for the lowest three natural
frequencies for the fixed-fixed type of support are obtained as: 2830.97, 7713.23, and
19075.25 rad./sec., respectively. For hinged-roller support the results are: 1183.83,
4906.63, and 12739.89 rad./sec., respectively. For fixed-free support the results are:
648.37,2991.39, and 7627.84 rad./sec., respectively, and for free-fixed support the results
are: 284.34, 2490.48, and 7568.24 rad./sec. respectively. These results are plotted in

Figure 4.1.

134



25000

)
)
£ 20000
®
_g 15000 = = free-ffixed
2 +== =hinged-rolier ;'
8 ' fixed-fixed
S 10000 = = = fixed-free
i
g
= 5000 =L
© :
=z s

0

0 1 2 3 4

Mode No.

Figure 4.1 The Variations of the Natural Frequencies with Different Boundary

Conditions Obtained Using Conventional Formulation

One can conclude from Figure 4.1 that the boundary conditions have their
remarkable influence on the natural frequencies. The fixed-fixed type of support gives
the highest values of the natural frequencies, whereas the free-fixed type gives the lowest
values (in the first mode its value is 10 % of that of the first mode in the fixed-fixed
support). Hinged-roller type of support comes as the second highest, and the fixed-free is
the third. It is worth noting that changing the location of the fixity from the end of the
beam where the origin is located to the other end of the beam (i.e., making the fixed-free
support as free-fixed) will reduce the natural frequencies significantly (the drop in the

first mode is more than 50%).
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It is very obvious here that the number of degrees of freedom and their locations,
i.e., how many of them and at what node, have their contributions to the values of the
natural frequencies, large or small. In the fixed-fixed type of support, the number of
degrees of freedom is four, and they are located at the two nodes in the middle (nodes 2
and 3), whereas there are six degrees of freedom for the other three types of support. So
first, it can be concluded that more degrees of freedom reduces the values of the natural
frequencies, which is confirmed also in the study using the advanced formulation.
Second, the location of these degrees of freedom has its significance also. As each one of
the other three types of support has six degrees of freedom, but they differ in the way
they are distributed on the nodes. At any case, there are four degrees of freedom at the
two nodes in the middle (two per node). In hinged-roller support, the other two are
distributed one at each support, where in the case of fixed-free, they are located together
at the free end. It is the same for the free-fixed case, but this free end is at node 1, not at

node 4 as in the case of fixed-free support.

It is evident that the continuity of the degrees of freedom from one node to
another, starting from the first node participates extraordinarily in reducing the values of
the natural frequencies. It is seen from above that for specific input data, one can get the
lowest values of the natural frequencies if the degrees of freedom are distributed through
the nodes as two, two, two, and zero, which is the case of free-fixed support. Any
violation of this distribution of the degrees of freedom will increase the values of the

natural frequencies, and in some cases by ten times.
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The problem is now to be worked out using the advanced formulation to look up
the contribution of this method of formulation on the determination of the natural

frequencies, while keeping all other parameters of the problem as they are.

18000
16000
14000
12000
10000
8000
6000
4000
2000

= = freeffixed |
j=====hinged-roller
fixed-fixed

E- = = fixed-free

Natural Frequencies (rad/sec)

Figure 4.2 The Variations of the Natural Frequencies with Different Boundary

Conditions Obtained Using the Advanced Formulation

The results for the lowest three natural frequencies for the fixed-fixed type of
support using the advanced formulation are obtained as: 2821.75, 7533.17, and 15553.41
rad./sec., respectively. For hinged-roller support the results are: 1183.32, 4847.44, and
11481.92 rad./sec., respectively. For fixed-free support the results are: 648.25, 2982.95,
and 7540.69 rad./sec., respectively, and for free-fixed support the results are: 284.35,

2485.47, and 7420.20 rad./sec. respectively. These results are plotted in Figure 4.2.
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The observation about the order of the values of the natural frequencies is still
valid as can be seen from the results obtained using the advanced formulation. Still the
fixed-fixed type of support gives the highest values, and the hinged-roller, fixed-free, and

free-fixed support cases give the successively lower values, as shown in Figure 4.2.

The reasons for these variations in the natural frequencies are as before, the
number and location of the degrees of freedom. The fixed-fixed and hinged-roller types
of support are leading to eight degrees of freedom, and the fixed-free and free-fixed cases
are leading to nine degrees of freedom. Hence, in the advanced formulation, the number
of the degrees of freedom, their distributions, the continuity of these distributions, and the
type of them (geometric or natural) play their major role in the values of the natural
frequencies. For example, with the fixed-fixed support, which gives the highest values of
the natural frequencies, the distribution of the degrees of freedom goes as: one (bending
moment), three, three, and one (bending moment); where in free-fixed case, which gives
the lowest values of the natural frequencies, it goes as: two (deflection and slope), three,
three, and one (bending moment). Here comes a new aspect about the relation between
the values of the natural frequencies and the type of support if the advanced formulation
is used for solving the problem. It is not only the distribution of the degrees of freedom,
nor only the continuity of them, rather, the type of them, i.e. whether they are geometric

or natural.

The next step is to compare between the two methods of formulation to see how

the method of formulation can affect the results of the natural frequencies for the
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specified boundary condition. The fixed-fixed support and the free-fixed support are
chosen for comparison, because the former gives the highest values, and the latter gives

the lowest.
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Figure 4.3 The Natural Frequencies Obtained Using Conventional Formulation

and Advanced Formulation for the Fixed-Fixed Support

Figure 4.3 shows the comparison for the fixed-fixed support. As it was
mentioned before in chapter 3 on how the advanced formulation reduces the values of the
natural frequencies. It was mentioned also that this leads to the higher accuracy
attainable by using it. This comes from a remark on the output of the MATLAB®
program, where its output is always higher than the exact solution. Mathematically, this
was expressed in the form: of lower percentage of error obtained using the advanced

formulation, even with less discretization than the discretization used with the
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conventional formulation (one may check the sections, for example, problems in chapters
2 and 3, section 2.7 and section 3.7). It is also noted from Figure 4.3 that the values of
the natural frequencies corresponding to the first two modes obtained using the advanced
formulation are almost identical to the results of the conventional formulation. The
improvement in the results starts to appear in the third mode, which provides a smooth
transition in the natural frequencies from one mode to another. This reflects on the
advahtage of choosing more degrees of freedom, which happens in the advanced

formulation.
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Figure 4.4 A Comparison Between the Natural Frequencies Obtained Using

Conventional Formulation and Advanced Formulation for Free-Fixed Support

The comparison done for fixed-fixed case is repeated now for free-fixed case, as

shown in Figure 4.4. Most of the observations resulting from the fixed-fixed support case
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can be said here. The only difference is that the jump in the values of the natural

frequencies in the case of free-fixed support is not as sharp as it was before in the case of

fixed-fixed case.

Basically, one can say that having more degrees of freedom improves the results
of the natural frequencies. This improvement appears in the lower values of the natural
frequencies in the advanced formulation in the second and third modes. The addition of
the shear force in the formulation as mentioned in section 3.7 will improve these results,

especially in the first mode.

Table 4.1 Comparison of the Natural Frequencies Obtained Using Conventional

and Advanced Formulations for Different Boundary Conditions

_ Conventional Fommulatn” * | Advanced Formlaiion
Mode No. Mode No.
Type of Support ! 2 3 ! 2 3
Fixed-Fixed 2830.97 | 7713.23 | 19075.25 | 2821.75 | 7533.17 | 15553.41
Hinged-Roller 1183.83 | 4906.63 | 12739.89 | 1183.32 | 4847.44 | 11481.92
Fixed-Free 648.37 | 2991.39 | 7627.84 648.25 | 2982.95 | 7540.69
Free-Fixed 284.34 | 2490.48 | 7568.24 284.35 | 2485.47 | 7420.20
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To summarize all the above-mentioned results, all the values of the natural
frequencies (in rad./sec.) for different boundary conditions obtained using conventional

and advanced formulations are provided in Table 4.1.

4.2.2 The Effect of Fiber Orientations on the Natural Frequencies

The same input data used in the last sub-section are again used, except that the
type of support here is set to be fixed-free. The lowest three natural frequencies are to be
determined for the laminates with the following ply groups: [0/90] s, [£ 45]s, and [+ 15]

s» and using both the methods of formulation, conventional and advanced.

First, using the conventional formulation, the lowest three natural frequencies for
the laminate configuration with [0/90]  ply groups are obtained as: 648.37, 2991.39, and
7627.84 rad./sec., respectively. For the laminate configuration with [+ 45] s ply groups,
they are: 485.23, 2235.84, and 5698.55 rad./sec., respectively. For the laminate
configuration with [+ 15] ¢ ply groups they are: 825.64, 3804.35, and 9696.25 rad./sec.,
respectively. These results are shown in Figure 4.5 (the laminate configurations with

[£ 45]sand [+ 15]; ply groups are shown on the graph as 45 and 15).
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Figure 4.5 The Lowest Three Natural Frequencies for Different Laminate
Configurations of an Externally Tapered Composite Beam Based on Conventional

Formulation

As shown in Figure 4.5, the laminate configuration with [+ 45] s ply groups gives

the lowest values of the natural frequencies among the three laminate configurations.

The'[0/90] s type comes in the second place, and the [+ 15] s configuration gives the
highest values. The natural frequency for the third mode of the laminate with [+ 15] s ply

groups is 1.7 times higher than the corresponding value in [+ 45] s configuration.

The change in the fiber orientation has its direct effect on the flexural rigidity of

the laminate, bD,;. It is recalled from chapter 2, equation 2.46 that states:

p,= 87+ @), @
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where Dy, is the bending or flexural laminate stiffness relating the bending moment M, to

curvature . @/—1),, is the transformed stiffness coefficient of a ply, which can be

defined as:
(1), =cos*(6)0,, +sin* (6)0s, +2c0s>(8)sin?(6)Q,, + 4cos? (6)sin? (6)0, (4.2)

where Oy, Q2 Q22 and Qj3; are coefficients of the ply stiffness matrix, and they are

merely functions of the ply mechanical properties.

[t is obvious from equations 4.1 and 4.2 that, eventually, the flexural rigidity of a
ply, and hence, the laminate flexural rigidity is a function of the ply orientations (because
the calculations done in equation 4.2 will be repeated considering the number of plies).
This is also clear from the output results of the flexural rigidities calculated using the

MATLAB® program.

The values of the flexural rigidity of each finite element in each type of laminate
configuration (they differ in their values because the number of plies is different from one
element to another) are now given. For [0/90] s configuration, the flexural rigidities of
the three finite elements are: 2.59, 1.33, and 0.563 MPa, respectively. For [+ 45] s they
are: 1.45, 0.742, and 0.313 MPa, respectively. For [+ 15] ¢ they are: 4.20, 2.15, and

0.907 MPa, respectively. These results are shown in Figure 4.6.
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Figure 4.6 The Variation of the Flexural Rigidity in the Finite Element Mesh of

an Externally Tapered Composite Beam for Different Ply Orientations

It is observed from Figure 4.6 that the [+ 15] s type of configuration raises the

flexural rigidity of the laminate significantly over the other two types of configurations,
whereas the [0/90] s configuration comes in the second place, and the lowest values

correspond to the [+ 45]; configuration.

Higher flexural rigidity will lead to a stiffer laminate, and accordingly, higher
natural frequencies are obtained, and that is what was noticed from Figure 4.5. So from
the stress point of view, the [+ 15] s configuration is the best for designing, whereas the
[+ 45]s configuration is the best from the dynamic analysis point of view. Accordingly,
the designer has to compromise between both the points of view. The suggestion here is
to choose the cross-ply type of configuration, since it gives moderate values for both

points of view among all the types of configurations.
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Using the advanced formulation, the lowest three natural frequencies for cross-ply
laminate are calculated to be: 648.25, 2982.95, and 7540.69 rad./sec., respectively. For

[+ 45] s configuration they are: 485.14, 2229.53, and 5633.21 rad./sec., respectively, and
for [+ 15] s configuration they are: 825.48, 3793.61, and 9585.08 rad./sec., respectively.

These results are plotted in Figure 4.7.
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Figure4.7  The Lowest Three Natural Frequencies for Different Laminate
Configurations of an Externally Tapered Composite Beam Obtained Using

Advanced Formulation

It is observed from Figure 4.7 that still the [+ 45] type of configuration gives the

lowest values of the natural frequencies, then comes the cross-ply configuration, and the

highest values are reserved for the [+ 15] s configuration. The conclusions observed
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before while using the conventional formulation regarding the relatively low values of the

natural frequencies in the case of the [+ 45] ¢ configuration are still applicable here with

the advanced formulation, and for the same reasons.

To conclude on what is already said about the differences in the results of either
formulation used, a comparison should be provided. The lowest three natural frequencies
obtained using both the conventional and advanced formulation for -cross-ply

configuration are plotted in Figure 4.8.
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Figure 4.8 A Comparison Between the Natural Frequencies Obtained Using

Conventional Formulation and Advanced Formulation for Cross-Ply Laminate

The upper hand of the advanced formulation is not very clear in Figure 4.8, as the

differences are in the range of hundreds.
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Table 4.2 below encapsulates all the results mentioned before about the effect of
the changes in the fiber orientations on the natural frequencies that are obtained using
both the methods of formulation, conventional and advanced. The type of support for the

beam is fixed-free.

Table 4.2 Comparison of the Natural Frequencies Obtained Using Conventional

Formulation and Advanced Formulation for Different Fiber Orientations

': Formulation Method =
) Mode No. Mode No.
Ply groups in the
Laminate 1 2 3 I 2 3

Configuration

[0/90] 648.37 | 2991.39 | 7627.84 | 648.28 | 2982.95 | 7540.69

[+ 45]s 485.23 | 2235.84 | 5698.55 | 485.14 | 2229.53 | 5633.21

[+ 15], 825.64 | 3804.35 | 9696.25 | 825.48 | 3793.61 | 9585.08

4.2.3 The Effect of the Beam Discretization on the Natural Frequencies

In this section, the beam elements will be meshed into four different types. In the
first type (Type A) the beam will be divided equally as: L/3, L/3, and L/3. In the second
type (Type B) the beam will be divided as: L/4, L/2, and L/4. In the third type (Type C)
the beam will be divided as: L/4, L/4, and L/2, and finally in the fourth type (Type D) the

beam will be divided as L/2, L/4, and L/4, where L is the total length of the composite
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beam and equal to /.08 m (see Figure 3.10, where /,, />, and /; in the figure are expressed
here as L/3, L/2...and so on). The beam type of support is fixed-fixed and the laminate

configuration is cross-ply.
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Figure 4.9  The Variations in the Natural Frequencies for Different Meshes of an

Externally Tapered Composite Beam Obtained Using Conventional Formulation

First, using the conventional formulation, the lowest three natural frequencies for
Type A mesh of the beam are obtained to be: 2830.97, 7713.23, and 19075.25 rad./sec.,
respectively. For Type B mesh of the beam they are: 2945.52, 7773.12, and 19197.41
rad./sec., respectively. For Type C mesh of the beam they are: 2782.52, 8822.17, and
24373.01 rad./sec., respectively. For Type D mesh of the beam they are: 2870.21,

8692.11, and 20753.62 rad./sec., respectively. The results are plotted in Figure 4.9.
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As the curves in Figure 4.9 almost coincide, they are re-plotted, each two of them
in one figure. Figure 4.10 is for comparison between Type A and Type B meshes, and

Figure 4.11 is for comparison between Type C and Type D meshes.
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Figure 4.10 The Variations in The Natural Frequencies of Type A and Type B
Meshes of An Externally Tapered Composite Beam Obtained Using Conventional

Formulation

The first observation is that the results of the natural frequencies exist in a close

range, which makes them look almost coinciding, as shown in Figure 4.9.

Dividing the beam with nodes at lengths L/4, L/4, and L/2 gives the lowest value

of the natural frequency in the first mode, whereas dividing it with equal length elements

gives the lowest values of the natural frequencies in the second and third modes. On the
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other hand, the mesh division with nodes at lengths L/4, L/2, and L/4 gives the highest
value of the natural frequency in the first mode, and dividing the beam with nodes at
lengths L/4, L/4, and L/2 gives the highest values of the natural frequencies in the second
and third modes. So, the discretization with nodes at lengths L/4, L/4, and L/2 gives the
lowest value of the natural frequency in the first mode, and the highest in the second and
third modes. Hence, the equal division of the beam can provide a compromise among all

results.
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Figure 4.11 The Variations in The Natural Frequencies of Type C and Type D
Meshes of An Externally Tapered Composite Beam Obtained Using Conventional

Formulation

The beam discretization has no influence on the laminate physical properties. It
affects directly on the values of the coefficients of the mass and stiffness matrices only.

In the assembled mass and stiffness matrices, these coefficients change due to the
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changes happened in the element lengths. Accordingly, this will affect the eigenvalues of
the matrices, and this explains the changes in the values of the natural frequencies from

certain element discretization to another.

The difference between L/3 and L/4 is equal to L//2. Generally speaking, this
difference is not very big, unless the beam span, L, is very long. The chosen beam span
is practical and can be found in many applications. In the present case, this difference is
equal to 9 cm. As one can see, these changes in the beam discretization lead to minor
differences in the values of the coefficients of the mass and stiffness matrices. Hence,
their effects on the results of the natural frequencies will be minor too. This may justify

the closeness of the values of the natural frequencies.

Using the advanced formulation, the lowest three natural frequencies for Type A
mesh of the beam are obtained to be: 2821.75, 7533.17, and 15553.41 rad./sec.,
respectively. For Type B mesh of the beam they are: 2885.20, 7629.39, and 15031.20
rad./sec., respectively. For Type C mesh of the beam they are: 2740.11, 7404.47, and
13913.72 rad./sec., respectively. For Type D mesh of the beam they are: 2858.61,
8160.80, and 15702.04 rad./sec., respectively. To avoid the indistinctness happened in
the conventional formulation results in Figure 4.9, the advanced formulation results are
plotted in two figures. Figure 4.12 is to plot the results for Type A and Type D, and

Figure 4.13 is to plot the results for Type B and Type C.
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Figure 4.12 The Variations in The Natural Frequencies of Type A and Type B
Meshes of An Externally Tapered Composite Beam Obtained Using Advanced

Formulation

It is found here in the advanced formulation that dividing the beam with nodes at
lengths L/4, L/4, and L/2 gives the lowest values of the natural frequencies in all modes.
The equal division comes in the second place. Dividing the beam with nodes at lengths
L/2, L/4, and L/4 gives the highest values of the natural frequencies in the first mode,
whereas the mesh division with nodes at lengths L/4, L/2, and L/4 does that in the second

and third modes.
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Figure 4.13 The Variations in The Natural Frequencies of Type C and Type D
Meshes of An Externally Tapered Composite Beam Obtained Using Advanced

Formulation

As it was mentioned before the beam discretization affects directly the mass and
stiffness matrices. It can be added here to elaborate on the above-mentioned conclusions
that in the assembled mass and stiffness matrices, only the rows and columns that
correspond to the existing degrees of freedom stay and the other ones are removed. Due
to the changes in the beam discretization, the coefficients of the assembled mass and
stiffness matrices will change, which, eventually, will change the eigenvalues of the

matrices.

To see the contribution of the advanced finite element formulation, a comparison

between the results of the natural frequencies for beam discretization with nodes at
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lengths L/4, L/4, and L/2 obtained using both the methods of formulation is introduced,

in Figure 4.14. As it might be expected, the values obtained using the advanced

formulation are lower by a significant amount.
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Figure 4.14 A Comparison Between the Natural Frequencies Obtained Using
Conventional Formulation and Advanced Formulation for Type A Beam

Discretization

Figure 4.14 shows that the values of the natural frequencies obtained using the
advanced formulation are remarkably lower. It shows also that the jump from one mode

to another is much smoother than its counterpart in the conventional formulation.

Adding the bending moment as a degree of freedom in the advanced formulation
gives some kind of balance and organization in the values of the natural frequencies.
This appears on the gradual change between the modes. It was mentioned in the

conclusions on the conventional formulation that it is needed to choose the kind of
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discretization that gives the lowest natural frequencies. On the contrary, this compromise

is not needed with the advanced formulation, as it tells, right away, that the beam

discretization with nodes at lengths L/4, L/4, and L/2 gives the lowest values. It is

believed that this is due to the stability in the results of the advanced formulation.

Consequently, this encourages continuing the work about adding the shear force as a

degree of freedom in the MATLAB® program. Table 4.3 is given below to summarize

the above-mentioned results.

Table 4.3 Comparison Between the Natural Frequencies Obtained Using

Conventional and Advanced Formulations For Different Element Discretizations .

" FormulatioiMetiod

' ~Conventional Formulation | -

 Advanced Fomilation

Mode No. Mode No.
Discretization Type : 2 3 : 2 3
Type A 283097 | 7713.23 | 19075.25 | 2821.75 | 7533.17 | 15553.41
Type B 2870.21 | 8692.11 | 20753.62 | 2858.61 | 8160.80 | 15702.04
Type C 2782.52 | 8822.17 | 24373.01 | 2740.11 | 7404.47 | 13913.72
Type D 2945.52 | 7773.12 | 19197.41 | 2885.20 | 7629.39 | 15031.20

156




4.3 Parametric Study on Dynamic Analysis of Mid-Plane Tapered Composite

Beams

Problem Description:

A mid-plane tapered composite beam made of the same material used in the last section
is considered to determine its natural frequencies for both the conventional and advanced
formulations. Also, this is to be done under various changes; changes in the boundary
conditions, changes in the fiber orientations, changes in the meshing of the composite
beam, and changes in the taper angle. The beam is modeled using three elements, which
satisfactorily matches with the geometric nature of the taper (see Figure 2.7). The beam
is equally divided (/; = [; = I3 = 0.36 m), the taper angle is —6, and the laminate
configuration is cross-ply. The number of plies in each element is 100, 80, and 60,

respectively. The total length of the beam is 1.08 m.

4.3.1 The Effect of the Boundary Conditions on the Natural Frequencies

First the conventional formuiation is considered. The data of the problem were
inputted into the MATLAB® program, and the results of the lowest three natural
frequencies for the fixed-fixed type of support are obtained as: 1862.15, 6770.05, and
19758.82 rad./sec., respectively. For hinged-roller support the results are: 708.18,

2908.72, and 7495.74 rad./sec., respectively. For fixed-free support the results are:
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280.28, 1571.24, and 4391.50 rad./sec., respectively, and for free-fixed support the results

are: 244.80, 1908.60, and 6732.69.69 rad./sec. respectively. These results are plotted in

Figure 4.15.
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Figure 4.15 The Variations of the Natural Frequencies with Different Boundary

Conditions Obtained Using the Conventional Formulation

As shown in Figure 4.15, the fixed-fixed type of support gives the highest values
of the natural frequencies. The free-fixed support gives the lowest value in the first

mode, whereas the fixed-free support does that in the second and third modes.

As it was mentioned before, the change in the boundary conditions leads to

various changes in the number of degrees of freedom, and their distribution over the

nodes (what degrees of freedom on what node).
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Using the advanced formulation the results of the lowest three natural frequencies
for the fixed-fixed type of support are calculated to be: 2693.05, 8742.81, and 16986.51
rad./sec., respectively. For hinged-roller support the results are: 1061.44, 4180.90, and
8425.47 rad./sec., respectively. For fixed-free support the results are: 448.02, 2463.51,
and 6772.01 rad./sec., respectively, and for free-fixed support the results are: 261.42,

2603.54, and 8491.27 rad./sec. respectively. These results are plotted in Figure 4.16.
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Figure 4.16 The Variations of the Natural Frequencies with Different Boundary

Conditions Obtained Using the Advanced Formulation

As one can see from Figure 4.16, fixed-fixed type of support still gives the highest
values of the natural frequencies, and hinged-roller support seconds it. Fixed-free
support gives the lowest values in the second and third modes, whereas the free-fixed

support has the lowest value in the first mode.
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Despite that the number of degrees of freedom in both types of supports, fixed-
fixed and hinged-roller are the same, that is eight, the values of the natural frequencies in
the fixed-fixed support are almost two times the values in the case of hinged-roller
support. This is to confirm the importance of the distribution of the degrees of freedom
and their entities. The degrees of freedom go with the fixed-fixed support as one
(bending moment), three, three, and one (bending moment), where they go with the
hinged-roller support as: one (slope), three, three, and one (slope). Since the number of
degrees of freedom goes up to nine with the cases of fixed-free and free-fixed supports,

the values of the natural frequencies start to reduce.
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Figure 4.17 Comparison Between the Natural Frequencies Obtained Using
Conventional and Advanced Formulations for Mid-Plane Tapered Fixed-Free
Composite Beam

Then a comparison between the results of the natural frequencies obtained using
both the methods of formulation has to be done. The type of support chosen is fixed-free,

and the results are shown in Figure 4.17.
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For mid-plane tapered composite beams the natural frequencies obtained using the
advanced formulation are higher than the results obtained using the conventional
formulation. The output of the MATLAB® program was verified carefully, starting from

the input data, the distribution of the degrees of freedom, and the calculations of the
laminate stiffness (Q_,,). It may be noted here that the processing of the stiffness and

mass matrices has been performed as follows. Because of the huge size of these
matrices, as it was mentioned betore in the last chapter, the coefficients were calculated
numerically in the Maple software. For example, the equations 3.47 and 3.49 were
integrated numerically within the limits 0 to 0.36 (the beam element length), and not
symbolically within the limits O to [, as it was done in the conventional formulation.
Hence, the stiffness and mass matrices were inputted as numbers into the MATLAB
software, and not in symbolic form as in the conventional formulation. In addition, even
within the Maple software itself, the mass matrix was calculated using commands that are
different from the commands used to get the stiffness matrix. Hence, the methods
employed for integration and differentiation would be different from one software to
another. Moreover, it is recalled from chapter 2, section 2.7.2.1.2 that the problem was
solved using both the software MATLAB® and ANSYS®. The percentage of error in the
first mode when MATLAB® was employed was 0.13, and when ANSYS® was employed
was —0.13. This means that the solution by the MATLAB® program yields values that
are higher than the exact solution within a certain value, and the solution by the ANSYS®
program yields values that are lower than the exact solution within the same value. This
can be seen from the different signs of the error values. The same remark can be applied

in the present case. So if it is assumed that the exact solution for the fixed-free case is
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something around 300 rad./sec., one can find that the percentages of error that correspond
to the conventional and advanced formulation will be equal in magnitude and opposite in
sign. This can be verified by noticing the values of the natural frequencies obtained using
both the methods of formulation. It is found that the values obtained using the advanced
formulation are almost two times the values obtained using the conventional formulation.

So it can be said that each set of the results is on equal distance from the assumed exact

solution.
Table 4.4 Comparison Between the Natural Frequencies That Correspond to
Different Boundary Conditions and for Different Formulations
Mode No.
2 2
Type of Support [ - 3 L - 3

Fixed-Fixed 1862.15 | 6770.05 | 19758.82 | 2693.05 | 874281 | 16986.51

Hinged-Roller | 708.18 | 2908.72 | 7495.74 1061.44 | 4180.90 | 842547
Fixed-Free 280.28 1571.24 | 4391.50 448.02 | 2463.51 | 677201
Free-Fixed 244.80 1908.60 | 6732.69 261.42 | 2603.54 | 8491.27

It was found that the free-fixed support gives the lowest value of the natural
frequency in the first mode, whilst the fixed-free support does that in the second and third

modes in the conventional formulation. This is exactly what is observed from the results
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obtained using the advanced formulation. Table 4.4 above shows the values of the
natural frequencies in rad./sec. for different types of supports that are obtained using both

the methods of formulation.

4.3.2 The Effect of Fiber Orientations on the Natural Frequencies

The same input data of the last sub-section are used, except that the type of
support here is set to be fixed-free. The lowest three natural frequencies are to be

determined for the laminates with the following ply groups: [0/90] s, [* 45] ,, and

[£ 15]s, and using both the methods of formulation, conventional and advanced.
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Figure 4.18 The Lowest Three Natural Frequencies for Different Laminate
Configurations of a Mid-plane Tapered Composite Beam Based on the

Conventional Formulation
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First, using the conventional formulation, the lowest three natural frequencies for
the configuration with [0/90] s ply groups are obtained as: 280.28, 1571.24, and 4391.50
rad./sec., respectively. For the laminate configuration with [+ 45] ¢ ply groups, they are:
211.24, 1184.21, and 3309.78 rad./sec., respectively. For the laminate configuration with

[+ I5]s ply groups, they are: 359.43, 2014.97, and 5631.69 rad./sec., respectively. These

results are shown in Figure 4.18.

As shown in Figure 4.18, the laminate configuration with [£ 45] ¢ ply groups
gives the lowest values of the natural frequencies among the three laminate
configurations. The [0/90] ; type comes in the second place, and the [£ 15] g

configuration gives the highest values. As it was observed in the external type of taper,
the change in the inclination angles has its direct effect on the flexural rigidity of the

laminate, 6D, (check Figure 4.7).

Using the advanced formulation, the lowest three natural frequencies for [0/90] s
configuration are obtained to be: 448.02, 2463.51, and 6772.01 rad./sec., respectively.

For the laminate configuration with [+ 45] ¢ ply groups they are: 337.66, 1856.69, and
5103.91 rad./sec., respectively, and for the laminate configuration with [£ 15] s ply

groups they are: 574.54, 3159.21, and 8684.46 rad./sec., respectively. These results are

shown in Figure 4.19.
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Figure 4.19 The Lowest Three Natural Frequencies for Different Laminate
Configurations of a Mid-plane Tapered Composite Beam Obtained Using the

Advanced Formulation

Figure 4.19 shows that the laminate configuration with [£ 45] s ply groups gives
the lowest values of the natural frequencies in all modes, then the cross-ply type, and the

[£ 15] s configuration gives the highest values, which is related to the flexural rigidity of

the laminate, bDy,, as it was explained before.

The comparison between the results obtained using the conventional formulation

and the advanced formulation is shown below in Figure 4.20.
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Figure 4.20 Comparison Between the Natural Frequencies Obtained Using
Conventional and Advanced Formulations for Mid-Plane Tapered Composite Beam

with [ £ 45] Ply Groups

As it was observed in the previous case, i.e. the case of change of the boundary
conditions, still the values of the natural frequencies obtained using the advanced
formulation are higher than the corresponding values obtained using the conventional
formulation. Anyhow, this is expected because the change in the fiber orientation angles
affects the flexural rigidity of the laminate, and it was said in the last sub-section that this
difference in the results comes from the calculated stiffness and mass matrices in Maple
software. In any case, the results obtained using the advanced formulation are still
reliable, since they exhibit the same effect of the laminate configuration on the natural

frequencies (for example, the laminate configuration with [+ 45] ; ply groups gives the

lowest values of the natural frequencies in all modes in both the methods of formulation).
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Table 4.5 below shows how the natural frequencies for a mid-plane tapered
composite beam are significantly affected by different laminate configurations in. both the
methods of formulation.

Table 4.5 Comparison Between the Natural Frequencies for Different Fiber

Orientations Obtained Using the Conventional and Advanced Formulations

e
Mode No. Mode No.
2 2
Ply group 1 - 3 l B 3
[0/90] s 280.28 | 1571.24 | 4391.50 | 448.02 | 2463.51 | 6772.01
[£45]s | 211.24 | 1184.21 | 3309.78 | 337.66 | 1856.69 | 5103.91
[£ 15]s | 359.43 | 2014.97 | 5631.69 | 574.54 | 3159.21 | 8684.46

4.3.3 The Effect of the Taper Angle on the Natural Frequencies

The problem undertaken now is to determine the natural frequencies for mid-
plane tapered composite beam with the fixed-free support using different taper azngles, 6,
2, and 10 degrees. First, using the conventional formulation, the results for th.e lowest

three natural frequencies for the beam with a taper angle of 6 degrees are calculated to be:
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280.27, 1571.24, and 4391.50 rad./sec., respectively. For the beam with the taper angle
of two degrees they are: 93.19, 522.43, and 1460.14 rad./sec., respectively, and finally for
the beam with the taper angle of ten degrees, the results are: 470.18, 2635.82, and

7366.93 rad./sec., respectively. The results are plotted in Figure 4.21 below.

@ 8000
H .6
| § .~ 6000
| s 0O
oo
e 3§ 4000
L s
8 <~ 2000 .
- i
2 0
0 1 2 3 4 ;;
Mode No. |

Figure 4.21 The Variations of the Natural Frequencies of a Mid-Plane Tapered
Composite Beam with Different Taper Angles Obtained Using the Conventional

Formulation

As might be expected, the taper angle of two degrees gives the lowest values of
the natural frequencies. The taper angles of six degrees, and ten degrees give the

successively higher values.

The change in the taper angle affects directly the entries of the element stiffness
matrix. Generally speaking, the higher the taper angle is, the higher the values of the

natural frequencies are. It is recalled from equations 2.45-2.48 that the stiffness matrix is
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a function of (the slope) the taper, and they are in direct proportions (check equation
2.48). Hence, higher taper angle leads to a stiffer laminate, which eventually leads to
higher values of the natural frequencies (the mass matrix is not mentioned here because
its coefficients are not function of the taper angle in the conventional formulationn). This
effect is similar to the effect of the change in the fiber orientations. The change in the
fiber orientations affects the flexural rigidity of the laminate, and hence the element

stiffness matrix.

1

== =—2degrees |
- - =6 degrees |
10 degrees i

Natural Frequencies
(rad/sec)

Mode No.

Figure 4.22 The Variations of the Natural Frequencies of a Mid-Plane Tapered
Composite Beam with Different Taper Angles Obtained Using the Advanced

Formulation

Using the advanced formulation, the results for the lowest three natural
frequencies with a taper angle of 6 degrees are obtained to be: 448.02, 2463.51, and
6772.01 rad./sec., respectively. For a taper angle of two degrees they are: 148.00,

815.75, and 2238.35 rad./sec., respectively, and finally for a taper angle of ten degrees
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the results are: 752.40, 4135.18, and 11372.17 rad./sec., respectively. The results are

plotted in Figure 4.22.

As shown in Figure 4.22, the taper angle of two degrees leads to the lowest values
of the natural frequencies, the ten-degree taper angle gives the highest values, and the
taper angle of six degrees gives moderate values between that of the other two taper

angles.

It was mentioned before that the taper angle affects the calculations of the
coefficients of the element stiffness and mass matrices. By examining the stiffness and
mass matrices, it is found that the taper angle exists in the numerators and denominators
of the coefficients of the matrices, but with different powers. Hence, one cannot establish
explicit relationships between the taper angle and the matrices. Nevertheless, the results
show that the taper angle is directly proportional to the stiffness matrix and is inversely
proportional to the mass matrix. Hence, the higher the taper angle is, the stiffer the
laminate becomes, and the smaller the laminate inertia is. It is recalled from vibration
analysis that the dynamic matrix [a] is equal to the product of the inverse of the mass
matrix and the stiffness matrix. Hence, higher values of these matrices will lead to higher
values of the coefficients of the dynamic matrix. Accordingly, this will result in higher
eigenvalues, and it is known that the natural frequencies are the square root values of

these eigenvalues.
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Figure 4.23 is given below to show the comparison between the results obtained

using the conventional and advanced formulations.
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Figure 4.23 Comparison Between the Natural Frequencies Obtained Using
Conventional and Advanced Formulations for Mid-Plane Tapered Composite Beam

with Two Degrees Taper Angle

Figure 4.23 shows that the values of the natural frequencies obtained using the
advanced formuiation are higher than the corresponding values obtained using the
conventional formulation (almost 1.6 higher). The possibilities of this considerable
difference between the two sets of the results were discussed before. In any case, the
solution obtained using the advanced formulation is still keeping the inherent
relationships between the taper angle and the values of the natural frequencies (that they

are in direct proportions).
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Table 4.6 Comparison Between the Natural Frequencies for Different Taper

Angles for a Fixed-Free Mid-plane Composite Beam Obtained Using the

Conventional and Advanced Formulations

et m’“lfi,?"‘% S
n,M ‘tho
R
Mode No. Mode No.

Taper Angle
(in degrees) ! 2 3 L 2 3

2 93.19 522.43 1460.14 148.00 815.75 2238.35

6 280.28 1571.24 4391.50 448.02 2463.51 677201

10 470.18 2635.82 7366.93 752.40 4135.18 11372.17

It is worth noting that selecting the appropriate value of the taper angle is a
challenging task for the finite element analyst. As it can be seen that increasing the taper
angle from two degrees to six will triple the values of the natural frequencies, and that
increasing the taper angle from six degrees to ten will increase the values of the natural
frequencies by almost 67 % in both methods of formulation. The last two observations
show consistency of the solutions obtained using both the methods of formulation, which

is verification in itself. Table 4.6 above summarizes the results mentioned in this section.
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4.3.4 The Effect of Different Discretizations on the Natural Frequencies Obtained

Using Conventional Formulation

The beam elements will be meshed into four different types, A, B, C, and D as it
was done in section 4.2.3. Also, the beam type of support is fixed-free and the laminate

configuration is cross-ply.

- - =TypeB |
Type D |

Natural Frequéncies
(rad/sec)

j Mode No. ,

Figure 4.24 The Variations in the Natural Frequencies for Beam Meshes Type B
and Type D of a Mid-plane Tapered Composite Beam Obtained Using Conventional

Formulation

First, using the conventional formulation, the lowest three natural frequencies for
Type A mesh of the beam (L/3, L/3, and L/3) are obtained as: 280.28, 1571.24, and
4391.50 rad./sec., respectively. For Type B mesh of the beam (L/4, L/2, and L/4) they

are: 241.37, 1907.42, and 4353.84 rad./sec., respectively. For Type C mesh of the beam
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(L/4, L/4, and L/2) they are: 222.80, 1493.03, and 4476.80 rad./sec., respectively, and for
Type D mesh of the beam (L/2, L/4, and L/4) they are: 369.26, 1526.39, and 5290.78
rad./sec., respectively. The results for Type B and Type D mneshes are plotted in Figure

4.24, and plotted in Figure 4.25 for Type A and Type C meshes.
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Figure 4.25 The Variations in the Natural Frequencies for Beam Meshes Type A
and Type C of a Mid-plane Tapered Composite Beam Ob-tained Using Conventional

Formulation

The beam division with nodes at lengths L/4, L/4, and L/2 gives the lowest values
of the natural frequencies in the first and second modes, whereas dividing the beam with

nodes at lengths L/4, L/2, and L/4 has the lowest value in the third mode.

The beam discretization has its direct effect on the coefficients of the element

mass and stiffness matrices, as it was explained in section 4.2.3. Its direct effect on the
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coefficients of the element matrices is same as in the case of the taper angle (check

section 4.3.3).

Table 4.7 The Natural Frequencies for Different Beam Meshes Obtained Using

Conventional Formulation

Discrtf):,t;zation { 5 3
Type A 280.28 1571.24 4391.50
Type B 241.37 1907.42 4353.84
Type C 222.80 1493.03 4476.80
Type D 369.26 1526.39 5290.78

Due to the huge volume of the stiffness and mass matrices, it is difficult to
endeavor different beam discretizations. It was relatively easy to work out the previous
changes in the last three sub-sections because the beam element length was fixed at 0.36
m. This simplified the size of the matrices significantly in the Maple software, which
made it possible to process it in the MATLAB environment. Accordingly, Table 4.7
above shows the change of the values of the natural frequencies for a mid-plane fixed-
free composite beam with a taper angle of 6 degrees using the conventional formulation

only.
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4.4 Parametric Study on the Buckling of Externally Tapered Composite beams

A externally tapered simply supported composite beam with the same mechanical
properties and geometric description given in section 4.2 is considered and its critical
buckling loads (the buckling load is equal to the lowest eigenvalue) for different fiber
orientations are determined. The procedures employed to obtain this eigenvalue are well
explained in chapter 2 section 2.7.1.3. The critical buckling load will be obtained using

both the methods of formulation, conventional and advanced.

First, using the conventional formulation, the critical buckling load for cross-ply
laminate with [0/90] ¢ ply groups is calculated to be 9.02 x 10° N. For the laminate
configuration with [+ 45] s ply groups it is 5.03 X 10° N, and for the laminate
configuration with [+ 15] s ply groups, it is 1.46 X 10’ N. These results are plotted in

Figure 4.26 below (the cross-ply is given number | on the abscissa, the laminate

configuration with [£ 45] s ply groups is given number 2 and the laminate configuration
with [+ 5] s ply groups is given number 3). As shown in the figure, the laminate
configuration with [£ 45] s ply groups gives the lowest value of the critical buckling load

while the laminate configuration with [+ 15]; ply groups gives the highest value.

In buckling analysis, the geometric stiffness matrix affects the whole stiffness of the

laminate, as shown in equation 4.3 below:

0=[K-nl{w} (4.3)
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[t is recalled from section 4.2.1.2 that the change in the fiber orientations affects the
flexural rigidity (check Figure 4.5), and it is found that the [+ 45]  stacking sequence
leads to the lowest flexural rigidity whilst the stacking sequence [+ 15] s leads to the
highest. By examining the geometric stiffness matrix (equation 3.54), one can find that
most of its coefficients have the term of the flexural rigidity (bDy,) in their denominators
(in some of them it is squared). Hence, a higher value of bDy,, will lead to lower values
of the coefficients of the geometric stiffness matrix, i.e. stiffer laminates. Consequently,
this reduction in geometric stiffness will result in the highest value of the critical buckling

load as obtained in the case of [+ 15]; stacking sequence.

Using the advanced formulation, the critical buckling load for cross-ply laminate
[0/90]  is calculated to be 9.00 % 10® N. For the laminate configuration with [+ 45] ply
groups it is 5.02 x 10° N, and for the laminate configuration with [£ 15] s, ply groups it is
1.45 x 10’ N. These results are plotted in the same Figure 4.26 below. The figure shows
that the laminate configuration with [+ 45] ¢ ply groups gives the lowest value of the
critical buckling load while the laminate configuration with [ 5] ply groups gives the

highest value as it was the case in the conventional formulation.

The results obtained using the advanced formulation are lower than the results
obtained using the conventional formulation, which was proved before in chapter 2. This
was considered as an indication of its higher accuracy. As the results are not very clear in
Figure 4.13 because the Excel® software can not show clearly a difference in this order,

they are given again in Table 4.8.
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Figure 4.26 The Critical Buckling Loads for Different Fiber Orientations

Obtained Using the Conventional and Advanced Formulations

Table 4.8 The Critical Buckling L.oad for an Externally Tapered Composite
Beam for Different Fiber Orientations Obtained Using Conventional and Advanced

Formulations

Formulation Method {0
ply groups ply groups ply groups
Conventional Formulation 9.02 5.03 14.55
Advanced Formulation 9.00 502 14.52
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4.5 Overall Conclusions and Discussion

In this sub-section, a comparative study on both types of taper is to be introduced as
a guide for the designer to see how the type of taper and the different changes on each of

them can contribute in the dynamic analysis.

In Figure 4.27 below is a comparison between the two types of taper for the same
boundary condition (fixed-free), the same laminate configuration (cross-ply), and the
same beam discretization (elements with equal lengths) using the conventional

formulation. In other words, the only difference is the type of taper.
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Figure 4.27 The Variations in the Natural Frequencies for External and Mid-

Plane Tapered Composite Beams Obtained Using Conventional Formulation

As it is shown in Figure 4.27, the mid-plane type of taper gives lower values of

the natural frequencies (this is regardless of the type of support or the fiber orientations).
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So from the dynamic analysis point of view the mechanical designer will lean to this type
of taper, and for the final decision he or she has to consider the stress and manufacturing

aspects.

From the last four sections, one can come up with following important conclusions to
help the designer and finite element analyst to choose between different methods of
formulation, between different types of taper, and among different configurations of the
composite beam within the same method of formulation and the same type of taper:

) The advanced formulation developed in this thesis is of higher efficiency than the
conventional formulation. In finite element modeling terms, the inclusion of the
natural and essential boundary conditions can lead to more accurate solutions,
where the eigenvalues obtained converge rapidly to the exact solution.
Accordingly, this will save the finite element analyst a lot of time, and hence
effort. Generally speaking, more accurate results are obtained using fewer
numbers of elements that have more degrees of freedom than using more number
of elements that have fewer degrees of freedom.

2) Use of fewer elements in the mesh leads to a better continuity of higher-order
derivatives of deflection W. This in turn results in a more accurate calculation of
stress and strain distributions in the beam cross-section, and in individual plies.

3) The resuits of the natural frequencies for externally tapered composite beams are
always higher than their corresponding values for mid-plane tapered composite

beams, regardless of the method of formulation applied.
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4)

5)

6)

7)

8)

Regarding the type of support, the free-fixed type gives the lowest values of the
natural frequencies, and the fixed-fixed type gives the highest of them for external
type of taper. For mid-plane taper, free-fixed type gives the lowest value of the
natural frequency in the first mode, whereas the fixed-free type does this in the
second and third modes.

Dividing the beam with nodes at lengths L/4, L/4, and L/2 lowers the values of
the natural frequencies in the first mode, whereas the mesh with nodes at lengths
L/4, L/2, and L/4 lowers them in the second and third modes, for external type of
taper. For the mid-plane type of taper, dividing the beam with nodes at lengths
L/4, L/4, and L/2 gives the lowest values of natural frequencies in all modes.

Regarding the fiber orientations, the laminate configuration with [£ 45] 5 ply

groups minimizes the values of the natural frequencies in both types of tapers.

This means that the [+ 45] ¢ stacking sequence leads to stiffer laminates.

The higher the taper angle is in the mid-plane type of taper, the higher the values
of the natural frequencies are.

The laminate configuration with [+ 15] s ply groups gives the highest value of the
critical buckling load, whereas the laminate configuration with [£ 45] s ply groups

gives the lowest.
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4.6 Summary

In this chapter, a thorough parametric study on external and mid-plane tapered
composite beams is conducted. The composite beams chosen are practical in terms of
mechanical properties and geometric description. All the problems are solved using both

the methods of finite element formulation, conventional and advanced.

The external type of taper is examined for all possible changes: changes in the
boundary conditions, changes in the stacking sequences, and changes in the beam
discretization. For each change, the results for the lowest three natural frequencies are
obtained and plotted in figures to elaborate on the interpretations (this is done for free
vibration analysis). The externally tapered beams were analyzed for their critical
buckling loads for different fiber orientations using both the conventional and advanced
formulations. The same changes were done for the mid-plane tapered composite beam,
plus the changes in the taper angle. These figures are plotted once for the results
obtained using conventional formulation, and again for the results obtained using the
advanced formulation. Then concise interpretations are provided to elaborate on the
relationships between these changes and the natural frequencies of the composite beams.
This explanation covers all aspects in the problem. Also, a comparison between the
results obtained using both the methods of formulation is done with the help of the
figures. Each sub-section ends by a table that summarizes the results mentioned in it. In

the last section overall conclusions are provided that serve for the design aspects.
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Chapter 5

Conclusions and Recommendations

In the present thesis a finite element simulation for externally tapered and mid-
plane tapered composite beams that can incorporate both of the vibration analysis and the

buckling analysis is developed.

The formulation is employing the conventional finite element formulation. In the
finite element model, two degrees of freedom per node are considered so as to satisfy the

geometric boundary conditions, the displacement and the slope.

A new formulation consisting of a newly developed finite element modeling with
efficient higher order basis (interpolation) functions is established. In the finite element
model, four degrees of freedom per node are considered so as to satisfy all the boundary
conditions, the geometric boundary conditions, the displacement and the slope, and the
natural boundary conditions, the bending moment and the shear force. Accordingly, all

the stiffness, geometric stiffness, and mass matrices are set up.
The MATLAB® program that can endeavor all kinds of problems regarding this

concern is developed and explained. At the end of each formulation, a plenty of

problems on free and forced vibration, and buckling problems are worked out along with
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the validation of their results. The comparison between the conventional and the

advanced formulations is inherent with all problems.

To elaborate on the analysis in the present thesis, a parametric study on both types

of tapers using both types of formulations is performed.

This parametric study considers various changes in the composite laminates to
demonstrate their influences on the natural frequencies and the buckling loads of the
beams. These changes include the change in the boundary conditions, the change in the
laminate configuration, the change in the element discretization, and the finally the
change in the taper angle. The difference in the composite laminates’ responses is
remarkable for each change within the same type of taper. This difference becomes more

obvious by switching to another type of taper.

The parametric study done here in this thesis is of major worth to the mechanical
designer, who uses composite structures for designing under dynamic loading. It shows
him or her the following important and principal conclusions: -

1) A finite element formulation with efficient higher order interpolation functions
can satisfy the entire essential and natural boundary conditions of tapered
composite beams. Thus, this element adequately represents all the physical
interpretation involved in any combination of displacement, slope, bending

moment, and shearing force.
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2)

3)

4)

i)

The new method of formulation results in more accurate results using fewer
number of elements. In other words, increasing the number of degrees of freedom
with efficient higher order basis functions gives higher accuracy than using less
number of degrees of freedom with the conventional interpolation functions.

In this thesis the designer is given the base of the choice of, first the type of taper
that can be used. Moreover, within the specific type of taper, which boundary
conditions can be applied on the structure, which laminate configuration will
minimize the natural frequencies of the structure, which way of discretizing the
beam element will affect the natural frequencies the most, and finally for mid-
plane tapered composite beams, how one can compromise for the optimum value
of the taper angle.

Above all, the mechanical designer has all the matrices necessary for the finite
element formulation, all in symbolic form, well defined, and that hold good for all
types of loading. This generalization will give him or her the capacity to apply
whatever changes he or she sees more convenient for the application he or she is

about to design.

The following recommendations may be considered in the future studies: -
The finite element formulation with higher order basis functions obtained in
the present thesis can be extended to the internal type of taper.
This advanced formulation can be applied to the stress analysis of tapered

composite beams and plates.
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it)

iv)

The stiffness and mass matrices for mid-plane tapered composite beams
obtained using the advanced formulation are huge in volume. So they can be
modified to become handier by any suitable mathematical means.

Including the shear force as a degree of freedom in the interpolation functions
is still facing some difficulty in processing it in the MATLAB program. It did
not improve the accuracy for uniform beams, metallic and composite.

The work can be extended to be applicable to damped free vibration cases.
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APPENDIX I

A PROGRAM FOR FREE-VIBRATION ANALYSIS OF VARIABLE THICKNESS COMPOSITE

BEAMS

fprintf(C FIXED-FREE BEAM UNDAMPED FREE VIBRATION CASE FOR EXTERNAL TAPERED
COMPOSITE STRUCTURE(NCT-301 graphite/epoxy USING SIX DEGREE OF FREEDOM
MODEL)\n\n\n")

LMAS=2;
[CAS=3;
if [CAS==1
fprinttf(C THIS DATA IS FOR TRUSS"
end
if [ICAS==2
fprintf(C  THIS DATA IS FOR GENERAL FRAME")
end
if [CAS==3
fprintf("C  THIS DATA IS FOR FRAME WITH INFINTE AXIAL STIFFNESS)
end
if LMAS==I
fprintf(’, LUMPED MASS MATRIX,)
end
if LMAS==2
fprintf(’, CONSISTENT MASS MATRIX,)
end

% READING AND PRINTING OF AXIAL FORCE

P=0;

p=0;

r=0;

alta=0;
s=r/(1+alfa);

if p==0 & P-=0
fprintf(\n AND CONSTANT AXIAL FORCE ONLY OF VALUE = %4.1H0\n\n\n"P)
end

if P==0 & p~=0
tprintf(\n  AND VARIABLE AXIAL FORCE ONLY OF VALUE = %4.1f\n\n\n’,p)
end
if p==0 & P==0
fprintf(\n  AND NO AXIAL FORCE\n\n\n")
end
if p~=0 & P~=0
fprintf(\n ,CONSTANT AXIAL FORCE = %4.1f, AND VARIABLE ONE = %4.1\n\n\n’,P,p)
end
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TP=0.0005;
LOB=1.08;
WID=l;
ROW=1480;

% THE MATERIAL PROPERTIES OF THE COMPOSITE BEAM

El=113.9¢9;

E2=7.985¢9;

NU12=0.288;

NU21=0.018;

G12=3.137e9;

GG=GI12;
QIlI=EI/(1-(NU2*NU21));
Q33=GG;

QI2=QIl1*NU2I;
Q2I=(NUI2*E2)/(1-(NU12*NU21));
Q22=E2/(I-(NUI2*NU21));
Q=[Q!11,Q12,0;:Q21,Q22,0;0,0,Q33];

% ENTERING THE ORIENTATION AND CALCULATING THE TRANSFORMED STIFFNESS
MATRIX

for [I=1:2:100

J=II+1;
aTHETA(ID=pi/2;
aTHETA()=0;
end

% ENTERING THE NUMBER OF PLIES FOR EACH ELEMENT
NPP(1)=100;

NPP(2)=80;
NPP(3)=60;

NELE=3;
fprintfC NUMBER OF ELEMENTS= %1.0f\n’NELE)

NNOD=NELE+I;
fprintf(C NUMBER OF NODES= %1.0f\n’NNOD)

NMOD=3;
fprintf(C  NUMBER OF MODES TO BE PRINTED= %1.0f\n\n\n".NMOD)

% BOUNDARY CONDITION FOR u DISPLACEMENT IN x DIRECTION WHICH THE FIRST
NUMBER IN THE BRACKETS REFERS TO WHAT NODE AND "1” REFERS TO x-DIRECTION
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for [=1:NNOD

IBOU(I, 1)=0;
end

% BOUNDARY CONDITION FOR v DISPLACEMENT IN y DIRECTION THE SAME AS FOR THE
PREVIOU DIRECTION

for [=2: NNOD
[BOU(L,2)=1;
end
IBOU(1,2)=0;
%IBOU(NNOD,2)=0;
%IBOU(4,2)=1;

% BOUNDARY CONDITION FOR ROTATION "THETA" IN xy PLANE

for [=2: NNOD
[BOU(L,3)=1;
end
[BOU(1,3)=0;
%IBOU(NNOD,3)=0;
%IBOU(1,3)=0:

% ENTERING THE x COORDINATE FOR EACH NODE
for [=1:NNOD

XNOD(I)=(LOB/NELE)*(I-1):

end
% ENTERING THE y COORDINATE FOR EACH NODE

for N=1:NNOD:

YNOD(N)=0:;

end

fprintfC NODE BOUNDRY CONDITIONS COORDINATES MASSES\n)
fprintf(’ NO. I 2 3 X Y l 2 3\n)

for [=1:NNOD

fprintf(’ %1.0f D

for I=1:3

fprintf('% 1.0f " IBOU(LIT))

end

fprintf(’ %5.3f %S5.3f T XINOD(),YNOD(I))

% ENTERING THE CONCENTRATED MASSES

for J=1:3
CMAS(I,1)=0;
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fprintf('%3.1f TCMAS(LD))
end

fprintf(\n")

end

% REDING AND PRINTING OF ELEMENT DATA WHERE THE FIRST NUMBER IN THE
BRACKETS OF "NODN" DENOTES THE ELEMENT NO. AND THE SECOND NO. DENOTES
WHICH END:; "[” FOR FIRST END, AND "2" FOR SECOND ONE

for I=1:NELE
NODN(, =I;
NODN(1,2)=I+1;
end

%

%

% GENERATION OF NUMBERS FOR ASSEMBLING GLOBAL STIFFNESS AND MASS
MATRICES

[CON=0:
for [=1:NNOD
for J=1:3
K=IBOU(LJ);
if K~=0
[CON=ICON+I;
[BOU(I,)=ICON;
end
end
end
NDOF=ICON;
fprintf(\n\n\n NUMBER OF DEGREES OF FREEDOM = % .0f\n\n\n".NDOF)

for [=1:NELE
I1=NODN(I,1);
I12=NODN(I,2);

for J=1:3
ICOR(LNH=IBOU(I1,));
ICOR(LJ+3)=IBOU(I2,1);

end

end

fprintfC ELEMENT NODAL DEGREES OF FREEDOM\n)
fprintf NUMBER | 2 3 4 5 6\nn)

for I=1: NELE

fprintfC %1.0f I);
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for J=I1:6

fprintfC % 1.0, ICOR(L,J))
end

fprintf(\n")

end

Ztprintf(\n\n ELEMENT END NODES AREA WIDTH HIEGHT MASS
DENSITY\n)

Ztprintt(C NO. I 2\n\n)

% INTIALISING GLOBAL STIFFNESS AND MASS MATRICES TO ZERO

SMAS=zeros(NDOF,NDOF);
SYTF=zeros(NDOF NDOF):

% SUBROUTINE ELEFREX FOR GENERATING TRANSFORMATION STIFFNESS AND MASS
MATRICES

for IE=1:NELE
NP=NPP(IE);
HT=TP;
A=zeros(3.3);
B=zeros(3.,3);
D=zeros(3,3);
for [=1: NP

THETA=aTHETA(D);

=cos(THETA);
N=sin(THETA);

QXX=((cos(THETA))**Q 1 1)+((sin(THETA))*4*Q22)+(2*(cos(THETA))*2*(sin(THETA))"2*Q [ 2)+(4
*(cos(THETA))*2*(sin(THETA))*2*Q33);
QY Y=(NA*Q1 [)+(MA4*Q22)+(2*MA2ENA2*Q [ 2)+(4 *MA2*NA2+Q33);
QXY=(MA2*NA2*Q | [)+(MA2*NA2*Q22)+((MA4+NA4)*Q [ 2)-(4*MA2*NA2*Q33);
QXS=(MA3*N*Q1 I )-(M*NA3*Q22)+(((M*NA3)-(MA3*N))*Q | 2)+(2*((M*NA3)-(MA3*N))*Q33);
QY S=(M*NA3*Q1 1)-(MA3*N*Q22)+(((MA3*N)-(M*NA3))*Q 1 2)+(2*((MA3*N)-(M*N~3))*Q33);
QSS=(MA2*NA2*Q [ 1 )+(MA2*NA2¥Q22)-(2*MA2*¥NA2*Q 1 2)+(((MA2-NA2)A2)*Q33);

QT={QXX.QXY,2*QXS;QXY.QYY,2*QYS:QXS.QYS,2*QSS|;

9% ENTERING THE PLY PARAMETERS AND CALCULATING THE LAMINATE STIFFNESS
MATRICES

HB=HT-TP;
A=A+(QT*(HT-HB));
B=B+(0.5*(HT~2-HBA2)*QT);
D=D+((1/3)*(HT~3-HBA3)*QT);
HT=HT+TP;

end
HEI=NP*TP;
FLRI=WID*D(L,1);

AXS=WID*A(l,1);
fprintf(\n\n’)
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%o fprintt(\n THE LAMINATE STIFNESSES MATRICES ARE: A B D\n)

e fprintf(\n\n THE FLEXURAL RIGIDITY OF THE LAMINATE IS: %9.50\n"FLRI)
% fprintf(\n\n THE LAMINATE HEIGHT IS: %4.2f AND ITS WIDTH IS: %4.20n\n" " HELLWID)

fprintf(\n\n  ELEMENT NO. NO.OFPLIES LAM. WIDTH LAM. THICK. FLEXURAL
RIGIDITY\n")
fprintf(’ % 1.0f %62 .0f %1.0f %5.2¢ 9%9.2e\n\n’. IE,NP,WID,TP,FLRI)

AA=HEI[*WID;

% GENERATION OF TRANSFORMATION MATRIX

[1=NODN(IE, 1 );
[2=NODN(IE,2);
X1=XNOD(I1);
X2=XNOD(I2);
Y I=YNOD(I1);
Y2=YNOD(I2);

9% SUBROUTINE TRANMAT TO COMPUTE TRANSFORMATION MATRIX
% AL=LENGTH

% LMBD=COSINE OF THE ANGLE

% MU=SINE OF THE ANGLE

AL=sqri((X2-X1)*2+(Y2-Y 1)*2);
VOL=AA*AL;
LMBD=(X2-X1)/AL;
MU=(Y2-Y1)AL:
T=zeros(6,6);
T(1,1)=LMBD;
T(2,1)=-MU;
T(1,2)=MU:;
T(2,2)=LMBD:;
T(3,3)=1.0;
T(4,4)=LMBD;

TS . 4)=-MU;
T(4,5)=MU;
T(5,5)=LMBD;
T(6,6)=1.0;

% GENERATION OF ELEMENT STIFFNESS MATRIX

if ICAS==3
AXS=AXS*leb;

end

if ICAS==I

FLRI=0;

end
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% SUBROUTINE ELESTF FOR ELEMENT STIFFNESS MATRIX
ESTF=zeros(6,6);

ESTF(1,1)=AXS/AL:
n(2,2)=(6*P/(5%AL))+p*(0.6+(s*(1.2-(36/(4+alfa))+(72/(5+alfa))-(36/(6+alfa))))):

n(3.5)=n(2,2);

n(5,2)=-n(2,2);

ESTF(2,2)=(12*¥FLRI/(AL*3))-n(2,2);
n(3,2)=(P/10)+p*AL*s*(0.1+(6/(3+alfa))-(30/(4+alfa))+(42/(5+alfa))-( 18/(6+alfa)));

n(5.3)=-n(3,2);

ESTF(3.2)=(6*FLRI/(AL"2))-n(3,2);

n(3,3)=(2*P*AL/15)+p*AL"2*(0. | +(s*((2/15)-(1/(2+alfa))+(8/(3+alfa))-(22/(4+alfa))+(24/(5+alfa))-
(9/(6+alfa)))));

ESTF(3.3)=(4*FLRI/AL)-n(3,3);

n(6.,3)=(-P*AL/30)-p* AL 2*(( 1/60)+(s*((1/30)-(2/(3+alta))+(1 1/(4+alfa))-(18/(5+alfa))+(9/(6+alfa)))));
ESTF(6.3)=(2*FLRI/AL)-n(6,3);

ESTF4.1)=-ESTF(I,1);

ESTF(5.2)=-ESTF(2,2)-n(5,2);

n(6,2)=(P/10)+p*AL*(0.1+(s*(0.1-( [ 2/(4+alfa))+(30/(5+alfa))-( 18/(6+alfa)))));
n(6,5)=-n(6,2);

ESTF(6,2)=ESTF(3,2)-n(6,2);

ESTF(5,3)=-ESTF(3,2)-n(5,3);

ESTF(4,4)=ESTF(1,1);

ESTF(5,5)=ESTF(2.2)-n(5,5);

ESTF(6,5)=ESTF(5,3)-n(6,5);
n(6,6)=(2*P*AL/135)+p*ALA2*((1/30)+(s*((2/15)-(4/(4+alfa))+(12/(5+alfa))-(9/(6+alfa))))):
ESTF(6,6)=ESTF(3.3)-n(6,6);

for I=1:6
K=I+1;
for J=K:6
ESTF(L.))= ESTFU.D);
end
end

% TRANSFORMATION OF ELEMENT STIFFNESS MATRIX TO GLOBAL COORDINATES
% SUBROUTINE CONTRN FOR CONGRUENT TRANSFORMATION C=(TRANSPOSE A)*B*A

Z=zeros(6,6);
Z=Z+ESTF*T;
ESTT=zeros(6,6);
ESTT=ESTT+T™*Z;

% COMPUTATION OF ELEMENT MASS MATRIX
% SUBROUTINE ELEMAS TO COMPUTE LUMPED OR MASS MATRIX OF A BEAM ELEMENT
EMAS=zeros(6,6);
iFLMAS==2
ClI=(ROW*VOL)/6;

C2=(ROW*VOL)/420;
EMAS(1,1)=2*ClI;
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EMAS4.1)=Cl:
EMAS(4,4)=EMAS(I,1);
EMAS(2,2)=156*C2;
EMAS(3,2)=22*AL*C2;
EMAS(5.2)=54*C2;
EMAS(6.2)=-13*AL*C2;
EMAS(3,3)=4*C2*(AL"2);
EMAS(5,3)=-EMAS(6,2);
EMAS(6,3)=-3*C2*(ALA*2);
EMAS(5,5)=EMAS(2,2);
EMAS(6.5)=-EMAS(3,2);
EMAS(6,6)=EMAS(3,3);
for [=1:6

K=I+1;

for J=K:6

EMAS(L,])=EMAS(J.D);

end

end
else
Cl=(ROW*VOL)/2;
EMAS(1,1)=Cl;
EMAS(2.2)=ClI;
EMAS4.,4)=ClI;
EMAS(5.5)=C1l:
end

% SUBROUTINE CONTRN FOR CONGRUENT TRANSFORMATION C=(TRANSPOSE A)*B*A

E=zeros(6.6);
E=E+EMAS*T;
EMST=zeros(6.6);
EMST=EMST+T™*E;

% ASSEMBLING THE GLOBAL STIFFNESS AND MASS MATRICES

for [=1:6
for J=1:6
K=ICOR(IE.I);
L=ICOR(IE.]);
if (K*¥L)~=0
SMAS(K,L)=SMAS(K,L)+EMST(LJ);
SYTF(K,L)=SYTF(K,L)+ESTT(IJ);
end
end
end
end

% ADDIND OF NODAL CONCENTRATED MASSES TO GLOBAL MASS MATRIX

for [=1:NNOD
for J=1:3
K=IBOU(L,J);
if K~=0
SMAS(K,K)=SMAS(K,K)+CMAS(LJ);
end
end
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end

% SUBROUTINE EIGZF FOR COMPUTATION OF EIGENVALUES AND EIGENVECTORS,
ARRANGING THEM IN AN ASCENDING ORDER, AND CALCULATINF FOR THE CIRCULAR
FREQUENCIES

AR=inv(SMAS)*SYTF;

[V. QJ=cig(AR);

[LAMBDA, ITEM]=sort(diag(Q));

NEWV=V(.I[TEM);

fprintf(C \n NATURAL FREQUENCIES AND MODESW\n)

for K=1 : NMOD
if K<= NDOF

ALAM=LAMBDA(K);
OMEGA=sqrt(ALAM);
FREQ=0OMEGA/2*pi;

fprintf(\n\n % 1.0f EIGENVECTOR AT EIGENVALUE = %9.4F . K,ALAM)
fprintf(" CIRCULAR FREQUENCY = %7.2f\n\n’,OMEGA)
fprintf(C  NODE X-DISP Y-DISP ROTAW)

for L=1:NNOD
fprintf(C %1.0f,L)
for M=1:3
DISN(M)=0;
N=IBOU(L,M);
if N~=0
DISN(M)=NEWV(N,K);

end
fprintf(’ %9.61 ,DISN(M))

end
fprintf(\n")

end
end

% SUBROUTINE ELESTF8 FOR ELEMENT STIFFNESS MATRIX IN THE ADVANCED
FORMULATION

EST=zeros(10,10);
EST(I,1)=AXS/AL;

EST(6,1)=-EST(l,1);
EST(6,6)=EST(1,1);



EI=FLRI*10"-6;

EST(2,2)=280*ELl/(l L *AL"3);
EST(3,2)=140*E/(1 1 *AL"2);
EST(4,2)=1/22;
EST(5,2)=40/(33*AL);
EST(7,2)=-EST(2,2);
EST(8,2)=EST(3,2);
EST(9,2)=EST(4,2);
EST(10.2)=-EST(5,2);

EST(3.3)=600*El/(77*AL);
EST(4.3)=8*AL/231:
EST(5,3)=379/462;
EST(7,3)=-EST(3,2);
EST(8.3)=380*El/(77*AL);
EST(9.3)=5*%AL/462;
EST(10,3)=-181/462;

EST(4,4)=2*AL"3/(3465*EI);
EST(5.4)=AL~2/(99*EI);
EST(7,4)=-EST(4,2);
EST(8,4)=-EST(9,3);
EST(9,4)=-AL"3/(4620*EI);
EST(10.4)=5*ALA2/(2772*EI);

EST(5,5)=50*AL/(23 1 *EI);
EST(7.5)=-EST(5,2);
EST(8.5)=-EST(10,3);
EST(9,5)=-EST(10,4);
EST(10,5)=-AL/(462*EI);

EST(7.7)=EST(2,2);

EST(8.7)=-EST(3,2);
EST(9.7)=-EST(4.,2):
EST(10,7)=EST(5,2):

EST(8,8)=EST(3,3):
EST(9,8)=EST(4.3);
EST(10,8)=-EST(5.3);

EST(9.9)=EST(4,4);
EST(10,9)=EST(4.5);

EST(10,10)=EST(5,5);

for M=1:10
K=M+1;
for J=K:10
ESTM.,NH=ESTU,M);
end
end

% ENTERING THE GEOMETRIC STIFFNESS MATRIX



n=zeros(10,10);

al=p*s/((T+E*(B+D*(9+H*(10+DH)*(1 L+O)*(12+D)*(13+1));

a2=p*s*AL*(1084+( 1053*0)+(265*("2)+(20%*3))/((4+E)*(5+)*(6+E)*(T+E)*(B8+)*(9+H*(10+6)*(1 1+)*(
2+6)*(13+));

a5=p*s*AL*(-3252+(85  *D)+(48*"2)+3)((T+E*(8+H)*(9+D*(10+H)*(1 L+D*(12+D*(13+D);
a3=p*s*ALA3*(3+(4*0))(EI*(6+0)*(T+)*(8+N*(9+D)*(10+)*(1 I+D*(12+£)*(13+D));
ad=p*s*ALA2*¥((10*f*2)+69+(75* DN EI*(S+O)*(6+6*(T+D*(B+D*(9+D)*(10+H*(1 [ +H)*(12+)*(13+1));
a6=p*s*ALA3*(f- 1 )/(EI*(T+£)*(8+£)*(9+D)*(L0+H*(1 L+E*(12+H)*(13+D));
aT=p*s*ALA2*(({*2)+(40*)-69Y(EI*(7T+H)*(8+)*(9+H)*(10+H)*(1 1+O)*(12+)*(13+f));
a8=624*f+1200+463* 2+ 10* 4+125%f"3;

n(2,2)=(700%P/(429*AL))+(350*%p/429)+(700*p*s/429)-(14 1 12000*al);
n(2,3)=(27 1 *P/858)+(49*p*AL/429)+(27 | *p*AL*s/858)-(302400*a2);
n(2,7)=-n(2,2);

n(2.8)=(27 1 *P/858)+(173*p*AL/B58)+(27 1 *p*s*AL/858)+(840%a3);
n(2,4)=(-5*P*AL"2/(5 148*EIL))-(5*p*s*AL"3/(5 148*EI))+(16800*a4):
n(2.5)=(23*P*AL/(858*ED)+(p*ALA2*(14+(69*s))/(2574*EI))-(100800*a5):
n(2,9)=(-5*P*ALA2/(5 148*ED))-(5*p*AL"3*(s+1)/(5148*EI))-(8400*a6);
n(2,10)=(-23*P*AL/(858*EI))-(p*ALA2*(55+(69%5))/(2574*EI))-(3360%a7);

n(3,3)=(300*P*AL/1001)+(61*p*AL"2/286)+(300*p*s*ALA2/1001)-
(259200%p*s*a8*ALN2/((1+D)*(4+H*(5+D*(6+D*(T+H*(8+H*(9+0)*(10+)*(1 L+6O)*(12+0)*(13+1)));
n(3.7)=-n(2,3);
n(3,8)=(97*P*AL/6006)+(97*p*ALA2/12012)+(97*p*s*ALA2/6006)+(360*p*s*ALN2*(-46560-
(63720*F)+(15552*fA2)+( 1 L602*£A3)-+( 1583 *FA4)+(62*[5)+([16))/((4+D)*(S+D*(6+E)*(T+H*(8+H)*(9+)*
(10+0)*(L1+D*(12+D)*(13+0))); )

n(3.,4)=(-25*P*AL"3/(18018*EI))-

(p*AL"4*(301 +(500%s))/(360360*EID))+(2880*p*s*ALA/(EI*(3+0)*(4+H)*(S+D*(6+O)*(T+H)*(8+0)*(9+f)
*(10+0)*( L L+D*(12+0)*(13+1)));

n(3,5)=(123*P*ALA2/(4004*ED))+(p*AL"3*(238+(369%s))/(E[*12012))-
(21600*p*s*ALA3*((20*%t74)+(1454*1)+(84 1 *A2)+(235%fA3)+2952)/(EI*(2+DH)*(d+D)*(S+E)*(6+H)*(T+E)*(
B+O*(9+D)*(10+N*(1 1+D)*(12+0)*(13+1)));
n(3.9)=(5*P*ALA3/(12012*EI))+(p*AL*4*(127+300%s)/(720720*ED))-
(360*p*s*ALA*a8/(ET*(4+6)*(5+0*(6+)*(T+D*(8+NH*(9+D*(10+£)*(1 1+0)*(12+D*(13+()));
n(3,10)=(47*P*ALA2/( 1201 2*ED))+(p*ALA3*(52+(14 1 *%s))/(36036*ED))-

(360*p*s*ALA3*(1 1280+(4752*)+(652 1 *{~2)+(2148*"3)+(2 [5*A4)+(4*AS))V(ETF(4+D*F(S+D)*(6+)™*(7
+H*(B+D*(9+H)*(10+0)*( 1 L +E)*(12+D)*(13+()));

n(4,4)=(P*ALAS/(90090*EI*2))+(p*AL"A6*(7+(12%5))/(108 L080*EI"2))-

(160*p*s*ALNO*( 1 8-+F+2* AW EIN2*(S+E*(6+0)¥(T+D*(8+O)*(9+H)*(10+H)*(1 L+DH*(12+H*(13+0));
n(4.,5)=(-37*P*AL"4/(180180*EI*2))-

(p*ALAS*(133+(222%5))/(108 I080*EI 2))+(240*p*s*ALNS*(888+(21 30+ 125*A2)+(20*A3))/(EIM2*(4
+0)*(5+0*(6+)*(T+D)*(8+D*(9+H)*(10+0O)*( | [+D)*(12+H)*(13+1)));

n(4,7)=-n(2.4);

n(4,8)=(5*P*ALA3/(12012*EL)+(p*AL**(173+(300*s))/(720720*ED)-

(4*p*sFALA*F(([74)+5400+(5 1 ¥3)+(986*"2)-

(1 104*D)(EI*G+D)*(T+E)*(B+D*(9+D*(10+0)*(1 1 +DH*(12+6*(13+D)));

n(4,9)=(-P*ALA5/(144 144*E["2))-

(p*ALAG*(1+(2%s))/(288288*EIN2))+(20*p*s* AL 6*((2*2)+1 S+D/(EINM2*(6+D)*(T+H)*(B+H)*(9+H)*(10+
O*(1L+D)*(12+D)*(13+)));

n(4,10)=(-73*P*AL"4/(720720*EI*2))-

(P*ALAS*(1 10+(219%$))/(2162160*EIr2))+(4*p*s*ALAS*(13 14+(39*D)+( 169*fA2)+(4*fA3))/(EIN2*(6+)*
(T+D*B+D*(9+D*(10+)*(1 1+DH)*(12+£)*(13+)));
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n(5.5)=(73*P*AL"3/(18018*EI*2))+(p*AL"*(91+(146%*s))/(36036*EI*2))-
(14400*p*s*ALA*(219+(49*)+(35%(A2)+(S*)W(EIr2*¥3+H*(S+D)*(6+D*(T+H)*(8+H*(9+H)*(10+H)*( |
1+6*(12+6)*(1 3+0)));

n(5,7)=-n(2,5);
n(5,8)=(-47*P*ALA2/(12012*E))-(p*ALA3*(89+(141*5))/(36036*EI))+(60*p*s*AL"3*(16920-
(5760*0)+(4959*A2)+(1295*fA3)+(5T*4)+(FA5))/(ET*(S+O)*(6+D) *(T+H*(8+D)*(F+E)*(10+H*( 1 I+DH*(12
+0)*(13+£)));

n(5,9)=(73*P*AL"/(720720*EI"*2))+(p*AL 5*(109+(219%s))/(2 162 | 60*EI[*2))-

(120%p*s*ALAS*(219+(49*D)+(35* A 2)+(5*A3))/(EIN2*¥(5+0)*(64+6) *(T+)*(8+D*(9+)*(10+)* (1 L +£)*(12
+6)*(13+f)));

n(5,10)=(7*P*AL"3/(5 [48*EI"2))+(7T*p* AL M *(1+(2%s))/(10296*EI"2))-

(120*p*s*ALA*(2940+(52 1 *)+(556* A 2)+(9T*A3)+(2* A4 (EIN2*(5+ ) *(6+ D) *(T+D)*(8+D)*(9+ ) *( 10+
B*(1L+H)*(124+D)*(13+1)));

n(7,7)=n(2,2);
n(7,8)=-n(2,8);
n(7,9)=-n(2,9);
n(7.10)=-n(2.10);

n(8,8)=(300*P*AL/1001)+(173*p*AL"2/2002)+(300*p*s*AL~2/1001)-
(p*s*ALA2*(2592000+(806904*)+(256966*fA2)+(3 1 323**3)+(20 1 7*f24)+(69*fA5)+(fA6) )/ ((T+H)*(8+D*
O+O)*(10+D)*(1 L+O*(12+D)*(13+0)));

n(8,9)=(-25*P*AL"3/(18018*EI))-

(p*ALM*(199+(500*s))/(360360*ED))+(p*s* AL *(12000+( [ 548*£)+(85 I *fA2)+(48*A3)+(fA4))/(EL*(T+
£)*(8+N*(9+H)*(10+D)*(1 1 +DH*(12+D*(13+1)));

n(8,10)=(-123*P*AL"2/(4004*EI))-

(P*ALA3*(13 1+(369%s)Y/(EI*12012))+(p*s*ALA3*((67*{"4)+(546 1 2*D)+(20597*"2)+(1763*f*3)+26568
Q+(FASNY(EI*(T+D*(8+D)*(9+D*(10+0)*( L 1 +H)*(1 2+)*(13+)));

n(9,9)=(P*ALA5/(90090*EI*2))+(p*ALA6*(5+(12%s))/(108 1080*EI*2))-
(2*p*s*ALA6*(48+(S*)+(3* ) (EIM2*(T+0)*(8+E)*(9+D*(10+)*(1 [+D)*(12+£)*(13+6)));
n(9,10)=(37*P*AL"4/(180180*EI*2))+(p*AL"5*(89+(222%5))/(108 080*EI*2))-
(pFs*ALAS*(1TT6+(233*0)+( 1 16*22)+(3*f*3))/(EIM2*(T+H)*(8+E)*(9+D)*(10+0)*(1 1 +D)*(12+D)*(13+5)));

n( 10, 10)=(73*P*ALA3/(18018*EI*2))+H(p*AL"N*(55+(146*5))/(36036*EI*2))-
(2*p*s*ALA*(17520+(3044%0)+(1 21 L¥EA2)+(64*(A3)+(T)W(EIN2*(T+D*(B+D*(9+H)*(10+)*(1 1+H)*(12
+0*(13+0));

tor M=1:10
=M+1;
for JI=K:10
n(J,M)=n(M.I};
end
end

ESTF=zeros(10,10);
for [=1:10
for J=1:10

ESTF(LN=EST.N-n(L));

end
end

% TRANSFORMATION OF ELEMENT STIFFNESS MATRIX TO GLOBAL COORDINATES



% SUBROUTINE CONTRN FOR CONGRUENT TRANSFORMATION C=(TRANSPOSE A)*B*A

DDT=zeros(10,10);
DDT=DDT+ESTF*T;
ESTT=zeros(10,10);
ESTT=ESTT+T™*DDT:

% COMPUTATION OF ELEMENT MASS MATRIX
% SUBROUTINE ELEMASS8 TO COMPUTE LUMPED OR MASS MATRIX OF A BEAM ELEMENT

EMAS=zeros(10,10);

if LMAS=2
CI=(ROW*VOL)/6;
C2=(ROW*VOL)/420;

EMAS(I.1)=2*C2;
EMAS(6,1)=C2;
EMAS(6.6)=EMAS(L.1);

EMAS(2,2)=72940%C2/429;
EMAS(3,2)=4530*AL*C2/143;
EMAS(7.2)=17150%C2/429;
EMAS(8.2)=-1905*AL*C2/143;
EMAS(4,2)=-383*ALA3*C2/(2574*EI);
EMAS(5,2)=1370*AL"2*C2/(429*EI);
EMAS(9,2)=521 *AL"3*C2/(5148*EI);
EMAS(10.2)=775*AL"2*C2/(429*EI]);

EMAS(3.3)=100*AL~2*C2/13;
EMAS(7.3)=-EMAS(8,2);
EMAS(8.3)=-1865*AL"2*C2/429;
EMAS(4.3)=-6*AL"4*C2/(143*EI):
EMAS(5,3)=245*AL"3*C2/(286*EI);
EMAS(9,3)=5*C2*ALN/(156*EI);
EMAS(10,3)=995*C2*ALA3/(176*EI);

EMAS(4,4)=C2*¥AL"6/(3861 *EI*2);
EMAS(5,4)=-C2*AL"S/(198*El*2);
EMAS(7,4)=-EMAS(9.2);
EMAS(8.4)=EMAS(9,3);
EMAS(9,4)=-7T*C2*AL"6/(30888*EI"2);
EMAS(10.4)=-43*C2*AL"5/(10296*EI"2);

EMAS(5,5)=43*C2*AL"4/(429*E["2);
EMAS(7,5)=EMAS(10,2);
EMAS(8,5)=-EMAS(10,3);
EMAS(9,5)=-EMAS(10,4);
EMAS(10,5)=131*C2*AL"/(1716*EI*2);

EMAS(7,7)=EMAS(2,2);

EMAS(8,7)=-EMAS(3.2);
EMAS(9,7)=-EMAS(4,2);
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EMAS(10,7)=EMAS(5,2);

EMAS(8,8)=EMAS(3,3);
EMAS(9,8)=EMAS4,3);

EMAS(10.8)=-EMAS(5,3);

EMAS(9,9)=EMAS4.4);
EMAS(10.,9)=-EMAS(5 4);

EMAS(10,10)=EMAS(5.5);

for M=1:10
[=M+1;
for J=I:10
EMASM,HN=EMAS(J.M);
end
end
else
CI=(ROW=*VOL)/2;
EMAS(1,1)=CI;
EMAS(2,2)=CI;
EMAS(6.6)=Cl!;
EMAS(7,7)=Cl;
end

%SUBROUTINE FORVNM FOR DETERMINING THE SYSTEM RESPONSE BY NEWMARK
METHOD

METH=1;
if METH==1
fprintf(\n\n\n  FINDING THE DYNAMIC RESPONSE USING NEWMARK METHOD\n\n")

% ENTERING THE TIME STEP AND INTEGRATION CONSTANTS

DELTA=0.5;

ALFA=0.32;

fprintfC  DELTA =%3.1f\n ALFA = %4.2f\n\nDELTA,ALFA)
DT=0.01;

fprintf(\n  TIME STEP OF INTEGRATION = %4.20\n\n'DT)
AO=1/(ALFA*(DT"2));

A2=1/(ALFA*DT);

A3=(l/(Z*ALFA))-1;

A6=DT*(1-DELTA);

AT=DELTA*DT;

% FORMING THE EFFECTIVE STIFFNESS MATRIX
KHAT=SYTF+(AO*SMAS);

% ENTERING THE INITIAL FORCE DISPLACEMENT, VELOCITY VECTORS, AND
CALCULATING THE INITIAL ACCELRATION VECTOR
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[R={0:0;10000:0;0:0];
[U=zeros(NDOF, ! );
[UDOT=zeros(NDOF, 1);
EI=IR-(SYTF*IU);
[UDDOT=inv(SMAS)*EIL;

% COUNTER FOR THE MATRICES

N=1i;

% SETTING UP MATRICES THAT CONTAIN ALL THE VECTORS FOR ALL TIME STEPS
TDIS=zeros(NDOF,20);

TACC=zeros(NDOF,20);
TVEL=zeros(NDOF,20);

fprinttf(\n TIME FORCING FUNCTION(Ib)\n")

% FIXING THE TIME LIMIT FOR INTEGRATION
for TS=DT: DT: 20*DT
% ENTERING THE TOTAL FORCE VECTOR AS A FUNCTION OF TIME

if TS<=0.1
F=10000:
elseit TS > 0.1 & TS<=0.2
F=(-100000*TS)+20000;
clse
F=0:
end
if TS=DT { TS==0.09 | TS==20*DT
fprintfCC %3.Lf %6.10\n"TS,F)
end
plot(TS,F)

R=[0;0;F;0;0:01;

% CALCULATING THE EFFECTIVE LOADS

RHAT=R+(SMAS*((AO*IU)+(A2*IUDOT)+(A3*[UDDOT)));

% SOLVING FOR THE DISPLACEMENT, VELOCITY, AND ACCELERATION VECTORS
DIS=inv(KHAT)*RHAT;

ACC=(AO0*(DIS-IU))-(A2*IUDOT)-(A3*IUDDOT);
VEL=IUDOT+(A6*[UDDOT)+(A7*ACC);

for J=1:NDOF
TDIS(J.N)=DIS{,1);
TACC,N)=ACCU,1);
TVELJ,N)=VEL{,1);
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end
[U=DIS;
[UDDOT = ACC;
[UDOT = VEL;
N=N+1;
end
fprintf(\n\n MAX DISPLAC. MAX VELO. MAX ACCEL.\n\n")

% SETTING UP VECTORS THAT HAVE THE MAXIMUM ABSOLUTE VALUES

MDIS=zeros(NDOF,1);
MACC=zeros(NDOF,1);
MVEL=zeros{NDOF,1);

for L=1:NDQF
for K=1:20
if abs(TDIS(L.K)) > MDIS(L,1)
MDIS(L, )= abs(TDIS(L,K));
end

if abs(TACC(L.K)) > MACC(L,!)
MACC(L,1)=abs(TACC(L,K));
end

if abs(TVEL(L,K)) > MVEL(L,!)
MVEL(L,1)=abs(TVEL(L.K));
end

end
fprintfC %lg T%8.4f %8.4f %8 4f\n”, L MDIS(L, ), MVEL(L.[).MACC(L.1))

end

else
% SUBROUTINE FORVWT FOR DYNAMIC RESPONSE

fprintf(\n\n\n  THE DYNAMIC RESPONSE USING WILSON THETA METHOD\n\n\n)
THETA=1.4;
fprintf(C’ THETA = %3.1H\n THETA)
DT=0.01;
fprintf(\n  TIME STEP OF INTEGRATION = %4.2f\n\n".DT)
AO=6/(THETA*DT)"2;
A1=3/(THETA*DT);
A2=2%Al;
A4=AOQ/THETA;
AS5=-A2/THETA;
AG6=1-(3/THETA);
A7=DT/2;
A8=(DT"2)/6;
KHAT=SYTF+AO*SMAS;
N=1;

9% SETTING UP MATRICES THAT CONTAIN ALL THE VECTORS FOR ALL TIME STEPS

TDIS=zeros(NDOF,20);
TACC=zeros(NDOF,20);



TVEL=zeros(NDOF,20);
[U=zeros(NDOF, 1);
[UDOT=zeros(NDOF, 1);
IR=[0;0;10000:0;0:0];
EI=IR-(SYTF*IU);
[UDDOT=inv(SMAS)*EI;

fprintf(\n TIME FORCING FUNCTION(Ib)\n")

for TS= 0: DT: 20*DT
M=TS+DT;

% ENTERING THE TOTAL FORCE VECTOR AS A FUNCTION OF TIME
it TS<=0.1

F=10000;

elseif TS > 0.1 & TS<=0.2
F=(-100000*TS)+20000;

else
F=0;

end

if M<= 0.1
FA=10000;

elseif M > 0.1 & M<=0.2
FA=(-100000*M)+20000;

else
FA=0;

end

if TS==0 1 TS==0.1 | TS==0.2
fprintf(’ %311 %6.1{\n" TS, F)
end

R=[0:0;F;0;0;01;
RA=[0;0;FA:0;0:0[;

RHAT=(1-THETA)*R+(THETA*RA)+(SMAS*((AO*I+(A2*IUDOT)+(2*[UDDOT)));
DITH=inv(KHAT)*RHAT;
ACC=A4*(DITH-IU)+(A5*IUDOT)+(AG*[UDDOT);
VEL=IUDOT+(A7*(ACC+IUDDOT));
DIS=IU+(DT*IUDOT)+(A8*(ACC+(2*IUDDOT)));
for J=1:NDOF
TDIS{J . N)=DIS{,1);

TACCI,N)=ACC(,1);

TVELJ,N)=VEL{J,1);

end
[U=DIS;
[UDDOT = ACC;
[UDOT = VEL;
N=N+1;
end
fprintf(\n\n MAX DISPLAC. MAX VELO. MAX ACCEL.\n\n")

% SETTING UP VECTORS THAT HAVE THE MAXIMUM ABSOLUTE VALUES

MDIS=zeros(NDOF,1);
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MACC=zeros(NDOF,1);
MVEL=zeros(NDOF, 1);

for L=1:NDOF
for K=1:20
if abs(TDIS(L.K)) > MDIS(L.,1)
MDIS(L. )= abs(TDIS(L..K));
end

if abs(TACC(L.K)) > MACC(L,1)
MACC(L,1)= abs(TACC(L,K)):
end

if abs(TVEL(L.K)) > MVEL(L.1)
MVEL(L.1)=abs(TVEL(L.K)):
end
end
fprintf(C %lg %8.4f T8 .4f

9% END OF THE PROGRAM

%8.40n" L MDIS(L,1), MVEL(L.1),MACC(L.1}))



APPENDIX II

Simplified Derivation of Classical Laminate Theory

Basic Assuimmptions:

N

Each layer (lamina) of the laminate is quasihomogenous and orthotropic.

The laminate is thin with its lateral dimensions much larger than its thickness and is
loaded in its plane only, i.e., the laminate and its layers (except for their edges) are
in a state of plane stress (8: = T,z = T,- = 0).

All displacements are small compared with the thickness of the laminate dul,lvl
[ wl<< h).

Displacements are continuous throughout the laminate.

In-plane displacements vary linearly through the thickness of the laminate, i.e., i« and
v displacements in the x- and y-directions are linear functions of z.

Transverse shear strains %, and ¥%- are negligible. This assumption and the preceding
one imply that straight lines normal to the middle surface remain straight and
normal to that surface after deformation.

Strain-displacement and stress-strain relations are linear.

Normal distances from the middle surface remain constant, i.e., the transverse normal
strain €, is negligible (compared with the in-plane strains €, and g,).

The analysis given here in this appendix is in brief, and is one-dimensional analysis.

Ref. [57] has the derivation in detail.
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Strain-Displacement Relations:

The xy plane equidistant from the top and bottom surfaces of the laminate and is
called the reference plane. The reference plane displacements u, and v, in the x- and y-
directions and the out-of-plane displacement W in the z-direction are functions of x and y
only. For small displacements, the classical strain-displacement relations of elasticity

yield:

Ju du, IW
£ = _—

-_—

T 9x dx o ox?

_a"__ai_za'“; (a)

“Tu Ty oy

du dv Jdu, dv, °W
=—t—=— -2

Yo =0y Tax T oy | ox - oxdy

Noting that the strain components on the reference plane are expressed as:

_ov, (b)



and the curvatures of the laminate are expressed as:

W
K( == 2
' dx~
*W
y - ayl (C)
20°W
K. =-
® 0xay

Stress-Strain Relations of Laver within a Laminate:

Consider an individual layer p in a multidirectional laminate whose mid-plane is at a
distance Zp from the laminate reference plane. The stress-strain relations for this layer

referred to the laminate coordinate system are:

O-.r Q.nt Q o Q s x
o ¥ = Qn Q v Q.\'_\' £ ¥ (d)
tn Q ki d Q R9 Y Q Ny y hq %

P r P

Substituting the expressions for the strains from equations (a), (b), and (c) one can get:

O-.r Qr.r Qn Q,r.\' 8 < i Q xe Q.r_\' Q_cv K,r
o ¥ = Qn Q v Q,\-_‘. g.‘. “1+z Q“ Q w Q . K v (C )
T't—" p Q‘“ Q-"." Q R yx_v Q X QX_\‘ Q 5 v
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Equations (a) and (c) show that the strains vary linearly through the thickness, but the
stresses do not. Because of the discontinuous variation of the transformed stiffness
matrix [Q] ., from layer to layer, the stresses may also vary discontinuously from layer to
layer. In many applications the stress gradient through the layer thickness is disregarded.
The average stresses in each layer are determined by knowing the reference plane strains,
£, the curvatures x of the laminate, the location of the layer mid-plane Z,, and its

transformed stiffness matrix Q.

Force and Moment Resultants:

The stresses acting on a layer p of a laminate given by equation (e) can be replaced by

resultant forces and moments as given below:

N’ = i o dz (f)

In the case of a multi-layer laminate the total force and moment resultants are
obtained by summing the effects for all layers. Thus, for the n-ply laminate, the force

and moment resultants are obtained as:
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v =3[ ®

M =zn‘;£:',/220' zdz (1)
p=

General Load-Deformation Relations: Laminate Stiffnesses:

Substituting equation (e) for the layer stresses in equations (h) and (i) above, one can

obtain:

vo=3flo) el deo] e ]z e 0

p=i ol

M, = i{[Qa]p[s.r"]J.,h‘ zdz+[Q.u],,[K_:Uhk zzdz}-t-... (k)

i iy
where h, and h,_; are the heights of the top surface and bottom surface of the ply from the
reference plane. In the expressions above, the stiffnesses [Q]", reference plane strains
[£']. and curvatures [x”] are taken outside the integration operation since they are not
functions of z.  Of these quantities only the stiffnesses are unique for each layer p,
whereas the reference plane strains and curvatures refer to the entire laminate and are the

same for all plies. Thus equation (g) can be written as:
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M, =[B] le’] +[D]x] )

where

Bii =iiQ”u (th —llzp—l) (m)
252

D; =§2Q"i/ (hjl' "hjr'-') (n)

p=I

In terms of Z, (the height of the centerline of a ply from the reference plane) and ¢,

(the ply thickness), equation (n) can be re-written as (for the entry 11):

n 5 t—"
DII = z[t[:zl) +é:| (QII )p (O)

p=l
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