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Abstract

Periodicity and Ruin Probabilities for Compound
Non-Homogenous Poisson Processes

Yi Lu

Compound non-homogenous Poisson processes with periodic claim intensity rates are
studied in this work. A risk process related to a short term periodic environment
and the periodicity for its compound claim counting process are discussed. The ruin
probabilities of compound non-homogenous Poisson processes with periodic intensity
function are also discussed, in which the embedded discrete risk model and the aver-
age arrival rate risk model are presented and bounds for the ruin probability of the
continuous-time risk model are derived.

We introduce a more general Poisson process model with double periodicity. Here
the periodic environment does not repeat the exact same pattern every year but varies
the short term peak over a relatively long period, with different levels in each year.

[lustrations of periodicity for short and long term Poisson models and numerical

examples for ruin probabilities are also given.
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Introduction

In classical risk theory, homogeneous Poisson processes are usually used to model
some risk related events. But it is far from reality since the claim intensity rate in
this process is constant. The more general time dependent case can be modeled by
non-homogeneous Poisson processes. This allows the intensity rate to be a function of
time £. A special case of this general model is considered here, it assumes a periodic
intensity rate function.

There are many natural phenomena involved in a periodic environment or under
seasonal conditions. The periodicity of these events may affect the insurance busi-
nesses. For example, weather factors affect the insured risk in automobile and fire
insurance; factors such as seasonal snowstorms in the North and hurricanes or floods
in the South affect property insurance. It is reasonable and tractable using a periodic
time-dependent intensity rate to model the claim occurrence process, and therefore
the aggregate claim process.

The similarity between the intensity and failure rate functions used in reliability
models under a minimal repair policy, gives an advantage to explore the applicability
of non-homogeneous Poisson process. Some characterization properties of this process
with periodic failure rate have been shown in Chukova et al. (1993) and Dimitrov et
al. (1997). Applying these properties to risk models, especially the periodicity in a
short term (with period 1) case, are exploited by Garrido et al. (1996). Some ruin
problems in a periodic environment are considered by Asmussen and Rolski (1994)

and Rolski et al. (1999).



A more practical case is that when the periodic environment does not repeat itself
exactly from year to year, but the short term peak changes over a relatively long
period, with different levels in each year. This is especially appropriate in catastrophic
insurance, such as hurricanes, which have a peak season in the middle of the year,
but whose intensity level also depends on the long term climatological effects like La
Nina or El Nino. A corresponding Poisson process model with double periodicity is
introduced in this work. Its periodicity and related characteristics are also discussed.

A brief review of compound homogeneous Poisson process and its ruin theory are
given in Chapter 1. Classical bounds and sharper two-sided bounds for the ultimate
ruin probabilities, given by Cai and Garrido (1999), and some asymptotic theory are
also summarized.

In Chapter 2, the preliminary results on compound non-homogeneous Poisson
processes with periodic intensity rate are presented. The periodicity for short term
and related risk characteristics of this model are shown. An embedded discrete
risk model and an average arrival rate risk model, which even deals with the time-
dependent claim size distribution, are used to give two-sided bounds to the ruin
probability. Some special two-sided bounds are derived in this work and numerical
illustrations are also given.

Finally, a more general Poisson model with double periodicity is proposed in
Chapter 3. Some practical shapes are illustrated for the periodicity of the claim

intensity.

Do



Chapter 1

Compound Poisson Process Ruin

Theory

1.1 Definitions

First we review the definition of the homogeneous Poisson process and the compound
Poisson process (CPP).

Let inter-occurrence times {7,; n > 1} form a sequence of independent random
variables that have a common exponential distribution with parameter A > 0. Then
the counting process or the number of claims process {N,; t > 0} is called a ho-
mogenous Poisson process with constant rate or intensity A, a special kind of renewal

process, i.e. for all s,t > 0, we have

(At) e M

PT‘{.’VS_H _ J\,rs = n} = T
mn:

n=0,1,2,... (1.1)

A basic property of the homogenous Poisson process is that it has independent
and stationary increments.

Let the individual losses, or the claim severities {X;,j > 1} be independent and
identically distributed non-negative random variables, independent of N,, each with
cumulative distribution function Fx and mean 1 = EX; < co. Thus Xj is the amount

of the jth loss. Let S; be the total loss in [0,t), which is given by S; = Zﬁ;‘l X; if



Ny >0and S§; =0 if N, = 0. Then for any fixed £, S; has a compound Poisson
distribution. The process {S;; ¢t > 0} is called compound Poisson process (CPP),
denoted as S;~C.P.[A; Fx] for z > 0.

Now consider the risk reserve process in the above compound Poisson risk model,

given by
Ne
Ro=u+08t-) X (1.2)

7=0

where u > 0 is the initial value and 8 > 0 is the constant premium rate over time,

which satisfies
8= (1+8)Au, (1.3)

where § > 0 is the relative security loading.
Let
T(u) = inf{t> 0; R, < 0},

denote the time to ruin, with initial value u, and let

T(u) = Pr{T(u) <oc}

= Pr{R, <0, forsomet>0]| Ro=u}, (1.4)

denote the ultimate ruin probability with initial value u > 0.

We review in the next few sections the classical results in the literature on .

1.2 Volterra Integro-differential Equation

An integro-differential equation for ¥ is given in this section. The more general

probability of ruin in a finite period is considered next.

Theorem 1.1 The ultimate ruin probability with initial reserve w satisfies the fol-

lounng Volterra integro-differential equation

V(W) =5¥w-5 [ Bu—z) dFxle)-5l1 - Fx@], w0 (L5)



Proof. See Rolski et al. (1999), pp. 162-163. a

The general solution to or a numerical evaluation of ¥(u) in (1.5) may be obtained
subject to the following obvious initial boundary conditions: ¥(oc0) = 0 and ¥(u) =1
for u < 0. The following corollary gives a derivation for the additional boundary

condition at u = 0. Note there is a discontinuity of ¥ at 0.

Corollary 1.1 The ruin probability with no initial reserve is given by

1
= > 0. )
v (0) ey >0 (1.6)

Proof. Integrating (1.5) with respect to u from 0 to y gives

U(y) —¥(0) = /\Il(u du——/ / ¥(u — z) dFx(z) du

/Oy/ou\ll(u —z)dFx(z)du = /Oy/: U(u — z) du dFx(z)
= /Oy /Oy_I U (u) du dFx(z)

where

This implies that

Yy - ¥O) = 3 / T (u) du — 2 /0 "o [ " dFx(z) du
A

8
y A
= 5/ ¥ () l—Fx(y—u)]du—B/[1—F\'(U)]du

Letting y — oo on both sides of this last equation, and using lim, .., ¥(y) = 0 yields
(1.6). O
Now consider the more general probability of ruin in a finite period, with initial

value u. Let

U(u,t) = Pr{R; <0, forsomes, 0<s <t} (1.7)



Alternatively, in terms of the time to ruin T'(u) as defined by (1.3), we have
U(u,t) = Pr{T(u) <t}, u,t>0. (1.8)
An equation analogous to (1.5) for U(u,¢) is given in the following theorem.

Theorem 1.2 The probability of ruin before time t, with initial reserve u, satisfies

the following partial integro-differential equation for u, t > 0

%\D(u, t) = ‘B%\P(u, t) + A1 — Fx(u)] — A0 (u,t) + /\/ U(u —z,t) dFx(z).
0
(1.9)
Proof. See for example, Panjer and Willmot (1992), p. 389. a

In fact, since the following relation clearly holds
U(u) = tlim U(u,t),

it is easy to get (1.5) as a special case of (1.9).

1.3 Compoun d Geometric Representation

This section gives an explicit form for ¥(u) using the technique of Laplace transforms.
First note that the ruin probability with no initial reserve in (1.6) is completely

specifie d by the security loading,

1
— 6>0
1+86° =7

(0) =
independently of the claim frequency rate A or the single claim amount distribution
Fx.

Let
1 7r* -
Gx(z) = ;/ Fx(y)dy, z= >0, (1.10)
0

denote the equilibrium distribution function of Fx, and Gg?)(x) be the n-fold convo-
lution of Gx with itself. It is well-known that ¥(u) can be expressed as the tail of a

compound geometric distribution, a result given below.



Theorem 1.3 The probability of ultimate ruin ¥(u) is given by the tail of the distri-

bution of a compound geometric distribution, i.e.

0 1 " =(n)
— - > .
U (u) 110 nE 1 (1 0) Gy'(u), u=0, (1.11)

where C-r‘(.? Y =1- Gg?) is the tail of GE{J), and 8 is the relative safety loading factor,

satisfying (1.3).

Proof. See Feller (1971) or Grandell (1991). O

It is difficult to obtain explicit expressions for ¥(u) in many practical situations.
For general claim amount distributions, evaluation via (1.11) is difficult (if not im-
possible), but we saw that ¥(u) satisfies a Volterra integro-differential equation. As
stated in the following result, it also satisfies a Volterra integral equation, and so ¥ (u)

may be obtained numerically using, say, the Laplace transform technique.

Theorem 1.4 The probability of ultimate ruin ¥(u) satisfies the Volterra type inte-

gral equation of the second kind

Cfx(u) 1 “
— — 2
U(u) T + 1+0/0 U(u—1y) dGx(%)- (1.12)
Proof. See Klugman et al. (1998), pp. 543-544. O

Thus, in most situations, ¥(u) cannot be obtained analytically but can be obtained
numerically from equation (1.12). On the other hand, from Theorem 1.3 we know that
the ultimate ruin probability ¥(u) is the survival function of a compound geometric
variate. Many results have been derived to find bounds for the ruin probability with
initial value u, or to find asymptotic forms of ¥(u) for large u, based on this compound

geometric structure. These are discussed in the next two sections.



1.4 Bounds for Ruin Probabilities

We begin our study of bounds for ruin probabilities by introducing the adjustment

coefficient, k > 0, which is the solution, if any, to the equation
/Ooo e~ Fy(z) dz = p(1 + 6), (1.13)
or equivalently
/000 e dGx(z) =1+86, (1.14)

where Gx(z) is given by (1.10).
The adjustment coefficient < is used in the derivation of useful approximations
and bounds for the probability of ruin. A fundamental Cramér-Lundberg’s bound is

a result in this direction.

Theorem 1.5 (Cramér-Lundberg) If there exists a k > O satisfying (1.13), then
U(u)<e™ , u>0. (1.15)

Proof. See for instance, Klugman et al. (1998), pp.531-533. a

This is an important result because it gives an upper bound on the probability
of ruin on a portfolio of business. However, the Cramér-Lundberg condition does
not hold in many practical cases, that is, the related adjustment coefficients do not
exist for many distributions. Many results have been derived for bounds on the
ruin probability since the work of Lundberg. These are generally based on the fact
that the ruin probability ¥(u) can be expressed as the tail of a compound geometric
distribution. Some of these new bounds can be applied to more general claim severity
distributions.

There are several approaches to derive general bounds for the ruin probability
¥(u). One way is to remove the Cramér-Lundberg condition or other similar condi-

tions; for example, De Vylder and Goovaerts (1984) give the following lower bound



for the ruin probability

éx(u)
\P(U)Zm, u Z 0. (1.16)

Another way is to relax Cramér-Lundberg’s condition by replacing the exponential
functions in (1.13) by, say new worse than used (NWU) or new better than used
(NBU) distribution functions [see Willmot (1997), Cai and Wu (1997)].

Consider a truncating Cramér-Lundberg condition, that is assume that for given

t > 0, there exists a constant x(t) satisfying
t —_
[ e Pety) dy = i1 +0), (1.17)
0

or, alternatively

4
/ e dGx(y) =1 + 6.

0

Under this truncated Cramér-Lundberg condition, Dickson (1994) gives an upper

bound for any 0<z<t:

P(z) < e =0 ¢ ﬁéé%. (1.18)

In the same spirit Cai and Garrido (1999) derive sharper two-sided bounds for

¥(z) under the above truncating Cramér-Lundberg condition.

Theorem 1.6 For any given t > 0, if there ezists a constant x(t) such that (1.17)
holds, then for any 0<z<t,

Bas(z,t)e=E) + Gx(t)
0 + Gx(t)

Oay(z,t)e™ =) + G (t)
6+ C_;x(t)

< ¥(z) < (1.19)

where

a) (xt t) = in-fOShS:z:a(h': t) ? a‘?.(xw t) = Suposh_(_::a(h': t)

and
ehn(t) [éx(h) - Gx ()] .

h,t) =
) = T e dG)




Proof. See Cai and Garrido (1999). a

Theorem 1.6 implies the following simplified and practical two-sided bounds for
U(u).

Corollary 1.2 Under the conditions of Theorem 1.6, for any 0<z<t,
Be=EHO 4 G (1) fe==) 1 G (t)
8+ Gx(t) 8+ Gx(t)
and hence, for any t > 0 satisfying the above conditions
fe=250) 4 G i (t) fe=) + G (t)
6+ Gx(t) 9+ Gx(t)

These bounds derived under the truncating Cramér-Lundberg condition, can be

< ¥(z) < (1.20)

<) <

applied to any non-negative claim severity distribution Fx with Fx(0) = 0 and finite
mean.

It is easy to see that the upper bounds in (1.19) and (1.20) are all tighter than
that of Dickson (1994) in (1.18), while the lower bounds in (1.19) and (1.20) are all
sharper than that of De Vylder & Goovaerts (1984) in (1.16).

1.5 Asymptotic Theory

Let Y be a random variable with distribution function G x as defined in (1.10) and its
corresponding pdf be given by ﬁ[l — Fx(y)], for y > 0, where Fx is the distribution
function of claim size random variable X.

It was shown in Theorem 1.3 that the ultimate ruin probability ¥(u) is the sur-
vival function of the compound geometric sum of random variables Y. Applying the
properties of the compound geometric distribution, we obtain the following approxi-
mate formulae for ¥(u) for large u. These may be used in place of or in addition to
the results of the previous section.

Consider first the situation where there exists adjustment coefficient < > 0, satis-
fying

14+ (14 0)kp = Mx(x), (1.21)

10



or equivalently (1.13), i.e.
1+6 = My(x). (1.22)

If x exists, then by Theorem 1.5 and the properties of the compound geometric
distribution, we have the well-known asymptotic formula, which is referred to as
Cramér asymptotic ruin formula, given below. Henceforth we use the notation a(z) ~

B(z), T — oc, to mean lim,_. -g—g—; =1.

Theorem 1.7 Suppose that k > O satisfies (1.21), or equivalently (1.22). Then the

ruin probability satisfies

z
~ —RU —_ 2
U (u) M (%) — n(150) e~ "™, asu— oo, (1.23)

or equivalently

6 .
v ~—e "%, — 0C, 1.24
(u) ,{A/f{/(l{)e . asu — oo, (1.24)

where M (k) and My (k) are the derivatives of the moment generating function of X

and Y, respectively.

Proof. See Panjer and Willmot (1992), pp. 384-385. O

If an adjustment coefficient exists then we have the asymptotic formula (1.23) and
the inequality (1.15) for the probability of ruin. It is easily seen that for light tailed
claim severity distributions, such as the exponential or the gamma, there always exists
k satisfying (1.22). However, for the heavy-tailed subexponential distributions, such
as Pareto, lognormal or Weibull (for some region of the parameter space), (1.22) is
never satisfied.

General asymptotic formulae are obtainable for the probability of ruin with subex-
ponential claim size distributions, for example, Embrechts and Veraverbeke (1982)

have shown that

Jo - Fx(y)ldy _ Gx(w)

o 7 as u — 0o, (1.25)

W(u) ~

11



also see Panjer and Willmot (1992).
For medium tailed distributions, we note that if My (y) < 1 + 6, or alternatively,
Mx(v) < 1+ (1 + 8)uy, where v > 0, and Mx(t) = oo for any ¢t > «, no k > ( exists

satisfying (1.22), and so (1.24) does not hold. In this case, however, Embrechts and
Veraverbeke (1982) have shown that

97l~lFx(U)
V)~ T T 0 — Mx (P

as u — 00. (1.26)



Chapter 2

Compound Non-Homogenous

Poisson Processes

The previous chapter presented the classical risk model based on compound Pois-
son process, which has the property that its corresponding claim counting process
{N;; t > 0} has independent and stationary increments. In this chapter, we expand
the class of homogeneous Poisson process to non-homogeneous Poisson(NHP) process
by introducing the notion of non-homogeneity. This allows for time-dependent arrival
rates, for example, the situation where claim occurrence times depend on the time
of the year. The corresponding claim counting process {/V;; ¢ > 0} has independent
but not necessarily stationary increments. Then a more general point process with a
similar structure as compound Poisson process, called compound non-homogeneous
Poisson process, is discussed. Further we consider a short term periodic risk model,

and discuss its periodicity properties and ruin probabilities.

2.1 Definition and Properties

Let A be a non-negative, measurable and locally integrable (deterministic) function.

Consider the claim arrivals over the time interval [s, t), i.e. the number of claims in

13



[s, t), denoted by N ¢, for 0 < s < t, (denoted N, when s = Q). Trhe definition of a

NHP process is given below.

Definition 2.1 The counting process {INy; t > 0} is said to be a non-homogeneous
Poisson (NHP) process with intensity function A\, where A(t) > @, for t > 0 if it
satisfies:

(a) N =0, ift=0;

(b) {N; t > 0} has independent increments on disjoint intervals;

(c) Pr{Nyrn — N, =1} = A(¢)h + o(h), for allt, h > 0;

(d) Pr{Nitn — Ny > 1} = o(h), for all t, h > 0,

ofh) __
B — 0.

where o(h) means limp~\ g
The function A defined by
t
A(t) =/ A(v)dv, fort >0, (2.1)
0

is called the hazard function or the cumulative intensity function oif the process.
Consider the number, N ;.¢), in an interval of the form [r, T -+ t), where 7 > 0,

t > 0. The time parameter T, is called the initial age of the process. Lt is the beginning

of the time interval where claims start to be counted. We refer to Pa:njer and Willmot

(1992), Rolski et al. (1999) and De Vylder (1996) for the following theorems.

Theorem 2.1 The non-homogeneous Poisson counting process {:N,; t > 0} with
intensity function A has the following properties:

(a) The number of claims in the interval [T, T +t) is Poisson distributed with mean
f:H A(w)dv = A(T +t) — A(7). That is, for all 7,t > 0,

e—[l\(f-*-t)—l\("’)][A(T +t) — A(T)]"

y , forne.e N. (2.2)

Pr{Nis r4y =n} =

(b) Let I, J, ..., K be bounded non-overlapping intervals in [0,00). Then the random
variables Ny, Ny, ..., Ng, the number of claims in these intervals, are mutually

tndependent.

14



Proof. See De Vylder (1996), pp.77-78. )

By the theorem above, it is known that for a NHP process with intensity function
A, Nir, r+¢) has a Poisson distribution with mean A(7 +t) — A(7), where A is defined
in (2.1).

In addition, the probability that the first claim occurs in [¢,t + h) is given by
PT{N[O, t)y = O, N[t, t+h) = 1} ~ A(t)e—A(t)h’

when h is small enough, or analogously, if claim counting starts at age 7, then the

probability that the first claim be counted in interval [T + ¢, T + ¢ + h) is given by
PT{N[T, T+ = 07 IN[r+t, r+t+h) — 1} ~ ’\(T + t)e_[‘\(r+t)—l\(f)}h7
where A is also small enough.

Theorem 2.2 Suppose that {N", t > 0} and {N®, t > 0} are two indepen-
dent NHP process with intensity functions A\; and Ao respectively. The superposition
{N:, t > 0}, where N, = Nt(l) + Nt(z) 1s also a NHP process with intensity function

A=A+ Ao

Proof. From the definition and the property of the Poisson distribution, it is
sufficient to prove that {/V;, t > 0} has independent increments. Let z, € N* and

th=0<t; <...<t,=t. Then,
P(({Ne = Mo, =z}) = P {IVS = NPT+ IN2 = N2 | = zi})
k=1 k=1

= > P(UWND -NOP I+ NP - NP ] =z} |
I(;Ska:k k=1
=1,...,n

(WY = NQ =y hP((HUNE - N2 =u)).
k=1 k=1

15



By the independence of Nt(l) and Nt(2),

) P(ﬂ{N" N® | =z —ye})

Oy <z
k=1,....n

PN =N =5}

= > I[P - N2 == —we}
0y <z k=1

k=l,...,n

PND - NO =y

[ 798}

P(ﬂ{‘)vtk - Ntk—z = zk})

= HP{ NG = N T+ (NS = N2 | =z}

tkl

= HP{Ntk - Ntk—x = xk}r

and therefore {V;, ¢ > 0} has independent increments. a

It is clear that a NHP process becomes a homogeneous Poisson process when
its intensity function A does not depend on time, i.e. A(¢) = A, for all ¢ > 0, and
therefore, A(t) = At.

The intensity or rate function mirrors properly the impact of the environmental
conditions at any time t. As proposed by Lawless and Thiagarajah (1994), it allows to
include the influence of past events into the model as well. Furthermore, some specific
random variables can be constructed using the rate and hazard function, which also
consider the impact of the surrounding condition for the model, as suggested by Kotz
and Shanbhag (1980) and developed in Chukova et al. (1993) and in Dimitrov et al.
(1997). The link between the intensity and failure rate functions, used in reliability
models under a minimal repair policy [see for example, Block et al. (1993), Beichelt
(1991), or Baxter (1982)], gives an advantage to explore the applicability of NHP
processes. Some characterization properties of the NHP process with periodic failure
rate have been shown, in Chukova et al. (1993) and Dimitrov et al. (1997), which

are also exploited to risk models in Garrido et al. (1996, 2001) and is described in
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next section.
If the claim counting process {/V;; ¢ > 0} is a non-homogeneous Poisson process,

then its corresponding claim process {S;:; t > 0}, given by

SN Xy N >0
St = N

0 if N, =0

is called a compound NHP process, denoted as S;~C.P.[A; Fx] for z > 0, where
{X;} are the claim severities, independent and identically distributed with common
cd.f. Fx and finite mean u, independent of N,.

We focus on the compound non-homogeneous Poisson process in the next two
sections. There are only a few results based on this claim process in the risk theory
literature. A compound non-homogeneous Poisson process with periodic claim inten-
sity rate case, called periodic risk model, was considered by Garrido et al. (1996,
2001). Similar models are also considered by Asmussen and Rolski (1991, 1994),
Beard, Pentikéinen and Pesonen (1984) and Dassios and Embrechts (1989) and are

discussed later.

2.2 Short Term Periodicity

Now, we consider the case where the risk process evolves in a short term periodic
environment, say one year, i.e. the claim arrival rate may depend on the seasons or
the claim size distribution may vary with the time of the year. First, assume that
only A, the intensity function of a NHP process {/V;; t > 0}, is a periodic function
with period 1, so that ¢t — [t| € [0, 1) is the time of season, where |¢] is the integer
part of t € R. Also we say that {V,; ¢ > 0} is a periodic Poisson process.

In fact, there are many seasonal conditions that affect insurance businesses. For
example, weather factors affect the insured risk in automobile and fire insurance;
factors such as seasonal snowstorms in the North and hurricanes or floods in the

South affect property insurance. Therefore, it is reasonable to use a periodic intensity
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function to model the claim occurrence process.
Referring to Dimitrov et al. (1997), we have the following properties for the NHP

process {V;; > 0} with periodic intensity function.

Theorem 2.3 Suppose that the intensity function \ is periodic with period c, then

(a) The hazard function A has the almost linear property
t t
At) = [ZJA(e) + At = [-Je) . fort > 0.
(b) For any integern >0 and t > 0
P{N[nc,nc+t)=k}=P{M=k}, fOT‘k‘=0,l,....

Moreover, the random variables Ny. and Npcncte) are mutually independent.

(c) The NHP process has a periodic intensity function A with period ¢ > 0 if
and only if the random wvariables Ny ) and N, c4y are mutually independent and
distributed as N, and N, respectively.

(d) For any t > 0 the random variable N; can be decomposed in the form

N ft<c
Nt: [Ovt) f o b
My+My+---+ Mg+ N o2y ft>c

where {M;}i»\ are i.i.d. Poisson random wvariables distributed as Ny, . and inde-

pendent of Ny ;_ ), where Ng ,_ 2|, s a Poisson r.v. distributed as Ny, fory =

t—|tlce 0, o).

Proof. See Dimitrov et al. (1997) pp.508-509. O
Consider {/MVj, r4+¢), t > 0}, the claim counting process of initial age 7, with
periodic intensity function A and period ¢ = 1. Its corresponding hazard function A

has a special structure, given below.

Theorem 2.4 Suppose that the intensity function ) is periodic of period 1, then the
hazard function during the time period [7, T+t), i.e. A(T+t)—A(7), has the following
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structure.

(i) If t is an integer, then
AT +t) — A(T) = A1),
(ii) If T is an integer but t is not, then
Al +t) — A(T) = A(L) L] + At — [£])-
(iii) If neither T nor t are integers, then

[ A@LE] + AGr — 7] + £ = [£]) — Alr — [7])
if 7] +1—7>t — |t}

A(T+t) — A(T) =« i
At + 1) +A(r—[m]+t=[t] = 1) = A(r - |7])

otherwise
\

Proof. According to the definition of A(T +t) — A(7), that is,

AT+1t)—A(r) = /TH A(v)dv,

and the periodicity of function ), results follow. a

Now we consider a compound NHP claim process with periodic intensity function
A and again period ¢ = 1. Assume that claim severities, {X;};>1, are i.i.d. random
variables with c.d.f. Flx, independent of time. Then aggregate claims over the time
interval (1, 7 + t) are given by

Nz, rie)

S[‘r, THE) = Z Xny (23)
n=1

where N, ;. is supposed to be a NHP process and Str, r+¢) = 0 if Nz 71y = 0. For
this process with initial age 7, the following results for Str, r+¢) hold:
(7) If t is an integer, independent of the initial age value 7, then by Theorem

2.3-(d) Sir, r+¢) can be decomposed as

S[T,T+t) = S]_ +SQ+"' +SL¢J, (2.4)
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where all S;’s are i.i.d. random variables distributed as
Ny
Sl = Z XTH
n=1
and N, is a Poisson r.v. with parameter A(1) = j;)l A(v)dv.
(%) If 7 is an integer but ¢ is not, then the claim counting process { V{7, 7+t), t >
0} is equivalent to the process which has the same time period but starts from 7 = 0,

i.e. {Np,¢), t > 0}. Thus S, -4 can be decomposed as
S[-r, Tt) —_—51 +SQ+"' +SL¢J +St_“j, (2.5)

where the last term is also a compound Poisson random variable, with parameter
A(t — |t]) for t — |t] € [0, 1), independent of other aggregate claims S;.

(#27) If neither 7 nor £ are integer, then Si- -4y may contain one or two incomplete
terms. When |7| +1— 7>t —|£], only one incomplete term appears as if aggregating
claims on the time interval [t — | 7], 7 — 7] +t — |£]) C [0, 1). In this case, Si, r+¢

can be decomposed as
Str,rt) = S14+ Sa+ -+ + S|ty + Spr—(), r—[r+t—1e]) > (2.6)

where the last term is a Poisson random variable with parameter A(7— | 7]+t —[£])—
A(T — | 7)), independent of other Poisson random variables with parameter A(1).
Otherwise, two incomplete terms appear in the decomposition form of S, ris).
One is equivalent to the accumulated claims from time 7 — | 7| to the end of the year,
while the other is equal to accumulate claims from the beginning of the year up to

t —|t] = (l7] +1 — 7). Consequently, S}, r+¢) can be decomposed as
Sir, reey = S1+ Sa+ - - -+ Spey + Se—jej—(irj+1-r) + Spr—i7, 1) (2.7)

where both incomplete terms are mutually independent Poisson random variables,
with parameters A(t — || — (|7] + 1 — 7)) and A(1) — A(7 — |7]) respectively, inde-

pendent of other aggregate claims as well.
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Moreover, the moment generating function of Sj; - can be gotten as

E(eStm r+0) = gAr+)—AM[Mx(r)-1] (2.8)

and moments of Si;, -, also can be obtained from (2.8). For example, the total initial
premium is

E(Sr, r) = [A(r + 1) — A(D]E(Xy).

2.3 Ruin Probabilities

This section, discusses the ruin problem for a general compound NHP process, with
known intensity function A and premium rate (. First, a Volterra integral equation
similar to (1.9) is derived. Then the embedded discrete risk model, in short term
periodic case, is presented and bounds for the ruin probability of the continuous-time
risk model are derived. Finally, we introduce a more general periodic Poisson process
and give corresponding two-sided bounds for the probability of ruin.

As in the classical risk model, assume that claim severities are i.i.d. with common
cumulative distribution function F'x, independent of time ¢, and finite mean w.

Consider the risk reserve process, over the time interval [r, 7+t), for a compound
NHP model with initial value of u at time 7. We denote it by Ry -4 (u) and it is
given as

N[?. T4t)

Riy riqy(w) =u+8t— Y  X;, forr, t>0, (2.9)

j=1
where N, ;.. is the corresponding NHP claim counting process, with intensity func-
tion A.
Let
Tr(u) =inf{t >20; Ry r+e(u) <0}

denote the time to ruin for the above reserve process, with initial value u at initial
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age 7, and define the probability that ruin occurs before time 7 + ¢ as

Vg ren(w) = Pr{Ti(u) < ¢}

= Pr{Ri r+s)(u) <0, forsomeO0<s<t}. (2.10)
The ultimate ruin probability with initial value u and initial age 7 is then
U(r, u) = tl_iglo Uir, rae) (u). (2-11)

Like the parallel definition for the classical risk model, shown in (1.7), this is a
finite time ruin problem and it depends not only on the initial value u and finite time

period ¢, but also on the initial time age 7.

2.3.1 Volterra Integral Equation

Referring to Garrido et al. (1996, 2001), an analogous Volterra integral equation for

Ui, r+¢) is given by the following theorem.

Theorem 2.5 The probability of ruin to time t beginning with initial reserve u and

wnitial age T, satisfies the integral equation:
t
U rigy(u) = / AT + v)e A=A — Py (u + Bo)]dv
0

t u+Sv
+/ /\(7‘ + U)e‘[A(r+v)—A(T)} / \Ij[f_;_v, 'r-{-t)(u + Bv — y)de(y)d'u,
0 4]

(2.12)

where A\, A are the intensity and hazard function respectively, and Fx is the common

distribution function of claim severity {X;}j>1-

Proof. Consider what will happen on the first claim. The time until the first
claim occurs is exponentially distributed with known intensity function A, then the
probability density function is A(T + v)e~Jo MT+s)ds — \(7 4 3)e~AT+I—AMI If the

claim occurs at time v > 0, the surplus available to pay the claim at time v is u + [v.

]
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Thus, ruin occurs on the first claim if the amount of the claim exceeds u + Sv. The
probability that this happens is 1 — Fx(u + £v).

On the other hand, if the amount of the claim is y, where 0 < y < u + (v, ruin
does not occur on the first claim. After payment of the claim, there is still a surplus of
u©+ v —y remaining. Ruin can still occur on the rest of the time interval [7+v, T+t)
with initial reserve v 4+ Bv — y at time 7 + v with probability Wi,y rie(u + v —y).
Therefore, by the law of total probability, we have the recursive equation.

Let R, denote the reserve value at time v, and 7T, be the ruin time with initial

age T.

U ren(®) = Pr{T.(u) <t}=Pr{T, <t | R =)
= /t/wPr{TTSt | R =u, T =v, X; =y}dFx(y)
/\(E'r —{(i v)e A=A gy,
= /Ot/OOOP'r{TTSt—U | Rryw =u+ Buv—y}tdFx(y)
= / t M7 + v)e A+v) A
0
[ s rrofu+ o - )P
_ / CA(r + v)e- A A
0

u+Sv
{ /0 Upran rae (1 + By — y)dFx (y) + [L — Fx(u -+ Bv)|}dv.

For some special cases of (2.12), we get the following corollaries.

Corollary 2.1 In (2.12), let 7 =0, then the probability of ruin to time t, beginning

with initial reserve u and initial age 0, satisfies the integral equation
t
T, () = / A()e ™1 — Fx(u + Bv)]dv
0

t u+Gv
+ / A(v)e~2@) / U, &) (u + Bv — y)dFx (y)dv.
0 0
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Corollary 2.2 In (2.12), let t T oo, then the ultimate probability of ruin, beginning

with wnitial reserve u and initial age T, satisfies the integral equation
(o o]
U(r, u) = / AT + v)e AE+I-AON] _ Py (u + Bu)]dy
0

+/°° /\(T + ,U)e—[A(T-i-v)—A(r)]
0
u+Gv
/ U(r +v,u+ Bv —y)dFx(y)dv
0

Particularly, when 7 = 0 and 3 = 1, the corresponding Volterra integral equation

1S given as
(0, u) = / A(s —u)e 6781 — Fy(s)]ds
+/ Als — u)e‘A(s'“)/ U(s —u, s —y)dFx(y)ds
u 0

Remark 2.1 In (2.12), if T = 0 and A(t) = A, after taking a derivative with respect
to time t, we get (1.9), the partial integro-differential equation about ¥(u, t) in the

classical case with constant initial value wu.

2.3.2 Embedded Discrete Risk Model

It is difficult to solve (2.12) analytically, even for the exponential claim size case.
Consider the special case where the intensity function A is periodic with period ¢ = 1.
As in the classical case, an embedded discrete risk model can be used to give a two-
sided bound for the ruin probability ¥ ;)(u) [see Garrido et al. (1996, 2001)].

By Theorem 2.3-(d), the surplus process Ry, ;)(u), with zero initial age, can be

represented as follows (all equalities are in distribution):

Ne
Ro ny(u) = u+pBt—)Y X,

n=1
lt] M Ne—ye)
= w+ Bl +BE-[t)) =D D XE - > x{dn
k=1 n=1 n=1
Le] My Ne—pe)
= u+) B3 XPI+[B- e - D X,
k=1 n=1 n=1
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where t — [t] € [0, 1), {X$?}.>0 are independent sequences of i.i.d. random variables
in period &, for £ = 1,2, ..., with common claim size distribution function as X, and
M, as well as N,_y,, are i.i.d. Poisson variables with parameter A(1) and A(¢ — [t])

respectively, independent of x5

Let
M;.
Us=B8-> X¥, fork>1, (2.13)
n=1
and Uy = u, denote the gain random variables, where Zﬁf_’fo X,(f), for k =1,2,...,

the aggregate claims during the kth period, are i.i.d. compound Poisson distributed
with parameter A(1). Thus, these random variables {U}x>1 are i.i.d., with common

moment generating function given by

My(r) = emB—A)[Mx (r)-1]

Now, consider the random walk {(k, Sk(u)); k£ > 0}, or discrete time surplus

process, defined by
Sk(u) =Ug+ Uy +-- - + Uy, (2.14)
and let
T(u) =inf{k >0; Sk(u) <0} (2.15)

denote its first passage time to a negative value, that is, the time of ruin in a discrete-

time risk model, with initial value u at time 0. Let
U(u, k) = Pr{T(uv) < k} (2.16)

denote the finite time ruin probability that the random walk hits a negative value
within & steps, with initial value u.

Since Rjg ) and S;(u) are related at integer values of £, that is,

R[o, m)(u) = SUJ ('U.) , forany t >0, (2.17)
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it is possible to use the time to ruin for the embedded discrete risk model, T(u) in
(2.15), to approach the time to ruin for the original continuous-time risk model with
periodic NHP claim counting process [see Garrido et al. (1996, 2001) ]. A basic result

related to this is given below.

Theorem 2.6 The time to ruin for the continuous-time risk model is stochastically
equivalent to the corresponding time to ruin for the embedded discrete model, in the

sense that the following inequalities hold:
P{T(uw) > |t] + 1}<P{To(u) > t}<P{T(u) > |¢t]}.
In other words, for the ruin probability Vg (L), the following holds:
T(u, [¢))<Tp, o(w)<T(u, [t] +1). (2.18)

Proof. See Garrido et al. (1996, 2001) . O
As shown in (2.18), a two-sided bound for the finite time ruin probability ¥ ), is
given by the corresponding consecutive finite time ruin probability for the embedded
discrete risk model.
In addition, the finite time ruin probabilities \f(u, k) satisfy the following recursive

equation:
- u+fB
U(u, k+1)=1— Fy(u+0) +/ U(u+ B -y, k)dFy(y), (2.19)
0

where Fy is the common c.d.f. of the Uy’s, under the boundary condition that
T(u, 0) =0 for all u > 0.

The inequalities in (2.18) imply that the probability of ultimate ruin in the em-
bedded discrete model is the same as that in continuous-time surplus process.

A lower bound for the ultimate ruin probability Wo(u) = lim,_.o, ¥[o, ) () can also

be found [see, for instance, Bowers et al. (1997)]. It satisfies

e~ T
{77 | T(u) < oo}’

where 7 is the positive solution of the equation

A(Q)[Mx(r) — 1] — pr=0.
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2.3.3 Average Arrival Rate Risk Model

In practical situations, apart from the claim arrival rate that may vary with the time
of the year, the claim size distribution may also depend on the seasons. We focus on
the time-dependent claim size case in this section.

Let {Fi(z), t > 0} be a family of distribution functions such that the mapping t —
Jo_ g(z)dF.(z) is measurable and periodic with period 1 for all integrable functions
g.

Assume that claims arrive according to the NHP process {N.}, with periodic
intensity function A of period 1, and if a claim arrives at time ¢, then the claim size
distribution is F}, independent of everything else. Denote the moment generating
function of F; by

M(s) = /Ooo e*dF(z).

Denote the average arrival rate by
B 1
A= / Alv)dv = A(1), (2.20)
0

while

[y M) Fy(z)dv
X

Fy(z) =

is the distribution function of a typical claim size; a weighted average of distribution

F, for different time values ¢. It has mean
W= | adria),

and moment generating function

Mg (s) = Jo M) M. (s)dv

A
Thus, the claim counting process {/V;, ¢ > 0} is a special homogeneous Pois-
son process with average arrival rate A. Its corresponding aggregate claims process

{S:, t = 0}, where S, = Z;L‘o X; with §; = 0if N, = 0, is also a special compound
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Poisson process with common cumulative distribution function F$. Furthermore, its
related risk reserve process {R;, t > 0}, shown in (1.2), is called average arrival rate

risk model.
Now consider the income process { R; — u, ¢ > 0} instead of risk reserve process
{R:, t > 0}. First, the Laplace-Stieltjes transform of R; — u, denoted as L(t; s) =

Ee~s{fe—v) is given in the following lemma.

Lemma 2.1 Fors, t >0,

L(t; s) = e™Pst+la A@M()-1ld (2.22)

where 3 is the constant premium rate.

Proof. See Rolski et al. (1999), p.526. O
We refer to Asmussen & Rolski (1994) and Rolski et al. (1999) for the following

average arrival rate risk model and its related two-sided bounds and asymptotic for-
mula for the ruin probability ¥(u).
Let so = sup{s > 0 : sup,¢, 1) My(s) < oo} and define

g%(s) = /_\[]\/[p)oc (s) — 1] — Bs. (2.23)

Let v > 0 be the solution of (2.23), that is, fol AW)[M,(v) — 1]dv = [, called the
adjustment coefficient for the average arrival rate risk model. Then v > 0 fulfills
6*(v) = 0. We assume that such a « exists in [0, sp) in the sequel of this section since
6*(0) = 0 and the derivative of §*(s) at zero is Au% — 8 < 0. The convexity of §%(s)
ensures that
6") (v) = /_\/000 ze*dF%(z) — 8 > 0.
Let z, = sup{y : Fy,(y) < 1}. We have following two-sided bound for ¥(u) in the

periodic Poisson model, which has time-dependent claim size distribution.

Theorem 2.7 For the Tuin probability ¥(u) in the periodic Poisson model, where the

claim size distribution is ttme-dependent as F;, the following inequalities hold:

a_e ™ < U(u) < ape™ M (2.24)
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where

a_ =0;;m£1 L(v; v)a_(v), ai = sup L(v; v)ay(v),

0<w<1
a_(v) = osiigz‘, a(z, v), ay(v)= 0;;15% a(z, v),
and _
F,(z
Proof. See Rolski et al. (1999), p.529. a

Now consider the special case in the above periodic Poisson model, where the claim
size distribution is no longer time-dependent, that is, F; = Fx. Thus, its moment
generating function is M(s) = f0°° e**dFx(z), and the Laplace-Stieltjes transform
(2.22) has the form L(¢; s) = e P+ Mx()=1AW®) where A(t) = [, A(v)dv. Moreover, in
this case, the average arrival rate risk model can be described as having the following

features

X= [, Fe) = Fx(a;
W= [ @) = Meg(s) = M(s)
Thus, we have s = sup{s > 0: Mx(s) < oo} and (2.23) has the form
0 (s) = A\[Mx(s) — 1] — Bs, (2.25)

which is exactly the same as in the classical case. Still assume that there exists a
v > 0 such that *(y) = 0. Then we obtain two-sided bounds for ruin probabilities

¥(u) in this special periodic Poisson model, below. Let zo = sup{y : Fx(y) < 1}.

Corollary 2.3 For the ruin probability ¥ (u) in the periodic Poisson model, where the

claim size distribution does not depend on the time, the following inequalities hold:
a’e™™ < U(u) <ale ™ (2.26)

where
. - A — A
at =a inf e PP gt =af sup e AT
O0<v<1 0<v<1
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and ~
Fx(z)
f:o e‘Y(y—I) dFX (y) )

Proof. Under assumption of the model, -y is the solution of (2.25), that is,

a(z) =

0*(7) = A[Mx(7) — 1] = By =0.
Hence, the Laplace-Stieltjes transform L(v; ) is obtained as
Llv; v) = e~ Brv+Mx(M—1A(v)
= e Brw—2)
Then (2.26) holds by Theorem 2.6. O
Corollary 2.4 Assume there is Apmaz, such that
At) € Aoz, for0<t<1. (2.28)

Then under the same condition of Corollary 2.3, the following inequalities hold:

aZe ™ < U(u) < ae™ ™™, (2.29)
where
- Amaz
a”™ =o e P, al = af‘_eﬁ" x

and a*, af are shown in (2.27).

T

Proof. The relation (2.28) implies that

Aw) = / A(8)ds € Amaz? < Amaz, for0<wv <1,
0

then
L(v; 7)<e®r 3 <7
and
L(v; 7)26—%(1-%{2)26—57_
Hence, (2.29) holds. O
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Corollary 2.5 Let A(t) take a specific parametric form from the beta family:
AE) =XtPH1—8)TY, for0<t<1,p g>1

Lf\}.’l -y — BI(B;z,pq;I;:)’ for 0 < v L 1, where B(p, q, v) is the incomplete

beta function. Assume that Uy, ezists such that

and g(v) =v—

sup g(v) = g(Vmaz).

0<v<1
then
ale ™ < W(u) < ale ™, (2.30)
where
B( » 3 ma::)
)

8~ (P..l)P-l(q_l)q—l
a, =aleBrd (ptq-2)pta=2
- el

3

and a”, of are shown in (2.27).
Proof. Since in this case,

a* = o inf e Pr®) > aof e~ Pr9(vmaz)
0<v<1
B(p. q. Uma:x:)]

= aie_ﬁ7[vm°‘_ B(p. q)

and A = 20B(D, @), Amaz = A& the result holds. O

(p+q—-2)P+e—2

Asmussen and Rolski (1994) also mentions that under some additional conditions,

there is a Cramér-Lundberg type approximation for ¥(u) in the form of

T(u)~ce™ | u — oo.

2.4 Illustrations

2.4.1 Short-term Periodicity for the Counting Process

In this section, we consider some specific periodic intensity functions and illustrate

their corresponding short-term periodic Poisson counting processes.
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Example 2.1 Properties of the short-term periodic Poisson counting process with

beta-type claim intensity rate.
As in Corollary 2.5, consider a beta-type intensity rate
AE) = A — [P {1 — (e — [t} >0, (2.31)

where the parameters A\, p, ¢ > 0. It is a periodic intensity function which reflects the
cyclic environmental condition in period [0, 1), say one year. The particular shape
depends on the values of the shape parameters p and ¢, and covers many possible
forms of annual claim intensities. For instance, when both p and q are less then 1, a
concave shape is obtained, while a convex shape is obtained when both p and ¢ are
greater than 1. By selecting the values of parameters p, g appropriately, many other
intermediate shapes are obtained.

The corresponding hazard function A(¢) is given by

Alt) = /: A(v)dv = /Ot AP (1 —v)¥ dy

= MIt|B(p, 9 +B(p, q¢; t —[t])}, fort>0, (2.32)
where
.0 [0 F

is the beta function at p, ¢ > 0, and
t
B(p, ¢ ©) =/ U1 =) dy, atte[0, 1)
0

is the usual incomplete beta function. Figure 2.1 shows the shape of A(¢) and A(t)
when A = 50,p =5, and ¢ = 2.

Consider one year period insured events. N, -4 denotes the number of claims,
with similar policy in a portfolio, recorded in the time interval [r, 7 + t), and is
assumed to follow the non-homogeneous Poisson distribution with parameter A(%) as

in (2.31). By Theorems 2.1, 2.3 and 2.4, we get the following results.
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A(t)-solid black curve, A(t)-dotted blue curve.

A=50,p=2and ¢ =3.

20-— /J
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’_,__,/
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Figure 2.1: Functions A(t) and A(t).

(i) The probability of n € N claims in the time interval [7, T + ¢), is given by

Tt n
Alv)dv T+t
PT‘{.N'[T' ret) = TL} = [‘/“' ("L) L] e~ I A(v)dy
.
= AT +1t) =AD" oA+ =AM
n! .

where A(T +t) — A(7) is derived from Theorem 2.4 and (2.32) as

AT +t) — A{T) = 1

e

if teN
if reN, t ¢ N

AB(p.q)|t]

MB(p.g)[t] + B(p.g.t — [£])}
MB(p, @) t] + B(p.g. 7 — 7] +t = [£])

_B(p.g,7— |7))} ifrt¢Nand |7 +1—r>t—|t]
MB(p.o)(t] +1) + B(p.q, 7 — 7] +t = [t] - 1)

~B(p,q.7— 7))}

otherwise

(2.33)

The shape of A(T + t) — A(7) as a function of initial age 7 € [0,1), when A = 50,

p=2,q9 =3 and t = 3.8 is shown in Figure 2.2. This is also the expected number of

claims in the interval {7, 7+ t). The shape of A(7 +t) — A(7) depends on the shape
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of the intensity rate A(¢) and time ¢. Since the intensity rate function is skewed to
the left and ¢t = 3.8, it is clear that when 7 changes over one period, the expected
number of claims over [T, T+t) first decreases to a minimum and then increases over

the rest of the interval.

A=580,p=2, ¢g=3 and t = 3.8.

1667
1547
1621

161
1587
1561
1547

0 02 04 ta 06 08 1

Figure 2.2: A(7 + %) — A(7) as a function of initial age 7 € [0, 1).

Particularly, the number of claims over one year, Ny, is distributed as

1 n

Uo /\(’U)d’l}] e— jbl A(v)dv
n!

[)‘B (pv Q)]ne—z\B(p, q}
n! ’

PT{N]_ = TL} =
forn=0,1....
(77) The moment generating functions of N}, -+ and N, are obtained as

E(eTN{.-. 1’+L)) — e[-'\(""*'t)—l\(”)](er—l)

and

E(eTN]_) — eA(l)(e"—l) — ez\B(p, q)(g"_l)’

respectively, where A(T +¢) — A(7) is given by (2.33).
(77) The expected number of claims during any time interval [r, 7 +t), equals its

variance and is given by
E(Ngr, r4y) = V(Np, re0y) = A(T +t) — A7),
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and similarly
E(Np) =V(Ny) = A1) = AB(p, q)-

(iv) The probability to survive the time interval [, T +¢) is

e~[Ar+)-A@)]

and for a one year period is

o = e—MD) — o—AB(@, q)_

(v) The waiting time 7 for the first claim in time interval [0, t) has an almost-

lack-of-memory distribution [see Dimitrov et al. (1997)], and is obtained by

Pr{T1 <t} = 1—Pr{N,=0}=1—e™

= 1 —_ aLtJe_’\B(pv 9, t—l.t.l).

Thus, the p.d.f. of T} is
Fr(8) = aldeBoat D¢ — |2)),

and the expectation of T is derived as

a+ A [l tP(1 —t)i e BEat)dy
]l -«
fol e~ B, 9, t) g¢
l—a ’

E(T) =

Figure 2.3 shows the behaviour of the survival probability e~{A("+8)=A() op the
time interval [r, 7 4+ t) as a function of initial age 7 € [0,1), when A = 50, p = 2,
g=3,and t = 3.8.

Generally, if the NHP process has a periodic intensity function of period ¢ > 0,
then (2.31) is alternatively defined as

t
M) =ArPP(1—=7)1, forr=t— [_ch, t>0.
The related results, as mentiomed in Example 2.1, could be acquired similarly.
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A=1,p=2 ¢g=3and t =38

246:07%
2207
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6e-08

0 02 04 - 1] 03 1

Figure 2.3: e~[A+)-A( 55 4 function of initial age 7 € [0, 1).

Now consider two periodic intensity functions A; and A,, as well as their corres-
ponding NHP processes {Nt(l), t > 0} and {NF), t > 0}. By Theorem 2.2, the
composition of these two processes is also a NHP process with intensity function
A=A+ Ao

A possible interpretation with real insurance events could be when the number of
claims in the process is counted under the effect of two independent random environ-

ments, each with its own repeated periodic behavior.

Example 2.2 Properties of the short-term periodic Poisson counting process, with

the superposition of two exponential-type claim intensity rates.

In the following example, we suppose there are two intensity functions. One has
monotonic increasing claim tendency and the other has monotonic decreasing claim
tendency, with period 1 in its claim counting process.

Let
AM(@Et)=¢€e", forr=t—|t]€0,1),t>0 (2.34)
and

Xo(t) =el"", forr=t—|t] €0, 1), t>0. (2.35)
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Obviously, this produces a periodic behaviour if
At+n)=A(t), foranyne N, t>0,

where A(t) = A () + Aa(2).
Let Ay, A, denote the hazard functions of A; and A, respectively. Thus, the

corresponding hazard function A is of the form A = A; + A, with

ALE) = [E)(e — 1) + (71 — 1)

As(t) = [t](e — 1) — [ 1D —e].
Therefore,
A(t) =2(e—1)[t] + e —el=C-lD e — 1], fort>0. (2.36)

Figure 2.4 shows the shape of A;(¢), \2(¢) and A(f) over two periods.

Ai(t)—-solid black curve, A;(t)-dotted blue curve, A(t)-dashed red curve.

T -

6% -

Figure 2.4: Functions A,(t), A2(¢) and A(¢) over two periods.

Analogously, consider N[, r.), the number of claims in the time interval [r, T+1),
and assumed to follow a NHP distribution with parameter A(t) = Ai(t) + As(£), as

shown in (2.36). The resulting properties are summarized in the following.
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(i) The number of claims over time interval [r, T + t) and over one year are

distributed respectively as
Nir, rety~Poisson{[A; (T + t) — Ay(7)] + [Ae(T+ ) — Aa(7)]}, for ¢ >0, 7 >0,

and

[2(e —1)]" e=2e=1)

for n=0,1,...,
nl

Pr{N, =n} =

where A(T +t) — A(7), can be derived from (2.36).

(77) The moment generating function of N . and N, are

E(e"N[f.f+t)) = E(erN[(rl.)fH))E(eer(f.)rH))

= e[Al(T+t)—A1(T)+A2(T+t)—Az(f)l(e”—l)’

E(eer) — e?(e—l)(e"—l).
(#it) The expected claims over time interval [r, 7+ t) and over one year are

E(Ni, r+9) = E(N

fr, 7+t

= [A(T+¢) = Ay(T)] + [A2(7 + t) — A (7)),

)+ EWNS )

and

E(N)=AQ1) =2(e—1).
(iv) The probability to survive for one year is

a = e—:\(l) — 6-2(6_1).

(v) By analogy with Example 2.1, the waiting time T} for the first claim in [0, t)

also has an almost-lack-of-memory distribution,
Pr{T} <t} =1 - altle ™ —elmtmithre1]
Thus, the p.d.f. of T} is

fT,_ (t) = olt! e—[et—LcJ_el—(t—LtJ)+e—1] [et—l_t_[ _ el—(t—[c])]’
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and its expectation is given by

ete-D) [T o~y

1 — e—?(e—l)

E(Ty) =

2.4.2 Numerical Examples for Ruin Probabilities

This section first explores the one-year ruin probability for the embedded discrete risk
model, as a function of the initial reserve u, or the initial age at onset 7, with a beta-
type claim intensity rate and exponentially distributed claim severities X; of mean
- Then under the same conditions, we compute two-sided bounds for ultimate ruin
probabilities ¥(u), for the compound NHP process, with a periodic claim intensity

function and zero initial age.

Example 2.3 The ruin probability within the first year period, as a function of initial

reserve u or the age at onset T.

In the first year period, ruin occurs if S;(u) < 0, i.e. Zf:[‘o X; > u+ (@, where M,
is a Poisson random variable of parameter A(1) = AB(p, ¢) and Fx(z) =1 — ek,
for £ > 0. By the law of total probability and the fact that the sum of independent
exponentials has an Erlang distribution, \Il[o' 1)(u) can be represented as

My

Tp, () = Pr{d_Xi>u+p}

=1

M

= > Pr{d Xi>u+pB | Mi=n}Pr{M; =n}
n=1 =1

= ZPI{XI + X‘Z +--- 4+ ‘Xn > u +,B} [AS)] 6_1\(1).

n=1
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Since 3 =7 X;~Erlang(n, u~'), we have

) (i) fe rid le m
Pr{X;+Xo+---+ X, >u+ G} =/ 4 dzx

+8 ['(n)
[L(u+ GO reo (Lyn-ign-zcE
T(n) +/u+ﬁ RSV
: L
[ +B)* i
= ; e K rh),
and hence

. [A(l) e~AC (“ + ﬁ) o Lts)
Yo, y(u) = Z ( )Z Led) s

n=1

Table 2.1 and Figure 2.5 show the dependence in (2.37) on u, for the case when
Ao =50,p=qg=2, E(X;) =p=1and 8 = 10, for values of u between 0 and 50.
The value in graph is of In[¥(g, 1)(u)] versus u. Clearly, the larger the initial reserve,
the smaller the ruin probability. We see that the decline is at a (negative) exponential

rate.

0 10 20 " 30 40 50

Figure 2.5: The log ruin probability as a function of the initial reserve w.

Similarly, under the same parameter values, we present the probability of ruin at
the end of the first year, U, 1)(u), as a function of the age at onset, 7, with an initial

reserve u. Note that the aggregate premium over [r, 1) is 8(1 — 7) and that N}, 1) is
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Table 2.1: Ruin probability as a function of the initial reserve u.

u T, y(u)  In[Tg, 1y (u)]
0 0.305816752 -1.184769205
5 0.066686493 -2.707752858
10 0.009632438 -4.642618871
15 0.001031333 -6.876903329
20 8.79265E-05 -9.339009105
25 6.26068E-06 -11.98122140
30 3.84941E-07 -14.77017607
35 2.09408E-09 -17.68156856
40 1.02652E-11 -20.69708713
45 4.59923E-11 -23.80254707
50 1.90469E-12 -26.98670431

Poisson distributed with parameter A(1) — A(7). The probability of ruin at the end

of the first year is then

Nir 1y
U y(w) = P{Y Xi>u+pB(1-1)}
=1
oc N1y
= Y P{Y Xi>u+B1—7) | Ny =n}P{Ny 1y =n}
n=1 =1

AQ1) — A(T)]ne-[A(l)—A(r)l
n!

= ZP{X1+-»-+Xn >u+ﬁ(1—T)}[
n=1

Z [A(1) —'A(T)]ne—[A(l)—A(T)]

n=1

o k
5 i {i[u +B(1 —7)]} e~ ulu+B(1-7)

pard Kkt
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Table 2.2: Ruin probability as a function of the initial age .

T A -AM) ()
0 8.333333 0.176412708
0.1 8.100000 0.217247741
0.2 7.466667 0.232953691
0.3 6.933333 0.224567384
0.4 5.400000 0.196778149
0.5 4.166667 0.156507354
0.6 2.933333 0.112096044
0.7 1.800000 0.072325408
0.8 0.866667 0.044245890
0.9 0.233333 0.023468509

Table 2.2 and Figuze 2.6 show the dependence in (2.38) on 7, for the same pa-
rameter values of A\ =50, p=¢q =2, p =1, 8 =10 and u = 2, for 7 between 0
and 0.9. The ruin probeability over period [r, 1) is affected by the intensity rate and
the length of the interv-al. When 7 is small, the claim intensity rate is also small and
so does the ruin probabbility. After reaching a maximum value, the ruin probability

decreases together withm the intensity rate and as the length of the interval increases.

a2t

g2t
0.181
c.l6T
0147
0127

Ol--
008t
0061
00471
002 0

61 02 03 04 05 05 07 08 09

Figure 2.6: Ruin probabilities as a function of the initial age 7.



Example 2.4 Two-sided bounds for the ultimate ruin probability ¥(u), with zero

initial age.

Assume that the compound NHP process has a beta-type periodic claim intensity

rate,

AE) = XptP (1 =)7L, for0<t<1,

and the claim size random variables X; are exponentially distributed with mean pu.

In this case, the moment generating function of X; is Mx(s) = 1_1#3, and then

(2.25) takes the form
1

0*(s) = /-\(1 — s

—1) - Bs,

where A = M\ B(p, q) is the average arrival rate. From 6*(y) = 0, we get

y= B B-peBl 9)

2.39
Bu Bu ’ (2:39)

and therefore,

F x ()
[ ew==1dFx (y)

e #

fx°° e1(y—=) ie“i’dy

a(z) =

is a constant, denoted as o*.

Hence, the two-sided bounds for ¥(u) of Corollary 2.5, are obtained from (2.30)

—_ — B(E' q. Umaz!
a* =ae Blvmaz B(p, 9)

8y _(p=1)P"l(g-1)7"1
a:_ — a*e B(p, q) (p+q—2)P+4—2

and v,,.. can be found numerically, as the root of the equation

W)=y B 2Y) _
glv) = B(p.q) 0,

where v and a* are given in (2.39) and (2.40), respectively.
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Table 2.3: Two-sided Bounds for ¥(u).

u  Lower Bound Upper Bound

15 0.058268 0.833333
20 0.025323 0.362165
25 0.011005 0.157396
30 0.004783 0.068404
35 0.002079 0.029728
40 0.000903 0.012920
45 0.000393 0.005615
50 0.000171 0.002440

Table 2.3 and Figure 2.7 show the lower and upper bounds for ¥(u), with zero
initial age, for the case when Ao = 50,p = ¢ = 2,u = 1, 8 = 10 and values of u
between 15 and 50, with increments of 5.

Clearly these bounds produce larger intervals for small u values, but estimate the

ruin probability quite accurately for large u.

Lower bound—solid curve, upper bound—dotted curve.
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Figure 2.7: The log ultimate ruin probability as a function of the initial reserve u.
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Chapter 3

Long Term Periodicity for the
Poisson Model

In the previous chapter we studied the short term periodic Poisson model, that is,
a NHP process with periodic intensity function of period 1. Its interpretation is
that of a risk process that evolves in a short-term periodic environment, for instance
the seasons in a year. However, it is more realistic to consider the case where the
periodic environment does not exactly repeat itself every year but also varies over a
relatively long period, for instance, four-years, with different levels in each year. This
is especially appropriate in catastrophic insurance, such as earthquakes, tidal waves
and hurricanes, which have peak seasons in a year but whose intensity also depends
on long term climatological effects like El Nino.

Consider a NHP claim counting process {V;, ¢ > 0}, with periodic intensity
function A of period ¢, where ¢ > 1 € N¥. The periodicity for a case ¢ = 2 is
discussed first. In this case, A is a periodic function, with different shape or levels of
claim intensity in the first and second year period. The periodicity for a general case
where the period ¢ > 1 € Nt is then discussed; another periodic function will then
describe the periodic levels when the intensity function is beta-type. Illustrations are

given in the last section of the chapter.

45



3.1 Periodicity for Period ¢ =2

Let

{ A(t) f0<t<l
Alt) = (3.1)
Ap(t) if1<t<?

be the intensity fumction in one period, where A\, and )y are two different functions.

For 0 <t < 1, denote two half period hazard functions related to Ar and Ay by
t
AL(t) = / Ar(v)dv
0

and

A;}(t) = AU(l +t) — AU(].) =A ’ /\U(v)dv =/0 )\U('U + l)dv,

where Ay(t) = [y Ay (v)dv.
By a analogy to Theorem 2.3, we have the following properties for the corres-

ponding hazard fun:ction A and the NHP process {1V, t > 0}.

Theorem 3.1 Sup-pose that the intensity function A in (8.1) is with period 2. Then

(a) The hazard _function A has the almost linear property, given as
t t
Alf) = [5IA° (1) + A(E—-25]), fort >0, (3:2)
where
1
A1) = [ D) + Aolo + Dldv = A1) + Ap(D), (3.3)
0

and
Ar(t—[t]) fo<t—2[%] <1

t
At-2z)) = '
okad {Aw—ummn fl<e—2l3] <2

(b) For any t > 0, the random variable N, is decomposed in the form

Ne=M]+---+1 féJ+N:—LtJ’ (3.4)
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where

Ny +MN if1<t—2(4 J <2

N[ it =

and {M}};>1 are i.i.d. Poisson random variables of parameter A*(1) in (3.8), i

dependent of Ny, N,_j,| and Nj —e)7 which are Poisson distributed with parameters

A1), AL(t — [t]) and AL (t — |t]), respectively.
Proof. (a) By setting ¢ = 2 in Theorem 2.3-(a), it follows that

A) = L3IA@) + A —2[2)),

where
A@) = /0 AL(v)dov + /1 o (v)do
= /Ox\L(fu)dv—i-/o Av(v + 1)dv
= A"(1)
and

NI"‘

Ae-20z]) = / A
_ S AL (w)dv fo<t—2(%] <1
B { o i uw+1)dv + [ A(v)dv if1 <t—2[4] <2
Ap(t—[t]) ifo<t—2(4 <1
{ Ay —1t])+AL(1) f1<t—24 <2
Hence, (3.2) holds.
(b) By Theorem 2.3-(d), (3.4) is a decomposition of NV;, where

M} = Npg—1), 20) + N1y, 299, fori=1,2,...,

are i.i.d. Poisson r.v.’s with parameter A*(1) = A.(1) + Ay(1), and N1, 21,
l2¢i—1),2¢) are Poisson r.v.’s with parameters A.(1) and A} (1) respectively. The

term N, is derived naturally. Hence (b) holds. a
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Consider that (3.1) is a beta-type function but with different peak levels, given as

A(t) = { ActPH(1—¢)9 fO0<t<1 (3.5)

AptP (1 =)l fl<t<?2

then we have the following corollary.

Corollary 3.1 Suppose that the intensity function X is given as (8.5) in Theorem

3.1. Then
(a) The hazard function A has the form
A) = L£](AL + Av)B(p,q) + ALB(p, g, t — [£]) ifo<t—2[t <1
L31(AL + Av)B(p.q) + Ay B(p,q,t — [t]) + AL B(p.q) f1<t—2[5]<2 -
(3.6)

(b)For any t > 0, N, is decomposed as (3.4), where M;’s, N;_|; and N{_LtJ are
mutually independent Poisson r.v.’s with parameters (Ap + A\y)B(p,q), A\t B(p, q,t —
lt]) and Ay B(p,q,t — |t]) respectively.

Proof. Since A(t) has the form in (3.5), it is easy to check that
1 2
AT (1) = / AP Y1 —0) Ny +/ Av(v —1)P7H2 — v)? dv
0 1
1
= / (/\L + /\U)’Up-l(l — v)q_ldv
0

(AL +Av)B(p. q),

t
AL(t) = / /\va—l(l - v)q-ldv = )‘LB(p7 aq, t)
c

and
1+t
AL(t) = / Av(l —v)PH2 —v)7 ldy
1
t
= / AgvPH(1 — v)? dy
0
= AvB(p,q,t)-
Therefore, the result follows by Theorem 3.1. O

Figure 3.1 shows the shape of the intensity function A and its hazard function A

in Corollary 3.1, when p=2,q = 4, Ay = 25 and Ay = 40.
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A(t)-solid curve, A(t)-dashed curve.
p=‘2, q=4, /\L:25 and/\U = 40.
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Figure 3.1: A(t) and A(t) as functions of time ¢.

Remark 3.1 For a periodic Poisson model with period 2, N, is decomposed in dif-
ferent Poisson r.v.’s, distributed as the corresponding Poisson r.v.’s in time interval

[0, 1].

3.2 Periodicity for Period ¢ > 2

Consider a period ¢ € N¥, ¢ > 2 and let
4
/\o(t) fo<t<1

A(t) =19 ) (3.7)

Aei(t) fc—1<t<ec
\
be the intensity function in one period. Using the same argument as in Section 3.1,
we get a parallel result to Theorem 3.1. Here consider that A(t) is beta-type but with

different levels in each year, for ¢ > 0 given as
A = gLt = Lole = L= L le)P = (¢ = L2fe— L= Lofe)™™, (3.8)

where g is a periodic function with the same period c. Figure 3.2 shows the shape of

A(t), when g(t) = 5+4sin $(t—1), and its periodicity when g;(t) = 2%3:[5 +4sin $(t —
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2)]. Its hazard function A and corresponding claim counting process {N;, t > 0} are

given in the following theorem.

A(t)—-solid black curve, g(t)-dotted red curve, g;(¢)-dashed blue curve.

- — 3
p=2and g=3.
9t ~7 //\\
e ™ 5
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Figure 3.2: Functions A\(¢) and g(%).

Theorem 3.2 Assume the intensity function \ is given in (3.8), then

(a) The hazard function A has the almost linear property, given by

Lt—{£)e|-1
A = EIN@+B@a) Y. g0) +ollt— LleDB@.at— 1), (39
j=0
where
AT(e) = B(p.9) Y _ 9(5)- (3-10)
=0

(b) For any t > 0, the random variable N, is decomposed in the form

!\.’t = AI[‘ +"'+.A/[|‘£; +.’V';_U_‘]. (3.11)

ted

where

Lt—[_%]cj—l
- i (te—LzleD)
t—[t] = Z Nc(J) + Nc_l.[_cj (3.12)
3
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and { M} }>, are i.i.d. Poisson r.v.’s of parameter A™(c) in (8.10), independent of NS
and ‘]Vt(i)]_tjf distributed with Poisson parameters g(j)B(p.q) and g(j)B(p,q,t — [t]).

forj=0,1,2,...,|t — |t]c], respectively.
Proof. (a) By definition, the hazard function A is derived as following:

A()) = /0 " A(w)du
[ otehe = 12l o= 12elp=1 = o = 2o~ o = (e }e="do
= L[ oo o)1= (o= o))+

I

t—|t]c
+ / g(lo])(w — (o)) {1 — ( — )} dv

= U [ siw- i e 1 -yt

Lt‘LﬂCJ“l F+1
+ D / 9w =GP NG +1~v)T v
7=0 7

4 olele o(lt - LEJCJ)(U —t— LEJCJ)P‘I(U — LEJCJ +1—v)"ldy
Lt—L£1c] ¢ ¢ ¢
]_t—l_%]cj—l

T ; ' p—1 - ; 1 p—1 q-
= LEJ;go)/O RIS 9G) [ Loy ia

‘ t—|t] ety
wgle=Ele) [ o — v
1 le-[£]e]—1
= 1IBG.0 Y i) +Bra) Y. gU)+ellt— e B@.qt - L2]).
=0

7=0

(b) By Theorem 2.3-(d), (3.12) is a decomposition of N, where
c—1
- _ G) L
M; = ZN[;(i—l),gi)y fort=1,2,...,
=

are i.i.d. Poisson r.v.’s with parameter A*(c) = B(p, q) Z;;é g(7). The term Ny, is
derived by the value of [t — |£]|c|. Hence (b) holds. O
Theorem 3.2 presents the case where the intensity function has the same beta-

type in every year but with different levels in each period, given by g(|¢]|). It may be

o1



possible to use another periodic function A, with peak values over periods when the
intensity function has a convex shape, instead of g(|¢]).

For example, in the illustrations that follow we use
. T T
g(t) =5+ 4sm(§t b —2-'),

with parameters ¢ = 4 and p = q for the beta-type functions. In particular function

g takes the following four values
9(0) =1, g(1) =5, g(2) =9, g(3) =5.

In this case, we can define

5 . m 3 1
h(t) = Z +sm(§t — ZTF) = Zhl(t),
where h;(t) = 5 + 4sin(3t — 2r) is a periodic function that satisfies

1 3 5 7
hl(;) = 11 hl(;) = 51 h1(§) = 91 h1(§) =393

r4

and the functions h and A have the relation
. . . 1 .
h(p* +17) = A(p" +1), forp =3 andi=0,1, 2, ...,
where p* is the peak reached at

. p—1

when beta-type function ) is convex over 0 < ¢ < 1, i.e. for p, ¢ > 1. The relation of
g(t) to h(t) is shown in Figure 3.3, wherec=4 and p = ¢ = 2.
Now assume that intensity function A has the same beta shape in each year, but

with different peak levels, given by function h. That is
t
A@) =h(ls] +p" ) s = [s))PH{l - (s — [s])}*!, fors=¢— [Zle, t20, (3.14)

where h is a periodic function with the same period c.
Analogously, we have the following properties for its hazard function A and claim

counting process {NV;, t > 0}.
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A(t)—solid black curve, h(t)—dot dashed blue curve.

g(t)—dotted brown curve, h;(t)-dashed red curve.

p=q=2.

B - S
5

o

Figure 3.3: The relation between functions g(t) and A(t).

Corollary 3.2 Assume that the intensity function A is given by (3.14), then

(a) The hazard function A has the almost linear property, given as

le—LZ]ei-1

M) = LI+ Bo.a) >, hG+p7) +h(lt = 2le] +57)Blp.a.t - [£]),

j=0
(3.13)
where
c—1
A*(c) =B(p.q) > _h(j +p) (3.16)
=0
and p* is given by (3.13).
(b) For any t > 0, the random variable N, is decomposed in the form
Ny=M+---+ 1\/[[‘51 + Nt‘_w, (3.17)
where
T et
:‘L‘J = Z N(SJ) + Nt-—[t} € ) (3.18)

=0
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and {M }:i>, are i.i.d. Poisson r.v.’s of parameter A*(c) in (3.10), independent of N

and N9 distributed with Poisson parameters h(j+p*)B(p, q) and h(j+p*)B(p, q,t—

t—|t]’
{t]), for j =0,1.2,... |t — | £]c], respectively.

Proof. Follows by the same argument as in Theorem 3.2 with g(¢) = A(t +p*). O

3.3 Illustrations

In this section we consider some possible periodic intensity functions with period ¢ > 2

and their corresponding properties on long-term periodic Poisson counting processes.

Example 3.1 The long-term periodic Poisson counting process with beta-type and

symmetry in every period claim intensity rate.
Let A be a periodic function with period 5, given by
O =g(e])(s = s L= (s = L™, fors=t=5[c],620  (3.19)
and parameters p,q > 1, where
g9(¢) = s'm% | +1 (3.20)

is a periodic function also with period 5. Figure 3.4 shows the periodicity and sym-
metry of the function A when the peaks of A, as a function of ¢, are given by a

polynomial

o) = 3222 Sy ZIRAEVR, S,

lolr—-t
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By Theorem 3.2, its hazard function A is derived as follows:

le-1£J5]-1

AW = NG +BEa Y 96)+g(lt— 15D B(.a.t — [2])
7=0
. 4 le—15i5]-1 i
= [E1B@9)Y_s(0)+B@a) Y [sinZl|+1]
7=0 =0
s TEZEBD 6,0 1)
Le—L515]-1 .
= LIBe.QU+VD+Bma Y. [sin|+1]
j=0
+(| sin (Lt _4L§‘|5J) | +1]B(p,q,t — [£]). (3.21)
Denote
A* =(7+V?2)B(p, q), (3.22)

then the number of claims N; is decomposed in the form
Nt = Z\/[; + M + j\/.[féj +N:-Ltj’

where
le-1£151-1

- () (le-L515])
Niw= D N+ Nt
=0
and {M;};>; are i.i.d. Poisson r.v.’s of parameter A* in (3.22), independent of N:—fj )
&)
and Ntim,
+1)B(p,q,t — [t]), for  =0,1,2,..., [t — | £]5], respectively.

distributed with Poisson parameters (| sin’—;i | +1)B(p, q) and (| sin-’ii |

Moreover, the moment generating function of Nj is given by
E(eNe) = e (e™=1),
therefore the expected number of claims during one period, coincides with the variance:
E(N,) =V(N,) =A".
The probability to survive for one period is

a=e‘A,

59



A(t)—-solid black curve, p(t)-dotted blue curve.

c=5and p=g=2.

Figure 3.4: The periodicity and symmetry of \(¢).
where A* is shown in (3.22).

Example 3.2 The long-term periodic Poisson counting process with beta-type and

peak values given by function h.
Let A be a periodic function with period 4, given by
t
At) =h(ls] +D)(s— [s))P L= (s = [s])]*"!, fors=t— 4|'Z‘|’t >0 (3.23)
and parameters p,q > 1, where
h(t) = 2 +sin(Te — 35 (3.24)
= 1 -~ Sl 4:/ L

is a periodic function also with period 4. Figure 3.5 shows the periodicity of the

function A. By Theorem 3.3, its hazard function A is obtained when p = q as follows
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o )—

(note that in this case p* = 3):
Le-[5)4i-1

AW = [ZNW+B@a) Y hG+p) +AlE— 154l +7)BEat - Lt))

ji=0
¢ 3 1 {t—|5J4l—1 - . 3
= |31B(@.q) Z h(j +3) + B(p,q) 2; [ +sin(50 +35) = 77
=l J=

#g + ol 1501+ ) — Bt — L)
-t

= SLglBe.a)+ B Y sl ) - g

-

+2 +sinfZ (e - 15)4] +5) = S B 0.t - L4)). (3.25)

A(t)—solid black curve, h;(t)—dotted blue curve.

c=4and p=gqg=2.

5
2 ,’, kY I’ \\'.
¢ ‘\ ’ .

i {1 \ {:
1571 , \'. L \k

" ” L " B

E ¢
, . / s
051, s . 5
N <
0 1 2 3 4 b 6 7 8

Figure 3.5: The periodicity of A(¢).

In a similar way to Example 3.1, the related risk characteristics can be obtained.



Conclusion

Compound non-homogenous Poisson processes with periodic claim intensity rate are
appropriate for modeling risk processes under seasonal conditions. Based on the
short-term Poisson model and its periodicity, we introduce a more general Poisson
process model with double periodicity. The interpretation is that the risk process
evolves in a relatively long period where the periodic environment does not repeat
itself exactly. The short periodicity peak varies over a relatively long period, with
different levels in each short period. This makes the model more practical than the
short-term one for some risks, such as hurricanes. Some analytical and more general
shapes (e.g. beta, sine) are illustrated for the periodicity of the claim intensity.

An embedded discrete risk model, which is related to the time-continuous periodic
claim process and an average arrival rate risk model are presented. The latter even
deals with the time-dependent claim size distribution. These models can be used to
derive some explicit analytical and useful results for ruin probabilities. In some case,
ruin probabilities and bounds can also be evaluated numerically, in which the related
risk characteristics can be recognized.

More work on general compound non-homogenous Poisson risk models is still
needed. The Volterra integral equation for the ruin probability Wi, r4¢(u) is already
derived. Methods are needed to analytically or numerically evaluate it, under regu-
larity conditions, as in the classical case. More realistically, the ruin problem for a
long term Poisson model can be considered, based on the ruin model in the short

term case.
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