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ABSTRACT
Vanishing and Non-Vanishing of L-Series of Elliptic Curves
Twisted by Dirichlet Characters

Jack Fearnley, Ph.D.
Concordia University, 2001

We study the behaviour of L-series of elliptic curves twisted by Dirichlet
characters. In particular, we study the vanishing and non-vanishing of these
L-series at the critical point. We present empirical results indicating the
vanishing behaviour of cyclic twists of orders 3,5,7 and conductors up to
5000 for elliptic curves of conductor less than 100. We prove results for
vanishing in the case of cyclic cubic twists and non-vanishing in the case of
cyclic twists of arbitrary prime order.

Let L(E, s) be the L-series of an elliptic curve E : y? = z° + Az + B with
A, BeQ.

If there exists a cyclic cubic character x such that L(E,1,x) = 0 or if
L(E,1) = 0 then the L-series vanishes for an infinite number of cyclic cubic
characters.

With finite exceptions, if L(F,1) # 0 there exist an infinite number of
cyclic twists 1 of prime order & such that L{E, 1,v) # 0 for every order k.
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Chapter 1

Introduction

1.1 Overview of this thesis

The purpose of this thesis is to study higher order twists of the L-functions
associated with elliptic curves. It is conjectured that the value of the L-
function at its critical point supplies important information about the elliptic
curve and, in particular, the vanishing or non-vanishing of this value is related
to the rank of the elliptic curve.

This chapter defines key aspects of this relationship and describes what
is known and what is conjectured about these L-functions. Chapter 2 is
of an empirical nature and describes computations estimating the fraction
of L-functions which vanish for a range of cyclic twists of orders 3,5 and
7. The computational techniques are described, and summarized results are
displayed.

The balance of the thesis is of a more theoretical nature. Chapter 3
surveys the various techniques which have been used to study twisted L-
functions, mostly for quadratic twists. Chapter 4 proves results for the van-
ishing of cyclic cubic twists and chapter 5 proves non-vanishing results for
cyclic twists of prime order.

The final brief chapter mentions some results for vanishing of twists of
order 5 and 6. Appendices give more detailed results for vanishing twists and
a listing of the computer programs used in the calculations.



1.2 Elliptic curves

An elliptic curve E over a field K is a genus one curve with at least one
K-rational point. With an appropriate choice of coordinates which places
the identified point at infinity, the curve E can be explicitly written down in
Weierstrass form. The affine version of this form is

¥’ +a17y + azy = 2° + 0p2’ + agz + a6

with the coefficients a,, ay,a3,a4,a6 € K. For fields of characteristic other
than 2 or 3, we can simplify this by rational transformations of the variables
to the short Weierstrass form

yY¥=1+Az+ B

The points of E satisfy an addition law which give the curve the structure
of an abelian group. In 1922 Mordell [24] proved that the group E(Q) of
rational points is finitely generated and in 1930 Weil [42] extended this proof
to any number field K. We have

E(K)~Z/6WZ X Z[t,Z x Z7

where r is the rank of E(K) and Z/t,Z x Z/t,Z is the subgroup of torsion
points.

1.3 The Birch and Swinnerton-Dyer conjec-
tures

Let E be an elliptic curve of conductor N defined over Q. The Birch and
Swinnerton-Dyer conjectures as originally stated relate the rank of the elliptic
curve over Q to the order of vanishing of its L-function as follows:

Define N,, to be the number of points on E over the finite field F,, and let
ap=p+1—-N,if pfNanda,=p— N, if p| N. Then we define

LE,s) : =] -aw+p*)" ] - app™)!
PN

PIN

= % for R(s) > 3/2
n=1



to be the L-function of the elliptic curve. By the theorems of Wiles [43] and
Taylor-Wiles [39] and subsequent refinements, this L-function is the Mellin
transform of a weight two cusp form

o0
f(z) = Z a, exp(2minz).
n=1
The L-functions of these modular forms satisfy a functional equation which
permits their continuation to the whole complex plane and, in particular to
the critical point s = 1.

Conjecture 1.3.1 (Birch and Swinnerton-Dyer I) The order of vanish-
ing, v, of L(E,s) at the critical value s = 1 is equal to the rank of the
Mordell- Weil group of the elliptic curve.

In order to state the more precise version of the Birch and Swinnerton-
Dyer conjecture we will need to define some invariants of £ and a height
function which measures the arithmetic complexity of points on E. The
arithmetic complexity of a point P can be measured by a naive height func-
tion h(P) such as the number of digits in the numerator of the z coordinate.
A more useful measure of height is the Néron (or canonical) height given by

h(P) = lim h2"P)

n—oo 4n

which gives h the structure of a quadratic form. We further define a height
pairing of two points P, Q

(P,Q) = h(P + Q) — h(P) - (Q).

Let the points Py, P,, ... P, be a basis for the free part of the Mordell-Weil
group of E. Then we define the regulator of the curve to be

R =det((P, F;)).

Another invariant of E is the period

Q_/"" dr
" Jes V*+ Az +B

where e; is the greatest real root of 22 + Az + B = 0.
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A further invariant of the curve is I, the Tate-Shafarevitch group, which
measures the failure of the local-global principle for elliptic curves. It is
conjecturally finite. The c, are integers related to the primes of bad reduction
and are called the Tamagawa numbers (See below). With these parameters
in hand we can now state the precise version of the conjecture:

Conjecture 1.3.2 (Birch and Swinnerton-Dyer II)

_ QIR
T IEQu iy
tor pIN
These conjectures were first formulated in 1963 and there is, by now,

extensive numerical evidence in favour of them but they have so far resisted
complete proof. In 1977 Coates and Wiles [5] showed

lim L(E, )/ (s — 1

Theorem 1.3.3 Let E be an elliptic curve over a field K with complex mul-
tiplication. K may be the field of rational numbers or the field of complez
multiplication. Then if E(K) is infinite, we have Ly (E,1) = 0.

R. Greenberg later gave a partial converse of this result: namely that
if the L-function vanishes with odd multiplicity at s = 1, then either the
rank is positive or III is infinite. The preceding theorems and further results
particularly by Gross, Zagier and Rubin were extended and unified by work
of Kolyvagin [17] in 1988 summarized in the following theorem:

Theorem 1.3.4 (Kolyvagin) For an elliptic curve E/Q, if L(E,1) # 0
then the rank of E is zero. If L(E,1) =0 and L'(E, 1) # O then the rank of
E is one. Furthermore, in both these cases, III is finite.

This theorem was further generalized by Kato to abelian extensions (see
theorem 8.1 in [32])

Theorem 1.3.5 (Kato) Suppose E is modular and E does not have com-
plex multiplication.

(i) If L(E,1) # 0 then E(Q) and III are finite

(if) If K is a finite abelian extension of Q, x is a character of Gal( K/Q),
and L(E,1,x) # 0 then E(K)X and the corresponding part of III are
finite.



The case where E has complex multiplication was covered by Rubin [32].
Very little is known about the conjectures for ranks greater than or equal to
two.

The Birch and Swinnerton-Dyer conjectures can be generalized to abelian
varieties over number fields as follows (see [20] section III §5):

Let A be an abelian variety defined over a number field F'. In order to
generalize the above conjectures we must give appropriate meanings to the
terms found in the L-function and to the terms in the expression on the right
hand side of the second conjecture.

Let O, be the local ring of integers in F' at some discrete valuation where
A has good reduction. Let k(v) be the residue class field and G, be a de-
composition group. We construct the L-function as follows

e Nv = |k(v)|

e Frob, = Frobenius element in G, acting on A(k(v))

® a;, =the eigenvalues of Frob,

e P,(T) = [1%,(1 = a;,T) for places of good reduction of A

e P,(T) for places of bad reduction of A (These are polynomials)

0 S = Spag U Sy the set of all places of bad reduction of A and all
archimedean places of A

Then the Euler product

Ls( HP(Nv-’) H P(Nv")HH ~ aieNv™)™

1¢€Sx0 vgS =1
converges for R(s) > 3/2.

Conjecture 1.3.6 (Generalized Birch and Swinnerton-Dyer I) The func-
tion may be analytically continued to the whole complex plane and its order
of vanishing, r, at the critical value s = 1 is equal to the rank of A(F).

In order to present the second conjecture in generalized form we must
identify factors equivalent to the period, regulator and Tamagawa numbers
in this more general framework.



e PERIOD: At each absolute value v the completion F, is a locally com-
pact field and so we can choose a Haar measure p, such that, for almost
all v, u,(O,) = 1. We can choose an invariant differential form w of
degree d on A/F and define the v-adic period

Ty =/ lwlu ug
A(Fv)

The measures p,, define a measure u = [] u, on Ar/F, the quotient of
the adeles of F' with F' and we define the norm ||u|| = p(Ar/F). The
value

Hues Ty

el
takes the place of the period in the original conjecture.

e REGULATOR: The regulator is defined to be

where {P,,..., P} is a basis for A(F) modulo torsion and (F;, F;) is
the height pairing

e TAMAGAWA NUMBERS: Let A be the Néron model of Ar over Op,
with connected Néron model A°. For v finite we define

Cy = [Ak(u)(k(v)) : A(l:(v)(k(v)):l

The Tamagawa number, ¢, is thus the index of the subgroup of points
in the residue class field on the connected component of the special
fibre in the full group of k(v)-rational points on the whole fibre of the
Néron model.

We now have

[loes™ || Ry
2
el JAF el o,

lim L(A,5)/(s = 1)" =



1.4 Twists

The definition of the L-function may also include an additional variable rep-
resenting a fwist. This twist can be a Dirichlet character x or, more generally,
a character p of Gal(Q/Q) in some GL,.(K). The generalized twisted version
of the first conjecture can be found in Rohrlich [31]. The twisted L-function
provides information about the analytic rank of the elliptic curve over a finite
extension of the base field. Let K be a finite abelian extension of Q, then

L(E/K,s) = L(E/Q,s) [[ L(E/Q, s, x)

where the product is taken over all non-principal primitive characters x €

(Z/mZ)* for a given conductor m. More generally, let A be an abelian variety
over QQ and let p be a continuous finite-dimensional complex representation
of Gal(Q@/Q). There is an extension H/Q with an embedding in C where p is
realized. Thus p can be viewed as a representation of Gal(Q/Q) on a finite
dimensional space V over H. Rohrlich defines the twisted L-function as a
product of local twisted L-functions

L(s,A,p) = [ Ls(s, A, p)-

For each prime p fix an ideal p of H lying above p, and let I(p) and Frob(p)
be the inertia group and Frobenius at p respectively. Now choose a different
prime £ and A € H above ¢ and consider the vector space

W = (H,®z,T,(A)) Ou, (H\®@y V)

where H), is the completion of H at A. The Tate module T,(A) is the inverse
limit of the #* division points on the variety A.
The local L-function is now given by

Ly(s, A, p) = det(1 — p~*p(Frob(p)) | Wi)-

Here the restriction W(,) refers to the largest quotient of W on which I(p)
acts trivially. The generalized conjecture states that

Conjecture 1.4.1 (Twisted Birch and Swinnerton-Dyer conjecture)

ord,—, L(s, A, p) = multiplicity of p in C® A(Q).

7



Specializing to one dimensional characters, let x be a Dirichlet character
of degree k and conductor m prime to N. Then the twisted L-function of an
elliptic curve F/Q of conductor N is

L(E,s,x) = i 9_'%("_)
= I - ex@p~* + *@)p2) " [ (1 - apx(elp™).
PN pIN

As L(FE, s) corresponds to a weight two eigenform in Sy(To(V)) so L(E, s, x)
corresponds to a weight two form in Sy(To(Nm?), x?) (35, Prop. 3.64]. For
(m,N) = 1, this twisted L-function can be holomorphically continued to the
whole complex plane and satisfies a functional equation [35, Thm. 3.66].

A(E,s,x) = ~x(N)1(x)*m~'A(E,2 - 3,X)
where

A(E,s,x) = (%) I'(s)L(E, s,X)

and 7(x) is the Gauss sum 7(x) = S-72! x(c) exp(27ic/m).



Chapter 2

Empirical results for twisted
L-series

2.1 Computational considerations

Let L(E,s,x) as previously defined be the L-function for an elliptic curve
E/Q of conductor N twisted by a Dirichlet character x of conductor m prime
to N.Let f(z) = }_a,exp(2rinz) be the modular form of weight two and
level N associated to the elliptic curve in question. We are interested in the
vanishing or non-vanishing of L(f,1,x). There are three possible ways to
compute this function

e We can compute directly from the definition

L(f,1,x) = Z anx(n) )

n

n=1

While not absolutely convergent, this series is conditionally convergent
[26] but extremely slowly. An experimental calculation to 200,000 terms
yielded only single digit accuracy.

e We can use a series representation derived from the functional equation
(here, 7(x) is the Gauss sum and ¢ = *+1 is the root number)

110 = Y 2w (220 (o + ax() ™ x)



This series is rapidly convergent for small values of mv/N and has an
easily computable bound on the truncation error after k terms, namely

4 ¥ where p = ex (— 2n )
However, although we can unequivocally state that a given result is
non-zero, we can never prove that very small value is a true zero.

e Finally, we can use the modular symbol expression more fully explained
in a subsequent chapter

L0 ="2 ¥ {2},

m
amodm

2.1.1 Using the L-series

By expressing this twisted L-function as the Mellin transform of the associ-
ated modular form we can show that it satisfies a functional equation

A(E, s,x) = —ex(N)T(x)*’m™'A(E, 2 - 3,%)
where € = +1 is the root number (the eigenvalue of the Fricke involution)

and
A(E, s,x) = (mz—‘fr’v> P(s)L(E, s,x),

where N is the conductor of E and 7(x) is the Gausssum 7(x) = 373" x(c) exp(2mic/m).
Using this property we can develop a series for L(E, s, x) which is absolutely
convergent for all values of s. Let f(t,x) = 3 a,x(n) exp(2mint).

mvN ’ ® . dt
("‘2'77) I(s)L(E,s,x) = /o tf(t,x)T
1/mvVN 00 . dt
- /o + /Umtﬂt,x);
1ymvVN dt
= [ e

1/mvN
—x(N)7(x)*m™! / tof(t, ‘;z)%f.
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Here we have used the Fricke involution property of the twisted modular
form and the functional equation to bring both integrals to the same limits.
Expanding f in its Fourier series and integrating term by term gives a com-
plicated expression in incomplete gamma functions (see [26] for the analogous
untwisted expression) which, at s = 1, simplifies to

e a, —_— —-2mn
L(Ev X 1) - nz::l ; (Y(n) +¢ XX(n)) exp (m\/JV)
where C, = x(N)7(x)2/m. The remainder after k terms of this series is
dominated by that of a geometric series in p = exp(—27/mv/N). Note that
lan/n| < d(n)n~'/? < 2 where d(n) is the number of divisors of n and the
term in brackets has absolute value < 2. So the remainder after k terms is
less than lf—pp".

Going back to the complicated expression in incomplete gamma functions
we can also derive a series for the derivative of the twisted L-function anal-
ogous to the untwisted version computed in [3]. While the general form is
very complicated, the resulting series at s = 1 is

E(Ex1) =3 %2 (x(n) - <O ) B (,:%) :

n=1

where Ei(z) = [2°e™*% is the exponential integral. This has even better

t
convergence than the series for L(E, x, 1) since E;(z) ~ e %/z.

2.1.2 Using modular symbols

Modular symbols were originally introduced by Birch and further developed
by Manin. They have since been used for a number of purposes:

e Mazur, Tate and Teitelbaum [22] demonstrate the usefulness of modu-
lar symbols in computing twists of [-functions associated with weight
k modular forms.

e Cremona [6] uses them to compute the homology of Xo(N), a key step
in producing his catalogue of elliptic curves.

e Cremona again uses modular symbols to determine the degree of the
modular parametrization of elliptic curves [§], [7].

11



We will be interested in the first of these uses with weight two forms.

Let f(z) be a weight two cusp form. The path integral 2mi f: f(z)dz with
a,3 € H is called a modular symbol

In [22] the weight two modular symbol is defined to be

—-a/m

{oo, %} = 27ri/ f(z)dz

(= *]

(where we have suppressed a polynomial argument which has degree zero in
the weight two case and simplified the notation).

The twisted L-function can be expressed as a finite linear combination of
modular symbols using Birch’s lemma.

Let x be a Dirichlet character mod m. Using the Gauss sum 7(n,x) :=
Y e moam X(a) exp(2mina/m) and the fact that T(n,x) = ¥(n)7(1,x) and
putting 7(x) := 7(1, x) we may derive (with Birch)

00 %~ tafoo @
L(f'/ 11 X) - - angm X(a) {wa '1;;}
Assuming we can compute the values of the modular symbols, this gives us
a finite sum representation for the twisted L-function at the critical values.
The calculation of a modular symbol involves a reduction step to express
it as a sum of basic symbols (called Manin symbols by Cremona [6]) and then
a lookup into a suitable table of pre-computed basic symbols. Goldfeld [11]
explains these two basic steps for weight two forms over I'4(NN) for square
free N.

The reduction step

Given a path {a, 3} between cusps in the upper half plane we can always
associate a matrix o such that 3 = o(a). This matrix is not necessarily in
SLy(Z). We need to break the path down to a number of paths satisfying
this requirement. Since {a, 3} = {0,3}— {0,a} we may reduce to the case
{0,a}.
Let
P2 P-1 Po  Pr_
9-2'9-1'% ¢
be the successive convergents in the continued fraction expansion of a starting
with
P2 _0pa1_lpm_m |
g-2 1l'g4 1’

6’ do
12



These convergents have the well known property that
Pr@r-1 — Pr-19r = (_l)r—l

So we can write
=3 {f;_ ’qi} =3 (or0),o.(i0)

where

o= (ol 1) e sna@)

The problem is reduced to evaluating a finite number of integrals of the form

omi / " fo())d(o(2))
for each o € TI'o(N)\SLa(Z).

Calculation of the basic symbols

The calculation of a basic symbol corresponding to each ¢ is similar to calcu-
lating the value of an L-series at its critical point. Goldfeld uses the functional
equation of f(z) = Y an exp(2minz) of squarefree level N to give a compli-
cated but reasonably rapidly convergent expression for the modular symbol.
Let A, := —a, for prime p and be fully multiplicative otherwise. Goldfeld
computes intermediate values M, M, h,! from the elements of o giving

o0 .
a, 2/ M, 2minh 2rinlM,
- Z ;)\M exp [————h] {exp [ ] — ANAM/M, €XP [—-—A/I—h-] }

vVMN M

as the value of the basic symbol corresponding to o.
We also have the useful fact proved by Shimura and mentioned by Gold-
feld that for forms whose Fourier coefficients are rational

o | = Ho())O(2) = it + e

where ¢;,c; € Q with bounded denominators and the § are periods of the
associated elliptic curve. When the modular symbols are used to compute the
value of a twisted L-function, one of the periods always cancels out leaving
the L-function proportional to the real period in the case of even characters
or the imaginary period for odd characters.

n=1

13



Identification of zeros

In principle, calculations with modular symbols can be performed entirely
in integers using the algebraic form of the L-series which is discussed more
fully in Chapter 5. However, even with real arithmetic computations, we
can bound non-zero results away from true zero to sufficient accuracy to
rigorously identify vanishing.

Let E be an elliptic curve of conductor N and consider an L-series twisted
by a character x cyclic of order k and conductor m. We shall establish an
upper bound on the Manin symbols using Goldfeld’s construction and then
compute a lower bound on the value of a non-zero L-function. Note that in
Goldfeld’s formula we maximize by setting M = N, M, = 1 and noting that
lay] < n and |A,| < 1. We bound the size of the Manin symbols as follows:

o0 . .
a, 2mn/ M, 2minh 2minl M,
> 2w [0 foo [257] - ot o [2022 ]

00 .
27n 2minh 2rinl M,
< —_— -
< [Low [T e [ 5577 o |- 25
[v o] 21rn
< =L
Al
N 1
< =
< 2(5-3+ou/m)
< N/=

Now as we shall see in Chapter 5 we can adjust the formula

B 1Lx) = "8 5™ 3(0) {0, 2]

a mod

2L(E, 1,X)=T(—T’fl)s2 Y X(a)A(a,m)

amodm

where the A(a,m) are integers and so the inner sum lies in Z[(,|. These
modular symbols are related to the Manin symbols by the continued fraction

14



algorithm described above and so each modular symbol may be computed in
terms of not more than log m Manin symbols We therefore have

with each ¢; beingasumoflms thanmsymbolseachofwhichis the sum
of not more than log(m) Manin symbols and so |¢;| < m(logm)N/x. Not all
the coeflicients are zero since we are assuming a non-zero L-function.

We shall first treat the twists of order 3. Since the values of cyclic cubic
twists lie Q (v=3), the norm of ¥ *_0¢;¢} must be a non-zero rational integer
and so we have

T )QL(E Lx)|>1
giving
|L(E,1,x)| 2 5—F7= 2\/—

Hence, even at the extreme range of our calcations with m = 100000 we have
|L(E,1,x)| = 1.5 x 1073, The 28 digit accuracy used in all calculations is
therefore more than sufficient to unequivocally identify the zeroes.

For higher degree twists we shall consider the Galois conjugates of z =0 C Gl
First we observe that for the case of cyclic extensions of odd order these val-
ues group into complex conjugate pairs of equal absolute values. The product
of all these conjugates is a positive rational integer and so > 1. Hence
k-1

Y eidd
=0
This gives a lower bound on the value of the twisted L-function of
(m(log m)N/m)™"F"

> (m(logm)N/x)~ %)

|L(E,1,x)| > == \/—

Substituting the maximum values for N = 100, m =5000,Q =1 and k =7
used in the majority of calculations we find

|L(E,1,x)| > 107"

All calculations with modular symbols in the following tables have been car-
ried out to 28 decimal places (and even summing over 5000 terms would
not lose more than four more digits of accuracy) hence the zeroes may be
determined unequivocally.
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2.2 Computational results

The following tables were prepared using these definitions programmed in
the Pari-GP system [2]. The tables are computed using the modular symbols
method when the elliptic curve has square free conductor. In the cases where
the elliptic curve does not have square free conductor, the L -series method
was used with sufficient terms in the series to guarantee ten digit accuracy.
In each case the tables cover the 92 elliptic curves of conductor less than 100
and cyclic twists of conductor up to 5000. Curves of rank 1 are indicated by
a minus sign in front of the conductor of the curve.

2.2.1 Cyclic cubic twists

Table 2.1 shows the number of cubic twists of conductor less than 5000 for
which vanishing occurs.

‘There are 795 conductors corresponding to unique cyclic cubic field ex-
tensions below 5000. Computed over 92 elliptic curves this gives a total of
73140 L-functions of which 3629 or 4.96% indicate vanishing.

Extended computations were performed for four elliptic curves (E11, E17,
E37A and E37B) testing twists of conductors up to 30,000 as shown in table
2.2. In the case of E11 this was further extended to conductors up to 100,000
as seen in table 2.3. Here the zeroes are true zeroes since they are computed
using modular symbols. In these tables the fraction of vanishing is between
2.5% and 0.4% with an average of 1% over the whole range.

For some vanishing cubic twists, the first derivative also vanishes thus
indicating a rank of two or greater. These results are summarized in ta-
ble 2.4. Of the 3629 vanishing L-functions, 113 or 3.11% had a vanishing
first derivative.

2.2.2 Cyclic quintic twists

Table 2.5 shows the number of quintic twists of prime conductor less than
5000 for which vanishing occurs. A search for vanishing in the first derivative
found no occurrences below conductor 5000.

There are 320 conductors corresponding to unique cyclic quintic field
extensions below 5000. Computed over 92 elliptic curves this gives a total of
29440 L-functions of which 141 or .48% indicate vanishing. No search was
made for vanishing derivatives.
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2.2.3 Degree 7 twists

When we reach degree 7, vanishing twists are very rare. Table 2.6 shows the
occurrence for elliptic curves of conductor below 100 and primes less than
5000. A blank entry means that no twist of conductor less than 5000 vanishes
for this curve.

There are 165 conductors corresponding to unique cyclic degree seven
field extensions below 5000. Computed over 92 elliptic curves this gives a
total of 15180 L-functions of which 23 or .15% indicate vanishing. No search
was made for vanishing derivatives.

2.3 Conclusions from the numerical compu-
tations

The computations described above represent a very small sample from the
infinity of possibilities. What overall conclusions can be drawn?

o Unlike quadratic twists which are conjectured to vanish half of the time,
vanishing of higher degree twists is quite rare.

o The probability of a vanishing twist seems to decrease quite rapidly
with increasing order.

¢ Nevertheless there appears to be sufficient evidence to suggest that
cubic twists might vanish infinitely often for each elliptic curve over Q.
For elliptic curves of conductor below 100 it was always possible to find
a vanishing cubic twist of conductor less than 1000.

o There is insufficient evidence to suggest that higher order twists vanish
infinitely often.
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N| # N| #]| N # N| #
11A] 26 42A] 42 62A [ 37 -82A [ 49
14A ] 63| -43A | 40 63A [ 17 -83A | 27
1I5A | 49 44A] 37 64A| 6] 84A [ 31
17A | 36| 45A | 31| -65A 34| 84B | 11
19A | 56( 46A] 14| 66A [ 71| 85A | 38
20A| 77 48A| 35 66B |31 ] -88A | 50
21A ] 291 499A] 3| 66C |28 -89A | 33
24A | 58 50A| 14 67TA |11 [ 8S9B [ 64
26A| 62| 50B| 73| 69A [23 ][ 90A [ 60
26B| 36| 51A| 20| 70A [ 36| 90B | 73
27TA | 40 52A | 16| 72A (19 90C | 95
30A| 65[-53A | 26| 73A (58 -91A |23
32A| 6 54A] 53| 75A | 4 -91B| 67
33A | 30 54B[ 113 ] 75B [ 36 | 92A | 42
A | 54| 55A | 71| 75C |27 -92B | 58
22
66
18
8
25
21
31
12

35A | 50 56A | 47 76A |10 ] 94A
36A | 16 56B| 13 -77A [ 25| 96A
-37A | 37[1-57A | 40| 77B |53 | 96B
37B [ 107 | 57B| 52| 77C [ 12| 98A
38A | 74| 57C| 17| 78A |15 -99A
38B| 66| -58A | 451 -79A |36 | 99B
39A | 49| 58B| 39| S0A |46 | 99C
40A | 56 | -61A| 45| 80B |42 | 99D

Table 2.1: Number of vanishing cubic twists for distinct cyclic cubic fields of
conductor below 5000
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Range [ # of twists [ E11 [E17 [ E37TA E37B |
0-5000 795 26 3.3% |36 45% |37 4.7% ] 107 13.5% |
5000-10000 || 797 14 18% |25 3.1% |25 3.1% |54 6.8%
10000-15000 || 788 8 10% |17 22% |13 16%]| 53 6.7%
15000-20000 || 785 14 18% |8 10% |18 23% |38 48%
20000-25000 | 797 14 18% (13 16% (|17 21% |39 4.9%
25000-30000 | 783 12 15% |10 13% (10 13% |44 5.6%
Total 4745 88 1.9% |[10923% | 120 2.5% | 335 7.1%

Table 2.2: Number of vanishing cubic twists of conductor below 30000.

Range # of twists [ E11 | E11%
0-10000 1592 40 [25%
10000-20000 | 1573 22 [ 1.4%
20000-30000 | 1580 26 | 1.6%
30000-40000 | 1589 14 [0.9%
40000-50000 | 1589 8 [05%
50000-60000 | 1588 7 [04%
60000-70000 | 1585 10 | 0.6%
70000-80000 | 1585 12 [08%
80000-80000 | 1596 12 [ 0.8%
90000-100000 | 1574 14 | 0.9%
[ Total 15851 165 [ 1.0% |

Table 2.3: Number of vanishing cubic twists for E11 of conductor below

100000
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N #| N # N|# N | #
11A 422A ] 1| 62A -82A | 1
14A “43A 1 1 63A| 2(-83A | 1
15A | 1 44A 64A | 2| 84A
17TA| 1| 45A| 4] -65A 84B
19A | 1 46A 66A | 5| 85A
20A | 4] 48A 66B -88A | 3
21A ] 1] 49A 66C | 1| -89A
24A |1 1| 50A| 2| 67A 89B | 4
26A | 1| 50B| 3| 69A 90A | 2
26B 51A 70A 9B | 1
27TA | 2| 52A T2A 90C | 8
30A 53A 0 2 T3A| 1[-91A] 1
32A | 2 54A| 3| 75A 91B| 6
33A 54B| 5| 75B| 2| 92A
A | 2| 55A 75C -92B
35A 56A 76A 94A
36A | 3| 56B -T7A 96A | 1
-37A S5TA| 2| 77B| 4| 96B
37B| 741 57TB| 1] 77C] 1] 98A] 1
38A| 2| 57C 78A | 21 -99A
38B -58A | 1]-7T9A | 2] 99B
39A | 2| 58B 80A | 1| 99C
40A1 1161A| 2] 8B| L] 99D | 2

Table 2.4: Number of cases for which the cubic twist and its derivative both
vanish for conductors below 5000



N{#J}] N|# Nji#[| N[#
1IIA| 1 42A ] 2| 62A -82A 1 3
14A1 31-43A| 3 63A| 1| -83A
15A| 4 MA 64A 84A | 1
1ITA| 3| 45A -65A | 2| 84B
19A 46A 66A 85A | 1
20A| 2] 48A| 1| 66B -88A | 7
21A| 2| 49A 66C| 3/|-89A| 5
24A | 2] S0A| 2 67A 89B | 1
26A 50B| 3| 69A 90A
26B| 3| 51A | 2| 70A 9B | 3
27A 52A | 1| T2A 90C | 1
30A -53A 1 3| T3A | 1} -91A
32A | 1| 54A | 3| 75A | 1) -91B| 3
33A| 1| 54B| 4| 75B 9QRA |1
J4A | 1 55A | 1] 75C| 1] -92B| 3
35A | 1] 56A | 4| 76A 94A
36A 56B STTA | 1] 96A | 1
-37A | 5| -57TA | 7| 77/B 96B | 4
37B 57B 77C 98A
38A| 2 57C| 1| T8A -99A | 3
38B| 4 -58A| 6| -T9A | 4| 99B| 1
39A1 1] 58B| 1] 8A | 1| 99C| 2
40A| 2|[-61A| 4] 80B 99D

Table 2.5: Number of vanishing quintic twists for distinct cyclic fields of
conductor below 5000
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| N m N mu N m N m
11A[ 2857 | 42A T 62AT 29[ -82A
14A -43A 63A -83A
15A 44A 64A 84A
17A 45A -65A 84B
19A 46A 66A 85A
20A 48A 66B -88A
21A 49A 66C -89A
24A | 491 | 50A 67A | 3221 | 89B
26A | 4999 | 50B 69A 90A 71
26B 51A 70A 9B | 3683
27A 52A T2A 90C
30A -53A 73A 91A
32A 54A 75A -91B
33A 54B 75B 92A
34A 55A 75C -92B
35A 56A 76A 94A
36A 56B TTA 96A | 29, 113
37A [ 1421 || -57A [ 2857 | 77B 96B | 29, 113
37B{ 2003 | 57B| 29| 77C 98A 1471
38A 57C 78A 99A | 4999
38B| 71[-58A| T71[-79A 20 99B| 3907
39A 58B 80A 99C
40A -61A | 2339 || 80B 99D | 4649

Table 2.6: Conductors of vanishing degree seven twists for distinct cyclic
fields of conductor below 5000



Chapter 3

Analytic results for twisted
L-series

Let E be an elliptic curve with coefficients in Q and let K be an abelian
extension of Q and G =Gal(K/Q). We have

Li(E,s) = H L(E, s, x)

x€6

where the product is taken over all primitive characters xy € G C (W)‘
for a given conductor m. In the case that K/Q is a cyclic cubic field there
are only two non-trivial characters and they are complex conjugates so the
above statement reduces to

Lg(E,s) = L(E,s)L(E,s,x)L(E, s,%)

Numerous authors have used analytic methods to establish asymptotic
estimates of the number of vanishing or non-vanishing of twisted L-series of
elliptic curves for various classes of characters. In the present chapter we
shall gather together some of the known results.

3.1 Quadratic twists

The fact that Dirichlet characters of order two take values over the rational
integers makes this case more accessible.
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A quadratic twist of an elliptic curve over Q corresponds to another el-

liptic curve over Q. Let £/Q be given in Weierstrass form by
E:y* =2+ Az +B
and let x be the quadratic Dirichlet character of conductor D, then the L-
function of E twisted by y is the same as the L-function of the elliptic curve
Ep:Dy!=1*+Az+ B
or equivalently, with a minor change of variable
Ep:y* =zx* + D?Az + D*B.
Goldfeld has made specific conjectures related to quadratic twists [10):

Conjecture 3.1.1 (Goldfeld) For each elliptic curve E/Q asymptotically
half the quadratic twists Ep have rank zero and half have rank one.

Weaker forms of this conjecture are:

Conjecture 3.1.2 (Algebraic Non-vanishing) For each elliptic curve E/Q
there are an infinity of quadratic twists D such that Ep has rank zero.

Conjecture 3.1.3 (Algebraic Vanishing) For each elliptic curve E/Q there
are an infinity of quadratic twists D such that Ep has non-zero rank.

Parallel to these algebraic conjectures about ranks of elliptic curves (and
in line with the Birch and Swinnerton-Dyer conjectures) we have similar
conjectures about the associated L-functions.

Conjecture 3.1.4 (Analytic Non-vanishing) For each L-series there are
an infinity of quadratic twists x such that L(E,1,x) # 0.

Conjecture 3.1.5 (Analytic Vanishing) For each L-series there are an
infinity of quadratic twists x such that L(E,1,x) = 0.

Goldfeld’s conjecture is the strongest of the above conjectures but is a
long way from any proof. Ono and Skinner [29] have shown that the non-
vanishing conjecture is true with positive density of prime quadratic twists
for each elliptic curve of conductor less than 100. The vanishing conjecture
has been proven for certain families of elliptic curves Ono [28], Stewart &
Top [39].

James [13] and Vatsal [41] have shown a positive density of vanishing for
specific elliptic curves.
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3.2 The Shimura correspondence and Wald-
spurger’s theorem

A cornerstone of the theory of quadratic twists is the Shimura correspondence
between modular forms of even weight 2\ and modular forms of half integral
weight A+ 1/2. This enabled Waldspurger [42] to establish non-vanishing for
an infinity of quadratic twists of elliptic curves over Q.

The classical theta series

e(r) =Y ¢*

satisfies transformation rules similar to a modular form of weight k = 1/2 if
we restrict the transformations to I'o(4). Within the congruence group I'g(4),
it is possible to construct modular forms of any half-integer weight and level
N with transformation properties similar to the whole integer forms.
Specifically: let N be a positive integer divisible by 4 and define

€4 = 1 ford = 1mod4
= { for d = 3modd4.

Let x be a Dirichlet character mod N and define an extended Kronecker-

Legendre symbol
c c
(E) = - (m) for c,d <0

= ( ﬁ) otherwise.

Then a meromorphic function f(z) on ) is called a modular form of half
integer weight A + 1/2 and character y if

£(2252) = x@ (2) ™ ez +apoinge)

for all ( Z 3 ) € T'o(N). The set of such forms which are holomorphic on

the upper half plane is called M) 1/2(N, x) and has the structure of a finite di-
mensional C-vector space. Similarly we denote Sy1/2(N, x) C Myy, 2(N, x)
for those forms which vanish at the cusps. One can define Hecke operators
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which preserve these spaces, however they are only defined for square indices.
Specifically

L)Y (a(p?n) + x(p) ((L},’—f) Pla(n) + x(pz)p”-‘a(n/pz)) <

where we have temporarily replaced the usual a, by a(n) to accommodate
the complicated arguments. As in the integer weight case f(z) is called an
eigenform if, for each prime p, there exists A\, € C such that

f(2)| Tz = Ao f(2)-

Shimura established a relationship between forms of weight A + 1/2 and
integer forms of weight 2\ as follows:

Let A > 1 be an integer and x a Dirichlet character modulo N with 4|N.
Let

f(z) = Zanemm € Sa+12(Fo(N), x)
n=1
be an eigenform for T, for all primes p with corresponding eigenvalue A, :
T2 f = Apf. Define a function

[ o]

g(z) — Z bne21riﬂz

n=1

by the formal identity
ann—s = H (1 — AP0+ X(p)zpz,\—l-za)-l )
n=l p

Then g € M,\(N/2,x2%). If A > 2 then g is a cusp form. This association
between f and g is known as the Shimura correspondence [37).

With A = 1 this expresses a relationship between the weight 2 forms
corresponding to elliptic curves and certain modular forms of weight 3/2.
Broadly speaking, the coefficients a,, in the 3/2 weight form f are propor-
tional to the critical values of the L-functions of the elliptic curve associated
to g, twisted by a quadratic character mod n. In particular, these twists can
only vanish when a, = 0. This is a particular case of Waldspurger’s theorem.
Conversely, given a weight two form, the existence of a corresponding weight
3/2 form was settled by Kohnen [16].
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3.3 Applications of Waldspurger’s theorem

Ono, James and Vatsal have used special cases of Waldspurger’s theorem to
prove that a positive density of prime quadratic twists do not vanish, for

specific sets of elliptic curves.
Let -
f(z) = Ea(n)q" € Sa+1/2(N, x)-
n=1

Let t be a positive square free integer and define

wi=xm) (2) ().

Now define A,(n) by the formal product

a(tn?)
n

M

Z-A—‘(;-'Q =L(f,s— A+ 1,9,
n=1 n n=1

In particular

Ai(p) = a(tp®) + ¥, (p)p* a(?).
Shimura proved that the Mellin transform of this product (Call it Sy(f(z)) =
Y ne1Ai(n)q") is a weight 2) modular form in Mp,(N/2,%2). If f is an
cigenform for all the square Hecke operators then

a(t1)Se, (f(2)) = a(t2)Se (f(2)).

Theorem 3.3.1 (Waldspurger) Let f(2) = 320 a(n)g" € Sxs1/2(V, x)
be an eigenform for square Hecke operators and let S(f(z)) = F(z) =
oe1 A(n)g™ € SI¥(M,x?) for an appropriate positive integer M. (N/2
will probably be sufficient). Let n;,n, be two positive square-free integers
such that 71 € Q,’,‘2 for all p|N. Then
—1\*
a*(m)L (F, A, (—) X—leu) x(nz2/n)ny ™

A
= 0.2(1’2,2)L (Fa A: (_]:') X-IXHI) n:-l/2'
Where x,, is the quadratic character for Q(/n:)/Q.
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Theorem 3.3.2 Specializing the above to A = 1 we have

2*(m)D (F L (= 1) X x,,,) x(na/m) /i
= a¥(ny)L (Fl( l)x xm) V.
Or

(5 (2)07) - 50 () ) (82 3

Hence, if we know an n, for which the L-function does not vanish and
such that a(n,;) # 0 then

L (F, 1, (:ﬂ) x‘l) = 0 if and only if a(n,) =0.

So to prove infinite non-vanishing we only need to show an infinity of non-
zero coefficients a(n;) satisfying 2 Me Q" for all p|N. If the twist y has order
k and conductor m then the character (—1) ~! has order dividing 2k and
conductor dividing 4mn,.

3.4 Averaging methods

"The proof of Kolyvagin’s theorem [17] requires the vanishing of certain deriv-
atives of quadratic twists. Using the explicit formula method established by
Riemann and adapted to modular forms by A. Weil, K. & R. Murty [25] have
shown the existence of an infinity of such twists by establishing bounds on the
average values of the derivatives of L-series twisted by quadratic characters.
That is,

Y L'(E,1,xp)=CYlogY +o(Y logY)

0<-D<Y
D=1mod 4N

where C is an effective constant depending only on E. They also compute a
weaker average for the twisted L-series itself which is nevertheless sufficiently
strong to prove the non-vanishing of an infinite number of twists.

Y/ Y L(E,1,xp)t= CYlogY-l-O((lY))

|D|<t
D=amod8N
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with 0 < v < .0652.... They also show, under the generalized Riemann
hypothesis, that not more than half of all twists can vanish. That is, they
show that L(f,1,x) =0 can not happen for more than (q)/2 characters of
conductor q.

While the present thesis concentrates on L-functions for twists of given or-
der but varying conductor, asymptotic estimates have been made with twists
of limited conductor where the order is allowed to increase. Rohrlich [30] has
studied twisted [-functions where the characters are unramified outside a fi-
nite set of primes but the orders are allowed to increase arbitrarily. He shows
that only finitely many of such twists vanish at the critical point. Stefanicki
[38] establishes lower bounds on the non-vanishing of twisted L-functions for
a fixed form and varying twists. Akbary [1] on the other hand generalizes
results of Duke [9] concerning forms of weight two of given level for a fixed
twist x to forms of general weight k.

Let "
L(f, 80 = 3 22X

nJ
n=1

then Stefanicki establishes for some a < 1,
Y L(f.3,%) = q¥(g) + O(d(g)g")

xmod q

where the sum is over primitive characters and qi/(q) is the number of prim-
itive characters mod ¢q. He further shows that the number of non-vanishing
twists is bounded beiow

qu(q)’

Akbary shows that for a form fy of weight k and prime level N > C; , and
a fixed character x of conductor ¢ with (N,q) =1

#U Ll k2,00 # 0} > gt

(Ck,q is a constant depending only on k and q.)



3.5 GL(n) methods

In [4], Bump, Friedberg and Hoffstein review the work which they and others
have done on double Dirichlet series. Let

D(s,w) = Z an(s)

nw

where the {a,(s)} are themselves Dirichlet series or automorphic series on
GL(m). They are able to show analytic continuation in various special
cases and deduce bounds on the average values of such functions. Let
an(s) = L(s, f, x,) where f is an automorphic function on GL(m) and X,isa
sequence of quadratic twists. They conjecture meromorphic continuation of
D(s,w). This conjecture leads to infinite non-vanishing results for quadratic
twists of general Langlands L-functions. In order to extend these results to
higher order twists it is necessary to extend the ground field. Results can
only be obtained for twists of order  when the ground field is extended to
include r* roots of unity (see [4] section 5).

X. She [35] has shown infinite non-vanishing in the specific case of cubic
twists on Xo(11) over Q(/—3) using these techniques.

3.6 Spectral Theory

Over the last twenty years, based on results of Montgomery [23], Odlyzko
[27] has studied the spacing of the zeroes of the Riemann zeta function and
has observed that the spacings, properly scaled, follow the same distribution
as the eigenvalues of large unitary matrices. Let the n® zero of ((s) be at
3 + Vai then it was known to Riemann that

TlogT
o

#{j:0< v, <T}~ , asT — oo.
In order to study their statistical distribution, the spacing of these zeroes is

normalized. Set
- Y5 log T

i 2w
then the spacings §; = ¥;,, — ¥;, have asymptotic mean one. Odlyzko
plotted the distribution of these normal spacings for 70 million zeroes of
¢(s) in the region 10® < j < 10% + 7 * 107 and found that they closely
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fitted the Gaudin curve which is the curve describing the distribution of the
suitably scaled eigenvalues of large random unitary matrices (the gaussian
unitary ensemble). This work has been extended by Katz and Sarnak [15] to
Dirichlet L-functions and L-series associated to quadratic twists of a variety
of modular forms . It has been observed that in each case the scaled spacing
distribution corresponds to the eigenvalue distribution of specific gaussian
ensembles.

Let Fx be a suitable set of cusp forms of weight k and level < X and let
€7 be the root number of f € Fx. The main consequences of this conjectural
theory are that

i € Fxlep =1, L(k/2,£) £ 0} _

X A€ Fxley =1} !

im U € Fxles = ~LU(k/2,1) #0} _

X—oo #{f € Fxles = -1}
for a wide variety of sets Fx. These include modular forms corresponding
to quadratic twists of elliptic curves and quadratic twists of higher weight
modular forms such as the weight 12 cusp form A. An important implication
of this theory is that elliptic curves of rank > 1 would have zero density. This
contrasts with some empirical studies by Kramartz and Zagier [18] which
show a low but positive density of higher rank curves of about 3%. Of
course, both results could be asymptotically consistent.

3.7 Kummer surfaces

M. Kuwata [19] has used a geometric approach to produce points on Kummer
surfaces. The relevance of this geometric approach to the study of vanishing
of cubic twists has been pointed out by Kisilevsky and is central to the results
of the following chapter.
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Chapter 4

Vanishing of Cyclic Twists

Our goal in this chapter is to investigate the behaviour of the L-functions of
elliptic curves at their critical point, when twisted by Dirichlet characters of
order three. Equivalently, subject to the Birch & Swinnerton-Dyer conjec-
tures, we may examine the nature of points on the curve over cyclic cubic
extensions.
Let
E:y*=2*+Ac+ B

be the short Weierstrass form of an elliptic curve over Q. Let K’ /Q be a cyclic
cubic extension. In a cyclic cubic extension, for any non-rational element
the set {1, z, %} forms a power basis with respect to which any other element
may be expressed as a linear combination. Therefore, any K-rational point
on E takes the form P = (z,a + br + cz?) with a,b,¢c € Q. We will show
below (Proposition 4.0.1) that, without loss of generality, we may assume
¢ = 0. Since P is on the curve, z satisfies the polynomial equation

f(z) =2+ Az + B~ (a+bz)? =0.

Furthermore, since z is in a cyclic cubic extension, f must have a square

discriminant. Say

D(a,d, b A,B) : d® = —27a* — 45%a® + (54B — 30Ab?)a? +
(36Bb® + 24A% — 4Ab%)a +
A% — 4.A% — 27B? + 4BY® — 18ABI2.
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For fixed b, D may be considered as a curve in (a,d), say C(a,d;b, A, B). C
has genus one and, if a rational point could be found, C would be an elliptic
curve over Q.

Proposition 4.0.1 Let £/Q be an elliptic curve and let K/Q be a cyclic
cubic extension. If there erists a K -rational point R on E. then there erists
a K-rational point P on E such that the coordinates of P may be expressed
as (z,a+bz), z€ K, a,be Q.

Proof. If the point R is a rational point in Q, then R itself is trivially
expressible in the form (z, a+bz) required by the statement of the proposition
and we are done. If R is not rational then, since K is a Galois extension,
consider the conjugate points R, R, R°’. Thesum Q = R+ R° + R’ is a
Q-rational point on E since it is invariant under Galois action. If Q # 0 set
P =3R - Q. Then

P+P +P* = 3R+R +R")-3Q
= 3Q-3Q
= 0.

Otherwise, when @ is already zero, we simply set P = R. P is now a trace
zero point. It remains to show that the coordinates of a trace zero point may
be expressed as (z,a + bz). We note that the property P + P° + P°> =0
means that P is collinear with its conjugates. The equation of this line must
have rational coefficients since any Galois conjugate permutation of the three
points determines the same line and this completes the proof. Alternatively
and more explicitly, assuming the general form P = (z,a + bz + cz?) with
a,b,c € Q this collinearity implies

z a+bx+cx? 1
 a+bxr®+cx? 1
°° a+bz° +cx?’ 1

=0.

Subtracting a times the third column from the second column and then
subtracting b times the first column from the second column and factoring
out c gives

z zz 1
Slze ¥ 1|=0.
ot z2® ]




But this determinant is the discriminant of the cyclic cubic extension K and
cannot be zero when z is not rational. Therefore ¢ = 0 as was to be proven.
Note that P, P°, P are again seen to be rationally collinear.

The Jacobian of C(a,d; b, A, B)
The elliptic curve, if it exists, is isomorphic to its jacobian which is straight-
forward to compute by a classic construction [6]. The quartic curve
vV =ar* + Bz + ya® + 6 +¢
has syzygies
= 12as — 366 +7*
J =T2ae + 9876 — 2Tab® — 27 — 24°

which reduce the quartic curve to the isomorphic cubic curve

y? =2® - 271z - 27J.
From this form we can write down the j-invariant of the curve

283

AR - JY

Performing these calculations for the curve C(a, d; b, A, B) gives a j-invariant
of

; 1 [12(1zaz>4/12 +54BB2A + 24387 — 18158 + 2743 — bsA)} ’

T (@A 1 27BY) (2742 — 186 A — 108Bb? — t7)

This demonstrates that the family of jacobians parametrized by b are not all
isomorphic to each other.

4.1 Finding points on D(a,d, b; A, B)

If, for a given value of b, the discriminantal curve C has rational points
(a0, £do) then C is an elliptic curve and can be put in Weierstrass form by
a rational map W sending (ag, —do) to infinity. This elliptic curve will be
isomorphic to the jacobian described above. The point P = W (ao, do) will
then be a rational point on the curve. It may be a torsion point but this
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can only happen for a finite number of choices of b and so, without loss
of generality, we can assume that P is not a point of finite order and that
(@n,dn) = W~ (nP), n=2,3,... are an infinite supply of further points on
C

We know of no general way to find a rational point on the discriminantal
surface D in all cases. If however E has positive rank we can use rational
points on E to find a point on D.

Let Pi(z1,11), Pa(22, y2) be two rational points on E. Then the line y =
a + br passing through P, and P, must intersect £ at a third rational point
say (z3,a + bzz). Hence

f(z) = 2+ Az + B —(a+bz)?
= (z—z1)(z — z2)(z — x3)

with square discriminant. This provides values

a = T2 — 1Y
Iy — I
b = Y— "N
Ty — I3
d = Z(z; — z2)(z2 — z3)(23 — T;)

such that the curve C in a,d has a point and is therefore an elliptic curve.
While not itself generating a cyclic cubic extension (f(z) is not irreducible),
this point (ao, do) can start the process described above to generate an infinite
sequence of cyclic cubic extensions K, for which F has K,-rational points.
Let K be the set of all such fields lying in all possible sequences.

We note that this method provides an infinite supply of b values each of
which potentially gives rise to an infinite set of (a;,d;) values. The condition
that the line y = @ + bz intersects the curve F : y2 = 13 + Az + B in three
distinct points is that discriminant((a + bz)? =2 + Az + B ) < 0. That is

0 > -27a' - 46%a® + (54B — 30A4b%)a?
+(36Bb° + 24 A% — 4Ab%)a + A%* — 4A° — 27B? + 4B° — 18ABb?.

For a given A, B this describes a non-empty open region R in a, b space. We
will think of a, b space as parametrizing lines of slope b and y-intercept a. In
particular, we will call lines with a,b € Q rational lines.

The main theorem will follow if we can prove that the set of cubic fields
generated in the above manner is infinite.
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Theorem 4.1.1 Let E be an elliptic curve of positive rank over Q, then E
increases its rank for an infinite number of cyclic cubic extensions.

We will prove this theorem by showing that the condition that two of
the fields generated by the above method are identical gives rise to a curve
which is generally of genus three or greater and that any specializations of the
parameters a, b which decrease the genus below three lie in a Zariski closed
set. On the other hand we will show that the set of available rational values
of a,b € R is Zariski dense.

Since R is open, there exists = > 0 such that a square box of side ¢ lies
entirely within R. We will need some lemmas.

Lemma 4.1.2 Suppose E is an elliptic curve over Q with positive rank. The
set of rational points on E(Q) is dense on the connected component of the
identity.

Proof. Let P be a rational point of infinite order on the connected compo-
nent of the identity of E. Suppose P = (p(2),p'(z)) for some z € C/Ag. In
fact z is real since the connected component of the identity is mapped from
the real axis. Integer multiples of z map to multiples of P on E and so z
must be Q-linearly independent of the real period of E (otherwise multiples
of z would eventually repeat making P a torsion point). Now the set of all in-
teger multiples of 2 mod 2, is dense on (0, ;) and so, since p is a continuous
function, the set of multiples of P is correspondingly dense on E. B

Lemma 4.1.3 Given a line joining three distinct points of the connected
component of the identity on E(R) there erists a rational line arbitrarily
close to it connecting points in E(Q).

Proof. Let (z1,11),(z2,%) € R? be points on E. The line y = a+ bz joining
these two points has

a = oY1 — I1Yy2
T2 — Iy
b = Y2—U
T2 — I
(a,b) € R.

We may choose an open box of side ¢ within this region. We wish to show
that there is always a line y = a’ + ¥’z which joins points of E(Q) such that
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the point (a’, ¥) lies within this open box. Since the set of rational points on
the connected component is dense we can find points (, 3,), (z}, %) € E(Q)
arbitrarily close to (z1,11), (Z2, y2). It is now a matter of elementary algebraic
manipulation to show that |a — a’| and [b — ¥/| are suitably small. B

Lemma 4.1.4 Suppose E is an elliptic curve over Q with positive rank. The
rational lines joining three distinct rational points of E(Q) are Zariski dense
in a,b space.

Proof. Choose an arbitrary real point (p,q) in the open s-box described
above. Let (wi,z;),(ws, ) € E(R) be points of intersection of E with
the line y = p + gz. Using the same argument as the previous lemma we
can find a rational line joining points of E(Q) arbitrarily closely and thus a
rational point (p/, ¢’) arbitrarily close to (p, g). Therefore, the rational points
so constructed are dense in the e-box in the usual topology and so are a
Jortiori Zariski dense. @

Lemma 4.1.5 The set of fields in K is infinite.

Proof. Let (z,,a+bz,) be a point on E in a cyclic cubic field K € K derived
from a rational point (a,d) on the elliptic curve C(a,d;b, A, B). That is,

f1:$?+A11+B—(a+b$1)2=0

And let (z,,0’ + bz,) be another point in the field X’ € K derived from the
rational point (@’,d’) so that

f2:35+ Azy + B — (' +bx,)2 =0

Suppose that both z, € K’ and z, € K.
Since z,, T, are both in K we can express z, in the power basis of z;. Let

Ty =p+qzx) +rz} with p,q,r € Z.
We may use the above three relations to establish a polynomial equation in
a,a’,b,r which may be viewed as a curve in the variables a',r for specific

values of a and b. The simplest way to do this is to express the sums of
powers of roots of f}, f; in terms of a,a’, A, B and then relate them using the
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power basis. Let e;, e, e; be the roots of f; and let €}, €, €3 be the roots of
fg. We have

ey +eyp+ey = b?
Z+ef+ef = b*+4a'b—24
el +ef +ef = b°+6b% — 3b?A— 3B + 3a”°

and similarly for the roots of f;.We can then use the substitution
€; =p+qe; + re?

to generate three equations in the variables p, ¢, 1, a, @', and then by succes-
sive eliminations, arrive at a single polynomial relation involving a',r, a, b.
These operations are best performed in Maple and the details can be found
in Appendix C. Since smoothness is an open condition, outside a Zariski
closed set of the base space, the curve obtained by a specialization of a,b
is smooth. For special values of b the curve was found to have genus three.
Since specialization can never increase the genus, the curve has genus at least
three for general values of a and b. Conditions on a and b which cause the
genus to drop occur at ramification points on the curve and are expressed as
the vanishing of discriminants, that is, curves in a and b or isolated values of
a or b. Now each field in K is generated from rational lines which we have
seen are Zariski dense in a, b space. On the other hand, the conditions for
fields to coincide places these lines on curves of high genus which, by Falt-
ings’ theorem can only have a finite number of rational points or on curves of
lower genus which are Zariski closed. Consequently the set of distinct fields
is infinite. @

Proof of theorem 4.1.1 In the above lemmas we have constructed an
infinite set of distinct fields K corresponding to points in a, b space such that
E(K) has K-rational points over and above the rational points of E(Q).
Suppose that these K-rational points are torsion points. Since the order
of torsion points over all cubic fields is uniformly bounded by Kamienny’s
theorem [14], there is a multiple M such that MP = 0 for all cyclic cubic
torsion points P on the curve E. This means that the z-coordinates of all
these torsion points satisfy a polynomial equation and therefore the points in
a, b space giving rise to them lie in a Zariski closed (indeed finite) set. Hence
there remains an infinite set of distinct fields K € K such that E(K) has
non-rational points of infinite order. B

We may express the theorem in terms of L-series.

38



Proposition 4.1.6 Let E be an elliptic curve such that E(Q) has positive
rank. Let x be a cyclic cubic character and let

o0

L(E,s,x)=)_ “—('%’@
n=1

Then L(E,1,x) =0 for an infinite number of characters y.

Proof. Since £(Q) has positive rank there are an infinite number of cyclic
cubic fields K where the rank of E increases. Let the Dirichlet character
Xk correspond to each of these fields. By Kato’s theorem (1.3.5) and its
extensions, elliptic curves whose ranks over an abelian extension exceed their
Q-ranks have vanishing twisted L-functions. Hence, L(E, 1,xx) = 0 for these
characters. B

4.2 Curves of zero rank

The theorems of the previous section depend upon the Zariski density of
rational points in ¢, space and were proved assuming non-zero rank of the
elliptic curve over Q. We shall now study elliptic curves of zero rank for
which we nevertheless have found a rational point on the D(a,d,b; A, B)
surface. (Examples would be curves of square discriminant A where we can
find points (@ = 0,d = £vA,b = 0).) Such a point can provide the “seed”
for a set of fields K such that E(K) for K € K has positive rank.

Let P be a non-rational point of infinite order on the connected compo-
nent of E(K). Without loss of generality we can assume this to be a trace
zero point. If P? is a Galois conjugate then we have shown in proposition
4.0.1 that the line PP? is rational.

Lemma 4.2.1 Given a line joining pairs of points on the connected compo-
nent of E(R) as described above, there erists a rational line arbitrarily close
to it joining a cyclic cubic point P to its Galois conjugate point P°.

Proof. Let 2,2 be the inverse images of P, P’ under the analytic parame-
terization in C/Ag. Since K is a real field, z, 2’ both lie in the real interval
(0,€2;). The values Qy, z, 2 are Q-linearly independent because the points
P, P” generate a rank 2 Z-module (if rank 0 z, 2’ would translate to torsion
points and if rank 1 they would translate to rational points). Consider the
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points mz,mz’ form = 1,2,3. ... they are individually dense in (0,Q,) and,
by Kronecker’s theorem (see for example, [12]) given any pair of points z, y
in the interval (0,8;) there is an m such that |z — mz| and |y — m2’| are
simultaneously arbitrarily small. Consequently, any pair of points on E can
be appraximated by a conjugate pair of cyclic cubic points and therefore any
line between points on E(R) can be approximated arbitrarily closely by a
rational line between such points. B
We now have all we need to prove

Theorem 4.2.2 Any elliptic curve E/Q with a point of infinite order in
some cyclic cubic field increases its rank for an infinite number of cyclic
cubic extensions.

Proof. Suppose E has a point of infinite order over a cyclic cubic extension
K. This point corresponds to a pair of rational points (a,+d,b) on the
discriminatal surface D(a,d, b; A, B). Now that we have a density statement
for (a, b) space and the means to construct at least one cyclic cubic extension
with points of infinite order, the proof carries through in the same manner
as the corresponding theorem for curves with positive rank over Q. If the
rational point on D(a,d,b; A, B) is a torsion point it must lie in a Zariski
closed set in (a,b) space because the order of rational torsion points are
uniformly bounded by Mazur’s theorem [21]. B

As in the previous section we can state this theorem in terms of L-series,
and combining both results we have proved

Theorem 4.2.3 Any elliptic curve E/Q with a point of infinite order in
some cyclic cubic field has vanishing L-function for an infinite number of
distinct cyclic cubic twists.

4.3 Detailed example for E40

A specific example will illustrate the methods described above.
The curve
E0:y>=2>-Tz-6

has no rational points and square discriminant 400. Assume we have a point
(z,a + bz) on E40. Then

f@)=2~Tz—6—(a+bz)?=0
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and the discriminantal curve takes the form

d? = 400 — 216b%a — 324a? — 7564 — 4b%a® + 28b°a — 27a*
+210a2b% + 49b* — 248° + 1176ab

which is immediately seen to have rational points (a = 0,d = +20,b = 0)
and so is equivalent to an elliptic curve in (a,d). This curve can be expressed
in short Weierstrass form by sending the point (0,20,0) to infinity. The
minimal form is

¥y = o+ 513z — 185166
= (z — 54) (z® + 54z + 3429)

which has conductor 2520. We note that the other point (0, —20, 0) translates
to (54,0) a torsion point of order two on the reduced curve. Using Cremona’s
MWrank program we see that this curve has rank 1 with generator

P, = (103, 980).
This point can then be used to produce an infinite set of rational values

(a;,d;,0) on the discriminantal curve.
P — (-1,-7,0)
2P, — (40/61,-59500/3721,0)

3P, — (303/547,...... ,0)
4P, — (—2074000/2002663,...... ,0)
etc.

These points lead to cyclic cubic extensions with characteristic polynomials

2 -Tz-7

z® — 26047 — 1459486

3 — 2094463z — 1032223461

z3 — 28074613640983z — 56806398240381089482
etc.

Or in reduced form

Ay ) N |
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We will now proceed to construct the high genus curve for the particular
case £40. Let (z,,a,) be a point on F40 in a cyclic cubic field K;. Suppose
(2, a,) is another point derived from (a,,d,) but that z, € K, also. That is

Since x,,z, are both in K; we can express z, in the power basis of z;.

Let

We will use the above relations to establish a polynomial in a;, a,, 7 which
will be shown to represent a curve of genus 3 when specialized to a curve in
a;,a,. First we will establish some symmetric functions on the roots. We
will drop subscripts since both f and g have the same structure. Let z, z/, 2"

3 — 1% — 142z + 680

3 -2 - 182z + 81

z3 — 2% — 4672880z — 3862395200
ete.

g(z) =23 - Tz, —6—aZ=0.

T = p + gz +rzi.

be the three roots of f or g.

x+z,+$"
2+ 2 +

xs + zIS + 2)"3
1,4 + .’L‘M + 1,”4

2° + 2 + 25

0

(x+2 +2")? - 2(zz’ + 2’2" + 2" x)

14

7(z + ' + ") + 3(6 + a®)

18 + 3a®

7(z* + 2% + ") + (6 + a®)(z + £’ + 2")
98

7(2® + 2° + 2°) + (6 + a?)(z? + 2% + z"?)
7(18 + 3a®) + 14(6 + a?)

= 210 + 35a*

Hence, for the trace of g

0 = zp+2y+7) =p+qa +rz} +p+q2) +r2? +p+ ¢ + 12

= 3p+ Ur
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then for the sum of squares

14 = z2+2F+i? =E(p+qx1 + rz?)?

conj

= 3p® +14¢* + 98r% + 28pr + 6qr(6 + a?).
Developing the sum of cubes in a similar fashion we obtain

18+ 3a) = z3+13 +2°
= 3pgr(6+a7) + 9’ +¢°(6 +a7) — (6 +a})’
+14((pg® + p’q) + 98pr? + 98¢%r + 35¢r2(6 + a2)
= (6 +a?)(3pgr + ¢° —r* + 35¢r%) + p* + 98pr298¢>r.

Using the first equation to eliminate p from the second equation we get

42 = 19672 + 42¢° + 294r? — 392r2 + 18¢r(6 + a2)
21 = 21¢% +49r2 + 9qr(6 + a?).

Similarly we can eliminate p from the third equation to give the cubic ex-
pression

162 + 27a2 = 27(6 + a?)(g® + 49¢r® — r3(6 + a2)) + 98r(9¢> — 70r2).

It is not practical to eliminate q across these last two equations by hand so
we let Maple take the resultant of the two polynomials with respect to g.
This give a single polynomial h(a,,as,7) = 0 of degree 4 in a; and degree
6 in r. For generic values of a;, h is a curve of genus three in the variables
ay,r. Using the algebraic curves package of Maple we find

genus h(ay,r;a;) > 3.

It is possible that for a number of values of a, the genus could fall below
three. These combinations of values would correspond to ramification points
of h and are identified by the vanishing of the discriminant. The appendix
shows that this discriminant factors into five components, four of which are
polynomials in a; or a; and one of which is a curve of genus three in (a,, a2).
There are therefore only a finite set of combinations which could potentially
reduce the genus. Since we have an infinite supply of a values given by
points on the discriminantal curve, the rejection of a finite number of them
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still leaves us with an infinite number of cyclic cubic extensions of the given
elliptic curve which have infinite Mordell-Weil groups.

As we have seen, b = 0 is a good choice giving rise to an infinite family of
cyclic cubic fields. If it had been a bad choice we could proceed as follows to
generate a new value of b giving rational points on the discriminantal surface.

Set a = —1,b = 0 giving

flz) = 22-72-6—(-140z)2=0
= 23_71’._7:0.

The roots of this equation are
—1.692021472, —1.356895868, 3.048917340
corresponding to points

P = (—1.692021472 ~1)
P° = (—1.356895868, —1)
P = (3.048017340,-1)

and we can double two of these points on £40 giving

2P = (4.015122237,—5.533783453)
2P° = (3.258805396,2.407543327).

The line joining these two points is
y = 36.62500004 — 10.49999993z
which is a close appraximation to the rational line
y =293/8 — (21/2)z

substituting a = 293/8,b = —21/2 into the discriminantal surface gives the
rational value d = 7.13.29.181.276 and provides a new starting point for the
generation of cyclic cubic extensions.



Chapter 5

Non-vanishing of Cyclic Twists

The constructions of the previous chapter have been largely geometric and
have constructed twists for which the L-series vanish. In order to study
non-vanishing of the L-function we will take a more algebraic approach.
If we can show that the algebraic part of the twisted L-function is non-
zero modulo some prime then it must be non-zero on C. In order to define
what we mean by the algebraic part of an L-function we introduce modular
symbols following Mazur, Tate and Teitelbaum [22]. However, since we will
only be considering weight two modular forms we will simplify the notation
somewhat.

5.1 Modular Symbols

Let f be a weight two eigenform of level N. We define a modular symbol
{a, 3} € S3(N)* as a functional

8
(@8 = 5 [ F)a

The properties of the modular symbol which are important for our purposes
will now be summarized in a series of propositions. We shall assume that the
Dirichlet character ¥ is of order k and has conductor m.

Proposition 5.1.1 (L-function relation) The L-series of a modular cusp
form at its critical point can be expressed as a modular symbol

L(f,1) = {,0} .
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Proposition 5.1.2 (Birch’s Theorem) The value of an L-series twisted
by a Dirichlet character can be expressed as a weighted sum of modular sym-
bols

10 =2 5 @) {0, 2}

amod m

where T(x) is the Gauss sum.

Proposition 5.1.3 (Hecke action) For an eigenform f the Hecke operator
T, with eigenvalue a, acts on the modular symbol as follows

{2} = {0 2}7 = 5 {0 222 1 o) {0 2)

where <(p) =0 if p|N else 1.

Proposition 5.1.4 (Integrality) There are non-zero complex numbers Q*
depending only upon f such that

A%(a,m):= ({oo, 7—;:—} + {oo, ;7:-}) /Q* are integers.

When f is the modular form associated to an elliptic curve the value QF are
rational multiples of the periods of the elliptic curve.

When dealing with even characters (i.e. characters y such that x(—1) =
1) it is appropriate to take the positive sign. In what follows we shall use
A to mean either A* or A~ depending on the parity of the character we are
dealing with; and similarly for Q.

This new symbol inherits by linearity all the above properties of the
modular symbol. Using this symbol we can make precise the idea of the
algebraic part of an L-function. Since

110 =22 3 5@ {0, 2}

amodm

We find easily

22(£,1,) = "X 3™ 3(a)A(a, m)

amodm
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and so we define

L0 =g = 3 x(o)Aam) € Q)

to be the algebraic part of the twisted L-function.

eamodm

5.2 Congruence relations

Let k be an odd prime. We wish to examine the residues modulo & of L-
functions twisted by different Dirichlet characters of order k. We first observe
that by Fermat’s little theorem or otherwise,

1 = x(a)* = x(a) modt when (a,m) =1
= x(a) when (a,m) # 1.

Where ¢ is the unique prime above k in the cyclotomic field of k** roots of

unity.
So
Z x(a)A(a,m) = Z A(a,m)mod¢®.
amodm zza%;i;r;

Suppose we further twist the L-series by a Dirichlet character ¥ of prime con-
ductor p coprime to m. Any primitive character of order k is the product of
characters of order k of distinct prime conductors and, possibly, the character
of conductor k2. The subsequent analysis will be simplified by considering
sums of modular symbols in a formal manner.

5.2.1 Sums of modular symbols

Let
Sm(t) == ) Ala,t).

(s
For a character of order k and conductor m we have
L*(f,1,x) = Sm(m) mod k.

We wish to study the effect on L* of a further twist of the same order and
prime conductor p and also the particular case of conductor p?> when p = k.
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That is, relations amongst S,,(m), Smp(mp), and S, ,2(mp?). We may do
this using the Hecke action. We assume that f is an eigenform for all the
Hecke operators and that (m,p) = 1.

Sm(m)|T, = apSm(m)= Y | Ala—um,pm)+e(p)A(ap,m)

amodm Lu=0
(a,m)=1

p—1

= Z ZA(a—um,pm)+e(p) Z A(ap, m)

amodm u=0 amodm
(a,m)=1 (a,m)=1
= Sm(pm) + £(p)Sm(m).
Now
Smipm) = Y A(e,pm)
e mod prn
(a,m)=1
= ) Alapm)+ Y Ala,pm)
amod pm amod pm
(apm)=1 (a,pm)=p
= Spm(pm)+ Y A(bp,pm)
bmodm
(b,m)=1
= Spm(pm) + S (m).
So

5Sm(m) = Spm(pm) + Sm(m) + (p)Sm(m)
Spm(pm) = (ap — 1 —(p))Sm(m).

The derivation of a formula for S,,,2(mp?) requires a second application of
Tp-

p—1
(SmMITNT, = alSm(m)= D |3 Ala— um, pm)™ + <(p)A(ap, m)™
amodm [u=0

(a,m)=1
p—-1 p-1

= Z E ZA(a — um — vmp, p*m)

amodm v=0 u=0
(a,m)=1
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p-1

+e(p) Y Y ((a—um)p,pm)

amodm v=0
(a,m)=1
p—-1
+e(p) Y Y Alep—vm,pm)+e*(p) Y A(ap® m)
amodm v=0 amodm
(a,m)=1 (am)=1

= Sn(mp®) + e(p)pSm(m) + £(p) Sm(pm) + £(p)Sm(m).

Now
Sm(pm) = Spm(pm) + Sp(m)
and
Sm(mp?) = Y Ala,p’m)
a(l::ll)p:{n
Z A(a,p*m) + Z A(a,p*m) + Z A(a,p*m)
amod p?m amod p®m amodp?m
(a.mp?)=1 (amp?)=p (a;mp?)=p?
= Sep(mp®)+ Y Albp,P’m)+ D A(p’.p'm)
bmodpm cmodm
(b,mp)=1 (em)=1
= Spp (mp?) + Spmp(mp) + Sm(m).
So
@2Sm(m) = Smp2(mp®) + Smp(mp) + Spu(m) + £(D)PSm(m) + &(P)Sm(m)
+&(P)(Spm(pm) + Sm(m))
= Smpa(mp®) + Smp(mp)(1 + £(p)) + Sm(m)(1 + £(p)p + 2¢(p))
= ‘S'mp2 (mp2)
+(ap — 1 — &(p))(1 + £(p)) Sm(m) + Sm(m)(1 + £(p)p + 2(p))
= S (mp®) + Sn(m)(ay +e(p)ay — £(p) + £(P)p).
Simplifying

[a3 — ap — £(p)ap — (p)p + £(p)] Sm(m)

Smp2 (mp2) =
= [(ap - 1)(a, — £(p)) — &(P)p] Sm(m).
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This is all we require for the next section but we will continue the analysis
and establish a general recurrence relation for Sp,,t(mpt) for all t > 2. As
before

4Smpt(mp) = ) Y Ala—ump',mp*)+e(p) Y. Alap,mp!)

a mod mp*t u=0 a mod mp*
(a,mp*)=1 (a,mpt)=1
= Smp(mp™*') +elp) Y Aa,mp)
amod mpt-1!
(a;mp*~1)=1

= Smpt(mp**') + e(p)pSmpt-1(mp™1).

Note that since t > 2, cancelling a p does not change the gcd. Now

Smp(mp*!) = Y Aa,mp™")
amod mpt+!
(amp*)=1
= Y Alemp)+ Y Ale,mp't)
amodmpt+! amod mptt!
(a,mp**1)=1 (a,mpt+1)=p

= Smpu-x (mp‘“) + Smp: (mp‘).
Substituting this value above and rearranging terms we find

t+l)

Smge+1(mp'*') = apSppt (Mp*) — £(D)pSpnpt -1 (mp*™*)

which is the same recurrence satisfied by the original a,:.

5.2.2 Application to twisted L-series

Since the above formal sums are congruent modulo k to the algebraic part
of the L-series, we have

Theorem 5.2.1 Let x be Dirichlet character of order k and conductor m,
and let Y be a Dirichlet character of order k and prime conductor p with
(m,p) = 1. Let e(t) = 1 if (t, N) = 1 and zero otherwise. Then for a
modular form f of level N which is a simultaneous eigenform for the Hecke
operators we have

L*(f,1,x¥) = (ap —&(p) — 1)L*(f, 1, x) mod k.
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If p is the Dirichlet character of order k and conductor k* prime to m we
have

L*(f,1,xp) = (ar — 1)(ax — e(k))L*(f, 1, x) mod k.

Proof. We have previously established that L*(f,1,x) = Sm(m) mod k and
so we use the formulae derived in the previous section reduced modulo k.

Spm(pm) = (ap— 1 — <(p))Sm(m) mod k
Smp2(mk?®) = (ax ~ 1)(ax — £(k))Sm(m) mod k

and the results follow immediately. @

Consequently, a twist of conductor m can only vanish modulo k if either
the L-function or one of the factors (@, — ¢(p) — 1) vanishes modulo k for
some p|m. In the special case that k|m vanishing may occur if a; = 1 mod k
or a; = =(k) mod k.

By Cebotarev’s theorem (See [34] section 4.2) we know that the traces of
Frobenius which can occur, do occur infinitely often and so, for any elliptic
curve of zero rank, we can find a positive density of twists such that a, =
/ 2modk for each p dividing the conductor of the twist. Consequently, we
have

Proposition 5.2.2 For any elliptic curve E with L*(E,1) #0modk we can
find an infinity of cyclic twists x of order k such that L(E,1,x) #0.8

Proposition 5.2.3 For any elliptic curve E with L(E,1) # 0 and for each
prime order k (with a finite number of exceptions) there ezists an infinity of
cyclic characters x of order k such that L(E,1,x) # 0.
Proof. For all but a finite number of primes

L*(E,1,x) #0modk => L(E, 1,x) #0.

Hence, for all but this finite number of primes this proposition is implied by
the previous one. B
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Chapter 6

Results for higher order twists

As we saw from the computational results, no convincing empirical case can
be made for infinite vanishing for twists of order greater than 3. This chapter
contains some fragmentary results for higher degree twists.

6.1 Construction of a curve with a point in a
quintic extension

The special nature of cyclic quintic extensions permits us to construct a
rational elliptic curve with a point in a cyclic quintic extension. While the
construction is of interest in itself, it also provides a method of validating
the computer programs used to compute the value of the L-function at the
critical point.

Let a be the generator of the cyclic quintic extension which is a subfield
of the cyclotomic extension Q((,), and let its minimum polynomial be g(z).
Let 3 € Q(a). Since (1,a,a?,a® a?) is a basis, we have

B = ag + aya + asa® + aza® + a0t a; €EZ
and, after reduction modulo g,
ﬂ2 =bo+b1a+bga2+bsa3+b4a4 b,' GZ

where the b’s are elementary functions of the a’s. This is a genus one curve
in quartic form and its jacobian is an elliptic curve

Yy =42>- Az - B
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where

A = bgby — 4bybs + 3b2
B = bgbybg + 2bybobs — bob3 — beb? — b3

This jacobian curve is isomorphic to the quartic and so also has a point in
Q(a). Consequently, its L-function should have a zero at the critical point.
The challenge is to choose the a; in such a way that the resulting jacobian is
an elliptic curve of manageable conductor so that we may compute the sign
of the functional equation and sum the series of the L-function to reasonable
accuracy.

After some experimentation and with the help of Maple, the following
example was discovered.

Let a = (;; + ¢;] = 2cos(2m/11). This has minimum polynomial

g@) =2+ —4r* - 322 + 3x + 1
A suitable choice is

B = a®+ad whence
B = o*+22° +afmodyg
= 4a'+7a® - 4a -1
This gives a jacobian
y2 = 423 -3+ 15 or
v = 16
(4y)® = (4z)°—12(4z) +15

with conductor = 13392.

Using Cremona’s MWrank program we quickly establish that this curve
has rank one and therefore the sign of the functional equation is —1. When
the twisted L-function program was subsequently run for 10,000 terms with
a cyclic quintic character of conductor 11 it returned a critical value of zero
to 19 decimal places.



6.2 Application of Waldspurger’s theorem to
sextic twists

Let E/Q be an elliptic curve and x a cyclic cubic character. Let

L(E,s) = f: a(r)
n=1 n?

be the L-function of E. Let f(z) = Y oo, a(n)exp(2ninz) € S3(N) be the
weight two eigenform associated to E. It is the Mellin transform of L(E, s).
The corresponding twisted L-function L(E,s,x) = Y oo, ﬂ"ﬂ—l’,‘i'—‘) is similarly
associated to a modular form with nebentype, f, € Sy(N,x). From the
Shimura correspondence stated above we see that there exists a weight 3/2
form g,2 € S3/2(2N, x?) corresponding to f,. Here we have switched the roles
of x and x? in the original statement using the fact that, for cubic characters,
(03)? =x.

We may now use Waldspurger’s theorem to handle quadratic twists of
these cubic twisted forms and get non-vanishing results as previously. In
particular, for a specific cubic twist x, there are an infinite number of elliptic
curves FEp for which L(Ep, s,Xx) # 0. Assuming the Birch and Swinnerton-
Dyer conjecture we can thus say that there exist an infinite number of sextic
extensions having a specific cyclic cubic sub-extension for which the rank of

E does not increase.
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Appendix A

Detailed table of vanishing
twists

The following list tabulates the conductors below 1000 of cyclic characters x
of orders 3,5 and 7 for which L(E,1,x) = 0. The elliptic curves are named
as in Cremona’s tables [8]. Repetitions are possible in the case of composite
characters.

11A

Order 3 [151 157 307 571 643 721 873 997]
14A

Order 3 [31 117 171 247 283 333 337 499 547 559 657 673 691 711
711 733 919 997]
Order 5 [251 641]

15A

Order 3 [103 163 193 259 577 679 679 703 727 973]
Order 5 [661]

17A

Order 3 [127 133 171 247 277 499 679 703 853 873]
Order 5 [251]
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19A
Order 3

20A
Order 3

Order 5
21A

Order 3
Order S5

24A
Order 3

Order S
Oxder 7

26A
Order 3
26B
Order 3
27A
Order 3

30A
Order 3

32A
Order 3

(43 63 67 73 117 279 373 387 403 439 469 481 487 523 547
559 643 657 721 819 873]

(9 63 73 91 117 133 171 229 259 277 307 559 613 703 711
711 727 763 819 819 829 871 889 889 919 973]
[671]

[103 643 769 811 817 919]
[41 451]

[31 67 133 133 151 193 247 469 547 589 613 679 691 703
739 817 853 871]

[431]

[491]

(127 133 181 301 457 511 643 657 691 711 997]

[73 157 193 307 313 439 511 643 657 711 711 997]

(19 37 109 127 181 217 397 427 553 721 739 793 811 871
883 949]

[61 67 127 133 259 367 427 439 553 607 643 733 763 871
949 973 997]

(349 397]



33A
Order 3
34A
Order 3

35A

Order 3
Order 5

36A
Order 3
37A

Order 3
Order 5

378
Order 3

38A
Order 3

Order 5
38B

Order 3
Order 5
Order 7

39A
Order 3

[67 103 151 499 547 553 613 619 643 853 871 889]

(9 63 73 133 163 217 283 439 549 559 703 711 769 819
873 981]

[43 67 171 279 333 409 433 457 657 711 711 811 873 949]
[11]

[301 397 403 481 889]

[43 61 103 127 171 247 817 853]
[41]

[7 13 63 117 133 157 181 217 279 283 301 337 387 387 403
427 657 721 757 793 819 819 823 871 871 981 981]

[13 43 61 63 63 79 117 211 217 279 387 403 427 439 469
511 553 657 763 763 819 877 883]
[661]

[13 61 79 117 229 403 427 553 819 823]
(41 781]
[71]

[7 73 133 163 229 259 301 421 439 607 643 889 937 967]

61



40A
Order 3

Order 5
42A

Order 3
Order 5

43A

Order 3
Order 5

44A

Order 3

45A
Order 3
46A
Order 3
48A

Order 3
Order 5

49A
Order 3
50A

Order 3
Order 5

[7 63 91 223 259 277 301 427 499 547 619 679 757 853
883 919 973]
[311]

(19 43 247 331 367 487 559 643 703 703 853 997]
[241]

(91 109 259 271 427 439 469 481 657 721 739 871 949 967]
[251]

(13 117 117 217 333 379 387 387 397 457 511 549 603 739
819 949 973 997]

(103 163 193 481 577 679 763 973]

[139 223 307 481 613]

[43 127 223 397 457 661 679 733 853]
[775]

(547]

[463 703 823]
(31 341]
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50B
Order 3

Order 5
51A

Order 3
Order 5

52A
Order 3
53A
Order 3
54A

Order 3
Order 5

54B
Order 3

Order 5
55A
Order 3

Order S
56A

Order 3
Order S

56B
Order 3

[19 31 61 133 241 379 439 553 589 711 751 811 817 829
919]
[341]

[217 403 577 721]
[275]

(511 859]

[171 241 247 259 367 421 499 559)

{7 73 91 109 427 511 553 721 793 811 871 889]
[11]

(7 13 67 73 91 133 217 241 247 259 313 337 367 427 427
481 499 511 523 553 643 721 763 763 769 793 817 853 871)
[431 761]

(13 19 61 67 91 117 133 171 181 313 349 403 469 511 5i1i
5563 553 603 643 657 703 711 711 721 721 819 877 927 997]
(31]

[19 31 43 109 117 117 171 337 487 499 559 703 927]
[431 451]

{127 313 331 337 691]



57A

Order 3
Order 5

57B

Order 3

Order 7
57C

Order 3
Order 5

58A

Order 3
Order 5
Order 7

58B

Order 3

Order 5
61A

Order 3

Order 5
62A

Order 3

Order 7
63A
Order 3

[31 43 127 241 337 439 499 631 871]
[25 151 251 911]

[67 109 163 181 217 217 259 259 301 313 367 403 421 481
487 523 721 757 763 871]
[29]

[31 43 259 727 871 919]
[275]

[9 73 91 127 133 217 307 333 499 619 657 763 819]
(41 431]
[71]

[91 103 117 117 193 247 259 333 403 439 727 787 793 793
823 927]
[275]

(31 37 109 171 259 307 313 333 373 421 523 691 703 733
829 889 967 973 997]
[11 691 761]

[13 43 117 163 181 247 301 387 481 613 679 721 811 819
853 871 873 919]
[29]

(103 151 193 643 727 817]
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64A
Order 3 [853]
65A

Order 3 [63 271 279 397 427 469 549 607 703 721]
Order 5 [41 71]

66A

Order 3 [13 43 91 91 133 229 247 457 469 589 661 679 703 709
721 733 817 973]

66B
Order 3 [7 91 259 271 421 511 763]
66C

Order 3 [109 127 181 307 523 571 643 883 997]
Order 5 [31 151]

67A
Order 3 [481 619 927]
69A
Order 3 [67 163 313 763]
TO0A
Order 3 [163 279 313 333 333 421 487 853]
72A
Order 3 [151 193 397 403 577 817]
73A

Order 3 [7 19 63 67 79 91 133 133 229 247 259 499 547 577 589
613 703 711 763 817 859]
Order 5 [311]
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75A

Order 3 [139 823]
Order 5 [541]

75B
Order 3 [13 127 181 211 301 337 409 457 511 769 871 973]
75C
Order 3 [43 91 109 127 247 247 307 601 613]
76A
Order 3 [229 397 607 871]
T7A

Order 3 [61 103 171 229 277 313 333 421 883]
Order 5 [25 181]

7B

Order 3 [37 61 117 223 229 421 559 559 657 673 703 711 769 811
871 877 949]

77C

Order 3 [313 487 769 871]
78A

Order 3 [643 727]
T9A

Order 3 [43 199 217 277 307 427 469 679 873 919)
Order 5 [31 191 641]
Order 7 [29]

80A

Order 3 [31 43 109 171 247 277 307 703 703 721 763)]
Order 5 [241]
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80B
Order 3
82A
Order 3

Order 5
83A
Order 3
84A

Order 3
Order 5

84B
Order 3
85A
Order 3
88A

Order 3

Order 5
89A

Order 3
Order S

89B

Order 3

Order 5

(13 91 117 181 229 259 313 337 349 763 769 819 871]

(31 63 63 67 73 163 193 259 367 457 601 643 727 793 817
967 973]
(11 25 181]

[171 259 333 549 549 657 853 871]

[19 61 337 487 589 817]
[41]

[19 103 223 247 589]

[13 37 181 247 259 313 547 631 679 691 703 763]

[13 19 31 63 217 247 367 387 439 457 549 657 733 853 919
973 973 997]
[251 431 811]

[439 457 541 603 691 763 819 991]
[25 131 341 451 491]

[7 13 43 63 117 133 133 199 217 247 259 313 337 373 469
487 553 763 817 823 829 869 871 919 949]
[151]
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90A

Order 3

Order 7
90B

Order 3

Order S
90C
Order 3

Order 5
91A
Order 3
91B

Order 3

Order S
92A

Order 3

92B

Order 3
Order 5

94A

Order 3

[13 31 109 133 157 163 217 223 247 283 307 481 499 589
589 601 679 703 727 793 817 919 973]
[71]

[13 43 67 91 91 133 163 199 211 217 247 409 469 679 691
703 763 817 871 973]
[781]

(67 73 91 91 133 217 247 259 307 367 439 457 469 523 553
559 589 613 679 691 757 763 853 949 973]
[761]

(241 457 603 661 703 817]

[9 61 67 171 223 241 279 283 307 397 457 589 603 619 657
657 711 711 817 853 873 981 991]
(151 341 671]

[9 63 117 157 279 307 333 457 511 549 553 711 819 873 883
981]

[7 63 67 91 193 217 247 259 271 301 523 549 709 721 973]
[41 341]

[13 547 603 711 997]



96A

Order 3 [7 19 91 109 157 163 181 217 223 247 259 301 337 373 379
421 427 469 487 661 673 703 811 817]
Order 7 [29 113]

96B

Order 3 [31 43 109 127 229 457 469]
Order 5 [41 251 451]
Order 7 [29 113]

98A
Order 3 [127 373 387 883]
99A

Order 3 [43 163 277 349 403 409 643]
Order 5 [191]

99B
Order 3 [103 619 709]
99C

Order 3 [103 271 307 499 553 643 679 709 937 997]
Order 5 [41]

99D
Order 3 [337 853]
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Appendix B
Program listings

The following Pari-GP programs compute the twisted L-series used in this
thesis. They use the ‘local’ command which was introduced in version 2.16.

Constants and global variables

default(parisize,40000000)
default(format,’’g0.7??)
print(’’Please call jinit to initialize
ecurve,cond, eps,tol,sterms,an,kappa’’)
ell=ellinit([0,-1,1,-10,-20]1);
e37a=ellinit([0,0,1,-1,0]1);
e37b=ellinit([0,1,1,-23,-50]);
e40=ellinit([0,0,0,-7,-6]);
e307a=ellinit([0,0,1,-8,-9]);
e307b=ellinit([1,1,0,0,-1]1);
e307c=ellinit([0,0,1,1,-1]);
e307d=ellinit([0,-1,1,2,-1]);
e43=ellinit([0,1,1,0,0]);
\\global (ecurve=el1,cond=11,eps=1,digs=10, sterms=10000,an,lval);

\r crem200
\\ Jinit sets up global variables for the i th entry

\\ in etable (see table below)
jinit (ii, kk=3,dd=10)=
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{

local(c);
ecurve=ellinit(etable[ii]);
cond=ellglobalred(ecurve) [1];
sterms=terms(cond,5000,dd) ;
eps=1;if (etable[ii~1]<0,eps=-1);
an=ellan(ecurve,sterms);
lval=elllseries(ecurve,1.0);
cond

}

\\This fuanction computes the number of terms required for
\\at least dig digits accuracy in computing the L-function
terms(c,m,dig)=

{

local(q);

q=exp (-2*Pi/(m*sqrt(c)));

truncate(max(100,round ((log(l.-q)-dig*log(10.))/log(q))));
}

Functions to evaluate twisted L-series using infinite sums

\\ lccrit computes the critical value of the twisted L-series

\\ of ecurve twisted by the primitive character (m,k,r)
lccrit(m,k,r=1,nn=sterms)=

{

local(n,qq,w,ppsi,cpsi,s);

qq=exp (-2*Pi/(m*cond~.5)) ;

v=cchtab(m,k,r);

ppsi=v{cond’m+m] ;

w=gsum(m,v) ;

cpsi=ppsi*u*w/m;

s=sum(n=1,nn,an[n] *(v[n)m+m] +eps*cpsi*conj(v[n¥m+m]) ) *qq n/n);

rmdr=4*qq~nr/(1-qq);
s

}
\\ Computes the rth character table of a composite character
\\ vhere r is the base k representation of the powers of the
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\\prime characters.

cchtab(m,k,r)=

{

local(v,x,vv,t,nn,d,nvec,basevec,charvec,rr);

if (isprime(m) ,return(chtab(m,k,r)));

v=vector (2*m,x,1);

\\ Starts by setting up a vector of ’prime’ factors

\\ of m. k"2 is treated like a prime.

if(tistwist (m,k),
return([m,’’ is not valid twist for order ’’,k,

’? and ell curve conductor ’’,cond]));

nvec=omega(m) ; charvec=vector(nvec,x,0);

if(ged(k~2,m)==k"~2, charvec[1]=k"2;kk=2;nn=m\k"2, nn=m;kk=1);

fordiv(nn,d,if (isprime(d),charvec[kk]=d;kk++,));

\\print (anvec,charvec) ;

\\ We now express r in base k-1 format.

if (r>k"nvec,print ([r,’’ is too large for twist ’’,m,charvec]);
return(0),);

basevec=vector (nvec,x,0) ;rr=r-1;kk=1;

while(rr!=0,basevec [kk]=rr) (k-1) ;rr=rr\ (k-1) ;kk++);

for (kk=1,nvec,basevec [kk]++);

\\print (basevec) ;

\\ Now we compute the characters.

for (kk=1,nvec, vv=chtab(charvec [kk] , k, basevec [kk] ) ;
for(t=1,2#m,v[t]*=vv[t)charvec [kk]+charvec[kk]]));

v
}

\\ Computes a vector of length 2*p representing the Dirichlet
\\ character of conductor p and degree k as complex roots of
\\ unity. The value of the character at the primitive root
\\ computed by Pari is exp(2#Pi*I*r/k).

chtab(p,k,r)=

{

locai(g,n,v,zet);

if (k==1,return(vector (2+p,xx,1)));

g=znprimroot(p);
v=vector (2*p,xx,0);



zet=exp(2+*Pi*I*r/k);
for(n=1,p,v[1lift(g"n)]=zet~n);v[pl=0;
for (n=p+1,2*p,v[n]l=v[n-pl);

v

}

\\ we assume k is prime and check if n is a 8q free product
\\of primes ==1 mod k possibly multiplied by k=2
\\ and prime to cond.

istwist(m,k)=

{

if(ged(m,cond) !=1,return(0));

if (k==1,return(1));

if (ged(k~2,m)==k"2,m/=k~2) ;

if (ged(m,k) !=1,return(0));

if (isprime(m) & m¥k==1,return(1));

if (Vissquarefree(m),return(0));

fordiv(m,d,if ((isprime(d) & d%k!'=1),return(0)));
1

}

\\Compute the Gauss sum
gsum(p,v)=

{

local(n,q,s,t);

q=exp (2*Pi*I/p);t=q;s=0;
for (n=1,p-1,s+=v[n]*t;t*=q) ;
s

}

\\Compute the derivative of the twisted L-series at the

\\critical point.

lcdcrit(eps,cond,m,k,r,nn)=

{

local(zz,w,n);

2z=2*Pi/(m*cond".5) ; v=cchtab(m,k,r);
ppsi=v[cond/m+m] ;w=gsum(m,v) ; cpsi=ppsi*w*w/m;

s=sum(n=1,nn, an(n] *(v[n/n+m] -eps*cpsi*conj (v[nim+m] ) ) *eint1 (n*zz) /n) ;
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S

}

\\Remove unnecessary digits when viewing vectors of
\\complex numbers.
trim(v)=
{
local(n,nn,eps,v,xx,yy);
w=Vec(v);
nn=length(w) ;eps=10"-10;print(’’nn= ’’,nn);
for(n=1,nn,xx=real(w[n]) ;yy=imag(winl);
if (abs(xx)<eps,xx=0,) ; if (abs (yy)<eps,yy=0,);
if (abs(abs(xx)-1)<eps,xx=sign(xx),);
if (abs(abs (yy)-1)<eps,yy=sign(yy),) ;v [nl=xx+Isyy);
if (nn==1,return(w(1]),return(w));
}

\\Compute the critical value of the twisted L-series
\\for twists of prime conductor.
lcrit(eps,cond,p,k,r,nn)=

{

local(n,qq,w,v,ppsi,cpsi,s) ;

if(k==1 | p==1,return(lseries(eps,cond,nn)));
qq=exp(-2*Pi/ (p*cond~.5)) ;

v=chtab(p,k,r);

ppsi=v[cond)p+pl; w=gsum(p,v); cpsi=ppsi*wiu/p;
s=sum(n=1,nn, an[n]*(v[n)p+pl+eps*cpsi*conj(v[n%p+pl )) *qq~n/n) ;
rmdr=4#qq-nn/(1-qq) ;

8

}

Functions to compute modular symbols

\\Set up the conductor matrix with the values of reduced M-symbols.
condinit (c=cond, k)=

{

local(t,u);

condmat=matrix(c,c,x,y,0);
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accummat=matrix(c,c,x,y,0);
pccummat=matrix(c,c,x,y,vector(k,z,0));
for(t=1,c,for(u=1,c,
if([t,ul==msred([t,u]),condmat [t,u] =zsum(t,u),next);
))

}

\\ Compute the Manin symbol (t,u) for squarefree conductor
\\ using a method of Goldfeld.
zsum(t,u)=
{
local(avec,mi,m,t1,h,s,r,ul,s1,L,uu,sssum,q1,q2,c1,c2) ;
local(tti,tt2,n, temp, gammaM, temp2,gammaN , gammaMMh) ;
nlim=10%cond; \\ Maybe this should be replaced with sterms!!
if(u==t | ged(u,t)!=1,return(0.0));
avec=bezout (u,t); \\print([1,t,u,avec]);
=avec[1] ;s=avec[2] ; \\print([2,t,u,s,r]);
mi=gcd(t,cond) ;m=cond/m1;t1=t/mi;\\print([3,t,u,m1,m,t1]);
avec=bezout (t,m) ;h=avec [1]*u/avec [3] ;ul=avec[2] *u/avec[3] ;
sl=s-r*h;mh=gcd(m,h) ;\\print ([4,t,u,avec,h,ul,s1,mh]);
if(gcd (h*cond/m,m/mh) !=1,
print([’’error in gecd’’,t,u,r,s,m,h,mh]);return);
if(m/mh==1,L=1,L=1ift (Mod (1,m/mh)/Mod (h*cond/m,m/mh))) ;
\W\if(m/mh ==1, L=1, L =mn/(h*cond) % (m/mh) );
\\P. Green’s version
\\print({t,u,r,s,m,h,mh,L]);
uu=sqrt (m*mh) ;
sssum=0.0+0.0+*I;\\print ([5,t,u,L,uul);
ql=exp (-(2*Pi/m)* (uu/sqrt (cond)-I*h));
q2=exp (-2*Pi*mh*(1./(uu*sqrt (cond))+I*L/m));

/* compute the gammas. This is P. Green’s correction. */
temp = factor(m); temp2 = matsize(temp);

gammaM = prod(i=1,temp2[1], (-an[temp[i,1]]) “temp[i,2]);
temp = factor(cond); temp2 = matsize(temp);

gammaN = prod(i=1,temp2[1], (~an[temp[i,1]]) “temp[i,2]);
temp = factor(m/mh); temp2 = matsize(temp);

gammaMMh = prod(i=1,temp2(1], (-an[temp[i,1]]) temp[i,2]);
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ttl=gammaM; t t2=-gammaN*gammaM*gammaMMh ;
for(n=1,nlim,tt1*=ql;tt2*=q2;sssum+=(an[n]/n)*(tt1+tt2));
if (abs (sssum) <.00000000001 , sssum=0) ;
if (abs(real (sssum))<.00000000001, sssum=imag (sssum)*I) ;
if (abs (imag(sssum))<.00000000001 , sssum=real (sssum)) ;
\\print([8,t,u,m,m1,mh,h,L,c1,c2,s88um]);
sssum

}

\\Returns the denominators of the convergents of
\\a rational number x

convers(x)=

{

local(cfr,n,mfr,vfr,nn);

cfr=contfrac(x);

n=length(cfr) ;mfr=contfracpnqn(cfr);
vir=cfr;vfr[nl=mfr[2,1] ;vfr[n-1]=mfr(2,2];
if(n>2,forstep(nn=n-2,1,-1,virnn]=vfr [nn+2]-cfr[nn+2] *vfr[nn+1]),);
vir

}

\\Reduces the vector vfr to m-symbols for conductor, cond.
msymbol(vfr)=

{

local(n,nn,ms,mslist);

n=length(vfr) ;mslist=vector(n-1,x, [0,0]);

forstep(nn=n,2,-1,

ms=[(-1) “nn*vfr[nn] ,vfr[nn-1]] ;ms=msred(ms) ;mslist[nn-1]=ms);
mslist

}

\\ Reduces a modular symbol modulo the conductor, cond.
msred(ms)=

{

local (mms) ;

mms=mscond;

if (mms [2]==0,return([1,cond]));

if (mms[1]==0,return([cond,11));
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if (mms [2]==1,return(mms));

if (mms[1]==1 & gcd(mms[2],cond)>1,return(mes));

if (gcd(cond,mms[2])==1,

mus [1]=1ift (Mod (mms [1], cond) /Mod (mms [2] ,cond) ) ;

mms [2]=1;return (mms)) ;

if(gcd(cond,mms[1])==1,

mms [2]=1ift (Mod (mms [2] , cond) /Mod (mms [1] , cond) ) ;
mms[1]=1;return(mms));

if (mms[1]==0,mms {1]=cond, ) ; if (zms [2]==0,mms {2] =cond, ) ;
if (ged(ged (mms [1] ,mms [2]) ,cond)==1, ms=mms/gcd (mms [1] ,mms [2]),);
mms=mms/gcd (mms (1] ,mms [2] )

}

\\ evaluates {0,a/d}

valsym(a,d)=

{

local(n,vfr,mm,m, tsum,mfr,kk) ;
vir=convers(a/d) ;mfr=msymbol (vfr) ;mm=length(mfr) ;
accummat*=0;for (m=1,mm,accummat [mfr [m] [1] ,mfr [m] [2]]+=1);
tsum=0;

for(m=1,cond, for (n=1, cond,kk=accummat [m,n] ; tsum+=kk*condmat [m,n]));
\\ omi=ecurve.omega[1]/2;om2=I*imag(ecurve.omega[2]);

\\ print([a,d,tsum,lindep([-tsum,oml,om2])]);

tsum

}

\\ Evaluates the rational modular symbol

\\ mazsym(a,d):= ({0,a/d}+{0, (d-a)/d})/ecurve.omegal1].
mazsym(a,d)=

{

local(z);

z=(valsym(a,d)+valsym(d-a,d))/ecurve.omega[1] ;

if (abs (imag(z))<.0000001,2=real(z));

if (abs(real(z))<.0000001,z=imag(z));

z

}
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Compute twisted L-series using modular symbols

\\ Compute the critical value of the L-series of ecurve
\\ twisted by (d,k,r) using finite sum of modular symbols.
lctwist(d,k,r)=
{
local(n,chi,vfr,mfr,mm,m,tsum,v);
if(k==1 | d==1,return(valsym(1,cond)));
v=cchtab(d,k,r);
accummat*=0;
for(n=1,d-1,chi=conj(v[n+d]);
vir=convers(n/d) ;mfr=msymbol (vfr) ;mm=length(mfr) ;

for (m=1,mm,accummat [mfr [(m] [1] ,mfr [m] [2]]+=chi));
tsum=0;for(m=1, cond,for(n=1,cond, tsum+=accummat [m,n] *condmat [m,n])) ;
tsur=tsum*gsum(d,v)/d;
if(real(v[d-1])<0,return(tsum) ,return(-tsum)) ;
}

\\Mazsum computes the sum
\\S_m(mpk)=SUM{a mod mpk, (a,m)=1}mazsym(a,mpk) .
\\Alternatively it may compute the above sum
\\twisted by (mpk,k,r).
mazsum(m,mpk, const=-1,k=0,r=0)=
{
local(s,n,v,a);
if(const==-1,cc=-2*lval/ecurve.omegal[1],cc=const);
if(k==0,8=0;

for(a=1,mpk,if (gcd(a,m)==1, s+=mazsym(a,mpk)+cc)) ;return(s));
v=cchtab(mpk,k,r) ;
8=0;for(a=1,mpk-1,s+=conj (v [mpk+a]) *mazsym(a,mpk)) ;return(s) ;
}

hecke(a,m,p,const=-1)=

{

local (msz,mszz,cc);
if(const==-1,cc=-2*1val/ecurve.omega[1],cc=const);
msz=mazsym(a*p,m)+cc;

print ([an[p]*(mazsym(a,m)+cc),’’=’? ,msz]);
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for (u=0,p-1,mszz=mazsym(a-u#*m, p*m)+cc;
print([’’+’’ ,mszz]) ;msz+=mszz) ;
msz

}

Programs which print lists of twisted L-series of various kinds

\\Search lists twisted L-series of |critical valuel<.001
\\ for prime conductors between pp and ppp.
\\Characters are order k.
search(k,pp,ppp)=
{
local (qexp,p,w);
qexp=-2*Pi/sqrt(cond);
t=terms(cond, ppp, 10) ;
if (t>sterms,an=ellan(ecurve,t) ;sterms=t) ;
forprime (p=pp,ppp,
if (istwist(p,k) ,w=test(p,k,1,qexp) ,next);
if (abs(w)<.001,print([cond,k,p,w,rmdr]))
);
}

\\ Test is used by search to compute the critical value.
test(p,k,r,gexp)=

{

local(rho);

rho=exp (qexp/p) ;

nterms=terms(cond,p,10);

leerit(p,k,r,nterms)

}

\\Search for zero twists when ell curve has sq free conductor,
\\using modular series
bigrun(cremi,crem2,mcondl,mcond2, korder1=3, korder2=7)=

{

local(lcrem,twistlim);

lcrem=min(length(etable) ,crem?2);
forstep(ncrem=cremi,lcrem,2,jinit (ncrem);
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if (!issquarefree(cond) ,next) ;condinit (cond,korder?2) ;
for (m=mcond1,mcond?2,
forstep(k=korder1,korder2,2,if ('istwist (m,k) ,next);
twistlim=(k~1) " (omega(m)-1);
for(r=1,twistlim,lct=1ctwist(m,k,r);
if (abs(1ct)<.000001,print([ncrem,cond,m,k,r,1ct]))
)

)
);
}

\\Search for zero twists when ell curve has 8q full conductor,
\\using infinite series.
bigrunsq(cremi,crem2,mcond1,mcond2,korder1=3, korder2=7)=
{
local(lcrem,twistlim);
lcrem=min(length(etable),crem?2);
forstep(ncrem=cremi,lcrem,2, jinit (ncrem) ;if (issquarefree(cond) ,next) ;
for (m=mcond1,mcond2, \\print ([cond,m]);
forstep(k=korder1,korder2,2,if (!istwist(m,k),next);
twistlim=(k-1) "~ (omega(m)-1); \\print([cond,m,k,twistlim]);
for(r=1,twistlim,t=terms(cond,m,10) ;\\print([cond,m,k,r,t]);
if (t>sterms,an=ellan(ecurve,t) ;sterms=t) ;lct=lccrit(m,k,r,t);
if (abs(1ct)<.0001,
print([cond,m,k,r,lct,rmdr,t]))
)

)
);
}

\\Search for zero composite conductor twists for all ell curves
comprun(cremi , crem2,mcond1,mcond2,korder1=3,korder2=7)=

{

local(lcrem,twistlim,t);
lcrem=min(length(etable) ,crem2) ; rmdr=0;
forstep(ncrem=cremi,lcrem,2,jinit (ncrem);
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if(issquarefree(cond),condinit (cond,korder2));
for(m=mcond1,mcond2, if(isprime(m),next);
forstep(k=korderl,korder2,2,if (!istwist(m,k),next);
tvistlim=(k~-1)"(omega(m)-1);
for(r=1,twistlinm,
if (issquarefree(cond),lct=lctwist(m,k,r) ; rmdr=0;t=0);
if(issquarefree(cond) ,t=terms(cond,m,10);
if(t>sterms,
=ellan(ecurve,t);sterms=t) ;lct=lccrit(m,k,r,t));
if (abs(1lct)<.0001,
print([cond,m,k,r,1ct,rmdr,t]))
)

)
);

\\Search for vanishing for twists and elliptic curves
\\ in the specified ranges.
onekrun(creml,crem2,mcondl,mcond2,korder1=3,korder2=7)=

local(lcrem,twistlim,t);

lcrem=min (length(etable) ,crem?) ;rmdr=0;
forstep(ncrem=cremi,lcrem,2,jinit (ncrem);
if (issquarefree(cond), condinit(cond,korder2));
print(’’ \n’’[ncrem,cond]);
for (m=mcond1,mcond?2,
forstep(k=korder1,korder2,2,if (!istwist(m,k),next);
twistlim=(k-1)"(omega(m)-1);
for(r=1,twistlim,
if(issquarefree(cond),1ct=1ctwist(m,k,r);rmdr=0;t=0);
if(tissquarefree(cond) ,t=terms(cond,m, 10);
if(t>sterms,an=ellan(ecurve,t) ;sterms=t);
lct=lccrit(m,k,r,t));
if (abs(1ct)<.0001,
printi([m,k]’’ ??))
NN;
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The table of elliptic curves used in this study

A number of the above routines refer to the vector ‘etable’. This is a list of the
elliptic curves of conductor below 100 which is used in all the computations.
It is a list of the strong curves in Cremona’s tables [§] organized for simple
access by the Pari system. The format is N, (a1, a9, a3, a4,a4] where N is the
conductor of the curve with a positive or negative sign depending on the root
number and the a; are the Weierstrass coefficients of the strong Weil curve.
The content of the table is as follows:

etable=\

[11 ,[0,-1,1,-10,-20],\
14 ![1:03194’_6],\

15 ,[1,1,1,-10,-10],\
17 ,01,-1,1,-1,-14],\
19 ,[0,1,1,-9,-15],\
20 ,[0,1,0,4,4],\

21 ,[1,0,0,-4,-1],\

24 ,[0,-1,0,-4,4],\

26 ,{1,0,1,-5,-8],\

26 ,[1,-1,1,-3,3],\

27 ,[0,0,1,0,-7],\
30 ’[1’051’1’2])\
32 ,[0,0,0,4,0],\
33 ,[1,1,0,-11,0],\
34 ,[1,0,0,-3,1],\
35 ,[0,1,1,9,1],\
36 ,[0,0,0,0,1],\
-37 ,[0,0,1,-1,0],\
37 ,[0,1,1,-23,-50],\
38 ,[1,0,1,9,90],\
38 ,[1,1,1,0,11,\

39 ,I[1,1, -5]1,\
40 ,[o0,0, 1.\
42 ,[1,1,
-43 ,[0,1,1
44 [0 1,0,3,-
45 ,[1,-1,0,0,-5],\
46 ,[1,-1.0,-10,—12],\

1
1
1,
0,-4,
0,-7,-61,
1,-4,5],\
,0,01,\

1.\
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48 ,[0,1,0,-4,-4],\
49 ,[1,-1,0,-2,-1],\
50 ,[1,0,1,-1,-2],\
50 ,[1,1,1,‘3,1],\

51 ,[o0,1,1,1,-1],\

52 ,[0,0,0,1,-10],\
=583 :[1"13110)013\
54 ,[1,-1,0,12,8],\
54 s[1’-1)111’-1]a\
55 ,[1,-1,0,-4,3],\
56 ,[0,0,0,1,2],\

56 ,[0,-1,0,0,-4],\
-57 ,[0,-1,1,-2,2],\
s7 ,[1,0,1,-7,5],\

57 ,[0,1,1,20,-32],\
-58 ,[1,-1,0,-1,1],\
58 ,[1,1,1,5,9],\

-61 ,[1,0,0,-2,1],\
62 ,[1,-1,1,-1,11,\
63 ,[1,-1,0,9,0],\
64 ,[0,0,0,-4,0],\
-65 3[11030’-1)0],\
66 ,[1,0,1,-6,4],\

66 ’[111’1’_2!-1])\
66 ,[1,0,0,-45,81],\
67 n[o:1)11-12:-21]s\
69 ’[13031:-1s-1],\
70 ’[1)-1!1!2l—3])\
72 ’[030’016:-7]’\

73 ,[1,-1,0,4,-3],\
75 ,[os-1’13—83-7]’\
75 ,[1,0,1,-1,23],\
75 ,[0,1,1,2,4],\

76 ,[0,-1,0,-21,-31],\
=77 n[osoaioz:oln\

77 ,[0,1,1,-49,600],\
77 ,[1,1,0,4,11],\

78 ,[1,1,0,-19,685],\
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-79 ,(1,1,1,-2,0],\
80 ,[0,0,0,-7,6],\
80 ,[0,-1,0,4,-4],\
-82 ,[1,0,1,-2,0],\
-83 ,[1,1,1,1,0],\
84 3[01190’7no]n\

84 ,[0,-1,0,-1,-2],\
8s ,[1,1,0,-8,-13],\
-88 ’[010103_414] :\
-89 ,[1,1,1,-1,0],\
89 :[1,1,01415]3\

90 ,[1,-1,0,6,0],\
90 ,[1,-1,1,-8,11],\
90 ,([1,-1,1,13,-61],\
-91 ,[0,0,1,1,0],\
-91 ,[0,1,1,-7,5],\
92 ,[0,1,0,2,1],\

-92 ,[0,0,0,-1,1],\
94 ,[1,-1,1,0,-1],\
96 1[031’0’-2s0]a\

96 ,[0,-1,0,-2,0],\
g8 ,[1,1,0,-25,-111],\
-99 ,[1,-1,1,-2,0],\
99 ,[1,-1,0,-15,8],\
99 ,[1,-1,1,-59,186],\
99 ,[0,0,1,-3,-5]];



Appendix C
Maple calculations for E40

The following two pages show a Maple session which expands on the analysis
of the example in chapter four. The creation of the high genus curve is
shown in full generality and the specialization to F40 is made to illustrate
the factors of the discriminant.



| Maple text to show that only a finite number of values al, a2... can belong to the same cyclic cubic
extension.

The strategy is to show that the hypothesis that two such values al,a2 generate the same extension give
rise to an algebraic variety whose specialization results in a high genus curve which can have only a
finite number of points by Faltings' theorem.

F > restart;

[ Suppose that the elliptic curve E:y"2=x"3+Ax+B has a point (x1,al+bx) in a cyclic cubic extension
| K/Q generated by x1.

(> £:=x"3+A*x+B-al"~2;

f= X +Ax+B-al’

[ We will compute the sums of the first three powers of the roots of f{x;al,b).

> sum(k, 'k'=RooctOf (£,x)) ;

i 0
[ > sum(k™2, 'k '=RootOf (f,x)) ;
L -2 4
[ > sum(k"3, ‘k '=RootOf (f,x)) ;
-3B+3al’

Suppose further that the (x2,a2+bx2) is also a point on E/K. Then x2=p+qx1+rx1°2 for some p,q,rin

Q.

Developing the same sums of powers for the roots of f{x;a2,b) gives polynomial relations g1=0,
| 82=0,g3=0 as follows:
[ > gl:=sum(p+q*k+r*k”2, 'k '=RootOf (f,x)) ;

gl =3p-2rA
[ > g2:=sum((p+g*k+r*k~2) "2, 'k '=RootOf (£,x) ) +2*A;
i g2:=3p"-4Apr-2Aqg -6qrB+6qral*+2r  4*+24
[ > g2:=sum((p+g*k+r*k~2) "3, 'k '=RoatOf {f,x) ) +3*B-3%a2"2 ;
g3 :=3p3—6.4p2r—6,4pq2— 8pgrB+ 18pqra[2—3qJB+3q’aIz+6A2pr2
+6 A r+15gr AB~15qr Aalf -2 A +3P B -6 Balf +3al* +3B - 3 a2’
[ g1 is linear in p,q,r so we use it to eliminate p from g2 and g3 giving h2 and h3.
[ > h2:=resultant(gl,g2,p):
L h2:=—18Aq2—54qu+54(1rc112+6r'2A2+18.4
[ > h3:=resultant (gl g3,p);
h3:=-81q' B +8l q al®* +54 4° ¢ r+81qrr4B -8l qgrrdal+6r* A +81° B
- 162 Bal* +81 P al’ + 81 B - 81 a?*

F A further elimination between h2 and h3 eliminates q leaving h(a2, r; al ,b)=0 as a curve in a2, r. This

L curve has degree 4 in a2 and degree 6 inr.
[ > h:=resultant(h2,h3,q):
( > degree(h,a?) ;

" > degree(h,r);
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[ We will use the algebraic curves package of Maple to compute the genus of specializations of this
| curve.

{ > with(algcurves) :

> genus(h,a2,r);

~

L J
[ The curve E40 with A=-7, B=-6 has been analysed in detail in chapter four.
[ > genus(subs (A=-7,B=-6,h) ,a2,r) ;

L 3
[ > hd:=factors(discrim(h,r)};

hd:=[138520219882218861912460124823785526726423409427l631636425142945381737124\

-
4 - i nd
295530964714520576, [ ;A’ vraX*+ai*-2arB+2B*-242*B, 2},

- _
4 z 4
['7—7.43 +al*-2al*B + B, 15}, [4, 6], [al* - B, 6],!_32 -2az’B+2—7A3 +a2®, ,m
:> ifactor(1385202l98822188619124501248237855267264234094271631636425
142945381737124295530964714520576);
(2)” (3)™
> ndl:=27*hd[2,1,1];
hdl =443 +27a2*+27ar* —54al*B+54B° - 54a2* B
r > hd2:=27*hd[2,2,1};
hd2 =44 +27al* ~54al* B+ 271 B
[ > hd3:=hd([2,3,1]:

hd3 = A
> hdd :=hdf{2,4,1];

hd4 =al* - B

hd5 =2TRB*-54a2* B+44*+27 a2
> genus (hdl,al,a2)

(V3]

[> hd5:=27+hd[2,5,1]:
L
[



