INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Timer Management in Sandia XTP

Yonglin Jiang

A Report
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 8, 2001

© Yonglin Jiang, 2001

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
v O K1A ONG Ottawa ON KTA 0N
Canada Canada
Your Ne Voire rélécence
Our e Notre rétérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique. ‘

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59328-2

Canada

Abstract

Timer Management in Sandia XTP

Yonglin Jiang, Master

Concordia University, 2001

In most network communication protocols, the timer is used as an efficient way to handle
various expected and unexpected events. The timer management plays a very important
role in the protocol implementation. Also, there are many ways to process the protocol
timers. The purpose of this report is to find a protocol timer process mechanism which
will improve the implementation performance of the Xpress Transport Protocol (XTP) -
Sandia XTP, especially with XTP rate control. Based on previous work (Louis Harvey: In
search of a rate control policy for XTP: unicast & multicast) and the analysis of the
Sandia XTP implementation, the new timer management is proposed and implemented
with Sandia XTP. Some experiments that focus on XTP rate control showed that the new

timer management in Sandia XTP improved the XTP rate control and performance.

it

Acknowledgements

First, [would like to express my sincere gratitude to Dr. J. W. Atwood, my major report
supervisor, for his guidance and valuable insight throughout this report. His wisdom and
infinite patience have given me great support to finish this report.

Next, I would like to thank Dr. Gregory Butler for his consultations, advice and
suggestions which were always of great help.

[am very grateful to have a chance to work in the HSPL (High Speed Protocol
Laboratory) of the Computer Science Department. Here, I met several smart people:
Louis Harvey, Tian Fang, Tong Ma. [would thank them for their help. Without their
help, many things in this report would have taken a very long time. And also I will
remember the good times we had together.

Finally, I would like to thank my family: my wife, my proud and cute sons Michel and

Joshua, for their unending support and encouragement.

Contents

1 INTRODUCTION

1.1 Context of the Study

1.2 Report Organization

2 THE XPRESS TRANSPORT PROTOCOL (XTP)

2.1 XTP Overview

2.2 Multcast/Unicast

2.3 Flow Control......

2.4 Rate Control

2.5 Error Control

3 SANDIA XTP IMPLEMENTATION

3.1 Sandia XTP OMT Structure

3.1.1 MTL (Meta Transport Library)

312 Sandia XTP

3.2 Sandia XTP Shortcomings

321 Louis Harvey’s Major Report

322 Rate Control and Timer Process

323 Performance Efficiency

33 XTP Time Issues

33.1 WTIMER

332 CTIMER

3.33 CTIMEOUT

25

334 RTIMER

4 SANDIA XTP MODIFICATION WITH TIMER CLASS

4.1 The Abstraction of Modification

.........

25

26

26

42 Timer and Timer Link Class..

42.1 Timer Class

27

28

42.1.1 Class Description

4212 Function Description....

422 Timer Link

28

29

30

4221 Class Description

4.2.2.2 Function Description

43 MTL Modification

30

31

33

43.1 Class context

33

432 Class context_manager

433 Class mtidaemon

33

44 XTP Modification

36

44.1 Class XTPcontext

36

44.1.1 Class Declaration Modification

44.12 Function Modifications

442 Class XTPcontext_manager

36

38

42

4421 Function Modification

5 EXPERIMENTS

42

5.1 Experiment Environment 44
5.2 Experimental Program 45
5.3 Experiments Limitation with XTP Rate Control 47
5.4 Functionality Test 48
5.5 Unicast without Harmonization Burst/Rate 51
5.6 Unicast with Harmonization Burst/Rate 55
5.7 Multicast without Harmonization Burst/Rate 58
5.8 Multicast with Harmonization Burst/Rate 61
6 CONCLUSION 64
7 DICTIONARY 65
8 REFERENCE 66
9 APPENDIX 67
9.1 void mtidaemon::main_loop() .67
9.2 XTPcontext::XTPcontext() : context() .68
9.3 void XTPcontext::start zombie() 69
94 void XTPcontext::handle_timeout(word32 ttype) 71
9.5 void XTPcontext::routine() 72
9.6 void XTPcontext::handle c_timeout() 73
9.7 void XTPcontext::handle wtimer() 73
9.8 void XTPcontext::start_wtimer(word32 factor) 86

9.9

9.10

9.11

9.12

9.13

9.14

9.15

void XTPcontext::stop_wtimer()

87

void XTPcontext::start_rtimer()

87

88

void XTPcontext::stop_rtimer()

void XTPcontext::start_stimer()

88

void XTPcontext::start_sync_handshake()
void XTPcontext::stop_sync_handshake()

void XTPcontext::start_zombie()

89

90

90

List of Figures

Figure 1: XTP communication model

Figure 2: Typical context behaviors of data transfer with no error

Figure 3: MTL class diagram

Figure 4: MTL daemon main loop architecture

Figure 5: XTP class diagram

Figure 6: Ideal Rate control diagram

Figure 7: Sandia XTP Rate control

Figure 8: Usages of WTIMER

Figure 9: Revised MTL diagram....

Figure 10: Revised XTP diagram

Figure 11: Logical network connectivity in Concordia University

Figure 12: Unicast without harmonization Burst/Rate saturation curve

Figure 13: Unicast without harmonization Burst/Rate timing curve
Figure 14: Unicast with harmonization Burst/Rate saturation curve

Figure 15: Unicast with harmonization Burst/Rate timing curve

Figure 16: Multicast without harmonization Burst/Rate saturation curve
Figure 17: Multicast without harmonization Burst/Rate timing curve

Figure 18: Multicast with harmonization Burst/Rate saturation curve

Figure 19: Multicast with harmonization Burst/Rate timing curve

........................

11

15

17

21

22

35

43

45

53

53

56

56

59

59

62

62

List of Tables

Table 1: Machine characteristics

Table 2: Evaluation of RTIMER when burst = 1440 bytes

Table 3: Unicast test results (1)

Table 4: Unicast test results (2)

Table 5: Multcast test results (1).

Table 6: Multcast test results (2)

Table 7: Unicast without harmonization Burst/Rate data summary

Table 8: Unicast with harmonization Burst/Rate data summary

Table 9: Multicast without harmonization Burst/Rate data summary

Table 10: Multicast with harmonization Burst/Rate data summary

47

47

48

49

49

50

52

55

58

61

1 Introduction

1.1 Context of the Study

The Xpress Transport Protocol (XTP, website:http://www.ca.sandia.gov/xtp) is a next
generation transport protocol with its high speed, reliability, multicast and QoS that has
attracted much attention for research and development. At the Sandia National
Laboratories, an XTP implementation, written in C++, has been developed. Version 1.5.1
forms the basis for this report. In this version, almost all of the functionality of XTP has
been implemented. Concordia University Computer Science HSPL (High Speed Protocol
Laboratory) has been working with XTP for many years under the direction of Dr. J. W.
Atwood. The research done by Louis Harvey in Concordia HSPL shows that the Sandia
XTP 1.5.1 has a problem with XTP rate control. To solve this problem, a new timer
management class is introduced, which focuses on the management of the timers used in
XTP, and gives a proficient solution. In this document, I describe the detailed XTP

modifications and test results based on the new timer management class.

1.2 Report Organization

This report presents the following issues: background of XTP, Sandia XTP
implementation, the shortcoming of Sandia XTP rate control, the time management

solution, the revision of implementation, and the testing.

In the following, Chapter 2 gives an introduction to the Xpress Transport Protocol (XTP)

in general and the necessary related XTP information to understand this report. Chapter 3
1

presents how the Sandia XTP 1.5.1 is implemented, and the overview of the MTL (Meta
Transport Library) and the XTP derivation from MTL. Based on Sandia XTP
implementation 1.5.1, there is some discussion about Sandia XTP shortcoming - protocol
timer management. To better understand the XTP timer management, the XTP protocol
timer usages are presented in more detail. Next, Chapter 4 covers the new timer
management prototype and implementation with MTL and XTP based on the discussion
in Chapter 3. Also, the Sandia XTP 1.5.1 modifications with new timer management are
presented. Chapter 5 will give the experimental results with new timer management
Sandia XTP implementation. Finally, Chapter 6 will provide a summary of this report
and further work in this direction. An ordered bibliographical index and references, and

the listing of related programs close this report.

2 The Xpress Transport Protocol (XTP)

2.1 XTP Overview

Xpress Transport Protocol (XTP) specification and conceptual design was first proposed
in 1985. It aims to improve the transport protocol reliability, speed, multicast capabilities
and quality of service (QoS). After over ten years of development, XTP today is more
specifically designed to embrace high-speed networks and multimedia applications. With
efficient error recovery mechanisms, XTP provides significantly higher performance over
today's networking infrastructure as a transparent replacement for existing networking
protocols such as TCP. Multicast / Unicast feature also allows the user to have more
choice and save the communication bandwidth to reduce network congestion. In addition,
XTP provides features and services unavailable through other protocols, such as rate

control.

Compliant with the OSI-7 layer model, XTP addresses and contributes in the following

fields as transport layer protocol:

¢ Orthogonal protocol functions for separating paradigm from policy
e Separation of rate and flow control

¢ Explicit first-class support for reliable multicast

e Data delivery service independence

The other features of XTP include: implicit fast connection setup for virtual circuit

paradigm, key-based addressing lookup, message priority and scheduling, support for

ry S Te——

encapsulation and convergence protocols, selective retransmission and
acknowledgement, fixed-size 64-bit aligned frame design, 64-bit sequence and

connection identifiers, parameterized traffic and quality of service negotiation.

Although the XTP is a complicated and high performance protocol, the communication

model is very simple. The following presents the XTP Unicast communication model:

Initiating Endpoint Corresponding Endpoint

Local XTP Remote XTP
Implementation Implementation

Context Context

Manager Manager|

Association
/— A\
/[]

lniti!ting Corresponding

Contexts Context Context

Figure 1: XTP communication model [XTP Revision 4.0b. July 1998]

context: The collection of information comprising the XTP state at an end-system.
It manages both an outgoing data stream and an incoming data stream.

association: The aggregate of active contexts and the data stream between them. When
two contexts start data exchange, the association is set up. When the last

packet exchange is finished, the association is destroyed.

In XTP communication model, each XTP endpoint has a local XTP implementation,

which is responsible for data exchange between XTP endpoints. Inside the XTP

implementation, the contexts are active with unique keys to perform XTP protocol. All

contexts are under the management of the context manager.

context A context B
FIRST packet text is Listenni
with SREQ, Context is Listenning
Context is active I Match FIRST to listen,
Context is active
/—— TCNTL packet
P—
| \ﬂPmcess DATA
| packet
I
I
DATA packet
with END
Context inactive - Context goes
quiescent
WTIMER
Context ga'es
quiescent

Figure 2: Typical context behaviors of data transfer with no error

The context is always in one of the following states: Quiescent, Listening, Active, and
Inactive. Based on XTP user request, the contexts change their state. For the Unicast
case, the XTP receiver application always starts first, and the receiver goes to the
Listening state from the Quiescent state and waits for the sender packet. The sender
issues output command (FIRST packet), then goes to the Active state. After the FIRST
packet is accepted by the receiver, the receiver enters the Active state. In that time, the
association is established, the sender and the receiver can exchange the well-defined

packets freely. When the receiver receives a packet with END flag, the receiver goes

5

back to the Quiescent state. For the sender, after sending the END flag, it enters the

Inactive state, finally goes to the Quiescent state. The association is terminated.

2.2 Multcast/Unicast

Like other transport protocols, the XTP provides Unicast support by establishing the
connection between two endpoints. XTP Unicast provides a high degree of functionality
through orthogonal protocol mechanisms. These mechanisms are in the form of fields and
bit flags used during packet exchanges over the lifetime of an association. Association
management procedures define how fields and bitflags are used during the lifecycle of

the association.

Multicast is a major distinctive feature of XTP. It provides duplicate free data exchange
from a single XTP context to a set of XTP receiver contexts. XTP Multicast provides a
powerful mechanism for group communication that supports a data service for one-to-
many communication. Many-to-many extensions to XTP have been proposed by
Ramasinvan [Ramasivan 2000], and are being implemented by Ma [Ma 2001]. XTP
Multicast uses the same control algorithms and mechanisms in flow control and rate
control as are used for Unicast. The only difference is in the association management.
The Multicast association is closely related to the management of a group of receivers.

The following are the syatax rules for Multicast:
e Multicast packet

All packets have the MULTI bit set. The packet from transmitter uses the multicast

(group) address. The packet from the receiver uses the transmitter unicast address.

Multicast receiver join

Multicast receiver has two ways to join the multicast receivers group: the first is when
a listening context receives a multicast FIRST packet. The second is when a receiver

sends a JCNTL packet to the transmitter, which responds with a JCNTL packet.
Multicast address

XTP is designed to run in different types of network, so it does not define its own
network address. It uses the addresses provided by the underlying data delivery
service, such as IP address, IPX Address, in its "Address Segment". In order to use
XTP multicast, the underlying data delivery service must provide XTP with a
multicast or broadcast service. XTP does not define how to assign a muiticast group
address for the service. So when XTP multicast is requested, the underlying multicast

address must be provided.

2.3 Flow Control

XTP flow control uses a regular end-to-end windowing flow control mechanism. Like

TCP/TP, XTP flow control aims to prevent swamping a slow receiver with too much data

too quickly by transferring control to the receiver who then issues credits to the sender.

XTP flow control uses 2 64-bit sequence number and a 64-bit sliding window

e XTP reserves two field alloc and rseq to negotiate the flow control window value.

Another option for flow control is RES bit and NOFLOW bit. XTP provides user to

have choice to setup:

By setting RES bit, the sender instructs receiver to advertise only the actual buffer
allocated by the user for the context. This is called reservation mode. In this mode,
the receiver is forced to adopt a conservative policy making sure that no packets will

be lost due to lack of buffer space.

The NOFLOW bit indicates to the receiver that the transmitter does not wish to
adhere to flow control constraints, so flow control in the forward direction will be

disabled.

2.4 Rate Control

Unlike flow control, rate control focuses on the relationship of producer/consumer

between the XTP end points and considers processor speed and congestion.

The XTP performs rate control by several factors: Rate, Credit and Burst, and by a

refresh timer called RTIMER. The relationship among them is the following:
o Rate: the Rate is user expected data output rate.

e Burst: the Burst is another user input parameter, it is the maximum number of data

bytes that can be sent at once.
e RTIMER: RTIMER is equal to the value of the Burst divided by the Rate. It is a
period timer.

e Credit: Each time when context wants to send data out, it will check the value of
Credit. The Credit will decrease to zero while sending data. If no more credit is

available, the data packet will put on an out packet FIFO and no data is sent out.

Basically, the context will be assigned new Credit value (the value is equal to Burst)

at each RTIMER time period.

2.5 Error Control

In XTP, each packet carries the checksum in the check field. Here the checksum is a 16-
bit one’s complement sum over all octet pairs. XTP provides a choice to perform only
packet header checksum with NOCHECK bit setting, and to perform full packet
checksum without NOCHECK bit setting.

If a check error is found, the packet is simply dropped. A receiver will detect a lost
packet by checking the incoming packet stream for a gap in the sequence space. In this
case, an ECNTL packet is sent back to sender to require the retransmission.

For the sender, if it fails to receive the request acknowledge packet, it starts a
Synchronization Handshake. The two timers WTIMER and CTIMEOUT (Refer to
section 3.3 for more details) are used to help the sender to detect if the association can be
recovered to normal. If the handshake fails, the association is terminated. The

communication between sender and receiver is aborted.

3 Sandia XTP Implementation

3.1 Sandia XTP OMT Structure

As one XTP implementation, Sandia XTP is an object oriented implementation of XTP
4.0. The core of base classes used in Sandia XTP comes from the Meta-Transport Library
software (also developed at Sandia). Sandia XTP is actually a set of classes derived from
MTL base classes. The Meta-Transport Library is a collection of reusable C++ base
classes from which specific transport layer protocols can be derived. The object of MTL

is to distill the transport protocol commonalties into a set of bases classes.

3.1.1 MTL (Meta Transport Library)

The MTL (Meta Transport Library) is a protocol base class library which eases the
building of transport protocols. It covers the following transport protocol common
components: some fundamental units for information exchange, data structures to hold
each endpoint's state, a processing mechanism to parse incoming packets, a mechanism to

construct outgoing packets, and a mechanism to handle service requests.

The Sandia recent MTL version 1.5.1 architecture is shown in figure 3.

10

{patapo,

preenena 4omesccsssmtnne b “ J. “ - .M [“] cosem ..l.. ..I.-T:..“
” Alos jopd) i 1osoed : : oy yexoed : m ssoippe”spp_dpn !
+| siexoed wnu .:o_|||L ul
...................... . oo s
| NesTlop dpn | 10 SIS|SU0D sey | sseippe”spp™d) w
..... L 2SR, 2 oo A U A preeeemeceeasecnaeneny
m PN | L joodTiexoed | i ssoppeTspp | | isenbes"1esn m
T mmc sey uopeunsap sey sesn
TSR b L o -
w voweeppw | m Xeju0o —
“ ; — @ i
e ! XejuooTwnu b L.] !
sobeuew
sey
laBeuew loynq g_
sey
..................... ,
M 10BeUBiTIXBI0O |

11

Figure 3: MTL class diagram

¢ Packets and Packet Manipulators
packet class

Packets are the vehicle for data and information exchange between endpoints.
Because the derived protocol defines the structure of its packets, the packet class
provided in the MTL does not impose a structure on the packet, but rather
provides a packet shell. The packet shell can be manipulated by both MTL

manipulator classes (packet_pool and packet_fifo) and the derived protocol.

The packet class has three major functions: as a repository of data, send data via

data delivery service, receive data via data delivery service.
packet_pool class

Packet objects are managed by a packet pool object. The packet_pool is a general
repository for packet objects. The packet_pool is responsible for allocating all of
the packets in the system, and deallocating them when the daemon terminates.

packet_fifo class

The packet_fifo maintains a packet FIFO. Each context has two FIFO, one for
receiving and another for sending. When context receives a user request to send
packet out without credit, the packet will be put to the sending packet_fifo. Before
sending a new user packet, the sending packet_fifo will be checked first. When a
context receives packets and for some reason does not process it, this packet will

be held by the receiving packet_fifo.

12

e Contexts and the Context Manger

context class

A context is the collection of all state information for an endpoint of an
association. Most context information is protocol-specific, so there is only some
state information that is common to all transport protocols in MTL.

context_manager class

The context_manager is the container class for all of the contexts in a protocol.
The main function is to match the user requests and incoming packet to the
appropriate context. In context_managner, two context links are maintained: free

context link and active context link.
¢ Data Delivery

The data delivery service is provided by class del_srv, which is an abstract class
specifying the interface to data delivery. Each particular data delivery service is derived
from this class. So far, the MTL provides IP and UDP service. The IP data delivery
service object is ip_del_srv, and the UDP data delivery service object is udp_del_srv. The

delivery service to be used will be specified when XTP daemon starts.
o User Interface

The MTL user interface is provided by the mtlif class, which allows a user protocol
application to interface with the protocol daemon. The user application can send request
and data packet to the daemon, it also can receive data from the daemon via this class. To
reduce the cost of data exchange between the application and daemon, the class

buffer_manager is introduced. The buffer manager will handle the data exchanges

13

between the application and the daemon. In MTL, the buffer_manager uses the UNIX

[PC mechanism shared memory to perform the data exchange.
e Daemon

The daemon integrates all classes and provides the protocol service to the user. In MTL,
there is one base class for the daemon: mtidaemon. The main function of this class
includes initialization, producing the main loop waiting for user requests and incoming
packets.
The MTL mtldaemon main_loop architecture is shown in figure 4. In the daemon
main_loop, the Unix system function select() is called as the key step. It lets the daemon
sleep or wakes up the daemon when an event occurs.
A simple description about select() is the following:
int select(int nfds,
fd_set *readset, fd_set *writeset,
fd_set *exceptset,
struct timeval *timeout);
where
nfds
the number of FDs (file descriptors) to examine; this must be greater than the
largest FD (file descriptor) in any of the fdsets, not the actual number of FDs (file
descriptors) specified
readset
the set of FDs (file descriptors) to examine for readability
writeset
the set of FDs (file descriptors) to examine for writability

exceptfds
14

the set of FDs (file descriptors) to examine for exceptional status (note: errors are
not exceptional statuses)

timeout
NULL for infinite timeout, or points to a timeval specifying the maximum wait
time (if tv_sec and tv_usec both equal zero, then the status of the FDs is polled,
but the call never blocks)

The call returns the number of ‘ready’ FDs found, and the three fdsets are modified in-

place, with only the ready FDs left in the sets.

mtidaemon user application |
main_loop IPC to user] 1
N 1 mitlif
dispatch_request() l
A
/
H del_stv
; packets
context_manager :
context

4

Netwark

Figure 4: MTL daemon main loop architecture

15

3.1.2 Sandia XTP

The Sandia XTP implementation of XTP 4.0 is a protocol derived from the base MTL
classes. The protocol procedures are implemented in the class XTPcontext, which is
derived from the MTL context base class. The packet structures actually form a hierarchy
of classes; XTPpacket is derived from the MTL base class packet, and FIRSTpacket,
CTNLpacket, etc., are derived from XTPpacket. The XTP class diagram is given in
figure 5, on next page.

¢ Sandia XTP Packets

Packets are structured bins of information that are sent by a delivery service that treats
the contents of the packet as uninterpreted payload. A protocol defines these packet
structures, and extracts the information from the packets only with knowledge of the
structure. As a consequence, the raw payload that is received is cast into some structure
so the data can be meaningful. In MTL, the packet base class is simply a byte array with
the size of the maximum protocol data unit. There are two base methods, one for getting
the address of the start of the packet, and one for sending the packet. There is no receive
method, since receiving is not actually done to a packet in the same way that sending is.
A protocol-specific packet derived class would specify such methods as value insertion
and extraction, and possibly a checksum function.

The derived class XTPpacket adds several XTP-specific methods. Since all XTP packets
share a common header, XTPpacket has methods for header placement and extraction, as
well as the placement and extraction of several specific header fields. Also, because the
size of the header is fixed, there is a method that returns a pointer to the middle part of

the packet.

16

{pasapio}

..:..:.........:... . v........:.........:... ‘
.. . ; - . " RSN seacecraeany
wosop 1| [ewes] i owewed | jeseweden) | s oo |
e sl v It R
....................... , +1 sjexoed wnu soy presseereese ey ~ BewBosdix _
| Nesepdpn | Jo sisysiuod j Ssaippspo) | I,
Bswi suas) dix w
NUUNE. SUTUUTUNS. SO . T . % w“
i 1o0d"e08d | ssouppeTapp | | \sonboliesn |
: s ﬂ; uopeulisep sey sosnh
i
i X81U0d
e o
IOIUOD WU Ll
sebeuew %
say
JoBeUBW X001 X _ 1 wewoodix
ﬁ o
| soBevewwoI00 |-— sosn

toxoedINDL 10%08d 1 SYI4

. | omeduuno _ | iewoecunor _
88210 POASD d1X

_ jowoedy1va _ _ jewoed1iNDI _

_ 19%0edoviQ _

17

Figure 5: XTP class diagram

The specific XTP packet types are derived from the XTPpacket class. In particular, the
FIRSTpacket class has methods for address placement and extraction, the DATApacket
class has methods for data insertion, and the control packet classes, CNTLpacket,
ECNTLpacket, and TCNTLpacket, have methods for specific control segment placement
and extraction.

e Sandia XTP Context and Context Management

The context class holds all endpoint state information. Methods include state transitions,
packet parsing, and user request satisfaction. The context also has two buffer
managers—one for the send buffer and one for the receive buffer. The context manager
class contains and manipulates all of the contexts, and is responsible for associating user
requests and newly arrived packets with the proper context. When a packet arrives, the
context manager examines the packet only enough to figure out which context should get
the packet. The packet is placed on the receive packet fifo (an object owned by the target
context) so that the context, when it is allowed to satisfy any outstanding work, can
retrieve the packet and process it.

Within the XTPcontext derived class are methods for parsing each type of incoming
packet, and responding to the directives contained within that packet. When an XTP
context needs to send a packet, an XTPcontext method, send(), constructs either a FIRST
or DATA packet and calls the packet's send() method. If a control packet is required
during protocol processing, the method send_cntl() constructs the appropriate packet and
has it sent. When packets arrive, the method process_packet() does some common packet
processing, then determines which type of packet is being parsed. From here

type-specific packet parsing methods are called to finish the processing.

18

3.2 Sandia XTP Shortcomings

Research into XTP has been conducted in the High Speed Protocols Laboratory (HSPL)
of the Department of Computer Science for many years, under the director of Dr. J. W.
Atwood. In recent years, considerable experimentation has been done on the performance

of Sandia XTP.

Taking advantage of object oriented techniques, Sandia XTP provides an excellent
vehicle for experimentation with a modern protocol. However, certain aspects of the
design of Sandia XTP 1.5.1 exhibit some shortcomings, especially with rate control
mechanisms, which are due primarily to the way in which Sandia XTP manages its
timers.

In this section, we provide more details on these problems.

3.2.1 Louis Harvey’s Major Report

Louis Harvey had worked in HSPL. His study focused on the Sandia XTP rate control
behaviors. He found the Sandia XTP throughput rate didn’t respect the rate desired by the
user. He did many experiments and considerable implementation to demonstrate the

following issues:

(1) in Sandia XTP 1.5.1 implementation, the UNIX system call select() plays an
important role. It is used to wake up the XTP server when a network packet is received or
a user request is received. Its timeout feature is also used to implement various time
related issues, such as RTIMER for XTP rate control. The Sandia XTP checks all timers

and performs related work when the select() timeout event happens. To guard against the

19

failure of select() return, the designer of Sandia XTP chose 50ms as the minimum select()
timeout parameter value. Unfortunately, this SOms lower limit becomes a bottleneck to
effective rate control if no user requests or packets come. For XTP rate control, if
RTIMER should be smaller than 50ms, the Sandia XTP has no guarantee to set a credit at
each exact RTIMER period time. So the 50 ms which is set as select() function minimum

timeout time, can cause Sandia XTP to have poor quality of rate control.

(2) by exploring the mechanism of Sandia XTP in timer management, found it failed to

handle the very short timer.
He also proposed several solutions to improve the situation:

(1) Uses SELECT_FLOOR to replace 50ms, change the SELECT_FLOOR threshold

value to improve the rate control quality.

(2) Sets up MAXANTICIPATION margin value for incoming expired timer event to

reduce the 50ms effect to rate control.

(3) Uses linked list of timers, which stores timers sorted from earliest to latest to fire, to

manage all the timers used by contexts.

He implemented the first two solutions. The development of the third solution is the

subject of this Major Report.

3.2.2 Rate Control and Timer Process

For XTP 4.0b specification, the only rate control policy is the following description:
“Upon each expiration of RTIMER, the internal variable credit is updated
with the value burst. That is, credit is updated approximately rate/burst times
per second.”

20

Based on this description, the basic ideal rate could be worked in this way: at each time
of RTIMER expiration, assign the “credit” with “burst” value and immediately start the

RTIMER again. The following figure shows the rate control ideal case.

credit

At=burstrate

burst

—— -

At t ted t time

Figure 6: Ideal Rate control diagram

In the Sandia XTP rate control, there is a small difference with the ideal case: there is
likely to be a gap between the RTIMER expiration and the RTIMER restart. This gap
depends on the CPU execution speed and the XTP client application. Normally, the gap is
very short in milliseconds. As we know, the RTIMER value is decreased with increased
load rate. If the derived RTIMER value is close to the gap size, at this moment, the gap

could affect the throughput rate seriously and cause very poor rate control quality.

21

credit

At=burstirate

- t Ho© @2 t time

Figure 7: Sandia XTP Rate control

3.2.3 Performance Efficiency

The method satisfy() plays a very important role in Sandia XTP. The method is called
each time the timer expires, a user request is received or a new packet is received from
the network. Each time the method is called, it will cycle through all contexts: bubble up
the shortest time for next select() call timeout value, satisfy any context outstanding
work. The method satisfy() is very costly, especially for finding the shortest time, since it
will check each context (object) individually. So finding a way to handle the XTP events
directly instead of scanning all contexts and all the events for the context is essential to

improve the XTP performance efficiency.

3.3 XTP Time Issues

In XTP protocol, there are several timers that are used or maintained during the lifetime

of an association. They are:

WTIMER: itis used to bound the amounts of time a context will wait on a response to

a status request (a set SREQ bit in any sent packet).

22

CTIMER: it is a long duration timer used to generate keep-alive packets.

CTIMEOUT: this timer bounds the amount of time an endpoint will try to reestablish the
association before giving up.

RTIMER: it is used for rate control, and manages the length of time between bursts

of data.

331 WTIMER

The WTIMER is used to detect the loss of a packet.

Whenever the packet is sent with the SREQ (status request) bit set, the WTIMER will be
started with a smoothed round-trip time estimate, and also the saved_sync value is
increased by transmitter in this packet. When XTP receiver receives the packet with

SREQ set, a control packet will be sen* back immediately.

If a control packet arrives at the transmitter before the WTIMER expires, the saved_sync
value will be compared. If the context saved_sync is equal with the value in the received
packet, the WTIMER will be stopped. If the WTIMER is expired, that means something

is wrong, and the context will start the synchronizing handshake to fix the problem.

23

In Sandia XTP, only one WTIMER is maintained. If another packet with SREQ set is

sent before WTIMER is stopped, the WTIMER value will be restarted with round trip

time.

con

SREQ
st T~

S(op—!g <

Expire

text context

/(‘ CNTL

Figure 8: Usages of WTIMER

33.2

(1)

CTIMER

context context
A B
SREQ >
le
l::
3
M3
.-\
Expire |
CNTL.-_\‘ -b*
start Synchronize
handshake
(2)

context context
A B
SREQ
skeq,
IE
=)
It
Expire 4,
(3)

The CTIMER is used to detect if the XTP association endpoint is still alive.

The CTIMER is a long duration timer. The XTP client should be able to set the length of

the CTIMER interval.

When a context becomes active, the CTIMER is started. Each time the packet is received

by a context, a packet count is increased by one. When CTIMER is expired, the context

examines the packet count. If the count is greater than zero, that means everything is

normal and the CTIMER is restarted, also the count is flushed to zero. Otherwise, the

CTIMER is reloaded, and the context enters into a Synchronizing Handshake. There is

only one CTIMER for each context.

24

333 CTIMEOUT

The CTIMEOUT timer limits the amount of time a synchronizing handshake can
continue before the context aborts the association. The CTIMEOUT timer is assigned its
initial value when a synchronizing handshake is started. If a control packet is received
and the association is recovered before the CTIMEOUT timer is expired, the
CTIMEOQUT timer is stopped. If the CTIMEOUT timer is expired, the association will be

aborted by the context.

The CTIMEOUT is also used when a context enters into zombie state after sending a
packet with the END bit set. The CTIMEOUT timer can be disabled by setting the
CTIMEOUT interval to zero. If the interval sets to zero, the initial value of the

retry_count for synchronizing handshake must not be zero.

334 RTIMER
The RTIMER is used to control the sending rate by setting the burst variable value to
context credit variable.

The RTIMER interval is calculated from burst/rate. Both burst and rate can be set by the

XTP client.

In Sandia XTP, each time the RTMER is expired, the context will get new credit that is
equal to the burst. When a XTP client requests to send data packet and there is no credit

and RTIMER is stopped, the RTIMER will be started.

25

4 Sandia XTP Modification with Timer Class

4.1 The Abstraction of Modification

As discussed in section 3.2, the Sandia XTP implementation has several potential
problems: (1) the existence of a 50 ms lower limit for timeouts in the select() function
call, (2) Using method satisfy() to scan all contexts to get the variable “shortest” (the
shortest time for select() function timeout parameter) and to handle the outstanding
receiving or sending tasks for the active context list. These two problems cause the

Sandia XTP to have poor rate control.

To improve the rate control and protocol efficiency, the following modification is made:

(1) Remove the hard coded 50 ms lower limit for select() from the implementation.

The original Sandia XTP used a 50 ms lower limit on select() timeout to protect the
XTP daemon against failure to return from select() system function call. We decided
to remove this protection, because we didn’t find this problem in Solaris UNIX
operating system. We believe there should not be such a limitation for modern UNIX

operating systems when we call the select() system function.
(2) Change the mechanism of getting shortest time and handling the outstanding task list.

In the Sandia XTP implementation, when several XTP contexts are active, the
shortest time to the next timeout becomes erratic. In addition, the scanning of all the
active contexts wastes CPU time, which may cause a delay in serving XTP client
requests. The new proposal is to build a timer link that manages all XTP time issues.

Only when the timer is armed, it will be inserted to the link. The link is sorted by

26

expiry time, so that the link header always is the next-to-expire timer. The context

outstanding task is checked only when the context is being processed.

(3) Adjust the “credit” value every time that the RTIMER expires, rather than simply
setting “credit” to “burst”.

In the Sandia XTP, the “credit” is simply assigned to the “burst” value when the

RTIMER expires. The “credit” is consumed at each time a data packet is sent, until it

reaches zero. As we see, the RTIMER timeout returning depends on the UNIX

select() function call, especially when the RTIMER is very short, because the

RTIMER timeout returning time is not exactly RTIMER. In this case, the XTP Rate

control will not work well with setting “credit” to “burst”. To improve this situation,

the real RTIMER timeout returning time is checked comparing with the desired

RTIMER, and the “credit” value will be set depending on the real returning time.

4.2 Timer and Timer Link Class

To be compliant with Sandia XTP OMT architecture, the timer and timer link classes are
added as extensions of the MTL. These two classes will manage all time issues described
in the protocol specifications. Basically, the timer class will be included into the context
class and it will handle the private and special purpose time data for the context. The
timer link will manage all active timers that belong to each context in a link, and provide

insert, remove, and find methods. The time link object will be placed in the daemon.

27

42.1 Timer Class

4.2.1.1 Class Description

The timer class is used by the context to manage various timeout issues. The timer class
is mainly used to store the timeout time and type which tells the context what action the
context shall take when a timeout occurs. The context may have several timer objects for
different purposes. The timer is identified by variable type. The timer class also has a

pointer to the context and two links to next and previous instances.

To avoid the conflict of names in MTL, the timer class is named cctimer.

class cctimer {
friend class cctimer_link;

private:
word32 type; // a type that presents what the timer is used for
context* owner; // a pointer to context which owns this timer
protected:
cctimer® next; // Linked list next pointer
cctimer® prev; // Linked list previous pointer
word32 due_time; // the timer due time
public:
/I Constructor
cctimer(context* c=(context*) NULL);
{// Destructor
~ cctimer();
// time functions

28

void set_type(word32 mtype);
word32 get_type();
void set_cctimer(word32 tv);
void set_cctimer_by_interval(word32 t);
word32 get_cctimer_val();
context *get_owner();
word32 get_shortest();
word32 timestamp() ;
int is_expired();
intis_in_link();

¥

4.2.1.2 Function Description

void set_type(word32 mtype)
Set the timer type. The type probably decides the timeout action.

word32 get_type(

Return the timer type.

void set_cctimer(word32 tv)

Set the timer due time.
void set_cctimer_by_interval(word32 t)
Set the timer by input interval time.
word32 get_cctimer_val()
Return the timer due time.

context *get_owner()

29

Return the context that owns the timer.
word32 get_shortest()

Return the timer expire interval time. If the timer already expired, retum 0;

otherwise return the value of due time subtract the current time.
word32 timestamp()

Return the current computer time in word32 format.
int is_expired()

Check if the timer is expired. If expired, return 1; otherwise return 0.
intis_in_link()
Check if the timer is in the timer link. If the timer is in the timer link, return 1;

otherwise return 0.

4.22 Timer Link

4.22.1 Class Description

The Timer link manages all context active timers. When the timer is armed, it will be
inserted into the timer link. If the timer is expired, is stopped or timer owner is inactive,

the timer shalil be moved from the timer link.

To avoid the conflict of names in MTL, the timer link class is named cctimer_link.

30

class cctimer_link {
private:
cctimer® link_head;
cctimer* link_tail;

public:
/' Constructor

cctimer_link() {link_head=(cctimer*)NULL;link_tail=(cctimer*)NULL;}
/I Destructor

~ cctimer_link() {link_head=(cctimer*)NULL;link_tail=(cctimer*)NULL;};

/I Timer linked-list manipulators

void insert_cctimer(cctimer *);

void remove_cctimer(cctimer *);

void remove_cctimer(context *);

cctimer* find_cctimer(context *, word32);

void resort_cctimer(cctimer *);

cctimer* return_first_cctimer() {return link_head;}
b5

4.2.2.2 Function Description

void insert_cctimer(cctimer *)
Insert a timer into the timer link.

void remove_cctimer{cctimer *)

Remove the timer from the timer link.
void remove_cctimer(context *)
Remove the timer that belongs to the input context.

cctimer* find_cctimer(context *, word32)

31

Check if the specific timer is in the timer link. If yes, return that timer; otherwise

return a Null timer.
void resort_cctimer(cctimer *)

Sort the timer link based on the timer due time.
cctimer* return_first cctimer()

Return the timer in link head.

32

4.3 MTL Modification

The cctimer class and cctimer_link class are added as extensions of the MTL. The rest of
the classes in the MTL must be modified to accommodate cctimer and cctimer_link

classes.

4.3.1 Class context

Two virtual functions handl_timeout() and routine() are added to context class for future

use.
virtual void handl_timeout()
This function is reserved for derived class to handle all timeout events.
virtual void routine()
This function is reserved for context to process all unprocessed tasks when the

context is running.

4.3.2 Class context_manager

The virtual function word32 satisfy() is deleted.

4.3.3 Class mtidaemon

In mtldaemon class declaration, a timer link object is added. It declared as following:

Mitidaemon {

cen

static cctimer_link* timer_link

33

void main_loop()
Function descriptions:

The main_loop() is the main loop of the daemon. It first parses the arguments, then
initializes a few things (such as turning this process into a daemon), then it loops
waiting for a packet to arrive (IO signal), the timer to expire (alarm signal), or the
user to issue a request to the daemon (msgrcv returns a valid value). This continues

forever.

Modification:

The function void main_loop() is rewritten. We do not need satisfy() to do
outstanding tasks and obtain the shortest timeout; rather we get the shortest time
from the timer link directly and call the context routine() to perform the outstanding

tasks. The new main_loop() is shown in the appendix.

34

. A

| mesioper | | oped |

—..xb.o,wL_orhmnn ‘ _ 10 sis|sucd

[| | posoned_|

sey

sey

sey

——

o -
_ uowseppw *

sey

— boamcwiylxa.:S i

x:..lboEa: |

Jewywiny
sebeuew

Jowspy

e |

{pasopi0}

sey

| e |

I I

+1 s1oxpoed wnu no

_ 1Xejuod

(o

1Xaju0D Wnu
soBeuew

[seoveeee-ion |

e

, A N A
_ ssoippe” spp _

vorjeupisep sey

ysenbei"Jesn

sosn

sey

hwamcns.n_,.oa:.ma, _

Figure 9: Revised MTL diagram

35

4.4 XTP Modification

44.1 Class XTPcontext

Sandia XTP XTPcontext class develops several timer instances: one CTIMER, one
CTIMEOUT, one WTIMER, and one RTIMER. With the cctimer and timer_link classes,

the XTPcontext timer instances must be modified.

44.1.1 Class Declaration Modification

Redeclare c_timer, c_timeout, w_timer, r_timer with the cctimer class:

XTPcontext:context{

// CTIMER

/lyjiang modify:

/Istart

/fword32 c_timer;
cctimer* c_timer;

f/end

word32 c_timer_interval;

word32 pkts_rcvd_in_c_interval,;

// CTIMEOUT

/fyjiang modify:
//start

/fword32 c_timeout;
cctimer* c_timeout;
flend

36

word32 c_timeout_interval;

//word32 c_timeout_armed;//del by yjiang

/[WTIMER

/lyjiang modify:

//start

//word32 w_timer;
cctimer* w_timer;

/lend

//word32 w_timer_armed;//del by yjiang
word32 w_timer_limit;
word32 retry_count;
word32 num_retries;
word32 backoff_K;

int sync_handshake open;

// RTIMER

/lyjiang modify:
//start

//word32 r_timer;
cctimer® r_timer;

//fend

/fword32 r_timer_armed;//del by yjiang
word32 rate; /I Outstream rate
word32 burst; /I Qutstream burst
int credit; /I Outstream credit

37

44.1.2 Function Modifications

void XTPcontext()

XTPcontext() is the constructor of the XTPcontext class. Here all the cctimer used in the

XTPcontext class need to be initializated. The following code is added.

/lyjiang modify:

//start

/I CTIMER

c_timer= new cctimer(this);
c_timer->set_type(T_CTIMER);

// CTIMEOUT
c_timeout= new cctimer(this);
c_timeout->set_type(T_CTIMEOUT);

/I WTIMER
w_timer= new cctimer(this);
w_timer->set_type(T_WTIMER);

// RTIMER

r_timer= new cctimer(this);
r_timer->set_type(T_RTIMER);

void handl_timeout()

handl_timeout() is the handler for XTPcontext timeout events. Based on different expired

timer, a corresponding process is performed. For XTP, only following time events will be

38

processed: CTIMER expired, CTIMEOUT expired, RTIMER expired, and WTIMER

expired. For the program, see appendix.
void routine()

routine() is the routine process of XTPcontext, which is used to process the XTPcontext
outstanding tasks, such as sending the packet that is waiting in out packet FIFO,
processing incoming packet, or retransmitting the packet when this context is currently

active. For the program, see appendix.
void start_zombie()

start_zombie() is used to arm the CTIMEOUT timer. If the timer interval is zero, the
zombie state is bypassed. Clear the sync_handshake if necessary at this point, there is no
need to continue it, also clear the RTIMER timer. Normally, it is called after the context

sending a packet with END bit set. For the detail modification, see appendix.
void start_wtimer(word32 factor = 1)

This function is used to arm the WTIMER timer. If "factor” is present, it will multiply the
duration by a factor. This is mainly for the last timeout, when the END bit has been sent
and the context is waiting to go quiescent. The timer duration will be the guessed value of
(SRTT+Z*RTTV). Each time when a packet is sent with SREQ flag, this function is
called to start the WTIMER. If this function is called again before the WTIMER stops,
the WTIMER timer will be assigned a new duration. For the detailed modifications, see

appendix.

39

void stop_wtimer()

Stops and disarms the w_timer and removes the WTIMWER from timer_link. At this
time we can release the FIRST packet (if kept) since we know now that it will not need

retransmitting. For the detailed modifications, see appendix.
void start_sync_handshake()

When something is wrong, the protocol context goes to synchronization handshake to
recover the communication. At the beginning of synchronization, the CTIMEQOUT timer
shall be armed to protect the context from waiting forever for a response, but only if the
CTIMEOUT interval is not 0. If the interval is 0, the CTIMEOUT timer has been

disabled. For the detailed modifications, see appendix.
void stop_sync_handshake()

When the synchronization handshake is stopped, the CTIMEOUT timer and WTIMER
must be stopped. These two timers shall be removed from timer_link list. For the detailed

modifications, see appendix.
void start_rtimer()

This function shall start RTIMER timer: the timer is added to timer link. For the detailed

modifications, see appendix.
void stop_rtimer()

Remove the RTIMER timer from timer link. For the detailed modifications, see

appendix.

40

void handle_c_timeout()

It is to handle the expiration of the CTIMEOUT timer. When the END bit is sent, the
expiration of CTIMEOUT timer will cause the context to go quiescent. The
CTIMEROUT timer also is removed from timer link. For the detailed modifications, see

appendix.
void handle_wtimer()

It is handle the expiration of the WTIMER timer. It shall remove the WTIMER timer
from the timer link if the timer is in the timer link. For the detailed modifications, see

appendix.
void handle_ctimer()

It is handle the expiration of the CTIMER timer. It shall remove the CTIMER timer from

timer link if the timer is in timer link. For the detailed modifications, see appendix.
int check_timers()

In Sandia XTP, check_timers() will check all context timers if the timer is expired. The
related process must be done by calling the timer handler. With Revised XTP, we do not
need to check all context timers because we know which timer is expired and the timer

handle is called directly. The check_timers() is deleted.

41

442 Class XTPcontext_manager

4.4.2.1 Function Modification

void handle_new_packet(packet* pkt)

The function performs processing of new incoming packets: figure out where the packet
shall go. In the normal case, the packet is put on the receiver FIFO and marked for the
proper context. If the key in packet is not a return key, the full context lookup is
performed. The modification for this function is adding the context routine() call at the
packet is put on that context receiver packet FIFO. For details of the modifications, see

the appendix.
word32 satisfy(Q

In Sandia XTP, satisfy() performs the following functions: (1) scan all contexts to find
what is the shortest next ; (2) scan all context to try to satisfy the outstanding work. In the
Revised XTP, the satisfy() function (1) is replaced by timer time_link class. For the
function (2), is replaced by context routine(). So satisfy() is no longer needed in the

Revised XTP.

42

eeoes

JeBeuew xo)U00d | X _

m Bmo:uEJxScoo ..|L

A
19oed1INDL

10%0ed | SH1d4

_Jmﬁaﬁzo _

[owedunor |

_ 1e¥oedviva _

h 1o%0ed 14N _

_ 1ooedovia _

ino

................. | I B - o
— H : o.: _oxSa : ;aevun aun % ni Bsw ae1e dyx m
H . s Lt S UV
.................. .__o_ | o
} sieoed wnu syl | e
Jo sisjsuod : mmevva spp’ n_ N N
..... \ ANSUUIIL 2 . ..
...................... : R I
m_o&._eaa R j foondel Jesn |
. m:ﬁ uojjeujisep aM_ sagn
“
T "eN0D
1XOIU0D WwnU I".:,
sobeuew ﬁ
XeIU00d 1 X
B
pey

Figure 10: Revised XTP diagram

43

5 Experiments

As we see, the timer management affects the XTP rate control quality directly. So, the
experiments will focus on how the new timer management works with the XTP rate
control. The goals of the experiments here are: (1) to prove that the revised XTP has the
same functionality as the Sandia XTP 1.5.1; (2) to compare the results of experiments
between the Revised XTP and Sandia XTP 1.5.1 with Unicast and Multicast; (3) to find

the key parameters that affect the XTP implementation performance.

5.1 Experiment Environment

All experiments are completed using the Concordia University local network. The
following figure shows the logical network connectivity, including only the sub networks
and the machines used for the experiments. The dotted decimal notation address of the
end machines are not of much significance with multicast, as a group address (Class D
internet address) is needed. To use maximum network and machine speed, our
experiment will be limited on orchid and sunset. So for the XTP multicast address, it will

be 239.159.100.40.

(132.205.62.2)

pine

(132.205.66.2)

Ethernet coax. 10Mbps Concordia University
(132.205.62.0/24) FDDI ring
(100Mbps)
HSP Lab (132.205.62.0/24)
———— — - —
I (132.205.62.1) 132%:5.24 {132.205.66.1) I
(outside Concordia) | ’ o |
Internet
I 10Mbes I
| l
switch
switch 100 Mbps | l
(Computar switch
Servicss) I l
l 100 Mm sunset l
| 100 Mbps ; 100 Mbps 132.205.67.1 |
|
: switch switch l
orchid
switch | 100 Mbps 1322054561 | |
100

| M‘“‘{ |
] 10 daffoct | l
| switch _ibL' 1322054515 | |
(muiticast router) '

Computer Science

Figure 11: Logical network connectivity in Concordia University

5.2 Experimental Program

The program used to test is the same as used for Louis Harvey’s report. The major idea is
sending the specified amount of data from one sender to another receiver (Unicast) or to
possibly multiple receivers (Multicast) reliably. The time from the moment the program
transfers the first buffer full of data to the moment the sender has received the last

acknowledgment from the last receiver will be measured. The send rate is specified at the

beginning and remains fixed for the whole data transfer.

45

This program is derived from Sandia XTP example metric and can be used to measure
the XTP throughput rate, and the time to transfer amount of data. This program is named
mmetric. Typical command line arguments used for the experiments are as follow:
Unicast sender

mmetric —t sunset —S —g —f -p1472 -b1440 -C1440 -a1048576 —0250 -W10240 10
Unicast receiver

mmetric —r -S —g —f -p1472 -b1440 —J1440 -0250 -W10240 -j10

Multicast sender

mmetric -T239.159.100.40 S —g —f —p1472 -b1440 -C1440 -al048576 -0250 -
W10240 —10

Multicast receiver

mmetric -R239.159.100.40 -b1440 —J1440 -0250 -W10240 -j10

Where:

-t, -r are Unicast transmitter and receiver. The sunset is the Unicast destination computer
name.

-T, -R are Multicast transmitter and receiver. The 239.159.100.40 is Multicast group
address.

-S is used to specify selective retransmission mechanism.

-g is used to block the sender on acknowledgements.

~f is used to set SREQ in the FIRST packet.

—p is used to set PDU size. The PDU size is set to 1472 in the experiments.

-b is used to define the user level buffer size.

—C is used to suggest output burst value. With “harmonization Burst /Rate”, this value

will be changed respect to rate.

—a is set the amount of data to be sent.

—o is used to define the initial round trip time.

—W is used to define the send window size.

—c is used to set the load rate. The unit is bytes per ms (Bpms). The load value is

progressively increased during Unicast and multicast experiments to cover all test rates.

5.3 Experiments Limitation with XTP Rate Control

The following tables show some physical characteristics used for the experiments and the

relationship between RTIMER and Rate (this investigation was done by Louis Harvey in

his Master major report.). These will be helpful to explain the XTP Rate Control behavior

in our experiments.

Table 1: Machine characteristics

Mean | Derived

delayl | Capacity
Name | (ms) (Bpms) Features 0.S.
sunset | 0.5 2880 Sun 2X UltraSPARC-II 296MHz, 2 cpus, 896MB mem 2
orchid | 1.0 1440 Sun 2X UltraSPARC 168MHz, 2 cpus, 640MB mem 2
sunset | 2.5 576 Sun SPARCstation-10 50MHz, 448MB mem 2
daffodil | 3.6 400 Sun SPARCstation-10 36MHz, 256MB mem 2
forest | 7.0 206 Sun4 75 SPARCstation 2 40MHz, 22MB mem 2
pine 7.0 206 Sun 4 50 SPARCstation [PX 40MHz, 32MB mem 2
1 Mean delay between sending consecutive back-to-back 1440 byte packets
2 Solaris 2.5

Table 2: Evaluation of RTIMER when burst = 1440 bytes

RTIMER(ms): 14 96 72 57.6 | 48 41.1 1288 | 192 {144 | 115196
Rate(Bpms): 10 15 20 25 30 35 S0 75 100 | 125 | 150
RTIMER(ms): 8.2 72 57 |48 (41 [36 [28 (24 |20 |18 |16
Rate(Bpms): 175 200 1250 | 300 |350 |400 | S00 | 600 | 700 | 800 | 900
RTIMER(ms): 1.4 13 12 L1
Rate(Bpms): 1000 | 1100 | 1200 | 1250

47

As we see, the machine Mean delay decides the machine Derived Capacity. This will be
the bottleneck of data transfer. When we do XTP Rate Control test with high rate, we
must consider the machine factors.

Another factor we also consider is time resolution. In the whole XTP implementation, the
time resolution is one millisecond, that means we can not guarantee the results with two

timers that have difference under 1 millisecond.

5.4 Functionality Test

To make sure the new revised Sandia XTP has the same functionality as the original
Sandia XTP version, the mixed environment is created: one XTP server is started with
revised Sandia XTP, another XTP server is started with Sandia XTP original version. The
data transferring between those two XTP servers is conducted to verify the revised
Sandia XTP does not change the XTP protocol. The following tests are done:

1.Unicast, Sender: revised Sandia XTP; receiver: Sandia XTP

Table 3: Unicast test results (1)

XTP Sender XTP Receiver
| Host Name forest Orchid

XTP Serve revised Sandia XTP Sandia XTP

Data Transfer unicast Unicast

Mode

Test Program mmetric -t orchid -S -g -f -p 1472 -b 1440 -C | mmetric -r -S -g -f -p 1472 -b 1440 -J 1440 -0 250

and Command 1440 -a 1048576 -0 250 -W 102400 -¢ 10 -w 102400 - 10

Test Results Sun Jan 14 16:56:54 2001 Sun Jan 14 16:50:42 2001
mmetric starting (13542) on Host:forest mmetric starting (23785) on Hostorchid
mode UNICAST, outburst=1440, off_load=10 mode UNICAST, inburst=1440, inrate=10 Bpms,
Bpms, WinSiz=102400 bytes, WinSiz=102400 bytes,
mode UNICAST, off_load=10 Bpms, mode UNICAST, input_rate=10 Bpms,
WinSiz=102400 bytes, WinSiz=102400 bytes,
Transmitting_to:orchid
1048576 bytes using buffers of size 1440 bytes | Receiving with buffers of size 1440 bytes
Timing: 109286 ms rTiming: 482098 ms
Throughput: 9.595 Bpms - Bytes perms rThroughput: 2.175 Bpms - Bytes per ms
xy: 10 9.595 xy: 10 2.175
Throughput: 0.077 Mbits/sec rThroughput: 0.017 Mbits/sec
Number of calls: 729 Number of calls: 730
Latency: 149.912 ms/call Latency: 660.408 ms/call
Sent 1048576 bytes Received 1048576 bytes
Sun Jan 14 16:58:44 2001 Sun Jan 14 16:58:44 2001

2.Unicast, Sender: Sandia XTP; receiver: revised Sandia XTP

Table 4: Unicast test results (2)

mmetric starting (23748) on Host:orchid

mode UNICAST, outburst=1440, off_load=10
Bpms, WinSiz=102400 bytes,

mode UNICAST, off_load=10 Bpms,
WinSiz=102400 bytes,

Transmitting_to:forest

1048576 bytes using buffers of size 1440 bytes
Timing: 110232 ms

Throughput: 9.512 Bpms - Bytes per ms

xy: 10 9.512

XTP Sender XTP Receiver
Host Name Orchid forest
XTP Serve Sandia XTP Revised Sandia XTP
Data Transfer Unicast unicast
Mode
Test Program mmetric -t froest -S -g -f -p 1472 -b 1440 -C | mmetric -r -S -g -f -p 1472 -b 1440 -J 1440 -0 250
and Command 1440 -a 1048576 -0 250 -W 102400 -c 10 -w 102400 -j 10
Test Resuits Sun Jan 14 16:47:13 2001 Sun Jan 14 16:46:56 2001

mmetric starting (13523) on Host:forest

mode UNICAST, inburst=1440, inrate=10 Bpms,
WinSiz=102400 bytes,

mode UNICAST, input_rate=10 Bpms,
WinSiz=102400 bytes,

Receiving with buffers of size 1440 bytes
rTiming: 128714 ms

rThroughput: 8.147 Bpms - Bytes per ms
xy: 10 8.147

Throughput: 0.076 Mbits/sec rThroughput: 0.065 Mbits/sec
Number of calls: 729 Number of calls: 729
Latency: 151.210 ms/call Latency: 176.562 ms/call
Sent 1048576 bytes Received 1048576 bytes
Sun Jan 14 16:49:05 2001 Sun Jan 14 16:49:05 2001

3.Multicast, Sender: revised Sandia XTP; receiver: Sandia XTP

Table 5: Multcast test results (1)

mmetric starting (13512) on Hostforest
mode MULTICAST, outburst=1440,
off_load=10 Bpms, WinSiz=102400 bytes,
mode MULTICAST, off_lcad=10 Bpms,
WinSiz=102400 bytes,
Transmitting_t0:239.159.100.40
1048576 bytes using buffers of size 1440 bytes
Timing: 109371 ms

Throughput: 9.587 Bpms — Bytes per ms
xy: 10 9.587

Throughput: 0.077 Mbits/sec

Number of calls: 729

Latency: 150.029 ms/call

Sent 1048576 bytes

Sun Jan 14 16:42:19 2001

“XTP Sender XIP Receiver
Host Name Forest orchid
XTP Serve revised Sandia XTP Sandia XTP
Data Transfer Muitcast multcast
Mode
Test Program mmetric -T 239.159.100.40 -S -g -f -p 1472 -b | mmetric -R 239.159.100.40 -S g -f -p 1472 -b
and Command 1440 -C 1440 -a 1048576 -0 250 -W 102400 c | 1440 -J 1440 -0 250 -w 102400 -j 10

10

Test Results Sun Jan 14 16:40:28 2001 Sun Jan 14 16:40:25 2001

mmetric starting (23692) on Hostorchid
mode MULTICAST, inburst=1440, inrate=10
Bpms, WinSiz=102400 bytes,

mode MULTICAST, input_rate=10 Bpms,
WinSiz=102400 bytes,

Receiving with buffers of size 1440 bytes
rTiming: 113805 ms

tThroughput: 9.214 Bpms - Bytes per ms
xy: 109.214

¢Throughput: 0.074 Mbits/sec

Number of calls: 730

Latency: 155.897 ms/call

Received 1048576 bytes

Sun Jan 14 16:42:19 2001

49

4 Multicast, Sender: Sandia XTP; receiver: revised Sandia XTP

Table 6: Multcast test results (2)

XTP Sender XTP Receiver
Host Name Orchid forest
XTP Serve Sandia XTP revised Sandia XTP
Data Transfer Unicast unicast
Mode
Test Program mmetric -T 239.159.100.40 -S -g -f -p 1472 -b | mmetric -R 239.159.100.40 -S g -f -p 1472 -b
and Command 1440 -C 1440 -a 1048576 -0 250 -W 102400 -c | 1440 -J 1440 -0 250 -w 102400 -j 10
10
Test Results Sun Jan 14 16:32:57 2001 Sun Jan 14 16:32:51 2001

mmetric starting (23550) on Host:orchid
mode MULTICAST, outburst=1440,
off_load=10 Bpms, WinSiz=102400 bytes,
mode MULTICAST, off_load=10 Bpms,
WinSiz=102400 bytes,
Transmitting_to:239.159.100.40

1048576 bytes using buffers of size 1440 bytes
Timing: 110278 ms

Throughput: 9.508 Bpms — Bytes per ms
xy: 10 9.508

Throughput: 0.076 Mbits/sec

Number of calls: 729

Latency: 151.273 ms/call

Sent 1048576 bytes

Sun Jan 14 16:34:48 2001

mmetric starting (13507) on Host:forest
mode MULTICAST, inburst=1440, inrate=10
Bpms, WinSiz=102400 bytes,

mode MULTICAST, input_rate=10 Bpms,
WinSiz=102400 bytes,

Receiving with buffers of size 1440 bytes
rTiming: 117291 ms

rThroughput: 8.940 Bpms - Bytes per ms
xy: 10 8.940

rThroughput: 0.072 Mbits/sec

Number of calls: 729

Latency: 160.893 ms/call

Received 1048576 bytes

Sun Jan 14 16:34:48 2001

50

5.5 Unicast without Harmonization Burst/Rate

When calculating the value to be loaded into RTIMER, the ratio Burst/Rate (burst size /
data rate) is used to calculate the number of milliseconds until the next timer event should
occur. Louis Harvey observed in his Major Report [Harvey 1999] that if the “burst” size
is increased as the “rate” is increased, then the calculated value for RTIMER can be kept
larger than 50ms, which avoids the previously-noted problems with the (hardcoded) 50ms
lower limit for timeouts. He used the term “harmonization of Burst/Rate” to imply
increasing the “burst” size as the “rate” increases, to ensure that the RTIMER value is
never less than 50ms. We do experiments in both ‘“harmonization” and without
“harmonization” cases, and check how the RTIMER value affect the XTP rate control
quality.

The experiments to compare Sandia XTP and Revised XTP are divided into four parts:
Unicast without harmonization Burst/Rate; Unicast with harmonization Burst/Rate;
Multicast without harmonization Burst/Rate; and Multicast harmonization Burst/Rate.
For Unicast without harmonization Burst/Rate experiment, the “burst” is set to 1440
bytes, which equals to the XTP packet size used in our experiments and let us to achieve
most efficiency to transfer XTP packets. The load rate is progressively assigned the value
from 10 Bpms to 1255 Bpms. The throughput rate and timing will be collected at sender
under the Original Sandia XTP server and Revised XTP server. The experiment and
results are described in table 7 and figures 12 and 13:

Sender: orchid Receiver: sunset

51

Table 7: Unicast without harmonization Burst/Rate data summary

Load Rate| Original_Sandia_ | Original_Sandia_ | Revised_Sandia_ | Revised_Sandia_
(Bpms) Throughput Timing Throughput Timing
(Bpms) (ms) (Bpms) (ms)

10 9 113352 10 104860|
15 13 78867 15 69901
20 16 64249 20 52402
25 21 50805 25 41544
30 25 42059 30 34915
35 27 39479 35 29873
50 27 38347 51 20419
75 27 38177 76 13884
100 27 38514 102 10302
125 28 37964 128 8194
150 8 38064 159 6591
200 28 37840 203 5141
250 27 38441 265 3964
300 29 36400 323 3241
350 29 36437 353 2971
400 29 36400 426 2461
500 29| 36369 539 1942
600 29 36358 616 1703
700 29 35903 687 1527
800 40 26261 829| 1264
800 30 35071 912 1150
1000 33 32116 987 1062
1100 58 17961 986 1063
1200 58 18001 1069 980
1250 32 33052 1063 986

52

1200 -

1000 I

800

—e—Sandia XTP
600 .

—u— Revised XTP

400

200

120000

100000 §

80000 -

6 ;- —e— Sandia XTP
0000 ¥ —a— Revised XTP

40000 &

20000

Figure 13: Unicast without harmonization Burst/Rate timing curve

Before comparing the revised XTP with Sandia XTP, we look at the Sandia XTP
saturation curve first. As we see, for the Sandia XTP, the throughput almost stop to
increase after the load rate is higher than 30Bpms. That is because at that particular rate

(30Bpms), the value of RTIME equals to 48ms, which is close to the threshold value of

53

50ms used by the Sandia XTP implementation as the minimum timeout parameter to the
select) UNIX system call. This phenomenon is called “SELECT FLOOR” effect in
Harvey’s Major Report. The “SELECT FLOOR” effect dominates only within a subset of
range of sending rates. Another Bombardment phenomenon is introduced the ﬁoughput
rate may be jump to higher when the load rate goes higher. As we see, when load rate
reaches 1100Bpms, the Sandia XTP throughput rate jumps from around 30Bpms to
58Bpm. The “Bombardment” effect is caused by the incessant up coming of event, such
as incoming packet or incoming request issued by the user, with the consequence that the
system select() call retuns before the specified timeout value. Compared the saturation
curve and time consume curve between Sandia XTP version and Revision. The revision
of XTP achieves great improvement on rate control quality. There is no “SELECT
FLOOR” and The “Bombardment” effect with revised XTP. For revised XTP, the
throughput rate does not follow the load rate very well when the load rate is set to very
high (over 800 Bpms) , this because in that load range, the RTIMER is changed in 1

millisecond, that against the XTP implementation time resolution (1 millisecond).

54

5.6 Unicast with Harmonization Burst/Rate

For Unicast with harmonization Burst/Rate experiment, the “burst” size will increase as
the load rate increases: burst=rate*1000*0.1. That means the RTIMER interval is 100ms
at any load rate. The load rate is progressively assigned the value from 10 Bpms to 1255
Bpms. The throughput rate and timing will be collected at sender under the Sandia XTP
server and Revised XTP server. The experiment and results described in table 8 and
figures 14 and 15:

Sender: orchid Receiver: sunset

Table 8: Unicast with harmonization Burst/Rate data summary

Load Rate|Original_Sandia_|Original_Sandia_| Revised_Sandia_ | Revised_Sandia_
(Bpms) Throughput Timing Throughput Timing
(Bpms) (ms) (Bpms) (ms)

10 8 125899 10 104887
15 15 70169 15 69875
20 19 54050 20} 52410
25 25 41949 25 41949
30 30 35139 30| 34832
35 34 30600 35 30018
50 50 21051 50} 20903
75 75 13950 76 13864
100] 100 10466 101 10416
125 124 8441 126 8311
150 148 7100 152 6908
200 197 5319 204 5145
250 249 4203 255 4106
300 306 3425 307 3412
350} 331 3165 360 2913
400 379 2770 415 2526
500 420] 2499 521 2013
600 498 2105 600| 1748
700 729 1438 734 1429
800 855 1227 858 1222
900} 904 1160} 939 1117
1000} 978 1072 1035 1013
1100] 1087 965 1146 915
1200} 1268 827 1283 817
1250} 1222 858 1290} 813

35

1400

1200
1000
800 S —eo— Sandia XTP

140000

120000 -

100000 :

80000 |PEEEEE RN —+— Sandia XTP
50000 :‘ _: —a— Revised XTP

40000 NPT

20000 -SRI

0 500 1000 1500

Figure 15: Unicast with harmonization Burst/Rate timing carve

As we see, the saturation curve and time consumed curve between the Sandia XTP and

the revised XTP, are very close, the rate control QoS appears very good. This is because

56

the RTMER interval (100ms) is larger than 50 ms, which removes the “SELECT
FLOOR?” effect. In this case there is not much difference between the revised XTP and

the original Sandia XTP.

57

5.7 Multicast without Harmonization Burst/Rate

For Multicast without harmonization Burst/Rate experiment, the “burst” is set to 1440
bytes, and the load rate is progressively assigned the value from 10 Bpms to 1255 Bpms.
The throughput rate and timing will be collected at sender under the Sandia XTP server
and Revised XTP server. The experiment and results are described in the table 9 and
figures 16 and 17:

Sender: orchid Receiver: sunset

Table 9: Multicast without harmonization Burst/Rate data summary

Load Rate|Original_Sandia_|Original_Sandia_| Revised_Sandia_ | Revised_Sandia_
(Bpms) Throughput Timing Throughput Timing
(Bpms) (ms) (Bpms) (ms)
10 10 109860 10 104960
15 14 73191 15 70060
20 18 58961 20 52572
25 24 43960 25 41718
30 29 36724 30 35153
35 29 36640| 35 30062
50 29 36710 51 20653
75 29 36631 74 14097
100 29 36567 99 10550
125 29 36370 125 8412
150 29 36441 153 6835
200 29| 36552 193 5432
250 29 35946 252 4165
300 29 36441 300} 3490
350 29 36330 326 3220
400 29 36282 388 2706
500 29 35791 497 2110]
600 30 35500 546 1922
700| 29 36321 602 1740
800] 40 26147 812 1291
900 38 27360 852 1231
1000 61 17181 883 1188
1100} 60| 17390] 797 1316
1200 34 30661 955 1097
1250| 34 30840| 983 1067

58

1200

1000
800 =
i —e—Sandia XTP
600 -)
—m— Revised XTP

0 500 1000 1500

Figure 16: Multicast without harmonization Burst/Rate saturation curve

—e—Sandia XTP |

60000 + —a—Revised XTP,

40000

20000 NSRS

0 500 1000 1500

Figure 17: Multicast without harmonization Burst/Rate timing curve

Very similar with Unicast experiments result, the saturation curve and time consumed
curve between the Sandia XTP version and the revised XTP shows the achievement of

the revised XTP with rate control quality and performance. For the Sandia XTP, the

59

“SELECT FLOOR?” is there like in Unicast experiments and makes the rate control
quality very poor.

Again we also see the XTP implementation time resolution affects the throughput rate
when the load rate is set to high rate range.

The saturation and time consumed curves show that the Revised XTP achieves great
improvement on rate control quality. Just like the Unicast without harmonization
Burst/Rate, when the load rate is higher than 150Bpms, the rate control results are very

poor.

60

5.8 Multicast with Harmonization Burst/Rate

For Multicast with harmonization Burst/Rate experiment, the “burst” is equal to
rate*1000*0.1, and the load rate is progressively assigned the value from 10 Bpms to
1255 Bpms. The throughput rate and timing will be collected at sender under the Sandia
XTP server and Revised XTP server. The experiment and results described in the
following table and figure:

Sender: orchid Receiver: sunset

Table 10: Multicast with harmonization Burst/Rate data summary

Load Rate|Original_Sandia_|Original_Sandia_| Revised_Sandia_ | Revised_Sandia_
(Bpms) Throughput Timing Throughput Timing
(Bpms) (ms) (Bpms) (ms)
10 10 107870 10 105261
15 14 72721 15 70402
20 20 52602 20 52613
25 24 43213 25 42173
30 29 36321 29 36264
35 35 30312 35 30253
50 49 21302 49 21264
75 71 14723 73 14312
100 95 11063 97 10808
125 105 9942 119 8796
150 147 7152 146 7202
200 192 5452 195 5367
250 239 4396 240 4378
300| 286 3669 283 3703
350 331 3170 329 3190
400 379 2765 374 2802
500 463 2265 457 2295
600| 514 2039 524 2000
700 627 1672 619 1694
800} 676 1552 650} 1612
900| 739 1419 747 1403
1000} 807 1300 813 1289
1100} 826 1270 875 1198
1200} 888 1181 945| 1110
1250 937 1119 983 1067

61

1200

1000
800
600 1 —8—Sandia XTP
—o— Reversion XTP

0 500 1000

1800

Figure 18: Multicast with harmonization Burst/Rate saturation curve

1 120000

100000 4

80000 S

—e— Sandia XTP

: —a— Rewersion XTP

40000

20000 RS

Figure 19: Multicast with harmonization Burst/Rate timing curve

As we see, with harmonization Burst/Rate, the throughput rates of both the Sandia XTP

and the revised XTP are very close to load rate. However, the burst size may get very

62

high with high load rate. If XTP can not distribute the data packet evenly in RTIMER

interval, it may cause network congestion.

63

6 Conclusion

With the timer management class, the Revised XTP has improved the rate control.
Obviously, the timer management class is a way to handle the all timer events accurately
and efficiently. This project also gives us a very good example to handle time issues in
the development of a network protocol implementation.

Using object oriented techniques to implement the protocol is good in the network
implementation domain. But the cost of time and memory may be expensive. As we see
in the experiments, sometimes the software execution time may be a bottleneck of the
network. How to reduce the cost and also take advantage of object oriented techniques
can be future work.

For the Sandia XTP rate control, we can get very good throughput when we set
harmonization Burst/Rate. But when the Rate goes too high, the Burst also becomes
bigger, which means a lot of packets are sent out in a very short time. This burst may

crash or jam the network. So sending the packets out smoothly is very useful.

64

7 Dictionary

association:

congestion:

context:

data stream:

endpoint:

end-to-end:

handshake:

PDU:

receiver:

it

sender:

two or more contexts connected by an active data stream.

an overload phenomenon observed at gateways and other parts of network
where the data rates of numerous senders combine to overrun a receiver.
the set of state variables representing an instance of the use of XTP at an
endpoint; one half of an association. A context can be both a sender and
receiver.

a simplex, sequenced data flow. An association consists of two data
streams, one in each direction.

a host participating in an association.

inclusion of all processing for sending data from one endpoint to another
endpoint.

a message exchange between two hosts where, once a host sent the initial
message, it repeatedly retransmits that message until a response is
obtained from the intend receiver host.

protocol data unit. It is a data structure with protocol information.

the context for which particular data are incoming.

round trip time, defined as the time between when a sender transmits a
packet and when it receives an acknowledgement for that packet.

the context for which particular data are outgoing.

65

8 Reference

1. Mentat Inc., Xpress Transport Protocol Specification, XTP Revision 4.0b. July 1998.

2. Louis Harvey, Concordia University, Computer Science, Master Major Report: In

Search of a Rate Control Policy for XTP: Unicast & Multicast. March 1999

3. Sandia National Laboratories. Meta-Transport Library User’s Guide, Meta-Transport
Library — A protocol Base Class Library, Release 1.5.1. By: Infrastructure and
Networking Research Sandia National Laboratories, P.O. Box 969 Mailstop 9011,

Livermore, California 94551-0969. June 1997

4. Sandia National Laboratories. Sandia XTP User’s Guide — Sandia XTP An Object
Orientied Implementation of XTP 4.0 Derived from the Meta - Transport Library,
Release 1.5.1. By: Infrastructure and Networking Research Sandia National
Laboratories, P.O. Box 969 Mailstop 9011, Livermore, California 94551-0969. June

1997

5. Kamal Ghander, Concordia University, Computer Science, Comp 490 course project:

Requirement Documentation for XTP time management Base Class. Jan. 10, 2000
6. W.Richard Stevens. Advanced Programming in the UNIX Environment. April, 1992

7. Uresh Vahalia, UNIX Intemnals, The New Frontiers. EMC Corporation, Hopkinton,

MA. October 1995

66

9 Appendix

9.1 void mtidaemon::main_loop()
{
// yjiang modify
//satrt
// Get the shortest from timer link
first_cctimer=timer_link->return_first_cctimer();
if (first_cctimer)
shortest= (int) first_cctimer->get_shortest();
else
shortest = -1;
/fend
switch(wait_on_input(shortest)) {
case TMOUT: // Timeout
/I Try to satisfy any outstanding work
/lyjiang modify
/fold:shortest =d_cm->satisfy(); / remove the satisfy
if (first_cctimer){
if (first_cctimer->is_expired()){
c_temp=first_cctimer->get_owner();
if (c_temp){
if (c_temp->is_quiescent()) {
d_cm->quiescent_routine(c_temp);
}
else{
c_temp-
>handle_timeout(first_cctimer->get_type());
¢_temp->routine();
if (c_temp->is_quiescent()){
d_cm-

}

>quiescent_routine(c_temp);

break;
case USERREQ: // User Request
/I Try to satisfy any outstanding work

if ({daemon_stop) {
get_packets_from_dds();

67

}

//shortest = d_cm->satisfy();//yjiang modify: remove the satisfy
}

break;

case PACKET: // Incoming Packet

/I Get any incoming packets

get_packets_from_dds();

/I Try to satisfy any outstanding work

//shortest = d_cm->satisfy();//yjiang modify: remove the satisfy
break;

} while ({daemon_stop);

}

9.2 XTPcontext::XTPcontext() : context()

{

DEBUG(0x0004, "XTPcontext::XTPcontext(constructor)");

/I The context() constructor:

"

-- sets the next and prev context pointers (used for placement

on the active or quiescent list) to NULL

-- constructs the snd_fifo and rev_fifo
- allocates address structures for the unicast and multicast

destination addresses

/! Set the initial SDU size based on the header size

c_sdu_size =c_pdu_size - HDR_LEN;

state_mach.clear();

c_blk_req =new xtp_trans_msg;

/lyjiang modify:

/lstart

// CTIMER

c¢_timer= new cctimer(this);
c_timer->set_type(T_CTIMER);

// CTIMEOUT
c_timeout= new cctimer(this);
c_timeout->set_type(T_CTIMEOUT);

68

/I WTIMER
w_timer= new cctimer(this);
w_timer->set_type(T_WTIMER);

// RTIMER
r_timer= new cctimer(this);
r_timer->set_type(T_RTIMER);

// STIMER

mcast_info.s_timer=new cctimer(this);

mcast_info.s_timer->set_type(T_STIMER);
}

9.3 void XTPcontext::start_zombie()
{
DEBUG(0x0004, "XTPcontext::start_zombie");
/I If the c_timeout_interval is zero, the zombie state is bypassed.

if (c_timeout_interval =0) {
go_quiescent();
return;

}

/I Clear the sync handshake if necessary - at this point there's
/l no need to contine it. Also clear the rtimer.

stop_sync_handshake();
stop_rtimer();

/I Start up the c_timeout timer

/lyjiang modify

//start

/lold:word32 now = DAEMON->timestamp();

//old:c_timeout =now + ¢_timeout_interval;

c_timeout->set_cctimer_by_interval(c_timeout_interval);

if (c_timeout->is_in_link())
DAEMON->timer_link->remove_cctimer(c_timeout);

DAEMON->timer_link->insert_cctimer(c_timeout);

/lend

//c_timeout_armed =1;

}
void XTPcontext::go_quiescent() {

69

DEBUG(0x0004, "XTPcontext::go_quiescent”);

/I Don't go any further if this context is already quiescent

if (is_quiescent()) {
return;

}
/I Free up the spans list

if (reader_spans) {
free((char*)reader_spans);
reader_spans = (span*)NULL;

}

if (pending_retrans.spans) {
free((char*)pending_retrans.spans);
pending_retrans.spans = (span*)NULL;

) .

// Return the FIRST and JCNTL packets if necessary

if (FIRST_pkt) {
DAEMON->d_pool->put_back(FIRST_pkt->pkt());
delete(FIRST _pkt);
FIRST pkt = (FIRSTpacket*)NULL;

}

if (JCNTL_pkt) {
DAEMON->d_pool->put_back(JCNTL_pkt->pkt());
delete(JCNTL_pkt);
JCNTL_pkt = (JCNTLpacket*)NULL;

}

// Empty the event queues

word64 seqno;
while (in_eq.pull(seqno) !=0);
while (out_eq.pull(seqno) !=0);

stop_sync_handshake();

if (Istate_mach.is_Quiescent()) {
state_mach.clear();
if (TRACE && trace) §
log_event();
log_status();
}

70

}
// Clean up the stuff initialized in the base class

context::go_quiescent();
fclu_valid = 0;
// If this is a multicast master, make all auxils to quiesent.
if (is_mcast_xmitter()) {
XTPcontext* runner = get_mcast_aux_list();
while (runner) {
runner->go_quiescent();
runner = runner->get_mcast_aux_next();
}

}
}

9.4 void XTPcontext::handle_timeout(word32 ttype)
{

DEBUG(0x0004, "XTPcontext::handle_timeout");
switch (ttype){

case T_CTIMEOUT:// A CTIMEOUT expiration is serious -- abort this context.

handle_c_timeout();
break;
case T_RTIMER://RTIMER expired,
if (TRACE && trace) {
log_event();
log_print("%lx RTIMER expired\n", key());
}

stop_rtimer();

credit = burst;

break;

case T_STIMER:// Check the STIMER
if (is_mcast_xmitter() && mcast_info.s_timer_interval > 0) {

71

start_stimer();
}
elsef
DAEMON->timer_link->remove_cctimer(mcast_info.s_timer);
}
break;

case T_WTIMER:// Check the WTIMER
handle_wtimer();
break;

case T_CTIMER:// Check the CTIMER
handle_ctimer();

break;
}
}
9.5 void XTPcontext::routine()
{

DEBUG(0x0004, "XTPcontext::routine");

/I Ceck to see if any work can be done, like processing
/I awaiting packets.

if (!is_registered() && !(c_rcv_fifo->empty())) {
drain_snd_fifo();
process_packet();

}

// If this context is not a multicast auxillary, check
// retransmissions and try to drain the send fifo.

if (Yis_quiescent() &&
I(is_mcast_auxil() || is_mcast_rcvr())) {
retransmit();
drain_snd_fifo();
}

if (is_satisfied()) {
/! If there is someone blocked waiting for the processing of
// this context (specifically, an incoming packet), then
/I unblock that user

unblock_user();
}

72

}

9.6 void XTPcontext::handle c¢_timeout()

{
DEBUG(0x0004, "XTPcontext::handle c_timeout");

if (TRACE && trace) {

log_event();

log_print("%Ix CTIMEOUT expired\n”, key());
}

// CTIMEOUT is also set when the END bit is sent - expiration will
/I cause the context to go quiescent. We just want to hang around

/I long enough for a lost packet to be recognized.

if (is_zombie()) {
if (is_blocked()) {
c_blk_req->result code = EXOK;
unblock_user();

}
go_quiescent();
return;

}
/I Otherwise, this was a real CTIMEOUT expiration...

if (TRACE && trace) {
log_print("tContext %Ix going quiescent\n", key());
}

if (is_blocked()) {
¢_blk_reg->result code = EXTMOUT;
unblock_user();

}

go_quiescent();

return;

}

9.7 void XTPcontext::handle wtimer()

{
DEBUG(0x0004, "XTPcontext::handle wtimer");

/I If this is a multicast master, check that all of the

// members of the multicast group have responded. If they

73

/I haven't, do the normal sync handshake.
if (is_mcast_xmitter() && mcast_all_responded(}) {

if (sync_handshake open) {
stop_sync_handshake();
}

else {
stop_wtimer();

}

if (FIRST _pkt) {
DAEMON->d_pool->put_back(FIRST_pkt->pkt());
delete(FIRST _pkt);
FIRST_pkt = (FIRSTpacket*)NULL,;

}

/I Stop the tspec negotiation (even if it's not open).
tspec_neg_open =0;
/I Update the retransmission threshold

word64 m_rseq = mcast_auxils_rseq();
kseq =m_rseq;

/I Update the alloc.
alloc = mcast_auxils_alloc();
/I Move the dseq mark in send buffer
c_s_bm->acknowledged(m_rseq);
/I If a user is blocked...
if (is_blocked()) {
/I if this is a response to an SREQ or DREQ), then update the
/I send buffer manager and unblock the user. We know
// that this is a response by matching the sequence numbers;
/I if the assoc is closed, we don't care. The only two flags
/I we need to communicate to the blocked process are the

/i END and RCLOSE flags.

if (((get_blk_type() = XTP_SEND) ||
(get_bik_type() ==XTP_SEND_CNTL)) &&

74

((m_rseq >=c_blk_seq) || is_assoc_closed())) {
((xtp_trans_msg*)c_blk req)->options |= local _modes;
unblock_user();

}

return;
}

/I If this wtimer expiration is not part of a sync hanshake, start
/I the sync handshake up.

int res;
if (!sync_handshake open) {

if (TRACE && trace) {

log_event();

log_print("%Ilx WTIMER expired\n”, key());
}

start_sync_handshake();
}

else {
/I The expiration is part of the handshake, check the retries.

if (num_retries !=0 && retry_count =0) {
log_event();
log_print("%lx Retry count exceeded:\n", key());
log_print("\tsynchronizing handshake failed, ");
log_print("giving up on context.\n");
if (is_blocked()) {
c_blk_reg->result_code = EXTMOUT;
unblock_user();
}
go_quiescent();
return;
}

if (TRACE && trace) {
log_event();
log_print("%Ix WTIMER expired, retry count = %u\n",
key(), retry_count);

75

/I If the FIRST packet has not been answered (the WTIMER expires
/I without any received packets) then retransmit the FIRST and
/] treat this just like 2 sync handshake.

if (FIRST_pkt && num_pkts_rcvd ==0) {
saved_time_valid =0;

if (TRACE && trace) {
log_event();
log_print("%Ix Retransmitting: ", key());
FIRST_pkt->log_pkt(1);
log_print("\tDestination: %s\n", is_mcast_xmitter()?
¢_mcast_dest->pr_hostid():
c_ucast_dest->pr_hostid());
}

res = FIRST_pkt->send(is_mcast_xmitter()?c_mcast_dest:c_ucast_dest);
if (res<0) {

log_event();

log_print("ERROR: send failed for packet: %d\n", res);

}

if (Yis_mcast_xmitter() && num_retries !=0) {
retry_count--;
}

start_wtimer(backoff_K);
// Increase the backoff exponentially, watching for overflow

if (backoff K < 0x4FFFFFFF) {
backoff K *=2;

}

return;

}

/I If we're listening to join a multicast association, send
// the JCNTL again and hope for a response. This is muiticast
/Il receiver polling.

if (is_listening() && JCNTL_pkt) {
if (TRACE && trace) {

log_event();
log_print("%Ix Retransmitting:", key());

76

JCNTL_pkt->log_pkt(1);
log_print("\tDestination: %s\n", c_mcast_dest->pr_hostid());
}

saved_time valid =0;

if ((res = JCNTL_pkt->send(c_mcast_dest)) < 0) {
log_event();
log_print("ERROR: send failed for packet: %d\n", res);

}
start_wtimer(backoff K);
I/ Increase the backoff exponentially, watching for overflow

if (backoff K < O0x4FFFFFFF) {
backoff K *=2;
}
return;
}

/! If we've kept a copy of the JCNTL packet, then failure
/I to get a response from this packet's SREQ caused the
// timeout, so retransmit the JCNTL.

if JCNTL_pkt) {

JCNTL_pkt->get_header()->cmd.options |= SREQ;
saved_synct+;

saved_sync_seq = JCNTL_pkt->get_header()->seq;
saved_time = DAEMON->timestamp();

saved_time valid=1;
JCNTL_pkt->get_header()->sync = saved_sync;

if (TRACE && trace) {
log_event();
log_print("%Ix Retransmitting:", key());
JCNTL_pkt->log_pkt(1);
log_print("\tDestination: %s\n", c_ucast_dest->pr_hostid());
}

if ((res = JCNTL_pkt->send(c_ucast_dest)) <0) {
log_event();
log_print("ERROR: send failed for packet: %d\n", res);
}

if (num_retries !=0) {
retry_count--;

77

}
start_wtimer(backoff K);
// Increase the backoff exponentially, watching for overflow

if (backoff K < 0x4FFFFFFF) {
backoff K *=2;

}

return;

}

/I Otherwise just send a control packet. If the traffic
/' specification negotiation is open, send a TCNTL;
/I otherwise, send a (E)CNTL

if (tspec_neg_open) {
send_tcntl(SREQ | get_sent_modes());
}

else {
send_cntl(SREQ | get_sent_modes());

}

/I Start the WTIMER with backoff K times a smoothed
/! round-trip time estimate. Double the backoff for
/I use next time.

if (num_retries != 0)
retry_count--;

start_wtimer(backoff _K);
// Increase the backoff exponentially, watching for overflow

if (backoff K < 0x4FFFFFFF) {
backoff K *=2;

}
}

void XTPcontext::handle_ctimer() {
DEBUG(0x0004, "XTPcontext::handle_ctimer");
if (TRACE && trace) {

log_event();
log_print("%Ilx CTIMER expired\n”, key());

78

}

// For a CTIMER expiration, we should just see if any activity has

/I happened during this interval. If not, we check to see if the user’s
/I process is still alive (is_user_alive()). This check is useful

// so that we can clean up any dead user's shared resources. We must
/I set CTIMER so that it will expire before a process id or key value
// roll over. To this end the protocol directs that this timer should

// have an interval less than 3600 seconds (one hour).

"

/1 If the process is really dead, we try to clean up the ipc

/I structures it may have left behind, and go quiescent.

// Did we do any work?

if (pkts_rcvd_in_c_interval > 0) {
/I Yes: Clear the counters for another interval and return
pkts_rcvd_in_c_interval = 0;

/lyjiang modify
//start
//old:c_timer +=c_timer_inter;
c_timer->set_cctimer(c_timer_interval+c_timer->get_cctimer_val());
if (c_timer->is_in_link())
DAEMON->timer_link->remove_cctimer(c_timer);
DAEMON->timer_link->insert_cctimer(c_timer);
/lend
if (TRACE && trace) {
log_event();
log_print("%Ix CTIMER Start\n", key());
}
return;
}

/1 If the process is still alive, start a synchronizing handshake if
// (1) this context is not just simply waiting for an

1/ association startup packet, or

// (2) a sync handshake is not already going.

if (is_user_alive()) {
if (lis_registered() && lis_listening() &&
lc_timeout->is_in_link()) {
/I'c_timeout_armed) {//yjiang del
start_sync_handshake();

79

if (tspec_neg_open)
send_tcntl(SREQ | get_sent_modes());
else
send_cntl(SREQ | get_sent_modes());
}

/lyjiang modify
//start
/lold:c_timer +=c_timer _inter;
c_timer->set_cctimer(c_timer_interval+c_timer->get_cctimer_val());
if (c_timer->is_in_link())
DAEMON->timer_link->remove_cctimer(c_timer);
DAEMON->timer_link->insert_cctimer(c_timer);
//end
if (TRACE && trace) {
log_event();
log_print("%Ix CTIMER Start\n", key());
}
return;
}

/I Otherwise, try to clean up the remains.

log_event();
log_print("%lx Process %d died, cleaned up context.\n", key(), upid());

/I Go quiescent

go_quiescent();

}

int XTPcontext::initialize(user_request* request) {
DEBUG(0x0004, "XTPcontext::initialize");

register xtp_reg_msg* xrg = (xtp_reg_msg*)request;
/I First record the buffers sizes

c_snd buf_size =xrg->snd_buf size;
c_rcv_buf size =xrg->rcv_buf size;

/[Then call context::initialize() to

// - set the key to the currently assigned key
/' —record the user’s pid

/I — install the buffers

80

if ((request->result_code = context::initialize(request)) != EXOK) {
return(request->result_code);

}

// Set the context shell states

state_mach.clear();

c_blk_state = NOT_BLOCKED;
sent FIRST =0;
should_send_END =0;

/I Clear the options masks

sticky_mask = (short16)0;
local_modes = (short16)0;
sent_modes = (short16)0;
perm_modes = (short16)0;
extra_modes = (word32)0;
yes_mask = (short16)0;
no_mask = (short16)0;

// Fill in the general header; most of this will remain constant over
// all packets sent out from this context

memset((char*)&hdr, (char)0, sizeof(header));
hdr.key = key();

/I The stickies are initialized here, and set during packet exchanges.
set_stickies(xrg->options);

perm_modes = xrg->options;

set_sent_modes(xrg->options);

/I Set the local modes.

set_local_modes(xrg->options & MULTI);

/' Set the extra modes.

set_extra_modes(xrg->extra_modes);
state_mach.set_extra_modes(xrg->extra_modes);

/I The yes_mask and no_mask are used for traffic negotiaion. The

/I yes_mask indicates what modes must be set, the no_mask indicates
/I what modes must not be set. We "or” in the MULTI bit since this
/I mode can never be changed during an association; it also helps

81

/I distinguish which FIRST packets are acceptable.

yes_mask = xrg->yes_mask | xrg->options & MULTI;
no_mask = xrg->no_mask | (xrg->options & MULTTI)?(short16)0:MULTT;

/I Set the starting sequence numbers

hdr.seq =c_s_bm->get_head(};
hseq = cntl.rseq =c_r_bm->get_tail();
dseq =c_s_bm->get_dseq();

/I Sort information
hdr.sort = (hdr.cmd.options & SORT)?(short16)priority():(short16)0;

dreq request =0; // No requests for CNTL via a DREQ yet.
saved_edge =0; // Initial EDGE valueis 0
cur_edge_val = (short16)0; // Initial outgoing EDGE value is 0

/I Fill in the general control segment; this is where some of
/] the context's state is kept

cntl.echo =0;

saved_sync =0;

saved_sync_seq = word64(0);
rcvd_sync = 0;

rcvd_echo =0;

num_pkts_rcvd =0;

expected = 0; .
FIRST pkt = (FIRSTpacket*)NULL,;
JCNTL_pkt = (JCNTLpacket*)NULL;
pending_retrans.nspan = 0;

cntl.alloc =c_r_bm->get_alloc();
excess_alloc = xrg->excess_alloc;

if (!(hdr.cmd.options & RES))
cntl.alloc += excess_alloc;
reader_nspan =0;

maxspans = umax32(xrg->maxspans, 1);
if ((reader_spans = (span*)malloc(maxspans * sizeof{span)))
==(span*)NULL) {
xrg->result_code = EXMEM;
reurn(EXMEM);
}

82

if ((pending_retrans.spans = (span*)malloc(maxspans * sizeof{span)))
== (span*)NULL) {
xrg->result_code = EXMEM;
return(EXMEM);
}

/I Adjust the PDU and SDU sizes. Later, PDU and SDU sizes can be
/I further adjusted if the endpoints of the association negotiate
/I traffic parameters.

c¢_pdu_size = min(DAEMON->d_out_dds->get_maxpdu(), xrg->pdu_size);
c_sdu_size =c_pdu_size - sizeof(header);

/I Set the edge frequency
edge freq = pkt_count = xrg->edge_freq;
// Initialize the retransmission marker

kseq = word64(0);
kseq_sync =0;
tseq = word64(0);

// Set the initial alloc. The "10" is just a guess, there needs to
// be a better way to get the initial allocation

alloc = 10 * c¢_sdu_size;

/I Set the tspec to the default. Until told otherwise, we'll
/I assume that traffic specifier format 0x01 is used.

tspec.tlength = (short16)(sizeof{traffic_1) + 4);
tspec.service = UNSPEC;
tspec.tformat = (byte8)0x01;

/I Set the maxdata, rate and burst values. Maxdata is the maximum
// Information segment size, which is the sdu_size.

maxdata = tspec.tsl.maxdata =c_sdu_size;

if (extra_modes & OUTRATEQFF)
rate = tspec.tsl.outrate = 0;
else if (xrg->rate)
rate = tspec.tsl.outrate = xrg->rate;
else
rate = tspec.tsl.outrate = DAEMON->d_out_dds->get_rate();

83

if (extra_modes & OUTBURSTOFF)
burst = credit = tspec.tsl.outburst = 0;
else if (xrg->burst)
burst = credit = tspec.tsl.outburst = xrg->burst;
else
burst = credit = tspec.tsl.outburst = DAEMON->d_out_dds->get_burst();

if (extra_modes & INRATEOFF)
inrate = tspec.tsl.inrate = 0;
else
inrate = tspec.tsl.inrate = DAEMON->d_in_dds->get_rate();

if (extra_modes & INBURSTOFF)
inburst = tspec.ts1.inburst = 0;
else
inburst = tspec.ts1.inburst = DAEMON->d_in_dds->get_burst();

tspec_changed =0;
tspec_neg_open = 0;

/I Clear the address segment and fclu my_entry; the address_segment
/I gets set when the context is bound (see the context_manager), and
// the fclu my_entry gets set when the FIRST packet arrives.

memset((char*)&address, (char)0, sizeof{faddress_segment));
memset((char*)&my_entry, (char)0, sizeof(my_entry));
fclu_valid =0;

/I Set the time-out values.
c_timer_interval = CTIMER_INTERVAL * 1000; // express in msec

/lyjiang modify
//start
/fc_timer = DAEMON->timestamp() + c_timer_interval; // start CTIMER
if (TRACE && trace) {
log_event();
log_print("%Ix start CTIMER\n", key());
}
c_timer->set_cctimer_by_interval(c_timer_interval);
if (c_timer->is_in_link(})
DAEMON->timer_link->remove_cctimer(c_timer);
DAEMON->timer_link->insert_cctimer(c_timer);
/lend

84

pkts rcvd_in_c_interval = 0;
saved_time_valid =0;
saved_time =0;

/I Set the retry count and C_TIMEQUT timer

num_retries = xrg->retry_count;
c_timeout_interval = xrg->c_timeout_interval * 1000; // express in msec

/! Set the WTIMER limit
w_timer_limit = xrg->w_timer_limit * 1000; // express in msec
// One of these mechanisms must be enabled

if (num_retries = 0 && c_timeout_interval == 0) {
xrg->result_code = EXMECH;
retum(EXMECH);

}

// Disarm the WTIMER, RTIMER, and CTIMEOUT; they will be armed during a
/I synchronizing handshake

//w_timer_armed =r_timer_armed =c_timeout_armed = 0;//del by yjiang
sync_handshake_open = 0;

[lyjiang modify

//start
DAEMON->timer_link->remove_cctimer(w_timer);
DAEMON->timer_link->remove_cctimer(r_timer);
DAEMON->timer_link->remove_cctimer(c_timeout);
/lend

/' Set the initial roundtrip estimate and the variables for
/I calculating the smoothed RTT.

rtt = SRTT = xrg->init_rtt;
RTTV=0;
// Initialize multicast information

memset((char*)&mcast_info, (char)0, sizeof{mcast_info));
mcast_info.max_act_rcvrs = xrg->mcast_max_act_rcvrs;
mcast_info.min_act_rcvrs = xrg->mcast_min_act_rcvrs;
mcast_info.s_timer_interval =0;

85

// Become registered

state_mach.initialize();

if (TRACE && trace) {
log_event();
log_status();

}

xrg->result_code = EXOK;

return(EXOK);
}

9.8 void XTPcontext::start wtimer(word32 factor)
{

DEBUG{(0x0004, "XTPcontext::start_wtimer");
// Can't have a "0" factor

if (factor == 0) factor=1;

// Take an initial guess at the duration

word32 duration =SRTT + 2*RTTV;

/I Calculate the maximum factor allowed so as not to overflow the
/!l word32 timer; the real factor is the min of this max and the
/I offered parameter

word32 maxfactor = (word32)(0x4FFFFFFF / duration);
factor = min(maxfactor, factor);

/I Get the real duration; if there is a w_timer_limit, let the
// duration be limited by it

if (w_timer_limit = 0) {
duration = umin32((word32)(duration*factor), w_timer_limit);
}

else {
duration = (word32)(duration*factor);

}

if (TRACE && trace) {
log_event();
log_print("%lx Starting WTIMER, duration: %u\n", key(), duration);

86

/lyjiang modify

l/start

//old:word32 now = DAEMON->timestamp();

//old:w_timer = now + duration;

w_timer->set_cctimer_by_interval(duration);

if (w_timer->is_in_link())
DAEMON->timer_link->remove_cctimer(w_timer);

DAEMON->timer_link->insert_cctimer(w_timer);

/lend

//w_timer_armed = 1;//del by yjiang
}

9.9 void XTPcontext::stop_wtimer()
{ DEBUG(0x0004, "XTPcontext::stop_wtimer”);

/iif (TRACE && trace && w_timer_armed) {//yjiang modify
if (TRACE && trace && w_timer->is_in_link()) {
log_event();
log_print("%Ix Stopping WTIMER\n", key());
}

/Iw_timer_armed = 0;//yjiang:shall be delete

/lyjiang modify

/Istart
DAEMON->timer_link->remove_cctimer(w_timer);
/lend

if (FIRST_pkt) {
DAEMON->d_pool->put_back(FIRST_pkt->pkt();

delete(FIRST_pkt);
FIRST_pkt = (FIRSTpacket*)NULL;
}
}

9.10 void XTPcontext::start_rtimer()
{ DEBUG(0x0004, "XTPcontext::start_rtimer");

if (rate == 0) return;

if (TRACE && trace) {
log_event();

87

log_print("%Ix RTIMER Start\n", key();
}

/lyjiang modify
//start
//old:word32 now = DAEMON->timestamp();

/| Here rate and burst are in units of msec.
/lold:r_timer = now + (word32)(burst/rate);
r_timer->set_cctimer_by_interval((word32)(burst/rate));
if (r_timer->is_in_link())
DAEMON->timer_link->remove_cctimer(r_timer);
DAEMON->timer_link->insert_cctimer(r_timer);
//end

//r_timer_armed = 1;//yjiang: shall be remove

}

9.11 void XTPcontext::stop_rtimer()
{ DEBUG(0x0004, "XTPcontext::stop_rtimer");

/ir_timer_armed = 0;//yjiang: shall be remove

/lyjiang modify

//start
DAEMON->timer_link->remove_cctimer(r_timer);
/lend

credit = burst;
}

9.12 void XTPcontext::start_stimer()
{ DEBUG(0x0004, "XTPcontext::start_stimer”);

/lyjiang modify

//start

/lold:mcast_info.s_timer = DAEMON->timestamp() + mcast_info.s_timer_interval;
mcast_info.s_timer->set_cctimer_by_interval(mcast_info.s_timer_interval);
if (mcast_info.s_timer->is_in_link())

DAEMON->timer_link->remove_cctimer(mcast_info.s_timer);

DAEMON->timer_link->insert_cctimer(mcast_info.s_timer);
/lend

88

9.13 void XTPcontext::start_sync_handshake()
{ DEBUG(0x0004, "XTPcontext::start_sync_handshake");

if (TRACE && trace) {
log_event();
log_print("%lx Starting synchronizing handshake, rtt: %u\n",
keyQ, rtt);
}

word32 now = DAEMON->timestamp();//yjiang:shall be remove

// Load the CTIMEOUT timer with its initial value, but only if
// the interval is not 0. If the interval is 0, the CTIMEOUT timer
/! has been disabled.

if (c_timeout_interval !=0) {

/lyjiang modify
//start
/lold:c_timeout = now + c_timeout_interval;
if (TRACE && trace) {
log_event();
log_print("%Ix C_TIMEOUT Start\n", key());

c_timeout->set_cctimer_by_interval(c_timeout_interval);

if (c_timeout->is_in_link())
DAEMON->timer_link->remove_cctimer(c_timeout);

DAEMON->timer_link->insert_cctimer(c_timeout);

/lend

/lc_timeout_armed = 1;

}

// Reset the retry_count to its initial value...
retry_count =num_retries;

// And set an exponential backoff variable K to 1.
backoff K=1;

sync_handshake open=1;
}

9.14 void XTPcontext::stop_sync_handshake()
{ DEBUG(0x0004, "XTPcontext::stop_sync_handshake™);

89

if (sync_handshake_open && !state_mach.is_Quiescent()) {
if (TRACE && trace) {
log_event();
log_print("%lIx Stopping synchronizing handshake\n", key());
}
}

/lc_timeout_armed = 0;//yjiang:shall be remove
//w_timer_armed = 0;//yjiang: shall be remove

/lyjiang modify

//Start
DAEMON->timer_link->remove_cctimer(c_timeout);
DAEMON->timer_link->remove_cctimer(w_timer);
/lend

backoff K=1;
sync_handshake open = 0;
}

9.15 void XTPcontext::start_zombie()
{ DEBUG(0x0004, "XTPcontext::start_zombie");

// If the c_timeout_interval is zero, the zombie state is bypassed.

if (c_timeout_interval =20) {
go_quiescent();
return;

}

/I Clear the sync handshake if necessary -- at this point there's
// no need to contine it. Also clear the rtimer.

stop_sync_handshake();
stop_rtimer();

// Start up the c_timeout timer

/lyjiang modify

//start

/lold:word32 now = DAEMON->timestamp();

/lold:c_timeout = now + c_timeout_interval;

c_timeout->set_cctimer_by_interval(c_timeout_interval);

if (c_timeout->is_in_link())
DAEMON->timer_link->remove_cctimer(c_timeout);

90

DAEMON->timer_link->insert_cctimer(c_timeout);
/lend

/lc_timeout_armed = 1;

}

91

Index

5

50 ms, 20, 26

A

Active, 5
alloc and rseq, 7
association, 4

Burst, 8

C

check_timers(), 41

class buffer_manager, 13

class del_srv, 13

class packet, 16

class XTPcontext, 16

CNTLpacket, 18

contex_manager class, 13

context, 4

context class, 13

Credit, 8

CTIMEOUT, 9, 23, 25, 36, 38, 39, 40,
41,69, 71,73, 85, 89

CTIMER, 23, 24, 36, 38, 39, 41, 68, 72,
79, 80, 84

D

DATApacket, 18

E

ECNTL packet, 9
ECNTLpacket, 18
Error Control, 9

F

FIRSTpacket, §
Flow Control, 7

H

handl_timeout(), 33, 38
handle_c_timeout(), 41, 71, 73
handle_new_packet(packet* pkt), 42
handle_wtimer(), 41, 72, 73

Inactive, 5
ip_del_srv, 13

J

JCNTL packet, 7
L

Listening, 5

MAXANTICIPATION, 20

MTL (Meta Transport Library), 10

mtidaemon, 14

mitlif class, 13
Multcast/Unicast, 6
MULTI bit, 6

Multicast address, 7
Multicast packet, 6
Multicast receiver join, 7

N

NOCHECK bit, 9
NOFLOW bit, 7

P

packet class, 12

packet FIFO, 8, 39, 42
packet_fifo class, 12
packet_pool class, 12
process_packet(), 18, 72

Q

Quiescent, 5

R

Rate, 8
Rate Control, 8
RES bit, 7

routine(), 33, 34, 39, 42,67, 72
RTIMER, 8, 9, 20, 21, 23, 25, 36, 37,
38, 39, 40, 47, 55, 69, 71, 85, 88

93

S

Sandia XTP OMT, 10

satisfy(), 22, 26, 33, 34, 42, 67, 68

saved_sync, 23,77, 82

select(), 14, 20, 26

SELECT_FLOOR, 20

send(), 18

send_cntl(), 18

share memory, 14

shortest, 22, 26, 29, 30, 34, 42, 67, 68

SREQ, 22, 23, 24, 39, 46, 74, 77, 78, 80

start_rtimer(), 40, 87

start_wtimer, 39, 76, 77, 78, 86

start_zombie(), 39, 69, 90

state, 5

stop_rtimer(), 40, 69, 71, 88, 90

stop_sync_handshake(), 40, 69, 70, 74,
90

stop_wtimer(), 40, 74, 87

synchronization handshake, 9

T

TCNTLpacket, 18
w

WTIMER, 9, 22, 23, 24, 36, 37, 38, 39,
40, 41, 69, 72,75, 76, 78, 85, 87

X

XTPcontext, 18, 36, 38, 39, 42, 68, 69,
70,71, 72, 73, 78, 80, 86, 87, 88, 89,

90
XTPpacket, 16

