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Abstract

ESTELLE Specification of XTP:
Analysis of Data Propagation within XTP

Luc Lajoie

The first version of the XTP protocol using the ESTELLE specification
language was of little or no practical use. The goal of the exercise was
to produce a specification of the XTP protocol, using a tool that was
designed to build telecommunication protocols and benefit from lan-
guage constructs designed to help the coding and thereafter the main-
tenance of the protocol. This benefit was clouded by poor perform-
ance. First analysis revealed that the data was manipulated character
by character and copied several times throughout its existence within
XTP.

At the same time, a C++ version of the XTP protocol was available,
with acceptable performance. The C++ port of the protocol was tightly
coded, using most of the C++ language features making the under-
standing of the association of code parts to protocol components a te-
dious task to master and an even greater challenge to maintain and

improve to keep up with the protocol evolution.

Originated and motivated from an observation from Dr. William At-
wood from Concordia University Canada, it was proposed that the
ESTELLE code be improved by making use of a slight deviation from
ESTELLE into the C language by making use of ‘Qualifying Comments’
in ESTELLE. Such comments allowed the specification of C constructs,

namely pointer references, that are not a defined type for ESTELLE.
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Further enhancements gave birth to a generation of the ESTELLE
specification, where most of the data manipulation C operations had
been taken out of the XTP protocol, and consolidated into a set of
highly efficient and frequently executed parts of code. These ‘code
beans’ are referred to as ‘primitives’ and make full usage of the C lan-
guage. The thrust of this report is to review and document the topol-
ogy of the most recent ESTELLE specification of the XTP protocol,
propose improvements if such are possible, and finally compare the
performance of both the ESTELLE specification and the SANDIA C++

specification of XTP.
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1 Initial Description and Thrust of this Work

1.1 Transmission Protocols: The Basics

This section is included to ensure the knowledge of the traditional func-
tions and features of transmission protocols in general. Specifics are
added to introduce the role and differences that XTP brings in contribu-
tion to the performance, reliability and innovation in this domain of the
research. The material related in this section is inspired from a work in

progress from a colleague student.

The following subjects are elaborated with goal of describing XTP while
setting the stage for the description of the generic features of a transmis-

sion protocol.

e Formal description of XTP
e A communication model

e Unicast vs. Multicast

¢ Flow Control

e Rate Control

e Error Control

1.1.1 Formal Description of XTP

Compliant with the OSI-7 layer model, XTP addresses and contributes in

the following fields as a transport layer protocol:

e Orthogonal protocol functions for separating paradigms from policies

o Separation of rate and flow control



» Explicit first-class support for reliable multicast

¢ Data delivery service independence

Other features of XTP, completing its formal description but not neces-
sary unique to this protocol are: implicit fast connection setup for virtual
circuit paradigm, key based addressing lookup, message priority and
scheduling, support for encapsulation and convergence protocols, selec-
tive retransmission and acknowledgment, fixed size 64-bit frame design,
64-bit sequence and connection identifiers, parameterized traffic and fi-

nally quality of service.



1.1.2 A Communication Model

Next, a general communication model is included (see Figure 1). It is
adapted from the SANDIA XTP User’s Guide Release 1.5 and depicts a Uni-
cast communication model. It attempts to locate the main communication
components and place labels. This diagram is not a complete communica-

tion model, as such is included later.

Inifating EndPoint Caresponding EndPaint

Local Session Remote Session

Association

Figure 1. General Network Communication Model

Figure 2 below, is included to show additional information on how a con-
text association is initiated, functions and ends. Again, it is general in

description and pertains to the general network architecture of XTP.
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Figure 2. Typical Context Association Data Transfer Behavior

Referring to the association diagram above, we can find that:

The context is always in one of the following states: Quiescent, Listening,
Active or Inactive. Based on a user request, the contexts change their
states. Next, we can make a difference between a Unicast communication

model, where one sender’s context communicates with one and only one



receiving context for a given session, and a Multicast session model,
which engages a sending context in communication with several receiv-
ers. In a Unicast model, as depicted above in the diagram, the following

state transitions take place:

e The receiver application always starts first, and the receiver goes to
the LISTENING state, a transition from a QUIESCENT state, and waits

for the sender’s packet.

e The sender issues an output command (FIRST Packet), and the sender

goes to the FIRST_SENT state.

e After the FIRST packet is accepted by the receiver, it enters the AC-
TIVE state.

e A TCNTL packet is returned by the receiver to the sender, which

causes the sender to move to the ACTIVE state.

e At that time, the session is established and both the sender and the re-

ceiver can start exchanging well defined packets, freely.

e When the receiver receives a packet with the END flag set, the receiver

reverts to the QUIESCENT state.

e The sender then enters the INACTIVE state, and finally goes to the
QUIESCENT state.

The association is terminated.

1.1.3 Notion of UNICAST Vs MULTICAST.

Unicast support, which XTP provides, is the support of a communication

session between one sender endpoint and one receiver endpoint. The XTP



Unicast provides a high degree of functionality, through orthogonal pro-
tocol mechanisms. These mechanisms are in the form of fields and bit
flags, used during packet exchange, over the lifetime of an association.
The association management procedures define how the fields and bit

flags are used during the lifecycle of the association.

Multicast is a major distinctive feature of XTP. XTP implements Multicast
while ensuring that there is no duplicate data from a single context, to a
set of XTP receivers, hence saving bandwidth and increasing throughput
performance. Similarly to Unicast, the Multicast feature of XTP provides
a powerful mechanism for group communication, supporting a data serv-
ice of ‘one to many’ and ‘many to many’ associations. The XTP Multicast
uses the same control algorithms and mechanism in flow control and rate

control, defined below, except for the association management.

1.1.4 Flow Control

Flow control, as implemented by XTP, has the following goal: Like TCP,
XTP Flow Control aims to prevent swamping of a slow receiver, with too
much data, too quickly, by transferring control to the receiver, who then
issues credits to the sender. Specifically to XTP, the following applies to

Flow Control:

o XTP reserves two fields, alloc and rseg to negotiate the flow control

window value.



e XTP also implements two additional control variables, the RES bit and
the NOFLOW bit, providing the user with the following configuration

options:

e By setting the RES bit, the sender instructs the receiver to advertise
only the actual buffer allocated by the user for the context. This is
called the ‘reservation mode’. In this mode, the receiver is forced to
adopt a conservative policy, making sure that no packets are lost

due to a lack of buffer space.

¢ The NOFLOW bit indicates to the receiver that the transmitter does
not wish to adhere to flow control constraints, hence flow control in

the forward direction will be disabled.

This short introduction to flow control gave insights to what is flow con-

trol and how it applies to XTP.

1.1.5 Rate Control

Unlike flow control, rate control focuses on the producer/consumer rela-
tionship, as it applies to XTP between the endpoints, and considers proc-
essor speed and congestion. XTP performs rate control by monitoring the
following factors: Rate, Credit and Burst, and additionally with a refresh

timer called RTIMER. The relationship among these factors is as follows:

e RATE is the user expected data output rate. By default, rate control is
disabled.

e BURST is another user-input parameter. It is the maximum number of

data bytes that can be sent at once.



e RTIMER is equal to the value of BURST divided by the value of RATE.

It is a period timer.

e CREDIT is evaluated (verified) each time the context wants to send
data out. The credit is decreased until it reaches the value of zero,
while data is sent. If there is no more credit available, the data packet
is put on a FIFO packet queue and no more data is sent. Basically, the
context will be assigned the credit value (equal to burst) at each

RTIMER time period.

1.1.6 Error Control

Error control is the operation of maintaining a checksum field in each
packet. XTP implements a 16 bit one’s complement sum over all octet
pairs. XTP provides the choice of performing a whole packet checksum
with the NOCHECK bit setting turned off, or to perform only a packet
header checksum when the NOCHECK bit is turned on.

If a check error is found, the packet is simply dropped. A receiver will de-
tect the lost packet by checking the incoming packet stream for gap in the
sequence space. At that time, an ECNTL packet is sent back to the sender
to request a retransmission. If the sender fails to receive the retransmis-
sion request, the sender will request a synchronization handshake. The
two timer values WTIMER and CTIMEOUT are used to help the sender in
detecting if the association can be recovered to normal. If the handshake
fails, the association is terminated. The communication between the pair

of receiver and sender is aborted.



1.2 SANDIA XTP Vs ESTELLE specification
1.2.1 Motivation for the SANDIA XTP

The origins of XTP go back to the drive of putting together a “PROTO-
COL ENGINE” on a chip, that would amalgamate the network and trans-
port layer into a transfer layer. Although such a hardware implementa-
tion is capable of very high performance, a need was also seen for a soft-
ware implementation that was portable across a wide range of Operating

Systems.

SANDIA XTP was designed with exactly this goal. Its C++ code base was
chosen to enhance its portability across platforms and to provide a high
performance protocol with the above goal of real-time packet forwarding
using selective re-transmission as required instead of a go-back-n simple

algorithm.

The down-side of this approach stems from the choice made for its per-
formance and portability: its language that allows the developers to relax
the representation of the protocol structure through its coding and thus
making the protocol modules and inter module information communica-
tion a more tedious task to improve on and enhance the protocol with new

features.

There are a number of copy operations that are imbedded into the C++
code representation. Each data copy operation comes from forwarding
data from one component of the protocol to another. The thrust of this
work will not focus on the SANDIA version of XTP but rather the
ESTELLE described in the next section. An unpublished document is
available that traces data movement within the SANDIA port of the XTP
protocol. [Lajoie-2]



A better method of forwarding data within the XTP protocol is to pass a
pointer to the data to the next component for reference. Thus a single (or
minimal set of) repository is required to completely transfer data from

the user interface right to the network interface medium.

1.2.2 Motivation for the ESTELLE Specification of
XTP

The ESTELLE version of the protocol was designed with the goal of using
a programming language that has network protocol constructs, thus ex-
pressing the protocol specifics (channels interaction points and modular
component representation) and implementing the operation of the proto-
col through changes of an extended state machine. The underlying lan-

guage of the ESTELLE higher level language is a C base.

The strength of this approach is the immediate comprehension of the rep-
resentation, using the ESTELLE syntax, the separation of the lower level
functions in the form of C primitives, but not at the price of coding proto-
col specific parts within the primitives. Rather these primitives are used
to manipulate sub-components of information that ESTELLE, being a pro-

tocol representation language, cannot represent elegantly.

As for the SANDIA implementation of the XTP protocol, the aim and the
thrust of this work are to identify, document and suggest improvements,
as applicable, so that data forwarding within the XTP protocol is done
with a minimal number of copy operations and data reference through

pointer reference becomes the choice for data forwarding.

To see the scope of this work, and what has been done to this point, we

first describe the interfaces through which data must be propagated. In
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the next section, we can present some development history and progress
suggesting how the protocol was improved to this point and what may be
left to implement.

The major protocol components through which data must be forwarded

are:

e The USER Interface
e The XTP Context Manager
o The Packet Management Modules

e The Network Interface

1.3 History and Improvement of ESTELLE XTP

1.3.1 Earlier versions of ESTELLE XTP

Driven by the motivation of expressing XTP in a protocol language, the
protocol performance took a second plan. The ESTELLE compiler gener-
ates C code, but ESTELLE does not include the possibility of addressing
data through reference, via pointers. Therefore data copy operations were
very much in evidence across each module section of the protocol, and the
result was a sluggish, and non-performance competitive implementation
of XTP.

The concept of a “RING BUFFER” was used to hold data within the proto-
col, in the context module. Character by character, copy operations took
place. In the following paragraphs, we relate changes according to the

XTP version and tag the time period it applies to.

1995-1996: XTP 3.6 Corresponding ESTELLE Version

11



e Closer to the performance problem are the “in_ring_buff” and
“out_ring_buff” procedures. These two procedures are the low-level

character by character buffer update procedures.

e The two procedures are called by a higher level procedure, itself deal-
ing with string messages. The procedure calls, for every character,
consumes CPU cycles. The send and receive procedures were the

higher level procedures.

¢ Making the two procedures C inline procedures, should improve the
performance substantially, while maintaining the two discrete levels

of abstraction.

The protocol, at this implementation level (V3.6) was not performing in a
comparable magnitude to the SANDIA implementation, and its use was
more a ESTELLE syntax protocol generation endeavor than a performance

implementation.
A complete documentation of the Data Movements, Transitions and Gen-
erating Signals, Interaction Points and module structures and variables

with goal of documenting the protocol while tracing the data copy opera-

tions is available through an unpublished work [Lajoie-1].

1996: XTP 4.0, ESTELLE Version (Prototype Version)

The major improvements are:

e Data transfer improvements

e Increased code reusability within modules.

¢ Introduction of multicasting and the use of new packet types.

12



Data transfer in this Prototype version was hindered by two major fac-

tors:

1. The use of a ring buffer for storing incoming messages or dequeing
outgoing data

2. The data replication inherent to the Estelle code specification.

We examine each of these two points separately.

1.3.2 The Ring Buffer

The ring buffer as used in the specification is a temporary repository of
the data, acting as a “buffer” between the user and the medium. Raw data
coming from the user process is enqueued into the ring buffer before it
can be sent into one, or more likely several, packets. Such transmitted
data is found in the XTP First and Data packets. This is in the sender pro-

cess.

Data coming from the medium as packets were also inserted into the ring

buffer, to later be sent to the user process. This is in the receiver module.

Along with these ring buffer enqueue/dequeue activities, the concept of
“spans” is used to keep tab of what fraction of the buffer has been trans-
mitted or received as XTP packets. This technique implements the concept

of selective retransmission.
The version 3.6 of XTP invoked the ring buffer enqueue/dequeune proce-

dure for each character stored or extracted. Consequently, the protocol

was of no practical use.
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The version 4.0 of the Estelle specification of XTP made substantial im-
provements to the above findings. The ring buffer enqueue/dequeue pro-

cedures we called once for each transmission unit to be added or removed.

Still the ring buffer is a transitory stage and our goal here is to eliminate

it, by making the data transfer more direct.

Typically in the Estelle specification, forwarding of information between
modules leads to the copying of the information. It is noted, in earlier
versions of the specification, that from one end of the process of forward-
ing a message, to the other end, the same message is copied several times,
upward of five times. This copying of the message represents, more or
less, the overhead of a ring buffer operation. The problem was still pres-
ent. The following paragraphs suggest improvements that helped in

eliminating the repetitive copying of data within the protocol.

1.3.3 Referencing the Data.

As explained above, the forwarding of information in Estelle, from one
module to another, copied the data. What we need to do then is to send in-
formation about the whereabouts of the data, when invoking another
module. The pointer data type, used in referencing the data, is defined
using the “Estelle qualifying comment” statement. Using this technique,
we can propagate the information, from say, the user module, to, finally

the sender module, using only a few bytes of information to point to the

user buffer area.

Finally, the user buffer is dropped into “XTP Packet Shells”, in a piece-

meal fashion, and a header is added to the packet(s) which are sent on the

14



on the medium. The receiving of information is very similar using a

reverse ordering of the above procedure.

The packet images are kept for as long it takes to get a confirmation of
successful reception by the receiver, unless the “NOERR"” option is used.
In this case, the packets can be reused whenever they have been transmit-

ted on the medium.

This improvement has been implemented in the following version of the

ESTELLE specification, and we describe it next.

1997: XTP 4.0, ESTELLE Version (2.5.3)

This current version of the ESTELLE specification of XTP 4.0 added the

following improvements:

e C Primitive (procedures) replacing the often-referenced ESTELLE ring
buffer manipulation procedures.

e Support structures that implement pointer references in most cases.

o All of the Channel Interaction Points are passing data references, not
the data itself.

o Somewhat implicit but still worth mentioning, the data is transferred

by string manipulation and not on a character by character basis.

Before we start exploring the protocol components that characterize the
structure of the Estelle specification of XTP, we first introduce a series of
figures to give progressive insight at understanding the nature and role of
the components found in the modular description of XTP. Figure 3 below
shows a simple transport protocol design, imbedded in the operating sys-

tem’s kernel:

15



Data Communication Model: Kernel Implementation

““““ N T e

Transport
Protocol Code

IP Code

Data Link Drivers

Figure 3. Kernel Implementation of a Transport Protocol

When a transport protocol implementation is hidden in the kernel, it is
very awkward to provide enhancements to the transport protocol, having
to update the kernel code for any changes. The privilege that is required
to effect any development modification to the transport code would have
to be “root” or “superuser”, a privilege usually not granted to everyone,

making any protocol update a system wide risk.
Figure 4 below shows an improvement in segregating the transport code

outside of the kernel. A daemon is required to link the interactions of the

transmission protocol with the ones of the operating system.

16



Data Communication Model: Daemon and Transport in User Space

User Process 1 User Process 2
Implementation of the transport protocol code
Deemon C++ or Estelle
_______________ 17 . User Space
Kemel Space
IP Code
Data Link Driver Code

Figure 4. User Space Implementation of a Transport Protocol

In the next figure below, Figure 5, we describe the code layers that make
up XTP. The C primitives serve to provide a more flexible programming
environment for the user processes and the network interface, than what
the PASCAL underlying code of the Estelle specification can provide.
Again, a daemon is required to effect the communication link between the

Kernel space layer and the User space layer.
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Data Communication Model: The Processes and Code Layers
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Figure 5. The Processes and Code Layers of Estelle XTP

Having introduced the conceptual components of the transport protocol
with the above Figures 3, 4 and 5, the next figure below will start describ-
ing the unique structure of Estelle specification of XTP.

Figure 6 below is a picture diagram of the XTP protocol. The following
references to modules and ESTELLE channel names can be located from

this diagram.

2 ESTELLE XTP COMPONENTS DESCRIPTION

2.1 Components and Modules Overview

18



In the following sections, we will describe the major discrete components
of ESTELLE SPECIFICATION of XTP 4.0 at the latest version described
above. Before we proceed to list these components, Figure 6 below will
help to locate the main interfaces that come into play, from the User to
XTP and finally to the Network interface. It introduces the presence of
copy operations, within the protocol, as well as the internal components
of the context module and the packet management module, namely the

ring buffers and the packet pool, respectively.

Below is a list of the components to be described in the following sections

of this work:

The USER Interface

o The Context Manager

e The Data Primitives

e Concept

s Description

e The Packet Manager

» The Network Interface

The DAEMON

Before we start describing and analyzing the role of each component, we
look at Figure 6 below, a pictorial representation of the whole
user/XTP/network interaction is inciluded following this paragraph. It
should be used as a reference for data flow and components of the proto-

col.
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User Interface Primitives
api_ it [Network Interface Primitives
q:i:when udo i
: dp_init
::_artput udp_when

)
ESTELLE XTP

udp_output

udp_send

udp_add_membership

udp_drop_membership Q
Data Primitive Notes

(1) Although copy_data_to_user_buf i's part of the context module, it copies data
packet segments to user memory

(2) fill_buf_gap, get_user_send_buf_size, can_send_data,
are primitives that are internal to the context module and do not copy data.

(3) mv_revd_data_segis called from both the packet_management module and the
context module; there is no data movement.

(4) reg_rcvd_data_segis called fromthe packet_management module; no data copy
takes place

(5) clean_pak_pool is called from the XTP body transitions; this not a data copy
operation

Figuire 6. The USER, XTP and Network Interface Pictorial Design
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2.2 The User Interface

The user interface uses two data structures to effect data movement be-

tween the interface and XTP. They are:

e A receive and a transmit buffer (rbuf and tbuf) also referred as shared

memory buffer.

e A data structure (dt_rcv) that holds pointers. It is a temporary

send/receive data descriptor.

The xtp_initialize user API must be called before any other API invoca-
tion, because it provides a structure definition for the shared memory

buffers and initializes pointers to the allocated user environment.

Both of the above data structures are part of a higher level structure that

is described below:

struct xtp_if_struct {

struct shm_buf_type tbuf, rbuf;
struct data_param_type dt_snd, dt_rcv;

.ee

b *xtpif;

We will now describe the data structure used in the user interface to bet-
ter understand how data is passed from the user environment to XTP. We

will note the structures that do data copy versus data pointer reference,
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and this, with a spirit of reducing the data copying and speeding up the

data overall data transfer.

We start with the temporary send/receive data descriptor structure:

dt_snd and dt_rcv.
odt_snd and dt_rcv are of type: data_param_type

edata_param_type is used in the TDAT*, TCON* and TCLS* primitives

and is:

RECORD
(* data buffer *)
dtbuf : Data_type;
(* EOM, BTAG flags *)

eom : BOOLEAN;

btag : BOOLEAN;

(* Flags used for tests - interpreted in TCONreq, TDATreq *)
sreq : BOOLEAN; { SREQ value used in the initial packet }

dreq : BOOLEAN; { DREQ value in the last packet }
END;

eData_type is the data holding definition type and is defined as:

Data_type =
RECORD
nb_data :0..Max_user_data;
data_ptr: INTEGER;

{ replaces: data : User_data; }

END;
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The structure implements a pointer (data_ptr) to the user data area, an
improvement over the last implementation that had User_data defined as

a character string.

We now describe the shared memory buffer structure. After the descrip-
tion we will show how the data is copied, or referenced from one structure

to the other. The shared memory buffer structure is defined as:

/* Shared memory buffer */

struct shm_buf_type {
int shmid;
int len;
char * buf;

b

The shared memory buffer is attached by the xtp_reg function primitive,
using the shmat UNIX function, to register the user with the XTP daemon.
At the end of the association, the shared memory is detached from the
XTP context using the smhdt UNIX function. Because the shared memory
buffer is attached and detached as explained here, there is one copy of the
shared memory per user process. This is represented as such in Figure §

from the section 1.3.3.

When data is referenced in the shared memory buffer, no data movement
happens, only a pointer to the data is set. Of course, if a string is copied
to the referenced data pointer, as in “get_data”, described later, a data

copy will happen.

For send and receive requests, the shm data pointer is assigned using the

following statements:
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p->dt_snd.dtbuf.data_ptr = p->user_index;

p->dt_rcv.dtbuf.data_ptr = p->user_index;
Taken from the xtp_send and xtp_receive primitives respectively.

Other control variables are initialized in a similar way.

2.2.1The User Interface Primitives

In this section, we briefly describe the primitives that are used by the
User Interface. These primitives are not primarily concerned with data
manipulation in the sense of copying and forwarding, but play a role in

setting up the parts of the protocol that will be used to flow the data.

The format adopted to describe the primitive will be in describing the
parts of the XTP specification requiring this support, and the transitions

that are triggered to execute the calling of the such primitive.

e api_init
Initializes the datagram socket used for the communication between XTP

and the application. It does so by binding the local address so that user

can send information to this destination.

From the ESTELLE specification, the call is performed as part of the pro-
tocol initialization when the user channel is connected to the protocol, in

a state referred to as S0, purely in naming convention.

e api_when
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It checks for input datagrams from an application. It returns a Boolean
value of true if data is present to be entered into the USER INTERFACE
part of XTP, as detected by the socket call EDTFD_ISSET.

It is used as an XTP module transition Boolean condition, part of the trig-

ger.

e api_output

Gets and checks the message from the socket and outputs the correspond-
ing Estelle interaction. All of the types of Estelle interactions are repre-
sented by a case statement. Of interest to this work, when a transition in-
volving data is encountered, a pointer operation is used to reference the
data, and no data is copied through the user channel. The shared memory
is mapped into structures that XTP uses, thereafter, to process the transi-

tion and enqueue the data, if any, in the context buffers.

The data structure used to map the data is data_param_type as described
above, where Data_type is a ‘pointer to data’ structure. It is called from

the XTP transitions responding, triggered by the api_when API.

e api_send

Sends the message corresponding to an output interaction to the applica-
tion process as a UNIX domain datagram. It does the same work as
api_output, but in the reverse direction. It is called to transfer data, when
data transfer is involved, and all of the non-data related messages to the
application. It uses the same code type as api_output, swapping the source

and destination operands of the memecpy C function.

Contrarily to api_output, it is called for each type of interaction possible,

and sets the interaction type within the datagram so that the primitive
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can handle the call according to the information passed to the application.

No data copy is performed; the same structures as in api_output are used.

2.3 The Context Manager

The context manager is the most crucial part of the protocol, and it is
where a large part of the features, both usage and performance, reside. It
is the link with the user interface and the packet management modules,
and as such communicates with both of these components. Because it is an
important link between the functionally independent parts of the proto-
col, this introduces a requirement to store data within the protocol. Data
storing and copying being the main thrust of this work, the context man-

ager is covered in length in this section (2.3), and its subsections.

Within a transmission protocol, events happen asynchronously: A data
packet is received from the delivery services, much at the same time as a
new user requests to send some data. For the protocol to be able to service
all of the simultaneous requests seamlessly, the protocol must be able to
dedicate a small amount of processing to each of the requests at a given
time. By doing this, it has to be able to jump from a state to another state
that is completely irrelevant to the first one. The key to understanding
how this is achieved is in the multiplexing of contexts. Each context de-
scribes the state of a given association that can be initiated, continued or

terminated independently from one another.

To achieve the switch from one context to another without any loss of
data, the data must be copied to the location where it will continue to be
fetched when the processing resumes to the one context it switched from.
To give an example, the action of filling up a series of packet shells with

some data to be sent should not depend on the shared user memory be-

26



tween XTP and the user; rather this data should reside within the context
ring buffers, simply because the filling of data packets is not a user proc-
ess, it is an XTP context manager process. By keeping data locally to the
process that handles this data gives XTP the ability to manage its module

processes independently (see figure 7 and 8 below).

Detais sent on the medum

Figure 7. User Process, Unix Shared Memory, XTP and Data Delivery
Services

27



The context manager’s role is also to associate context and users. Such
association will introduce fast lookup for already existing conversations
and context instantiation when a FIRST packet is received. In the next
two sections, we document the most important data structures of the con-
text manager, and then we document the procedures of the context module

that call the data primitives.

2.3.1 The context send/receive buffers: the ring buffers

The ring buffers are the main data store of the XTP Context module. Fig-
ure 8 below is a picture representation of the ring buffers, part of the

Context module:

The Context Ring Buffers
Receive Ring Buffer
dseq . hseq
Send Ring Buffer
bseq ke eseq

SRR

Figure 8. The Context Ring Buffers

28



Referring the Figure 8 above, the buffers flow pointers are defined as fol-

lows:

The receive buffer has the following three position flow variables:

e dseq: delivered (to the user) sequence

e rseq: contiguously received sequence not yet delivered to the user

o hseq: high received sequence that includes receive sequence gaps

The send buffer also has the following three position flow variables

e bseq: begin sequence of data sent but not yet acknowledged

o lseq: last sequence of data sent but not yet acknowledged

e eseq: end sequence that is available to be sent but is not sent yet

It is now appropriate to mention that the current version of the Estelle
specification of XTP uses a block transfer method to read and write to the
ring buffers. This feature has enhanced the protocol’s performance dra-
matically over the original implementation that performed ring buffer

updates on a one by one character basis.

Following is the definition of the ring buffer according to the data struc-

ture of the C primitives:

{Send/receive data buffer}

ring_buffer = RECORD
data : ARRAY [1..Max_buf_Ing] OF CHAR;
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The ring buffer size is currently set to the arbitrary value of 24576 bytes.

Some additional control variables are also defined to map and use the ring
buffer:

Max_buf_Ing; {Pointer to first data byte in buffer}
cnt : 0..Max_buf_Ing; {Counter of data bytes in buffer}
Ing :1..Max_buf_lng; {Actual buffer size}

END;

and the buffers are instantiated as:

(** Send buffer **)
sbuf : ring_buffer; { Data buffer }

and...

(** Receive buffer **)

rbuf : ring_buffer; { Data buffer }

within the BODY of the Context module: Context_body.

These structures define a character array, and we will next show the data
copying that takes place from the shared memory buffers to the ring buff-

ers.
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2.3.2The Data Primitives

For a quick reference about the placement and role of the data primitives,

the reader is urged to refer to the Figure 6, above.

2.3.2.1 Concept

To enhance the performance of the protocol, the copy operations have
been consolidated in common routines coded in C. This consolidation
made it possible to free the ESTELLE specification from low level format-
ting of the data packets and also streamlined the data copy operations to
the reusable C coded procedures: the Data Primitives. This concept was a
dramatic improvement over the spread copy operations that were found

throughout the specification in the earlier version of ESTELLE XTP.

2.3.2.2 Description of the Data Primitives

In this section, we describe each data primitive, by name enumeration,
each followed with a functional description. To bring substance to the
enumeration, pertinent data structure is added when appropriate and a
brief mention of the calling procedure, from the ESTELLE text, is men-

tioned.

e app_data

Data Transfer: From Shared Memory to Context Buffer

Copies data from user's send buffer to the context's send buffer and as-

sumes there is enough room in the buffer to store the user data.
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This is a data copy operation, not a pointer propagation. It is called from
XTP's context module procedures. Once the data is copied into the ring
buffer, a TDATcnf message is output through the context-user channel to
acknowledge the copied data. This is done using a data pointer to the

shared memory buffer; thus, no additional data copy is done.

e put_data

Writes data from the data segment in a received packet to the context
buffer. This is a data copy operation, not a pointer propagation. It is

called from XTP’s context module procedures.

o fill data

Transfers data from the Context Buffers to the Packet Pool. This is done
by copying data from the context's send buffer to a packet in the packet

pool.

This is a second copy operation for data originating from user shared
memory buffer. The function get_dist64 evaluates the length of data to be
transferred to the packet pool by inspecting low_seq and high_seq. This
operation is part of the fill_data_packet procedure from the context mod-
ule. The primitive is also called from another procedure in the context
module's body when a FIRST packet is received, containing data; this

happens when an idle context receives a connection request.

Once the packet has been copied into from the context buffer, the

channel interaction specifies a pointer to the copied data. This is ex-
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pressed as follows, the channel interaction is reported first, followed by

the corresponding data structure definitions:

OUTPUT cl.first(first); and
OUTPUT cl.data(dp);

The channel definition:
CHANNEL Context_Channel (context, xtp);

BY context, xtp:

first (p : Xtp_first_packet);

data (p: Xtp_data_packet);

cntl (p: Xtp_cntl_packets; id : Iptr_type);
diag (p: Xtp_diag_packet; id : lptr_type);

The data structure passed through the channel is:
Xtp_First_packet =

RECORD
header: Xtp_header_type;
address_seg: Address_seg_type;
traffic_seg: Traffic_seg_type;
data_seg: Data_seg_type;

END;

Xtp_Data_packet =
RECORD
header: Xtp_header_type;
data_seg: Data_seg_type;
END;
...where Data_seg_type is defined as:
Data_seg_type = { Modif. for implem. }
RECORD
nb_data: 0..Data_seg_max_Ing;

data_ptr: INTEGER;
END;
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e get_data

Copies data from the context's receive buffer to the user's receive buffer.
Again, this is a data copy operation. It is the opposite of put_data but es-
sentially uses the same techniques and the same data structure. The data

structure is not included here because it was described in put_data.

The copy operation is:

memcpy(to_ptr, b->data + head, amount);
Where b is the ring buffer, to_ptr was assigned from the shared memory
with:

char* to_ptr = user_info[d.data_ptr].rbuf.buf;

The get_data primitive is referenced from the context module in the

"context_delivers_rcvd_data_when_input_active” procedure.

The channel output only delivers a pointer to the copied data:
OUTPUT cu.TDATind(data_param)

and
OUTPUT cu.TCLSind(data_param)

e copy_data_to_user_buf
Copies data directly to shm buffer from the data segment of an XTP packet
memecpy(user_info[get_key_index(kv)].rbuf.buf, data_buf->data_seg, len)

Where rbuf is as described before and data_buf is of type xtp_packet_buf

defined as:

struct xtp_packet_buf {
/* number of owners <= max number of multicast receivers */

int count;
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/* owners flags: context index -> bit position */
word32 owners;

char data_seg[PAYLOAD_SIZE];

e

and:

#define PAK_POOL_SIZE 64 /* number of elements in pak_pool */
#define PAYLOAD_SIZE 4096 /* size of each data seg in pak_pool */

and "len" represents the number of bytes to be read from the packet

buffer expressed as nb_data defined here:

rseqv := p.header.dlen;

dseq := p.traffic_seg.tlen + p.address_seg.alen;
hseq := dseq;

cntl_to_send := p.header.cmd.sreq;

nb_data := p.header.dlen - (p.traffic_seg.tlen + p.address_seg.alen)

It is invoked from the procedure: context_listening_rcvd_first_packet.

o put_data vs. copy_data_to_user_buf: which one to
use and when:

Copy_data_to_user_buf is a means to spare one data copy. It is a perform-
ance option to improve the throughput of the protocol. Put_data is the
regular way about the protocol structure, copying the data segment por-
tion of a received packet to the context ring buffer, before it gets copied to
the user shared memory buffer or shm buffer. We will trace put_data and

report on when the alternative copy_data_to_user_buf is used, in the same

35



procedures as put_data, since it is never used in a procedure where

put_data is not used

e Store_data_with_error_control

If this is new data or a span within the existing sequence space,

put_data is used. Copy_data_to_user_buf is not used here.

e Context_listening_rcvd_first_packet

Both methods are used here and put_data is used when we must delay

the delivery of the data because:

% there is no shm receive buffer yet

or

< some qos options are not set yet and...

The packet header does not specify "noerr or wclose”

If the above conditions are met, then copy_data_to_user_buf is used, pro-
vided all of the data can fit in a smh receive buffer. If the data to be re-
ceived is larger than a receive shm, then a call is made to
copy_data_to_user_buf with the shm length, followed by a call to put_data

to store the rest of the data into a context receive ring buffer.
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e context_joining_rcvd_initial_first_packet
Only put_data is used here.

e context_received_data_packet

Only put_data is used here with the following transitions and channel

condition:

FROM first_sent, first_rcvd, active
WHEN cl.data(p)
PROVIDED (in_state <> in_inactive)

e fill buf_gap

Fill with ' character a gap in the receive buffer (user specified charac-
ter, in future versions) Used in noerr mode, to mark lost data segments.

Fails if gap is bigger than buffer size!!!

e get_user_send_buf_size(wordé4 kv)

This function is self-explanatory and returns the user buffer size as the

kv 64 bits integer variable.

e can_send_data

This boolean function verifies that we have not consumed all of the packet

shells from the packet pool.
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e rmv_rcvd_data_seg

This primitive decrements the count of data segments to be received; it

frees a packet shell.

e reg_rcvd_data_seg

This primitive is called to assist in registering a new owner: it gets its

index key and increments the number of owners.

e clean_pak_pool

Release all data buffers from pak_pool allocated to a context, when the
context is released. The normal solution would be to have, for each con-
text, a linked list of the allocated buffers. The current simplified solution

has been implemented for the preliminary tests only.

2.3.3ESTELLE XTP Calls to the Data Primitives

At this point, it is proper to first, level set some Estelle terminology that
will be used here, in relating the state transitions, and also to describe

how data communication is done when using Estelle.

Estelle is an extended finite state automata language. Some of its coding

constructs are:
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e State Transitions using the keywords: FROM and TO. A transition
condition checking is possible using the keywords PROVIDED and
WHEN.

e The pipes providing communications are called CHANNELS. CHAN-
NELS link Estelle modules to one another by creating interaction
points (IP). Each interaction points are tagged with roles, each role
defining the type of data that can flow within a channel. This ar-
rangement makes it possible to anticipate state transitions resulting

from data that is exchanged through the CHANNELS.

e The OUTPUT statement triggers the data flow through the named
CHANNEL.

¢ The concept of a module, a module body and the instantiation of a
module is also part of Estelle. It provides a way to switch the body of
a module, according to its function requirements and to reuse code
by instantiating modules as required (e.g. a context) with a process

or an activity.

This description is summary. A definition reference for Estelle is in-

cluded in the Glossary appendix, under Estelle.

Before we start going through data primitives and describe their func-
tions, the figure 9 below relates the complete Estelle specification struc-
ture, with the essential data components that are copied across modules.
All CHANNELS are named and are also tagged with their role at the

named IP (Interaction Points) represented by the large dots.
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Figure 9: Modular representation of the ESTELLE XTP Specification

Following is the enumeration of the data primitive calls as traced from
within the Estelle specification

« app_data

Writes (copies) data from user’ (shm) send buffer to the context’s send

buffer.
It is called from:

< context_idle_rcvd_con_req

Following the transition:

FROM idle

TO first_sent
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On a FIRST packet type, if there is user data in the packet, the procedure
stores user data in sbuf. Data segment should fit in sbuf because it is the

first sequence of data for that user context.

< context_stores_user_data

When the following transition occurs:

FROM active
WHEN cu.TDATreq(data_param)

PROVIDED (out_state = out_active)

In this calling sequence, the sender stores user data in the context’s ring
buffer: app_data(sbuf, dtbuf); where sbuf is the context send ring buffer
and data_param is a pointer (to shm) type of data structure that is used

in channel I/0 operations to avoid data copyinsg.

< context_received_close_request

When the following transition happens:

FROM active
WHEN cu.TCLSreq(data_param)
PROVIDED (out_state = out_active) { Else Error_ind }

The call is as follows:
app_data(sbuf, dtbuf);

After verifying that there is data present in the shm that has not been

added to the context send ring buffer (sbuf), app_data is called to add this
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data to the context buffers. Again, a pointer type of data structure is used
in the channel operation to avoid propagating strings of data internally

within the components of XTP.

o put_data

Writes (copies) data from the data segment in a received packet, to the
context (ring) buffer. This primitive is called from the ESTELLE specifi-

cation by the following procedures:

% store_data_with_error_control

Received data processing in error control mode. For a received data seg-

ment at sequence 'seq' and with length 'Ing’, the procedure updates the

variables 'rseqv', 'in_nspan' and 'in_spans’ and stores the data - if possi-

ble. 'Start’ gives the index of the first byte of interesting data in the re-

ceived segment. More specifically, the function performed by put_data in

this procedure is as follows:

There are two situations where new data can arrive, hence two calls to

put_data:

e The data is included in the sequence of received data or added (ap-
pended) to the data.

e The new data is beyond the sequence of received data, and thus consti-
tute a new span, with a gap between the previously end of received se-

guence and the beginning of this new data.

For the first case, the segment is added to or included in the complete se-
quence. If new data exists, store new data and advance rseqv.
In the second case, a new span is added provided we did not exceed the

maximum number of possible spans.



Most of the variables mentioned above are intuitive by their names. The

ESTELLE text may be consulted for a complete description.

% context_listening rcvd_first_packet

This procedure is called as the result of the following transition:

FROM listening
TO first_rcvd
WHEN cl.first(p)

The process of this procedure is self-explanatory as its name suggests. At
this point, there is no questions of spans, and the data is moved from the
packet buffer to the context receive ring buffer, the put_data thus does
this copy operation. This operation is referred to as storing the data, as
opposed to delivering the data. Delivering the data consists of copying the
data to the user buffer (shm). The storing operation is done in the follow-

ing cases:

e The delivering of the data must be delayed because it is part of a reli-
able multicast operation.

¢ The data to be received is longer than the user buffer; in this case a
complete user buffer is copied and the remainder of the data is in-

serted into the context ring receive buffer.

< context_joining_rcvd_initial_first_packet
Typically, this procedure involves the storing of data in a multicast op-
eration. As mentioned above data is stored instead of delivered for a reli-

able multicast operation.
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The procedure is called from the following commented transition:

{ Joining multicast receiver: initial First received }
FROM join_sent
TO first_rcvd
WHEN cl.first(p)
PROVIDED NOT remote_xtp_alive

The data is copied from the packet buffer to the context receive ring
buffer.

< context_received_data_packet
As the name suggests, the packet buffer is copied into the context receive
ring buffer. In this instance, we are dealing with a data packet as previ-

ously we had been describing the logic of processing a FIRST packet.

The procedure is triggered from the transition:
(* Incoming packets *)
{ New: Incoming Data packet }
FROM first_sent, first_rcvd, active
WHEN cl.data(p)
PROVIDED (in_state <> in_inactive)

No updates to the user are done in this operation. A data packet updates

the context buffers.

o fill data

Transfers (copies) the context buffer to the packet buffer.
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This primitive is called from:

< PROCEDURE fill_data_packet
The data from the context send ring buffer is copied to a packet shell
buffer, and the data is removed from the context buffer if the ‘noerr’ op-
tion is in effect, or is left in the context ring buffer if the ‘noerr’ option is

not used.

< context_idle_rcvd_con_req
Triggered from the transition:
FROM idle
TO first_sent
WHEN cu.TCONreqg(opt_param, cls_param, data_param,

cntx_param, src_addr, dst_addr)

The same observations as for ‘fill_data_packet’ apply as for the ‘noerr’ op-

tion.

e get_data

This primitive delivers data from the context receive ring buffers to the
user, via the shared memory (shm). The primitive is called from the fol-

lowing procedures in the ESTELLE specification:

< context_delivers_rcvd_data_when_input_active
{Deliver received data to the user when input is active;}

It is called as a trigger result from the transition:

FROM active
PROVIDED (in_state = in_active)
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AND (cmp64(rseqv, dseq) > 0)
AND (user_recv_buffers > 0)
The data is copied from the context receive ring buffer (rbuf) to the user

space or user data.

< context_delivers_data_after_getting_wclose_or_end
{Deliver data after rcvd (wclose or (end and rclose)).

End of graceful close or abort with output stream closed. }

The procedure is triggered as the result of the following transition:

FROM active

PROVIDED (in_state = in_deliver)
AND (cmp64 (rseqv, dseq) > 0)
AND (user_recv_buffers > 0)

AND (NOT rcv_cls.endf OR rcv_cls.rclose)

The last data segment is delivered from the context receive ring buffer to
the user data:

get_data(rbuf, dtbuf);

< context_flushes_receiver_buffer_when_end_rcvd
This call to get_data is made because:
{Association aborted by remote user.

Receiver buffer not empty, flush buffer}
The process of flushing the buffer is triggered by the following transition:

FROM active
PROVIDED (in_state = in_deliver)
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AND rcv_cls.endf AND NOT rcv_cls.rclose
This is another case of processing the last data segment, in delivering it
to the user, from the context receive ring buffer. The calling sequence is

the same as the prior call: get_data(rbuf, dtbuf);

e copy_data_to_user_buf

This primitive is used when we will deliver the data directly, bypassing
the storing of the data within the XTP protocol. Delivering the data con-
sists of copying the data from the XTP data segment from a received

packet, directly to user data (or shared memory: shm).

This primitive is called from the following procedures within XTP.

% context_listening_rcvd_first_packet

Is triggered by the transition:

FROM listening
TO first_rcvd
WHEN cl.first(p)

The logic that drives the delivery of data to user memory instead of stor-
ing the data has already been mentioned in the description of the

‘put_data’ primitive. Data is delivered if for the transmission:

e There are free user buffers

e We are not involved in multicast at this instance
e The options are NOT (noerr or write close)

The instantiation of the call is as follows:

copy_data_to_user_buf(loc_key.value,
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p.data_seg,nb_data,TRUE);

There are two ways, here, in which the primitive is called:

< The data to deliver fits in user data space: all of the data is copied.
4 The data to deliver is larger that the user buffer size and one buffer
is copied. The remaining data is stored and delivered in a separate

process.

e get_user_send_buf_size

This primitive, unlike the other primitives described to this point, does
not copy data. It just returns a size value and it is used while initializing
a new context.

It is called from the following XTP procedures:

< init_context
The role of this procedure is to initialize the context variable:

user_send_buf_size := get_user_send_buf_size(loc_key.value);

e can_send_data

This primitive is a Boolean function that returns the boolean value of the
ability of adding new data into a packet from the packet pool, to be able to

send data.

This primitive is called from the following procedures in the ESTELLE

specification:

¢ context_idle_rcvd_con_req

Triggered from the following transition:
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FROM idle
TO first_sent
WHEN cu.TCONreq(opt_param, cls_param, data_param,

cntx_param, src_addr, dst_addr)

This is the instance where the context transfers a data segment into a

FIRST packet. A test is done to verify that there are free packet shells.

% context_sends_data_packet
This reference to the Boolean function is part of the trigger for the transi-

tion of this procedure; following is the transition:

FROM active
PROVIDED (out_state = out_active)
AND (cmp64(eseq, 1seq) > 0)
AND NOT sync_cond
AND not_flow_ctrl_stop AND not_rate_ctrl_stop
AND (out_nspan = 0)

AND can_send_data { implem. }

< context_retransmits_data_packet
Similarly, to the procedure above, again the call is part of the trigger for
the transition as reported here:
FROM active
PROVIDED ((out_state = out_active) OR (out_state = out_close))
AND NOT sync_cond
AND not_rate_ctrl_stop
AND (out_nspan > 0)

AND can_send_data { implem. }
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e rmv_rcvd_data_seg

This primitive removes a received packet from the packet buffer pool. It
calls put_pak_buf, a UDP support function that adjusts the top of the

packet pool downward, reflecting the de-allocation of a packet buffer.

It is called by the following procedures from the ESTELLE specification:
< context_rcvd_duplicate_first
It is triggered by the transition:
FROM first_rcvd, active
WHEN cl.first(p)
PROVIDED NOT initiator
The data segment is removed from the packet pool by this primitive in the

case where we received a duplicate FIRST packet.

% context_joining_revd_initial_first_packet

The procedure is triggered by the transition:
FROM join_sent
TO first_rcvd

WHEN cl.first(p)
PROVIDED NOT remote_xtp_alive

Once the data is stored, the packet buffer is removed from the packet pool.

< context_joining rcvd_duplicate_first_packet

The procedure is triggered by the transition:

FROM join_sent
WHEN cl.first(p)
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PROVIDED remote_xtp_alive
The same observation as the previous procedure dealing with a duplicate

FIRST packet applies.

< context_received_data_packet

The procedure is triggered by the transition:
FROM first_sent, first_rcvd, active

WHEN cl.data(p)
PROVIDED (in_state <> in_inactive)

If no new data is received, the packet is removed from the pool.

< context_discards_data_packet_when_input_closed

The procedure is triggered by the transition:

FROM active, inactive

WHEN cl.data(p)

PROVIDED (in_state = in_inactive)

Because the data is discarded, the packet pool must reflect this action.

< context_inactive_discards_first_packet

The procedure is triggered by the transition:

FROM active, inactive
WHEN cl.first(p)
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PROVIDED (in_state = in_inactive)

% pack_mngm_rcvd_first_packet

The procedure is triggered by the transition:

TRANS { First }
WHEN net.NDATreq(src_addr, dst_addr, packet)
PROVIDED packet.ptype = First_pak

This instance of the call is done to reject with DIAG a received FIRST
packet.

% pack_mngm_rcvd_data_packet

The procedure is triggered by the transition:

TRANS { Data }
WHEN net.NDATreq(src_addr, dst_addr, packet)
PROVIDED packet.ptype = Data_pak

Here we are rejecting a packet that is non-XTP.

e reg rcvd_data_seg

This primitive registers a new user by getting a user key and increment-
ing the number of packet buffer users from the packet pool. This is part of

setting the context flags.
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It is called from the following procedures from the ESTELLE XTP mod-
ules; we also report the transitions triggering the activation of the proce-

dures.

¢ pack_mngm_rcvd_first_packet

The procedure is triggered by the transition:

{Incoming packets}

TRANS {First}

WHEN net.NDATreq(src_addr, dst_addr, packet)
PROVIDED packet.ptype = First_pak

The context key is built and the new packet owner is added by increment-

ing the number of packet owners by one.
% pack_mngm_rcvd_data_packet
The procedure is triggered by the transition:
TRANS { Data }
WHEN net.NDATreq(src_addr, dst_addr, packet)
PROVIDED packet.ptype = Data_pak
The data flows from the packet management module to the context. Verifi-

cation is made that the context exists, and if so, the data is delivered and

the received data packet is registered.

e clean_pak_pool
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This primitive de-allocates the packets from the packet pool. It resets the
pointers to represent the removal of the packer buffers. It is called from

the following ESTELLE XTP procedures.

< xtp_removes_inactive_context
The procedure is triggered by the transition:
{Remove inactive context}
TRANS
ANY k : Context_range DO
PROVIDED pmngm.cntx_rec[k].status = inactive

A FALSE indicator is sent on the usap (user) channel to indicate that the

context is removed, and the clean_pak_pool primitive de-allocates the

buffers.

This concludes the tracing and documentation of the data primitives from
the ESTELLE XTP specification.

2.4 The Network Interface
The calls to the network interface, from ESTELLE XTP, is supported by

the following primitives:
e udp_init

e udp_when

e udp_output

e udp_send

¢ udp_add_membership

e udp_drop_membership

Next, the primitives are described in the same style as the user interface

and the context primitives, starting with a brief description of its func-
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tion, followed by the part of the ESTELLE text where it is activated and
finally, the transitions triggering the use of the primitive is mentioned.
UDP is used in this case, because it requires less system privileges to run

and gather statistics for evaluation and comparison.

e udp_init
The primitive opens a UDP socket. It sets a buffer size for both the send

and receive buffers. The socket address is bound and finally the packet

pool is initialized (the packets links are numbered).

It is part of the XTP module and is called at system state initialization

(S0) at the just following api_init.

e udp_when

This Boolean function tests if a UDP datagram has arrived, provided there
is free space in the packet pool. It is used as part of the transition trigger-

ing condition for udp_output described next.

o udp_output

This primitive outputs an XTP packet, received in a UDP datagram, as an
Estelle interaction (OUTPUT ip.packet).

The XTP packet is built from the received UDP datagram, the correspond-
ing header is constructed according to the determined packet type. In the
case of a data datagram, our prime interest, a data pointer is used instead
of copying the whole data sequence to the packet body. This is an im-
provement over the prior versions of the specification. Upon completion,
the packet is available to XTP for further processing by the context mod-
ule.
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The primitive is triggered from the udp_when Boolean primitive, signal-

ing the arrival of a datagram.

e udp_send

This primitive sends an XTP packet from an Estelle interaction in a UDP

datagram it essentially does the reverse function of udp_output.

As for udp_output, no data copy operation takes place. A data pointer is
used to locate the data to be sent on the network, in the case of a data
packet or a first packet in which data is present. The datagram header is

built in this primitive.

The primitive call, from XTP, is triggered from the XTP module transi-
tion:

WHEN swb_p_sap.ndatreq

e udp_add_membership

This primitive does the UNIX socket calls to add a member in a multicast
scenario, using the supplied multicast address. It returns error condi-
tions. It is triggered by the following transition from the XTP Body tran-

sitions from the following procedures:

% Xxtp_creates_listening_context

(* Context management *)
TRANS
{ Create listening context }
ANY user_id : Context_range DO
WHEN u_sap[user_id].TLSTreq(opt_param, accept_param, cntx_param,

src_addr)
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< Xxtp_creates_initiating_context

From the triggering transition:

{ Create initiating context }
ANY user_id : Context_range DO
WHEN u_sap[user_id]. TCONreq(opt_param, cls_param, data_param,

cntx_param, src_addr, dst_addr)

< xtp_creates_joining_context
From the triggering transition:

{ Create joining context }

ANY user_id : Context_range DO

WHEN u_sap[user_id].TMJNreq(opt_param, cntx_param, uct_addr,
mct_addr)

e udp_drop_membership

This primitive drops multicast membership by issuing the UNIX socket
call IP_DROP_MEMBERSHIP. Like the ADD MEMBERSHIP primitive, it is
part of the XTP BODY transitions, and is not involved in any data copy-
ing. It is reported here, like the ‘ADD MEMBERSHIP’ primitive for com-

pleteness of the UDP primitives.

It is called by the following triggering transition:
{ Remove inactive context }
TRANS

ANY k : Context_range DO

PROVIDED pmngm.cntx_recfk].status = inactive

from the procedure: xtp_removes_inactive_context
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The Network Interface Summary Statement

As described above, no additional procedures copy data to the packet pool.
The packet pool being the network interface repository structure. Rather,
pointers are maintained, and these pointers are passed through the
ESTELLE channels via the interaction points. The data is copied to the
packet shell buffers, by the context data primitives. These copy opera-
tions, along with the copies to the ring buffer, are the only copy opera-
tions within XTP and constitute the XTP data required to be able to main-

tain a suite of received sequences for reliable transport of information.
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3 The Channel Activity Trace

In this section each channel activity, as traced by the OUTPUT statement
in the ESTELLE code is produced here and examined for data copying. The
required data structure is also reported for reference. For the relative
function of the mentioned channels throughout this section, the reader is
encouraged to refer to the Figure 1 in the previous chapter: ESTELLE XTP
V5 DIAGRAMS.

We now trace the "OUTPUT" statements, relevant to data manipulation,
and report if data copying happens, or if data referencing using pointers

is done.

First, we view again the data structure used for shared memory referenc-

ing:

Data_type =
RECORD
nb_data :0..Max_user_data;
data_ptr: INTEGER;
{ replaces: data : User_data; }

END;
In addition, dtbuf has type of Data_type.

We will skip OUTPUT statements that deal with CNTL, DIAG... and report

the statements dealing with data:

¢ OUTPUT cu.TDATcnf(dtbuf);

from: context_idle_rcvd_con_req
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e OUTPUT cl.first(first);

Where first also has the same data structure as a data packet for the data

part of the packet. It is called from: context_idle rcvd_con_req .

¢ OUTPUT cu.TCONind(rem_opt, cls_param, dt, rem_addr, loc_addr);

Where dt has data_param_type which also has a type of data_type usinga

pointer to data reference instead of being a character array. It is called

from: context_listening_rcvd_first_packet

e OUTPUT cu.TDATcnf(dtbuf);

from: context_stores_user_data

e OUTPUT cu.TRDYind(dtbuf)

from: context_allows_user_to_resume_sending_data

e« OUTPUT cu.TDATind(dt_par)

Where dt_par is of type data_param_type, again a pointer structure of de-

rived from the same data structure as the previous OUTPUT statements. It

is called from: context_gets_recv_req_from_user

¢ OUTPUT cu.TDATind(data_param);

Where data_param is derived from data_param_type again a pointer ref-

erence structure. It is called from:

context_delivers_rcvd_data_when_input_active.

e OUTPUT cu.TCLSind(data_param);

from: context_not_multicast_sender_rcvd_Cntl_or_Ecntl_packet
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and also from context_not_multicast_sender_rcvd_Tcntl_packet

e OUTPUT cl.first(first);
from: context_starts_timeout_recovery
and: context_retries_when_wtimer_expires_during_recovery

and: context_tries_recovery_when_ctimer_expires

e OUTPUT cu.TDATcnf(dtbuf)

from: context_received_close_request

e OUTPUT cu.TCLSind(data_param)
and: OUTPUT cu.TDATind(data_param)

from: context_delivers_data_after_getting_wclose_or_end

e OUTPUT cu.TDATind(data_param)

from: context_flushes_receiver_buffer_when_end_rcvd

e OUTPUT cl.first(first)

from: context_initiator_treats_diag_invalid_context_during_setup

¢ OUTPUT cnx[k].first(packet.first)
from: pack_mngm_rcvd_first_packet and first has a data part of type

data_seg that has already been defined as a data pointer structure type.

¢ OUTPUT net.NDATreq(host_addr, src_addr, pak)

also from: pack_mngm_rcvd_first_packet. Pak has type of: packet_type

which has pointer to data for packet types First and Data, and has no

(pointer to) data reference for the other type of packets.

61



e OUTPUT net.NDATreq(host_addr, src_addr, pak) is also done from the

pack_mngm_rcvd_jcntl_packet procedure.

e OUTPUT cnxf[k].data(packet.data) where the data field of the packet
record is of type data_seg, a data pointer structure, called from:

pack_mngm_rcvd_data_packet

e OUTPUT net.NDATreq(dst_addr, src_addr, pak) again a data pointer
structure from the procedure:
pack_mngm_rcvd_cntl_ecntl_packet

and the pack_mngm_rcvd_tcntl_packet procedure

e OUTPUT net.NDATreq(host_addr, cntx_rec[k].remote_addr.host, pak)

from the pack_mngm_sends_first_packet procedure

¢ OUTPUT net.NDATreq(host_addr, cntx_rec{k].remote_addr.host, pak)

from the pack_mngm_sends_data_packet procedure

e OQOUTPUT iu.TCONreq(opt_param, cls_param, data_param,cntx_param,
src_addr, dst_addr)

where data_param has been defined as a data pointer structure.

It is called from: xtp_creates_initiating_context

We conclude that the channel output data interaction has been optimized,

and that no data copying takes place.
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4 Data Transmission Performance Benchmark

At this point, in this section, it is appropriate to get some transmission
performance numbers together, some from the SANDIA XTP and compare
these results with simple data transmission results using the ESTELLE

XTP Specification.

4.1 Description and Credits of the Performance Data

The SANDIA XTP performance data is extracted from the work “In Search
of Rate Control Policy for XTP” by Louis Harvey [Harvey], in which prior
data analysis was conducted in the Computer Science Laboratories, from

Concordia University, Montreal Canada, from a team of research students.

The ESTELLE Specification performance data was acquired as part of this
work, using the same facilities as for gathering the SANDIA XTP perform-
ance data. The scope of the ESTELLE data is not as complete in diversity
of measurement scenario, and is aimed at showing the performance range
in which ESTELLE XTP is ranked. The thrust of the ESTELLE specifica-
tion is to express the XTP protocol using the supplied semantics of
ESTELLE and encapsulate reusable parts in a C ‘primitive’ package. The
SANDIA XTP is coded in pure C++, using all of the performance features
of the C++ language and adjusting the code to exchange the data through
the protocol, as fast and efficiently as possible, this, at the expense of the
protocol specification simplicity. Thus, it is expected that the SANDIA

XTP results show a superior data transmission throughput.

Both performance analysis benchmarks were run under the supervision

and revised with the assistance of Dr. William Atwood.
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4.2 Data Performance Result Diagrams

XTP Data Throughput Results

B Sandia XTP
B ESTELLE XTP

Throughput (Bytes
per msec)

Data Window Size: 1K,5K,10K
50K, 100K, 512K

The above data has several window sizes for the Sandia XTP data
throughput analysis. The window size is taken as the amount of data sent
in one packet. For ESTELLE, and the sample user program, it is 1K, hence

the data is reported accordingly. The load was also set at around 1K Bpms.

e ESTELLE XTP THROUGHPUT ANALYSIS OF A DATA
EXCHANGE BETWEEN TWO HOSTS

Using a supplied sample program to exchange data between two hosts
where XTP was installed, and defining one as the sender and the other one

as the receiving host the following data rate was achieved:

Lower limit: 1100 Kbits / sec
Higher limit: 1160 Kbits / sec
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Average throughput: 1135 Kbits / sec

The transmission unit was 1K (1024). The number of bytes sent/received
was 204800 divided into 2000 send counts with transmission duration from
14111 ms to 14827 ms. The experiment was conducted 9 times with commu-
nication between the hosts DAFFODIL and FOREST. There was no more
than a 1% difference between the throughput of a sender and a receiver,
for any given pair of collected data. Following is the table of the load and

throughput data as gathered:

142.5 141.6
138.1 137.6
141.8 140.4
145.1 144.6
141.9 141.6
142.3 142.0
140.4 140.1
144.1 143.3

Table 1: ESTELLE Data Throughput Benchmarks
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4.3 Data Performance Results Conclusion

The performance data reported here reflect on the complexity of the pro-
tocol design. As traced in Chapter 2, only two copy operation happens,
when the data is entered into the ring buffer and the packet pool shells.
Similarly, two data copy operations take place when data is forwarded
from user shm, to a data packet shell: One to the context buffer and one to
the packet shell. No additional copy operations are performed in getting
data from the user, or dropping the data packets on the medium. Copy op-

erations have been reduced to a minimum.

More to the point of structuring the components of the protocol, with data
copy (and replication) in mind, we analyzed that only the context primi-
tives perform data copy. The user interface and the network interface do
not move data. These procedures reference the data that the data primi-
tives, from the context module, have placed to the correct data structures,

ready to be forwarded by pointer reference.

Compared to a similar data analysis from the SANDIA XTP, data is copied
several times as it is forwarded through the various parts of the protocol.
No channel definitions exist and data is copied to the module data stores
that process the sent or received data. This translates into a lower

throughput for a given data window size and load.

Can the ESTELLE specification be improved, remains a valid question.
Given that data is copied twice in both flow directions suggests that copy
operations can still be improved. We consider the improvement of the re-
ceive process where by data is copied directly from the packet shell to the
user shm. Still, when selective retransmission must be performed, and the

NOERR option is used, a context is required to ensure the data transmis-
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sion integrity. Shared memory suggests that there is a joint managing of
the content that is stored; if the user process dies, integrity must be
maintained, by XTP, and this validates the existence of the context buffer
data store. Similarly for the network interface. Keeping the context buffer
and eliminating the shared memory suggests that the external process
must have addressability to the data buffered within the protocol. Hence,
we converge to the idea that this specification of the XTP protocol has

been highly optimized.

67



A. APPENDIX

A.1 Glossary
ESTELLE:

An Extended Finite State Machine with Pascal Data Types based Protocol
Specification Language. It is defined in ISO 9074: 1989/Amendment 1 as a
formal description technique (FDT) for specifying distributed, concurrent
information processing systems with a particular application in mind,
namely that of communication protocols and services of the layers of

Open System Interconnection (OSI) architecture defined by ISO.

XTP:

eXpress Transfer Protocol:

A telecommunication protocol aimed at enabling high performance reli-
able communication using unicast and multicast.

API:

Application Programming Interface. Sometime used instead of the word
Primitives.

SHM:

Shared Memory: Unix shared memory across process boundaries.

UDP:

User Datagram Protocol

Ring Buffer:

Data buffer addressed in a circular mode, to effect data transfer within
XTP.

SAP:

Service Access Point

Bpms:

Bytes per millisecond (A load and throughput measure)
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