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Abstract

The Communication Network Simulator

For Concordia Parallel Programming Environment

Jun Qu

Concordia Parallel Programming Environment (CPPE) is a visual environment that can
simulate the execution of parallel programs. CPPE is composed of two parts, Concordia
Parallel C Compiler (CPCC), which compiles a parallel program into machine code
(vCode), and Concordia Parallel System Simulator (CPSS), which executes the vCode
generated by CPCC. The communication network simulator, as an important module in

CPSS, simulates the message passing procedure in CPPE.

This thesis focused on the design and implementation of CPSS communication network
simulator using object-oriented methodology. The aim of the design is to provide an
independent, encapsulated, and easy extensible communication network simulator. In the
current release of the network module, four types of routing techniques are implemented.

They are Shortest Path, Simulated Packet, Packet Switch and Wormhole Routing.
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Chapter 1

Introduction

Since the first electric processor was built in the ENIAC computer in 1945, computer
science had focused on sequential programming for more than 40 years. Despite the
tremendous increasing in computing power, there is a wide range of important
computational problems in science and engineering that require much greater computing
speed. One approach to meet this need is to put many of the standard processors together
in one computer. To have more than one processor operating at the same time in the same

computer is the basic concept of parallel computer.

Currently, there are two major architectural approaches to fulfilling this requirement:
shared memory and message passing. In shared memory computer, called multiprocessor
computer, all processors access the same data stored in memory. As the memory can not
accommodate all the requests simultaneously, memory contention becomes the major
difficulty in shared memory multiprocessors. To avoid this problem, a distributed-
memory parallel computer, called multicomputer, is introduced. With this architecture, all
processors have their own local memories, and there is a communication network to link
all processors together. The interaction between processors is acquired via message

passing through this network.



Since we are studying parallel programming, both architectures will be discussed. As
multicomputer programming is more complex not only because the program must do
explicit message passing between processors, but also the factor that the processor
interconnection topology must be considered, we will focus on the multicomputer

programming. The multiprocessor and multicomputer architectures are illustrated in

Figure 1.
Shared Memory
Data Bus
Processor Processor Processor | Processor
1 2 3 n
(a) Multiprocessor architecture
Communication Network
R R R \ / R
P M P M P M P M
P: Processor M: Memmory R: Router

(b) Multicomputer architecture

Figure 1: Multiprocessror and Muiticomputer Architectures



Building real parallel computer system with multiple configurations is too expensive, but
pure mathematical modules are too abstract for complex systems. Simulation is a good
compromise. Our parallel programming study is based on a simulation model, which is
developed and implemented by Concordia parallel programming research group, named
Concordia Parallel Program Environment (CPPE). The purpose to develop this CPPE is
to provide users with flexible and efficient software tools to practice on parallel

programs, evaluating and optimizing performance of parallel applications.

From previous paragraphs, we have already known that the message passing
communication network organization forms the fundamental of multicomputer
architecture. In this thesis, we will demonstrate the design of the communication network
simulator, and study how the system topology and routing technique affect the
performance of parallel programming. Before we continue, we present the structure of

our parallel programming environment - the CPPE first.

1.1 CPPE Overview

CPPE is a simulation tool designed to simulate parallel programming in the real world. It

contains not only the performance analysis, but also a debugging tool to help users run
their parallel program correctly and efficiently. CPPE consists of two main modules:

I. Concordia Parallel C Compiler (CPCC): This module takes the parallel program

written in Concordia Parallel C (CPC), which is the extension of standard C code,

as input, and then compiles it to an virtual machine code (called vCode), which

can be recognized by CPSS.



2. Concordia Parallel System Simulator (CPSS): This module takes the virtual
machine code as its input, simulates execution of the application program, yields

program output, debugging information, and performance statistic report.

These two modules form the core of CPPE. CPCC performs as a regular compiler. CPSS
contains all functionality CPPE provided. It consists of three major sub-modules.

1. Code Execution Module (CEM): The CEM is the processing element of a
simulated system. It executes vCode generated by CPCC.

2. Communication Network Simulator: The role of the communication network
simulator is to allocate network resources to messages, route and deliver
messages, and also detect deadlock in the network if applicable.

3. Utility Module: It contains the Debugger Monitor and the Graphic User Interface
(GUI). The debugger monitor provides a set of software tools to facilitate
program testing and debugging. The GUI provides friendly user interface to easy

parallel programming and debugging.



Figure 2 shows the structure of CPPE and the interactive relationship between each

module.

User Application
(Parallel Program
Wiritten in CPC)

Legend:
O Data module
E Program moduie

CPCC @ Data flow

i Module component

Virtual Machine Code

(vCode)
Utility
Module
cPSs — Communication
Network simulator
Cade Execution
" Module
Program Output
Debugging Information
Proformance Statistics
Figure 2: Structure of CPPE

1.2 Scope and Objectives

The scope of this thesis is to design and implement CPSS communication network
simulator. The CPSS communication network simulator is designed using objected
oriented methodology and implemented using C++ language. Through user interface,

user can select different kinds of network routing techniques and system topologies, and
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the parallel program can run based on these system configurations. The objective is to

provide user a software tool for better understanding how does the network latency

influence on the performance of parallel program and how do different network routing

techniques gain speedup on parallel program.

1.3 Contributions of This Thesis

In this thesis, four types of routing technique are implemented for the communication

network simulator. They are

1.

Shortest Path: This is the simplest but least accurate network routing technique.
When a message is passed from source node to its destination node, the smallest
number of hops is counted between these two nodes. Considering the pre-defined
network delay between two adjacent nodes, we get the network latency for this
message.

Simulated Packet: Simulated packet is similar to shortest path, but the network
congestion is considered.

Packet Switch: When a message is going to be sent from its source node to its
destination node, it is split to packets first. Instead of forwarding the whole
message from one node to another, packets are forwarded.

Wormbhole Routing: It is similar to packet switch, but even more small data unit -
flits are forwarded from one node to another. A message, in wormhole routing
network, is divided into several packets, and then a packet is further divided into
several flits. This routing technique is widely adopted by parallel simulation. It

increases the degree of parallelism.
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By using the objected oriented software design methodology, a base class, CNetwork
class, is declared for the network simulator. The diverse versions of network simulator
with different routing techniques are derived from this base class. Therefore, CPSS does
not need to be aware of which routing technique the network simulator is running on. It
just calls the network simulator functions through network simulator interface. The right

network simulator functions are linked automatically to CPSS.

1.4 Thesis Outline

Chapter 2 of this thesis provides a literature review of the multicomputer simulations and
communication network simulators. A comparison analysis is included. Chapter 3
describes the basic component and key implementation concept of CPSS, which is the
base for the implementation of interconnection communication network simulator.
Chapter 4 presents the design of the CPSS communication network simulator. The
architecture of the CPSS communication network simulator design and the deployed
methodology are discussed. Chapter 5 describes the key implementation details of CPSS
communication network simulator. Chapter 6 gives the experimental results and
summarizes the influence on communication network simulator with different of routing
techniques and system topologies. Chapter 7 provides a conclusion of this thesis and lists

some suggestions for future work.



Chapter 2

Review of the Literature

From Chapter | we already know the structures of multiprocessor and multicomputer and
their difference. Nowadays, networks are key components of all computer and
communication systems. High performance networks use point-to-point links rather than
shared media, in order to exploit parallelism and avoid tum-around and arbitrary delays.
These networks are built out of packet switches or routers, interconnected by point-to-

point links.

The parallel system simulator developed by our group, the CPSS, is intended to provide
accurate simulation of both computation and communication activities. It should provide
an accurate, a flexible, and a user-friendly environment for correctness and performance
debugging of parallel programs. Thanks to members of Concordia Parallel research group
for building the excellent code execution simulation environment and user-friendly
interface both under Unix platform and Windows. With their effort, the implementation

of communication network simulator becomes possible.

In this chapter, a literature review of parallel computer simulation technique is presented

firstly. Then performance affected by network simulation will be studied.



2.1 Parallel Computer Simulator

There are several parallel simulation systems have been developed [1] [9] [10] [12].
According to the simulation techniques, they can be classified into three categories:

1. Direct Execution:

2. Direct Execution with Code Augmentation:

3. Functional Simulation

In this section, all those simulation techniques are examined in details, including their

characteristics, advantages, drawbacks, and example simulators.

2.1.1 Direct Execution

With this simulation technique, a parallel program is first compiled into object code,
which is in the assembly language of the host computer. During compilation, the
compiler identifies two kinds of instructions for the purpose of simulation: local
instructions and non-local instructions. An instruction is local if it accesses only local
memory and has effect only on its own processor. On the other hand, a non-local
instruction is impact another part of the system, such as other processors and networks.
The typical non-local instructions in parallel programming include process
creation/termination, message sending/receiving, and process synchronization. In the
process of simulation, local instructions are executed directly by host processors and
timed with the host’s machine clocks, while non-local instructions are simulated via a

procedure call, which interprets the instruction at the functional level. That is, the



behavior of each non-local instruction is emulated by a host routine as if the instruction

were running on the real remote system.

Direct execution technique is generally faster compared with the functional simulation
(See 2.1.3), because local instructions are executed directly instead of being interpreted.

However, it suffers from a major drawback: difficult debugging and inaccuracy.

The debugging difficulty is caused by local instructions which are executed directly by
the host machine, and the simulation engine has no much control on it. It is very difficult
to establish connection between user application and the low-level simulation activities.
Such connection is important for in-session debugging and fine-tuning of an application.
(In-session debugging refers to the debugging interaction between the user and the
program during execution of the program. Stepping through the program, setting

breakpoint, and tracing variables after breakpoints are examples of in-session debugging).

The low accuracy is caused by two major factors: the way execution time is counted and
the monitoring code. As the simulation is timed with the host’s clock, which is usually the
workstation clock with coarse granularity, the execution time of an instruction is often
truncated to the nearest milliseconds (Within a millisecond, the target parallel computer
may have executed thousands of instructions or sent hundreds of messages). So, to use
the host’s clock to estimate simulation execution time is a very raw approximate. For
monitoring code, it is often necessary because of the difficulty of in-session debugging. It

is used to print out the intermediate result, and it should not be executed on the target
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machine. Since there is no way to distinguish monitoring code from the application code,
the execution time for monitoring code is also counted to the simulation execution time.

This makes the accuracy of the parallel simulation even worse.

In summary, the direct execution technique is usually used for studying hardware feature
or network performance evaluation. It is not suitable for accurate simulation of both
computation and communication activities on a target multicomputer. In addition,
debugging tools provided by direct execution simulators are very limited and based
primarily on monitoring code added to the application and simulation engine, it is

impossible to provide a user-friendly debugging environment.

An example simulator using direct execution technique is the CARE simulator [9] [10],

which simulates the execution of LISP (LISt Processing) code.

2.1.2  Direct Execution with Code Augmentation

This is an enhanced version of direct execution technique. By adding cycle counts (the
time that target system would take to execute an instruction) of a local instruction to the
object code during compilation phrase. Cycle count of object code will be accumulated
during simulation as if the code were being executed on the target paraliel computer. The
simulation of local instructions is no longer timed with the host’s clock but cycle counts.

This results in a more accurate simulation than the pure direct execution technique.
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The direct execution with code augmentation improves the accuracy simulation problem,
but the debugging difficulties are still there. Code augmented technique does not improve
the debugging behavior of direct-execution simulator. Monitor code is still used as an
approach for in-session debugging. It does not cause any side effect except that the added
code may slow down the simulation. However, a simple addition will change the
behavior of the simulation since the monitor code is also included in the cycle counting.
Conditional compilation flags or macros can be used to execute the cost of the added
monitoring code, but it may change the behavior of the application. This is because the
additional code may affect the surrounding code indirectly. For example, if addition code
uses the registers, the surrounding code may spill more registers than the application
without monitor code. This could increase the cost and change the behavior of the
system. The more debugging or statistics traces are required, the more perturbed the

simulation can be.

Example simulators using direct execution with code augmentation technique are Proteus

[2], Tango [8] [13], EPPP [12] [23], and PARSE [21].

Proteus

Proteus, developed at MIT in 1991, uses code augmentation to count the cycles required
by the target machine to execute local instructions. The application program is first
compiled into the host’s assembly language. Then the compiled code is divided into basic
blocks of local instructions. A basic block is the smallest block of code delimited by a

non-local instruction or an instruction where the execution can branch (e.g. a jump, a
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function call). Each instruction in a basic block is matched to the cycle count by looking
up a table. The cycle counts of all instructions in that basic block are summed and a code-
augmentation program will then add these cycle counts at the end of the block. The cost

of each basic block is thus a fixed number and determined at compiler time.

Proteus’ debugging capacity depends heavily on the use of sequential dbx tools. The user
is also allowed to add monitoring code into the simulation engine and the application.
During program execution, monitoring code produces data and event traces, and logs the
traces into an output file. When the program execution is completed, a graph generator is

used to interpret the trace file data and present the results of the simulation.

Although the Proteus simulator is fast, it suffers from several drawbacks.

¢ Even though the simulation result is improved compare with pure direct execution,
the timing results may not be accurate because the cost of each basic block is
determined at compile time and is a fixed number. In reality, the cost of an instruction
depends on other run-time factors such as the operands (or cache hits if the target
machine is shared-memory architecture).

e The simulator can simulator accurately only a limited set of architectures whose
instruction sets are similar to that of the host. If the instruction set of the target
machine is quite different from that of the host, the assignment if a cycle count to
every local assembly instruction is no longer accurate.

o Simulation performance may be substantially degraded if the application involves

many processes. In addition to the simulation engine process, a host process is created

-13-



for each application process. If the number of application process is large, this may
incur substantial overheads of context switching among the simulating threads. In
practice, augmentation overhead is an insignificant part of simulation cost. Simulating
non-local instructions and context switching dominate the cost of simulation.

The simulator is not flexible from the user’s point of view. When the architecture is
changed, the engine parameters must be modified. The engine is then re-compiled and
linked with the user application. This is not convenient, especially for experimenting
with program mappings. This experiment could require to run the same program on
different architectures of varied sizes. The simulator must be re-compiled and linked
with the application code each time the topology or system size is changed.
Debugging capacity relies mainly on software instrumentation. In-session debugging

facility is very limited and depends on sequential dbx tools.

Tango
Tango simulator was built at Stanford University in 1990. Tango and Proteus were

developed independently, but they are quite similar. However, Tango simulates only

shared-memory architectures. It was implemented for studying shared memory behavior,

shared memory synchronization and concurrency abstractions and for architecture

evaluation.

With Tango simulator, application programs are written in C or Fortran. Parallel features
are provided by macros. The compilation process consists of five steps: macro expansion,

compilation into assembly language, code augmentation, assembly and linkage. If a
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parameter needs to be changed, the simulation engine must be modified and the

compilation process is repeated.

Like Proteus, Tango may produce inaccurate simulation resuits due to fixed costs of local

instruction blocks calculated at compilation time.

Unlike Proteus, Tango’s performance is not as good as Proteus’ Tango uses Unix
processes to simulate parallel execution while Proteus uses faster lightweight processes
managed by the simulation engine. The context switch time is significant in Tango. In
addition, Tango does not support in-session-debugging tool. Debugging and statistics
data are provided using the instrumented software approach. Many kinds of trace files are
generated. Program outputs are logged in an output file. There are also summary files and
event trace files. This is not a user-friendly debugging environment and is not adequate to

provide code development or performance fine-tuning.

EPPP Project

The EPPP (Environment for Portable Parallel Programming) simulator is an extended
version of Proteus. The augmentation phase is enhanced to simulator a particular target
architecture whose instruction set differs from that of the host. Application program is
first compiled and optimized, as it would be on the target system. This intermediate code
is then augmented with cycle counts. A second pass on the augmented intermediate code

generates assembly code for execution on the host.
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The above enhancement requires the compiler to be specifically modified for different
target architecture. This is a major task calling for much time and effort. Therefore, the
target architecture of the EPPP simulator is limited to only very few systems. It is the

same as Tango, no in-session debugging tools are available in EPPP.

PARSE

Unlike Proteus or Tango, which uses a separate program to augment the compiled code,
PARSE has code augmentation implemented directly in the compilation phase. The GNU
C/C++ compiler was modified to augment parallel code when its basic block profiling

flag is enabled.

This simulator is aimed at analyzing communication architectures and communication
performance of parallel applications. Thus a high level of accuracy of code execution
simulation is not of special interest to the simulator. For example, PARSE assumes that
each instruction takes one clock cycle to execute and that memory accesses do not take

additional cycles.

Concerning the debugging facilities, no tools are provided for correctness debugging of
parallel programs, but performance debugging is available to analyze communication
performance. However it is not user-friendly. User specifies the monitoring of various
events performed within the communication network through a configuration file. The

simulator will generate a trace file containing a time-sorted list of all requested events.
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Detailed communication statistics can then be determined by examining these traces

using data analysis tools.

Summary

Direct execution (both pure and with code augmentation) is fast but associated with two

severe drawbacks:

¢ In-session debugging is very hard due to the nature of direct execution. Debugging
and statistics rely heavily on the instrumented software approach. The accuracy of
simulation results then depends on how much the monitoring code perturbs the
system and application behaviors. The more traces/data required, the less accurate
simulation results would be. This approach is thus not suitable for code developing or
fine-tuning application performance.

¢ Simulation results are not accurate if the host’s instruction set differs from that of the
target. The inaccuracy also results from the fact that cycle counts of local blocks are
accumnulated at compile-time. In reality, execution time of an instruction depends on

many run-time factors.

2.13 Functional Simulation

Functional simulation interprets instructions of the target machine at functional block
level. This means each instruction of a target machine is expressed as macro or procedure
whose size depends on the complexity of the instruction and the desired level of
simulation accuracy. So, in functional simulation system, a parallel program is interpreted

to intermediate object code. The set of intermediate object code should be definable to
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match the target instruction set, and can be different from the host’s assembly language.

But it is not a necessary condition for accurate simulation because the simulator designer

has control over how to interpret intermediate instruction. The level of detail of

interpreting intermediate code determines simulation accuracy and time. There is a

tradeoff between these two factors.

In order to get certain level of accuracy, functional simulation generally takes more

simulation time than the direct execution approach. Even though it is a very attractive

technique for performance debugging due to

High accuracy: The high accuracy is gained due to the interpretation of intermediate
instructions as if they were executed on the target machine. Monitoring code can be
added to the simulating code without affecting simulation outcomes, because
monitoring code can be distinguished from the application code and its execution
time will not be accumulated into the total execution time. Cycle counts of
intermediate instructions are accumulated at actual run-time (whereas direct
execution simulators compute execution time of local blocks in advance at compile
time).

Flexibility: Code interpretation permits the simulator to have complete control over
program execution. This allows establishing connection between user program code
and intermediate instructions. User can set breakpoints, examine traced variables, or
step through the program in a particular process. User can also view status of

processes, processors and messages at any point during program execution.
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Monitoring code can be added to the simulating code without affecting simulation

outcomes, because execution time of monitoring code is not accumulated.

A typical simulator using functional simulation technique is Multi-Pascal simulator [[7]

[18] [29].

Multi-Pascal Simulator

This simulator simulates both shared-memory and message-passing architectures. User
programs are first compiled into intermediate code. Each intermediate code instruction is
associated with a fixed cost, which is the cycle count of that instruction on the target
machine. At run time, intermediate code instructions are interpreted and their cycle

counts are accumulated to give the total execution cost at the end of execution.

Multi-Pascal simulator provides a rich set of debugging tools, which benefit from the

advantages of functional simulation technique. However, it still has some limitations,

which prevent it from being an ideal performance debugger.

¢ In Multi-Pascal simulator, cycle counts of intermediate instructions are hard-coded
into the interpreting code of the instructions and not well defined, therefore
simulation results may not be accurate.

¢ The simulator does not support the concept of virtual architecture. The user needs to
declare the physical architecture and specify the process-to-processor mapping in
their application programs. There is no run-time mapping. Moreover, the user is

forced to organize the program to match the available physical architecture that may
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not be a natural structure for the application. This limitation makes study of program
performance under different architectures inconvenient.

e The simulator assumes an underlying packet-switching network. There is no dynamic
network simulation. Communication overheads of message passing are calculated
based on one communication model. Again this makes the study of program
performance under different network conditions inconvenient.

¢ The simulator does not support file I/O. It is only intended for small applications.

2.2 CPSS Simulation Technique

CPSS uses the functional simulation technique to simulate the execution of a parallel

program on a multicomputer or multiprocessor system. Application programs are written

in CPC language, which enhances the C language with parallel features to express
process creation/termination and message passing. Similar to Multi-Pascal simulator, the

CPSS also provides a rich set of debugging tools. In addition, it has some improvement

over the Multi-Pascal simulator, which makes it an ideal performance debugger for

studying parallel programming:

e Every intermediate code instruction is associated with a configurable cost, which can
be adjusted to match a specific target machine and makes the simulation outcomes
more accurate.

e Most of the computation and communication parameters are configurable. Values of
the configurable parameters can be changed within the same simulation session as

often as needed.
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e CPSS supports virtual architecture programming and run-time process-to-processor
mapping to improve programmability of message-passing applications. The user can
write an application using a virtual architecture most natural to the application. At
run-time the virtual architecture will be mapped to the available physical architecture.
Moreover, the same source program can be mapped to different physical architectures
without any changes to the source code. This makes the performance study under
different physical architectures easy.

e CPSS contains a dynamic communication network simulator. It can simulate the
commination network with four kinds of routing technique, Shortest Path, Simulated
Packet, Packet Switch, and Wormhole Routing. CPSS can offer very accurate
message routing and communication performance statistics for all routing models.
Since wormhole routing technique is very popular on modern parallel computer
systems, such as Intel Paragon [29], nCUBE6400 [30], and Ametek2010 [26], a
parallel computer simulator that supports wormhole-routed networks has the practical

value for performance study of parallel applications.

CPPE has a graphical user interface that eases the use of the rich set of debugging tools

and the analysis of debugging information and program output

2.3 Routing Techniques

The existing routing techniques include packet switching, virtual cut-through, circuit

switching, and wormhole routing [3] [4] [6] [7] [19] [20] [21] [23] [27]. In this
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subsection, a concise description of these techniques and their characteristics are

presented.

2.3.1  Packet Switching

This technique is also called store-and-forward switching. When a packet arrives at an
intermediate node, the entire packet is stored in a packet buffer. The packet is then
forwarded to the next node on the path where the next output channel is available and the

next node has an available buffer.

Let P be the packet size (in bit), B the channel bandwidth (in bits/second), and D the
distance between the source and destination nodes (number of hops). Ignoring message
and packet startup overheads and packet blocked time due to resource shortage, the

network latency incurred by one packet is (P/B)*D.

Packet switching is relatively simple to implement. It was widely used in first generation

commercial multi-computers such as Intel iPSC/1, nCUBE/1, Ametek S/14, and FPS T-

serials [26] [29] [30]. It becomes less popular because of the following drawbacks.

¢ Enormous buffering is required in every node.

¢ Routing overhead is occurred by the entire packet. The packet is buffered and
retransmitted at every intermediate node on its path. It consumes too much time.

e The network latency is proportional to the distance between the source and the

destination nodes.
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2.3.2  Virtual Cut-Through

It can be considered as an enhancement to the packet switching technique. The
enhancement is to reduce the amount of time spent on transmitting data by buffering the

packet at an intermediate node only if the next required channel is busy.

Let P be the packet size (in bits), B the channel bandwidth (in bits/second), D the distance
between the source and destination nodes (number of hops), and H the length of packet
header (in bit) that stores control information such as the destination address and the
packet sequence number. Therefore, the network latency is (H/B)*D + P/B. If H << P, the
second term, P/B, will dominate the total latency and the distance D becomes a negligible

effect on the communication latency.

If the network load is light the routing overhead (buffering and transmission) is
significantly reduced comparing with packet switching. Packet routing latency is thus less
sensitive to path length. However, if the network traffic is high, the routing overhead

approaches that of packet switching, because the blocked packets must also be buffered.

This technique was adopted in the research prototype Harts, which was developed at

University of Michigan. It is a hexagonal mesh multi-computer.

23.3  Circuit Switch

The routing of a packet in a circuit switched network involves three phases:



e Circuit establish phase: a physical circuit is constructed between the source and
destination nodes

e Packet transmission phase: the packet is transmitted along the established circuit to
the destination. During this phase, the channels constituting the circuit are reserved
exclusively for this packet. Therefore, no buffering is required at intermediate nodes.

e Circuit termination phase: the circuit is released when the tail of the packet is

transmitted.

Let P, B and D be the same as previous. Let C be the length of control data (in bits) that
is transmitted to establish the circuit. Therefore, the network latency is (C/B)*D + P/B. If
C << P, the second term, P/B, will dominate the total latency and the distance D has a

negligible effect on the communication latency.

Second generation multi-computers such as {PSC/2 and iPSC/860 employ circuit
switching as it has lower network latency and no buffer space requirement. However, it is
very difficult for circuit switching to support sharing of physical links among contending

packets. This results in low network utilization and susceptibility to deadlock.

234  Wormhole Routing

In a wormhole routed network, a packet is further divided into a number of flits (flow
control digits) for transmission. Wormhole routing requires buffer at each node to store
flits. As soon as a node examines the header flit of a packet, it selects the next link on the

route and begins forwarding flits down to that link. The header flit governs the route.
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While the header advances along the specified path, the remaining flits follow in a
pipeline fashion. If the header flit encounters a link in use, it is blocked until the link
becomes free. The flow control also blocks the following flits and they remain in buffers
along the established path. When the last flit of the packet leaves a node, the link

assigned to that packet is released and can be used by other packets.

Let F be the flit size (in bits). The network latency for wormhole routing is (F/B)*D +
P/B. If F << P, the distance D will not affect the latency much unless the path is very

long.

Wormbhole routed networks allow virtual channels time-sharing a physical channel. As
virtual channels occupied by a message are not released even if the message is currently
blocked, this may lead to deadlock. Deadlock-free routing algorithms for wormhole
routed networks have been proposed, which muitiplex multiple virtual channels on the

physical link.

Many multicomputer systems have used wormhole routing. Among them are Ametek
2010, nCUBE 6400, Inte/DARPA’s Touchtone Delta, Intel Paragon, Intel/CMU’s
iWarp, and the Transputer IMS T9000 family. The popularity of wormhole routing is due
to the following advantages:

¢ Network latency is relatively insensitive to path length.

e Required buffer space is small.



¢ [tis easy to support virtual channels, which allow contending packets to time-sharing
a physical link. Virtual channels help to improve network utilization, and implement
deadlock-free routing algorithms in wormhole routed networks.

¢ Wormbhole routing allows packet replication in which copies of a flit can be sent on
multiple output channels (virtual channels). Packet replication is useful in supporting

broadcast and multicast communication.

2.4 CPSS Communication Network Simulator

In order to study how different routing techniques have influence on message passing
process, our simulator currently deploys the routing techniques described above: packet
switch and wormhole routed technique. In addition, another two types of routing
techniques are also implemented in the early time when developing the parallel system

simulation. They are shortest path and simulated packet.
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Chapter 3

CPSS System Architecture

In this chapter, the design objectives of CPSS are discussed. By analysis how to match

these objectives, the high level design of CPSS and the design criteria for communication

network simulator is presented.

3.1 Design Objectives

The most important objectives considered in the design of CPSS are as following.

1.

Realistic modeling: CPSS should reflect accurately the behaviors of the
multicomputer system as well as the performance of an application program on
this system. So the design should follow realistic computation and communication
models, and retain the essential characteristics of the multi-computer system.
Accurate simulation: CPSS should employ the functional simulation approach to
simulate the execution of parallel programs. At the same time, it should execute
an application and simulate the behaviors of the underline multi-computer system.
Performance: Time of simulating the execution of application programs is also a
crucial issue. The granularity of instruction interpretation should be weighted
carefully to meet both the accuracy and performance requirements.

Flexibility: CPSS should offer user the freedom of changing system parameters

for both computation and communication. This enable user to tune an application
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to the underlying hardware at hand, or to obtain a though performance analysis of
the application on various multicomputer systems which have different
characteristics. The flexibility of changing parameters should also come with
convenience: the parallel program need not be re-compiled every time when
system parameters are changed.

Repeatability: Repeatability is necessary to study different phenomena in an
execution at several levels of detail and from different perspectives. It is essential
to provide a stable and reliable debugging environment that is not available on
real multicomputer systems. Real parailel computers are nondeterministic in
nature, and rarely provide any form of repeatability. In this case, some bugs may
not occur frequently enough for observation. Repeatability does not mean that the
simulator can reproduce only one of the many possible executions of a
nondeterministic application. The simulator should also be able to mimic the
nondeterministic nature of real multicomputer systems and of parallel
applications.

Correctness debugging: CPSS should provide convenient debugging tools and
useful debugging information to end-users in order to test and debug application
programs. This is the main advantage of using a simulator rather than a real
multicomputer system. The debugging code embedded within the simulating code
should not affect behaviors of application programs and their outputs.
Performance debugging: Computation and communication statistics of application
execution should be provided to facilitate the parallel architecture, network

characteristics, parallel algorithms and program mapping. Global statistics of an

-28 -



application (such as total execution time, speedup, and total computation and
communication time) allow user to tune the application to a desired performance.
Run time data or traces (such as process creation/termination information, or
message send/receive information) could be very useful in studying a particular
aspect of the application, which cannot be captured by global statistics.

8. User-friendliness and portability: It should be easy to learn and use the simulator.
An intended use of the simulator is to introduce the field of parallel computing to

new learners. Also, the simulator should be potable to various platforms.

3.2 System Architecture

As communication network simulator is an important part in CPSS, it works together
with other modules in CPSS to complete the parallel computer simulation. Before we go
to the design of the communication network simulator, we need to present the high level
design of CPSS, which provides the foundation for the design and implementation of
CPSS communication network simulator. At the same time, we will see how the parallel
computer simulator design objectives listed in the previous subsection are satisfied. At

the end, the high level design of the communication network simulator is presented.

3.2.1 General Structure of CPSS

In order to meet the design objective 1, CPSS must consist of two major components: the
code execution module and the communication network module. The code execution
module models the processing elements of the parallel computer system. It executes the

parallel code specified by the parallel program. This module determines how much the
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design objective 1, 2, 3, and 4 are satisfied. The communication network module is to
manage the inter-processor communication via message passing, and it affects the
feasibility of design objective 2, 3, 4, and S. This module is the main topic in this thesis
and also called communication network simulator. There are two other utility modules
interacting with the code execution module and the communication network module in
CPSS, the debugging monitor and the user interface, to meet the other design objective 4,

6,7,8.

The general structure of CPSS can be described as following:

CPSS
1 1]
Network
CEM Simulator
X ¥
| |
Utility v ¥
1 1
Debugging GraphicUser || | - Windowing
Monitor Interface System
i H
““““““ N 1 —
. MS
Motif Wondows

Figure 3: General Structure of CPSS
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3.2.2 The Code Execution Module

The code execution module (CEM) plays the role of processing element of a parallel
computer system. It executes the parallel code specified by the parallel program. The
major entities in CEM are processing elements (processors), local memories of
processors, processes, and communication channels among processes. The internal

structure of CEM and the relationship between each other are described in Figure 4.

CEM
— —
Process Allocate——» Processor
— — /
/ \
/ \
/ \
// \\
1 ¥ 3
Virtual Physical
Memory Channel Processor Processor
A
l
L——Mapping— {
!
i
| ¥

Network
Simuiator

Figure 4: CEM Structure
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The CEM maintains a global clock for the simulated multicomputer system, which is
updated periodically by the CEM. There are four major functional parts in CEM to
coordinate all entities.

I. Map Manager: The map manager maps virtual processors specified in a CPC
program to physical processors. CPSS provides default mapping whose objective
is to minimize the path contention level of the parallel program. There are also
identical mapping, random mapping available. In addition, users can define the
mapping by themselves.

2. Storage Manager: The job of the storage manager is to allocate simulated local
memories to processes upon process creation and deallocate this space upon
process termination. The storage manager also allocates/deallocates other kinds of
dynamic memory blocks such as activation records upon function calls/returns,
and buffers for messages of composite types.

3. Process Scheduler: The process scheduler schedules processes for execution and
updates their structures according to changes in process and processor status, local
clocks and the global clock. In CPSS, parallelism is simulated by time slicing.
Each application process is given a quantum to run and processes are scheduled in
a round-robin manner. During each quantum, the process scheduler traverses the
list of processes, and schedules one process at a time for execution. The process
runs until its quantum expires or it is put to sleep by some event. After each
application process has finished its quantum, the global clock is advanced to the

next quantum.
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4. Instruction Interpreting Routines: These routines interpret vCode instructions.
Each instruction is associated with a cost, which the routine will look up in a

cycle-count table to update the local clock of the current process accordingly.

3.23  The Debugging Monitor Module

The debugging monitor is responsible for handling the debugging mechanisms. The
CPSS system architecture provides a good debugging environment, which is inherited
from the functional simulation technique and the timing system employed in the design
of code execution module and communication network simulator. CPSS provides two

types of debugging tools, the correctness debugging and performance debugging.

3.23.1 Correctness Debugging Tool

As parallel object code instructions are interpreted at the functional level, it is convenient
to insert debugging code inside the interpretation code as much as we need to implement
the necessary debugging functions. From chapter 2, we already know that insertion of
these debugging code does not affect the simulation results in terms of execution cost

since the debugging code can be distinguished from application code.

CPSS supports the following debugging tools:
e Set and clear breakpoints in user’s parallel program source code.

o Set and clear trace variables, whenever the variable is referenced, the program

execution is suspended.

¢ View a value of a variable in an active process when execution is suspended.
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Step through a suspended program line by line or by a specified number of lines.
Set a particular process to be the current process for debugging.

Display user’s parallel program source code with specified range.

List the vCode corresponding to the specified range of the source code.

View the status of the processes, including the processor on which a process is

running, the current execution status of a process. ..

3.2.3.2 Performance Debugging Tool

The performance debugging tool not only needs to provide the overall performance

profile of a parallel program execution, but also to provide the functionality to study the

performance of any portion of the parallel program. As the performance degrade sources

are in parallel computation, parallel algorithms, and communication, the following

performance debugging tools are provided in CPSS:

Set and clear time breakpoints by using an alarm to automatically suspend the
program execution when a certain time is reached.

Provide parallel execution time, which is the estimated execution time on an actual
parallel computer.

Provide sequential execution time, which is the estimated execution time on a
uniprocessor computer.

Provide execution time of any portion of the program, either sequential or in paraliel.
Provide computation time, which is the time spent on communication task.

Provide communication time, which includes overhead involved in inter-processor

communication, such as message sending/receiving, congestion delay.
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e View processor utilization.

e View profile of processor utilization as a function of time.

* List process creation/termination information, such as time, processor number, parent
process ID.

o List message sending/receive information, such as time, source node, destination
node, and message length.

¢ List message routing information, such as path, time traces.

3.2.33 System Configuration

The debugging monitor module not only provides the tools listed above, but also provides
the configuration management tool. The following computation and communication
parameters can be configured through debugging monitor module:

e Physical architectures

e Mapping functions

¢ Routing techniques

¢ Network parameters

3.24 The User Interface Module

The design purpose of user interface is to enable user to interactively communicate with
CPSS. The user interface receives parameters and commands from user, validates the
received information, and passes them to the appropriate module (CEM, communication
network simulator, and debugging monitor module). During execution of a parallel

program, the user interface interacts with debugging monitor to display performance
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statistics and debugging information. Program output is also transferred from the CEM to

the user interface.

Due to the complexity and multiple dimensionality of parallel performance data, graphic
user interface (GUI) is provided both under Unix system and Windows environment to
help parallel programmers in their development process. The GUI under Unix is
developed with Motif toolkit, and the GUI under Windows is developed with Microsoft

Foundation Classes (MFC).

Figure 5 shows the graphic user interface under Windows. On the bottom of the window,

debugging tools are listed.
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Figure S: GUI under Windows system

-36-



Figure 6 shows the graphic user interface under Unix system:
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Figure 6: GUI under Unix system

Both the Unix GUI and Windows GUI are isolated from the other components in CPPE
in order to achieve certain level of modularization. Since CPPE is still under
development, modularization helps to de-couple and therefore reduce the dependence
between CPPE modules. To support portability, compilation condition flags are used to

adapt the simulator to different development environment.
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3.3 High Level Design for Communication Network Simulator

The communication network simulator is responsible for inter-processor communication
via message passing in CPSS. It is under control of the network manager. The network
manager allocates network resources to messages to be sent, routes messages, delivers

them to destination processors, and detects and resolves deadlock, if any.

The communication network simulator is tightly linked with the system underline
topology and the routing technique. CPSS supports the following typical network
topologies: line, ring, mesh, torus, and hypercube. The higher the network topology
dimension is, the lower the network latency is, but the more difficult the implementation
is. CPSS provides the network topology dimension from one dimension (line, ring) to
three dimensions (hypercube) for user to further understand the relationship between

network latency and system topology.

In CPSS communication network simulator, four types of routing techniques are
implemented. They are shortest path, simulated packet, packet switch, and wormhole

routing.

o Shortest path is the simplest, but the least accurate method. Only the distance between
the source node and destination node is considered when estimating the network
latency. It is used at the early time when CPSS was developed to roughly estimate the

network latency.
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¢ Simulated packet is based on shortest path, but the network congestion is considered.
In the shortest path and simulated packet, it is assumed that the whole message is
forwarded altogether.

e Packet switch is designed to both remove the instability of transit time with
increasing load, and prevent the delays caused by sending long messages over limited
capacity of communication channels. This is achieved by splitting messages up into
small fixed size pieces, called packets, each with the destination address contained
therein. In network using dynamic routing, the packets are also given a sequence
number so that they can be reassembled into coherence messages, even if the
constituent packets making up a message have been sent by different routes and have
taken different time to reach their destination. It is more complicated, but it is more
accurate. In our simulator, a message is not really forwarded, only the network
latency is calculated.

e Wormhole routing is similar to packet switch, but it is more complicated and
deadlock may occur. Instead of passing packets, a packet is further divided into flits,
and a flit is forwarded each time. When a header €lit reaches an intermediate node, it
can request a new route to continue forwarding further without waiting for the whole
flits in a packet arriving. By doing so, a pipeline is formed and the network latency is
reduced significantly. The degree of parallelism is increased. But at the same time,

the condition of deadlock could be created.
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The communication network simulator should contain the following entities to
performance the message passing: system topology, routing technique and message

(packet, flit). Figure 7 illustrates the structure of communication network simulator.
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Figure 7: Structure of Communication Network Simulator

When a message needs to be sent, the sender process writes the content of the message to
a channel variable (see section 4.1.1 for the description of channel variable), invokes
routine netSendMessage() to pass message information to communication network
simulator. Then the sender continues with its execution. The communication network

simulator will simulate the message route procedure using the information received from
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the sender. When a message reaches its destination, the communication network
simulator gets the network latency and notifies CEM of the arrival of the message and
performs corresponding operations according to the message type. Then the intended
reader can read the message from the channel variable. The design and implementation

details of communication network simulator will be presented in the next two chapters.

3.4 Measures to Meet the Design Objectives

3.4.1 Accurate Simulation

CPSS uses the functional simulation approach to simulate the execution of parallel
programs on a multicomputer system. The level of detail of code interpretation decides
the accuracy and the performance of the simulation. The tradeoff between accuracy and
performance has been considered carefully in the design of the CPSS to provide accurate
simulation result within an acceptable amount of running time. The degree of accuracy is
adjustable and decided by the definition of vCode instructions, their associated costs, and

their level of detail of interpreting each instruction.

Accurate simulation of parallel architecture is also promoted by the ability that most
computation and communication parameters are configurable. These configurable

parameters allow user to accurately simulate a particular multicomputer system.

3.4.2 Performance

Although CPSS uses the functional simulation technique, the simulation is not done at the

machine instruction level in order to speedup simulation time.
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We analyzed basic operations of existing parallel architectures and constructed a set of
parallel primitives, which are common to most target multicomputer systems. Parallel
primitives are simulated at the functional level with a reasonable abstraction to tradeoff

between simulation accuracy and simulation time.

The entire simulation system, including the application program, is run by a single
process. The simulation does not have any context switching on the host, and thus saves
simulation time. Further more, the network simulation does not route actual messages.
The routing is simulated using only message information. In addition, the network uses
an approximate version of round robin scheduling to speedup the simulation time. Thus,

high performance is achieved.

34.3 Flexibility

Besides accuracy, the functional simulation technique also deploys the other simulation
techniques in terms of flexibility and debugging convenience. The CPSS offers flexibility

to users in many ways.

Virtual to physical architecture mapping at run time
The application program is written using the virtual architecture, which should be the
most, and efficient architecture for the application. At run time, the virtual architecture

will be mapped to a physical architecture. If the user does not specify any physical
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architecture, the default is the virtual architecture itself. In this case, no mapping is

needed.

CPSS provides the following mapping type:

Default mapping: The objective of this mapping is to minimize the path contention

level of the parallel program.

Identical mapping: The mapping function maps the virtual topology to the same
topology on physical processors.

Random mapping: The system maps the virtual topology to a randomly picked

physical architecture.

User defined mapping: Users can configure the mapping by themselves.

Simulating a wide range of multicomputer systems

Unlike direct execution simulators, a functional simulator can be adapted to simulate a

new architecture more easily because the intermediate instruction set can be expended or

re-defined in terms of instruction functionality.

Simulate different target machine: The vCode instruction set of the CPSS is
constructed using common operations of multicomputer systems. The cost of each
instruction can be adjusted to simulate a specific target machine. Instruction
functionality can be modified and new instructions can be added easily due to the
modular and decoupled implementation of the simulator.

Simulate different system topology: The CPSS can simulate a wide range of

topologies, including line, ring, mesh, torus and hypercube. System size can be
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extended up to thousands of nodes and is limited only by the memory capacity of the
host computer.

e Simulate different communication routing type: Multiple communication routing
types can be simulated by CPSS, including shortest path, simulated packet, packet
switch and wormhole routing. As object oriented design is applied to the
communication module, new routing techniques can be added easily with affecting
other parts of the simulator.

Large set of configurable parameters

User can configure almost all computation and communication parameters. These

changes can be done in the same simulation session and no recompilation is needed. That

means the same vCode of the application program is executed. This feature also enables
the repeatability. Tuning system parameters allows the analysis of an application or

architecture to be more thorough and accurate.

Modaularity and expendability

The design and implementation of the simulator are modular and decoupled. Future
changes and enhancements to the simulator would be quick and easy. For example, if
another type of routing technique is required to be added to the simulator, a class of that
routing type is declared, which is inherited from network base class (CNetwork class),
implements only the virtual functions defined in CNetwork, which respects the

specification of this routing type.



3.4.4 Repeatability

The repeatability is easily achieved since the simulator is a sequential program, which is
deterministic and repeatable in nature. Under the same setting of parameters, different
executions of the same application yield the same results.

Repeatability does not imply that only one of the many possible executions of an
application can be simulated. In fact, the simulator can reproduce multiple executions of
a nondeterminic application. This is particular useful for applications whose behavior is
considerably different from one run to another depending on the outcome of race

condition.

In CPSS, multiple executions are implemented by varying the relative processor speed.
Race conditions can thus be created by variation of relative processor speeds. For
example, by changing the relative processor speeds, the order of sending two messages

from two distinct nodes may be reversed.

Repeatability is critical to provide a stable and reliable debugging environment. It also
helps to study an application at various levels of details and from different angles.
Multiple executions are essential to study nondeterministic applications, which

demonstrate different behaviors depending on results of race conditions.

3.4.5 Correctness Debugging

Another advantage of the functional simulation over other simulation technique is easy

debugging. Since parallel object code instructions are interpreted at functional level, it is
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easy to insert debugging code inside the interpretation code and it does not affect

simulation result.

The correctness-debugging tool provided by CPSS, listed in 3.2.3.1, shows that the

design objective for correctness debugging is satisfied.

3.4.6 Performance Debugging

The performance data and statistics produced by CPSS are listed in 3.2.3.2. These data
records are logged into files and can be enabled/disabled as user wishes. It is also easy for
users to add their own traces to the simulator code in order to capture performance data as

they want.

3.4.7 User Friendliness and Portability

A graphic user interface (GUI) is used to integrate the major components in CPPE
(CPCC and CPSS) into a unified and user-friendly parallel programming environment.
Through interaction with the GUI, user can accomplish the whole development process

from source code editing, to compile, debugging, execution, and performance profiling.

The GUI module is designed to make program developing and debugging easy for the
parallel application programmer. At the same time, the GUI can be easily configured to
run in different environments and on different platforms. In the current version of CPSS,
there are two GUI modules are provided. One is for Microsoft Windows environment,

and another is for Unix environment.



Chapter 4

The Design of CPSS Network Simulator

By analyzing the purpose and the feasibility of communication network simulator, the
design objectives are summarized. Then the design of the communication network

simulator, which is to achieve these objectives, is presented.

4.1 Network Overview

The purpose of the communication network simulator in CPSS is to simulate message
passing procedure between processors in order to get network latency. With network
latency, the destination processor knows when the message is ready to be picked up. In
our simulator, messages are not actually routed through network nodes. They are stored
in channel variables with big available time when they are sent. After the network latency
is achieved, the message’s available time is updated. As soon as the current clock reaches

the message's available time, the message is ready to be retrieved by the receiver.

Here, a new terminology, channel variable, is introduced. Since messages are passing

through channel variable, the channel related parameters are described below.
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4.1.1 Channel Related Parameters

Channel variable is used to store message contents. It has the following data structure:

tvalue |time |size |processID ltag Tnext |

Where:

- value: value refers to the message contents. It can be the value for basic types
basicValue or address for basic type. In cpss, basicValue can be integer, float,
or composed type

- time is message arrival time

- Size is message size

- processiD is message destination process

- lag is user tag for message, can be thread ID

- next is link the channel value node together

Channel variables can be wrote by any process, but it can be read only by its owner.
Therefore, each channel variable is associated with another data structure which indicates

the owner of the channel variable. It has the feature of mailbox.

There is another parameter called channel descriptor, which holds the control information

of channel. The data structure for channel descriptor can be described as following:

lhead |dataCount |waitProcQueue |earliestReadTime |channElemSize |link |

Where:
- head: a channel is considered to be an infinite buffer of messages of the same

type. Messages written to a channel are stored in the increasing order of the
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writing times, and maintained in a list for reading by the channel owner. This
list will be referred to as the list of channel value, head points to the first of
this element of this list.

- dataCount: number of channel values available in channel

- waitProcQueue is list of waiting processes for channel read

- earliestReadTime is earliest time the channel can be read again

- channElemsSize is the size of messages written to this channel

- link is index to next available channel

4.1.2  Message Passing Procedure

The message passing procedure is described in Figure 8.

Channef

I— Sender Variabi Reve:ver
netSendMsg()
message ————p avaiiable ¢——message
time ¢-update —
Communication
Simulator

Figure 8. Overview of mnessage passing procedure

4.2 Consideration on Network Simulator Design

Message passing event is invoked by process. If the data exchanged between two
processes running on the same processor, the network latency is the local message cost. It
does not invoke the real message passing procedure and it is not the major concern of the

design our network simulator. Our major concern is based on the message passing
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procedure happened between different processors. In this subsection, we first study the
affecting factor on network latency. By analyzing the code execution module in CPSS,
we list the situations when message passing occurs. Finally the message type is

summarized.

4.2.1 Affecting Factors on Network Latency

The purpose of CPSS communication network simulator is to simulate the real message
passing procedure in order to get the accurate message delay time. There are two major
factors which have influence on this delay time. They are system topology and routing

technique.

System topology determines how multiprocessors are organized in CPSS. It has direct
influence on the network latency. Comparing with a 8-node line topology with a 8-node
ring topology. If a message is sent from node 0 to node 7, in line topology, the message
has to pass all nodes to reach the destination, but in ring topology, the message can go
through another direction and goes to node 7 directly. Therefore, the system topology is

the main concemn in the design of network simulator.

Routing technique determines how messages are routed. Messages can be routed as a
whole. It can be divided into packets and the network simulator routes the packets
instead. In addition, packet can be further divided into flits and flits are routed inside
network simulator. These different ways of message forwarding form the different

routing techniques.
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In CPSS network simulator, four types of routing techniques are supported. They are
shortest path, simulated packet, packet switch and wormhole routing. Besides the
difference of routing techniques causes the difference on message delay time, the
underlying system topology makes this difference more significant. With shortest path
and simulated packet routing techniques, the following network topologies are simulated:
line, ring, mesh, torus and hypercube. With packet switch and wormhole routing
techniques, the following network topologies are simulated: line, ring, 2D-mesh, 2D-
torus, 3D-mesh, 3D-torus and hypercube. Only low dimension mesh and torus are

implemented, in order to simplify the implementation.

4.2.2 Situations When Message Passing Is Invoked

In CPSS, message passing occurs when
[. Child process needs to write back to its parent process
2. Perform VIRTUAL_SEND and PHYSICAL_SEND.
3. Perform VIRTUAL_BROADCAST or PHYSICAL_BROADCAST
4. Perform COPYBLOCK between processes
5. Store value from stack to channel STCHANNEL
6. Perform NEWFORKCHILD or NEWFORALLCHILD operation
7. Perform FORKCHILDEND or FORALLCHILDEND operation

8. Perform WAKEUP operation
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4.2.3 Message Type

By analyzing the situations and purposes when messages are sent, messages can be
grouped into the following types:

e IGNORE_ME (case 1, 4 listed above)

e SEND_DATA (case 2, 3, 5 listed above)

e BIRTH (case 6, 8 listed above)

o DEATH (case 7 listed above)

IGNORE_ME is a kind of message that is sent to cause traffic in network system. After
the message arrives at the destination process, this message is ignored and no further

operation is invoked.

SEND_DATA is a kind of message that is really sending data to the destination process.
After the message arrives at the destination, the message is inserted into channel queue
by calling insertValueInChann() function. When the destination process need to read the
data, it queries the channel queue and retrieves the data if its arrival time is earlier than
current time. As soon as the data is retrieved, the message is removed from the channel

queue.

BIRTH is a kind of message that is sent to wakeup new process. After a message arrives

at the destination process, it wakes up the process by calling wakeNewProcess() function

provided by CEM.

-52-



DEATH is a kind of message that is sent to terminate the child process. After the

message arrives the destination, it terminates the process by calling deathProcessing()

function provided by CEM.

4.3 Network Simulator Design Objectives

The design objectives of the CPSS communication network simulator:

Encapsulation: Since the network latency depends on the system topology and routing
technique, and the code execution module does not affected by these factors.
Therefore the communication network simulator module can be extracted from code
execution module, and all network related information and implementation details are
hidden from CEM.

Polymorphism: Polymorphism is an important feature of inherence. It allows two or
more objects in an inherence hierarchy to have identical member functions that
perform distinct tasks. The computer environment selects a version of the function
appropriate to the situation. As our network module supports four types of routing
techniques, without this feature, CEM has to recognize which routing technique the
simulator is using and call the corresponding send message function. At this time, the
insulation can not be ensured. With polymorphism, the network module only exposes
its abstract interface to CEM and CEM does not need to aware which routing
technique and what topology the system is running on.

Easy extension: There are four types of routing techniques are supported in our
current release of CPSS. Probably there will be a request to support more routing

techniques in the future. With the two characteristics listed above, this feature is easy
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to be achieved. Programmers do not need to go through the whole CPSS code to do

modifications, and only the network simulator module needs to be accessed.

4.4 Design of Network Simulator

By analyzing the communication network simulator design objectives, we realize that
object oriented design can encapsulate the network module from other parts of CPSS,
insulation can be achieved. By using an abstract class as network interface, other modules
in CPSS makes the same function call and does not need to know which routing
technique is applied, the right object is automatically linked. The polymorphism objective
is achieved. With this design, future network extension becomes much easy. If another
routing technique needs to be supported, we simply derive a new class from the network

abstract class and implement this class independently.

4.4.1 Network Simulator Structure

Figure 9 shows the class structure of communication network simulator{11][24][28]. As
our current network simulator supports four types of routing technique, five classes are
declared. They are CNetwork, CShortestPath, CSimulatedPacket, CPacketSwitch,

CWormhole.
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CNetwork

CShortestPath CSimulatedPath CPacketSwitch

CWormhole

Figure 9: Class Structure of Communication Network Simulator

CNetwork class is a pure abstract class. It defines all interface functions the network

simulator provides. All other classes are derived from it and they have their own version

of interface functions.

The CPSS network simulator is referenced through a CNetwork type pointer pNetwork. It
is declared globally and can be accessed throughout CPSS. According to the current
selection of routing technique, an object of that type is created and is referenced by
pNetwork. Whenever the network type is changed, the current object is deleted and a new

type of network object is created. Figure 10 illustrates how a CNetwork type pointer is

declared and used:

// Declare a network pointer
CNetwork *pNetwork = 0;

// default network type is shortest path
pNetwork = new CShortestPath;
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// usage of CNetwork pointer
// the netSendMsg() function is the version in CShortestPath
pNetwork->netSendMsg( .. );

delete pNetwork;

Figure 10. The Usage of CNetwork Type Pointer

Through this network pointer, the right version of network related functions are linked
automatically. That’s the polymorphism feature of C++ language. The fact that CPSS

always links to the right version of the network object can be guaranteed.

4.4.2 Network Simulator Interface

The network simulator exposes interfaces that CPSS required during message passing
procedure. By analysis the functionality of the network simulator, the interface functions
can be divided into the following groups:

e Network initialization: Allocate, deallocate, or reset network resources to CPSS.
Functions in this group are called during the system initialization time or when a new
type of routing technique is selected. It includes the following methods: class
constructor and destructor, restart a new run (/INIT_NEW_RUN) method.

e Network parameter configuration: Functions in this group provide facilities to set
network related parameters, the network topology, the definitions for the number of
network lane/link, packet size, buffer size, and time delay for message startup.
Functions in this group are called through user interface. It includes the following

methods: INIT_ CHANGE_PHYS_ARCH, PARMS_CHANGE, PRINT PARMS.
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Message sending: It initializes the message passing procedure and finally gets the
network latency for the message. Then it informs the destination process about the
arrival of the new message, and according to the type of message, performs the
corresponding operation. The functionality is performed by the method: netSendMsg.
Network routing schedule: For shortest path and simulated packet routing technique,
the message delay time can be calculated directly by counting number of hops
between the source and destination nodes. This is done in message sending procedure
and does not have routing schedule. But for packet switch and wormhole routing
techniques, the calculation for the network latency is more complicated. The message
delay time can not be got immediately. The network has to forward the message one
node by one node till its destination. So, message-sending operation, in this case, is
just inserting the message into message queue. When network get the time slice for
execution, it performs the message forwarding operation at this time. Therefore, the
message passing procedure is executed at this time. This functionality is performed
by method: ROUTING_ROUND.

Deadlock handling: Deadlock happens when a process holds a resource, say
resourcel, and requests another resource, say resource2, and at the same time, another
process holds resource2 and requests resourcel. Before the requested resource is
acquired, the holding resource can not be released. In this case, deadlock happens.
Wormhole routed network has potential situation which can cause deadlock happen.
In wormhole routed network, the sending message is divided into packets, and a
packet is further divided into flits. Finally, a flit becomes the smallest unit forwarded

through network. The advantage of wormhole routed network is that the header flit
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can continue be forwarded without waiting for the arrival of the end flit. A message
can form a pipeline and speedup transmission speed. On the other hand, as the header
flit requests a new lane while the other flits still on the old lane, this has the potential
to cause deadlock. For the other routing techniques, since there is no pipeline
situation, deadlock can not happen on them. Therefore, only wormhole-routed
network has the implementation for deadlock handling methods. They are

netDeadlockRecovery, networkDeadlock and netDeadlockReport.

In order to apply polymorphism, the CNetwork class exposes all interfaces, which is
needed by all types of routing technique. All other classes inherence from it and keep the
same interface as it has, but have their own version of implementation. Figure 11 shows
the class definition for CNetwork class. Some of the initialization functions are included

in class constructor and destructor.

class CNetwork

CNetwork() §
vitual ~CNetwork() {

virtual void INIT_NEW_RUN() = 0
vitual void ROUTING_ROUND() = 0
virtual void INIT_CHANGE_PHYS_ARCH() = 0
virtual void netDeadlockRecovery() = 0
virtual int networkDeadlock() = 0
virtual void netDeadlockReport() = 0
virtual void PRINT_PARMS() = 0
vittual void PARMS_CHANGE() = 0
virtual void netSendMsg(int srcNodelD,

int destNodelD,

int msgLen,

float sendTime,

int channNum,

int channValldx,

ProcDesPtr processPtr) = 0

Figure 11: Class CNetwork Definition
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4.5 Working Environment for Network Simulator

In the previous section, the class definition for CNetwork has been presented. The
propose of exposing these interface methods is to encapsulate the data structures and
implementation details of the network simulator from rest of the simulation system. The
network simulator is an important part in our CPSS and requires coordinating with the
other modules to complete the parallel simulation. In this section, the working
environment for network simulator and the interactions between network simulator and

the rest of the system are presented.

We already know that CPSS contains three main modules, they are Code Execution
module, Graphic User Interface module and Communication Network module. The
interface functions defined in Figure 11 are windows for other parts of CPSS to access
communication network simulator. The following diagram, Figure 12, illustrates where

and when the interface functions are invoked.
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CPSS System initialization
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int_new_run()
int_change_phys_arch(}

Communiation Network
ini_new_runQ) [
routing_round(} netDeadiockReport()
netDeadiockRecovery() print_parms(
networkDeadiock( parms_change
T
Code Execution Graphic User interface

Figure 12. Interaction between Network Simulator and the rest of CPSS
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Chapter 5

Implementation of CPSS Network Simulator

The CPSS communication network simulator was described in Chapter 3 and the high
level design of CPSS network simulator was discussed in Chapter 4. From the network
simulator design objectives, we can see that the object-oriented language can match these
design objectives. As the rest parts of CPSS are implemented in C or C++, it is better to
adopt the C++ language to implement the communication network simulator. By doing
so, the code of the communication network simulator can be integrated into CPSS

development environment.

In this chapter, the network implementation details, the related parameters and data
structures will be presented. The network parameters are given firstly, as we need the
terminology and the knowledge of data structure to describe and understand the network
simulator implementation. Then the detailed implementation for each routing technique is
presented. Since all routing techniques have common interface functions, the description

for the implementation details will follow the interface function prototypes.

-6l -



5.1 Network Parameters

5.1.1 Network Topology

Typical network topologies are line, ring, mesh, torus and hypercube. In high
dimensional networks such as hypercube, the average distance between nodes is small.
The routing latency is thus reduced accordingly. However, high dimensional topologies
are wire limited. The reason is that the number of physical connections between nodes is
limited by the number of available pins and pads on the router and the available chip area
for communication related hardware. The more dimensions, the more links in that
topology, and thus the more difficult the topology is to fabricate in a limited area.

Low dimensional topologies, such as line, ring, mesh and torus, offer higher wire
efficiency. But the average distance between nodes is relatively large. In the
implementation of our network simulator, both low and high dimensional topologies are

supported.

5.1.2 Message

A message is a logical unit of information for inter-process communication. Messages
may have variable lengths. A message usually carries the source and the destination node
addresses, the message length, message sent time, the content of the message, and the

Process ID which needs to be notified upon the arrival of the message.

The data structure of a message can be represented as below:

|source|dest |nbrPackets |sendTime|nextiprevichannNum [channValldx [processToNotify |

Where:
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- source is the address of the source node

- dest is the address of the destination node

- nbrPackets is the message length measured in terms of the number of packets

- sendTime is the at which the message will be injected into the network. This
time includes all message and packet startup overheads

- next/ prev are pointers to form a double linked list of messages

- channNum is the ID of channel variable

- channValldx is the buffer where the message is deposited for reading

- processToNotify is the process to be notified (if any, depends on message

type) when the message arrives at the destination

In our CSPP simulator, the message content is stored in channel variable and can be
referred by channel number and channel value index. For the description of channel

variable, see section 4.1.1.

In packet switch routing technique, a message is divided into a number of fixed-length
packets for routing, and in wormhole routed technique, a packet is further divided into a

number of fixed-length flits. The packet and flit are discussed in the following section.

5.1.3 Packet

A packet is the basic unit carrying the address of the destination node for routing

purposes. Depending on network conditions, packets belonging to a message may arrive
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at the destination node out of sequence. Thus a sequence number is required in each

packet to allow reassemble of the message.

Typical packet size ranges from 8 to 64 bytes. Factors influencing the choice if packet
size include the routing scheme, link bandwidth, router design and network traffic

intensity. In our CPSS network simulator, the packet size is a configurable parameter.

In wormhole routed network, every packet is composed if header flits and data flits.
Header flit stores the destination address and the sequence number of the packet. The
header size thus is depending on the network size and the message length. The buffer size

is also affects the header size indirectly.

Packets of a message are routed independently of each other. Therefore they may arrive
at the destination out of sequence. When a packet reaches the destination, the packet
structure is removed for the packets and freed. When all packets of a message arrive the

destination, the message is considered to be received completely.

Data needed for routing a packet is stored in a packet structure. The structure of packet

can be represented as following:

| msgPtr | state | headNode | headLink | headLane | next/prev |

Where:
- msgPtr is a pointer to the message structure. Message information need not be

depilated in the packet structure.
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- state is the packet state which takes one of the following values: Init (just
initialized), InitBlocked (just initialized and being blocked), Advancing (being
routed), Blocked (being blocked)

- headNode is the node where the header flit is currently buffered

- headLink is the link where the header flit is currently buffered

- headLane is the lane where the header flit is currently buffered

- next/ prev are pointers to form a double linked list of packets

S.1.4 Flit

The concept of flit is introduced when wormhole routed network simulation is
considered. A flit is the smallest unit of information transmission in our simulator. Flit
size is a configurable parameter in our CPSS network simulator. Affecting factors
deciding the choice of flit size include the network size, routing scheme, link bandwidth

and router design.

There is no data structure implemented for flit in our simulator. The simulator does not
route actual contents of flits but only consider flit IDs at each lane on the path of a

packet.

The position of the tail flit is not kept track of explicitly. When the tail flit of a packet
leaves a lane buffer, that lane should be deallocated. To implement this, we use field
lastFlitPassed of the lane structure. This field records the ID of the flit which left the lane

the most recently. Let the packet size be p, and the flits of a packet be numbered from 1
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to p. When field lastFlitPassed of a lane L reaches value p, this means that the tail flit of

the packet occupying L just left the lane. L can be released.

5.1.5 Node

Nodes in our network simulator are identified by absolute IDs. Absolute IDs are

computed according to the following rule:

¢ Line, Ring: assuming that the network has n nodes, the nodes are numbered from 0 to
n-1.

e 2D-Mesh and 2D-Torus: assuming that the mesh (torus) has R rows and C columns,
the absolute ID of node (7, ¢) is rxC+c,where0<r<Rand0<c<C.

e 3D-Mesh and 3D-Torus: assuming that the mesh (torus) has P planes, R rows and C
columns, the absolute [D of node (p, r,c) is(pX P +r)x C +c.

¢ Hypercube: the absolute ID of a node is the decimal value of the corresponding

binary representation of the node address.

The network simulator utilizes absolute IDs so that routing functions are generic and can
be used for all types of topology. Only the function computing the next node on the path

needs to use Cartesian IDs (for meshes and tori) or binary IDs (for hypercubes).

5.1.6 Virtual Channel / Lane

The concept of virtual channel (lane) is adopted by wormhole routed network simulation.
A virtual channel consists of a buffer that can hold one or more flits of a packet and

associated state information. Several virtual channels maybe multiplexed on a physical
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link and share the link bandwidth. In this subsection, some virtual channel related

parameters, concepts and definitions are discussed.

1) Virtual Channel

A virtual channel is a logical link between two adjacent nodes. From the hardware

implementation point of view, a virtual channel is composed of

o A flit buffer in the source node which holds flits waiting to use the link

e A physical link between the two nodes, which provides a communication medium
between the nodes

e A ilit buffer in the receiver node which stores flits just transmitted over the link

Figure 13 shows an example of two virtual channels sharing a physical link. In this
diagram, there are two flit buffers in the source node and two flit buffers in the receiver
node. One source flit buffer is paired with one receiver flit buffer to form a virtual

channel when the link bandwidth is allocated to the pair.

Fiit buffers in Flit buffers in
the source node the reveiver node
~ B—
Physical Link:

Figure 13. Two virtual channels sharing a physical link
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2) Lane

In our CPSS network simulator, such a virtual channel is abstracted into an entity called
lane. Each lane is associated with a lane buffer which represents a flit buffer at the
receiver node. When a flit is deposited into a lane buffer, it is considered to be stored in a

flit buffer at the receiver node. This is illustrated in Figure 14.

[

A | Physical link—| 8

a) Physical structure

b) Lagical structure in our simulation

Figure 14. Virtual channel abstraction (Lane)

This abstraction does not improve simulation accuracy, but it helps to speed up
simuiation time. The term "virtual channel” and "lane" are used alternatively in the

following sections.

3) Number of Virtual Channels
In CPSS network simulator, the number of lane per link is a configurable parameter. As
we already know, adding more virtual channels help to improve network utilization.

However, as the number of virtual channel increase, link schedule becomes more
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complicated, requiring additional hardware complexity. In addition, time-sharing of link
bandwidth may increase network latency if the traffic is high because the link bandwidth
is divided among several messages. Therefore the tradeoff between enhanced network
throughput and longer routing latency should be weighted when deciding the number of

virtual channels per link.

4) Unidirection ver Bidirection

Virtual channels can be unidirectional or bi-directional. If we defined a pair of opposite
unidirectional channels between two adjacent nodes, the implementation and control of
this scheme could be quite simply. In this case, the situation, which one channel is very

busy while the other is idle, could happen. Thus the physical link is not fully utilized.

Link utilization can be increased by combining two unidirectional lanes into a single bi-
directional lane. If the bandwidth of each unidirectional lane is W, then the bandwidth of
the corresponding bi-directional lane is 2W. Link utilization increases at the cost of more
complex implementation. In our simulator, we assume that bi-directional virtual channels

share a bi-directional physical link.

5) Buffer Size

Each virtual channel is associated with a buffer. The buffer size of a channel is an
integral multiple of the flit size. Virtual channel buffers are FIFO queues. Large buffer
size may improve network performance, but buffer size equal to packet size will

effectively reduce the benefit of wormhole routing to that of packet switching. In our
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simulator, buffer size is a configurable parameter. The minimum value is 1 flit, and the

maximum value is the packet size in flits.

6) Virtual Channel Allocation Policy

The number of packets sharing a link may be larger than the maximum number of virtual
channels multiplexed on that link. When all lanes of the link are busy, incoming
messages have to be queued at the corresponding router. Free lanes are then allocated to
waiting messages using an allocation policy. FIFO queues are usually used for lane
allocation. In real-time networks, packets requesting free lanes are ordered and given free

lanes using message priorities. Qur simulator uses FIFO queues for lane allocation.

7) Link Bandwidth Allocation Policy

Each physical link is associated with a scheduler that multiplexes data from the virtual
channels over the physical link. This allows the virtual channels to time-share the
bandwidth of the physical link. A fair scheduling algorithm, such as round-robin, can be
used for link band width allocation. In real-time systems, priories of messages occupying

the virtual channels can be used for scheduling.

8) Data Structure of Lane

The structure of lane can be represented as following:

| packetPtr | state | nbrFlits | LastFlitPassed | prevLink | previane |

Where:
- packetPtr is a pointer to the packet structure of the packet curmrently

occupying this lane
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- state is the lane state which can be Free, Busy or FirstLane. A lane is busy if
it is currently used by some packets. A lane is FirstLane if it is busy and
connected to the source node.

- NbrFlits is the number of flits currently buffered in this lane

- LastFlitPassed is the ID of the flit which left this line the most recently.
Assume that the packet size is p and the flits of a packet are numbered from 1
to p. When this field is set to p, we know that the tail flit of the packet just
left the lane. Thus we can release the lane

- prevLink is the previous link on the path of the packet

- prevLane is the lane on the previous link and occupied by this packet

3.1.7 Link

A link is a network pass between two neighbor nodes. Each link can be configured with a
number of lanes available on it. During message passing process, a link is searched first
to find out the route, then an available lane is checked to verify if there is available lane

to forward the message.

Links are numbered based on the topology and absolute IDs of nodes.

¢ Ring: Assume that the ring network has n nodes numbered from 0 to n - I. Each node
in a ring topology is connected to two links: one is to the left and another is to the
right of the node. Since our simulator links are assumed to be bi-directional, the total

number of links is n. To make the link numbering scheme easy to understand, we
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consider that each node of the ring is "in charge" of the link to its right, and this link
has the same ID as the node. Figure 15 a) shows an example with n = 4.

Line: Line topology uses the same link numbering as ring. However the two boundary
links connected to nodes 0 and n - | are not used. Figure 15 b) shows an example
withn =4,

2D-Torus: Assuming the torus has R rows and C columns, then the absolute node [Ds
run from 0 to R x C - 1. Each node of the torus is connected to four links to the east,
west, north, and south side of the node. As links are bi-directional, the total number of
links is 2 R x C. We consider that each node & (0 < k < RC) of the torus is "in charge"
of two links: link 2k to the east side and link 2k + 1 to the south side of the node.
Figure 15 c) shows an example withR =3, C = 4.

2D-Mesh: 2D-Mesh topology uses the same link numbering as 2D-Torus. However

the boundary links are not used. Figure 15 d) shows an example withR =3, C =4.
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Figure 15. Link Numbering for Two Dimension Topology
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¢ 3D-Torus: Assuming that the 3D-torus has P planets, R rows and C columns, absolute
node IDs then run from 0 to P X R X C - 1. Each node of the torus is connected to six
links to the east, west, north, south, front, and backside of the node. The total number
of links is 3 P X R x C since the links are bi-directional. We consider that each node k
(0 < k < PRC) of the torus is 'in charge" of three links: link 3k to the ease, link 3k + 1
to the south, and link 3k + 2 to the backside of the node.

¢ 3D-Mesh: The same link numbering of 3D-torus is applied to 3D-mesh. However the

boundary links are not used.

e Hypercube: Let i and j be the absolute IDs of two adjacent nodes. Without loss of
generality, assume that i < j. Let 4 be the number of dimensions of the hypercube, and

b be the position of the bit where i and j are different (with the rightmost bit being at

position 0, 0 < b < d). The ID for the link connecting node i and jis i x d + b.

The data structure for a link can be represented as following:

Lane

nbrBusyLanes

scheduledLane

schedTime

queueHead/queueTail

Where:

lane is an array of dynamic allocated lane structures

nbrBusyLanes is the current number of busy lines

scheduledLane is the lane scheduled to use the link bandwidth in the current

network cycle

schedTime is the most recent scheduling time. If this time is equal to the

value of the timestamp generator, it means that the link has been scheduled in

the current network cycle
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- queueHead/queueTail are pointers tot he head and tail of the list of packets
waiting for free lanes to be allocated. In the current implementation, this

queues are FIFO queues

3.2 Implementation for Shortest Path

Shortest Path is the simplest routing technique deployed in our simulation system. It is an
ideal case which assumes that there is no network congestion. The basic idea of this
technique is to count the number of hops between the source and the destination nodes in

order to estimate the message passing time from the source node to the destination node.

The class definition for Shortest Path can be described as following:

class CShortestPath: public CNetwork

CNetwork() {}
virtual ~CNetwork() §

void INIT_NEW_RUN() {
void ROUTING_ROUND() {
void INIT_CHANGE_PHYS_ARCH()(}
void netDeadlockRecovery() {}
int networkDeadlock() {retumn 0;}
void netDeadlockReport()
void PRINT_PARMS()
void PARMS_CHANGE()
void netSendMsg( int srcNodelD,
int destNadelD,
intmsglLen,
float sendTime,
int channNum,
int channValidx,
ProcDesPtr processPtr)

Figure 16. Class CShortestPath Definition
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In the subsections below, the implementations for the required interface methods are

described.

S.2.1 Constructor and Destructor

From the class CShortestPath definition, we can see that the class constructor
CShortestPath()and destructor ~CShortestPath are not implemented. As we discussed
before, the class constructor is used to allocate network resources to the specified routing
technique, and the class destructor is used to release the resources hold by the specified
routing technique. Since the shortest path routing technique does not require any network

resources, these methods are not needed.

S5.2.2 INIT_NEW_RUN(

The INIT_NEW_RUN() method is to reset the network resources. This method does not
release the resources, just reset the related parameters to their initialize values. Since the
shortest path routing technique does not need to acquire network resources, this method is

not implemented in this case.

5.2.3 ROUTING_ROUND()

The ROUTING_ROUND() method is used when network get its time slice to forward
messages. Since the shortest path routing technique does not simulate the message
passing procedure, but just estimating the message passing time by simply count the
number of hops between the source and the destination nodes. Therefore, this method is

not implemented.
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5.2.4 INIT_ CHANGE_PHYS_ARCH(

The INIT_CHANGE_PHYS_ARCH() method is called whenever the network physical
architecture is changed. This method is used to reorganize the routing table for message
passing procedure, reallocate lane and link. As the reason we mentioned above, the
shortest path routing technique does not actually forward the message, therefore this

method is not implemented for shortest path routing technique.

5.2.5 netDeadlockRecovery()

The netDeadlockRecovery() method is called when deadlock happens. This method is
used to free entries in request queues of physical links, free list of active packets, free list
of active messages and free list of new messages. Since only the wormhole routing
technique has the potential to have deadlock happened, in shortest path, this method is

not implemented.

5.2.6 networkDeadlock()

The networkDeadlock() is used to detect deadlock. This method is called in
jobscheduler(). Whenever a deadlock happens, the simulation will stop and generate
report. This method is not implemented in shortest path since there is no possibility to

have deadlock happened.

-76 -



5.2.7 netDeadlockReport()

The netDeadlockReport() is called whenever a deadlock is detected. This method is used
to generate report indicating where the deadlock happens. The same reason as mentioned

above, this method is not implemented in the shortest path routing technique.

5.2.8 PRINT_PARMS()

In the CPSS simulator, the network parameters are configurable. The PRINT_PARMS()
method is used to printout these parameters, like number of lane, link, and packet size,
etc. This method is implemented just to display a non-support message in shortest path

since shortest path does not dealing with these parameters.

5.2.9 PARMS_CHANGE()

The PARMS_CHANGE() method is used to change the network parameters. As the
reason mentioned above, this method is implemented just to display a non-support

message in shortest path.

5.2.10 netSendMsg()

In shortest path routing technique, messages are not actually routed through networks.
The netSendMsg() method simply calculates the number of hops between the source and
the destination nodes according to the network topology to get the network latency
directly. The following topologies are considered:

e Shared: when the topology is shared, there is no need to pass message. So the

elapse time of passing message can be considered as 0
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FullConnect: when the topology is full connection, which means there is a
connection between each node. So the elapse time of message passing is one hop’s
jumping time

Line: when the topology is line, which means a message has to pass each node in
between to reach the destination. So the total number of node which a message
has to pass is IdestNode - sourceNodel. Therefore, the elapse time of message
passing is IdestNode - sourceNodel hop’s jumping time

Ring: It is similar to Line except the message can go in the opposite direction to
reach the destination, which takes less time

Mesh: From this point on, the message passing time is not only has relationship
with number of processors, but it also has relationship with the topology
dimension and each dimension size. CPSS has a global variable to hold the
physical topology dimension, and its value is assigned when changing the
physical architecture type, void archProc(int topo, int dim, int dimSizes[]).
Messages traveling between distant processors must travel along horizontal or
vertical paths between immediate processor. Every pair of processor will have a
minimum path-length between them, measured by the sum of the row distance
and the column distance

Torus: It is similar to Mesh except the message can go in the opposite direction
to reach the destination, which takes less time

Hypercube: In a hypercube interconnection topology, the number of processors
is always an exact power of 2. The distance between processors is equal to the

number of bit positions in which their processor number is different
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5.3 Implementation for Simulated Packet

Simulated Packet is the upgraded version of Shortest Path routing technique. Instead of
simulating the message passing procedure directly by counting the number of hops
between source and destination nodes, network congestion is considered by introducing
the concept of BusyList. Each processor maintains a busy list. In simulated packet,
messages are divided into packets and these packets can be delivered at the same time
from different processor. When more then one packet arrive the same processor at the
same time, it does no consider to be forwarded immediately (This is the point where it is

different from Shortest Path). Instead it is pending in the BusyList at that processor.

The class definition for Simulated Packet can be described as following:

class CSimulatedPacket: public CNetwork

CNetwork()
virtual ~CNetwork()

void INIT_NEW_RUN()
void ROUTING_ROUND() §}
void INIT_CHANGE_PHYS_ARCH(}{}
void netDeadlockRecovery() {}
int networkDeadlock() {return 0;}
void netDeadlockReport() {}
void PRINT_PARMS()
void PARMS_CHANGE()
void netSendMsg( int srciNodelD,
int destNodelD,
int msgLen,
float sendTime,
int channNum,
int channValldx,
ProcDesPtr processPtr)

Figure 17. Class CSimulatedPacket Definition
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5.3.1 Constructor/Destructor

Since the simulated packet routing technique maintains a BusyList at each processor site.

The BusyList is allocated at the class constructor time and freed at the class destructor

time.

5.3.2 INIT_NEW_RUN(

This method is called when CPSS restart to run the program. At this time, it is not
necessary to release the BusyList, only the messages pending at each processor has to be
removed and creates a fresh environment for next run. This method is also called in class

destructor to release the list at each processor before release the BusyList in order to

avoid memory leak.

The structure of BusyList can be represented as following:

BusyList » Processor 0

———{ List |

—

List 2

Processor 1

———— List |

—»

List 2

b

Processor 2

——p List |

—>

List 2

Processor n

| List!

List2

o e

Figure 18. The Structure of BusyList
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5.3.3 ROUTING_ROUND()

This method is not implemented since the simulated packet routing technique does not

simulate the message passing procedure.

5.3.4 INIT CHANGE_PHYS_ARCH(

The INIT_CHANGE_PHYS_ARCH() method is called whenever the network physical
architecture is changed. This method is used to reorganize the routing table for message
passing procedure, reallocate lane and link. As the reason we mentioned above, the
simulated packet routing technique does not actually forward the message, therefore this

method is not implemented for shortest path routing technique.

5.3.5 netDeadlockRecovery()

The netDeadlockRecovery() method is called when deadlock happens. This method is
used to free entries in request queues of physical links, free list of active packets, free list
of active messages and free list of new messages. Since only the wormhole routing
technique has the potential to have deadlock happened, in simulated packet, this method

is not implemented.

5.3.6 networkDeadlock()

The networkDeadlock() is used to detect deadlock. This method is called in

jobscheduler(). Whenever a deadlock happens, the simulation will stop and generate
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report. This method is not implemented in simulated packet since there is no possibility

to have deadlock happened.

5.3.7 netDeadlockReport()

The netDeadlockReport() is called whenever a deadlock is detected. This method is used
to generate report indicating where the deadlock happens. The same reason as mentioned

above, this method is not implemented in the simulated packet routing technique.

5.3.8 PRINT_PARMS()

The PRINT_PARMS() method is used to printout these parameters, like number of lane,
link, and packet size, etc. This method is implemented just to display a non-support
message in simulated packet since the simulated packet does not dealing with these

parameters.

5.3.9 PARMS_CHANGE()

The PARMS_CHANGE() method is used to change the network parameters. As the
reason mentioned above, this method is implemented just to display a non-support

message in shortest path.

5.3.10 netSendMsg()

The netSendMsg method in Simulated Packet is similar to the method in Shortest Path.

The difference is instead of returning the number of hops between the source and
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destination node directly, the network congestion is considered by implementing the

BusyList for each processor.

5.4 Implementation for Packet Switch

In packet switch routing technique, the network manager maintains three linked lists.
They are new message list newMsgHead, active message list actMsgHead and packet list
packetHead. When a message needs to be sent, it is inserted into newMsgHead in the
order of message send time. When network gets its turn to execute, the new message list
is scanned and messages whose send time is no bigger than current time will be removed
from newMsgHead and appended to actMsgHead. In addition, this message will be cut

into packets and make it ready to be sent out through network

For packet switching, there is no concept of lane. Each link may have an earliest
available time, and each packet has an arrival time to a node. At each round of
communication, for each node, find the packet with the smallest arrival time that is not
less than the available time of its needed link, send it overt he link, and added packet
transmission time to that link’s available time as well as the packet’s arrival time. If no
packet in the node satisfy this condition, then no packets will be forwarded from that

node.
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The class definition for Packet Switch can be described as following:

class CPacketSwitch: public CNetwork

CNetwork()
virtual ~CNetwork()

void INIT_NEW_RUN()

void ROUTING_ROUND()

void INIT_CHANGE_PHYS_ARCHY()

void netDeadlockRecovery()

int networkDeadlock()

void netDeadlockReport()

void PRINT_PARMS()

void PARMS_CHANGE()

void netSendMsg( int srcNodelD,
int destNodelD,
int msgt.en,
float sendTime,
int channNum,
int channVaildx,
ProcDesPtr processPtr)

Figure 19. CPacketSwitch Class Definition

5.4.1 Constructor/Destructor

[n the constructor of packet switch class, the network resources have to be reserved for
the message passing process. In the destructor of packet switch class, the reserved
resources have to be released. The resources include the routing table, network links and

lanes, and the network related parameters.

5.4.2 INIT NEW_RUN(Q

This method is called when CPSS restart to run the program. In packet switch routed
network, the parameters which are required to be initialized include the network clock,
links, the lane structure on the links, and also pointers to header and tail of new message

queue, the active message queue, and packet queue.
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54.3 ROUTING_ROUND()

The routing_round function is called after all processors get their chance to execute one
time slice. The CPSS simulates the parallel programming by assigning each processor a
equal time slice. After all processors have taken their time slice, the global clock of the
simulator is advanced by one time unit. The routing_round function is executed when the
global clock is advanced. The purpose of this function is to scan the message queue and
start to route the available message (The available message refers to the message whose

send time less than the current time).

5.4.4 INIT_CHANGE_PHYS_ARCH(

The init_change_phys_arch function is called when the system physical architecture has
been changed. This function is to free the system resources allocated for the previous
physical architecture and reallocate them according to the new physical architecture
setting. The system resources mentioned here include routing table, links, lanes and some

of the network parameters which dealing with system topology.

5.4.5 netDeadlockRecovery()

The netDeadlockRecovery() method is called when deadlock happens. Since only the
wormhole routing technique has the potential to have deadlock happened, in packet

switch, this method is not implemented.
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5.4.6 networkDeadlock()

The networkDeadlock() is used to detect deadlock. This method is not implemented in

packet switch since there is no possibility to have deadlock happened.

54.7 netDeadlockReport()

The netDeadlockReport() is called whenever a deadlock is detected. This method is used
to generate report indicating where the deadlock happens. The same reason as mentioned

above, this method is not implemented in the packet switch routing technique.

5.4.8 PRINT_PARMS()

In packet switch class, the print_params function prints out the configurable parameters
for packet switch network. These parameters include number of lanes per link, channel
buffer size, packet size, packet header size, packet data size, startup_cost per message,

and startup_cost per packet.

5.4.9 PARMS_CHANGE()

This function provides a facility to change the configurable parameters in packet
switching routed network. In section 5.1, we have introduced the network parameters and
specified which parameters are configurable, here we summarize those which are
configurable specially in packet switch. They are number of lanes per link, packet size,

channel buffer size, startup_cost per message, startup_cost per packet.
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5.4.10 netSendMsg()

The purpose of the netSendMsg function is to forward messages. In packet switching
routed network, a message can not be forwarded directly. Whether a message can be
forwarded or not, it depends on the availability of network resources. Therefore this
function simply insert the message to the new message queue and waiting to be routed

when the network get its time slice to execute.

3.5 Implementation for Wormhole Routing

In wormhole routing technique, a communication step has two phases. In the first phase,
all packets whose header flits have not reached their destination request the next lanes on
their paths. If no free lane is available on a requested link, the requesting packet is queued
at the link, waiting for a lane to be released. Otherwise, a free lane is reserved exclusively

for this packet.

The second phase is also packet-driven. The network manager attempts to advance
unblocked flits of all packets by one link. For each packet p, the network manager visits
every lane on the current path of the packet. The visiting order is from the header flit
going backward to the tail flit. For each lane L belonging to packet p, if the corresponding
link k has not been scheduled in this communication step, then packet p will schedule link
k on behalf of the order packets sharing link k. The ID of the lane, which is allowed to
use the link in this communication step (if any), is recorded in field scheduleLand. If the
scheduleLane is lane L, the flit in this lane (which belongs to packet p) will be forwarded

by one link.
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The class definition for Wormhole can be described as following:

class CWormhole: public CNetwork

CNetwork()
virtual ~CNetwork()

void INIT_NEW_RUN()

void ROUTING_ROUND()

void INIT_CHANGE_PHYS_ARCH()

void netDeadlockRecovery()

int networkDeadlock()

void netDeadlockReport()

void PRINT_PARMS()

void PARMS_CHANGE()

void netSendMsg( int srcNodelD,
int destNodelD,
int msgten,
float sendTime,
int channNum,
int channValldx,
ProcDesPtr processPtr)

Figure 20. CWormbhole Class Definition

5.5.1 Constructor/Destructor

In the constructor of Wormhole class, the network resources have to be reserved for the
message passing process. In the destructor of Wormhole class, the reserved resources
have to be released. The resources include the routing table, network links and lanes, and

the network related parameters.

3.5.2 INIT_NEW_RUN(Q

This method is called when CPSS restart to run the program. In Wormhole routed
network, the parameters which are required to be initialized include the network clock,
links, the lane structure on the links, and also pointers to header and tail of new message

queue, the active message queue, and packet queue.
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5.5.3 ROUTING_ROUND()

The routing_round function is called after all processors get their chance to execute one
time slice. The CPSS simulates the parallel programming by assigning each processor a
equal time slice. After all processors have taken their time slice, the global clock of the
simulator is advanced by one time unit. The routing_round function is executed when the
global clock is advanced. The purpose of this function is to scan the message queue and
start to route the available message (The available message refers to the message whose

send time less than the current time).

5.5.4 INIT_CHANGE_PHYS_ARCH()

The init_change_phys_arch function is called when the system physical architecture has
been changed. This function is to free the system resources allocated for the previous
physical architecture and reallocate them according to the new physical architecture
setting. The system resources mentioned here include routing table, links, lanes and some

of the network parameters which dealing with system topology.

5.5.5 netDeadlockRecovery()

Whenever deadlock happens, the simulation system tries to recover it from deadlock by
removing the message queues which are waiting for a free link /lane. in addition, all the

message/packet lists are released in order to start another new run.
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5.5.6 networkDeadlock()

The networkDeadlock is function is to detect the deadlock status. The deadlock flag is set
when there is at least one packet which is waiting to be routed but the network system

indicates there is no schedulable packet.

5.3.7 netDeadlockReport()

Whenever deadlock is detected, the system will generate a report indicating the current

network type and the packet where the deadlock happened.

5.5.8 PRINT PARMS()

In wormhole routed class, the print_params function prints out the wormhole network
configurable parameters. They are number of lanes per link, flit size, channel buffer size,
packet size, flit header size, packet data size in flit, startup_cost per message, startup_cost

per packet, and the ratio between non_head_flit_speed and head_flit_speed.

5.5.9 PARMS_CHANGE()

This function provides a facility to change the configurable parameters in wormhole
routed network. In section 5.1, we have introduced the network parameters and specified
which parameters are configurable, here we summarize them all together. The
configurable parameters in the wormhole routed network include: number of lanes per
link, packet size, flit size, channel buffer size, startup_cost per message, startup_cost per

packet, and the ratio between non_head_flit_speed and head_flit_speed.



5.5.10 netSendMsg()

The purpose of the netSendMsg function is to forward messages. In wormhole routed
network, a message can not be forwarded directly. Whether a message can be forwarded
or not, it depends on the availability of network resources. Therefore this function simply
insert the message to the new message queue and waiting to be routed when the network

get a chance to be executed.
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Chapter 6

Experimental Results

In the previous chapters, the design and implementation of four routing techniques
(Shortest Path, Simulated Packet, Packet Switch and Wormhole Routing) are presented.
In this chapter, how different routing techniques have influence on the performance
statistics of CPSS are illustrated by studying two examples. The purpose of these studies
is to testify what we did is correct. One example is a simple parallel program which is
running under ring topology and each processor sends a message to its next neighbor.
Another example is a more complicated parallel program which is matrix muitiplication

program. In the following subsection, these two examples are studied individually.

6.1 Example 1: Ring Communication Program

The source code of Ring Communication Program is illustrated in Figure 21. In this
program, the virtual architecture is specified as Ring, physical architecture is specified as
Line, and each with dimension 8. On each processor, a send buffer z and receive buffer y
are defined. The main() function initializes the send buffers for each processor and then
invokes f() function to be performed parallel on each processor. The function f() performs

message sending and receiving operations.



#include "cpc.h"
#define N 8

phyArch line L([N}:
arch ring R[N];
int z([N], yIN};

void main() {
int i;

timeOff();
for (i = 0; i < N; i++)
z[i] = i;

timeOn();
forall (i from 0 to (N-1)) f(i);
}

void f(int i)

{
barrier(N);
send(&z[i], 1, 0, i+l);
receive(&y([i], 1, 0);

}

Figure 21. Ring Communication Program

When the CPSS system uses default mapping between physical architecture and virtual

architecture, the performance statistics with different routing technique is as following:

Routing Technique | Sequential Parallel Sequential/ Parallel
Execution time Execution Time Execution Time

Shortest Path 699 330 2.12

Simulated Packet 699 340 2.06

Packet Switch 699 450 1.55

Wormhole Routine | 699 490 1.43

Table 1. Performance Statistics for Ring Communication Program

*Note: The execution time could be different when running on different machine, but speedup should be

the same.
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6.2 Example 2: Matrix Multiplication Program

The source code of Matrix Multiplication program is illustrated in Figure 22. In this
program, the virtual architecture is specified as Torus, physical architecture is specified
as Mesh, and each with dimension 8 x 8. In order to simplify the computation, matrix
multiplication is applied to two 8 x 8 matrix. The main() function first initializes these
two 2D matrices with random numbers, then multiplication is applied to these two
matrix. Unlike the traditional matrix multiplication, this program takes the advantage of
parallel programming by forking the computation to each processor in order to maximum

the operation speed.

#include "cpc.h"
tdefine N 8

arch torus T{N]([N];
phyArch mesh L([N] (N]:

channel float Achan{N]{N], Bchan[N]([N];

void main(¢) (
float a[N][N], b[N][N], c[N][N];
int i, j;

timeOff();
for (i=0; i<N; i++)
for (j=0; j<N; j++)
afilf(jl] = rand()*S;
for (i=0; i<N; i++)
for (j=0; j<N; j++)
b[i][j] = rand()*5S;
timelOn();
pMultify(a, b, ¢);
}

void multiply(int row, int col, float myA, float myB, float smainC) {
int iter, above, left;
float myC;

if (row>0)
above = row - 1; // up neighbor
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else
above = N - 1;

if (col>0)
left = col - 1; // left neighbor
else
left = N - 1;
myC = 0;
for (iter=0; iter<N; iter++) {
Achan{row] [left] = myA; // send myA in leftward rotation

Bchan({above] [col] = myB; // send myB in upward rotation
myC += myA * myB;
myA = Achan{row][col]; // receive new myA
myB = Bchan{row] [col]; // receive new myB
}
mainC = myC; // Send final value to main process

}

void pMultify(float &sa{N]}[N], float sb[N][N}, float &c{N][N]) {
int i, j;
forall (i from 0 to N-1)
forall (j from 0 to N-1)
fork [i*N+j; Achan[i][j]1., Bchan[i][j]]
multiply(i, j, alil{(j+i) % N], b[(i+]) & NI[Jj), ciil(j]):

Figure 22. Matrix Multiplication Program

In order to understand this program well, here are some explanations for parallel

programming syntax:

e Forall: is a parallel form of for loop. Each iteration of a forall statement creates a
child process which will run in parallel with other children processes created by the
same forall.

e Fork: followed by any expression will create a new process which will evaluate the
expression and run in parallel with the parent. The parent will continue execution
right after the creation of the child without waiting for the child to terminate. The

child and the parent will then be running in parallel.

When the CPSS system uses default mapping between physical architecture and virtual

architecture, the performance statistics with different routing technique is as following:
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Routing Technique | Sequential Parallel Sequential/ Parallel
Execution time Execution Time Execution Time

Shortest Path 35610 1240 28.72

Simulated Packet 35688 1290 27.67

Packet Switch 35853 3560 10.07

Wormhole Routine | 35816 3630 9.87

Table 2. Performance Statistics for Matrix Multiplication Program

*Note: The execution time could be different when running on different machine, but speedup should be

the same.

From the above table, we can see that the Shortest Path routing technique takes more time

on sequential execution, but less time on parallel execution. Simulated Packet takes little

bit more time on parallel execution than the Shortest Path. For the Packet Switch routing

technique, the parallel execution time increased significantly. And the Wormhole routing

technique takes even more time on parallel execution than the Packet Switch.
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Chapter 7

Conclusion and Future Work

This thesis focused on the design and implementation of CPSS communication network
using object-oriented methodology. The aim of the design is to provide CPSS an
independent, encapsulated communication network module. By extracting the
implementation of network module from CPSS, CPSS does not need to aware the
changes of communication network, including network topology, routing technique,

network parameters.

In the current release of the network module, four types of routing techniques are

implemented. They are Shortest Path, Simulated Packet, Packet Switch and Wormbhole.

The CPSS communication network module makes the CPEE an excellent environment

for developing and fine-turning parallel programs due to the following advantage

features:

¢ Encapsulation: By deploying the object-oriented design, all network related
information and implementation details are encapsulated from the other part of CPSS.
The advantage is when a person works on the rest of CPSS parts, he/she doesn’t need

to be interrupted by the communication network code.
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¢ Polymorphism: Our network module supports four types of routing techniques. With

this feature, the network module only exposes its abstract interface to the rest of
CPSS parts and CPSS does not need to aware which routing technique and what
topology the system is running on. This simplifies the development of the other part
of CPSS.

Extensibility: There are four types of routing techniques are supported in our current
version of CPSS. Probably there will be a request to support more routing techniques
in the future. With the two characteristics listed above, this feature is easy to achieve.
Programmers do not need to go through the whole CPSS code to do modifications,
and only the network module is need to be accessed. In addition, the developer only
need to get familiar with the common network interface, and create a new class which

inherence from this abstracted common interface to do the development work.

The following features can be implemented in the future:

Implementation of more routing techniques. Like we discussed previously, there are
virtual cut-through, circuit switch etc. which are not implemented. With the object-
oriented design done in this thesis, this work becomes more straightforward.

Object-oriented design for CPSS. In the current version, only the network module is
extracted from CPSS as an independent object. CPSS itself can be design and

implemented using object-oriented methodology.
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