INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directiy to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

An Enterprise Policy Specification Tool

Venkatachalam

Kanthimathinathan

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

February 2001

Copyright © 2001 by Venkatachalam Kanthimathinathan

B+l

National Library Bibliothéque nationale
of Canada du Cana
Act}_uisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Straet 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your g Votre réldrence
Our fle Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cefte thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-59330-4

Canada

ABSTRACT

An Enterprise Policy Specification Tool
Venkatachalam Kanthimathinathan

As enterprises begin to increasingly conduct their businesses over multiple
interconnected networks spanning many countries using large computer systems, there
is a need to be able to specify, represent and manipulate enterprise policies in these
systems so as to be able to efficiently monitor and regulate enterprise processes and
business transactions. A large enterprise typically comprises of hundreds of smaller
units that to a large extent operate independently but within the overall goals of the
enterprise. To reduce any bottlenecks or delays in everyday operations of enterprise
units, it should be possible for various enterprise unit heads to create, delete or modify
policies relevant to them with minimum reliance on a centralized policy administrator.
However, when multiple users begin to manage enterprise policies, there is a need to
identify “who can create policies on what resources” and “who should follow these
policies”. Also, when multiple units compete for common resources, policy conflicts
may arise. It is important to detect and resolve conflicts between policies before
accepting them for enforcement.

An Enterprise Policy Specification Tool (PST) is introduced in this thesis that
provides a solution to the above problems. The tool is unique since it provides a model-
driven policy specification language that incorporates constructs to denote the
enterprise model in the specified policies. We have defined policy conflicts that can arise
and provide a mechanism to detect and resolve them at the time of specification.
Although our proposed model is domain independent, the implementation and testing
have been carried out in the context of a Message Notification System. A Java-based
partial implementation of our proposed architecture has demonstrated the feasibility of
the model-based approach to policy specification.

Acknowledgement

I thank my supervisor Dr.Thiruvengadam Radhakrishnan for his guidance and constant
encouragement during the course of this work. I thank Dr.Clifford Grossner for his
feedback and advice that paved way for this work. I am grateful to Nortel Networks for
providing financial support that enabled this work. I thank Mark Beirel for providing
initial momentum with the implementation aspects of this thesis. A special note of
thanks to my friend, Ragavan, whose sense of humor and good company made things
easier during my stay in Ottawa. I thank my family for their infinite belief in my
abilities and constant support and encouragement. [thank my best friends, Sriram,
Bhaskar, Masoud, Sid and Girma for all the good times they have given me both at work
and home. I would like to make a special mention of Roopana for being a great source of
encouragement and inspiration during the difficult times. Finally, I would like to thank
the excellent support of Stan Swiercz. His presence in the system analyst team gave me

immense confidence when working on the implementation aspects of this thesis.

Table of Contents

LIST OF FIGURES

1. INTRODUCTION

1.1 ENTERPRISE AND ENTERPRISE POLICIES

1.2 THEPROBLEM

[.3 OUR CONTRIBUTION.

1.4 ORGANIZATION OF THE THESIS

2. SURVEY OF POLICY SYSTEMS

2.1 INTRODUCTION

2.2 CASE STUDY l: YEAST

2.2.1 Overview

2.2.2 Challenges and Limitations

2.3 CASE STUDY 2: KARMA

2.3.1 Overview

2.3.2 Challenges and Limitations
2.4 CASE STUDY 3: POLICY SERVICE

2.4.1 Overview

2.4.2 Challenges and Limitations

2.5.1 Overview

2.5.2 Challenges and Limitations

2.6 CHAPTER SUMMARY

3.1 ENTERPRISE AUTHORITY (EA) MODEL

3.3.1 Syntax and Semantics

v

1

1

2

4

4

5

5

7

7

9

10

10

12

13

13

14

2.5 CASE STUDY 4: RULE-BASED MANAGEMENT ARCHITECTURE 16
16

18

19

3. ENTERPRISE MODEL DRIVEN POLICY SPECIFICATION TOOL 20
20

32 CASE SCENARIO: ROLE BASED POLICY SPECIFICATION 23
3.3 POLICY SPECIFICATION LANGUAGE (pSL) 25
26

28

3.3.2 Two Level Specification of Authorization policies.

3.4 CONFLICT DETECTION AND RESOLUTION AMONG POLICIES 29

3.5 POLICY SET INCREMENTAL MAINTENANCE 35
3.6 ENTERPRISE POLICY SPECIFICATION TOOL (PST) ARCHITECTURE 36
3.7 CHAPTER SUMMARY 40

4. APPLICATION OF ENTERPRISE POLICY SPECIFICATION TOOL 41
4.1 MESSAGE NOTIFICATION SYSTEM (MNS) DESCRIPTION 41
4.2 'NEED FOR POLICY BASED NOTIFICATION 44
4.3 INTEGRATED ARCHITECTURE FOR POLICY BASED NOTIFICATION 45
4.4 CASE SCENARIO: APPLICATION OF INTEGRATED ARCHITECTURE 48
4.4.1 GEA Model 48
4.4.2 Policy Specification 49
4.4.3 Conflict Detection and Resolution s!
4.4.4 Policy Enforcement 51
4.4.5 Java Implementation and Testing 53

44.5.1 PSL Editor and Policy Handler..........c.coveervrrreerimierenrerinerenerrrereneecrenessneecesnessencnsenes 55
4452 ContACt EdItOr.....coiuiiiiiiniiiiniiieies e teriseite ettt st s st et eer e se e s b s n e enn an ses nee 57

4.5 CHAPTER SUMMARY 58

5. CONCLUSION 60
5.1 CONTRIBUTIONS 60
5.2 FURTHER WORK 61

6. REFERENCES 63

List of Figures

Figure 1: Architecture of Yeast System

Figure 2: Karma Component Overview
Figure 3: Enterprise Objects Classification

Figure 4: A typical Enterprise Authority (EA) Model

Figure 5: Role-based EA Model

Figure 6: Global Enterprise Authority (GEA) Model

Figure 7: Conflict Detection Mechanism

Figure 8: PSL Conflict Detection Algorithm
Figure 9: PSL Conflict Resolution Algorithm

Figure 10: PST Architecture

Figure 11: Policy Set Data Structure

Figure 12: Policy Handler

Figure 13: Parts of MNS request

Figure 14: An Example Message Notification Scenario

Figure 15: PST and MNS Integrated Architecture
Figure 16: Policy-based Message Notification Mechanism

Figure 17: Case Scenario: GEA Model

Figure 18: Scope of Implementation of Integrated Architecture
Figure 19: PST LoginWindow

Figure 20: Graphical User Interface for Policy Specification

Figure 21: Contact Editor

11

ST AT XEBEERL LIRSS HEBRNA

1. Introduction

1.1 Enterprise and Enterprise Policies

A large enterprise or business organization consists of thousands of human
entities and resources operating in a constantly changing environment. The prominent
aspects of an enterprise are its structure, processes and product. Structure is the
identification of various entities in the enterprise and relationship between them. Process
is the sequence of events or interactions between these enterprise entities and product is
the final goal of an enterprise. Enterprise policies are sets of rules framed by an enterprise
to confrol and manage its structure and process in order to achieve its product effectively.
Since goals are usually divided into sub-goals, entities usually work in clusters to
achieve a common sub-goal. Group of entities working to achieve a common sub-goal is
called a unit. In an enterprise, some policies are applicable to all units in the enterprise
and some only to specific units. Policies that are applicable to all units are called global
policies and those applicable only to specific units are called unit policies. It is important
to ensure that global and unit policies are consistent with each other. When entities
locally compete and/or globally co-operate to achieve overall goals of the enterprise,
ensuring this consistency is a complex task.

Enterprise policies monitor and control the activities of enterprise entities by
applying various constraints or degrees of empowerment to initiate enterprise processes
by including statement of permissions, prohibitions and obligations. As enterprises
begin to increasingly conduct their businesses using large computer systems which span
multiple interconnected networks in different countries, there is a need to be able to
specify, represent and manipulate enterprise policies using policy systems. A policy
system is essentially a computer software system that demonstrates [IETF} the following

o ability to enable a user to define and update policies

¢ ability to store and retrieve policies

e ability to interpret, implement and enforce policies

Also, with the automation of many aspects of business to business transactions using
Software Agents [Wies] or softbots there is a need to represent such policies in computer
systems so that they can be easily interpreted by these agents to influence their
activities. In order to achieve a policy-based enterprise management, an enterprise first
represents its rules and regulations in the policy system and lets all processes governed
by it. The policy system controls these processes by permitting, restricting or acting upon
them based on enterprise rules and regulations stored in the policy database.

1.2 The Problem

Policy systems in use today are primarily driven by research in the area of
network management [Brites][Sloman], systems management [Koch] [Moffet] and
active databases [Herbst]. As a result, policies today are modeled based on the Event-
Condition-Action (ECA) mechanism that allow specification of policies with a simple
ECA rules: if the event occurs in a situation where the condition is true then the
specified set of action will be executed. Events that trigger policies are generated in any
one of the three ways [Koch]: by means of system monitoring, policy action or human
users. Existing policy systems are largely focused on events that are generated by means
of system monitoring. However, in an enterprise, when a human user initiates an
enterprise process (eg: initiates expense claim process) it needs to be processed based on
the user’s authority and role within the enterprise. Also, when entities and resources are
grouped into hundreds of smaller departments, it is impractical for one person to
specify policies related to all entities. It should be possible for each unit within an
enterprise to define, update, store or retrieve their own set of policies. In which case, it
becomes important to verify who can specify policies (eg: policy for sanctioning an
expense claim) on other entities. Existing policy systems [Bala] [Kramer] [Sobieski]
assume that policies are specified by a single user namely the system administrator and

do not recognize the need to verify the policy creator’s authority to specify policies on
other entities.

When multiple units are allowed to mange their own policies, two units may
compete for a common resource, in which case policies from different units may
conflict. Therefore, when new policies are entered into the policy system, before they are
stored in the policy database conflict detection should be performed and feedback
should be provided to the policy creator about the detection results. This feedback
could be a "Valid/Invalid Policy” message or to indicate the erroneous rule conditions
or actions and resolve them interactively with the user. In policy systems today, policy
conflicts are resolved based on the priority value of a policy, which is a numerical value
provided to it at the time of specification or by prioritizing negative authorizations over
positive authorizations. However, in an enterprise, conflicts between two policies are
usually resolved based on the relative authorities of entities that created the policies and
hence the present conflict resolution methods [Lupu] are not sufficient.

The dynamic nature of the enterprise has a potential to introduce new
inconsistencies in the policy database when entities leave the enterprise or some
resources cease to exist. In this context, several questions arise: if the specifier of a policy
leaves the organization, should that policy continue to exist or not? When domains or
groups within the enterprise are deleted or merged with other groups how should the
policies that target these domains be modified to reflect the new changes? It is
important to realize that checking for consistency of policy database is not only required
when a new policy is introduced into the policy system but also when there is a change
in the enterprise structure. Policy systems today, do not recognize need for such
incremental maintenance and hence their policy database may have policies that may
never be executed or may throw exceptions at the time of execution. Marriot ‘s Policy
Service [Marriot] has partially addressed this issue by allowing an optional exception
clause in policy statements. If the execution of a policy throws exception then the
exception clause is executed. However, this method is not very efficient since the
inconsistent policy will continue to exist in the policy database. In summary, we note
that the present policy systems:

e assume policies are specified by single users namely the system administrator
¢ do not verify the authority of a policy creator to define new policies

¢ do not provide a sufficient conflict resolution mechanism
e do not recognize the need for incremental maintenance of policy database

1.3 Our Contribution

In this thesis, we have proposed an enterprise authority (EA) model that denotes
the structure of an enterprise and the relationship between various entities in the
enterprise. We make use of this model to obtain the scope of a policy for its
enforcement. A Policy Specification Language (PSL) is proposed in this thesis that
enables a user to create new policies for enforcement. PSL policies obtain their scope
automatically from the EA Model and this implicitly determines “who can specify
policy on whom”.

Another contribution of this thesis is a framework for detection of policy conflicts
and a method to automatically resolve conflicts based on the enterprise authority (EA)
model. We identify situations in an enterprise that may create new inconsistencies in the
policy database and recommend incremental maintenance tasks.

We have designed and developed an Enterprise Policy Specification Tool (PST)
that supports our EA Model, PSL, Conflict Detection and Resolution mechanisms. The
underlying architecture of PST is flexible to support incremental maintenance tasks.

1.4 Organization of the Thesis

In Chapter 2 of the thesis, we provide an overview of several policy systems that use
different specification languages and conflict detection and resolution mechanisms. In
Chapter 3, we introduce the EA model based architecture that addresses the limitations
of existing systems to operate in an enterprise environment. We describe the syntax and
semantics for our proposed policy specification language and describe a method to
detect and resolve policy conflicts. In Chapter 4, we present a Java based
implementation of the system prototype and provide implementation details of various
system components. Finally, Chapter 5 provides the conclusion and future work.

2. Survey of Policy Systems

2.1 Introduction

In this chapter we will review four popular policy systems that are presently used to
provide some form of policy-based management in enterprises. Before reviewing these
systems we will examine the various stages of a policy from the time of specification to
its enforcement.

Policies can be specified at different levels of abstraction. At the highest level we can
find policies specified using natural language. At low levels they are used to describe
policies that deal with when and how to configure a device or how to manipulate
different network elements under different conditions in order to achieve management
goals. A high level policy when translated will yield many lower level policies. This
derivation is obtained by refining the goals, partitioning the targets or delegating the
responsibilities to other managers. Consider an example of a high Ievel policy on
availability of a printer in a department:

Example: “Atleast one printer should be available for use by graduate students”.
This policy when translated will yield many other policies on printer maintenance,
redundancy and error recovery. The ultimate aim is to be able to specify high-level
policies and automatically generate the lower level ones. High-level goals and
objectives, which are typically expressed in plain-text can be transformed into policies
that are less abstract and at a level that can be implemented in a software system.

Moffet [Moffet] and Marriot [Marriot] identify the need to formally describe the
relationships between high level and low level policies and their translations. It would
be useful for a system to be able to record both the translation process and its inverse
mapping. If a high level policy is changed or defined, it should be possible to decide
what lower level policies must be newly created or modified. Weis [Weis] states that

degree of detail and technological aspects increase as one moves down the hierarchy
while the business aspects decrease.

A new or updated policy that is specified to policy system has to be stored in the
policy database for persistence. However, before the policy is stored in the repository, it
is important to check its correctness. Such verification could result in a "valid” or
“invalid” condition. Since policy rules can be syntactically correct yet make no sense,
validation of semantics of a policy rule is necessary [IETF] to ensure that the policy is
meaningful in a given context.

Conflicts between policies can occur when two policies that monitor the same set
of events trigger opposite actions. Or conflicts can occur when two policies, one with
negative authorization and other with positive authorization exist simultaneously
[Sloman] in a policy set. Such conflict detection maybe performed either at the time of
specification (ie., before the policy is accepted) or during policy execution. The
detection performed at the time of specification is also called off-line detection, meaning
that it is not performed at the same time as the execution of the policy whereas on-line
detection occurs at the time of policy execution. Conflict detection at the time of
spcification, check for static conflicts derived from set of policies whose conditions are
simultaneously satisfied, but whose actions conflict with those of currently existing
rules. However, not all policy conflicts can be detected at the specification level. Some
policies rules may be based on time (specifying an effective validity period in the future)
or based on dynamic state information. Conflicts between such policies may only be
detected at the time a policy becomes valid and enforcement action is attempted. When
a conflict is detected, conflict resolution mechanism is initiated. In order to resolve
conflicts between two policies, we need to establish precedence of one policy over the
other. Once the precedence is established, the policy with a higher precedence is
accepted and the other is retracted or discarded. Policy systems today are experimenting
with various [Lupu] precedence mechanisms such as modality [Marriot] [Sloman] based
precedence, numerical value based precedence and subject (subjects are entities that are
required to follow a policy) specificity based precedence to establish precedence
between conflicting policies.

Policies are inherently dynamic in nature and they constantly undergo changes
with changing business environment. Implementing policies in a procedural language

(eg: C/C++ or Java) makes maintenance difficult. Since, when a policy changes, policy
administrators have to recompile the code to reflect new changes. This is inefficient and
time consuming. Rule-Based languages (e.g., Prolog, Clips) support interpretive use of
policies where rules are interpreted at run time that makes maintenance of policies
easier. Also, it enables new policies to be dynamically added on the fly.

2.2 Case Study 1: Yeast

2.2.1 Overview

Specification of policies in Yeast [Bala] is based on event-action pairs. Events are
monitored and when they occur actions are triggered. Each Yeast event-action
specification defines a pattern of events and the appropriate action to be executed in
response to the occurrence of the event pattern. The action can be in the form of
invoking any program that is executable from the Yeast system shell. Yeast provides a
mechanism for detecting two types of events: polled or pushed events.

As shown in Figure 1, Yeast is a client/ server system. The server is a central entity
accepting client commands from a number of (possibly remote) users. The primary
function of the server is to accept, match and manage specifications on behalf of users.
The user invokes client commands through the computer system’s command interpreter
(such as UNIX shell). Client commands are used for various activities such as register
specifications with the server and to perform various querying and management chores.
The server and client programs can reside anywhere in the network. The various client
commands are described later in this section.

In Yeast, an event corresponds to change in the value of an attribute of some
object class. The object definition database stores the definitions of various object classes
and attributes. The database contains the definitions of object classes and attributes that
are pre-defined or user-defined.

Figure 1: Architecture of Yeast System

As new Yeast specifications arise they are stored in a file system for interpretation. The
specification database includes a persistent copy of the specification stored in the file
system. If the Yeast server is restarted after a failure, the file system is restored from the
database. A Yeast specification has the following syntax:

event_pattern do action
The event pattern contains primitive event descriptors formed that are combined using
the connectives then, and and or. New specifications can be specified in Yeast using the
addspec command as shown below:

addspec event_pattern do action

where event_pattern is a complex expression of event descriptors and action is any shell
(that is running Yeast application) executable command. The three operators and, or and
then are used to form the event pattern. The action part is not parsed by Yeast and is
executed by the command line interpreter as it is.
As a case study, we will go through the sequence of steps to specify a policy in Yeast to
monitor the “status of a project file and notify the project team when the project file is
debugged”.

Step 1: defattr file debugged boolean
The Yeast commands defobj and defattr are used to define new objects in Yeast. However,
since the object “file” is a predefined object in Yeast, it exists in the object definition
database and hence can be used in Yeast specification. We will define an attribute called
“debugged” for the pre-defined object class file and then register a specification that
notifies project personnel whenever file project.c is debugged:
Step 2: addspec file project.c debugged == true

do notify project.c debugged
The addspec command registers new specifications in Yeast. The action, notify has to be
supported by the command interpreter running Yeast application. The above
specification would be matched when the person responsible for debugging the file
project.c generates the following announcement:
Step 3: announce file project.c debugged = true
Yeast's announce command is used to generate a pushed type event to Yeast thus
matching any specification that monitored the user-defined attribute.
Yeast provides specification related commands such as Isobj, Isattr, rmobj and rmattr to
manipulate Yeast objects. And commands Isspec, rmspec, modgrp to manipulate Yeast
specifications.

2.2.2 Challenges and Limitations

By default, Yeast specifications have global scope, i.e., Yeast event-action
specifications are applicable to all registered Yeast users. Yeast provides a mechanism
to verify the authority of a user to monitor or initiate enterprise processes by providing
three levels of control to Yeast objects: read, announce, write and owner accesses. A user is
allowed to monitor an event if he or she has a read access to the event object. A user can
initiate an enterprise process by instantiating an event object if he or she has an announce
access to an object. Similarly, the user can define and remove attributes of an object class
with write access. With owner access, the user can delete and remove the object class
itself. Although, this helps to verify the authority of user to initiate a request, it will be
cumbersome to maintain accesses at the object level for every entity for each enterprise
process in a large enterprise.

Since the task of policy specification is not restricted to one user (e.g.,
administrator), conflicts may arise when two users input specifications that perform
opposite actions on the occurrence of the same event. Yeast does not provide a
mechanism to detect and resolve conflicts between its specifications. Yeast [Inverardi]
discusses possible inconsistencies that can occur between Yeast specifications but does

not provide a method to detect or resolve them.

2.3 Case Study 2: Karma

2.3.1 Overview

Karma [Sobieski] is a policy management application developed to support the
collection, analysis and implementation of business policies at Fannie Mae, a large
insurance company. However, Karma is domain independent system. Karma has three
main components. They are:
e Data Dictionary Editor, where objects and attributes that are required to define
business policies are defined

e Rule Editor, where policies are formally specified as business rules to the system
¢ Rule Browser, which is used to browse existing policies
Karma allows defining new event and action objects and their attributes through its
data dictionary editor and provides the user with a rule specification language to define
new rules using these objects. When new rules are defined, Karma stores it in the rule
database. From this database, Karma generates executable ART-IM rules for the Karma
rule server to interpret. Using Karma Rule Specification Language the policy rules are
specified as:

IF <clause>

AND <clause>

THEN <clause>

10

NN Rules

Dictionary

O

Business| Bm!xnhle
Rule Business
b Rules

Figure 2: Karma Component Overview

Where the <clause> can be any of the following forms:
<attribute> <operator> <attribute> |
<attribute> <operator> <value> |
<attribute> <operator> <attribute-list> |
<attribute> <operator> <value-list> |
<object> <operator>
As a case study, we will go through the sequence of steps needed to specify a policy that
monitors the status of a project file and notifies the project team when the project file is
debugged. Using the Karma Data Dictionary editor, we first define a object Project, that
monitors the file “project.c” and appropriately sets its attribute debugged to boolean
value true, when the file is debugged. And another object Notify that will send
appropriate notifications.
We will then define a Karma rule given below:

IF Project.debugged is true

THEN notify team
The clause “Project.status is debugged” is an <attribute> <operator> <value> clause in
Karma (ie., Projectstatus, is, debugged). The clause “nofify feam” is an <object>
<attribute><operator> clause. Karma policy rule expressions consist of left-hand side and

11

right hand side clauses. They may have one or more clauses ANDed together in the left-
hand side but have only one single clause in the right hand side.

2.3.2 Challenges and Limitations

Karma assumes a centralized rule administration, with one user (e.g.,
administrator) defining and maintaining policy rules and hence a Karma policy is
applicable to all users of the policy system. Karma does not provide support to
enterprise concepts such as unit, role or authority of a user. Also, Karma objects do not
have an ownership as in the case of Yeast and this limits it from verifying the access of a
user to initiate an enterprise process or to specify policies to monitor them. And hence
any user with access to the Karma data dictionary can specify policies using the objects
defined in them.

Karma has a good consistency checking mechanism. When new rules are
defined in Karma they are checked for consistency with the existing rules and policy
conflicts are detected and displayed. The consistency checking capability of Karma
identifies the following relationships among new policy rules: inferred rules, redundant
rules, conflicting rules and subsumed rules. However, when Karma detects a conflict it
only displays the results and does not propose a method to resolve these inconsistencies
either interactively with the user, or automatically.

Karma’s provides a data dictionary editor to manage Karma business object
model. However, when an object is deleted from Karma data dictionary there is still a
possibility that Karma policy set has rules that continues to use this object. Since Karma
does not recognize the need to maintain consistency between its object model database
and policy database, there could be policies in the policy set that may never be executed

or may throw exceptions during execution.

2.4 Case Study 3: Policy Service

2.4.1 Overview

Sloman, Lupu and Marriot's research on Policy Service [Marriot] relates to policy
specification [Marriot] [Sloman], conflict analysis [Lupu] and architecture [Marriot] for
policy-based systems. Policy Service provides a persistent data store for policies and
provides a mechanism for distributing policies in a distributed system. Fundamental to
their work on Policy Service, is the way the authors have classified policies into two
types: as authorization policies and obligation policies. Authorization policies define what a
set of users (managers) are permitted (or not permitted) to do in terms of operations on a
set of resources. Obligation policies specify what activities a user must do (or must not
do) to a set of available resources. Their policy model allows each type of policy
(authorization or obligation) to be either positive or negative in nature.

Policy Service provides a high-level specification language, Policy Notation, to enable

users to create new policies into the policy system. Policy Notation has the following

syntax (note: optional attributes are within brackets):
[description] identifier mode [trigger] subject “{‘action °}’ target [constraint]
[exception] [parent] [child] [xref] °/

The mode of a policy is given either by an “O” for obligation policy or by an “A” for

authorization policy, with a “+” or a “-“ denoting a positive or negative policy. The

notation supports the following types of policies:

e positive authorization policy (A+)

¢ negative authorization policy (A-)

¢ positive obligation policy and (O+)

e negative obligation policy (O-)

We briefly describe other attributes used in the notation:

¢ description: attribute is used to provide general comments about the policy such as
its history, author or name

o identifier: is used to provide a label to refer the policy

13

mode: of a policy is given either by an “O” for obligation policy or by an “A” for
authorization policy, with a “+“ or a “-“ denonting a positive or negative policy.
Trigger: is the definition of the event that may trigger actions of an obligation
policy. However, authorization policies are consulted whenever relevant action is
attempted.

subject: of a policy specifies those objects which are obliged or authorized to
perform the action specified. Users and automated managers are examples of typical
subjects. An obligation policy is distributed to its subjects to be interpreted.

target: The target of a policy specifies the objects on which actions are to be
performed. Targets can be grouped as domains.

action: specifies what action must be performed for obligations and what is
permitted for authorizations.

Constraint: defined by the when clause limits the applicability of a policy
Exception: It is a exception mechanism provided for positive obligations to permit
the specification of alternative actions to cater for failures which may arise in the
system while executing policy actions. This failure maybe due to network failure or
any other reason.

parent, child, xref: High-level abstract policies can be refined into implementable
policies. In order to record this hierarchy, policies contain references to their parent
and child policies. In addition, a cross-reference (xref) from one policy to another
can be inserted manually.

The Policy Notation for a policy that monitors the status of a project file and notifies the
project team when the project file is debugged is shown below:

ProjectStatus O+ u:@developers {project.status = = debugged}
Notify.team (“File Debugged”);

2.4.2 Challenges and Limitations

Sloman’s authorization policies define what activities a subject can perform on a set

of farget objects and are essentially access control policies to protect resources from
unauthorized access. In an enterprise scenario, targets can be subjects, since multiple
managers (subjects) may specify policies for employees (subjects) to follow. In this case,

14

there is a need to verify if a subject can specify a policy for another subject to follow.
Sloman and Lupu [Lupu] have described Roles and Role Relationships in enterprises
but do not recognize the need to verify new policies based on roles and role-
relationships between policy creator and policy subjects.

Policy Service imposes a constraint that every obligation policy action has to be
authorized by an authorization policy otherwise the action is prohibited. This can create
inconsistencies in the policy set with an obligation policy existing without appropriate
authorization policy. Such inconsistencies can be prevented if obligation policies are
verified for appropriate authorizations before their acceptance for enforcement.

In Policy Service, conflicts occur when the following policies apply for same set of
subjects and co-exist in the policy set:

1. positive and negative authorizations (A+/A-)

2. positive and negative obligation policy (O+/O-)

3. obligation policy with negative authorization (O+/A-)

Marriot [Marriot] in his initial work on Policy Service has used modalities (“+” or “-")
to establish precedence between conflicting policies. This provides higher priorities to
negative modality (“-“) over positive modalities. Therefore, if a positive authorization
policy and a negative authorization policy for the same set of subjects co-exist in a
policy set, then the negative authorization policy is given precedence and retains its
place in the policy set. The positive authorization policy is retracted and discarded.
Although, in this method precedence is easier to establish, it is not suitable when
multiple users with varying authorities create policies. In an enterprise scenario, conflict
resolution needs to consider the authority of the users involved in creating conflicting
policies and not just the modality of the policy.

Sloman and Lupu [Sloman] propose a domain nesting based precedence mechanism
to establish precedence between two conflicting policies. This gives precedence to
policies that apply to more specific set of subjects, targets or both. In an enterprise, it is
important to ensure that unit level policies (which are more specific to a domain) need
to conform to global policies (which are less specific to a domain) of the enterprise. If
applied in an enterprise situation, when conflict is detected between global and unit
policies then domain nesting based resolution mechanism will give unit level policies
precedence over global policies. This is not desirable. Also, domain nesting based

15

precedence cannot be established when the sets are equal or when subject sets are more
specific but the farget sets are less specific or vice verca.

The policy notation [Marriot] allows specification of exception clauses to specify
alternative actions to cater for failures that may arise when trying to execute a policy
action. An obligation policy with multiple targets may result in multiple exceptions.
Exception mechanisms are useful to handle transient failure conditions (eg: network
down time) that recover to normalcy after a period of time. However, when the failure
is bound to be permanent (eg: subject entity deleted), exception clauses are not an
efficient solution. This is because over a period of time as the number of permanent
failures increase, the number of exceptions will continue to rise. It will be more
appropriate to remove policies that create permanent exceptions from the policy set.
This will free up some execution time spent in executing these exception clauses thus
speeding up the processing of other events waiting for execution.

2,5 Case Study 4: Rule Based Management Architecture

2.5.1 Overview

Thomas Koch’s management framework [Koch] [Kramer] is based on an object-
based approach and hence all components of their environment are viewed as instances
of different object classes. There are two types of objects in their model. They are
managed objects and managing objects. Managing objects are objects that perform
operations on managed objects and they can be grouped into domains so that policies
may be set at domain level rather than for every object.

Thomas Koch [Koch] has adopted Moffets [Moffet] definition of a policy where
every policy is a object with a core set of attributes and it may have additional optional
attributes. Similar to Policy Service [Marriot] discussed in the previous section, policies
are classified into two types: as obligation policies and authorization policies. However,
unlike Policy Service, Koch’s work does not further classify each type of policy into
positive and negative modes. Koch’s and others have implemented their proposed

16

policy framework with Marvel [Kramer]. Marvel was originally designed as an

environment that assists software development and evolution. Koch’s management

policies are represented as rules and interpreted by Marvel. Marvel requires data model
and a process model to function. Various objects in Koch’s framework are represented
in Marvel data model that contains the description of these objects.

Koch’s and others [Koch] have proposed a three level policy specification
hierarchy which are requirements, goal oriented and operational level. They are
illustrated below:

* requirements level - at this level policies are typically described in natural language.
It allows description of any desired behavior without having to have a prior
knowledge of the technical details concerning it.

e Goal oriented level ~ define the use of management services.

e Operational level - operate at the level of managed objects (simple abstractions of
managed resources)

There are different language constructs for each abstraction level thus enabling a clear

distinction between levels. At the lowest level they provide a Policy Definition

Language that enables the computer to check the syntax of a given policy description

and translate policies into executable rules. The PDL syntax for obligation policy is

given below:

policy name type obligation for subject {
<targets>
action [eventname] [if precondition] {
<operation>*
} [success postcondition1]
[nosuccess postcondition2]
}
As a case study, we will go through the sequence of steps to specify the same policy
discussed in Yeast and Karma at operational level using PDL (Policy Definition
Language) to monitor the status of a project file and notify the project team when the
project file is debugged.
policy pl type obligation for “/root/users/” {

17

Action prject_c_debugged {
Notify(team, “project.c debugged”)
}
The above policy is triggered when an event “project_c_debugged” is generated.

2.5.2 Challenges and Limitations

Koch’s work follows the Moffet's [Moffet] definition of a policy and views a
policy as an object with a set of mandatory attributes. Subjects and target objects are
mandatory attributes of a policy and they are explicitly specified using the Policy
Definition Language (PDL). It is possible to have domains as targets. Due to this feature,
it possible to group entities into domains and have policies target these domains.
However, since the framework essentially targets network management chores, it
assumes that a single user, typically the administrator manages all policies in the
system. Therefore, there is no suitable mechanism to verify the policy creator’s authority
to specify new policies for a domain or sets of entities. Also, domain memberships have
to be updated as when new entities are added or deleted to the enterprise. This is
cumbersome and error prone. It should be possible to obtain the target list for a policy
based on the policy creator’s authority in the enterprise.

Koch’s management framework provides three different specification languages
to allow specification of policies at different levels. However, conflict detection is critical
when allowing policies to be specified at different levels. Since in some cases conflicts
may not exist at a higher level but may arise at lower levels during the translation
process. These conflicts have to be detected and resolved before further levels of
translations are allowed to occur. In different policies they may occur at different levels.
Koch’s proposal to resolve conflicts based on differences in hierarchy levels between
conflicting policies is not sufficient in an enterprise context. Since Marvel based
framework is essentially targeted towards systems management it is limited in its
conflict detection and resolution mechanism.

Marvel data model contains the description of managed objects. It does not
discuss types of inconsistencies that can occur between its data model and process
models and how they will be detected and consistency is restored. Any changes in

18

Marvel data model (such as deleting an object) could make the target policy irrelevant.
In an enterprise scenario such a possibility is high since when target objects are
employees and they assume new roles, or transfer to other groups the Marvel data
model may require changes.

2.6 Chapter Summary

This chapter examined four popular policy systems, their specification, conflict

detection and resolution mechanisms. Based on our survey, we realize that these

systems and most other policy systems today are mostly targeted for systems

management or network management tasks where single user namely, the system

administrator creates and manages policies for all users to follow. However, in case of a

large enterprise this is not sufficient and we identify below the design goals for a policy

system suitable for enterprise management chores -~ it should be possible:

e for individual units within an enterprise to manage their own local policies

e to verify the authority of a policy creator on targets and subjects of a policy

¢ detect and resolve conflicts as relevant to an enterprise based on enterprise
authorities of entities involved in creating conflicting policies

e maintain constant consistency of policy set by providing close interaction between
available resources and policy set

In the next chapter, we have proposed an Enterprise Policy Specification Tool (PST) that

takes into account above design goals. The tool uses our proposed Enterprise Authority

(EA) Model that captures the relationship between various entities in an enterprise.

19

3.0 Enterprise Model Driven Policy Specification Tool (PST)

In the first section of this chapter, we propose an Enterprise Authority (EA) model that captures
the structure of an enterprise or business organization and the authority of enterprise entities on
enterprise processes. In the next section, we propose a Policy Specification Language (PSL) that
provides constructs to denote the EA model in enterprise policies. In the following section, we
discuss the syntax and semantics of PSL. We then examine policy conflicts that may occur when
new policies are defined and how they are detected and resolved. Finally, we propose an
architecture that will support the EA Model, PSL and Conflict Detection and Resolution

mechanism discussed in this chapter.

3.1 Enterprise Authority (EA) Model

An enterprise is viewed as a collection of interconnected entities, called enterprise objects. These
objects can be software entities, human users or interface objects such as transducers and
actuators. An enterprise object may have authority over zero or more other enterprise objects in
which case it may command that an operation be carried out. It is assumed that a commanded
object will perform the requested operation or will respond to inform any abnormal situation. In
this section, we propose an Enterprise Authority (EA) model that captures the relationships
between enterprise objects in a business organization. As shown in Figure 3, we classify
enterprise objects into three disjoint sets: specifier, program and event objects. Specifier objects
(eg: humans, software agents) are entities that can command other enterprise objects. They use
program objects (Eg: BudgetSanction or RouterConfigure) and event objects (Eg: BudgetRequest
or FaultAlarm) to initiate or accomplish enterprise processes.
In an object-oriented paradigm, the EA Model provides a mechanism to define new specifier,
event or program objects. These objects have the following common mandatory attributes:
o entitylD - the value is assigned to the object at the time of its creation;
o conflictID — the value can consists of one or more entityID of other entities that may perform
actions that conflict with it. If this attribute does not exist for an object, then it means it’s

20

action does not conflict with any other object in the system. This attribute can take one or

more values.

Enterprise objects

OO
O O O
4 4

Event objects O Program objects@
—
— | ——

Figure 3: Enterprise Objects Classification

In addition to the above attributes, the event objects have the following mandatory attributes:

e originatorID - the value is assigned by the system; it is entityID of the entity that generates
the event;

e destinationID - the value is assigned by the system; it isentityID of the entity that is intended
to receive the event;

e header — value is provided by the entity that generates the event; its value is of type string.

e priority — value is provided by the entity that generates the event; it denotes the importance of
the event and it can take any one of the three values (of enumerated type) namely low, high
or critical.

e timeStamp — time (in hrs, minutes and seconds) of generation of this event; its value is
provided by the system.

A typical Enterprise Authority (EA) model is shown in the Figure 4 below. Enterprise objects are

represented as nodes in a Directed Acyclic Graph (DAG) and the edges between nodes represent

21

the gype of authority of one node over the other. Event and program objects are placed in the leaf
nodes of the DAG. The node from which an edge originates is called the source node. The node
to which the edge terminates is called the zarget node. The source nodes are specifier objects and
target nodes maybe a specifier, event or program object.

Enterprise objects
Specifier
objects 'f;:"
global

Event l / Program
LD @)

Figure 4: A typical Enterprise Authority (EA) Model

We classify authorities to be of two fypes: local or global, hence there are two types of edges —
namely a local edge or global edge. In the figure above, local edges are indicated with single line
arrows and global edges are indicated with double lines. A local edge between asowrce node to
target node implies a local authority where policies set by the source node are local in nature-
i.e., they are applicable only to nodes to which the source node has direct connecting edges. And
a global edge implies a global authority where policies set by anode are applicable to all its
descendent nodes. In other words, the local or global authority of a specifier objecct determines
the scope of a policy. And the scope determines the other specifier objects that have to adhere to

the policy.

3.2 Case Scenario: Role Based Policy Specification

We will consider a business organization, identify various enterprise objects in it and
define relationship between them using our EA model. Employees have responsibilities,
permissions and authorizations and play roles such as manager, salesman and vice-president etc.
It is practical to represent roles rather than employees as nodes in the DAG because separating
the roles and employees permits the assignment of new employees to a role without re-specifying
the policies. When employees assume a role they obtain the various characteristics of that role.
Also, employees may assume more than one role to accomplish their everyday tasks. The

mechanism to related employees to roles is beyond the scope of this thesis.

Specifier objects
global local
edge edge

Comam™y Ceoom)

TR\
N

Figure 5: Role-based EA Model

Since employees initiate enterprise processes by performing operations on event or program
objects, the EA model essentially captures their authority to initiate enterprise wide operation.
When an employee initiates an enterprise process, events are triggered. Enterprise policies
monitor these events and execute a set of activities when events occur thus enforcing policies on
enterprise processes.

In the DAG shown in Figure S, the “Salesman™ has authority to initiate enterprise
processes that use “Alarm”, “ExpenseVoucher” and “RepairAgent”. The “manager” inherits the

23

authority of “salesman™ on enterprise object and in addition has a direct authority to
“SanctionExpense”. Similarly, the “secretary” has authority on “Notify” object and the
“accountant” inherits this authority. Since the “president” inherits authority of “manager” and
“accountant”, it has authority on “Alarm”, “Notify”, “RepairAgent” and “SanctionExpense” and
“ExpenseVoucher”.

A local edge from a “president” to “accountant” denotes that enterprise processes
initiated by “accountant” are bounded by policies specified by “president”. Similarly, enterprise
processes initiated by “secretary” are bounded by policies specified by “accountant”. It is
important to observe that enterprise processes initiated by “secretary” are not bounded by policies
set by “president” since the “president” has only a local authority in that sub-tree.

A global edge from “president” to “manager” indicates that enterprise processes initiated
by “manager” and “salesman” are bounded by policies set by “president”. The “salesman” is also
bounded by policies set by “manager”. Several disjoint EA models can be combined together to
form a Global Enterprise Authority (GEA — pronounced as ‘Jeeya’) model. The GEA model will
capture the authority of the specifier objects of one enterprise over event and program objects of
another enterprise. Essentially, it captures the authority of employees belonging to an enterprise
or even a distinct unit within an enterprise to initiate enterprise processes in other enterprises or
units. While creating GEA models is important to identify distinct units within the enterprise
since a unit can exist in varying degrees, i.e., the smallest unit maybe asingle employee and the
largest unit is the enterprise itself.

The GEA model differs from the EA model in an important way. It does not allow
specifier objects of one enterprise to create policies on specifier objects of another enterprise. The
Figure 6 shows a GEA model that defines relationships between three EA models, namely EA-1,
EA-2 and EA-3. The “president”, “accountant” and “secretary” of EA-1 can use “Alarm” event
objects in EA-2 and EA-3. In other words, this means that employees who assume the role of a
president in EA-1 have the authority to trigger alarm events in other enterprises that may in-turn
initiate other enterprise processes within the target enterprise.

24

Figure 6: Global Enterprise Authority (GEA) Model

3.3 Policy Specification Language (PSL)

In this section we discuss the syntax and semantics of our proposed Policy Specification
Language (PSL). It provides the necessary constructs to specify model driven enterprise policies.
PSL formalizes the intent of the policy specifier into a form that can be read and interpreted by
machines. A policy may give certain rights to entities (programs, users, etc) that fulfil some
criteria, and deny certain other rights. A PSL rule can bind an entity to certain restrictions and
obligatory actions.

3.3.1 Syntax and Semantics

The syntax of the Policy Specification Language (PSL) is given below:

<POLICY>
<policy-name>

<policy-specification>

<source>
<Policy-Specifier>
<EA-Mode>
<content>
<event-clause>

<event-expr>

<condition-clause>

<cond-expr>

<action>
<action-clause>
<action-expr>
<EO>
<EO-Occur>
<PO-Operation>
<logic-operator>
<relation-operator>
<constant>

—

i

Il

i

i

i

i

i

i

b

=

=

<policy-name> <policy-specification>

String

<source> <content> <action>

<Policy-Specifier> <EA-Model>

String

String

When <event-clause> arrives If <condition-clause>
<event-expr> | <event-expr> <logic-operator> <event-clause>
<EO-Occur> |

<EO-Occur.attrib> <relation-operator> <EO-Occur.attrib> |
<EO-Occur.attrib> <relation-operator> <constant>
<cond-expr> |

<cond-expr> <logical-expr> <constant> |
<EO-Occur.attrib> <relation-operator> <EO-Occur.attrib> |
<EO-Occur.attrib> <relation-operator> <constant>

then <action-clause>

<action-expr> | <action-expr> <action-clause> | forbid
<EO> | <PO-Operation>

Instantiation of an Event Object

Occurred Event Object

Operation on Program Object

AND

=|t=|<|>|>=|<=

String | Integer | Boolean

A PSL rule has four sections: source, content, action and subject.

e source contains name of the source or the specifier object that specifies the policy and the
associated enterprise model referred by model-name.

26

e content is composed of two parts. The first part consists of <event-clause> that contains one
or more monitored events. The second part is the <condition-expression> that evaluates to
TRUE or FALSE.

® action contains the <action-clause> that can be an instantiation of an event object or
operation on a program object or the terminal in nature by means of “forbid" primitive. The
“forbid” is a PSL primitive that prohibits the event from creating any action, i.e., ignore the
event.

e subject contains a set of specifier objects in the associated enterprise model that are required
to follow the policy.

The first three sections, i.e. the source, content and action is obtained from the PSL syntax. The

last section, the subject, is obtained from the Enterprise Authority model (EA) described in the

earlier section.

Each policy expressed in PSL must have a policy name, a policy specifer, an EA model
and the <event-clause> and <action-clause>. However, the <condition-clause> is optional. The
policy name should be unique as polices are identified in the system based on their names. The
name bears no influence on the interpreted semantics of a policy. However, it is advisable to
adopt some standard conventions to name policies so as to be mnemonic. Since policies are
specified by specifier objects, the source section contains the identity of the specifier object and
its EA Model. The specifier object in the policy source must belong to the Enterprise Authority
(EA) model that is provided. A policy’s scope, or the set of subjects that are required to obey the
policy, is automatically determined from the EA model. This relieves the user from identifying
subjects for a policy. It also implicitly restricts the authority ofspecifier objects by permitting it
to create policies that are directed only at entities that it has authority upon in the EA model (with
a direct or indirect edge).

The content-section consists of the <event-clause> that can be used to monitor one or
more event expressions. The <condition-clause> compare attributes of events monitored in the
<event-clause> against constants or values of the same type. A policy is activated if the event-
clause and condition-clause evaluate “TRUE”. The condition-clause can refer to event attributes
monitored in the event-clause. We use the popular “.” (dot) notation to refer to the attributes of an
event or program object. The <action-clause> operates on program or event objects to invoke
their methods or forbid the monitored event from initiating any further actions into the policy
system. When there is multiple <action-clauses>, they are executed in the order they are listed on

27

the <action section>. Since the EA model verifies the authority of entities on various objects
unless explicitly forbidden by means of “forbid” using a PSL rule, actions by default is assumed
to be authorized.

3.3.2 Two Level Specification of Authorization Policies

Authorization policies define what a set of entities are permitted ornot permitted to do. An
entity’s authority to initiate an enterprise process is controlled by issuing appropriate
authorizations (permissions or prohibitions) on one or more program or/and event objects. When
providing such authority we identify three possible cases:

Case 1: provide no authority to initiate an enterprise process (i.e., not allowed to send alarms)
Case 2: provide partial authority (eg:: allowed to send only “low” priority alarms)

Case 3: provide complete authority (eg: allowed to send all types of alarms like “critical”, “high”
or with “low” priority)

In our model, we manage the first and third cases (which are to provide “no authority” or
“complete authority””) by adding or removing an edge to an object in the EA model. We will
henceforth refer these two cases as simple authorizations. And the second case as, a partial
authorization. To specify partial authorizations, we use a combination of EA model and PSL in
the following way:

Step 1: In the EA model provide an edge from the entity to the appropriate program or event
objects (Eg: an edge between “employee” to “BudgetRequest” object results in authorizing the
employee to request for budget clearance).

Step 2: Specify a PSL rule, and in it’s <content-clause> monitor the event’s pattern (Eg:
BudgetRequest.amount > 100000) and apply primitive action “forbid” in the <action-clause>.
This results in rejecting the event from initiating any further action. In this way, the PSL
<content-clause> is used to filter event patterns thus providing a mechanism to specify partial
authorizations.

Sloman’s and Marriot’s [Sloman]}[Marriot] Policy Notation supports positive (+) and
negative (-) policies for each modality: authorization (A) and obligation (O). And hence there are
four types of policies: A+, A-, O+ and O-. This was examined in detail in Section 2.1 of this
thesis. Compared against Sloman’s Policy Notation, Koch’s PDL [Koch] supports only two type
of policies: authorization (A) and obligation (O) policies. Our proposed PSL, is similar to Koch’s

28

work and it supports two types of policies namely, authorization and obligation policies.

However, we further classify authorization policies as simple and partial and provide a two level

specification mechanism that uses the EA model to specify simple authorizations and a

combination of EA Model and PSL to specify partial authorizations and obligation policies. This

has the following advantages over Sloman’s Policy Notation [Sloman] and Koch’s PDL [Koch]:

1. simple authorizations can be managed at a higher level rather than at the level of operational
policies, thus making it easier for policy creators (eg: managers)

2. managing simple authorizations in the EA model reduces the number of authorization rules at
execution level. With lesser rules for execution, the policy set is smaller and hence the speed
of execution is faster

3. Ensures that every PSL policy action has prior authorization in the EA Model. Unlike in
Sloman’s and Koch’s work, in our case no redundant obligation policy can exist without a
prior authorization.

In the next section we will examine types of conflicts that can occur in PSL, how they are

detected and resolved.

3.4 Conflict Detection and Resolution among Polices

When a new policy is defined or when an existing policy is updated, it may create new
inconsistencies in the policy set. Therefore before accepting a new or an updated policy, it is
important to verify if it is consistent with the existing policy set. In this thesis, we will address
one such inconsistency namely, policy conflicts. Other types of inconsistencies such as duplicate,
subsumed, supersumed and inferred [Sobieski] policies that may arise is beyond the scope of this
thesis work.

We give below definitions that we will use later in this section to define conflicts in PSL
policies. The definitions are based on EA Model shown in Figure 5 (page 26) of this chapter.
Definition 1: (Identical Source) Between two policies, the source sections are said to be
identical if they contain the same specifier objects belonging to the same enterprise authority
(EA) model.

Example: Policy P1; Policy P2;
Specifier: “Manager”; EA-1; Specifier: “Manager”; EA-1;
..... pl-content.... w..pl-content

....pl-action.... pl-action ...
In the above example: Pl-source and P2-source are identical since they are specified by the
specifier object “manager” belonging to enterprise authority model EA-1.
Definition 2: (Identical Content) Between two policies, the content sections are said to be

identical if they monitor the same set of events in their content sections.

Example: Policy P1; Policy P2;
..... pl-source ...; «...pl-source ...;
When Alarml arrives When Alarml arrives
....pl-action ... ;pl-action ... ;

Definition 3: (Source Contained) Between two policies P1 and P2, the source of policy Pl, is
said to contain the source of the other policy P2, if Pl’s specifier object has authority (i.e., a
direct or indirect edge in the EA model) over P2’s specifer object in the source section.
Example: Policy P1; Policy P2;

Specifier: “Manager”; EA-1; Specifier: “Salesman”; EA-1
In the above example: P1-source contains P2-source since in enterprise authority model EA-1 the
“manager” has a direct edge to “salesman”. Also, in this case, the subjects of policy “P1” is a
subset of the subjects of policy “P2”.
Definition 4: (Content Contained) Between two policies, the content of one policy is said to be
contained in the content of the other, if it monitors only a sub-set of events monitored by the other

policy.

Example: Policy P1; Policy P2;
.....r1- Source ...;P1- Source ...;
When Alarml arrives When Alarml1 arrives
....P1- Action ... ; if Alarml1.priority = “high";

....Pl- Action ... ;
In the above example, policy “P1” monitors all types of “Alarm1” events. However, policy “P2”
monitors only “Alarm1” events with “high™ priority. Whenever policy “P2” executes, policy
“P1” also executes, but the reverse is not true. In the above example, P1-content contains P2-
content.
The underlying mechanism for conflict detection is a two step process described below:
Step 1: identify conditions under which conflicts exist; i.e., to recognize conflict conditions.
Step 2: determine the truth-value of the conflict condition — if it is TRUE then a conflict is
detected. Else, conflict does not exist.

30

For Step 1 of the above process, we identify two types of PSL conflicts that can occur:
authorization conflicts and action conflicts. We apply the definitions discussed in this section to
describe the two PSL conflict conditions:

Definition 5: (Authorization Conflict Condition) If a policy P1, has an identical or contained
source and an identical or contained content section with another policy P2 and P1 has the
primitive action forbid in its <action-clause> but P2 has in its <action-clause> an event or

program object then an authorization conflict exists.

Example:

Policy P1; Policy P2;

“Manager”; EA-1; ’ “Salesman”; E4-1;

When Alarm! arrives When Alarm! arrives

If Alarml priority = “low”; If Alarml.priority = “low";
Then Notify(entityID: 1, conflictID: 10;); Then forbid;

In the above example, P1 and P2 monitor the same event and their subjects overlap since the
“Manager” has authority on “Salesman” and they belong to the same EA model. Hence for the
same set of subjects, P1 has a “Notify” action but P2 has a “forbid” action. Their authorizations

are conflicting and hence only one of the two policies can exist at the same time in the policy set.

Definition 6: (Action Conflict Condition) If a policy P1, has identical or contained source and
identical or contained content section with another policy P2 and if objects in P1’s <action-
clause> has in its conflictID attribute, the entityID of objects in P2’s <action-clause> then an

action conflict exists. Consider the example:

Policy PI; Policy P2;

“Manager-1"; EA-1; “President”; EA-1;

When StockAlarm arrives When StockAlarm arrives

If Stock.Value < 100; then If Stock.Value < 100; then
Buy(entityID:10 conflictID:5); Sell(entityID:5, conflictID:10);

In the above example, P1 and P2 monitor the same event and their subjects overlap but their
actions are conflicting (since they have each other’s entityID in their conflictID attributes) and
hence only one of two policies can exist at the same time in the policy set.

For Step 2 of the Conflict Detection process, we determine the truth-value of conflict-conditions.
We recognize that this can be established at any of the following stages:

31

® at the time of accepting new or updated policies: when new policies are specified and before
they are accepted into the system their actions are verified if they are consistent with actions
of existing policies in the policy set.
e ° at the time of execution of policy actions: policy actions that cannot be true at the same time
or within a given time window [Lobo] are detected and resolved before policies are executed.
Detecting and resolving conflicts at the time of specification ensures that all policies in the policy
set are consistent at any point of time thus making maintenance of policy set easier. In this thesis,
we attempt to detect and resolve conflicts at the time of accepting new policies, that is, at the time
of specification. At this level the detection mechanism actually detectspossible conflicts because
they are yet to be accepted for interpretation purposes. However, in our discussions, for ease of

use we will use the term conflicts instead of possible conflicts.

Policy NP

1]

+Policy set“P” consists of 3 policies P1, P2, P3
Whnl.uw_p!ky‘N?mivs:

oNP.action is evalusted against Pl-action, P2-action, P3-action

Figure 7: Conflict Detection Mechanism

Conflict conditions in PSL are detected by comparing sections (source, content and action
sections) of new or updated PSL policy (NP) to respective sections of existing PSL policies in
policy set. This mechanism is shown in Figure 7 above where all three sections (source, content
and action) of “NP” is matched against respective sections of policy P1.

32

The algorithm for conflict detection is shown in Figure 8 below:

NP-reject =FALSE; {/ 1s the new policy rejected?
I=1; I/ first policy in the policy set
Integer N; // Number of policies in the policy set

‘(Wl‘m-ﬁ((I<=N) && (NP-reject = TRUE))

WHILE (NP-source <= Pi-source) I/ If the <source-section> is identical or-
contained (Definition 1 and 3).
IF (NP-content < = Pi-content) /I If the <content-section> is contained or-
identical (Definition 2 and 4).
IF (NP-action X Pi-action) /I If the <action-section> Conflict.
(Definition 5 and 6).
PRINT (“Conflict Detected™); /! Conflict Condition Exists
NP-reject = ConflictResolve(NP, Pi); /I Initiate Conflict Resolution Mechanism-
} it returns “FALSE” if new policy -
} is rejected else retums “TRUE”
} // end of while -2
I=0+1; // Index incremented to access next policy

} //end of while -1

Figure 8: PSL Conflict Detection Algorithm
When a conflict is detected, the conflict resolution function is initiated before proceeding to the
next step. The resolution mechanism obtains the authorities of the specifier objects involved in
the conflicting policies from the EA model. Based on the relative authorities, the resolution
mechanism either rejects the new policy (NP) or replaces an existing policy with the new policy
(NP). When relative authorities are obtained there can be four possible outcomes:
1. Greater than (>), i.e., NP-source has a higher authority than Pi-source
2. Lessthan (<), i.e., NP-source is less than authority of Pi-source
3. Equal to (=), i.e., NP-source has authority equal to Pi-source
4. Cannot be determined (??), i.e., the relative authorities of two sources cannot be determined
Based on the above outcome, the proposed resolution mechanism obtains the following result:
1. (NP-source>Pi-source) => NP replaces Pi
In this case, the conflict resolution function returns “NP-reject = FALSE” and as a result the
conflict detection mechanism continues to check the next policy as illustrated in the
algorithm provided in Figure 9.

3

2. (NP-source < Pi-source) => NP isrejected
In this case, the conflict resolution function returns the value “NP-reject = TRUE” and as a
result the conflict detection mechanism is stopped.

3. (NP-source =Pi-source) => NP Rejected
This case occurs when two “managers” who have the same authority in the EA model specify
conflicting policies for an employee. The new policy is rejected and the conflict resolution
function returns the value “NP-reject = TRUE” which stops conflict detection mechanism.

boolean ConflictResolution (NP, Pi)
{
IF (NP-source < Pi-source) {
PRINT (“Rejecting New Policy™);
retum TRUE;

}

ELSE IF (NP-source > Pi-source) {
PRINT(*Conflict Resolved - Replacing existing policy with New Policy™);
retum FALSE;

}
ELSE IF (NP-source = Pi-source) {
PRINT (“Rejecting New Policy ™);
return TRUE;
}
ELSE {
PRINT (“Rejecting New Policy ™);
return TRUE;
}

} // end of function

Figure 9: PSL Conflict Resolution Algorithm

4. (NP-source ?? Pi-source) => NP rejected
The authorities between S1 and S2 cannot be determined when specifier objects are from
different EA models. In this case, the new policy is rejected and the conflict resolution
function returns the value “NP-reject = TRUE” resulting in the termination of conflict
detection mechanism.

34

3.5 Policy Set Incremental Maintenance

An organization constantly evolves or due to re-organization, new business processes,
employees or roles maybe added or deleted. Such changes involve modifications (eg: adding to
new edge, deleting an edge, deleting a node etc) to the EA model. However, changes to the EA
model will create new inconsistencies in the policy set as there maybe policies that are specified
by an entity which now maybe deleted thus making the policy redundant. Incremental
Maintenance involves a constant update to the policy set whenever the EA model changes. When
a policy is specified by an entity, it is owned by that entity. Depending on the authority of the
owner, its scope is established. Given an object and an activity on that object, the incremental
maintenance function detects policies in the policy set that may now become obsolete or create
new exceptions as a result of this activity on the object. There are three possible situationswhere
there is a need for incremental maintenance function:

Situation 1: when program or event objects are deleted: When program or event objects are
deleted, policies may exist in the policy set that use these now non-existent objects. These
policies may never be executed at all or may create exceptions when an attempt to execute is
made. When such policies accumulate in the policy set, they will slow down the efficiency of
execution and also make the task of maintenance tedious.

Situation 2: when specifier objects are deleted: When an existing employee leaves the enterprise
or when a new employees arrives, a specifier object may be added or deleted depending on the
occasion. However, when deleted specifier objects continue to own policies in the policy set, it
will gives rise to inconsistencies between the EA Model and policy set resulting in unexpected
results during policy execution.

Situation 3: when an authorization is removed: When an edge in the EA model is deleted, it
affects the existing policy set. For example, an employee may have created a policy to handle
new alarms from network. If at any later stage, if the employee’s authority to operate on “Alarm”
objects is removed, then the existing policy becomes inconsistent with the EA model.

Therefore, in the above circumstances, there is a need to perform some maintenance tasks on the
policy set such as removing dead and inconsistent policies that may exist after modifications to
the EA model. The following maintenance tasks are recommended on the policy set to maintain
consistency with the EA Model:

35

Recommendation 1: If a specifier object is deleted from the model, all policies that are owned
by this deleted object are automatically removed from the policy set.

Recommendation 2: Similarly, if an event or program object is deleted, all policies that use
these now deleted objects in their content or action sections are detected and removed from the
policy set.

Recommendation 3: If a specifier object’s authorization on an event or program object is
removed, policies that are owned by this specifier object using these event or program objects are
identified and removed from the policy set.

In this way, the EA model and the policy set can be kept consistent with each other. In the next
section we examine an architecture that supports the EA Model, PSL, Conflict Detection and

Resolution mechanism and Incremental Maintenance tasks discussed so far.

3.6 Enterprise Policy Specification Tool (PST) Architecture

The system architecture shown in Figure 10 is aimed to provide a framework to enable enterprise
entities to manage policies, detect and resolve any policy conflicts that may arise at the time of
specification and support incremental maintenance tasks on policy set. The architecture aims to,
support specification, analysis (conflicts) and representation of policies.

The client/server architecture shown in Figure 10 has six modules: specification module, EA
model handler, conflict handler, policy handler, policy engine and the event handler. There are
three possible types of inputs to the system, they are:

e policies (add/delete/modify policies)

e EA Model changes (add/delete/modify enterprise entities or to add/remove authorizations)

e events (this may be generated either by system monitors or by a human user or as a result of
any other policy action)

The specification module provides a graphical user interface to specify or update PSL policies

and the EA model. The policy database provides a persistent place to store policies. When the

policy system starts up, the policy handler extracts PSL rules from the policy database to create a

list data structure of the policy set as illustrated in the Figure 11. Each section (sowrce, content

and action sections) of each PSL rule is stored as a separate node in the list. The links between

the nodes are self-explanatory from the figure.

36

e O
Module
EA
i Ooase
Newor — P
Updated PSL EA
> Handler —
N—1
(L-ﬁfs <—> Policy Handler
Policy
Detabase
EA Model t
Changes R Mi:el Policy
“| Editor Event Engine
Handler
y
Events Actions
Figure 10: PST Architecture

The object definition database provides persistent information on all entities in the enterprise
and relationship between them. The model handler interacts with the object definition database to
perform verification tasks and to extract the authority relationships between various entities.
When a new policy arrives or when an existing policy is updated using the specification module,
the model handler verifies the authority of the specifier object over the event and action objects
in the new/updated policy. If the verification fails, the policy is rejected immediately and the
specification module informs the user of this decision. If the verification succeeds, then policy is
passed over to the conflict handler.

The conflict handler identifies if the authorization conflict condition (Definition 5 of Section
3.4) is TRUE or FALSE. It compares source, content and action sections of the new/updated PSL
rule with respective sections of existing PSL rules to ascertain the conflict condition. As a first
step, its compares the source section of a new policy with the source section in the node in the
top-left comer in Figure 12. If the two sections are not identical, it continues to traverse in a
horizontal direction and perform similar check on the next policy. It continues to traverse in the
horizontal direction until it encounters a node with an identical source section. If it completes the
traversal without such an encounter it means that there is no possibility of conflict condition and
the new policy can be accepted into the policy set.

37

Policy P1 Policy P2 Policy P3 Policy Pn
" ” 3 3
SOURCE SOURCE SOURCE SOURCE

A
n ” n ”~»
CONTINT CONTENT CONTINT CONTENT
4] 1] £ [
ACTION ACTION ACTION ACTION

Figure 11: Policy Set Data Structure

However, if it detects an identical or contained section, the direction of traversal is changed
and it continues in the vertical (depth-first) direction for the same policy. It then compares the
PSL content sections. If the content sections are found to be different, then the vertical traversal
stops to continue with the next policy as described earlier. If content sections are identical or
contained, then the traversal continues in the vertical (downward) direction. From the Figure 12,
it can be seen that if the traversal exits in a vertical direction, then the conflict condition is TRUE
and the conflict resolution mechanism is initiated. If the traversal exits in the horizontal direction
(breadth-first) then the conflict condition is FALSE and the new or updated policy is ready to
accepted into the system. With some minor modifications, this mechanism can be used to detect
action conflict conditions (Definition 6 of Section 3.4).

The conflict resolution mechanism obtains the authorities of the specifier objects involved in
the conflicting policies from the EA model. Based on the relative authorities, the resolution
mechanism either rejects the new policy or replaces an existing policy with this new policy. Once
the policy is stored into the repository, the data structure in the conflict handler is updated to
create new set of nodes for the new policy

38

Policy Handler
Policy Pt Policy P2 Policy P3 Policy Pn
”n n " [
SOURCE 0URCE SOURCE SOURCE
Newor
Updated n n " ™ No
Policy CONTENT CONTENT CONTINT coNTINT Coaffict
NP Detectod
A 4
[n n ™
ACTION ACTION ACTION ACTION

Figure 12: Policy Handler

The policy handler is also responsible to provide feedback to the EA model if a change to
the model will create new inconsistencies in the policy set. When a request to delete an object or
to remove existing authorizations arrives, the model handler first verifies the authority of the user
to perform these actions. If the verification succeeds it interacts with policy handler to identify if
any existing policies may become redundant if the action is performed. Policy handler identifies
such policies by traversing the policy list. If no policies are affected then the task of maintenance
is not required. However, if affected policies are detected, the policy handler removes them from
the policy set and updates the policy database and the policy engine.

The event handler constantly monitors for events that may be generated by a human user
or as a result of an operation on a program object or due to any other policy action. These events
received are directly fed into the policy engine, which is the heart of this architecture. The policy
engine is responsible to match events against policies and initiate policy actions to be executed in
the system environment. EA model handler module is also responsible to propagate the changes
in the EA model to the policy handler module, thus working to maintain the consistency of the
policy set and EA model.

39

3.7 Chapter Summary

In this chapter the EA Model has been introduced and demonstrated with examples. A Two-Level
Specification mechanism was defined that uses the EA Model to specify simple authorizations
and a combination of EA Model and Policy Specification Language (PSL) for partial
authorizations and obligation policies. When a policy is specified using PSL, thesubjects that are
required to interpret the policy is obtained automatically from the EA Model based on the policy
creator’s authority in the EA Model. Furthermore, we have identified and defined policy-conflict
conditions in an enterprise and proposed a mechanism to detect and resolve them. Our conflict
resolution mechanism identifies precedence between two conflicting policies based on relative
authorities of entities that created the conflicting policies. We identified situations in the
enterprise that will require incremental maintenance of policy set and recommended maintenance
actions for them. Finally, we proposed an enterprise Policy Specification Tool (PST) architecture
is based on the proposed EA Model, Policy Specification Language (PSL), Conflict Detection

and Resolution Mechanism and Incremental Maintenance needs.

4.0 Application of Enterprise Policy Specification Tool
“

In this chapter we will describe the application of PST to a Message Notiification System
(MNS). Message Notification Systems [Curamessage] [Keryx] [Telalert] can deliver messages in
real-time using multiple delivery media (by voice, text or numeric pager etc). The term real-time
is used to distinguish a Message Notification System from a traditional email system, which uses
the store and forward technology where the time of delivery is not guaranteed. Inthe first section
of this chapter, we will describe Message Notification Systems (MNS) and illustrate with an
example, a message notification process. In the following section, we will discuss advantages and
disadvantages of real-time message notification in an enterprise scenario and derive the need for
policy-based message notification. In the next section, we propose an architecture that integrates
PST with Message Notification System (MNS) to provide a policy-based message notification
solution. Finally in the last section, we demonstrate the application of our integrated architecture
for policy-based notification of messages in the context of real-time communication between two

enterprises in a helpdesk scenario.

4.1 Message Notification System (MNS) Description

Inputs to a Message Notification System (MNS) may come from network events, system
monitors or a human user. When inputs arrive, the system generates a notification to the recipient
and is sent through one of the delivery media like pager, or voice mail. The recipient would call
back to MNS to acknowledge that the notification was received. A 1-800 number is provided by
the system for recipient acknowledgements. If the intended recipient does not acknowledge the
receipt of a message, the MNS server would then send another notification to the next receiver on
a list who is supposed to receive that message as an alternate receiver. This action is called an
escalation. Escalations help to ensure that important messages do not remain unattended by the
recipient.

Users of a Message Notification System (MNS) assume three different roles while interacting
with the system. They are:

41

® as a sender (maybe a human user or a system event)
s who is registered with the MNS
= who sends requests to MNS
= who is allowed to define service parameters to be met by the system
¢ asa recipient
= who is a registered user with the MNS
= who receives notifications sent by the senders
s who acknowledges a message delivery
® asa administrator
* who maintains the MNS Server for user registration
= who maintains the MNS Database
A request to MNS consists of a message component and an escalation list. The following Figure

13 shown below illustrates different parts of a notification request:

Text/Numeric Message Priority Severity
Recipient name 1 Delivery Medium 1 Delay 1
Recipient name 2 Delivery Medium 2 Delay 2
Recipient name 3 Delivery Medium 3 Delay 3

Figure 13. Parts of MNS request

The top row in the Figure 13 shown above is called the message component. The remaining three
rows constitute the escalation list. The message component consists of the following, mandatory
elements:

o Text message: a text message indicating the content of the notification being sent. For
example, a typical message could be “SQL Database Server B has experienced a fatal
hard disk drive failure”. If the recipient has a text pager, the contents of the text message
will be transmitted to the pager. If the recipient is using voice mail, the text message is
synthesized into speech before being transmitted to the recipient.

¢ Numeric Message: A sequence of numeric digits that is interpreted by the recipient. This
could be the phone number that the recipient can call back.

42

Message Severity: A numeric value (1 - high severity, 2 — low severity) indicates the
importance of the message. A severity level of 1 indicates to MNS that if all of the
recipients on the escalation list have been notified and no one has acknowledged the
notification, the escalation list will be cycled again. This will continue with progressive
delay in retrying. For example, if no one acknowledges an escalation during the first
pass, MNS will cycle through the list of recipients again according to the delay value set
in the escalation, say after 5 minutes. If the notification is still not been acknowledged
after this second pass, a third pass will occur in another 10 minutes and so on.

Message Priority: A numeric value (1-10) indicates the importance (eg: important
customer) of the message with respect to the MNS system. That is, a request with a
higher priority value would be given preference over other requests waiting to be

processed.

Escalation list: It lists of one or more message recipients contained in a notification is

referred to as an escalation or an escalation list. An escalation sequence refers to the order in

which the recipients of a message are notified. The escalation list of a notification consists of

the following mandatory elements:

Recipient name: The name of the recipient for the message. MNS checks the name
provided in the escalation list against a list of registered users contained in a database
external to the MNS software. An escalation list can contain one or more recipients.
Delivery medium: The delivery type indicates what type of delivery method or service is
used to contact the individual named as the recipient. This can be any of the following
delivery mediums:

¢ Text pagers, Numeric pagers or Voice mail systems

Delay: The value indicates how much time to allow for the named recipient to respond to
the notification with an acknowledgement. If the first recipient in the escalation list does
not acknowledge the notification with this delay, the notification is escalated to the next
recipient in the list, if one is available. If the notification is not acknowledged once the
escalation list is exhausted, MNS checks the severity level of the notification to
determine whether or not to cycle through the list again. If the severity level is set to “1”,
the escalation list is cycled through again in 5, 10, 20 and 60 minute increments. If the

severity level is set to “2”, there are no further attempts to cycle through the escalation
list.

43

In the Figure 14 shown below, we trace a message notification process from its origin to delivery.

:WH::“& ‘ Q Q
] N
MNS MNS g 20 minutes
Gl [MNS > Server e v clapsed
® @ ———g ’::a'.““"“’mz
\—/Mﬁemz
<) ® ok
phone
MNS
Database

Figure 14: An Example Message Notification Scenario

When notification requests are received by MNS Server, it looks up the MNS database to verify
if the sender and intended recipients are registered users. If the verification succeeds it sends
notification to the first recipient on the escalation list. MNS cycles through recipient list if the
first recipient does not respond within allotted delay time. The notification remains in the MNS
delivery queue until the escalation list is exhausted or until the notification is acknowledged or
cancelled. When first recipient acknowledges a notification, the notification is removed from the

queue and it is marked as delivered and the activity is logged.

4.2 Need for Policy Based Notification

When deployed in an enterprise, message notification systems are used for
communication within the units of the enterprise, between units or with clients. Customer support
groups rely heavily on notification systems for quick response to problems in mission critical
applications.

Enterprises use notification systems to be able to bring to a recipient’s attention an
important message in a guaranteed time frame. However, to effectively use MNS, there is a need
to ensure that messages are sent to the right recipient who has the necessary expertise and is
presently available to attend to a request. It is also essential that employees are not flooded with
high priority messages with short delay time between escalations.

An enterprise’s available resources to attend to a task at any point of time is constantly
changing as employees are assigned to new tasks or are presently on vacation or no longer belong
to the enterprise. Due to these reasons, senders of notification requests are not in a best position
to identify the escalation list that determines the alternate recipient if the first recipient does not
acknowledge the receipt of notification. Also, when senders compete for recipient’s attention,
notifications that are perceived by recipient as low priority in nature maybe sent as high priority
with severity one and short delay values. This may result in the recipient being flooded with
incoming messages making it difficult for him or her to prioritize given tasks. In some cases it
may require that a delivered message needs to be forwarded to any other recipient who has the
appropriate expertise to address the problem. Such scenarios introduce unpredictable delays in
the notification process and also affect the efficiency of other users (as a result of managing
unwanted escalated messages) of the system thus compromising the timeliness in real-time
message notification.

Enterprises need to ensure that employees are assigned tasks, not by notification senders
but rather by enterprise managers who are aware of the type of problem, the expertise required
and available resources that can be deployed at that point in time and place. In the following
section, we propose an architecture that integrates PST (described in Section 3.5 of this thesis)
with message notification systems to provide a policy-based message notification solution. This
integrated architecture allows different units within an enterprise to manage their own policies to
handle incoming notification requests.

4.3 Integrated Architecture for Policy Based Notification

As shown in Figure 15, in our proposed integrated architecture, PST serves as a front-end to
message notification systems (MNS). In PST, a notification request is modeled as an incoming
event. Enterprise policies to handle these events are stored in the policy database. The user
initiates a notification request by generating the notification event that is received by the event

45

handler module (refer figure 10, page 40) and propagated to the policy handler module for policy
enforcement.

In the rest of this chapter, we will call notification requests to PST as “Contact” requests so as to
be able to distinguish it from parts of a notification request to MNS (refer Figure 13 on page 45)

discussed earlier.

l “Contact” request

Policy Specification Tool (PST)

“Notify” action

MNS Request

Message Notification System (MNS)

lege Delivery

Figure 15: PST and MNS Integrated Architecture

A “Contact” request provides the users with only sub-set of attributes when compared to a MNS
request. The parts provided by a “Contact” request is given below:
= text/numeric message, recipient ~1, delivery —1 and priority
The remaining parts that are required to generate MNS request is supplied policies written in
PSL. This is mechanism is illustrated in Figure 16. The additional parts provided by PSL are the
following:

e severity, delay 1

e recipient list 2 (recipient-1, delivery method-1, delay-1)

e recipient list 3 (recipient-1, delivery method-1, delay-1)

text/numeric message peiotity —I
recipient-1 | delivery medium-1

Y

text message I numeric message priogity [severity
recipient-1 delivery medium-1 delay-1
recipient-2 delfvery medium-1 delay-1
recipient-3 delivery medium-1t delay-1

Figure 16: Policy-based Message Notification Mechanism

In this mechanism, not the sender but the PSL policies that determine the severity, escalation list
and delay value for a notification. PSL policies, for example, may compare the message
component, priority or time of day attributes of a “Contact” request to recognize the request to be
of severity “one “ in nature and identify the escalation list and delay values. In addition to
performing the task of identifying parts for a MNS requests, the PSL policies can also determine
whether to accept or reject a “Contact” request. If the recipient of a “Contact” request is presently
not available, then PSL policies can overrule the recipient attribute and in turn create MNS
requests that are intended for any other recipient. If there are no PSL policies for a “Contact”
request then by defauilt, the MNS request generated is a copy of the “Contact” request. In this
case, the MNS request will have no escalation list (a “Contact” request does not have one), it is
delivered with a severity value of “2” (low) and delay of “0”. The delay value is of no
significance here since there is only one recipient and the severity is low. In a policy-based MNS
system, since the parameters of a notification request (like escalation list, severity, priority) are
determined by the PSL policies it allows the unit heads to control (by creating PSL policies) the
message notification process and ensure that notifications reach the right person at the right time
using the most appropriate delivery media.

47

4.4 Case Scenario: Application of Integrated Architecture

We will consider two enterprises “Enterprise A” and “Customer A” where “Enterprise
A” is a computer service company that provides software and hardware support to employees of
“Customer A”. In a human driven helpdesk environment, to seek the services of “Enterprise A”,
an employee belonging to “customer A” calls up a published telephone number. The call is
answered by an employee belonging to “Enterprise A” who identifies the problem and assigns it
to one of the available experts who in turn contact the originator of the request to seek additional
information or to resolve the problem or to re-direct it to to any other expert.

In this helpdesk scenario, message notification systems maybe deployed to prevent
avoidable delays at “Enterprise A” in directing calls through a centralized human operator and to
provide customers with the flexibility to directly reach intended experts inreal-time by reaching
out to them via multiple delivery media. In the earlier section, we discussed the disadvantages of
message notification systems and derived the need for policy-based message notification. In this
section, We will now demonstrate how the two enterprises in discussion, namely “Enterprise A”

and “Customer A” implement a policy-based notification solution.

4.4.1 GEA Model

As a first step, the two enterprises namely, “Enterprise A” and “Customer A” model their
entities and resources using the GEA Model as described in Chapter 3 of thesis. The GEA Model
shown in Figure 17 describes the relationships between enterprise entities involved this case
scenario.

Since our aim in this section is to demonstrate the policy specification and enforcement
issues we denote employees (instead of their role) as nodes in the GEA model. However, for
large enterprises role-based modeling is recommended due to reasons discussed in Section 3.1 of

this thesis. The mechanism to relate employees to roles is beyond the scope of this thesis.

Figure 17: Case Scenario: GEA Model

In the Figure 17 shown above, unit heads (“David, “Wang” and *“John™) of “Enterprise
A” have edges to both “Contact” and *“Notify” objects and hence have the authority to specify
policies to handle incoming “Contact” requests and to initiate “Notify” actions on them. Policies
specified by these objects are applicable only to entities to which they have direct or indirect
edges. Hence, policies specified by “John” are applicable to all entities in the enterprise.
However, policies specified by “David™ are applicable only to employees “Mark” and “Mike”
and those specified by “Wang” are applicable to employees “Chris” and “Carl”. An edge from
the employee “Martha“ in Customer A” to the “Contact” entity gives her the authorization to
initiate “Contact” requests.

4.4.2 Policy Specification

In this section, we will demonstrate how unit heads of “Enterprise A” (“David”, “Wang” and
“John™) use PSL to create policies that determine the escalation list and severity of an incoming
“Contact” request and initiate a request to MNS.

Example 1: “Dayid” uses the following PSL statement to specify a policy to handle “Contact”
requests with “high™ priority to employees (“mark™ and “mike™) under his authority:

49

Policy P1;

David; Enterprise A;

When Contact arrives;

If Contact.priority = “high™;

Then Notify (message = Contact.message; priority = 2; severity =2;
recipientl = “Contact.recipient™; deliveryl = pager; delayl = 10;
recipient2 = “David™; delivery2 = pager; delay2 = 20;
recipient3 = “Wang”; delivery3=pager; delay3 = 30;
)

Example 2: “Wang” uses the following PSL statement to specify a policy to handle “Contact”
requests with “critical” priority sent to employees (“Chris” and “Carl”) under his authority:

Policy P2;
Wang; Enterprise A;
When Contact arrives;
If Contact.priority = “critical™;
Then Notify (message = Contact.message; priority = 1; severity =1;
recipient! = “Contact.recipient™ ; deliveryl = pager; delayl=10;
recipient2 = “Wang”; delivery2 = pager; delay2 = 20;
recipient3 = “David”; delivery3 = pager; delay3 = 30;
)

Example 3: We now include an example to demonstrate the two level specification mechanism.
In the GEA Model shown in Figure 17, it can be observed that the employee “Martha” is
provided with authority to initiate “Contact” requests. However, “Wang” creates the following
PSL policy that aims to restrict “Martha” from initiating “low” priority “Contact” requests:

Policy P3;

Wang; Enterprise A;

When Contact arrives;

If Contact.priority = “low” AND Contact.originator = “Martha”

Then forbid;

50

In this section, we have demonstrated with three examples how the unit heads create
policies to control the activities of entities under their authority. Since the scope of a PSL policy
is obtained from the EA Model, the authority of an entity to specify policies on other entities is
verified implicitly. Also, it can be observed that PSL does not rely on the policy creator to list the
target entities for a policy. In the next section, we will demonstrate a case where the new policy

conflicts with some existing policies in the policy repository.

4.4.3 Conflict Detection and Resolution

We assume policies P1, P2 and P3 described in Section 4.4.2 exist in the policy repository. In this
example, “John” uses PSL to specify the following policy that aims to reject “Contact” requests
with “high” priority.
Example 4:

Policy P4;

John; Enterprise A;

When Contact arrives;

If Contact.priority = “high™;

Then forbid;
This new policy, P4, conflicts with existing policy P1. The conflict is detected because the
content-sections of the two policies is identical, source-sections is contained (by definition 3 in
Section 3.4, page 33) and action-sections conflict. The conflict is resolved by removing policy P1
from the policy database and by accepting policy P4 for enforcement. This is because the creator
of policy P4 has a higher authority than the creator of policy Pl in the GEA Model shown in
Figure 17. The conflict resolution mechanism is discussed in detail in Section 3.4 of this thesis.

4.4.4 Policy Enforcement

To demonstrate the policy enforcement examples, we assume that policies P1, P2 and P3
(described in Section 4.4.2) exist in the policy repository. In this section, we demonstrate four
scenarios where P1, P2, P3 are enforced on entities “Mark”, “Chris” and “Martha” (refer to
Figure 17 for the GEA Model).

51

Scenario |: “Martha” who belongs to “Customer A” initiates a “Contact” request with “high”
priority to “Mark” in “Enterprise A”. This is shown below:
Contact (originator = “Martha”; originator_model = “Customer A™;
recipient = “Mark”™; recipient_model = “Enterprise A”;
message = “Router Down”; priority = high;
)
When the above request is received at the PST Server, the following action (a notification request
to MNS) is executed:
Notify (message = “Router Down”; priority = 2; severity =2;
recipient] = “Mark”; deliveryl = pager; delayl = 10;
recipient2 = “David™; delivery2 = pager; delay2 = 20;
recipient3 = “Wang”; delivery3=pager; delay3 = 30;
)
It can be observed that escalation list for the “Notify” action is enforced by Policy P1. This is
because the intended recipient “Mark” is under the authority of “David”, and hence events to

“Mark” are bounded by policies specified by “David”, which in this case is Policy P1.

Scenario 2: “Martha” who belongs to “Customer A” initiates a “Contact” request to “Chris” in
“Enterprise A”.
Contact (originator = “Martha”; originator_model = “Customer A”;
recipient = “Chris”; recipient_model = “Enterprise A”;
message = “Router Down”; priority = high;
)
When the request is received at the PST Server, the following action (a notification request to
MNS) is initiated:
Notify (message = “Router Down”; priority = 1; severity =1;
recipient] = “Chris”; deliveryl = pager; delayl = 10;
recipient2 = “Wang”; delivery2 = pager; delay2 = 20;
recipient3 = “David”; delivery3=pager; delay3 =30;
)
The parameters of the “Notify” request is provided by Policy P2 since the intended recipient
“Chris” is under the authority of “Wang”, the creator of Policy P2.

52

Scenario 3: Similarly, when “Martha” initiates a “Contact” request of “low” priority to “Chris” in
“Enterprise A™:

Contact (originator = “Martha™; originator_model = “Customer A™;
recipient_name = “Chris”; recipient_model = “Enterprise A”;
message = “Router Down”; priority = high;

)

When the request is received at the PST Server, Policy P3 created by “Wang” that seeks to reject
“low” priority requests from “Martha” is enforced. Subsequently, “Martha” is displayed the
message “Forbidden to send “low” priority requests”.

Scenario 4: In the earlier scenario, Scenario 3, “Martha” had the authority to initiate “Contact”
requests but was forbidden by PSL level policies to initiate “low” priority requests. In this
scenario, we illustrate a case where the request is rejected at the GEA Model level. The user
“Nancy” belonging to “Customer A” initiates the following “Contact” request:

Contact (originator = “Nancy”; originator_model = “Customer A™;
recipient_name = “Chris”; recipient_model = “Enterprise A,
message = “Router Down”; priority = high;

)

When the request is received at the PST, it displays the following message to the user: “Authority
to initiate a notification request is denied”.

4.4.5 Java Implementation and Testing

In this section, we verify the feasibility of our proposed architecture by means of an
implementation prototype and demonstrate the four policy enforcement scenarios (for P1, P2, P3)
discussed in the previous section.

53

AN
\

)

/

&,
{
P 9%

L

—— — o

rd

>

f(

B

Figure 18: Scope of Implementation of Integrated Architecture

In Figure 18 shown above, the shaded modules and the arrows shown as continuous lines denote
parts of the architecture that is implemented in the prototype. We have also implemented a
“Contact” editor that provides a graphical user interface to generate “Contact” requests to PST.
When “Contact” requests are received by Event Handler module, it is propagated to EA Model
Handler and Policy Handler for further processing. The five implemented modules (PSL Editor,
Event Handler, EA Model Handler, Policy Handler and Policy Engine) enable us to demonstrate
the ease of use of our proposed policy specification language (PSL) and the application of EA
Model to manage simple authorizations and to provide the scope of a policy. The PST graphical
user interface is shown in Figure 19 in the next page.

54

david (M EnterpiseA |

Figure 19: PST Login Window

4.4.5.1 PSL Editor and Policy Handler

The PSL Editor shown in Figure 20 provides a graphical user interface to create policies
using PSL statements. The source field in the editor window is of non-editable type and its value
is automatically obtained from the login window. When the enable button is pressed, the new
policy is received by the EA Model Handler to verify the authority of the specifier entity on event
and program entities used in the policy. If verification succeeds, the new PSL policy is sent to the
conflict handler module. In our prototype, since we have not implemented the conflict handler
module, when the enable button is pressed the new policy is transferred to the policy handler.

55

If contact.priority = "high® AND
{contact sender_model = "Customera” then

ENotify { message = co

f priority="2*

severity= "2}

recipient! ="david® medium1 ="email* delayl ="10"
recipient2 ="chris®* medium2 ="pager delay2="20"
recipient3="wang" medium3= "voice” delay3="30"

.
-
b

Figure 20: Graphical User Interface for Policy Specification
The policy handler module receives the new policy and uses the Java Expert System Shell [Jess]
to enforce it. To enable this, the policy handler parses the new PSL statement and maps them into
JESS rules, i.e., in the form that can be interpreted by the Java Expert System Shell. We illustrate
below a policy in PSL notation and then present it as a JESS rule:
PSL Notation:
Policy P1;
David; Enterprise A;
When Contact arrives;
If Contact.priority = “high”;
Then Notify (message = Contact.messaage; priority = 2; severity =2;
recipient]l = “Contact.recipient”; deliveryl = pager; delayl = 10;
recipient2 = “mark”; delivery2 = pager; delay2 = 20;
recipient3 = “david™; delivery3=pager; delay3 =30;);

56

When above PSL notation reaches the policy handler, it looks up the EA Model to obtain the
scope of the policy and creates the following Jess rule to enforce policies on entity “Mark” (and

in a similar way for “Mike™):

JESS Notation:

(defrule P1
(Contact (originator ?) (senderModelName ‘‘Customer A’‘)
(recipientName ‘‘Mark’’) (recipientModelName ?)
(priority ‘‘high’’) (messageContent ?mc))

(definstance
Notify (new contact.fact.notify ?mc 1 1
‘‘Mark’’ * pager” 10
“‘David’’ ™ email” 20
‘‘*john'’’ “ pager” 30))

The “definstance” keyword is used to instantiate event or program entity in the right hand side
clauses of Jess rules. We assume th at “Notify” object performs the task of initiating a request to
MNS system. The “defclass” command shown below is used to identify event and program
entities to Jess:

(defclass Contact contact.fact.Contact)

(defclass Notify contact.fact.Notify)

4.4.5.2 Contact Editor

The “Contact” editor as shown in Figure 21 provides a graphical user interface to generate
“Contact” requests. The sender field is non-editable and obtains its value from the user’s login
information. When the “send” button is pressed, the “Contact” request is generated and is
received by the Event Handler module.

57

P

| mac __J| Entsrrises [N

% Router Down f

Figure 21: Contact Editor

4.5 Chapter Summary

Our goal in this chapter was to demonstrate the application of PST to accomplish policy-based
management of enterprise processes. Although our proposal is domain independent, we chose
Message Notification System for demonstration as they are being increasingly deployed in
enterprises for inter and intra-office communications. We have derived the need for policy-based
message notification system and illustrated the steps to accomplish it. The feasibility of our
approach is validated by means of a prototype implementation of PST and subsequent
demonstration of four case scenarios that achieve a policy based notification solution. The
application prototype also demonstrates the benefits of a policy-based MNS system in which
parameters of a notification request (escalation list, severity, priority) are determined by the PSL
policies thus allowing unit heads to control (by creating PSL policies) the message notification

58

process and in turn ensure that notifications reach the right person at the right time using the most
appropriate delivery media. Another significant contribution of the prototype implementation is
to test the suitability of expert system techniques [Jess] for policy execution.

59

5.0 Conclusion

5.1 Contributions

The aim of this thesis is to provide an Enterprise Policy Specification Tool for managing
enterprise policies. Since an enterprise’s structure and available resources are constantly
changing when multiple entities are allowed to manage enterprise policies the task of
policy specification and maintenance is complex. We categorize our achievements in
this thesis as primary and secondary contributions and summarize them below. As our
primary contributions, we have:

= proposed an Enterprise Authority (EA) Model to capture the relationship between
enterprise entities and their authority on available enterprise resources.

* introduced a Policy Specification Language (PSL) that denotes the EA model in its
policies. This enables us to automatically obtain the scope of a policy from the EA
Model and thus implicitly verifies the authority of policy creators to specify policies
on other entities.

* identified two types of authorization policies: simple and complex. Simple
authorizations are handled at the EA Model level leading to a simpler specification.
For complex authorizations we have used the combination of EA Model and PSL
rules.

= proposed a mechanism to detect conflicts between enterprise policies before they are
accepted for enforcement. Further to this, we have proposed a mechanism to resolve
conflicts based on enterprise authority of entities involved in the conflict.

= proposed an architecture for Policy Specification Tool (PST) to apply the above
contributions in practice.

= Identified the need to ensure consistency between an enterprise’s available
resources, its structure and its policies. We have identified three situations that may
create new inconsistencies and have recommended steps to prevent them.

As our secondary contribution we have:

¢ partially (modules that are shaded in Figure 18, page 55) implemented our proposed
PST architecture using Java and Java Expert System Shell [Jess] to demonstrate
using four policy enforcement scenarios the application of PSL, EA Model and Two-
level specification mechanisms.

5.2 Further Work

We identify four areas where our work can be extended, they are: EA Model,
PSL Syntax, Incremental Maintenance and the PST prototype. Presently, our EA Model
supports enterprises that are organized as a directed-acyclic graph (DAG) structure. We
chose to support DAG structure for our proposal as majority [Litterer] of enterprises are
modeled this way. However, as enterprises continue to evolve or when they reorganize
themselves there maybe new requirements for modeling non-standard structure in the
form of a graph or matrix [Litterer] form. It will be useful to extend our proposal to
support different forms of enterprise models. In the area of policy specification, our
work can be extended to support different levels of policy specification languages. For
example, policies maybe specified in a natural language form and then automatically
transferred into one or more PSL policies. One other significant extension is to extend
the PSL grammar to be able to support specification of temporal rules.

Our conflict detection and resolution mechanism has addressed one type of
inconsistency, which identifies policies that monitor same set of events but perform
opposite actions. However, other types of inconsistencies such as duplicate, inferred,
redundant and subsumed policies may also occur and they have to be detected and
resolved before they are accepted for enforcement. It will be useful to extend our work
to detect these different types of inconsistencies. In our work, we have identified the
need to maintain the consistency between available enterprise resources and the policy
repository (policies accepted for enforcement). We recommend incremental

61

maintenance tasks to ensure this consistency. Our work on incremental maintenance
can be extended so as to provide an algorithm to perform the same. Finally, our Java
implementation prototype can be extended to demonstrate the feasibility of our
proposed conflict detection and resolution algorithms and a graphical user interface to
manage our proposed EA Model.

62

6. References
“

[Bala] Balachander Krishnamurthy and D.S.Rosenblum, “YEAST: A General
Purpose Event-Action System” in IEEE Transactions on Software
Engineering, Volume 21, NO.10, October 1995.

[Brites] A.C.S.C.Brites, P.A.FSimoes, P.M.Cleitao, E.H.SMonteiro,
F.P.L.B.Fernandes, “A High-Level Notation for Specification of
Network Management Applications”, in proceedings of INET
1994 /JENCS.

[Curamessage] www.curasoft.com
[Herbst] H.Herbst, G.Knolmayer, T.Myrach and M.Schlesinger, “The
Specification of Business Rules: A comparison of Selected
Methodologies”, in System Life Cycle, Amsterdam et al.: Elsevier
1994, pp.29-46.
[IETF] “Policy Framework (draft)”, www.ietf.org, September 1999.
[Mog] ILOG Rules - www.ilog.com
[Inverardi] P.Inverardi, B.Krishnamurthy, D.Yankelevich, “Yeast: A case study for
a practical use of formal methods” from IEI-CNR - Italy, Bell Labs -
USA and University of Pisa - Italy.

Jarvis] P.Jarvis,].Stader, A.Macintosh,].Moore and P.Chung, “What right do
you have to do that? Infusing Adaptive Workflow Technology with
Knowledge about Organizational and Authority Context of a Task”,
from AI Applications Institute, Loughbourgh University, UK.

[Jess] http://herzberg.ca.sandia.gov/jess/

[Keryx] www.hp.com

[Koch] T.Koch, Krell, B.Kramer, “A Policy Definition Language for

Automated Management of Distributed Systems” in the
International Workshop on Systems Management. June 1996,

[Kramer]

[Lee]
[Litterer]
[Lobo]

[Lupu]

[Marriot]

[Moffet]

[Myrach]

[Sloman]

[Sobieski]

[Telalert]

Toronto, Canada.

T.Koch, B.Kramer, G.Rohde, “On a Rule Based Management
Architecture”, in the International Workshop on Systems
Management (June 1995), IEEE Computer Society.

R. Lee, “Bureaucracies as Deontic System” in ACM Transactions on
Office Information Systems, Vol 6, No. 2, April 1988, pages 87-108.
J. A. Litterer, “Organizations: Structure and Behavior”, Wiley
publications.

J.Lobo, R.Bhatia, S.Naqui , “ A Policy Description Language”, in
proceedings of AAAL1999.

E.Lupu and M.Sloman. “Contflicts in Policy-based Distributed
Systems Management”, in IEEE Transactions on Software
Engineering 1997 - Special Issue on Inconsistency Management.
D.Marriot and M.Sloman, “Management Policy Service for
Distributed Systems”, in IEEE third International Workshop on
Services in Distributed and Networked Environments (SDNE 1996).
J-Moffet, M.Sloman Policy Hierarchies for Distributed Systems
Management”, in IEEE Journal on Selected Areas in
Communications (1993). Vol 11(9): pp 1404-1414.

H.Herbst and T.Myrach, “ A Repository System for Business Rules”, in
proceedings of the sixth IFIP TC-2 Conference on Data Semantics,
London: Chapman & Hall 1995/96.

M.Sloman, E.Lupu, “Policy Specification of Programmable

Networks”, in proceedings of First International Working
Conference on Active Networks (IWAN 1999), Berlin, June 1999.
Sobieski, S.Kroviddy, “KARMA: Managing Business Rules from
Spedification to Implementation”, in proceedings of IAAI-9.
www.telalert.com
RWeis, “A practical approach towards distributed and flexible
realization of policies using intelligent agents”, from Department of
Computer Science, University of Munich.

