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ABSTRACT

CAD OF RECTANGULAR-RIDGED
WAVEGUIDE BANDPASS FILTERS

Carlos Alberto Andrade

This thesis examines the design of rectangular or ridged waveguide bandpass
filters using a computer. It studies the analysis of rectangular and ridged waveguide
discontinuities using Mode-Matching (MM) and explains how to obtain the Generalized
Scattering Matrix (GSM) form the MM analysis. Then, the thesis shows how to combine
all the scattering matrices of a microwave circuit to obtain its overall scattering
parameters of the circuit. The combination of the MM and GSM method allows the
accurate and fast modeling of microwave bandpass filters with rectangular or ridged
waveguide cross-sections. A Computer-Aid-Design (CAD) tool is built for the rigorous
analysis of an evanescent-mode waveguide filter using the MM-GSM method. A
Graphic-User-Interface (GUI) is part of the CAD tool. The user can enter filter
parameters and analyze the accurate response of the filter within seconds. The thesis
shows a particular design example of an evanescent-mode waveguide filter using the
CAD tool. The filter dimensions found using the CAD tool were used to fabricate the
filter. The filter was measured and compared with the simulated results. Good

agreement between the two results was obtained.

1l
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CHAPTER 1 - Introduction

Microwave passive filters are essential components in the implementation of
telecommunication systems. Their main purpose is to pass selected signals and attenuate
unwanted signals. Thus, it can clean the communication network by letting only the

system band signals to be transmitted or received.

The term microwave indicates that the device operates with alternating current
signals with frequencies between 300 MHz and 300 GHz. At these frequencies, the
electrical wavelength ranges from 1 mm to 1 m, which is comparable to the device size.
Since the signal oscillates within the circuit physical length, the circuit dimensions, the
signal amplitude and the signal phase must considered during the analysis of the device.
This means that the general electromagnetic theory as described by the Maxwell’s

equations must be applied.

Microwave filters are generally made of transmission lines or waveguides.
Common transmission lines used to build microwave filters are: stripline, microstrip line
coaxial line, circular waveguide, rectangular waveguide, ridged waveguide and dielectric
filled waveguide. Depending on the electric, mechanical and environmental
specifications, some transmission lines offer better performance over the others. It is the
microwave designer responsibility to be aware of all the transmission line properties so

that the optimum filter performance is obtained.
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Although the principals for microwave filter design were established
approximately one century ago, microwave filter design remains an active research area
today. Each year, many technical papers are still published by scientists and engineers on
the new developments of microwave filter technology. The research has particularly
increased over the last decade with the explosive growth of wireless and satellite
telecommunication systems requiring higher performance and more reliable filter
designs. An example is the implementation of new wireless digital telecommunication
services at 38 GHz by Winstar Communications in New York, which offers the same
quality services as the traditional wire line networks. But, because wireless network links
can be set up in new locations more quickly, easily and at less cost, companies like
Winstar are able to offer the same services at reduced rates. A few years ago, microwave
filters at high frequency such as 38 GHz were impossible to manufacture due to the tight
mechanical tolerances required and the lack of precise designing tools. Today, with the
new advancements in machining and computer-aided design (CAD) tools, many

telecommunication companies are manufacturing these filters.

The development of computers with fast processors, large memory and affordable
pricing has considerably improved the way engineers design microwave filters.
Originally, microwave filters were designed with empirical models and extensive tuning
of the circuit in the laboratory. Most often, tuning elements (such as screws) were
required, to permit experimental adjustment of the cavity resonances and intercavity
couplings in order to obtain the desired filter response. The formulas derived. were

usually obtained from laboratory measurements or approximate solutions to field
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equations and were introduced by the members of the MIT Radiation Laboratory [1] as
well as by Matthaei, Young and Jones [2] shortly after the Second World War. Their
work still remains a great contribution to the understanding and design of microwave
passive components today. With the rapid improvement of computer performance in the
twentieth century, the development of CAD tools based on the numerical solution of
electromagnetic field equations emerged [3-4]. Numerical methods like Finite-Element
Method, which approximates the field solution of the Maxwell’s equations in a discrete
space domain, gained a lot of popularity mainly because of the freedom it offers the
microwave designer. Numerical method models are in general less limited in terms of
space geometries or frequency ranges than empirical models. All the significant
parameters of the microwave component can be taken into account. Furthermore, CAD
tools based on the analysis of the field equations for a bounded geometrical problem has
also considerably reduced pre-production time and cost of development of new
microwave components which makes them much more attractive to the microwave
industry. However, even today, because of machining and manufacturing tolerances, a
very tight specification cannot be met by designing the filter with a rigorous numerical

method and experimental tuning of the microwave filter is often still required.

Many numerical methods have been introduced in the past two decades to
describe the scattering phenomena of waves inside microwave passive components.
These numerical methods are often classified as space domain, modal domain or time
domain method depending on the parameter that is being evaluated numericall}; (and

usually truncated) when solving the field equations. Methods like Finite-Difference
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Method (FDM) [5] and Finite-Element Method (FEM) [6] are examples of space
discretization methods. Mode-Matching Method (MMM) [7] and Method of Moments
(MOM) [8] are based on modal discretization, and Finite-Difference Time Domain
(FDTD) [9] and Transmission Line Method (TLM) [10] belong to time and space
discretization. A brief summary of each method is given in [3-4]. No matter to which
class the numerical method belongs to, all the methods should converge to the same and
unique solution of the four Maxwell’s equations for the given boundary conditions of the
component. In some technical papers, a lot of emphasis is placed on the advantages of
one method over the other methods for a particular application. A good comparison
between the different methods is usually done in terms of its computing requirements as

shown by table 1.1 [3-4].

Table 1.1 - Comparison of Numerical Methods

Method Storage CPU » Versatility Pre-processing
FDM L L | ++ Nil
FEM L L +++ +
TLM L L ++ +
MMM S/M S/M + ++

Note : L =large, M = medium, S = small, +++ = very good, ++ = good, + = poor

In general, table 1.1 shows that space and time discretization methods require

more memory storage and computer processing time than modal discretization methods.
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However, space and time discretization method!s are more versatile in the sense that they
can analyse complex geometrical structures. T herefore, as a rule of thumb, it is usually
preferred to use modal discretization methods o-ver time and space discretization methods
when the structure involved is of simple geomnetrical form because less memory and

computing is required to converge to the solutio-n.

Most of the CAD tools built today for the design of a microwave filter include
more than just an electromagnetic field nurmerical solver. Often, CAD tools are
combined with a synthesis algorithm, an optimization routine and a graphic-user-
interface (GUI), which allows the user to enster data, direct instructions and display
computational results. Therefore, CAD tool is s computer oriented process, which when
the solver maintains enough convergence durin_g the process, experimental tuning of the
filter can be replaced by computer optimizatiorm of the circuit. A typical CAD tool flow

diagram for a microwave filter design is illustratzed in figure 1.1.

The process shown in figure 1.1 begins by stating the filter electrical
specifications such as the insertion loss, return loss, passband and rejection band of the
filter. If the filter initial dimensions are umknown, a synthesis method based on
experimental data or approximation models «can be used to obtain the initial filter
dimensions. Once the initial (guess) dimemmsions are found, the numerical solver
computes the filter response. After running the mumerical analysis of the electromagnetic
waves inside the filter, the computed response is compared with the specifications. .If the

filter fails to satisfy the given specifications, the= filter dimensions are refined until all the
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requirements are met. During the optimisation stage, the filter is analysed each time the
filter dimensions are changed. It can take several iterations before the filter meets the
requirements; hence the importance of selecting a fast numerical method for the solver.
Finally, when the filter meets the specifications, the optimum filter dimensions found are

used to fabricate the filter.

Filter specifications

Are the filter parameters known?

Yes lm@
— Synthesis
A 4
SOIVClt < Optimisation
Analysis

Are the filter specifications met?

Vs

Fabrication and testing

Figure 1.1 - CAD Flow Chart for a Microwave Filter Design
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The objective of this thesis is to illustrate and apply the CAD process of figure 1.1
for the design of rectangular and ridged waveguide bandpass filters. All the key stages in
the filter design will be addressed: the numerical analysis, the synthesis, the optimization

as well as the fabrication and testing of the filter will be discussed.

Chapter two introduces the principals of microwave bandpass filter designs. It
defines the common terms used in filter theory and states the objectives and challenges

the designer needs to face during the design.

Chapter three presents the MMM based on [11-12] for the field analysis at the
junction of two waveguides with dissimilar cross-sections. The waveguide
discontinuities that will be studied in this chapter are: the rectangular-to-rectangular
waveguide step and the rectangular-to-ridged waveguide step. Furthermore, it will be
shown how to obtain a Generalised Scattering Matrix (GSM) for the waveguide step from

the MM analysis.

Chapter four explains the decomposition of a microwave bandpass filter in terms
of its GSMs. A GSM method will be presented to compute the overall GSM of the
microwave filter. The combination of the two methods, MM-GSM, gives the complete
field analysis of a rectangular-ridged waveguide bandpass filters and consequently, can

be used to build the CAD solver.
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Chapter five demonstrates the design of a microwave filter using the MM-GSM
solver and the CAD process shown in figure 1.1. An evanescent-mode waveguide filter
is synthesized, built and measured. The comparison between measured and simulated

results will be discussed.

Finally, chapter six summarizes the work that was done and recommends further

work to improve the design method.



CHAPTER 2 — Microwave Bandpass Filter Design

The subject of microwave filter design is very broad, due to the importance of
these components in practical systems, and the variety of possible implementations. In
this chapter, we treat only the basic implementation of a microwave bandpass filters.
First, in section 2.1, the ideal bandpass filter response is discussed. The Chebyshev
approximation to the ideal response follows in section 2.2. In section 2.3, we introduce
some of the most popular filter design goals and solve for a Chebyshev filter response
from given filter requirements. Finally, in section 2.4, we present the microwave
realization of Chebyshev bandpass filters. For further explanation on each of these topics

the reader is referred the classic tome of Matthaei, Young and Jones [2].

2.1 Ideal Microwave Filter

A microwave filter is a passive component used in microwave systems to control
the frequency response of the system. Figure 2.1.1 shows the ideal frequency response of
a bandpass filter. The transmitted power coefficient, Pr, is equal to one in the passband,
frequencies between f; and f3, whereas the transmitted power is equal to zero in the reject
bands (i.e., the frequencies outside the passband region). This type of response is
referred to be ideal because it is impossible in practice to obtain a lossless transmission in
the passband and such a sharp transitions at f; and f,, Many factors contribute to make

the microwave filter to be non-ideal such as the finite property of the materials, the finite
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number of periodical resonators, machining tolerances, manufacturing tolerances and

variable environmental conditions.

A PT
Passband
4+—>
1T 1
fi f f
4 +—> 4+—>
Reject band Reject band

Figure 2.1.1 - Ideal Bandpass Filter Response

2.2 Chebyshev Filter Approximation

The first step in the filter design consists on selecting a characteristic function that
approximates the ideal filter response shown in figure 2.1.1. Many transfer functions
exist [13], but in this thesis only the Chebyshev (or equal-ripple) approach will be

considered. For a Chebyshev bandpass filter, the transmitted power is defined by

1

P =
o £ (f 7
1+ —Jo (L _Jo 2.2.1

" [(frﬁ)[ﬂ fD @20
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where Ty is the N™ degree Chebyshev polynomial of the first kind, 1/(1+k?) is the
passband ripple and fo=sqrt(f;-f;). Figure 2.2.1 shows a 4™ order Chebyshev bandpass
filter response. For a 4™ order Chebyshev bandpass filter, the transmission response will
have exactly four frequencies in the passband at which the filter will have perfect
transmission (if the filter is lossless). These four frequencies are spaced from each other
in the passband such that the transmitted power of the filter oscillates between 1 and
1/(1+k%) in the passband. In the reject band the power transmission is attenuated
monotonically, which means that the attenuation curve has no sudden discontinuity or

ripples.

1/(1+k2

Figure 2.2.1 - 4" Order Chebyshev Bandpass Filter Response

Figure 2.2.2 compares two Chebyshev bandpass filter responses. The dotted line
response has k=0.5 and N=3 whereas the solid line response has k=0.1 and N=9. The

solid line response is much closer to the ideal response. Therefore, the Chebyshev
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response with lower k and higher N approximates better the ideal response. In fact, if k

would tend to zero and N would tend to infinity, the Chebyshev response would tend to

the ideal bandpass filter response. This is why the Chebyshev response is called an

approximation method. In practice, k cannot tend to zero nor can N tend to infinity.

Therefore, the objective of the filter designer is to find k and N such that the filter meets

specific requirements.

4 Pg
- - k=0.5N=3
— k=0.1 N=9

B il § Lo T

Figure 2.2.2 - Chebyshev Bandpass Filter Responses With Different k and N

23 Filter Design Requirements

A microwave filter is a two-port network as shown in figure 2.3.1. The input port

of the filter is connected to a source impedance, Z;, and the output port to a load
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impedance, Z;. Because microwave waves can travel back and forth in a given direction,
it makes sense to express the quantities observed at the two ports as a reflection wave
coefficient or a transmission wave coefficient rather than a voltage or a current.-
Therefore, a common mathematical representation of this network response is given by
the scattering matrix, S(f),

S(/) =[Sn(f) Slz(f)] 23.1)

$u(f) Sx(f)

where §;; repesents the magnitude and phase of the wave measured at port i if the network

is excited by a normalized wave at port;. Therefore, S;; and S;; measures the

Port 1 Port 2
Two-Port
Network

Z, S(H Z

Figure 2.3.1 - Two-port Network

wave reflection at port 1 and port 2 respectively, S;; measures the wave transmission
from port 2 to port 1 and S,; measures the wave transmission from port 1 to port 2. The
relationship between transmission coefficient and the power transmission coefficient is

given by



Chapter 2: Microwave Bandpass Filter Design 14

P=|S,[" = ]S, 23.2)

Filter magnitude requirements are often expressed in decibels, dB, and can be
extracted from the scattering matrix. For example, the insertion loss, IL, measures the
total attenuation in the signal after the signal passes through the filter and is related to the

scattering matrix by

IL =10- Iog[ L 3 ] (2.3.3)

21

The rejection requirements, REJ, of a filter are also defined by equation (2.3.3), but the
insertion loss is a passband requirement whereas the rejection is a reject band
requirement. Another common magnitude requirement is the return loss which measures
the input and output match of the network to the characteristic impedance of the medium.

The return loss at port 1, for example, is defined as

1
=10- — 3.
RL log[lS“l2 J (23.4)

Like the insertion loss, the return loss requirement is usually defined over the passband of

the filter.
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Once the filter requirements are defined, the goal of the filter design consissts of
finding the minimum order, N, and maximum ripple, k, in order to minimize the inse=rtion
loss, IL, maximize return loss, RL, and maximize rejection, REJ of the filter response.
For example, if the requirement in the passband is defined as IL. <1 dB and RL > 1«0 dB
over the frequency range, 10 < f < 12 GHz, and in the reject band is defined by REJ > 25
dB for 8 < f<9 GHz and 13 < f < 14 GHz. Using equation (2.2.1), we find tha:t the
minimum Chebyshev order is N=4 and maximum ripple is k=0.33 to meet the amplatude
requirements. Figure 2.3.2 illustrates this example. If the order would be less than 4 or
the ripple more than 0.33, the filter would not meet all the requirements. On the other
hand, if the order of the filter is greater than 4 and the ripple less than 0.33, the filter
would still meet the specifications with more margin. The tradeoff on how much margin
to allow when designing a microwave filter is probably the most difficult task the filter
designer has to face. This information can only be estimated from experience with past
designs because many unpredictable phenomena such as machining variance,
manufacturing processes and variable environmental conditions can affect the Hfilter
performance. Allowing too much margin in the design increases the cost of fabrication
of the filter and can lead to the loss of the contract if the other filter suppliers can mmeet
the requirements with a lower cost unit. However, too tight margins may cause the ffilter
to fail some of the filter requirements under environmental conditions and, conseque=ntly,

the loss of the contract.
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Figure 2.3.2 - Chebyshev Bandpass Filter with N=4 and k=0.33.

Once the Chebyshev filter order and ripple is known, to arrive at a prescribed
frequency response, the designer needs to synthesize a two-port network that will match
the frequency response required. In the case of a microwave networks, synthesis consists

of determining the physical dimensions of the transmission lines or waveguides.
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24 Microwave Filter Synthesis

The most popular synthesis method used in microwave Chebyshev bandpass filter
designs is probably the direct-coupled-resonator method. Cohn [14] introduced the
method in 1957 for the design of inductive coupled rectangular waveguide filters and
capacitively coupled microstrip filters. Matthaei, Young and Jones [2] and Uher [15] use

the same approach for many other microwave bandpass filter designs.

The direct-coupled-resonator method begins by the two-port lowpass Chebyshev
network shown in figure 2.4.1. The lowpass elements, g;, are in fact lumped element
components. In figure 2.4.1, for i equal to an odd number, g; is a series inductor and for {
equal to even numbers, g; is a shunt capacitor. Also, depending if the filter order is even
or odd, the circuit will terminate with a shunt capacitor or a series inductor as shown in
figure 2.4.1 (a) and (b) respectively. The lowpass elements are derived from the

Chebyshev filter ripple, k, the order, N, and the following equations,

g @4.1)
by
4a._a. ]
g Z—‘z‘—'— i=23..N (2.4.2)
—=1Oi-1
ai=sin(%) i=12,..N (2.4.3)

(2.4.4)
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(B )
= hl — 4.
y =sin (ZN (2.4.5)
coth(lOlog(I + kz)) (2.4.6)
B=In
17.37
241 23 r— o —— BN-1
if N is even
g2 g4 N

N

if N is odd

g2 g4 EN-1

(b) N is odd

Figure 2.4.1 - Chebyshev Prototype

The Chebyshev bandpass filter is obtained from the lowpass network through a
transformation. The lowpass to bandpass filter transformation consists of replacing the

series elements in figure 4.2.1 by series LC resonators where

. _
L=—8_ =135,

Ty (2.4.7)
c=—0b_ i-13s.. (2.4.8)

' 279‘;3&
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and replacing the shunt elements in figure 4.2.1 by parallel LC resonators where

A
L= i=246,...
ot (2.4.9)
= _& ,i=2,40,... (2.4.10)
2nf,A

where fo = \]sz and A = (f;-f1) / fo. A Chebyshev bandpass filter with alternate series
and parallel microwave resonators is difficult to realize. Therefore, another
transformation is required to bring all the resonators into series resonators. This
transformation is done, by introducing impedance inverters (K-inverter circuits) between
the series and parallel resonators. Looking into its input port, a K-inverter circuit inverts
and scales the load impedance connected to its output port. Therefore, the Chebyshev
network can be transformed into an impedance inverter circuit shown in figure 2.4.2.
The series LC resonators are shown in terms of their reactance, Xj, in figure 2.4.2. All the
resonators are now in series, interconnected with K-inverters. The elements of the

impedance inverter network are given by

x — |2ALZ,
"=V g (2.4.11)

Iere

K. =2nfA [—L i=12,.,N~1 (2.4.12)
£:8in1
2nf, ALLZ,

(2.4.13)

KN.N+1 =

En
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1 : (2.4.14)
X,(f)=2mfIF — i=12,...,N
() =2nfL7 — s
Cr = —— (2.4.15)
\27f,
] 1 X, | — Xo [ — T 1 Xn [ —
Kot Ki2 K23 Kot

Figure 2.4.2 - Impedance Inverter Bandpass Network

This impedance inverter network is much easier to realize with microwave circuits since
a half wavelength waveguide, for example, can behave like a series LC resonator and the
coupling between waveguide resonators through small apertures (irises) can behave like a
K-inverter. Therefore, a direct-coupled rectangular waveguide bandpass filter as shown
in figure 2.4.3 can be directly matched to a Chebyshev impedance inverter network. The
iris dimensions can be found from the amount of coupling (or, K-inverter) between the
resonators. The higher the coupling is required the bigger the iris opening will be. The
waveguide resonator lengths will be slightly less than a half wavelength to include the
electromagnetic field perturbation in the cavity due to the coupling apertures. Using
experimental data or a fullwave solver, the iris widths, L.;, and resonator lengths, L, can
be found for the bandpass microwave filter at a given frequency. Usually, the center
frequency, fo, is chosen to synthesize the network in order to achieve a good impedance

match in the passband.
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Figure 2.4.3 - Direct-Coupled Rectangular Waveguide Bandpass Filter

The direct-coupled-resonator synthesis method can be used for any waveguide
resonators coupled by evanescent waveguide sections. The method is very accurate for
bandpass filters with a percentage bandwidth, A, less than two percent. However, for
wider passband filters the model still predicts a good matching at the center frequency but
decreases in accuracy as we deviate from the center frequency. Therefore, to obtain a
good return loss over the whole passband the filter dimensions must be refined.
Traditionally, the filter refinement consisted of using tuning screws to optimize the
resonators and the intercavity irises. Today, optimization of the microwave filter is often
done using a fullwave solver. However, if tight filter specifications are required, it is still
economical to use tuning screws on the resonators and irises to compensate for the

manufacturing errors.
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CHAPTER 3 — Mode Matching Method

The Mode Matching Method (MMM) is often used to solve boundary-value
problems involving waveguides. The method consists of decomposing a complex
geometrical structure into many regions of simple geometrical form. Hence, in each
region, we can find a set of modal functions (or, modes) that satisfy the Maxwell’s
equations except at the junctions. Then, the problem consists of expanding all the modes
in each region with unknown modal coefficients and solving for these coefficients by

applying the boundary conditions at the junction of each region.

The MMM can be formulated to solve for the scattering parameters of waveguide
discontinuities. Publications on the subject exist since 1944. However, it was only in
1967, with Wheeler [7], that the method was finally formulated in a systematic way to
solve for the scattering of waveguide steps. Since then, MMM has been applied to the
scattering analysis of many microwave components such as direct-coupled-resonators

filters [11], step transformers [12] and couplers [16].

In addition to waveguide scattering problems, the MMM can be used to solve
eigenvalue problems. In other words, it can be formulated to obtain the resonant
frequency of microwave cavities and the cutoff frequencies of waveguides. Some very
complex eigenvalue problems have been solved by MM such as dielectric resonator (DR)

cavities [17] and microstrip lines [18].
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In this chapter, both the scattering and eigenvalue problems will be demonstrated
and solved by MMM. In section 3.1, a 3-D rectangular waveguide discontinuity problem
is simplified to a 1-D problem in order to reduce the mathematical complexity of the
solution and focus on the MM principles. In section 3.2, the same rectangular-to-
rectangular waveguide step is solved by MM for the scattering parameters, but this time,
the method is applied rigorously using all the waveguide modes and boundary conditions.
The formulas that will be derived in this section are based on [12] and are valid for
waveguide steps with any cross-section geometry. Therefore, the formulas will be used
again in section 3.3 for the scattering analysis of a rectangular-to-ridged waveguide step.
However, the wave numbers (or eigenvalues) of the ridged waveguide cannot be solved
exactly from Maxwell’s equations and MM will be used to solve numerically for these

wave numbers.

3.1 Simple Example

A simple one dimensional boundary condition problem will be solved in this
section by the MMM in order to illustrate the principle of the MMM. In reality, the
boundary condition problem between two dissimilar waveguides as shown in figure 3.1.1
cannot be rigorously analyzed as a one-dimensional problem, but this will be done in this
section in order to reduce the mathematical complexity and focus on the fundamental

concepts of the MMM.
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The discontinuity between two rectangular waveguides is shown in figure 3.1.1.
In the first waveguide, wg-I, a y-directed electric field is excited and travels in the
positive z-direction towards the second waveguide, wg-II. Assuming that only the
fundamental mode operates in wg-I with a maximum amplitude of one and that the y-
directed fields in the waveguides have no y and z dependence, the problem consists of
finding the electric field in the second waveguide at the discontinuity (z=0) when the

excited electric field in wg-I arrives at the discontinuity.

vy
/|
/al

wg-1I

f

Figure 3.1.1 - Discontinuity Between Two Rectangular Waveguides

The first step in the MMM consists decomposing the complex structure into two
waveguide rectangular sections, wg-I and wg-II. Then, in each waveguide, the wave

equation and the boundary conditions must be solved to find all the possible solutions or
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modes. For an x-varying y-directed electric field, the wave equation in the two

waveguides can be expressed by

d?® .,
(drz +k, JE;=O (3.1.1)
where v = I or II for wg-I and wg-II respectively and the cutoff wave number, k.. The

general solution to the wave equation in (3.1.1) is
E!(x)=c)cos(a’x)+c; sin(b"x) (3.1.2)

where ¢, and ¢, are constant coefficients and a and b are the cross-section wave numbers.
Now, (3.1.2) must be solved subject to the boundary conditions of the specific guide
geometry. In this problem, a metallic wall exists at x =0 and x = a; for wg-Iand x =0
and x = a, for wg-II. Since E, is tangential to the metal walls, (3.1.2) must vanish at the
wall surfaces. Therefore,

E/(0)=0 = cl=0

Ej(a)=0 = b'="%
1

E"0)=0 = c"=0

T
E(a,)=0 = b"="F
a,
where m =1, 2, 3 .... The exact solution to the wave equation and boundary conditions

in both guides is then
E/(x)= c,flsin(ﬂx) (3.1.3)

a,
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and

E)(x)=cy sin( wad
. a,

x) (3.1.4)

where ¢’ and ¢ are the amplitude coefficients and the mode numbers, m =1, 2, 3 ....
The amplitude coefficients in (3.1.3) are known since the problem states that only the
fundamental mode propagates in wg-I with an amplitude coefficient of one. Therefore,

c ;=1 and cn=0form=2, 3, 4 ... and the exact y-directed electric field in wg-I is

given by

¥ a,
0 ,elsewhere

|
E'(x)= szn(—x) O=<x=<gq (3.1.5)

In the second waveguide, the exact y-directed electric field can be expressed as the sum

of all wave modes by

- .. |mT
E}f’(x) _ Ecm sm( z x) 0<x<a, (3.1.6)
0 ,elsewhere

In (3.1.6), the amplitude coefficients, c”,,, , are unknown and must be solved by matching

the tangential fields at the junction of wg-I and wg-II by

E!(x) 0<x<a '
£ (x)={ & O=xza 1
’ (%) {0 ,elsewhere (3.1.7)
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Substituting (3.1.5) and (3.1.6) into (3.1.7) gives

ZC,f,'sin(mn x) = Sin(ix) O<x=<aq, (3.1.8)
m=1

a,

In order to solve for the coefficients, c”,,,, it is necessary to remove the x dependence in
equation (3.1.8). This can be done by multiplying both sides of (3.1.8) by sin(nmx/a,) and

integrating both sides over 0 <x < a,,

jazzC:'ISin ﬂx n ﬂx dx:J‘a‘Sin -E-x in ﬂx dx (319)
0 m=1 a, az 0 a1 a,

Using the orthogonality principle, equation (3.1.9) can be simplified to

C az—z = J':l sz’n[lx}xin( mr x)dx (3.1.10)
a, a,

Therefore, the amplitude coefficients in wg-II are given by

sinf | 222 g | sin| | 2+ g, (3.1.11)
I i a a _ a a,

Cm =
a T mi T mi
i a a a a

Substituting (3.1.11) into (3.1.6) gives us the exact solution to the problem. However, the

series in (3.1.6) uses an infinite number of terms, which is mathematically impossible to
compute. Truncation of the series to a total of M terms can be use to approximate the

exact solution.
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In order to demonstrate the convergence of the method to the exact solution,
figure 3.1.2 (a), (b) and (c) shows the electric field in wg-I and wg-II at the discontinuity

given that a;=0.6 and a,=1 for M =3, M =6 and M = 15 respectively.
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Figure 3.1.2 - Electric Fields at the discontinuity For Different M terms.
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Figure 3.1.2 shows that the mode matching solution converges to the exact
solution, which is imposed by the boundary condition stated in equation (3.1.7). As M

increases, the two electric field expressions are better matched over 0 < x < 0.6 and the

metallic boundary condition for wg-II over 0.6 < x < 1 is also better respected.

The convergence of the method can also be verified numerically. In this example,
the exact solution is known and a convenient error function due to the truncation of the
series to M terms can be defined by,

E(M)= [ °|ES (e, M) - |EL(2)dx + [ |E (x, M)Jex (3.1.12)

Equation (3.1.12) was computed for 3 < M < 22. The results are shown in table 3.1.1,
which shows that the error, E, tends to zero as M tends to infinity. The graphical

representation of table 3.1.1 is shown in figure 3.1.3.

Table 3.1.1 - Error by Truncating the Series to M Terms

3 0.050720
4 0.021756
5 0.021756
6 0.013147
7 0.010243
8 0.009739
9 0.006787
10 0.006787
11 0.005151
12 0.004323
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13 0.004278
14 0.003413
15 0.003413
16 0.002834
17 0.002478
18 0.002491
19 0.002107
20 0.002107
21 0.001802
22 0.001590

0.06 h T T T T T T T T T T v T T g T v T

0.05

0.04

w 0.03

0.02

0.01

0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
M

Figure 3.1.3 - Error function over M

In most numerical problems, the exact solution is unknown. The solution
accuracy is then determined by observing that the sequence of solutions obtained, as we

increase M, tends toward a value. For example, we can observe the y-directed electric
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field intensity in wg-II at x = 0.7 for example. Table 3.1.2 and figure 3.1.4 shows the
results obtained for 3 <M < 22. In this case, we observe an oscillating convergence of
|Ey| at x = 0.7 due to the position of the nulls. For example, figure 3.1.2 (a), M = 3,

shows that {E,| at x = 0.7 is very close to a null whereas figure 3.1.2 (b), M =6, [EyJat x =

0.7 is between two nulls. Also shown in figure 3.1.2 is that as we increase M more nulls
are placed in the metal boundary region of 0.6 < x < 1, if M would tend to infinity, an

infinity number of nulls would be placed in that region, which would tend |E,| in wg-II to
the exact solution, which is [E,| = 0 at x =0.7. Hence, as M increases the oscillations in

the ||E,| sequence reduce and the solution tends more and more to the exact solution.

Table 3.1.2 - |[E,| at x=0.7 in wg-II for3 <M <22

M ~ [Eyee=0.7)]
3 0.0049
4 0.0400
5 0.0400
6 0.0221
7 0.0263
8 0.0166
9 0.0062
10 0.0062
11 0.0008
12 0.0050

13 0.0038
14 0.0069
15 0.0069
16 0.0045
17 0.0052
18 0.0033
19 0.0011

20 0.0011

21 0.0008

22 0.0020
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Figure 3.1.4 - Magnitude of E, in wg-II at x = 0.7 versus M

This example was used to introduce the basic concepts of the MMM to solve a
one-dimensional boundary condition problem. First, the exact field equations inside wg-I
and wg-II, (3.1.5) and (3.1.6), were found from the wave equation (3.1.1) and the metal
boundary conditions of each waveguide cross-section. Then, given that the wave in wg-I
1s known at the junction of the two dissimilar waveguides, the unknown amplitude
coefficients in (3.1.6) were found by matching the tangential fields at the discontinuity by
(3-1.7). The exact solution, (3.1.6), is an infinite series of sinusoidal terms (or modal
functions) and can be truncated in order to be computed. By truncating the series. to M

terms the solution is no longer exact. Enough M terms must be used in order to achieve a
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solution with a certain precision. The more the precision requirements are the more M

terms must be used in the series expansions.

In the following sections of this chapter, the same mode matching analysis will be
applied but this time the mathematical expressions will be more complex in order to
include all the 3-D boundary conditions of the problem. First, the 2-D wave equation
will be solved in each waveguide cross-section to obtain the electric and magnetic field
expressions. Then, the 3-D boundary problem between two dissimilar waveguides will
be analyzed by matching the tangential fields at the discontinuity based on theory given
in [11] and [12]. Two discontinuity waveguide steps will be analyzed by the MMM,
namely the symmetrical rectangular-to-rectangular waveguide step and the symmetrical

rectangular-to-ridged waveguide step.

3.2 Symmetrical Rectangular-to-Rectangular Waveguide Step

A symmetrical rectangular-to-rectangular waveguide step discontinuity is formed
when two rectangular waveguides with different cross-sections are joined as shown in
figure 3.2.1. The discontinuity formed is said to be symmetric because both waveguides
are centered at the origin (i.e., at x = 0 and y = 0). Before finding all the electric and

magnetic fields solutions in both waveguide sections an explanation on the use of the

symmetry will be given.
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Figure 3.2.1 - Symmetrical Rectangular-to-Rectangular Waveguide Step

Symmetry planes are often used in electromagnetic numerical methods to reduce
the mathematical complexity of the problem, which often translates into less
computational effort. Because the two waveguides in figure 3.2.1 are symmetrically
positioned about the origin, an artificial electric wall can be placed along the xz-plane and
an artificial magnetic wall can be placed along the yz-plane without perturbing the
electromagnetic fields inside the waveguides. A magnetic wall can be placed when it is
known that the magnetic field lines are perpendicular to the magnetic wall surface and,
therefore, only the transverse electric field lines are present there. Similarly, an electric
wall can be placed when it is known that the electric field lines are perpendicular to the
electric wall surface and, therefore, only the magnetic field lines are present there. By
using these two symmetric planes, only one quarter of the discontinuity is considered
during the analysis and the first quadrant, x > 0 and y > 0, will be considered in this

thesis.
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For the two rectangular waveguides shown in figure 3.2.1, the total electric and
magnetic fields inside each waveguide section can be expressed by the superposition of

the TE (or H) and TM (or E) wave components:

Ev:E;M-;-E‘;E= - VXVX(AE:é:)-i-Vx(A;:E:) (3.2.1)
Jwe, .

B =, + 0, =L Vx Vx(A.8.)+Vx(4LE.) 322)
Jjou,

Expanding (3.2.1) and (3.2.2) show that the six field components are present inside
waveguide v and they can be derived from the z-directed Hertzian vector potentials

components, Ay- and Az,

1 8°A4L L 94

E'=FE_ +E = 2.
x xTAM TE jwe, oxoz oy (3.2.33)
. 1 8°A4, &4,
E'=F _ +E .= £ K
y yTM yTE ja)go ayaz x (3.2.3b)
kv 2
E'=E., +0= ( _c.ep) A (3.2.3¢)
JOE,
v v v -1 aZAv, aAv_
Hx = HxTE +Hx7'M = = + AE. (32'3d)
jou, oxdz &y
v v v —1 aZAV- aAv,
Hj =Hj + Hyp, = o, 8y6f; e (3.2.3¢)
(ko)
H =H _ _+0=—""—4"
z =TE oo, He (3.2.39)
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The Hertzian vector potentials are often used in electromagnetic boundary-value
problems to represent the electric and magnetic fields. The advantage of using these
vector potentials is that it simplifies the mathematical solution. For the rectangular
waveguide v, the z-directed electric and magnetic vector potentials components, 4z, and

AE, are defined by the superposition of all the TE and TM modes by

4 =33 Zin T ) Erpp ™55 + By ) (3.2.4)

m=0 n=0

(3.2.5)

A =3 S o T2 () Fie i — B0

where the TE and TM wave impedances, wave admittances, and propagation constants

are given by

Zv O, 1 (3.2.6)

ws, _ 1 (G2.7)

Kl = K2 = (K )2 (3.2.8)

cHmn

Elomn =\ k2 = (Klpmn)” (3.2.9)
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The F and B terms in equation (3.2 .4) and (3.2.5) stand for the unknown forward and
backward amplitude coefficients respectively. These are the coefficients that must be
solved by matching the tangential fields at the discontinuity. In (3.2.8) and (3.2.9), kctimn
and k.gm, represent the TE,, and TMn, cut-off wave numbers or eigenvalues of the
rectangular waveguide. Similarly, in (3.2.4) and (3.2.5), Tamn(x.y) and Tema(x,y) are the
TE,., and TM,,, wave functions or eigenfunctions of the rectangular waveguide. These
wave numbers and wave functions are found by solving the wave equation for the

transverse scalar potential wave functions Tima(x.y) and Tema(x,y) given by

d* 4> ,
( -+Z,;?+k£u]7}f(x,J’)=0 (3.2.10)

and applying the boundary conditions around the waveguide cross-section. Note that in
(3.2.10), M is H or E depending if it is the transverse electric or magnetic wave
respectively. For the rectangular waveguide cross-section shown in figure 3.2.1 with a
magnetic wall at x = 0 and electric wall at x = a,, y =0 and y = b,, the wave equation can
easily be solved by the method of separation of variables leading to the following wave

number and wave function solutions:

w _ |[@m=pxY)  (nxY G2.11)
cHmn zav bv
cemn 2a, b,
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. ((Zm—l)n: ) (mr )
sSin TX COS| b—y
)= G . v (3.2.13)

T;mn (x’y _\/1+5
On

(3.2.14)

aV v

where 8y, is the Kronecker delta function. The possible wave modes for the TE,,, waves
arem = 1,2,3... and n = 0,1,2... whereas for the TM,,,, wavesm=1,2,3...andn=1,2,3....
The Ggmn and Ggn, are normalizing wave coefficients, which limits the average power

that each mode can carry to one Watt. The normalizing wave coefficients can be found

by solving

Py =%Re{j(1§;, xﬁ;;)-ds}.—.l (3.2.15)
S

where M = H or E. For the rectangular cross-section shown in figure 3.2.1, the

normalizing terms are given by,

o 22 (3.2.16)
i k:Hmn \Y avbv

G 22 (3.2.17)
e k:Emn V avbv -
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Now that the electromagnetic fields are totally described by equation (3.2.1) to
(3.2.17) in wg-I and wg-1II, the unknown forward and backward amplitude coefficients in
equations (3.2.4) and (3.2.5) can be solved by matching the transverse field components
E,, Ey, Hx and Hy at the discontinuity. By matching the transverse electric field of wg-I
on the left side with the transverse electric field of wg-II on the right side at z = 0, we
obtain:

Z Z;,q VTI x &, F[q+Bfllq) ; /Z", (VTI )(kap +B,;I-,,) (3.2.18)

=1

=Z,/ZF’,', (VI x&.)(Fi +Biy) - Z,/Z (VT ) (Fa +Ba)
I=1 =1
where each indices ¢, p, k and [ are related to the waveguide modes m, n by rearranging
them with respect to increasing cut-off frequencies order. This transformation simplifies
the analysis since it reduces the number of summation terms. Doing the same procedure

for the tangential magnetic fields, we get:

S Yy (VT )y~ Bl )+ S5 (VT % 2.)(F, ~ BL,) (3.2.19)

g=1 p=1

=S JYE(VTEY(FL - BE, +iJY;,: 2.)(F - BL)

In order to eliminate the x and y dependence of the cross-section wave functions in
(3.2.18) and (3.2.19), equation (3.2.18) is successively multiplied on both sides by
(VT'que:) and (- VT’EP) and then integrated over the cross-section on both sides.

Similarly, equation (3.2.19) is successively multiplied on both sides by (VI*y) and
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(VI'gxe,) and then integrated over the cross-section on both sides.

orthogonality principals:

rs

[T % )VTn e x8)dd= [(VIi o VT )dd =8
b8

A

and

[V (VT x2.)da = (VT x&,)VT;

S
A4 A"

)dAEO

the four equations obtained can be simplified to

diag{\[z}, W(Fi + BY) = 3 diag{\Zl (F + BY)

diag{,/Zép }(FE' +B)= JEHdiag{W/Z,’,’, }(F,f’ +B,’{)+JEEdiag{1/ch }(FE” +B])

¥udiag\[Yi, W Fi - BL)+ 3T, diag{\[V;, {(F{ - BL) = diag{\/¥}; WY —BY)

I diag{\[Y] (i - BL) = diag{\[Y& |(F¥ - BY)

Using the

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

(3.2.24)

(3.2.25)

where the infinite series in (3.2.18) and (3.2.19) can be truncated to P, Q, L and K terms

to yield the matrix equations (3.2.22) to (3.2.25). The superscript, 7, means that the

matrix is transposed. The matrices, J, are called the coupling matrices. The four

coupling matrices are defined by
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T o), = [(VT, x&.)(VTi x€,)d4

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

Isolating for the forward and backward wave amplitude coefficients in (3.2.22) to

(3.2.25) yields the modal scattering matrix of the step discontinuity shown in figure 3.2.1,

S, =—-WU-MM")

S,, =2WM

~

S, =M {U+W(U- MM")}=M"{U-S,,}

S,=U-2M"WM=U-M"S,,

where U is the unity matrix and, W is given by

W=(U+MM")"

(3.2.30)

(3.2.31)

(3.2.32)

(3.2.33)

(3.2.34)
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where

diag{ Yy, 19 H,,diag{ Z diag{\/;’fZ}J HEdiag{\/Zlk— } (3.2.35)

diag{\/—g }J E,,dz’ag{ zj diag{\/g }J ediag \/E}

M=

The S-parameters in (3.2.30) to (3.2.33) is the MM solution to the symmetrical
rectangular-to-rectangular waveguide step shown in figure 3.2.1. It includes the
reflection and transmission coefficients related to the fundamental mode as well as the
higher-order modes and, for this reason, it is called the generalized scattering matrix
(GSM). For example, the matrix element, S:/(p,q), represents the transmission
coefficient of the p™ wave mode in wg-II if the q© wave mode is incident in wg-I. In the

next section, the symmetrical rectangular-to-ridge waveguide step will be solved.

3.3 Symmetrical Rectangular-to-Ridged Waveguide Step

The second discontinuity that will be analyzed by the MMM in this thesis is the
symmetrical rectangular-to-ridge waveguide step shown in figure 3.3.1. Two waveguides
are involved in this discontinuity, namely the rectangular waveguide and the ridged
waveguide. Again, the two waveguides are symmetrically positioned about the origin so

that symmetry planes can be used to simplify the analysis.
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Figure 3.3.1 - Symmetrical Rectangular-to-Ridged Waveguide Step

For the rectangular waveguide, wg-I, the wave numbers and wave functions,
(3.2.11) to (3.2.14), were obtained by solving the wave equation for the bounded
rectangular cross-section using the separation of variable method. Using equations
(3.2.11) to (3.2.14), the electromagnetic fields inside the rectangular waveguide are fully

described by equations (3.2.1) to (3.2.5).

For the ridged waveguide, wg-II, the wave numbers and wave functions need to
be solved so that the total electromagnetic fields inside wg-II is fully described by
equations (3.2.1) to (3.2.5). Because of the fin inside the guide, the wave equation cannot
be evaluated exactly for such geometrical bounded problem. Therefore, the wave

numbers and functions must be evaluated numerically.
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Because the ridged waveguide is often used in microwave structures, some
numerical methods [19-21] have been published to solve wave equation for the ridged
waveguide geometry. The Ritz-Galerkin method is used in [19] to solve the TE and TM
wave numbers and functions of the ridged waveguide. In [20] a variational approach is

used. In [21], three different methods are presented and compared.

In this section the following approach will be used for the symmetrical ridged
waveguide cross-section shown in figure 3.3.2. The ridged waveguide will be divided
into two rectangular subsections, II-a and II-b. Imposing the electric and magnetic walls
in each subregion, the wave functions in each subregions will be derived. Finally, the
transverse fields will be matched at the interface of the two subregions to yield the wave
numbers and functions of the symmetrical ridged waveguide. Like in the separation of
variables method used to find the wave numbers and functions of the rectangular
waveguide, this approach will have to be done twice: once for the TE waves and once for

the TM waves.

A Y
b
d IIb
IIa
m.W.
>
e.W. c a X

Figure 3.3.2 - Symmetrical Ridged Waveguide Cross-Section
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Ridged Waveguide TE Waves

First, the wave equation (3.2.10) needs to be solved for Tx(x,y) in region Ila and
IIb. The boundary conditions in region IIa are a magnetic wall at x = 0 and electric walls
at y = 0 and d, whereas region IIb has only electric walls atx =a, y = 0 and . From the
general solution to the wave equation in each region and imposing the boundary
conditions, the tranverse scalar potential functions may be expanded as the sum of

weighted mode functions by
(33.1)

[ mm
Ar cos[—d— )
G{{,Z Al sin(k”“ t)-——-— O<x<cAn0<y<d

Hrm xHrm~
m=0

Tr(x,v) =4

N
G D Anpcos(kly (a—x))—==—=== ,c<x<an0<y<b
r rn xHrn \/1—_*_—5:

n=0

where M terms are used in region [Ia and N terms are used in region IIb. The x-

component wave numbers, Ky , are given by

. > (mm (3.3.2)
s = \/k;;,, (=)

: (nxY (3.3.3)
i = i ()
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The y-directed electric fields, Ey, and the z-directed magnetic fields, A-, of region ITa and

IIb are then matched at x =c. Using (3.2.3b), (3.2.3f) and (3.3.1), we get:

N cos(ﬂ y) o cos(——”;n y)
I g itb . (1 fb _ la 1 lla ke N —NE  J (3.3.4)
,.Z=;' A,,mkxﬂmsm(kx”m (a c)) \/ﬁ'—o mz=(:) A,,mkx,,mcos( meC) .
N cos(% y) " COS(—"ZE y) (3.3.5)
J/3 b _ =N 4% cin(kf N> 2 7
; A,,mcos(k (@ c)) m ; Hmsm( xH,mc) s 5o

In order to eliminate the y dependence in (3.3.4), we need to multiply both sides of
(3.3.4) by cos(nmy/b)/sqrt(l +38g,) and integrate both sides from y =0 to b. Similarly, we

can multiply both sides of (3.3.5) by cos(mmy/d)/sqrt(l+6pn) and integrate both sides

from y=0tod.
(3.3.6)
b A cos(";—7r y) cos(igE y)
Aibasin(k (@ =€) 5= 3 AL Kcos(k ) ) AT T v
, mr 2\ oo T
:ZOAZZ,COS (kifm(a—c)) ] CC:/S& (g y) f/sl(:; : ) dy = A% sin(k" ¢ );r (33.7)

Equation (3.3.6) and (3.3.7) can be simplified to the following system of linear equations:
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A[Ib _ [LE] A”a (3 ‘3'8)
Hrn — nm < T Hrm
[LH] A.’Ib _ Alla (3 '3’9)
mn “THrn T “‘Hrm
where the LE and the LH matrices are given by
2k% cos(k™ ¢
[LE]"m — — .rHr.m ”(b xHrm ) [(m’ II) (3.3.10)
® kxﬁmsm(kxﬂm (a —c))
2 cos(k™ (a—c
[LH] = ( ‘tﬂmlf )) I(m,n) (3.3.11)
" d sin(kx,?mc)
where I(m,n) is the solution of the inrtegral in (3.3.6) and (3.3.7), given by
(3.3.12)
sin 2mrw )
a, mm _ nw
2 4mm d b
I(m,n) = g
m,n) = .
Sin (ﬂ - ﬂ)d sin (ﬁ + ﬂ)d
1 1 d b d b .
+ ,Otherwise
'\/1+60m '\/1+50n 2(___.]’171' _ﬂr_) 2(%_{_&)
d b d b

By substituting (3.3.8) into (3.3.9), wwe obtain a system of homogeneous linear equations,

0O, in terms of the amplitude coefficients of the wave functions in region Ia, 47,
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O Qu - Qou AE:I?O 0 (3.3.13)
Qm Ql 1 ot Ql A AHfl — 0
QMO Q.m oo QMM Ang 0
where
lo(x")| =U,,-[LH], [LE], (3.3.14)

Note that (3.3.14) is a function of the cutoff wave number of the ridged waveguide. In
order to solve for the TE modes, we need to find the cutoff wave numbers, kg, such that

the determinant of matrix Q is zero. This can mathematically be written as

el ={kiide{ok])] ) =0} (33.15)

ckh

When a wave number, k.4, 1s found, the amplitude coefficients A" and A™ in (3.3.1) for

this waveguide mode. These coefficients can be computed by substituting

lla __
AHrO =1

in (3.3.13) and rearranging (3.3.13), we get an overdetermined system of M unknowns

and M+ equations as follows:
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O Con - Qou | Ay 0o (3.3.16)
Qu le QlM Ag:z -—Q10

QMI Q.uz QMM AfI;:w —QMO

This system of equations can now be solved numerically in the least square sense for the
remaining amplitude coefficients 4”®. Once all the 4™ are known, the A™ coefficients
can be solved using (3.3.8). When all the wave numbers and wave function coefficients
are known, the normalization coefficients in (3.3.1), G" need to be solved so that each

TE mode can carry a maximum of one Watt. Using (3.2.15), we find that

(3.3.17)
i Alla -klla 2 E + Sln(zk\{ll*‘;rm ) i
- Hrm xHrm 2 4A_ Ila 2

xHrm

2 3 c sin(2kk.c)\d
+Z AI{IIrm (’n L) (—) —T[[ZH__—)J;_

m=0 - xHrm =

1 5
" -
PHr = ? GHr 3

+iAnb 24 2| (a—c) Sm(?/‘:ll‘[l,m(a—c))WQ
~ Hrn xHrn 2 L:Zm )2

e 2 (a-c) Sln(?,kg{bm(a—c)) b
+ZA ( ) { 2 4k™ 2

4

This completes the analysis to find the TE wave numbers and wave functions of the
ridged waveguide shown in figure 3.3.2. The same analysis needs to be done, but this

time for the TM waves.
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Ridged Waveguide TM Waves

Since the procedure to obtain the ridged waveguide TM modes is very simailar to
the TE modes, only the main steps will be discussed here. Again, the wave equation
(3.2.10) needs to be solved for the TM transverse potential functions, Tg(x,y), in region
[a and IIb. The boundary conditions in region Ila are still a magnetic wall at x = 0 and
an electric walls at y = 0 and ¢, whereas region IIb only has electric wallsatx =a,y =0
and b. However, since we are dealing with TM waves, the cross-section functions are

now expanded as

(3.3.18)
S o 7 . [ mT
G&Z A&;cos(kxémx)szn —y 0<x<cnl0<y<d
TEI: (x,y) = ~ m=1 d
GE Z Ag’,’xsin(k:gm (a- x))sin(—’-lg—y) c<x<an0=<y<b
n=]
where
2 33.19
klla =\/k”2_(in_7£) ( )
xEsm cEs d

. (nz) (3.3.20)
k:;in=\/k;; (=)
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By matching the z-directed electric fields, E., and y-directed magnetic fields, H,, at the

interface of region Ila and IIb, we obtain the following system of linear equations:

Agb _ [LE] Aga (3.3.21)
[LH],, Az = Afm (3.3.22)
where
2 cos( kg, 3.3.23
[LE] = cos{kiznc) I(m,n) ( )

™ b sin(k.g,(a—c))

2 i - (3.3.24)
[LH] = "E‘"[CIOS( "E‘”,(,a 2) I(m,n)
™ d kxf‘;msin(kxg‘:mc)

and I(m,n) is given by (3.3.12). Substituting (3.3.21) into (3.3.22) leads to a system of

equations,

Qn le Qx.u A,f,—’,“l 0 (3.3.25)
sz sz QZM Ag"l 0

Qm Q,wz QMM Ag‘:u 0

where
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[o(k")] =U,.-[LH], [LE], (3.3.26)

ks

Equation (3.3.26) can be solved for the TM eigenvalues of the ridged waveguide as

follows:

(3.3.27)

K =k 1aet[o(k2)] | ) =0}
Once a wave number is found, the corresponding wave functions amplitude coefficients
for the same mode must be computed by the same method discussed in section 3.3.1.

Finally, the normalization constant for each TM mode is given by

(SR o

51'11(7/:”“ c) d \ (3.3.29)
- 4A. lla Y
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fla fla ~
Z A A‘xEsm

m=1

2
+i Ylla? mn : £+Sm( k:gmc) i
BEmld )|2 4kl 2

m=1 = xEsm

5 - sin(2k™ (a—c
+Z Allb k,’Z,,' (a C)+ ( xzs;r’b( )) b
2 4k ..

,,,,z R (a —c) sin(Zkfg,,(a —C)) b
+Z Ag, - ) Py
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V4 1 2
Pl ==GE]
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Once that all the wave numbers and wave functions for all the TE and TM modes
are computed for the rectangular waveguide and for the ridged waveguide, the same

MMM derived in section 3.2 can be used to obtain the scattering matrix of the
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rectangular-to-ridged waveguide step. However, this time the coupling matrices, (3.2.26)

to (3.2.29), increase complexity since the wave functions (3.3.1) and (3.3.18) must be

used for waveguide v =1I1.

Before proceeding to the next chapter, which will show how to cascade scattering
matrices to obtain fullwave analysis of microwave structures and components, the

accuracy of (3.3.15) to find the ridged waveguide wave numbers will be discussed.

Ridged Waveguide Modes Convergence

Table 3.3.1 shows the convergence for the three first TE wave numbers of a
symmetrical ridged waveguide with a =0.250”, b =0.200”, ¢ = 0.050”, and d = 0.055” as
a function of the number of terms used in the field expansions in region Ila, M, and
region IIb, N. The third, fifth and sixth column results were obtained using the equations
derived in section 3.3.1 whereas the fourth and seventh column results are from [19].
Comparing the wave numbers obtained by the method proposed in section 3.3.1 with

those in [19], it is shown that both methods exhibit convergence and good agreement.
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Table 3.3.1 - Three First TE Modes For The Symmetrical Ridged Waveguide

M terms | N terms kc-TE1L kc-TE1 kc-TE2 kc-TE3 kc-TE2
(rad/in) (rad/in) (rad/in) (rad/in) “(rad/in)
Section 3.3.1 J19] Section 3.3.1 | Section 3.3.1 - [19]

1 1 3.7624 4.4257 15.7358 17.1373 —-
1 5 3.6567 3.6475 15.7236 17.0503 17.0583
1 20 3.6441 3.6275 15.7229 17.0453 17.0454
5 5 3.6682 3.6911 15.7286 17.0517 17.0614
5 10 3.6602 3.6654 15.7274 17.0486 17.0514
5 20 3.6532 3.6520 15.7263 17.0466 17.0469
5 40 3.6518 3.6491 15.7261 17.0462 17.0459
5 60 3.6516 3.6486 15.7261 17.0461 17.0457
5 99 3.6515 3.6483 15.7261 17.0460 17.0457
10 10 3.6610 3.6682 15.7277 17.0487 17.0517
10 20 3.6558 3.6602 15.7269 17.0472 17.0486
10 60 3.6528 3.6522 15.7264 17.0463 17.0463
10 80 3.6526 3.6518 15.7264 17.0463 17.0462
10 99 3.6526 3.6517 15.7264 17.0463 17.0461
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CHAPTER 4 — Generalized Scattering Matrix Method

In chapter three, MMM was use to extract the GSM at the junction of two
dissimilar waveguides. The scattering matrix obtained is said generalized because it
measures the fundamental mode and the higher-order modes scattering parameters.
Because all the modes are included, when two or more GSMs are in cascade, the overall
GSM obtained accurately predicts the scattering phenomena [4]. Therefore, a microwave
circuit composed of various waveguide sections can be decomposed in terms of its

GSMs. Then, the overall GSM of the circuit can be computed by the GSM method.

In this chapter, we will introduce the principles of the GSM method through two
examples. Since the GSM method cannot be used alone and must be combined with
another numerical method such as the MMM presented in the previous chapter, the

convergence of the combined MM-GSM method will be discussed for each example.

4.1 Symmetrical Rectangular Waveguide Iris

A common waveguide structure that is often used in the construction of
microwave couplers and filters is the symmetrical rectangular waveguide iris shown in
figure 4.1.1. A larger rectangular waveguide, wg-I, is separated from another rectangular

waveguide with the same cross-section by a smaller rectangular waveguide, wg-II, with a
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finite length, L. Figure 4.1.1 also shows the forward, F, and backward, B, amplitude

coefficients in each waveguide.

ty
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bZ wg-1
wg-1I
>
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z=0 / z=L

Figure 4.1.1 - Symmetrical Rectangular Waveguides Iris

The GSM method consists on concatenating all the GSMs to obtain the overall
GSM of the microwave circuit. But, first, we need to determine all the discontinuities in
the structure. In figure 4.1.1, two waveguide steps are encountered. The first waveguide
step is created by the junction of wg-I with wg-II at z=0. The second waveguide step is
created by the junction of wg-II with wg-I at z = L.. The second step in the proc;edure

consists on solving the GSM for each discontinuity encountered. For the symmetrical
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rectangular waveguide step between wg-I and wg-II, we can use the equations derived in
section 3.2 of this thesis. The GSM for the waveguide step at z = L can be obtained by
simply inverting the ports 1 and 2 for the GSM found at z =0. For example, if the GSM

at z =0 is defined by, SA:

S4 = S4,, 5S4, 4.1.1)
S4,, SA4,,

then, the GSM at z =L is defined by, SB:

—~ SB,, SB,|_[S4, S4y (4.1.2)
SB,, SB,,| |S4, SA,

The third step consists on defining the transmission GSM for each waveguide with finite
length. In this example, only wg-II has a finite length of L and the two wg-I are assumed

to be zero length. The transmission GSM for wg-II is given by, SC:
0 D
SC = [ } (4.1.3)

where the SC;; and SC,; submatrices in (4.1.3) are matrices with all its elements equal to

zero and D is a matrix defined by

_ | diag(e) 0 (4.1.4)
- 0 dz'ag(e""‘g ")
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where the D;» and D,; submatrices in (4.1.4) are matrices with all its elements equal to
zero and k', and k',¢ are the TE and TM propagation wave propagation constants found
in wg-II. Figure 4.1.2 shows the equivalent GSM representation to the rectangular

waveguide iris shown in figure 4.1.1.

SA|1 SA» SCi1 SCyz SBi1 SBi2
R SAZI SA22 SC21 SC22 SBZ[ SBZZ —

Figure 4.1.2 - Equivalent GSM Representation for the Rectangular Waveguide Iris

Finally, the last step consists of successively cascading the GSM until the overall GSM of
the structure is obtained. For two two-port networks, the GSMs, SL and SR shown in

figure 4.1.3, can be cascaded to obtain the equivalent GSM, ST,

SL;, SL;2 SRy SRz
SL,; SLa» SR, SRa2

STy STz
STz STz

Figure 4.1.3 - Cascading two-port GSM
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ST, = SL,, +SL,,SR,,\WSL,, (4.2.53)
ST;, = SL,,(U + SR, WSL,,)SR,, (4.2.5b)
ST, = SR, WSL,, (4.2.5¢c)

ST., = SR,, + SR,,WSL,,SR,, (4.2.5d)

where U is the unitary matrix and W is equal to

W =(U-SL,SR,,)" (4.2.6)

Therefore, the overall GSM of the rectangular waveguide iris is computed by, first,

cascading SA with SC to obtain a new two port GSM and then, cascade this new GSM

with SB.

Combining the MM and GSM methods, a computer program was written in
Matlab to compute the S-parameters of a rectangular iris of finite length. Table 4.1.1
shows the convergence of the MM-GSM method for the three-dimensional iris structure
shown in figure 4.1.1 with input and output waveguide ports using standard rectangular
waveguides WR7S (a; = 0.375” by b, = 0.1875"), the iris cross-section is a; = 0.200” by
b; = 0.100”, the thickness of the iris is L = 0.100”, and the operational frequency i1s 10
GHz. Instead of randomly selecting the number of TE and TM modes in each
waveguide, the number of modes is limited by given a maximal cut-off frequency (first
column of table 4.1.1). As the maximal cut-off frequency is increased, more modes are

used in the computation of the coupling matrices and the S-parameters converge to [S;i| =
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0.9543 and [Sa;| = 0.2989 after a maximal cutoff frequency of 100 GHz as illustrated by

table 4.1.1 and figure 4.1.4.

Table 4.1.1 — S-Parameters Convergence for a Rectangular Waveguide Iris

£ cutofr wg-I wg-II [S1il [S21]
GHz modes modes
TE-TM | TE-TM
20 1-0 1-0 ~ 0.8137 0.5813
25 2-0 1-0 0.9389 0.3442
35 3-1 1-0 0.9306 0.3660
40 5-2 1-0 0.9536 0.3010
55 6-3 2-0 0.9444 0.3287
61 7-3 3-1 0.9510 0.3092
70 10-6 3-1 0.9535 0.3015
90 15-9 5-2 0.9529 0.3033
100 19 -13 6—-3 0.9543 0.2988
125 28 -20 9-5 0.9543 0.2988
150 40 - 30 13 -8 0.9543 0.2989
1 —
0.9 * o T
0.8
0.7
....... 1S, .1
06} S
@ 0.5
0.4 b
0’3 T [ —— e, ot e
0.2
0.1
0
20 40 60 80 100 120 140 160

cut-off frequency [GHz]

Figure 4.1.4 — S-Parameters Convergence for a Rectangular Waveguide Iris
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4.2 Symmetrical Ridged Waveguide Coupling

In order to demonstrate the accuracy of the MM-GSM method to solve
discontinuities involving rectangular-to-ridged waveguide steps, the structure shown in
figure 4.2.1 will be solved. Figure 4.2.1 shows the symmetrical ridged waveguide
coupling structure, which consists of two propagating ridged waveguides, wg-I, coupled
by an evanescent rectangular waveguide of finite length L. This structure is often used in

evanescent-mode ridged waveguide filters.

A Y A Y
bl
d1 FI FII -
—> —> .
- «— <«
BI BII BI
el al >
X 2=
z=0

Figure 4.2.1 - Symmetrical Ridged Waveguide Coupling

For this three-dimensional microwave structure, the method described in section
4.1 can be used again to extract the overall GSM of the two-port network. However, this

time the waveguide step GSM is found from the MM analysis of the symmetrical
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rectangular-to-ridged waveguide step (section 3.3). For the case where the ridged
waveguide is a; = 0.420”, b; = 0.170”, ¢; = 0.100” and d; = 0.030” and the rectangular
waveguide is a; = 0.420”, b; = 0.170” and L = 0.150” operating at 10 GHz, table 4.2.1
and figure 4.2.2 show the convergence of the MM-GSM method. From table 4.2.1, we
can state that [S;| = 0.809 and [S;;| = 0.588 after a maximal cutoff frequency of 220 GHz.
In this case, the maximal cutoff frequency needs to be at least 20 times its operational

frequency (10 GHz) in order to give three digits of accuracy.

Table 4.2.1 — S-Parameters Convergence for a Ridged Waveguide Coupling

f cutoff’ Wg'I Wg-H ISI 1| ISZlI
GHz modes modes
TE-TM | TE-TM
80 5-1 4—-1 0.8122 0.5728
100 6-1 7-3 0.8158 0.5834
120 8-2 7-3 0.8098 0.5784
160 13-5 14 -8 0.8099 0.5867
180 15-7 16 - 10 0.8105 0.5866
200 17-8 19-12 0.8090 0.5857
220 21 -10 24 -16 0.8089 0.5879
240 25-14 28 - 19 0.8090 0.5878
260 28 - 15 32-23 0.8092 0.5876
280 32 -18 37-27 0.8091 0.5877
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Figure 4.2.2 — S- Parameters Convergence for a Ridged Waveguide Coupling
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CHAPTER 5 — CAD of the Evanescent-Mode Waveguide Filter

5.1 Evanescent-Mode Waveguide Filter

Evanescent-mode waveguide filters are often used in microwave
telecommunication systems. The main advantage of this filter with respect to the other
microwave filters is its wideband rejection, small size and low insertion loss. These
characteristics make the evanescent-mode filter an ideal component to reject unwanted
spurious and harmonic signals generated by other microwave components such as mixers

and power amplifiers.

An evanescent-mode waveguide filter consists on a series of ridged waveguide
resonators coupled by evanescent rectangular waveguide sections. Figure 5.1.1 illustrates
a typical evanescent-mode filter to obtain a Chebyshev bandpass frequency response.
Because it is often required to use standard rectangular waveguides at the input and
output ports, a rectangular waveguide step is often used for the first and last coupling. In

Figure 5.1.1, the microwave filter uses four distinct waveguide cross-sections, namely:

wg-O: standard rectangular waveguide;
wg-I: step transformer rectangular waveguide;
wg-II: ridge waveguide resonator;

wg-III: evanescent rectangular waveguide.
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A step transformer, wg-I, is used to match the filter to the input and output rectangular
waveguides. The ridged waveguide resonators, wg-II, and the evanescent rectangular
waveguides, wg-III, form the filter section and they are repeated many times until enough
rejection is obtained to meet the filter requirements. However, the number of resonators
must be kept to a minimum in order to maintain a low insertion loss over the passband
and a minimum length for the filter. Hence the necessity of a fast fullwave tool to

analyze and synthesize the filter prior to its fabrication.

4y

) < Rect.-wg-O
Ridged-wg-II
Rect.-wg-III |7
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Figure 5.1.1 - Chebyshev Evanescent-Mode Waveguide Filter
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The goal of this chapter is to present a fullwave analysis and synthesis method as
presented in the flow chart of figure 1.1. Therefore, we will first show how to obtain the
accurate and fast analysis of the evanescent-mode waveguide filter shown in figure 5.1.1
using the MM-GSM method. Second, we will demonstrate the synthesis of the
evanescent-mode filter for some specific filter requirements. Finally, the results obtained
with the MM-GSM method will be compared with the results measured to demonstrate

the validity of the method.

5.2 Analysis of the Evanescent-Mode Waveguide Filter

The boundary conditions of the evanescent-mode waveguide filter can be
decomposed into rectangular-to-rectangular waveguide steps and rectangular-to-ridged
waveguide steps joined with finite length waveguides. Therefore, the MM-GSM method
presented in the previous chapter to obtain the scattering parameters of the finite length
rectangular iris and the ridged waveguide coupling can be extended here to predict the

overall scattering phenomena of the filter.

Figure 5.2.1 is the equivalent GSM representation for the evanescent-mode
waveguide filter of figure 5.1.1. In figure 5.2.1, each waveguide step is represented by its
equivalent MM-GSM and each waveguide length is represented by its equivalent
transmission GSM. The notation used is Siy for the MM-GSM obtained for the

waveguide step between wg-I and wg-II and SU| for the transmission GSM for wg-I with
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length, L,, for example. Finally, successively cascading the GSMs from left to right
yields the overall GSM for the evanescent-mode filter taking into account all the

waveguide modes and waveguide lengths.

JREE— - 1 - - L2 - I LcN -  _
So. St St S™u Stm S Soi

Figure 5.2.1 - Equivalent GSM Representation of the Evanescent-Mode Filter

A computer program was written in Matlab to analyze the frequency response of
the evanescent-mode waveguide filter. Figure 5.2.2 shows the Graphic-User-Interface
(GUI) of the program. On the left hand side, the software lets the user input the cross-
section dimensions. When the Calculate Wg Properties button is pushed the program
computes various waveguide properties such as the frequency, wavelength and
impedance for the fundamental waveguide mode. On the right hand side, the user must
enter the lower frequency, upper frequency and number of frequencies for the analysis in
the fields denoted by FL, FU, and #Freq, respectively. The number of waveguide modes
that will be used to calculate the filter response are entered in the fields Fe WG-0, Fc
WG-I and Fe WG-1I. As a starting guess these mode cutoff frequencies should be at least
ten times greater than the cutoff frequency of the dominant mode found for the given
waveguide. The rectangular waveguide lengths are entered in the field L, and ridged
waveguide lengths in L,. Note that the first and last L, values are the step transformer
waveguide lengths whereas the other L. values are for the evanescent rectangular

waveguide lengths. When the Analyze Filter button is pushed, the program evaluates the
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GSM for each junction, concatenates all the GSMs and find the overall GSM one

frequency at the time. After the analysis the program returns a plot of the transmission

loss and return loss amplitude of the filter over frequency.
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Figure 5.2.1 - CAD GUI for the Evanescent-Mode Waveguide Filter
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5.3 Synthesis of the Evanescent-Mode Waveguide Filter

The synthesis of a microwave filter consists on finding the waveguide dimensions
in order to achieve a prescribed frequency response. Often, equivalent circuit models or
experimental data are used to quickly find the unknown dimensions such as the L. and L,
lengths of the filter. However, once the dimensions are guessed, optimization with a

fullwave solver or tuning elements in the laboratory is still required.

Craven and Mok [22] were among the first to propose a lumped element circuit
model to synthesize evanescent-mode waveguide filter lengths in 1971. Their work was
extended by Snyder [23] in 1977. More recent synthesis models are also proposed in
[24]-[26]. Today, with the advent of fast computer and electromagnetic fullwave design
softwares, it is no longer necessary to spend so much time in the implementation of
elaborate approximate models. This section will demonstrate how to quickly synthesize

an evanescent-mode filter when a fullwave model exists.

Figure 5.3.1 shows a procedure to obtain initial filter dimensions. The procedure
starts by identifying the required center frequency, f, filter bandwidth, bw, and passband
return loss, RL, from the given filter specifications. Then, using equation (2.2.1), the
minimum Chebyshev order, N, can be found in order to meet all the rejection bands. The
Chebyshev order also corresponds to the number of ridged waveguide resonators

required. The next step consists of determining each waveguide cross-section.
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!

SetLe = [Agi/4 , Le(2) , Le(2) 5 - » Le(2) , Aar/4 ]
and L, = [ L«(1) , L«(1) , ... , I(1) ]

I

Optimize L. and L, using MM-GSM solver

Figure 5.3.1 - Flow Chart to Synthesize an Evanescent-Mode Filter

The input and output waveguide, wg-O, is usually imposed in the filter specifications. It
consists of a standard rectangular waveguide, which propagates in the fundamental mode
only at the passband frequencies of the filter. The waveguide cross-sections for wg-I,
wg-II and wg-III are arbitrarily chosen. However, it is required to narrow down the
cross-section surface so that wg-III is evanescent at the filter passband frequencies. Once
the cross-section dimensions are selected, the waveguide lengths, the N+1 L. dimensions
and the N L, dimensions must be determined. We can start with a step transformer length
of L. = [ Ag/4 , hg/4 ] inch and a single ridged waveguide resonator of L, = [ 0.1 ] inch.
Running the MM-GSM solver, we can find the resonance frequency of the single pole
filter. The resonance frequency is the frequency at which the amplitude of the
transmission is maximum as shown in figure 5.3.2. It is important to start the analysis
with a wide frequency range in order to find the resonance. Once the L; value is found

for the first resonator, the frequency span can be narrowed down.
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Figure 5.3.2 - Single Pole Frequency Response

The next step is to increase the number of resonators by one. For example, say that we
found that L. = [ 0.175, 0.175 ] and L, = [ 0.045 ], which produces a resonance at a
frequency of 22 GHz. Now, we must arbitrarily choose the length of the evanescent
rectangular waveguide, wg-III, to give the appropriate coupling between the two
resonators. We can start with a guess length of 0.1 inch. Therefore, L. =[ 0.175, 0.1,
0.175 ] and L, =[ 0.045, 0.045 ] and we run the solver. The transmission response of the
two-pole filter will look like the curve show in Figure 5.3.3. Now, the length of the
evanescent rectangular waveguide must be set such that the bandwidth of the two
resonances is approximately equal to bandwidth of the filter. Lets say that L. =[0.175,
0.075,0.175 ] and L, =[ 0.045 0.045 ] were found. Then, the remaining step in the filter
synthesis is to set the L. vector to N+1 elements and the L, vector to N elements using the
L«(2) and L.(1) values found in the previous steps. For example, if_a fourth order

Chebyshev filter is necessary to meet the requirements, then, L. =[ 0.175, 0.075, 0.075 ,
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0.075, 0.175 ] and L, = [ 0.045 , 0.045 , 0.045 , 0.045 ]. At this stage, all the filter
lengths are guessed. The dimensions can be optimized wsing the MM-GSM solver until

all requirements are met.
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>

Figure 5.3.3 — Two-Pole Frequency Response

54 Design Example

In order to verify the accuracy of the MM-GSM method, an evanescent-mode

waveguide filter was designed. The evanescent-mode waveguide filter requirements are:

Return Loss > 20 dB for 19.5 to 21 GHz
Rejection > 30 dB for 29.5 to 31.5 GHz

I/p and O/p interface: WR42
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The synthesis method explained in section 5.3 was used to find the waveguide cross-
sections and lengths. The waveguide lengths were then optimized using the simplex
method, an optimization routine that comes with the Matlab optimization toolbox. Figure
5.2.1 shows the waveguide dimensions obtained after synthesis and optimization. Figure
5.4.1 shows the filter response of the evanescent-mode waveguide filter using the MM-
GSM solver. The analysis takes 46 seconds for 51 frequency points using a Pentium II
350 MHz processor. During the optimization, only 11 points were used which reduces

the optimization time considerably.
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Figure 5.4.1 - MM-GSM Solver Frequency Response

Figure 5.4.2 shows two evanescent-mode waveguide filters that were built to the

dimensions found by the MM-GSM method. The two filters are made of aluminum and
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are approximately 1.5 inch long. No tuning screws are used to compensate the frequency

response of the filter.

Figure 5.4.2 - Evanescent-Mode Waveguide Filters

Figure 5.4.3 compares the simulated data against the measured data. The
measured results are slightly shifted up in frequency, but the filter still meets the
requirements without tuning. The shift in frequency can be explained by the tolerance of
the machining. The effect of the rounded corners in the step transformer due to

machining can also explain the mismatch in the return loss, which causes one of the poles
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to be detuned in the measurement. The measured data over 25 GHz seems to ripple.
This is due to the use of WR28 to WR42 tapers used to make the transmission

measurement from 25 GHz to 40 GHz.

S} [dB]

f [GHz]

Figure 5.4.3 - Simulation vs. Measurement

Figure 5.4.4 explains the discrepancy between the simulated and measured data.
The values of L., L; and D (ridge waveguide gap) were randomly varied within the
machining tolerance of + .0005 inch. The blue curves represent the simulated filter
responses whereas the red curve is still the measured data. This proves that the program
developed predicts accurately the filter response, but margin must be set in the design in

order to meet the filter requirements.
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The measured filter is also detuned in the passband as shown in figure 5.4.3 and
the detuning cannot be explained by the worst-case analysis in figure 5.4.4. The return
loss discrepancy is probably due to poor cover-to-body grounding. This phenomena is
difficult to simulate by computer, but at high frequency such has 22 GHz, a very small
leak in the assembly can lead to the failure of the filter. This problem is often remedied
by adding more assembly screws or adding silver epoxy. Another phenomena that can
explain the mismatch in the return loss is the effect of rounded comners in the step
transformer as shown in figure 5.4.2. Rounded comers are required in the machining of
the filter body to include the radius of the milling tool. Often, we try to minimize the
radius so that the rounded corners are assumed negligible. To include these rounded
comers in the solver using the MM-GSM method, many rectangular-to-rectangular
waveguide steps can be used to approximate the comer as shown in figure 5.4.5. Then,
using the MM-GSM method, the accurate S-parameters of the corner can be included in

the solver.
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Figure 5.4.4 — Simulation Worst Case Analysis.

Figure 5.4.5 — Rounded Comers Approximation by MM-GSM Method
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CHAPTER 6 — Conclusion

In this thesis, the basic microwave filter theory was introduced. First, the ideal
filter response was characterized. Then, a Chebyshev approach was presented to
approximate the ideal filter response. Using the Chebyshev polynomial function and the
passband and ripple requirements of the filter, it was shown how to find the minimum
filter order and still meet the rejection requirements. Once the order of the filter was
found, a two-port network with the same number of resonators as the order of the filter
can be synthesized. It was shown that the Chebyshev prototype can be used to extract the
dimensions for a direct-coupled-resonator network. A direct-coupled circuit is composed
of waveguide resonators coupled inline by evanescent waveguide sections. The coupling
between the resonators can be modeled as impedance inverters, which simulates the
evanescent field coupling between the microwave resonators. Converting the impedance
network model information into waveguide physical dimensions through experimental
data is the traditional way to synthesize microwave filters. However, this method is only
accurate for narrow band filters since the dimensions can be evaluated at a single
frequency only. As we deviate from this frequency, the matching between the impedance
network model and the direct-coupled microwave filter becomes more and more erratic.
Hence, the advantage of using a fullwave numerical model to synthesize the microwave
filter. The fullwave solver rigorously computed all the electromagnetic fields inside the
filter at a given frequency including all its boundary conditions and finite lengths. If
enough discretization is used, the fullwave model predicts the exact frequency resi)onse

of the filter.
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To demonstrate the advantages of using a fullwave solver, the MM-GSM method
was presented to analyze 3-D structures composed of rectangular and ridged waveguide
sections. The MM method is a popular numerical method for the field analyssis between
two dissimilar waveguide discontinuities. The method consists of first findingz the modes
in each waveguide. The fields in the waveguides are then expanded as the sum of all
mode functions with unknown forward and backward amplitude coefficoents. By
matching the tangential electromagnetic fields at the junction of the two wavesguides and
isolating for the unknown forward and backward coefficients, the GSM of the waveguide
step was derived. If all the modes (i.e., infinite modes) are used, the MM anal ysis would
compute the exact GSM to the problem. Since it is impossible to use an infin_ite number
of terms in the computation of the GSM waveguide step, the result is an approximation to
the exact solution. However, it starts to converge to the exact solution after a -few modes
only. Two examples were analyzed using MM, namely, the rectangular-to-mectangular

waveguide step and the rectangular-to-ridged waveguide step.

Most of microwave passive components such as evanescent-mode -waveguide
filters can be decomposed into segments of dissimilar waveguides. For such cosmponents,
it was shown how to concatenate all the GSMs to extract the overall GSM of the
microwave component. First, the GSM for each waveguide junction was compeuted using
the MMM. Then, all waveguide step GSMs where interconnected with wavegwides GSM
to include the finite length of the waveguides. Finally, the overall GSM was o btained by
successively cascading the GSMs from left to rightt Two example of rmicrowave

structures were given, the rectangular waveguide iris and the ridged waveguide coupling.
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These structures are often used to build microwave component such as couplers and
filters. For both problems, it was found that the S-parameters converge to at least three

significant digits using a maximal cutoff frequency of 20 times the operational frequency.

After introducing the MM-GSM method, a CAD program was presented to solve
for scattering parameters of the evanescent-mode waveguide filter. This filter consists on
ridged waveguide resonators coupled by evanescent rectangular waveguides. Using the
MM-GSM solver, a synthesis method to arrive at initial filter dimensions was described.

These dimensions can then be optimized using the solver to meet the filter requirements.

In order to verify the accuracy of the MM-GSM solver, an evanescent-mode
waveguide filter was designed, built and tested. The results measured were in agreement
with the solver simulations and compliance of the filter was obtained without the use of
tuning screws. However, the measurements showed that the filter was slightly shifted in
frequency and the return loss was slightly detuned. A worst-case analysis was done and
the results obtained showed that the frequency shift was probably due to the machining
tolerances. However, the worst-case analysis did not prove the return loss mismatched in
the passband. The mismatch in the passband was probably due to machining rounded

corners or poor assembly contact between the body and cover.

The evanescent-mode waveguide filter that was designed could have better
performance (i.e., closer to the simulated data) if tighter machining tolerances were

imposed. However, imposing very precise machining leads to a much higher cost to
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fabricate the filter. The assembly body-to-cover grounding is difficult to control and
predict. However, better surface finish, more assembly screws and silver epoxy are three
possible ways to counter this problem. Finally, it was shown how to include the rounded
corner into the MM-GSM solver. The method consists of approximating the rounded
corners in terms of many rectangular—to-rectangular waveguide steps. Adc}ing this
boundary condition to the MM-GSM solver would make the solver more rigorous.
Besides adding the rounded comner to the solver, another interesting feature that would
enhance the CAD tool would be to include the losses due to the finite conductivity of the

metal. These two features are topics that can be explored in future work.
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