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Abstract
Real-Time System Design using Preemption Thresholds

Yun Wang, Ph.D.
Concordia University, 2001

As the real-time embedded systems encountered in applications such as telecommunica-
tions, aerospace, defense, and automatic control demand large, complex and multi-tasked
software development, a new challenge has emerged for adopting the state-of-the-art soft-
ware engineering technologies. Object-oriented design provides a scalable methodology
with appropriate CASE tools for the design of software systems. Although these tools pro-
vides support for visual object-oriented modeling, design, simulation and code generation
for general real-time systems, timing analysis is only available after the software is con-
structed. Consequently, the design-development process involving these tools in real-time
systems becomes iterative and time-consuming. |

Introducing timing analysis in the design stage encounters a new problem. Traditional
scheduling theory assumes a single level of task granularity. However, in industrial prac-
tice, common wisdom requires several design level tasks map into one run-time thread to
reduce scheduling costs. This warrants a dual-level scheduling: preemptive scheduling be-
tween threads and non-preemptive scheduling between tasks in the same thread. Extending
the scheduling theory to such an environment forms the scope of this thesis.

Preemption threshold is introduced to control undesirable preemptions. Via a novel
application of this concept, this thesis proposes a general scheduling model that subsumes
both preemptive and non-preemptive scheduling medels as special cases. The new theory
deals with both independent and dependent tasks derivable from an object-oriented system
model. Motivated by UML-RT modeling, the dependencies in our model include inter-
task communication, resource sharing, and precedence. Important design issues covered
include task priority and preemption threshold assignment and optimized task to thread
mapping with respect of minimum scheduling cost and memory requirement. Quantitative
performance evaluation is also conducted via simulation to validate the theory prosposed.

iii
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Chapter 1
Introduction

The dramatic improvement in the performance and reduction in the cost of microprocessors
has led to an explosion of concurrent and real-time applications. With the capability of de-
livering sophisticated functionality while still meeting stringent performance requirements,
embedded real-time applications have gained popularity in commercial, industrial, military,
medical, and consumer products. At the same time, the increasing size and complexity of
real-time applications poses a challenge to the traditional low-level and unscalable tech-
niques in real-time software development.

Historically, there is a conservative tendency in the real-time community, which reflects
the importance of stringent response time requirements, as well as safety and reliability
issues in real-time system design. The preference of approaches that have been proved to
work over possibly better, but less proven technologies has prevented real-time software
designers from adopting state-of-the-art software engineering technology. However, the
quick-growing demands for large and extremely complex multi-tasked real-time softwares,
especially in applications such as telecommunications, aerospace, defense, and automatic
control, urgently requires dramatic improvements in efficiency and productivity of real-
time software development.

One of the most promising approaches to managing complexity of software develop-
ment is model based software development. Various commercial tools have been developed
in recent years to support model based development using high level modeling languages
like Unified Modeling Language (UML) [RYB99, BRJ99]. Model based development has
also been very successful in various specialized domains, for example in telecommunica-
tions, and control systems software development. Model based design facilitates the design



process by using modeling abstractions that are closer to the design space, and by using
visual notations that facilitate understanding of the designs. Furthermore, model based
design also facilitated various forms of analysis to help in the design process. Moreover,
with the support of code generation, the benefits of modeling may extend through the soft-
ware’s life-cycle by automatically translation the design model into an implementation for
a desired target platform [Bel98, SGW94).

1.1 Motivation

Dealing with the stringent time constraints has been recognized as one of the most chal-
lenging and critical part of incorporating object-oriented and model based software design
methodologies in real-time system design. Historically, timing behavior of the real-time
system can only be studied through simulations or experiments on the hardware when the
software is implemented. Early consideration of timing issues is desirable and considered
an essential aspect of real-time system design since it may reduce the number of iterations
in the process and avoid the ad-hoc behaviors in making implementation choices. How-
ever, it has not been possible until recently due to the lack of mathematical basis that could
support it.

Recently, the maturity of schedulability analysis techniques, and in particular those
based on fixed priority scheduling theory [LL73, LSD89, HKL9i, TBW94] has facilitated
the introduction of timing analysis in the early stages of real-time system design [BW94,
Gom93, VB93]. One prominent and representative example is the HRT-HOOD design
method for hard real-time systems [BW94]. HRT-HOOD provides design abstractions that
are motivated by the tasking models of fixed-priority scheduling theory, thereby providing
direct support for the schedulability analysis of HRT-HOOD designs. Such abstractions in-
clude the cyclic and sporadic objects, representing periodic and sporadic tasks respectively.
However, this approach is limited to a relatively small number of jobs and each job is of a
relatively course granularity. And it does not work well with some of the object-oriented
design methods; for example ROOM [SGW94] and OCTOPUS [AKZ96]. (Please refer to
Section 2.5.1)

Most of these scheduling theories assume a relative simple analysis model, where all
the jobs are scheduled concurrently based on their priorities. This preemptive multi-tasking
scheduling model abstracts the popular priority-based multi-threaded RTOS (Real-Time



Operating System), such as VxWorks. The high degree of concurrency in the analysis
model provides considerable flexibility in the design. However, this model incurs rela-
tively high context switching cost with a large number of tasks and a small granularity of
each tasks. In addition, there is a per-task memory cost, which may challenge the con-
strained resource of most embedded real-time systems. In practice, real-time system de-
signers cluster jobs into tasks to reduce the number of tasks and increase the granularity of
each task. This decision is done with some heuristics from experience, for example, task
clustering and task inversion [Gom00]. These heuristics look into the temporal behavior of
the system to provide hints for merging tasks that will not or should not preempt each other.
Period or sample rate, functional relationship, time-criticism, sequential dependence, state-
dependent control, and mutual exclusion are the factors to look after while applying these
heuristics.

Some object-oriented design methods introduced for modeling real-time systems, for
example ROOM [SGW94] and OCTOPUS [AKZ96], view the system as a collection of
concurrent (or active) objects that cooperate in implementing system functionality. Thus,
each concurrent object participates in multiple system functions, and is subject to multiple
timing constraints. Moreover, to maintain internal consistency of the object, the requests
on an object are processed in a “run-to-completion” manner, i.e., there is no internal con-
currency within an object.

Multiple jobs in one task and run-to-completion process manner of object implies a
dual-level scheduling model: while preemptive scheduling is used between threads, non-
preemptive scheduling is used between jobs in the same thread. In industry, this implies
the adoption of a dual-level multi-tasking architecture. In this architecture, threads are im-
plemented as event-handlers. While threads are scheduled preemptively, the scheduling of
events within a thread is done in a non-preemptive manner by the event handling loop of the
thread. Thus, this implementation architecture requires relatively small number of threads
that reduces preemptive multi-tasking costs. Within a thread, event scheduling involves
minimal context-switching costs since events are processed on a “run-to-completion” ba-
sis.

There are two major open issues in this scheduling model. First, no scheduling theory
has clearly addressed how the dual-level scheduling affects the schedulability of a real-time
system. Second, although some heuristics may apply, there is no systematic approach with
a sound mathematical basis available to control the preemptability and map jobs in analysis



model to tasks in implementation model. These open issues serve as major motivation for

this thesis.

1.2 Thesis Overview

In this thesis, we develop techniques that address the open issues mentioned above. Fur-
thermore, we also address the issue of automatic assignment of scheduling attributes, such
as priorities, to each job (event) to reduce the ad-hoc decision in design while ensuring
the schedulability of the system. We develop a new dual-priority scheduling model that
integrates and subsumes fixed priority preemptive and non-preemptive scheduling models
and provides the basis for analyzing and synthesizing implementations for the dual-level
implementation architecture described above.

The dual priority scheduling model is based on the notion of preemption threshold,
and makes use of the following observation: if the priority of a job is raised once it starts
executing, then we can limit the number of jobs that can preempt it. This elevated priority
for a job is called its preemption threshold. Clearly, in the extreme case if the preemption
threshold is set to the maximum priority level then no job can preempt it. The preemption
threshold of jobs can then be “tuned” to get the desired degree of preemptability in the
system.

An interesting consequence of the preemption threshold scheduling model is that we
can identify jobs that cannot preempt each other. Thus, it is possible to group a set of
Jjobs that cannot preempt each other into a “non-preemptive group.” Since jobs within a
group cannot preempt each other, they can all then be processed within a single thread as
described in the dual-level implementation architecture (we assume that each event corre-
sponds triggers a single job).

To simplify the problem, we first develop techniques for independent jobs. For this
independent task model, we show how we can compute response times if the scheduling
attributes of all jobs are known a priori. Then, we show how to make use of the response
time analysis to synthesize scheduling attributes such that the resultant system is feasible
(i.e., all jobs meet their response time requirements). Additionally, we show how the jobs
can then be grouped together into threads to reduce run-time overheads, while maintaining

feasibility.



Resource
Demands

Implementation

Application
Model

E&UTOMATIC SYNTHESIS SUBSYSTEM]

Optimized
Implementation
Modei

[ AUTOMATIC CODE GENERATION SUBSYSTEM J

Application Code

Make utility
Executable code

Figure 1.1: Overview of the Implementation Generation

After solving the problem for independent jobs, we show how the results can be gen-
eralized to include dependencies between jobs that include precedence constraints and re-
source sharing. The general model is based on the design models from object-oriented
design methods such as ROOM [SGW94]. The techniques developed in this thesis may be
viewed as complementary to automatic code generation. They play an important role in
our approach of automatic synthesis of multi-tasking implementations for real-time object-
oriented models [SKWO00]. An overview of the approach is given in Figure 1.1. Since the
techniques can be automated, they can be implemented in a tool that automatically syn-
thesizes scheduling attributes and mapping of jobs (events) to threads for a given design
model to meet the specified timing requirements (whenever possible). The tool can adopt

a structure shown in Figure 1.2.
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1.3 Thesis Contribution

This thesis provides theories and solutions for two major open issues in real-time software
design: scheduling with dual-level multi-tasking architecture and mapping of jobs (events)
to threads to meet specific timing requirements. This work established the foundation for
a promising approach for automatic synthesis of feasible implementation from real-time
object-oriented software design model. My major contribution involves proposing new
scheduling theories , designing solutions and algorithms for the feasibility and optimization
problems, developing simulation tools, and quantitatively evaluating the performance of the
solutions. More specifically, my contributions can be summarized as follows:

e Propose new theories on fixed priority scheduling with preemption threshold for a

simplified model with independent jobs

e Propose algorithms for automatic generation of a feasible implementation model (in-
cluding branch and bound algorithm, greedy heuristic algorithm, and simulated an-

nealing)



¢ Propose solution for optimizing a feasible implementation model
¢ Design and implement a simulator including all algorithms mentioned above

e Evaluate the performance of our approach through simulation on randomly generated

task sets

o Extend the schedulability analysis with preemption threshold to a generalized object-
oriented model featured with end-to-end transaction, communication and resource

sharing

e Extend the algorithm for automatic generation of feasible implementation model to

the generalized model

Extend the solution for optimizing implementation model to the generalized model

1.4 Thesis Organization

The organization of the rest of the thesis is as follows. Chapter 2 provides a brief review
of related work in real-time scheduling, resource sharing theories and object-oriented real-
time system design methods. Chapter 3 proposes a new fixed-priority scheduling model
with preemption threshold and derives theories on scheduling the independent task model
with the new scheduling policy. Based on the theories presented in Chapter 3, Chapter 4
addresses the issue of generating a feasible implementation model and optimizing the re-
sulting implementation model to improve system performance. Simulation results are also
provided to quantitatively measure the advantages of our approach. Chapter 5 illustrates
the extension of our approach on a more general model which includes end-to-end transac-
tions, synchronous/asynchronous communication and resource sharing. Finally, Chapter 6

concludes this thesis work and gives a foresight of the future work.



Chapter 2

Related Work

One of the most important goals of real-time system design is to produce a functionally
correct system that predictably meets all deadlines. Scheduling policy, parameter assign-
ment and resource allocation are important factors that determine the timing behavior of a
real-time system. In this chapter, we give a brief review of related works on schedulabil-
ity analysis, priority assignment, resource sharing protocols, and software design method-
ologies for real-time systems. The review focuses primarily on fixed priority scheduling

models for hard-real-time systems.

2.1 General Scheduling Principles

In general, a scheduler can be classified to be either szatic or dynamic. Static schedulers
create the job execution pattem, or schedule, off-line and the latter is then used to dispatch
jobs at run-time. In contrast, dynamic schedulers determine the schedule on-line, based
on specific job characteristics. Historically, the most popular scheduling technique for
hard real-time designers is a non-preemptive static scheduling technique, called the cyclic
executive approach [HG86, BS88]. A cyclic executive is a supervisory control program,
which dispatches jobs in an application program of a real-time system based on a cyclic
schedule. It typically has several schedules each consisting of a sequence of actions to
be taken along with a fixed specification of timing constraints. These schedules are pre-
computed and are executed repeatedly to have predictable execution. Long-term external
conditions dictate which alternative is chosen for execution. A cyclic schedule is often



divided into frames with equal duration. A periodic clock interrupt or some similar mech-
anism is used to initiate each frame. The individual frames are designed to finish execution
within the pre-defined duration. Many systems use variations on the basic cyclic executive
approach [Car84, SD88, AL77].

The primary advantages of the cyclic executive approach are that it is easy to under-
stand, simple to implement, efficient, and predictable. Since the scheduling decision is
made off-line, context switching between computations is very fast. Resource constraints
and precedence constraints can also be embedded in the pre-computed schedule, which re-
sults in no overhead at run time for synchronization. However, several problems with this
approach have been discovered [HG86, Loc92], such as the difficulties in designing the
schedule, complications in maintaining the systern, the inefficient use of resources and the
inflexibility for adapting to changing system requirements. Thus, such methods have now
largely been superseded by priority-driven scheduling approaches.

Priority-driven scheduling is in the category of dynamic scheduling. A priority-driven
scheduler makes scheduling decisions at run-time based on the priority of each job. The
priority is assigned to each job according to some policy. Based on the time for priority
assignment, priority driven schedulers can be classified into two classes: dynamic priority
schedulers, where job priorities are determined at run-time, typically when the job is in-
voked, and fixed priority schedulers, where job priorities are determined off-line and remain
fixed at run-time. In practice fixed-priority schedulers are often employed since they offer
a good balance between flexibility, efficient use of resources, and ease of implementation.

From another point of view, priority-driven schedulers can also be classified into pre-
emptive schedulers and non-preemptive schedulers. With preemptive scheduling, the pro-
cessing of any job can be interrupted by a higher priority job, while with non-preemptive
scheduling, a job will not be interrupted during its processing.

2.2 Feasibility Analysis for Fixed Priority Scheduling

Determining whether a set of jobs is feasible, i.e., whether each job will always meet its
deadline, is probably the most important issue in real-time system design. Historically, the
feasibility of a set of jobs is determined in two ways: utilization-based test and worst-case

response time analysis.



2.2.1 Utilization-based Test

The earliest work on system schedulability under fixed priority scheduling was published
by Liu and Layland [LL73]. They analyzed feasibility of independent periodic job sets,
scheduled using a fixed priority preemptive scheduler. They developed a sufficient condi-
tion for feasible job sets by devising an upper bound for utilization. If the utilization of a
Job set is less than this upper bound, then the job set is guaranteed to be schedulable. The

upper bound is expressed as follows:
n 1
Unaz = 3 = < n(2% — 1) e

where n is the number of jobs, C; is the worst-case computation time of job 7, and T; is
the period of job . It is assumed that the deadline of a job equals its period, i.e., each job
instance must finish before the arrival of the next instance of the same job.

The utilization-based test provides pessimistic results. It indicates that for job sets with
large number of jobs, i.e., as n tends to infinity, if the job set utilization is less than or
equal to 69.3% then it is schedulable. However, a job set with a higher utilization may be
schedulable since this is a sufficient but not a necessary condition. Later work by Lehoczky,
Sha and Ding [LSD89] shows many job sets with a large number of jobs and utilization
approaching 90% are schedulable, and thus their schedulability is not adequately captured
by the utilization based test of Liu and Layland.

Liu and Layland’s identification of the critical instant is significant in the literature.
For their independent job model, the critical instant is the point in time when all jobs are
simultaneously released [LLL.73]. Their observation about the critical instant simplified the
subsequent timing analysis and gave rise to the exact timing analysis. They also showed
that the optimal priority assignment under their model is the “rate-monotonic” priority
assignment (i.e., higher rate means higher priority), i.e., if a job set if feasible then it is also

feasible under the rate-monotonic priority assignment.

2.2.2 Worst-case Response Time Analysis

With this approach, the schedulability of a job set is determined by computing the worst-
case response times for all jobs. If the worst-case response times of all jobs are no more
than their respective deadlines, then the job set is feasible. Joseph and Pandya [JP86] de-
vised a method to find the worst-case response time of a given job 7; under a preemptive

10



scheduler, assuming sporadic jobs with minimum inter-arrival times and worst-case com-
putation times. Their analysis assumes deadlines to be less than periods. Under this model,
the worst-case response time of a job occurs when it is released simultaneously with all
other jobs, i.e., the critical instant from Liu and Layland’s work. Then the response time r;

can be iteratively computed using the following equation:

;i =C; + Z [%] - Cj 2)
Vi, w5 >m; J
where C; stands for the computation time for job 7;, m; stands for the priority of job 7;, and

T; stands for the period of job ;.

Busy Period Analysis

The worst-case response time analysis has since then been extended to incorporate more
general models including deadlines larger than periods, resource sharing, job release jitter,
precedence constraints, job offsets or phases, varying priorities within a job, and more
general job arrival patterns [L.eh90, HKL91, TBW94]. While the techniques differ in the
details, they are all based on the response-time analysis technique of Joseph and Pandya.

An important notion in the worst-case response time analysis is the notion of a critical
instant and the notion of a busy period that was introduced in [Leh90]. To calculate the
worst-case response time of a job, the busy period analysis essentially simulates the effect
of scheduling under a worst-case scenario for the job. Following this approach, the worst-
case response time for a job 7 is found by constructing a busy-period for 7;, starting from
the critical instant for 7;. The busy period denotes a continuous interval of time during
which the CPU is executing jobs at a priority no less than the priority of 7.

For independent job sets, the critical instant for a job occurs when it is released simulta-
neously with all other higher priority jobs. When a job’s deadline is no more than its period,
the busy period ends when the job finishes, and the length of the busy period is the same as
its worst-case response time. However, when jobs have arbitrary deadlines, the busy period
can include multiple instances of the job under consideration. Then, the busy period of job
7; can be iteratively computed by using the following equation [Leh90, TBW94]:

) =g-G+ 3 [40].c, ®

Vi, mi>m
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In this equation, w;(q) denotes the length of a busy period for job 7;, where ¢ instances
of 7; are included in the busy period. The length of the busy period for job 7; is given by:

W= ec(125,..} wi(q) mwi(g) <q¢-T; @

where w;(q) is the smallest value of w;(g) that satisfies Equation 3. Essentially the equation
states that during the busy period for 73, all instances of 7; and higher priority jobs that arrive
within the busy period must also be executed within the busy period. The busy period
length is computed by iteratively computing w;(g) for ¢ = 1,2, 3, ... using Equation 3
until wi(q) < ¢- T
Then the worst-case response time of 7; is determined by the longest response time of
all instances that arrive and finish in the busy period. Let us denote F;(q) (¢** finish time)
as the smallest value of w;(g) that satisfies Equation 3, i.e., w;(g) converges to F;(q). Since
the ¢*”* instance of 7; arrives at (¢ — 1) - T3, the worst-case response time for 7; is given by:
R; = qer[?f.’,‘ml(‘ﬁ(Q) —(g-1)-T3) (5)
Even though the analysis described above is done for preemptive scheduling, the
same technique, with minor modifications, can be used for non-preemptive scheduling as
well [GRS96]. However, there are two major differences. First, since jobs cannot be pre-
empted while started, lower priority jobs also have an effect on a job’s response time — this
effect is called the blocking effect. In the worst-case, a lower priority job may have just
started execution prior to the critical instant. Second, once a job gets the CPU, it cannot be
preempted by any higher priority job until it finishes execution.
The blocking time from lower priority jobs is easy to incorporate. A job may be blocked
by only one lower priority job. In the worst case, this job would have started execution just

before the critical instant. Thus, the worst-case blocking time for job 7;, denoted as B; is

given by:
B; = Ymax Cj (6)
Thus, Equation 3 can be modified for non-preemptive scheduling as follows:
i(g) — C;
w;(q) = B; +q-C; + Z (l-l-lM——J)'CJ @)
Vi,mi > T7
7 T

Note that the term for interference from higher briority jobs is modified to include job
arrivals up to (and including) time w;(g) — C;, i.e., when the ¢g** instance job 7; starts

executing.
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2.3 Priority Assignment

An important concern in fixed priority scheduling is the assignment of priorities to jobs.
We have already mentioned that Liu and Layland [LL73] showed that the optimal priority
assignment for independent periodic job sets with deadlines equal to periods is the rate-
monotonic (RM) assignment. RM assignment assigns higher priority to jobs with smaller
periods. Leung and Whitehead [JJ82] extended their results to include jobs where the dead-
line can be less than the period, and proved that the deadline monotonic (DM) assignment
is optimal. Similar to RM assignment, DM assignment assigns higher priority to jobs with
smaller deadlines. Lehoczky [Leh90] points out that neither RM nor DM assignment is
optimal for general job sets (i.e. where deadlines can be larger than periods). Finally, Aud-
sley [Aud91a] solves this problem by devising an optimal priority ordering algorithm with
complexity of O(n?).

Audsley’s algorithm works by starting assignment of priorities from the lowest priority.
The algorithm works by dividing the job set into two parts: a sorted part, consisting of the
assigned lower priority jobs, and an unsorted part, holding the remaining unassigned higher
priority jobs. The algorithm keeps moving jobs from the unsorted part to add on top of the
sorted part if the chosen job is schedulable with the current priority level. The process
continues until either all jobs are in the sorted part, which means a feasible assignment is
found, or when no job can be moved from the unsorted part to the sorted part, indicating
that the job set is not feasible.

While Audsley’s algorithm was developed for preemptive scheduling, the same algo-
rithm can be used for non-preemptive scheduling as well [GRS96]. It was also shown that
the optimality results of the DM and RM priority assignments from the preemptive model
do not apply to the non-preemptive model. Finally, [GRS96] also shows that DM is optimal
for job sets in which the deadline of each job is no more than its period, if a larger deadline

implies a larger or equal computation time.

2.4 Resource Sharing Protocols

The above schedulability analyses assume independent job sets which implies that jobs may
not compete for shared resources. Allowing access to shared resources creates a scheduling
scenario in which the execution of a job can directly affect the runnability of other jobs.
Priority inversion may happen when a low priority job blocks a high priority job and the
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low priority job holds the resource that is needed by the high priority job. Priority inversion
can be unbounded if medium priority jobs are allowed to preempt the low priority job, while
it holds the shared resource. For hard real-time systems, determining the schedulability of
a set of jobs that require mutually exclusive access to some or all of a set of resources is
an NP-hard problem [Mok83]. To avoid the intractability of the optimal solution, many
approaches have been proposed to provide sub-optimal solutions. To be applicable to hard
real-time systems, these approaches must have two important attributes: predictability,
which means resource allocation decisions should be known pre-runtime, and boundedness,
which means the execution time of a job should be bounded and the bound can be calculated
pre-runtime.

The resource control techniques in the literature can be classified into two classes: pre-
dictable and non-predictable. Non-predictable approaches are not applicable to hard real-
time systems and are therefore precluded from our consideration. Predictable approaches
can be further divided into two groups: blocking and non-blocking. Non-blocking ap-
proaches include a static off-line schedule, which is out of our interest, and a run-time
scheduling mechanism called four-siot mechanism proposed by Simpson [Sim90], which
is associated with the data age problem. Therefore, non-blocking approaches are also
precluded from our review. Preventing preemptions while a job is in its critical section
can always guarantee mutual exclusive access to shared resources. This approach can be
looked as an extension of HLP (Highest Locker Protocol) reviewed in this section. Several
resource sharing protocols are reviewed in this section in the context of uni-processor en-
vironment. They can be categorized as predictable blocking preemptive approaches. For

other resource control protocols, Audsley gives a good review in [Aud91b].

2.4.1 Priority Inheritance Protocol

Priority Inheritance Protocol (PIP) is proposed by Sha, Rajkumar and Lehoczky [SRL90]
to solve the uncontrolled priority inversion problem. The basic idea is that when a job
7; blocks one or more higher priority jobs, it raises its running priority and executes its
critical section at the highest priority level of all the jobs it blocks irrespective of its original
priority assignment. After exiting its critical section, Jjob 7; resets its priority to the original
priority assignment. This policy introduce two sources of blocking: direct blocking, when
a higher priority job is trying to access a locked resource, and push-through blocking, when
a medium priority job is prevented from preempting lower priority job 7; and therefore
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avoids priority inversion. The blocking time for a job 7; with this protocol is bounded by
min(m, n) critical sections of lower priority jobs, where 7 is the number of lower priority
Jobs that are able to block 7; and m is the number of resources used by lower priority jobs
and can have a higher run priority than the priority of 7.

PIP suffers from two major problems, namely deadlock and chained blocking. Dead-
lock may happen when 7; locks R1 but gets preempted by 7; before it can lock R2, and T
locks R2 and requests R1. Chained blocking may happen when 73 locks R3, then 7, pre-
empts 73 and locks R2, and then 7; preempts > and requests R3 and R2. These problems
are due to the fact that with PIP, a job is able to lock a free resource at any time, regardless

of its priority relationship to other jobs that have already locked resources.

2.4.2 Priority Ceiling Protocol

To avoid the formation of deadlocks and chained blocking, Sha, Rajkumér and
Lehoczky [SRL90] proposed another protocol, Priority Ceiling Protocol (PCP). By as-
signing a priority ceiling to each critical section (or semaphore), which equals the highest
priority of the jobs that may request this resource (or use this semaphore), PCP ensures a
strict priority ordering of critical section executions. A job executes at its original priority
unless it blocks a higher priority job, in which case it will inherit the priority of the blocked
job. When a job 7; preempts the execution of another job which is in its critical section,
and tries to enter its own critical section, its priority should be higher than all the priority
ceilings of the preempted critical section. Otherwise, it will be blocked and the job that
blocks 7; inherits its priority. Besides the two sources of blocking in PIP, PCP introduces
a new source of blocking, ceiling blocking, which arises when a job is denied access to a
free resource due to the higher ceiling priority of a locked resource.

The prevention of deadlock and chained blocking in PCP is not costless. PCP may deny
a job’s request to a free resource even if it could not possibly lead to deadlock or chained
blocking. This results in pessimism in terms of resource access. This problem can not be
circumvented without considering the detail of resource access in the critical section (such

as the sequence of resource requests and how long a resource is required).
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2.4.3 Semaphore Control Protocol

An extension of PCP named Semaphore Control Protocol (SCP) was proposed by Rajku-
mar, Sha, Lehoczky and Ramamithram [RSLR88]. The only difference between SCP and
PCP is the conditions to grant a request for resource. In PCP, the priority of the requesting
Job must be strictly higher than the ceiling of all currently locked resources. Besides the
PCP granting condition, there are two additional situations that the request will be granted

in SCP:
(1) if the priority of the requesting job equals the highest ceiling of currently locked

resources and the current critical section of the requesting job will not attempt to
request resources with ceiling priority equal to its own priority, then the request is
granted.

(2) if the priority of the requesting job equals the ceiling priority of the requested re-
source R, and no other currently active job will request R during the execution of

their current critical sections, then the request to R is granted.

This extension to PCP still prevents deadlock and chained blocking. The authors proved
that the above rules for granting resources are sufficient and necessary. However, SCP still
suffers from the same disadvantage as as we mentioned above for PCP.

2.4.4 Dynamic Priority Ceiling Protocol

The above approaches are based on fixed priority preemptive scheduling. Chen and
Lin [CL.90] extend PCP for dynamic priority scheduling by combining the ceiling priority
and dynamic priority scheduling algorithm such as EDF. To achieve this goal, it is neces-
sary to maintain an effective job set containing one instance of all the jobs in the system.
The priority of a job is kept updated so that it always equals the dynamic assigned priority
of its currently active execution. Then, the ceiling priority of a resource (or the correspond-
ing semaphore) is set to the highest priority of the jobs in the effective job set that may
request the resource. The dynamic job priority makes the ceiling priority of resources also
dynamic.

Chen and Lin proved that both deadlock and chained blocking are prevented in DPCP
and the maximum blocking time a job may suffer is exactly as in PCP, which is the longest
critical section of all jobs with longer periods. The major disadvantage of DPCP is that
the implémentation cost is too high. Re-evaluating ceiling priorities of resources should be
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done when a job is released or finishes. In their paper, they proposed a possible implemen-

tation to reduce this overhead.

2.4.5 Stack Resource Policy

Baker refined the PCP and proposed a stack-based resource allocation policy named Stack
Resource Policy (SRP) [Bak90]. SRP supports multi-unit resources and dynamic priority
scheduling. It also reduces memory requirements by sharing runtime stack among jobs.

SRP introduces a notion of preemption level as a measure of how jobs can preempt
each other. In SRP, each job is assigned a priority (that can be static or dynamic) and a
static preemption level. A job is not allowed to preempt another unless its preemption level
is greater. The preemption level is assigned based on the relative deadline of the job: the
shorter the deadline, the greater the preemption level.

The ceiling for each resource is defined as the maximum preemption level among those
Jobs that may be blocked on the resource (i.e., requesting more than the available units of
that resource). When a job 7; is released, it can preempt the running job if and only if:

1. the entire resources required by 7; are available, i.e., its preemption level is less than

the ceiling of all resources it requires.

2. the resources required to complete all jobs that can preempt 7; are also available, i.e.
all jobs with higher preemption level have their preemption level less than the ceiling

of all resources they require.

SRP can achieve identical performance as PCP in controlling priority inversion. Dead-
lock and chained blocking are prevented and the maximum blocking time is bounded to the
longest critical section of all the lower priority jobs.

The stack sharing aspect of this work is also interesting. It reduces the need for memory
space compared to stack allocation on a per-job basis. The saving is related to the number
of jobs and preemption ievels. The number of separated stack spaces equals the number of
different preemption levels while using SRP, since at most one job from each preemption
level can be active at any time.

Both SRP and DPCP permits jobs to have dynamic priority. However, SRP will re-
sult in a more efficient implementation since the ceiling priority of a resource is based on
preemption levels, which are static, of the jobs that may be blocked on the resource. It
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does not need to re-evaluate the ceiling of resources every time there is a change in priority

assignment while in DPCP the re-evaluation is necessary.

2.4.6 Highest Locker Protocol

Highest Locker Protocol (HLP) [KRP*+93] is a variation of PCP that sets a job’s priority to
be equal to the ceiling priority of the resource it granted.! This refinement of PCP reduces
context switches and reduces the complexity at runtime. For the job that is granted the
resource, HLP prevents preemption from jobs with priority less than or equal to the ceiling
priority of the resources. This increases the response time of jobs not requesting any locked

resources. However, the job holding the resource will respond quicker.

2.4.7 Reservation Protocols

The above protocols are following the same approach: change the priority of the job to
control priority inversion. A totally different approach, namely Reservation Protocols (RP),
which do not alter job priorities, is presented by Babaoglu et al [BMS90]. This approach
uses a reservation graph, in which priority relation is defined to indicate higher priority
Jobs and wait-for relation is defined to indicate the jobs that hold the resources a job is
waiting for. A loop, or mw-cycle, indicates a priority inversion. Methods are proposed to
avoid such cycles, and hence avoid priority inversions.

RP is found to be deadlock free. The blocking time for each job equals twice the worst-

case execution time of all higher priority jobs.

2.5 Design Methodologies

In the early days, real-time software designers developed systems in an ad-hoc manner
based on their intuition and some heuristics from their experiences. Over the years, many
design methods have been proposed for real-time system development, for instance, J SD,
MASCOT, RTSA, DARTS, CODARTS and OCTOPUS [AKZ96, Gom93]. Many recent

!This protocol is outlined in [RSL89] with the name Ceiling Semaphore Protocol. It is also called Priority
Ceiling Emulation or Immediate Priority Ceiling Protocol.
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design methods are based on object-orientation, for example, HRT-HOOD [BW94], OC-
TOPUS [AKZ96], CODARTS [Gom93]}, the ROOM method [SGW94], and the Shiaer-

Mellor method [SM]. We choose some to give a quick review.

2.5.1 HRT-HOOD

HRT-HOOD (Hard Real-Time Hierarchical Object Oriented Design) [BW94] was designed
for hard real-time systems, and is heavily influenced by the development in real-time
scheduling theory. It supports three basic software engineering principles: (a) abstrac-
tion, information hiding and encapsulation, (b) hierarchical decomposition, and (c) control
structuring. Object attributes have been added so that designers can specify the real-time
characteristics (e.g. deadline, period, worst-case execution time). An object in HRT-HOOD
has szatic and dynamic properties. The static properties describe the object’s interface. The
dynamic properties describe the effect of an operation through sequentiai flow and parallel
Sflow. There are five basic object types: passive, active, protected, cyclic, and sporadic.
An end-to-end transaction is first designed as a single object, cyclic or sporadic and then
decomposed into a set of terminal precedence (before and after relationship) constrained
objects.

HRT-HOOD is one of the first structured design methods which seriously attempts to
address the issue of designing predictable real-time systems. The abstractions of HRT-
HOOQOD directly map to the concepts in real-time scheduling theory, thus making the de-
sign analyzable for timing requirement. The approach followed in HRT-HOOD works well
when the system can be decomposed into a relatively small number of periodic and sporadic
Jjobs, and when each job has a relatively coarse granularity. Both these limitations relate to
the nature of the underlying scheduling model, i.e., preemptive multi-tasking. Preemptive
multi-tasking incurs relatively high costs in context-switching and these costs become sig-
nificant when job granularity is small (since the context switching overhead is amortized
over a smaller execution time) and when there is a large number of jobs (more jobs would
typically result in increased context switching). In addition, there is a per-job memory cost,
largely due to the need to maintain a separate stack for each job. While these run-time costs
may be irrelevant in most non-embedded environments, they play a significant role in many
embedded real-time systems since such systems often tend to be resource constrained.
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2.5.2 MetaH

MetaH [VB93, Cen], an architecture description language, and associated tool set are
designed to specify, analyze, and automatically assemble software for real-time, fault-
tolerant, secure, multi-processor systems. One important goal is to provide design-time
analysis that accurately characterizes the behavior of the actual implementation. It allows
system architects to specify software and hardware architectures for computer control sys-
tems. Developers use MetaH to specify how code modules written in traditional languages
are combined to form an application, to specify the structure of a particular hardware target
system, and to specify how the software is allocated to hardware. In MetaH, a process is
the fundamental unit of scheduling, allocation to hardware processors, and fault and se-
curity containment. A process may communicate with other processes through input and
output ports, which corresponding to buffer variables within the source code. Processes are
scheduled using preemptive fixed priority discipline.

MetaH provides both graphical and textual syntax and tools that allows a specification
to be viewed and edited interchangeably in either format. The tool set also includes code
generator and assembler, application builder, timing analyzer. Using these tools, an exe-
cutable image can be automatically generated. The use of exact schedulability analysis en-
ables the generation of a timing report for the designer, which helps a lot in designing hard
real-time system. MetaH has been used to develop, analyze and execute demonstrations
of portions of a number of application. However, the priority assignment used in MetaH,
which is rate monotonic, restricts its application since it is only optimal for independent

jobs with deadlines equal periods.

2.5.3 ROOM and ObjecTime

ROOM (Real-time Object Oriented Modeling) [SGW94], a modeling language, and Ob-
jecTime Developer, a CASE tool that provides a fully integrated development environment
to support the ROOM methodology with features such as graphical and textual editing for
actor construction and C++ code generation from the model, originated in the research and
development lab in Bell-Northern Research. It has been in practical use since 1989 and has
been applied successfully to a wide variety of large and small industry projects. As UML
gains its popularity in industry, ObjecTime has cooperated with Rational Software to de-
velop UML-RT, which uses UML’s in-built extensibility mechanisms to integrate ROOM
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concepts within UML. UML-RT and the code generation technology of ObjecTime Devel-
oper has been integrated into Rational Rose, in the new product Rational Rose Real-Time.

ROOM uses active objects, called actors, to model a real-time system. These are en-
calssulated, concurrent objects that communicate asynchronously by sending and receiving
messages through distinct interfaces called ports. Priorities are used to identify the sig-
nificance of messages. The behavior of actors is modeled using ROOMcharts, which is an
extended finite state machine that may include composite states as well as guard conditions.
It is based on the statechart formalism [Har87]. Sending an event to an actor may initiate
the execution of an action. The action specification is thought of as a fine-grained detail
and thus, can be specified using a programming language, such as C++. Code involved
with message transfers is also specified within actions.

ROOM provides a generic run-time system, which is also incorporated in the Objec-
Time Developer tool set. The generic run-time system models threads as event handlers.
ROOM uses a run-to-completion paradigm for event execution in a thread, i.e., if an event
is being processed in a thread when a higher priority event arrives for execution in the
same thread, the latter will not get processed until the former has completed. Actors are
also mapped to threads. Therefore, the thread that an actor resides in should handle all
events associate with this actor. However, thread priorities within ObjecTime are statically
managed, which leads to unbounded priority inversion in a multi-threaded implementation.
ROOM’s generic run-time system also includes a dedicated thread, which is used to insert
periodic or timer messages to actors.

ROOM has features that, on one hand, enable high-level modeling of complex real-time
applications (e.g., the use of hierarchy in structure diagrams and state machines, layering,
dynamic structures and inter-connections) and, on the other hand, allow fine-grained details
to be specified (e.g., use of a programming language, like C++, to specify the action to
be taken to handle an event). However, ROOM and Objechme Developer provide little
support for schedulability analysis.
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Chapter 3

Scheduling Theories for A Simplified
Model with Independent Job

In this chapter, we introduce a new scheduling model with the notion of preemption thresh-
old. This new model subsiemes both preemptive and non-preemptive schedulers as special
cases. With this model, the schedulability of a set of jobs is improved when compared
with both preemptive and mon-preemptive schedulers. This model enables our automatic
synthesis process illustrated in later chapters. Subsequently, we present the schedulability
analysis for the new scheduling model over a simplified model where each job (action) is

independent, including equations for calculating the worst-case response time.

3.1 Scheduling with Preemption Threshold

Since the pioneering work of Liu and Layland [LL73], much work has been done in the
area of real-time scheduling, and in the analysis techniques to a priori predict schedulabil-
ity of job sets under a specific scheduling discipline. In particular, significant progress has
been made in schedulability analysis of job sets under fixed priority preemptive schedul-
ing [HKL91, JP86, LSD89, Leh90, TBW94]. The benefits of fixed priority preemptive
scheduling include relativelly low run-time overheads (as compared to dynamic priority
schemes, such as Earliest Deadline First) and the ability to support tighter deadlines for

urgent jobs (as compared to non-preemptive scheduling).
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While preemptability is often necessary in real-time scheduling, it is fallacious to as-
sume that it always results in higher schedulability. Indeed, it can be shown that, in the con-
text of fixed priority scheduling, preemptive schedulers do not dominate non-preemptive
schedulers, i.e., the schedulability of a set of jobs under non-preemptive scheduling does
not imply the schedulability of the same set of jobs under preemptive scheduling (and vice-
versa). Moreover, preemptive schedulers have higher run-time overheads as compared to
non-preemptive schedulers.

In this section, we propose a generalized model of fixed priority scheduling that in-
tegrates and subsumes both preemptive and non-preemptive schedulers. The model uses
the notion of preemption threshold, which was introduced by Express Logic, Inc. in their
ThreadX real-time operating system to avoid unnecessary preemptions [Lam]. In our new
scheduling model, each job has a preemption threshold, in addition to its priority. In
essence, this results in a dual priority system. Each job has a regular priority, which is
the priority at which it is queued when it is released. Once a job gets the CPU, its priority
is raised to its preemption threshold. It keeps this priority, untii the end of its execution.
For recurring jobs, this process repeats each time the job is released.

The preemption threshold scheduling model is designed for modeling and analyzing
the dual-level scheduling in practical real-time software design and can be used to get the
benefits of both preemptive and non-preemptive scheduling. By choosing the preemption
threshold of a job to be higher than its priority, a job avoids getting preempted by any job
that has a priority lower than its preemption threshold. By varying the preemption thresh-
olds of jobs, the desired amount of non-preemptability may be achieved. In this way, the
preemption threshold model may be viewed as introducing non-preemptability in a control-
lable manner. A suitable setting for the preemption thresholds can thus be used to get “just
enough preemptability” needed to meet the real-time responsiveness requirements; thereby
eliminating run-time overheads arising from unnecessary preemptability in the scheduling
model. It is also easy to see that both preemptive and non-preemptive scheduling are special
cases of scheduling with preemption threshold. If the preemption threshold of each job is
the same as its priority, then the model reduces to pure preemptive scheduling. On the other
hand, if the preemption threshold of each job is set to the highest priority in the system,
then no preemptions are possible, leading to fixed priority non-preemptive scheduling.
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Task | Comp. Time | Period | Deadline
C; T D;
T 20 70 50
Ty 20 80 80
T3 35 200 100

Table 3.1: An Example Job Set.

3.1.1 A Motivating Example

Before we delve into a theoretical treatment of the new scheduling model, it is instructive
to take a look at a simple example that shows how schedulability can be improved with this
new scheduling model. We consider a job set with 3 independent periodic jobs, as shown
in Table 3.1. Each job is characterized by a period (7}), a deadline (D;) and a computation
time (C;).

The scheduling attributes for each job include its priority (;) and its preemption thresh-
old (v;). Assuming fixed-priority scheduling, the optimal priority ordering for these jobs is
deadline monotonic ordering with both preemptive scheduling [LW82] and non-preemptive
scheduling [GRS96]. Under this priority ordering', the worst-case response times for the
Jobs are shown in Table 3.2. We can see that 73 misses its deadline under preemptive
scheduling, while 7; misses its deadline under non-preemptive scheduling. Since the pri-
ority ordering is optimal, this implies that the job set is not schedulable under either fixed-
priority preemptive scheduling, or fixed-priority non-preemptive scheduling.?

When we use preemption threshold, we can make the job set schedulable by setting the
preemption threshold for 7, as 3, and 73 as 2. By setting the preemption threshold of 73 to
2, we allow it to be preempted by 7, but not by 2. This effectively improves the response
time of 7; (as compared to the non-preemptive case) since it can no longer be blocked by
73. At the same time, it improves the response time of 73 (as compared to the preemptive
case) since it cannot be preempted by 73 once 73 has started running. The resultant response

times are also shown in Table 3.23.

!"Throughout this thesis, we use higher numbers to denote higher priorities.
2Note that a slight modification to this example will show that the feasibility under preemptive scheduler
does not imply feasibility under non-preemptive scheduler (by changing the deadline of 73 to 120), and vice

versa (by changing the deadline of 7} to 60).
3The worst-case response time of jobs with preemption threshold is done using the theories we present

later in this chapter.
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Task | =; WCRT WCRT 0 WCRT
Preemptive | Non-Preemptive Preemption-Threshold
Vi =T % =3
Ti 3 20 55 3 40
Ty 2 40 75 3 75
T3 1 115 75 2 95

Table 3.2: Worst-case Response Times for Jobs under Different Schedulers

Figure 3.1 illustrates the run-time behavior of the system with preemption threshold,
and how it helps in improving schedulability. In the figure, the arrows indicate arrival of
jobs. The figure shows the CPU scheduling starting from a critical instant of 73, which
occurs when all jobs arrive simultaneously (time 0). Our theories presented later shows
that it is the worst-case response scenario for 73 and thus the response time is actually the
worst-case response time. We can see that at time 70, a new instance of 7; arrives. Since
the priority of 7, is higher than the preemption threshold of 73, 73 is preempted. At time
80, a new instance of 7, arrives. It can not preempt the execution of ;. However, at
time 90, when T, finishes, a pure preemptive scheduler would have run T2, delaying 73. In
contrast, by setting the preemption threshold of 73 to 2, we have 73 scheduled at time 90
under our scheduling model. This effectively improves the worst-case response time of 73,
making it schedulable. Note however that this also adds blocking time to > (as compared
to the preemptive case), which increases its worst-case response time, but does not affect
its schedulability in this example.

The use of preemption thresholds also reduces the run-time overheads associated with
preemptions and the associated context-switches. This is due to the introduction of some
non-preemptability into the scheduling model. We simulated the execution of jobs in this
example for one LCM length (i.e., 2800 time units). When all jobs were released simulta-
neously at time 0, we find that preemptive scheduling results in 17 preemptions, while with
preemption thresholds we get 8 preemptions. If we stagger the release times, such that T3
is released at time O, 7, at time I, and 7; at time 2, then the number of preemptions with
preemptive scheduling is 30, while using preemption thresholds reduces it to 10.
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Figure 3.1: Run-time Behavior with Preemption Threshold

3.1.2 Describing the Simplified Model

We consider an event-based model consisting of a set of events and the computations (ac-
tions) triggered by the events. For simplicity, we assume that events arrive either peri-
odically (i.e., with a fixed inter-arrival time) or sporadically (i.e., with a minimum inter-
arrival time). We use the term job to refer to an event and its corresponding computation.
Thus, we describe our simplified model as a set of N independent periodic or sporadic jobs
T = {n,72,...,T}. Each job 7; is characterized by a 3-tuple (C;, T;, D;), where C; is
its computation time, 7; is its period (or minimum inter-arrival time), and D; is its relative
deadline. We assume that (a) jobs are independent (i.e., there is no blocking due to shared
resources), (b) jobs do not suspend themselves, other than at the end of their computation,
and (c) the overheads due to context switching, etc., are negligible (i.e., assumed to be

Zero).
Each job is also characterized by its scheduling attributes, which include a (nominal)
priority m; € [1, ..., N] and a preemption threshold v; € [Ti, ..., N]. These attributes are

not known to begin with, and must be derived to meet the timing requirements. We assume
that these scheduling attributes are determined off-line, and are fixed at run-time. Finally,
each job is also mapped to a thread in the implementation. We will use the notation ¥(z) to
denote the thread assignment for job 7;. Again, this assignment is not known to begin with,
but is determined off-line, and remains fixed during run-time (i.e., each arrival of the jobis
processed in the same thread).

We formally define an implementation model to include an assignment of scheduling
attributes and mapping from jobs to threads. For the purpose of this chapter we will assume
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that an implementation model is already given.

Definition 3.1 (Implementation Model) An implementation model, denoted as T, for a
given model M containing a set of N independent periodic or sporadic Jobs T =
{11, 72,..., T}, is defined by a 3-tuple: (¥,11, L), where

o II: M — [m,...,nN] is a priority assignment for the jobs,
o I': M — [y, ...,vn] is a preemption threshold assignment for the jobs, and

o U: M —[(1),...,%(M)] is a thread assignment for the jobs

Also, for simplicity we will assume that each job is assigned to its own thread. We call
this the “nominal thread assignment” as defined below. With this simplification, we do not
need to worry about the two-level scheduling architecture at this time. Later in this chapter
we will show that with certain restrictions on thread assignment, the response times of jobs
can be made independent of the thread assignment for jobs, which facilitates the modeling
and analyzing the two-level scheduling architecture.

Definition 3.2 (Nominal Thread Assignment) A thread assignment is called nominal if
each job is mapped to its own thread. That is, the following predicate is true in the nominal

thread assignment. We will use the notation ¥ to denote the nominal thread assignment.

V) ¥(E)=¥(n) =i

3.2 Schedulability Analysis

Now, we consider the problem of assessing schedulability of a set of jobs under the pre-
emption threshold scheduling model, assuming that the scheduling attributes are already
known. Let II be a priority assignment, and I be a preemption threshold assignment. Let
R:(IL, T') denote the worst-case response time of a job 7; under the given assignments.
Then, the schedulability of a set of jobs is defined by the following boolean predicate:

sched(T,ILT) ¥ (Vi:1<i<n)R(LT) < D; (8)
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3.2.1 Overview

By definition, the schedulability of a set of jobs is determined by the worst-case response
time of each job. The response time analysis employed in this section is an extension of
the well-known level-i busy period analysis [HKL91, JP86, LSD89, Leh90, TBW94], in
which the response time is calculated by determining the length of the busy period, starting
from a critical instant. The busy period at level-i is defined as a continuous interval of time
during which the processor is continuously executing jobs of priority  or higher.

We modify the traditional level-i busy period analysis to account for the changing prior-
ities of jobs. Critical instant and level-i busy period are redefined for this purpose. Critical
instant, by definition, is a instant that leads to the scenario, in which the worst-case response
time of a job will occur. In our model, while considering a specific job 73, its execution may
be suspended by execution of both lower priority jobs and higher priority jobs. For clarity,
we refer the suspension caused by lower priority jobs as blocking and the suspension caused
by higher priority jobs as interference. Since blocking and interference plays a critical role
in the response time of any specific jobs, it is necessary to analyze them before defining
critical instant and level-i busy period in our new scheduling model.

The introduction of preemption threshold makes blocking and interference in our model
different from both preemptive and non-preemptive scheduling. A job 7; may suffer block-
ing before it starts from lower priority jobs only if their preemption thresholds are higher
than 7; while in non-preemptive scheduling all lower priority jobs may contribute to block-
ing. In a similar way, only jobs with higher priority than ; may cause interference after 7;
starts executing while in preemptive scheduling all higher priority jobs will interfere.

For simplicity and clarity, we explicitly define and compute both the ¢g** start time for
a job 7; (denoted by S;(g)) and the ¢** finish time (denoted by F;(g)). After we get the
g** finish time by the modified busy period analysis, the worst-case response time for 7; is

calculated as follows:

Ri= max (Fi(q)—(¢—1)-T3) )

q€[1,...,m]
where T; represents the period or minimum arrival interval of 7.
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3.2.2 Blocking Analysis

In our scheduling model, when job 7; is the job with highest néminal priority queued to be
processed, if a lower priority job is running with an effective priority higher than 7(7;)(i.e.,
its preemption threshold is higher than 7(7;)), it cannot be preempted by 7;, leading to
blocking time in the response time of 7;. Now we analyze the blocking that 7; may suffer
to find out the worst case or the upper bound. In our analysis, we define Blocking Range

and Active Job as follows.

Definition 3.3 (Blocking Range) The blocking range of a job t; is defined as the range of

priorities given by [m;,v;].

Definition 3.4 (Active Job) A job is called active if it has started execution, but is not
finished yet.

Lemma 3.1 There is no overlapping of blocking ranges between the active Jjobs at any

instant of time.

Proof: By contradiction. Suppose 7; and 7; are both active at a specific time, and their
blocking ranges overlap. Without loss of generality assume that 7; started execution first.
Then, for 7; to start running before 7; finishes, it must be the case that ¥ < mj. Thatis
7 < vi < m; < ;. Thus, the blocking ranges can not overlap. a

Lemma 3.2 A job 7; can be blocked by at most one lower priority job ;.

Proof: A new arriving job 7; will preempt a lower priority active job 7; unless 7z; falls
in the blocking range of 7;, i.e., 75 < 7y < 7. From Lemma 3.1, we know that blocking
ranges of active jobs will not overlap. Therefore, 7; will only fall into at most one of these
blocking ranges, i.e., be blocked by the owner of that blocking range. Furthermore, it is
easy to see that any lower priority jobs that have not started execution before the arrival of
7i, as well as lower priority jobs that arrives after 7; will not start before 7; starts. Thér:efore,

they will not block 7;. a

Lemma 3.2 shows that in computing the blocking time for a Jjob 7z, we need to comsider
blocking from only one lower priority job 7; such that v; > ;. Therefore, the maximum

blocking time of a job 7;, denoted by B(7;), is given by:
B(r;) =_max Cj (10

Vi 2mi>n;
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3.2.3 Defining Critical Instant and Level-i Busy Period

Lehoczky’s definition of critical instant and level-i busy period is no longer valid in our
scheduling model due to the introduction of preemption threshold. We extend the definition
and prove that worst-case response time can be calculated in our modified level-i busy
period. We first define the effective priority of a job. We can consider each job to be in one
of three states: ‘ready’, ‘running’, or ‘preempted’. A job instance is ‘ready’ when it first
arrives. When it gets the CPU for the first time, its state changes to ‘running’. If it gets
preempted, its state changes to ‘preempted’. A job instance cycles between ‘preempted’
and ‘running’ states until it finishes and leaves.

Definition 3.5 (Effective Priority) The effective priority of a job equals its (nominal) pri-
ority if itis in the state ‘ready, and equals its preemption threshold if it is in the ‘preempted’

or ‘running’ state.

A formal definition of level-i busy period is given in 3.6 using the concept of effective
priority. Note that in a level-i busy period, there may be several instances of the same job

with priority ¢ executed.

Definition 3.6 (Level-i Busy Period) A level-i busy period is a time interval [a, b] within
which only jobs with effective priority i or higher are processed, but no jobs with effective

priority i or higher are processed in (a — €, a) or (b, b + €) for sufficiently small € > 0.

Lemma 3.3 In a level-i busy period, only the first instance of job T; whose priority m; = ¢
will suffer blocking from jobs with lower priority. Any instance after the first instance will
not suffer from blocking. Furthermore, at most only one instance of a job 1y with m, < i}

and -y, > m; may contribute to blocking.

Proof: It is easy to see that the start of processing first instance of job 7; ensures the finish
of all active instances of jobs with lower priority and higher preemption threshold. Since
in a level-i busy period, there is always at least one job instance with effective priority
higher or equal to %, no instance of job with lower priority will start. Therefore, after the
start of processing first instance of job 7, the following instance of 7; will not suffer from

blocking.
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Furthermore, using Lemma 3.2, we can easily see that at most only one instance of a
Jjob 7 with m < 7; and ¢ > m; may contribute to blocking. a

Based on the lemma above, we come up with the most important theorem in our schedu-
lability analysis, Theorem 3.1. Here, we use I; to indicate the phasing of 7; to some fixed
time origin.
Theorem 3.1 The worst-case response time for a job 1; occurs during a busy period initi-
ated by a critical instant, at which all jobs T; with 7; = m; have I; = I; = 0 and the longest
Job T with w < m; but v > m; has I, = 0 — € for sufficiently small € > 0.

Proof: Let[0,b] be a busy period, and suppose 7; arrives at I; > 0. Only jobs with higher
effective priority than 7; are processed during [0,1;). Thus, if I; were changed to any value
in [0,1;), each instance of 7; in [0,b] would finish at the same time, thus increasing each
of the 7; response times. The maximum response occurs when I; is as small as possible,
namely I; = 0.

If I; > O for some 7; with 7; > 7, then it is obvious that reducing I; serves to increase
(or leave unchanged) the processing requirements of 7; during [0,t] forevery t € [0, b), thus
increasing (or leave unchanged) the response time of instances of 7;. The longest response
time is achieved by setting [; to their smallest value, that is, I; = 0.

As we proved in Lemma 3.3, there will be at most one job with lower priority and
higher preemption threshold can block 7. It is easy to see that the worst case is the longest

one starts at ) — €. |

To calculate the worst-case response time of a job, the busy period analysis essentially
simulates the effect of scheduling under a worst-case scenario for the job. The busy period
for job 7; is constructed by starting from a critical instant (time 0). The critical instant
occurs when (1) an instance of each higher priority job comes at the same time (time 0),
and (2) the job that contributes the maximum blocking time B(7;) has just started executing
prior to time 0. Furthermore, to get the worst-case response time, all jobs are assumed to
arrive at their maximum rate. The following computation of the ¢t* start time and the ¢t

finish time assumes this worst case scenario.

3.2.4 Computing the ¢** Start Time:

Before a job ; starts execution, there is blocking from lower priority jobs and interference
from higher priority jobs. As we proved in Theorem 3.1, the worst case scenario will
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happen during a busy period starts from an instant when all higher priority jobs arrive at
the same time as 7; and when the longest job with lower priority and higher preemption
threshold just started. All higher priority jobs that come before the ¢** start time Si(g) and
any earlier instances of job 7; before instance g should be finished before the g** start time.

Therefore, S;(g) can be computed iteratively using the following equation.

Si(@) =B(m)+(g—-1)-C;:+ Y. (1+[§izg_ij)-cj (11)

Vi, mi >m;

3.2.5 Computing the ¢** Finish Time:

Once the ¢ instance of job starts execution, we have to consider the interference to com-
pute its finish time. From the definition of preemption threshold, we know that only jobs
with higher priority than the preemption threshold of 7; can preempt and get the CPU before
7; finishes. Furthermore, we only need to consider new arrivals of these jobs, i.e., arrivals
after S;(g). Based on this, we get the following equation for computing F;(q):

Vj W5 >Ye

3.3 Properties of the Model

3.3.1 Properties of the Scheduling Model

With the response time analysis we have done above, we notice that this generalized fixed-
priority scheduling model has some interesting properties. Assuming that the priorities
of jobs are fixed, these properties help us reason about the effect of changing preemption
thresholds of jobs. Furthermore, these properties will help us to understand the relationship
between the assignment of scheduling attributes (i.e., priority and preemption threshold) of
each job and the scheduling behavior of the model, especially the worst case response time
of each job. Therefore, these properties may serve as guidelines while designing solutions
for the feasibility problem and optimization problem discussed in Chapter 1.

Lemma 3.4 Changing the preemption threshold of a Job T; from v, to v, may only affect
the worst-case response time of job T; and those jobs whose priorities are between vy, and

2.
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This can be seen by examining the equations developed for calculating response times.
The preemption threshold of a job 7; determines which (higher priority) jobs may be
blocked by 7;. These jobs are those whose priorities fall in the range [, :]- Therefore, the
response time of all these jobs may be affected when 7;’s preemption threshold is modified.
It also may affect its own response time since it changes the set of jobs that can preempt
it once it has started running. Note that the preemption threshold of 7; doesn’t affect the
interference from 7; on any lower priority job 7; (which depends on 7;’s threshold, and 7;’s
priority). Therefore, changing the preemption threshold doesn’t affect any lower priority
joBs. A useful corollary directly follows from this lemma, and is presented below.

Corollary 3.1 The worst-case response time of job T; will not be affected by the preemption

threshold assignment of any job ; with w; > m;.

Corollary 3.1 is useful in developing a strategy for optimal assignment of preemption
thresholds. It shows that the schedulability of a job is independent of the preemption thresh-
old setting of any job with higher priority. Therefore, this suggests the threshold assignment
should start from the lowest priority job to highest priority job.

Furthermore, Theorem 3.2, presented below, helps us determine the optimal preemption
threshold assignment for a specific job. The preemption threshold of a job can range from
its own priority to the highest priority in the job set. From the equations for worst-case
response time analysis, we can see that a job may reduce its worst-case response time by
increasing its preemption threshold, which restricts the set of (higher priority) jobs that can
preempt it. However, this is done at the cost of a possible increase in the blocking time
of higher priority jobs which may lead to increased worst-case response time of higher
priority jobs. Therefore, if there is a set of preemption threshold values that can make a
job schedulable, choosing the minimum of them will maximize the chances of finding a

feasible preemption threshold assignment.

Theorem 3.2 Consider a set of n jobs T = {11, 7s,...,T,}, and a set of scheduling at-
tributes 11 = {my,...,m,) and " = (71, ..., 7Tn), Such that the job set is schedulable with I1
and I (i.e., sched(T,I1,T) is true). Then, if changing only the preemption threshold of T;
Jrom v; to 7y (7; < 7;), can still make 7; schedulable, the whole system is also schedulable
by setting -y} as the preemption threshold of ;. That is,

R;(IL L(7v;/7})) < Dj = sched(T, L, T(v;/7;))
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Proof: When the preemption threshold of 7; changes from v; to 7} (v; > v;), the worst-
case response time of any job 73 with m; < m; or m¢ > -; will not change. The worst-case
response time of a job 7 such that v} > m; > m; will also stay the same. Furthermore, any
job 7, with priority v; < m; < -y; will have no worse worst-case response time with +y} than
with -y;. Moreover, we already know that 7; is schedulable with -y;. Therefore, if the whole

system is schedulable with -;, it is also schedulable with ¥;- a

A given job set may be unschedulable with any preemption threshold assignment. The
following theorem gives a sufficient condition to claim a job set to be unschedulable.

Theorem 3.3 For any given priority assignment, if there exists a job 1;, such that setting
the preemption thresholds of jobs with lower priorities to the minimum schedulable value
and setting its preemption threshold equal to the highest priority in the system can not
make the specific job T; schedulable, then the job set is unschedulable with this priority

assignment.

Proof: Comparing Equation 11, 12 with Equation 3, we can see that preemption thresh-
old reduces the worst-case response time of a job 7; by preventing the interference from
some higher priority jobs after 7; starts execution or reduce the blocking. By setting the
preemption thresholds of jobs with lower priorities to the minimum value to keep them
schedulable and setting the preemption threshold of 7; to the highest priority in the system
gives the maximum reduction to the worst-case response time of 7;. If 7; is still not schedu-
lable, since the priority is predefined, there is no way to make it schedulable. Furthermore,

the job set will also be unschedulable. O

3.3.2 Properties of A Feasible Implementation Model

In our schedulability analysis presented in the previous section, we assume that each job is
assigned its own thread. The worst-case response time is calculated based on the schedul-
ing behavior with this assumption. However, our implementation architecture assumes each
thread serves as an event handler for several events, i.e., a thread can hold several jobs. As
we mentioned earlier, the queued events in a thread are processed in a run-to-completion
manner, which means the jobs in the same thread are scheduled in a non-preemptive man-
ner. If we select two jobs so that one is able to preempt the execution of the other in
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the nominal thread assignment and put them into one thread to generate a new thread as-
signment, then the worst-case response time of these two jobs will be changed due to the
non-preemptability within a thread.

One motivation behind our implementation architecture is to allow the merging of two
(or more) jobs into a single thread, whenever it does not introduce any additional non-
preemptability or priority inversions as compared to an implementation model with nomi-
nal thread assignment. In this way, we can reduce multi-tasking costs, whenever possible,
without sacrificing schedulability.

To make sure our implementation architecture works as designed, we must disallow
merging of two jobs into a single thread whenever the scheduling attributes of the jobs
allow one job to preempt another. Consider two jobs, 7; and 7;. The preemption threshold
scheduling model allows 7; to preempt 7 in the nominal thread assignment only if 7; > Y-
We say that two jobs 7; and 7; are mutually non-preemptive if 7; cannot preempt 7;, and
7; cannot preempt 7; in the nominal thread assignment. The following proposition tells us

when two jobs are mutually non-preemptive.
Proposition 3.1 Two jobs, 7; and 7, are mutually non-preemptive if (m; < ¥5) A (5 < v)-

Based on this, we can define a valid thread assignment that precludes two jobs from
being mapped to the same thread whenever their scheduling attributes allow one of them
to preempt the other. Likewise, we say that an implementation model is valid if the thread
assignment in the implementation model is valid. In the rest of this thesis, we restrict our
attention to valid implementation models only since it abstracts the dual-level scheduling in
practice. It can be easily seen that nominal thread assignment is a valid thread assignment.

Definition 3.7 (Valid Thread Assignment) A thread assignment U is valid if whenever
two jobs are mapped to the same thread, then the two jobs are mutually non-preemptive.

That is, in any valid thread assignment the following holds true:
(Vr) (v3) (90 =¥() = (m < %) A (7 < 1)) (13)

Additionally, any grouping of jobs into threads must still allow a job 7; to preempt a
Jjob 7;, whenever the scheduling attributes allow, i.e., when m; > ;- For this to happen,
the thread priorities must be dynamically managed based on the rules below. We use the
concept of effective priority defined in Definition 3.5 to explain the priority management

of a thread in our implementation architecture.
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e When a job 7; is queued at a thread, then the thread’s priority is set £o the maximum

of its current priority and the priority of the job being queued,

e When a thread removes a job for processing, the thread priority is set to the job’s

preemption threshold,

e When a thread finishes processing a job, it changes its priority to the highest priority
pending job in its queue.

When thread priorities are dynamically managed as above, we can relate a thread pri-
ority in an implementation model with a valid thread assignment to the priorities of the job
instances active in the thread by the following proposition.

Proposition 3.2 (Thread Priority) The priority of a thread, in any valid implementation
model, is the maximum of the effective priorities of all jobs that have arrived on the thread

and not yet finished.

Proof: Due to the run-to-completion scheduling behavior within each thre-ad, a thread can
only have one job that is in ‘running’ or ‘preempted’ state. All other jobs in the same thread
will be in ‘ready’ state, with their effective priorities equal to their (nomeinal) priorities.
Suppose 7; is the preempted or running job in the thread. Its effective priority equals its
preemption threshold. Then, following the Equation 13 for valid thread assignments, we
can conclude that its effective priority is the highest among all other jobs in the thread.
Therefore, since the thread’s priority is changed to the job’s effective priority when it is
picked to execute, the proposition holds true. It is also straightforward to see that if there is
no preempted or running job, then the thread priority equals the (effective) priority of the
highest priority job that is queued up in the thread. O

Proposition 3.3 In any valid implementation, the currently running job is always the one

with the highest effective priority.

Proof: By Contradiction. Let 7; be the currently running job and 7; have a higher effective
priority. Then, from Proposition 3.2, 7; and 7; cannot be in the same thread. Also, if they are
in different threads, then thread %(5) must have a higher priority. Since thread scheduling
is preemptive, this could not be true if ¥(Z) is running. ]
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Proposition 3.4 The scheduling behavior of any valid implementation model M =
(T,IL,T) for a job set T = (1y,...,T,) is identical to the scheduling behavior of the

implementation model M = (¥, 1, T') with nominal thread assignment.

Proof: We prove it by showing that if the scheduling behavior is identical up to a point,
then the same scheduling decision is taken next. Let S be the scheduler for M and S be
the scheduler for M. For any identical initial state, the two schedulers will make the same
scheduling decision (from proposition 3.3), i.e. select the pending job with the highest
priority to execute. We know that job arrivals are independent of the schedulers, thus the
Jobs arrive at exactly the same time for the two. Since we ignore scheduling overheads,
we can assume that the behavior of the two schedulers is identical up to a point. Then the
next scheduling point (either because of a new job arrival, or because of the termination of
the current job under execution) will come at the same time for the two schedulers, with
an identical set of ready, preempted, and running jobs. From proposition 3.3, the same job
(the one with the highest effective priority) will be chosen to execute in both S and §. O

As Proposition 3.4 proved, the scheduling behavior of all valid thread assignments are
the same, and thus the worst-case response time of a job in any valid thread assignment is
guaranteed to be the same. This gives rise to the following theorem:

Theorem 3.4 Let M = (W,IL,T) be a valid implementation model for a Jjob set T =
(T1,..-,Tn). Then, consider M = (\if, II,T), which has the same scheduling attributes,

but with the nominal thread assignment. Then, the following predicate is true:
feasible(M) <= feasible(M)

Proof: Follows trivially from proposition 3.4. O

An important conclusion that can be drawn from this theorem is that if a job set is not
feasible when each job runs in its own thread, then the job set cannot be made feasible by
reducing the number of threads. This implies that the schedulability of a job set can be
assessed by simply assuming a nominal thread assignment. Thus, if we are only interested
in finding a feasible implementation model, we can restrict our attention to implementation
models with nominal thread assignment. In this way, the search space of possible solutions

is vastly reduced, making the problem simpler.

37



Chapter 4
Synthesis of Implementation Models

In the previous chapter, we proposed a new general fixed-priority scheduling model using
the notion of preemption threshold. We also showed how the worst-case response times
for jobs with pre-defined priorities and preemption threshold can be computed in a sim-
plified model with independent jobs. In this chapter, we address the synthesis problem,
i.e., the problem of generating an implementation model. Clearly, we want a synthesized
implementation model to be feasible, i.e., the response times of jobs under the synthesized
model must be no more than their respective deadlines. We refer to this as the feasibility

problem.

Feasibility Problem. Given a set of jobs T = {1; = (C;,T;,D;) | 1 <i < N }, find a
feasible implementation model, if one exists.

Additionally, the synthesized implementation model must result in low overheads. This
can be achieved by reducing the number of threads in the synthesized implementation. A
smaller number of threads reduces inter-thread context switches and also minimizes the
per-thread system resources, most notable the memory space associated with the stack of

each thread. We refer to this as the optimization problem.

Optimization Problem. Given a feasible implementation model, optimize it (reduce the
number of threads) while maintaining its feasibility such that there exists no other Sfeasible

implementation model with fewer threads.
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4.1 Solution Overview

The feasibility problem and the optimization problem are inter-related. While the two
problems can be combined into a single optimization problem, we take a two-step approach.
The first step is to find a feasible implementation model with nominal thread assignment
and the second step is to merge the threads to minimize the number of threads. Theorem 3.4
motivated our approach. It enables solving the feasibility problem regardless of the thread
assignment and also allows us to reduce the number of threads in an implementation model
while maintaining the feasibility. The reason to take this pragmatic two-step sub-optimal
approach is that we know from our simulation experience that the time required for finding
an optimal solution makes it inapplicable in the design of real systems. To incorporate our
approach in the early stage of the design process of an application, we focus more on cost
effectiveness of solutions than on their optimality.

Audsley proposed an efficient optimal algorithm to solve the feasibility problem for the
models with independent jobs under preemptive scheduling policy [Aud91a], and its opti-
mality has been proved under non-preemptive scheduling policy [GRS96]. It assumes each
Jjob has a unique priority. However, a more general model should allow jobs to have equal
priority. Later in this chapter, we demonstrate an example showing that allowing equal
priority increases the feasibility of a model under preemptive scheduling while it does not
change the feasibility under non-preemptive scheduling and our generalized fixed-priority
scheduling model with preemption threshold. Furthermore, we prove that our solution will
keep its optimality while equal priority is allowed.

Quantitative assessment is used to show the gains in schedulability of a job set using our
new scheduling model compared to traditional preemptive and non-preemptive scheduling
model. As run-time overhead is another issue that we are interested in, quantitative assess-
ment is also provided. A non-preemptive scheduler will result in low runtime overheads.
Since our scheduling model subsumes non-preemptive schedulers, our scheduling model
will incur the same overheads as a non-preemptive scheduler for job sets that are schedula-
ble with non-preemptive scheduling. Therefore, our interest focuses on assessing run-time
overheads due to preemptions and comparing them with a preemptive scheduler.
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4.2 Generating,A Feasible Implementation Model

Theorem 3.4 states that the feasibility of an implementation model with valid thread assign-
ment is independent of the thread assignment. Thus, we can narrow down our search to an
implementation model with nominal thread assignment. In this case, the feasibility prob-
lem becomes the problem of finding an assignment of scheduling attributes (i.e., priority
and preemption threshold) that makes the model schedulable if possible. This problem is
an optimization problem with an objective function as follows. When this function reaches

its minimum value, 0, a feasible solution is found.

n
f(@) =3 Maz(0,R; — D;) 14
i=1
where Z represents the implementation model, R; stands for the worst-response time of job
7;, and D; stands for the deadline of ;.

In this section, we will first address the problem of feasible preemption threshold as-
signment with pre-defined priorities. Then, based on this solution, we develop a branch-
and-bound algorithm for priority and preemption threshold assignment. To improve the
efficiency of our solution, we also present a greedy algorithm and adopt the simulated an-

nealing approach for this problem. -

4.2.1 Feasible Preemption Threshold Assignment with Given Priori-
ties

Based on the results developed in Section 3.3.1, we have developed an algorithm that finds
an feasible preemption threshold assignment assuming the priorities are known and fixed.
The algorithm is optimal in the sense that the algorithm will alway find a feasible preemp-
tion threshold assignment, if one exists.

Figure 4.1 gives the pseudo code of the preemption threshold assignment algorithm.
The algorithm assumes that the jobs are numbered 1,2, ..., n, and that m; = 3. The al-
gorithm considers the preemption threshold assignment of one job at a time starting from
the lowest priority job. For each job considered, it finds the lowest preemption threshold
assignment that will make the job schedulable. This is done by computing the worst-case
response time of the job using the function WCRT (job, threshold), and comparing it with
its deadline. Note that, the response time calculation is possible even with a partial assign-

ment since we consider jobs from low priority to high priority.
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Algorithm: AssignThresholds
/I Assumes that job priorities are already known
(1) for(Z:=1ton)
@) vi = 7; /1 start from lowest value
!l Find worst-case response time based on the tentative assignment
A3) R;: = WCRT(7:,713) ;
4) while (R; > D;)do // while not schedulable

&) Yi++ ; /] increase preemption threshold

{6) if v; > n then

€] return FAIL; // system not schedulable.
(8) endif

©) R: = WCRT(7:,7,) ;

(10) end

(11) end

(12) return SUCCESS

Figure 4.1: Algorithm for Preemption Threshold Assignment

It is easy to see the worst-case search space for this algorithm is O(n?). The optimality

of the algorithm is given in the following theorem.

Theorem 4.1 Given a fixed priority assignment, the algorithm AssignThresholds will find

a feasible preemption threshold assignment, if one exists.

Proof: Assume asetofn jobs T = {r; | 1 < i < n}, with a priority assignment
Il = (m,...,m,). Without loss of generality, assume that the Jjobs have been sorted and
labeled such that m; = 7 and 7; > w; if 2 > j. Furthermore, let the job set be schedulable
with a set of preemption threshold valuesI' = {~; | (1 < < n)}.

The algorithm assigns preemption thresholds to the jobs starting from 7, and going up
to 7. Let the preemption thresholds found by the algorithm be labeled 7, 2, €tc. Assume
that job 7; is the first job such that the preemption threshold found by the algorithm is
different from the given feasible assignment, that is, ¥; # +;. Then, it must be the case that
¥: < 7, otherwise, our algorithm will find ; rather than 4;. Based on Theorem 3.2, we
know that the job set will still be schedulable if we use 4; to replace +; in the above feasible
preemption threshold assignment.

By repeatedly using the above argument, we can see that the algorithm will also find a
feasible preemption threshold assignment ' = {¥; | ; < 1,1 < i < n}. a
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4.2.2 Feasible Assignment of Priority and Preemption Threshold

Now we address the general problem of determining an optimal (i.e., one that ensures
schedulability) priority and preemption threshold assignment for a given job set. We give
a branch-and-bound search algorithm that searches for the optimal assignment. Whether
more efficient algorithms can be found for this problem remains an open question at this
time. Our algorithm borrows the basic ideas from the optimal priority assignment algorithm
presented in [Aud91a, TBW94] for preemptive priority scheduling of a job set. Unfortu-
nately, the introduction of preemption thresholds not only adds another dimension to the
search space but also brings more branches into the search, making the search space expo-
nential in size.

Our search algorithm, presented in Figure 4.2, proceeds by performing a heuristically
guided search on “good” priority orderings, and then when a priority ordering is complete,
it uses the algorithm presented in the previous section to find a feasible threshold assign-
ment. If a feasible threshold assignment is found then we are done. If not, the algorithm
backtracks to find another priority ordering.

The algorithm works by dividing the job set into two parts: a sorted part, consisting of
the lower priority jobs, and an unsorted part, containing the remaining higher priority jobs.
The priorities for the jobs in the sorted list are all assigned. The priorities for the jobs in
the unsorted list are unassigned, but are all assumed to be higher than the highest priority
in the sorted list. Initially, the sorted part is empty and all jobs are in the unsorted part. The
algorithm recursively moves one job from the unsorted list to the sorted list, by choosing a
candidate job based on heuristics, as described below. When all jobs are in the sorted list,
a complete priority ordering has been generated, and the threshold assignment algorithm is
called.

When considering the next candidate to move into the sorted list, all jobs in the un-
sorted list are examined in turn. To make the search more efficient, we select the “most
promising” candidate first, using a heuristic function, described below. If the algorithm
fails to find a solution with that partial assignment, it will backtrack and then select the
next job. Additionally, we prune infeasible paths by not considering jobs that cannot be
made schedulable at the current priority level.

Figure 4.2 gives the pseudo code of the search algorithm, which is presented as a re-
cursive algorithm. It takes two parameters: 7, which is the unsorted part (containing all
the jobs waiting for priority assignment), and , which is the next priority to assign. The
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Algorithm: AssignSchedAttributes(7", 7)
I* Terminating Condition; assign preemption thresholds */
(1) if(T =1{}) then
/* Use algorithm in Figure 4.1 for preemption threshold assignment */
2) return AssignThresholds()
(3) endif
I* Heuristically generate a priority assignment */
4@ L:={};
(5) foreach 7 € T do
©) T =T, Yk:=mn; Rg:=WCRT(w:);
€)) if R > Dy then Continue ; /* prune */
)] Yk =T7k; Ri:=WCRT(r%);
I* Assign Heuristic Value to Each Job */
) if Ry < Dy then

(10) H;. := GetBlockingLimit(7y); /* positive value */
(a1 else

(12) Hi :=Dy — Ri; /* negative value */

(13)  endif

(149 L: =L+
(15 Tg =n; [*reset*/
(16) end
/* Recursively perform depth first search */
(17) while (L != {}) do
(18) Tk := GetNextCandidate(L) ; /* Select the job with the largest heuristic value next */
(19 T == T}
(20)  if AssignSchedA ttributes(7 — 74, m+1) == SUCCESS then

20 return SUCCESS ;
(22) endif

(23) L:=L-7g;

(24) end

(25) return FAIL

Figure 4.2: Algorithm for Feasible Assignment of Priority and Preemption Threshold

Jobs that have been assigned priorities are kept separately (and not explicitly shown in the
pseudo-code) for preemption threshold assignment at the end of the algorithm. The list
of candidates to search is created in L. The computation of worst-case response times
assumes that all jobs with unassigned priorities have the highest priority, and that all unas-
signed preemption thresholds are equal to the job priority.
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Pruning Infeasible Paths. First, we tentatively assign a job the current priority and
compute its response time with its preemption threshold set to the highest priority in the
system. If its computed response time exceeds its deadline, then the job cannot be made
schedulable at this priority level (Theorem 3.3). This is because, we assume at this stage
that all lower priority jobs have preemption thresholds equal to their priorities. Therefore,

we prune such a branch to make the search more efficient.

Heuristic Function. To compute the heuristic function, we compute the response
time for the job by tentatively assigning it the current priority and assuming that the pre-
emption threshold equals its priority. Let R, be the computed response time for a job 7 in
this manner. Then, the heuristic function is given by:

He = (15)

Dy — R, else
where BL; denotes the blocking limit for 7. The blocking limit represents the maximum
blocking that the job can get while still meeting its response time. Note that at this stage
since we have assumed that priorities equal preemption thresholds, there is no blocking.
However, once the priorities are fully assigned, it is possible that in the preemption thresh-
old assignment stage a lower priority job may be assigned a threshold that is higher than this
Job, and can cause blocking. The blocking limit captures the maximum blocking that a job
can tolerate while still meeting its deadline. This can be computed by assigning a blocking
term to the job, repeating the worst-case response time computation, and checking if it still

{ BL, if Rx < Dy

meets the deadline.

The blocking limit is meaningful if R, < Dx. Otherwise, it is still possible that 7
may be schedulable at this priority with an appropriate preemption threshold. Thus Jjobs
that need a smaller reduction in interference from higher priority jobs are better candidates
for selection. Accordingly, we assign a heuristic value of Dy — R, for each job. Note that
these values are negative, while BL; is positive. Thus, such jobs have a lower heuristic

value, which is as desired.

4.2.3 A Greedy Algorithm

The efficiency of the optimal algorithm shown above depends heavily on the characteristics
of the job set. In the worst case, it has exponential search space in terms of the number of
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jobs. Clearly, this algorithm becomes infeasible to use, even with a modest number of
Jobs. Therefore, we have developed a greedy-heuristic algorithm, which we use in our
simulations for schedulability comparison. The basic idea of this greedy algorithm is the
same as the optimal algorithm. The only difference lies in the branching part. The optimal
algorithm will try all possible branches before it finds a solution. However, the greedy
algorithm will only try the one that is most promising, or in other words, the one at the
head of the candidate list.

This greedy algorithm dominates the preemptive scheduling algorithm, i.e., if a job set
is schedulable with preemptive scheduling, then the algorithm will be able to find a feasible
assignment as well. This is not surprising since the algorithm extends Audsley’s optimal
algorithm for priority assignment. On the other hand, there are cases when the algorithm
is not able to find a feasible assignment, when a non-preemptive priority assignment algo-
rithm is able to find a feasible assignment. Since a non-preemptive priority assignment is
also a feasible solution for our model, the algorithm can be trivially extended to use the
non-preemptive priority assignment algorithm first, and then use this algorithm. Without
actually doing so, we assume that this is the case, and this extended algorithm is used in
our simulations. In this way, our extended algorithm dominates over both preemptive and

non-preemptive scheduling algorithms.

4.2.4 Simulated Annealing

Our final approach is the use of simulated annealing to find feasible scheduling attributes.
Simulated annealing is a global optimization technique that attempts to find the lowest
point in an energy landscape [KGV83]. In developing this algorithm, we again make use
of the optimal preemption threshold assignment algorithm. Thus, instead of searching over
all possible priority and preemption threshold assignments, we only search over the space
of priority assignments. The algorithm is presented in Figure 4.3, and described below.
We use the deadline monotonic priority assignment as an initial starting point for the
search. Simulated annealing uses the notion of “energy” of a solution, and the objective
is to find a minimum energy solution. For any given priority assignment we calculate
the energy of a solution by using a modified form of the optimal preemption threshold
assignment algorithm. In this modified algorithm, if no preemption threshold value makes
a job feasible, then its preemption threshold is set to the maximum value. The energy of
a job 7; is calculated as Maz(0, R; — D;), and the energy of a solution is simply the sum
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(1) PFpyg := Deadline monotonic priority ordering

(2) C :=2 * log(Number of Jobs)) * Maximum Period // Starting Temperature
() Eoiq :=Energy of P4

(4) while ((Cg > 0.01* Minimum Period) )

) while (Thermal equilibrium is not reached)
©6) Generate Ppey, a neighbour of P,y by randomly swapping priorities of two jobs.
) Erew = Energy of Ppey
3) if (Epew == 0) stop // We are done.
) elseif E,.,, < E, 4 then
(10) Poig = Prew ; Eota = Enew ; I/ Always take downward energy jumps
(an else
(Eold - Enew > : .
(12) X = ; // Upward energy jump; take it sometimes
(13) if (€% < random(0,1)) then Pyy = Paew ; o = Enew ; endif
(19 endif
(15) end
(16) C = C %0.96 ; // Temperature Cooling
(17) end

Figure 4.3: Simulated Annealing Algorithm

of all job energies. Thus, if the energy of a job is 0, then the job is schedulable, and if the
energy of a solution is larger than 0, then the solution is infeasible. Larger energy values
indicate poorer solutions.

The algorithm moves from one priority assignment to the next using a randomized
scheme. First a new neighbour is generated by swapping the priorities of two randomly se-
lected jobs. If the new solution has a lower energy then it is selected as the next candidate.
If not, then the neighbour is selected as a candidate probabilistically. The probability of
such upward energy jumps reduces with a control parameter (C) — the temperature — which
is slowly reduced. At each setting of the control parameter, the solution space is explored
until a so-called thermal equilibrium is reached. In our implementation, a thermal equilib-
rium is reached when either the number of downward jumps exceeds log(2 * N) or when
the number of solutions explored exceeds N2. At any time if we find a solution with zero
energy then we stop. Otherwise, the algorithm stops when the temperature is reduced to a
point where there are virtually no upward or downward jumps — indicating that no feasible

solution could be found. -



4.3 Optimality with Equal Priority

Most results shown about optimal priority assignment in the literature assume unique prior-
ity for each Jjob. For instance, rate monotonic and deadline monotonic priority assignment,
as well as Audsley’s optimal priority ordering algorithm, assigns unique priority to each
Jjob. With no exception, our optimal algorithm for priority and preemption threshold as-
signment also assigns unique priority for each job. Nonetheless, a more general model will
allow jobs to have equal priority. We are interested in finding out whether these algorithms

are still optimal while the model allows equal priority.

4.3.1 Preemptive Scheduler

The traditional worst-case response time analysis does not consider the case for equal pri-
ority jobs. Our worst-case response time allows equal priority jobs by assuming that only
the instances of the same job will be queued in a FIFO manner, which means before a job
instance starts, all job instances with equal priority but from other sources will be scheduled
to execute'. However, after a job instance starts, equal priority jobs can not preempt its ex-
ecuticri. With the preemptive scheduler, the following theorem shows that algorithms that
assign unique priorities are no longer optimal. Assigning equal priorities may make a job
set that is found to be not schedulable by these algorithms schedulable. Our analysis shows
that allowing equal priority may improve the schedulability of a set of jobs with preemptive
scheduling while maintains the same schedulability for non-preemptive scheduling and our

new scheduling model.

Theorem 4.2 Allowing equal priority can improve the schedulability of a job ser under a

preemptive scheduler.

Proof: It is easy to see that if a job set is schedulable with unique priority for each job
then it will be schedulable while allowing equal priority because unique priority is a special
case of the latter.

We will use a counter example to prove that a job set that is schedulable while allowing
equal priority may not be schedulable if each job has unique priority.

The job set displayed in Table 4.1 is schedulable with a preemptive scheduler allowing
equal priority however is not schedulable with unique priority. In the case that each job has

!This gives rise to a pessimistic analytical result for worst-case response time.
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Job | C; | T; | D; | m; | WCRT | w; | WCRT
71 |20 70 | SO | 3 20 2 20
T2 [20{ 110 ) 100 | 2 40 | 95
73 | 351200 105 1 115 1 95

Table 4.1: Improving Schedulability by Allowing Equal Priority: Preemptive Scheduler

a unique priority, the deadline monotonic priority ordering is optimal since the deadline of
each job is no more than its period.
From the above example, we can see that allowing equal priority may improve the

schedulability of a job set under a preemptive scheduler.
O

4.3.2 Non-preemptive Scheduler

While allowing equal priorities in the preemptive scheduler may increase the schedulability
of a job set compared with the case of unique priorities, the same claim can not be made for
non-preemptive scheduler. Theorem 4.3 shows that allowing equal priority can not bring
any improvement to the schedulability of job sets with non-preemptive schedulers.

Theorem 4.3 Allowing equal priority will not improve the schedulability of a job set with

a non-preemptive scheduler.

Proof: We prove this theorem by showing that any job set that is schedulable while al-
lowing equal priority under a non-preemptive scheduler will also be schedulable with an
assignment with unique priority.

Assume a job set with n jobs {7y,7,...,7,} in which jobs are sorted by non-
descending priority. Let 7¢, k41, . . . Tk+; represent all the jobs with an equal priority m, and
they are sorted in non-ascending computation time order, i.e., Cx > Crq1 2 ... 2 Cryje
We modify the priority and threshold assignment of the job set following the policies
below: :

(1) For jobs 7y, ..., 7 keep their priority unchanged.
(2) For jobs Ty, Tke15 - - - Tk+j» assign priority m, m+1,..., m + j to them respectively.
(3) For jobs Tiyjy1,-- -, Tn, add j to their priority.
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It is obvious that for jobs 7y,...,7x—;, and for Jjobs 7Tyjt1,. .., Tr, their worst-case
response times remain unchanged. This can be seen by looking at the blocking and inter-
ference. In a non-preemptive scenario, the blocking is the computation time of the longest
Jjob with lower priority, which is not changed in this case. The interference before the job
starts comes from higher priority jobs and is determined by the computation time and arrival
pattern of higher priority jobs, which is also unchanged. Furthermore, in a non-preemptive
scenario, there is no interference after the job starts. Thus, the worst-case response times
of these jobs remain unchanged.

Since we are using a non-preemptive scheduler, for jobs 7%, Tk41, . - -, Tk+4» there will be
no interference after the job starts execution. This is true for both assignments. However,
the blocking term and the interference before the job starts may be different.

In the original priority assignment, 7%, T¢41, - - - , Tk+5 are assigned the same priority, m.
The blocking terms for them are all the same. For the new priority assignment, there are

two cases:

(1) If this blocking term is larger than the largest computation time of these J + 1 jobs,
L.e. larger than C}, then the blocking term of all these jobs remain unchanged. In this
case, it is easy to see that only 7 has the same interference before it starts, and every
one else has less interference. Therefore, the worst-case response time is better or at
least no worse than with the original priority assignment.

(2) If the condition in (1) fails, that means C; is larger than the previous blocking term.
The for job 7%, the analysis in (1) still holds. For jobs in Tk+1, - - - » Tk+5, the block-
ing term is Ci. Compared with the original priority assignment, its interference is
reduced by at least C}. and its blocking term is increased by at most Ci. Therefore,

its worst-case response time will be no worse than before.

Therefore, with the new priority assignment in which each job is assigned a unique
priority, the worst-case response time of each job is no more than the original priority

assignment. Thus schedulability is maintained. a

4.3.3 Scheduling with Preemption Threshold

As we can see, allowing equal priority may increase the schedulability of a job set with
preemptive scheduling policy, but brings no improvement with non-preemptive scheduler.
Our new scheduling model with preemption threshold is more complex than these two and
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subsumes both as special cases. Fortunately, we found out the optimality of our priority and
preemption threshold assignment is not affected by allowing equal priority in our model.
Theorem 4.4 shows that the feasibility of a job set will not change if we allow equal priority
in the job set. Therefore, there is no need for us to amend our algorithm shown in Section

4.2 to extend to a more general model that allows equal priority.

Theorem 4.4 Allowing equal priority or not will not affect the schedulability of a Jjob set

under our model with preemption threshold.

Proof: It is easy to see that if a job set is schedulable with unique priority for each job
then it will be schedulable while allowing equal priority because unique priority is a special
case of the latter.

Assume a job set with n jobs {7,,72,...,7,} in which jobs are sorted by non-
descending priority. Let 7k, T41, - . - Te4; Tepresent all the jobs with equal priority m, and
they are sorted in non-ascending computation time order, i.e. C;, > Cre1 = ... 2 Ciyje

We modify the priority and threshold assignment of the job set following the policies

below:

(1) For jobs 7,..., Tk, keep their priority unchanged. And _if the preemption thresh-
old of a job is higher than or equal to m, then add j to its preemption threshold.
Otherwise, keep it unchanged.

(2) For jobs 7%, k41, - - -, Tkts, add 7 to their preemption threshold and assign priority
m,m+1,...,m + j to them respectively.
(3) For jobs Txyjy1,-- -, Tn, add 7 to their priority and preemption threshold.

Now, we create a new priority and preemption threshold assignment that gives these
7 + 1 jobs different priorities, and we will prove that the schedulability of the job set is

maintained.

For jobs 11, ..., Tx_1, and for jobs Tk+j+1, - - -y Tn, the Worst-case response time analysis
remain unchanged.

For jobs 7%, 7¢41,. - ., Tk+j, the interference after the job starts execution remains un-

changed. However, the blocking term and the interference before the job starts may be

different.
With the original priority and preemption threshold, since 7, Te41, . . ., Tk+; have the
same priority, they have the same blocking term. We divide this situation into two cases:
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(1) If this blocking term is larger than the largest computation time of these 7 + 1 jobs,
i.e. larger than C}, then the blocking terms of all these jobs are unchanged. In this
case, it is easy to see that only 74 has the same interference in before it starts, and
every one else has less interference, therefore, the worst-case response time is better

or at least no worse than with the original priority and preemption threshold.

(2) If the condition in (1) fails, that means Cj, is larger than the previous blocking term.
Then for job 7 the analysis in (1) still holds. For jobs T4, . . ., Tk+j» the blocking

| term is Cy. Compared with the original priority and preemption threshold assign-
ment, its interference before the execution starts is reduced by at least Cy and its
blocking term is increased by at most Ci. Therefore, its worst-case resporise time

will be no worse than before.

Therefore, if the job set is schedulable with the original priority and preemption thresh-
old assignment, it will also be schedulable with our new assignment. We can keep using
this method to break all priority ties until each job has unique priority, and still maintain

schedulability.
]

4.4 Optimizing the Implementation Model

In this section we address the optimality problem of finding a feasible implementation
model with minimum number of threads for a given job set. The reason for us to set the
optimization goal to be minimum number of threads can be seen by observing two facts:
(1) a smaller number of threads implies less context switch between threads (2) a smaller
number of threads implies less memory requirement to support multi-thread since jobs in
the same thread share the stack space. As mentioned earlier, this problem may be viewed
as a search over the space of feasible implementation models. Once again, the problem is
a non-trivial combinatorial optimization problem. One difficulty in tackling this problem
is how to search through the space of feasible implementation models. We again use a
decomposition approach to tackle this problem.

From Theorem 3.4, we know that the schedulability of a job set is independent with
thread assignment for any valid thread assignments. In other words, with fixed scheduling
attributes (priority and preemption threshold), the schedulability of any valid thread assign-
ment is the same as the nominal thread assignment. Based on this, we propose an optimal
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algorithm to generate a valid thread assignment with minimum number of threads from a
nominal thread assignment while keeps the scheduling attributes unchanged.

The optimal thread assignment algorithm can be used in conjunction with the solution
of the feasibility problem shown in last section in a straight-forward way. First, find a
feasible set of scheduling attributes using the approach given in the previous section. Then,
use the optimal thread assignment algorithm to minimize the number of threads. Of course,
this does not solve the original problem optimally, and indeed may be much worse than
the optimal solution, since the synthesized feasible scheduling attributes were not aimed at
reducing the number of threads in the implementation. Therefore, we use a more intelligent
- approach. We first synthesize a feasible set of scheduling attributes as before. Then, we
refine the scheduling attributes so as to eliminate any unnecessary preemptability, while
maintaining schedulability. Reducing preemptability may be seen as a heuristic to reduce
the number of threads. Finally, we use the refined, but feasible scheduling attributes for
optimal thread assignment. Although this is still not an optimal solution, our simulation

results shows that this approach gives satisfiable results.

4.4.1 Optimal Thread Assignment

We first begin with the situation when the scheduling attributes are already determined.
We then try to group the jobs into the minimum number of threads, such that the thread
assignment is valid as per definition 3.7. If the given scheduling attributes are feasible
(assuming the nominal thread assignment), then from Theorem 3.4, we know that any
implementation model with the same scheduling attributes, and a valid thread assignment
is also feasible. Thus, the problem reduces to finding a valid thread assignment with the

minimum number of threads, as stated below.

Given a set of jobs T = {1; = (C; D;,T;) | 1 < i < N}, and a feasible
assignment of scheduling attributesI1 and T, find a valid thread assignment U

such that the number of threads used is minimized.

Recall that in a valid thread assignment, if two jobs are mapped to the same thread then
they must be mutually non-preemptive. Since this is true for any pair of jobs, it must be true
that the set of jobs mapped to the same thread must be pair-wise mutually non-preemptive.
To capture the notion of what kind of jobs may be put in a thread, we formally define the

concept of a non-preemptive group.
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Definition 4.1 (Non-Preemptive Group) A set of jobs T = {7i,,7Ti,---,T:,, } forms a
non-preemptive group if for every pair of jobs 7; € T and 7« € T, 7; and Ty are mutually

non-preemptive.

Consider any valid thread assignment, then each thread in this assignment forms a non-
preemptive group of jobs. Furthermore, each job is in exactly one such non-preemptive
group. Thus, a thread assignment represents a partitioning of jobs into non-preemptive

groups. Therefore, the problem can be re-stated as:

Given a set of jobs T = {r; = (C; D;,T;) | 1 < i < N}, and a feasible
assignment of scheduling attributes I1 and T, find a partitioning of the jobs
into non-preemptive groups G1, G, ..., Gy, such that each job is in exactly

one of the groups, and M, the number of groups is minimized.

In Figure 4.4, we present Algorithm OPT-Thread that creates an optimai partitioning
of jobs into non-preemptive groups. The algoﬁthm begins by sorting the jobs in a non-
decreasing order of their thresholds, with ties broken arbitrarily. Let the sorted list be
denoted as L. We then remove the first job (7%) from this list and form a new group G. We
will call 7 as the representative of the group. Then, we look at every other job and add any
job 7; into G if m; < y, i.e., it is mutually non-preemptive with 7. Also 75 is removed
from L. Note that, since L was already sorted by preemption threshold, it must be the case
that m, < <y;. Once all jobs have been examined, we have formed one non-preemptive
group, with the remaining jobs in the list L. We reiterate this process of forming groups
until no jobs remain in the list L. We now formally prove that the algorithm is correct
(i.e., it produces a valid partitioning) and optimal (i.e., it creates the minimum number of

groups).

Proposition 4.1 (Correctness ¢f OPT-Thread Algorithm) Algorithm OPT-Thread pro-

duces valid partitioning of the job set into non-preemptive groups.

Proof: Clearly, the algorithm creates a partitioning, i.e., each job is placed into exactly
one group. Therefore, we need to show that each group formed by the algorithm is a non-
preemptive group. By definition, two jobs 7; and 7; are mutually non-preemptive if 7; < ;
and 7; < <;. Let us look at the representative member 75 of a group G. Since the list of
Jjobs is kept sorted by the threshold, and 7}, is the head of the list, it must be the case that
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(7 < ;) forany 7; € G. Therefore, we have 7 < v < 7;. Also, if 7; is added to G then
7 < k- Thus, for any job 7; € G, 7; and 73 are mutually non-preemptive. Now, consider
any two jobs 7; and 7; in G. We know that m; < v < v; and m; < ¢ < 5. It follows that
m < 5 and 5 < ;. O
Theorem 4.5 (Optimality of OPT-Thread algorithm) Algorithm OPT-Thread is opti-

mal.

Proof: We need to show that no other partitioning into non-preemptive groups can be
done with a smaller number of groups. Consider any two groups formed by the algorithm,
and consider their representative members — say 7; and 7. Then, due to the nature of the
algorithm, it must be the case that 7; and 7 are not mutually non-preemptive. Therefore,
they must be in separate non-preemptive groups in any partitioning of the job set into non-
preemptive groups. Since this is true for each pair of representative group members, it is

not possible to have a solution with fewer groups. : a

Follow the same logic, if the algorithm starts from the highest priority job, selecting
jobs with preemption threshold no less than the priority of the representative job to form
non-preemptive groups, the algorithm can be proved to be correct and optimal in the same
way as shown in Theorem 4.1 and Theorem 4.5. Note that the optimality of the algorithm
depends on the ordering. If the non-preemptive groups are generated in other orders, the
resulted number of threads may not be the minimum. A counter example can be given as
follows. Given four actions A;, A2, A3, and A4 with schéduling attributes [71, 1], [2, 72|,
[73, 73], and [y, 4] respectively. Assume that wehave v, > 72 > 71 > 73 > mp > Y4 >
w3 > m4. Use algorithm in Figure 4.4, it is easy to see that the minimum number of non-
preemptive groups is 2. Now, if we first use A,, A3 to form a non-preemptive groups, the
Ay and A3z can not be put into this group so that we will get 3 non-preemptive groups.

4.4.2 Preemption Threshold Assignment to Reduce Preemptions

After partitioning a job set with feasible scheduling attributes into the minimum number of
threads, let us look at how to refine feasible scheduling attributes so as to reduce the number
of threads created by Algorithm OPT-Thread. For this purpose, we use a simple heuristic
strategy — we attempt to reduce any unnecessary preemptability that is introduced by the
scheduling attributes. Since OPT-Thread partitions jobs into non-preemptive groups, less
preemptability indirectly affects the number of threads needed.
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Algorithm: Partitioning Jobs into Minimum Number of Non-Preemptive Groups
(1) ngroups:=0;
I* Sort the jobs by vy;, in non-decreasing order */
(2) L :=SortJobsbyPreemptionThreshold(JobSet) ;
(3) while (L !=NULL) do
/* Find the job with the smallest value of y; */
@ Tk := Head(L); Gngroups] := {rx} L:=L - 7% ;
&) foreach 7; € L do

(6) if (r; < i) then G[ngroups] = G[ngroups] + {73} ;L :==L - 75 ; endif
) end
®) ngroups = ngroups + 1 ;

(9) end

Figure 4.4: An Optimal Algorithm for Job Partitioning with Minimum Number of Non-
Preemptive Groups

Note that the set of higher priority jobs that can preempt a job 7; is determined by the
job’s preemption threshold <;. By increasing the value of ;, we can reduce the number
of jobs that can preempt 7;. Suppose we increase the preemption threshold of 7; from a
to b (a < b), then this change may result in increased response times for any job 7, if
a < ™ < b, since any such job may now incur a blocking from 7;. We can safely increase
the preemption threshold if the recomputed worst-case response times of these affected
jobs are still no more than their deadlines.

Using the idea given above, we try to increase the preemption threshold of each job
to the maximum value that will still keep the job set schedulable. Figure 4.5 gives the
algorithm that attempts to assign larger preemption threshold values to jobs. The algorithm
considers one job at a time, starting from the highest priority job, and tries to assign it
the largest threshold value that will still keep the system schedulable. We do this one step
at a time, and check the response time of the affected job to ensure that the system stays
schedulable. By going from the highest to lowest priority job, we ensure that any change
in the preemption threshold assignment in latter (lower priority) jobs cannot increase the
assignment of a former (higher priority) job, and thus we only need to go through the list
of jobs once.

Note that the algorithm in Figure 4.5 has a worst-case complexity of O(n?). However,
if we combine it with the minimum preemption threshold assignment algorithm shown in
Figure 4.1, then the total complexity is still O(n?) in the worst-case since this algorithm
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Algorithm: Assign Maximum Preemption Thresholds

/! Assumes that job priorities are fixed, and a set of feasible preemption thresholds are assigned
(1) for(i:=ndowntol)

2) while (schedulable = TRUE) && (vi <n)

3) Yi+=1; [*tryalarger value */
@@ Let 7; be the job such that 7; = ~y;.
* Calculate the worst-case response time of job j and compare it with deadline */
() - R;j :== WCRT(13);
6) if (R; > Dj) then schedulable := FALSE ; y; -= ; endif
€)) end :
® schedulable := TRUE
) end

Figure 4.5: Algorithm for Finding Maximum Preemption Threshold

continues in the same search space and only tries those not tried by the previous one.

Therefore, we can say that this optimization is done with no extra cost.

4.5 Performance Evaluation

Iﬁ previous sections, we made a claim that our new scheduling model can improve the
schedulability, reduce scheduling cost, and reduce memory requirements of an implemen-
tation model. In this section we provide quantitative assessment to support our earlier
claims. We designed and implemented a software tool to test the suitability of the al-
gorithms and simulate the scheduling behavior of our new scheduling model. Instead of
showing results from real systems, we choose to evaluate the performance over randomly

generated job sets.

4.5.1 Simulation Design

The software tool we developed for the purpose of quantitative assessment can be divided
into several parts: worst-case response time analysis, scheduling attributes assignment,
system optimization, and run-time simulation. Thus, the benefit that can be obtained by
applying our approach can be measured. These benefits include schedulability improve-
ment, overhead reduction, and minimal requirement for total stack space in multi-threaded

56



- implementations.

We use randomly generated periodic job sets for our simulations. Each job is char-
acterized by its computation time C; and its period 7;. We varied two parameters in the
generation of the job sets: (1) the number of jobs nJobs and (2) the maximum period
maz Period for the jobs. For any given pair of nJobs and maz Period, the job sets were
generated as follows: For each job 7;, we first randomly selected a period in the range
[1, maz Period] with a uniform probability distribution. Then, we assigned a utilization
U; in the range [0.05, 0.5], again with a uniform probability distribution. The computation
time of the job was then assigned as C; = T; * U;, and the deadline was set to 7.

'4.5.2 Schedulability Improvement

Breakdown utilization serves as a measure of schedulébility [LSD89]. For each randomly
generated job set, we measure the breakdown utilization for (1) preemptive scheduling, (2)
non-preemptive scheduling, and (3) scheduling with preemption threshold. Fdr preemptive
- and non-preemptive scheduling, we use Audsley’s algorithm for optimal priority assign-
ment. For scheduling with preemption threshold, we provide the results by using simulated
annealing?. The performance comparison between the greedy algorithm and simulated an-
nealing is provided later.

We scale the computation time of all jobs in a job set to get different utilization, and
then test whether the job set is schedulable. Since the randomly generated job sets may
have utilization greater than 1 to begin with, we initially scale the utilization to 100%. We
then do a binary search to find the maximum utilization at which the job set is schedulable
under a particular scheduling algorithm.

We did the simulations for nJobs € {5,10, 15,20, 25, 30, 35, 40, 50} and
mazPeriod € {10, 20,50, 100, 500, 1000}. In Figures 4.6 and 4.7, we show the schedula-
bility improvement as the number of jobs varies. The results are shown for maz Period =
10 and 100; the results are similar for other values. In each case, we plot the average and
maximum increase in breakdown utilization when using preemption thresholds.

Figure 4.6 shows schedulability improvement as compared to pure preemptive priority
scheduling. As the plot shows, when looking at average improvement, there is a modest
improvement in schedulability (2%-8%), depending on the number of jobs. As the number

of jobs increases, the improvement tends to decrease. Perhaps, more interesting is the plot

2The optimal algorithm is too time consuming to provide results for job sets with more than 20 jobs.
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for maximum increase, which shows that the schedulability improvement can be as high as
21% in breakdown utilization for selected job sets, although once again the improvement
decreases as the number of jobs is increased.

The results showing the schedulability improvement with non-preemptive scheduling
are more varied. First, for most ranges of the parameters, the schedulability improve-
ment is much more than the preemptive case (which also means that preemptive scheduling
gives higher breakdown utilization, as compared to non-preemptive scheduling). The result
should not be surprising since non-preemptive scheduling performs very badly even if one
job has a tight deadline, and any other job has a large computation time. In such cases, the
breakdown utilization can be arbitrarily low, as can be seen in Figure 4.7(b).

While non-preemptive scheduling performs poorly in general, there are selected cases
when it performs better than preemptive scheduling, and better than our simulated an-
nealing algorithm for preemption threshold. Note, however, that we assume that our simu-
lated annealing algorithm is augmented with the schedulability check using non-preemptive
scheduler as well, and so in the plots those cases simply show up as zero percent improve-
ment. These results can be seen in Figure 4.7(a), where non-preemptive scheduling outper-
forms the others when nJobs > 20; similar results are obtained for other smaller values of
maz Period, but this effect goes away when mazPeriod = 100 or more. The reason for
this is that with large number of jobs, and a small value of maz Period, the computation
times for all jobs are small. This means that any blocking caused by non-preemption has
little effect on schedulability, which gives rise to higher breakdown utilization.

‘We summarize the observation from the simulation results as follows:

(1) Our approach can never perform worse than either pure preemptive scheduling or
pure non-preemptive scheduling; this follows directly from the fact that our model

includes both as special cases.

(2) When the number of jobs is relatively small, e.g., 5 — 15, we observe that in many
cases, a significant improvement in schedulability is possible with our approach. For
example with nJobs = 10, we are able to improve breakdown utilization by as much
as 15%. To illustrate the improvement in breakdown utilization, we look at the per-
centage (we used 100 randomly generated job sets) of job sets for which the schedu-
lability improvement was significant (say more than 5%). In Table 4.2, we present
the results for nJobs = 10, with maz Period = 10 and 100 for illustration purposes.
We show the number (percentage) of jobs for which greedy algorithm and simulated
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Figure 4.6: Schedulability Improvement with Preemption Threshold as compared to Pre-
emptive Scheduling.

annealing showed an improvement of more than 5 and 10% of breakdown utiliza-
tion as compared to the best of preemptive and non-preemptive scheduling. We can
see that with our greedy algorithm, we can get a modest schedulability improvement
(5 — 10%) in a significant percentage of job sets. With simulated annealing we get
modest schedulability improvement in almost half the job sets, and get significant
schedulability improvement in a modest percentage of job sets.
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Figure 4.7: Schedulability Improvement with Preemption Threshold as compared to Non-
Preemptive Scheduling.

(3) The schedulability improvement tends to decrease as the number of jobs is increased,
such that with about 50 jobs, the schedulability improvement is marginal in most
cases (less than 2%). Since our algorithms are not optimal, and with large value
of nJobs, an optimal solution is not available, it is hard to say whether this lack
of improvement is a limitation of our algorithms or whether we have reached the
limitation of the scheduling model. In any case, this may be a moot point since in

most cases (with larger number of jobs) we observe the breakdown utilization to be
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Greedy Algorithm | Simulated Annealing
mazPeriod | > 5% > 10% > 5% > 10%

10 17 o1 45 16

100 28 3 47 14

Table 4.2: Percentage of job sets showing significant schedulability improvements
nJobs = 10 and mazPeriod = 10 and 100.

quite high — 90% or more.

4.5.3 Greedy Algorithm versus Simulated Annealing

We tried both greedy algorithm and simulated annealing for the same job set to find the
breakdown utilization. With very rare exceptions, simulated annealing dominates over our
greedy algorithm. However, the search space of our greedy algorithm grows linearly to
the number of jobs in the job set, while simulated annealing is in the order of O(nlogn).
In Figure 4.8, we give the average and maximum improvement of breakdown utilization
by using simulated annealing rather than greedy algorithm. Table 4.2 also provides a hint
about how often simulated annealing outperforms our greedy algorithm.

Furthermore, the simulated annealing approach provides a good approximation to the
optimal solution. For small job sets, njobs € {5, 10, 15}, simulated annealing provides the
same breakdown utilization as the optimal algorithm. For larger job sets, a comparison of
the solution found by simulated annealing and the optimal solution is missing due to the
fact that to get the optimal solution is so time consuming that it may take years before the

solution is found.

4.5.4 Overhead Reduction

To evaluate the performance of overhead reduction, we again use randomly generated job
sets. We simulate the execution of a job set for 100000 time units, and track the number
of preemptions. With rnazPeriod = 1000, this gives at least 1000 instances of each job
in a simulation run. We want to see the savings in preemptions when using preemption
thresholds as compared to pure preemptive scheduling. Accordingly, we use percentage
reduction in the number of preemptions as the metric, which is defined as:
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Figure 4.8: Schedulability Improvement with Simulated Annealing as compared to Greedy
Algorithm.

NumPreemptions, — NumPreemptions,, .
NumPreemptionsy,

100

where NumPreemptions, and NumPreemptions,: are the number of preemptions en-
countered in a particular simulation run with preemptive scheduling and preemption thresh-

old scheduling respectively.
We did one simulation run for each job set generated in the simulations of previous
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Figure 4.9: Average Percentage Reduction in Number of Preemptions for Preemption
Threshold Scheduling as compared to Pure Preemptive Scheduling

sections. The computation times for the jobs were chosen by scaling them to the largest
value at which the job set was schedulable under preemptive scheduling (i.e. the breakdown
utilization). We assigned priorities to these job sets using the rate-monotonic (optimal)
algorithm. We use the same priorities for the preemption threshold case, but additionally
assigned preemption thresholds to the jobs as described before. That is, we first generated
a feasible assignment of preemption thresholds using the algorithm shown in Figure 4.1.
Then, we used the algorithm in Figure 4.5 to optimize the setting of preemption thresholds
for preemption reduction. During the simulation, we randomly assigned the initial arrival
time of each job 7; in the range [0, T3]

We plot the average percentage reduction in the number of preemptions for preemption
threshold scheduling as compared to preemptive scheduling. The results are shown in
Figure 4.9. As can be seen in the figure, there is a significant reduction in preemptions for
small number of jobs, but it tapers down to less than 5% as the number of jobs is increased.
Also, for any given number of jobs, the number of reductions is larger for larger values of

mazPeriod, i.e., when the period range is larger.
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Figure 4.10: Number of Threads as a Function of Number of Jobs, with maz Period = 100

4.5.5 Reducing the Number of Threads

As we mentioned before, jobs that are non-preemptive to each other may share the same
stack space to reduce memory requirements for supporting multi-threaded real-time sys-
tems. This enables the jobs in the same thread to share stack space. Reducing the number
of threads will reduce the total memory cost of an implementation model. In this section,
we quantitatively measure the reduction in number of threads.

Our results show that in many cases, we can reduce the number of threads significantly
as compared to the preemptive scheduling case, where each job is put into its own thread. In
Figure 4.10, we show the number of threads generated by our approach when the number
of jobs is varied from 10 to 100, with mazPeriod = 100. To do this, we first found
the breakdown utilization with preemptive scheduling. We plot both the average and the
maximum number of threads produced by our approach; for comparison, the straight line
shows the number of threads with a purely preemptive approach. Similar results are also
achieved with other parameters.

As the plots show, the number of threads increase much more slowly than the number
of jobs (which would be the case for preemptive scheduling), indicating that as the number
of jobs increase, there can be substantial reduction in run-time overheads. For example,
with nJobs = 100, we have less than 30 threads in all cases, and on an average only 14.3
threads.
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Chapter 5

Extension for Event-Driven Complex

Real-Time Systems

In this chapter, we consider the extension of our approach to a more general design
model that allows shared resources between jobs and inter-job communications (e.g. asyn-
chronously and synchronously triggered jobs). The schedulability analysis and design
methodology proposed in this chapter is under the assumption of uni-processor hard real-
time system and serves as an important part of the overall auto-synthesis approach pre-
sented in Chapter 1. The model is motivated by UML-RT and established by extracting
real-time aspects of models described by UML-RT. Therefore, it enables incorporating our
auto-synthesis approach with the UML-RT standard for generating event-driven complex
real-time systems. As we did with the simplified model, we first study the scheduling
theories with the general model, then address the feasibility problem and the optimization

problem.

5.1 A General Model Motivated by UML-RT

The simplified model discussed in Chapter 3 and 4 assumes independent jobs, i.e. the
execution of one job does not depend on other jobs and there is no communication and
resource sharing between jobs. However, this model is too simple to describe complex
real-time systems. As the embedded real-time systems encountered in applications such
as telecommunications, aerospace, defense, and automatic control tend to be large and ex-
tremely complex, there is an urgent need for software designed with sound architecture.
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ObjecTime and the Rational Corporation are collaborating to extend the Unified Model-
ing Language (UML) standard for modeling complex real-time systems. This extension is
called UML for Real-Time, or UML-RT for short. It combines the powerful modeling con-
structs originally developed by ObjecTime for the modeling of compiex real-time systems
in the Real-Time Object-Oriented Modeling (ROOM) language with UML. We establish
our analysis model by extracting the real-time aspects of the design models described by
UML-RT and extend our approach to this model.

5.1.1 UML-RT

UML-RT combines UML, role modeling and ROOM concepts to deliver a complete so-
lution for modeling complex, event-driven, and potentially, distributed real-time systems.
It uses UML’s in-built extensibility mechanism of stereotypes to capture the field-proven
ROOM concepts in UML. The modeling construct used for complex real-time systems can
be partitioned into two major groups: constructs for modeling structure and constructs for

modeling behavior.

Structure Modeling

UML provides two complementary diagrams, namely the class diagram and the collabora-
tion diagram, to capture the logical structure of the system, i.e., the entities in the system
and the relationship between them. The basic architectural entity in UML-RT is the cap-
sule. Capsules correspond to the ROOM concept of actors, which are objects representing
independent, concurrently active logical machines. Capsules interact with each other by
sending and receiving messages through interface objects called ports. Connectors rep-
resent communication channels interconnecting ports and capture the communication re-
lationship between capsules. A capsule may have an internal structure, and collaboration
diagrams are used to describe the structural decomposition of capsules [Lyo98, SR98]. Fig-
ure 5.1 shows an example of a system structure for a cruise-control system, consisting of

several capsules, and inter-connections between capsules through ports and connectors.

Behavior Modeling

The behavior of a capsule is represented by an extended finite state machine using state di-

agrams. A capsule remains dormant until a message is received by the capsule. Incoming
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Figure 5.1: Collaboration Diagram for Cruise-Control System

messages trigger transitions associated with the capsule’s finite state machine. Actions may
be associated with transitions as well as entry and exit points of a state. The sending of mes-
sages to other capsules is initiated by an action. Finite state machines can be hierarchically
specified, such that a state can be decomposed into a finite state machine. Figure 5.2(a)
gives an example of a finite state machine for a cruise-control system. Note the decompo-
sition of the Automatic Control state into the Cruis ing and Resuming (we have
not shown the decomposition of the Manual Control state, for clarity.).

Conceptually, each active object has its own thread of control. The finite state machine
behavioral model imposes that only one transition at a time can be executed by a capsule.
Thus, a run-to-completion paradigm applies to state transitions. Figure 5.2(b) depicts the
behavioral life-cycle of a capsule using a flow-chart of its conceptual thread of control. A

capsule behaves as a message handler, processing incoming requests (sent as messages).

5.1.2 Motivation and Overview of Our General Model

Since UML-RT represents the leading technology in real-time object-oriented modeling,
we establish our analysis model by extracting the real-time aspects from the UML-RT
models. In this way, we incorporate our approach with the industry standard to automat-
ically translate the design model described using UML-RT into an implementation for a
desired target platform.

While finite state machine behavioral models of objects are useful for code-generation,
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Figure 5.2: Finite State Machine for Modeling Capsule Behavior

they are not very conducive for reasoning about end-to-end behaviors, or scenarios. UML-
RT uses sequence diagrams for this purpose. However, sequence diagrams are weak in
expressing a detailed specification of end-to-end behaviors, which is necessary for schedu-
lability analysis. To express our ideas, we extend the sequence diagram notation to capture
detailed end-to-end behaviors.

We use the term transaction to refer to the entire causal set of actions executed as a
result of an external event, i.e., an event coming from an extermal source. In the rest of the
thesis, we use event to indicate the arrival of a message at the receiver. Transactions are

useful to capture end-to-end system behaviors, and are used in our model for specification
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Figure 5.3: Extended Sequence Diagram Representation of a Transaction

of timing constraints and for response time analysis. Since ultimately all processing is
initiated by some external event, these transactions can capture all the computations in the
design model.

In the rest of the thesis, we will use the term action to refer to the entire run-to-
completion processing for an event. Each action is, in general, a composite action, and
composed from primitive sub-actions. These primitive sub-actions include send, call,
and return actions, which generate internal events through sending messages to other cap-
sules [RTB99, BRJ99]. Resource sharing is also depicted at the sub-action level using lock
and unlock sub-actions.

We depict transactions using extended sequence diagrams, which capture the details
of the processing associated with an event. Figure 5.3 depicts the transaction Feedback
Control for a cruise-control system. The transaction is driven by a timeout message. As
can be seen, the cruise control object obtains the speed from the speedometer object using
a synchronous call action. It then does the control law calculations and generates a throttle
output which is sent asynchronously to the throttle object. The throttle object then sends a
command to the actuator.

Currently, these sequence diagrams for transactions must be manually extracted from
the design models, although we believe that this process can be automated. One hurdle is
that actions are specified in detailed level language (e.g. C++) making it difficult to extract
out the necessary information. Note also that there are many “pre-specified” actions that
are automatically generated with the code. These actions also include calls to the real-time

execution framework. An automatic generation process can easily include these actions as
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well.

The sequence diagrams are also useful to capture timing constraints [RIB99, BRJ99].
For the purposes of this thesis, we are concerned with (1) arrival rates of external events,
and (2) end-to-end deadlines. The end-to-end deadlines can be specified on any action in a
transaction; the deadlines are end-to-end in the sense that they are relative to the arrival of
the transaction (external event).

To capture the mapping of the design to the implementation, we also model resources,
which may include hardware resources (CPUs) and software or logical resources. We will
restrict our attention to single CPU models. Logical resources include mutex resources, that
are used to ensure mutual exclusion. We model both capsules and threads as specialized

mutex resources, since only one action at a time may be active within either a capsule or a

thread.

5.1.3 Notations
External Events and Transactions

External events are originated from external sources such as input devices (sensors) and
will interrupt the CPU from running embedded software when they occur. We also include
timed events generated by periodic or one-shot timers as external events.

Since all processing within an event-driven system is ultimately initiated by some ex-
ternal event, we use a collection of transactions to capture all the possible computation in
the design model. A transaction is defined as a single end-to-end computation triggered by

an external event. Each external event stream E; corresponds to a transaction 7.

Internal Events and Actions

A transaction is decomposed into a set of actions and internal events that trigger them. A
tree structure best represents the internal structure of a transaction, where each node repre-
sents an action and each edge connecting actions represents an internal event. Therefore,
except the root (the action triggered directly by the external event that triggers the whole
transaction), all actions are triggered by an internal event and each action will also generate
zero or more internal events that in tumn triggers other actions in this particular transaction.
Thus internal events (in the form of message passing) represents a precedence between

actions in a transaction.
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Recall that in our design model, each event is processed within some capsules by
the capsule’s finite state machine. The processing within a capsule is done in a run-to-
completion manner. We use the notation action to capture the entire run-to-completion
processing within an object for the event. Each action A; is associated with an event E;.
The internal events are represented by the communication relationships that we will discuss

later.

Sub-Actions

While the execution of an action is atomic within the context of the capsule where it is
executed, its effects may be visible outside the capsule even when it has only partially
executed. This happens when an action communicates with others (e.g. generates internal
events), or accesses common resources shared with others as part of its execution. To
include these effects in our analysis, we allow an action to be composed of sub-actions.
Since our interest lies in the communication relationship and resource sharing, we define
five kinds of sub-actions: send, call, reply, lock, and unlock. The first three are defined to
describe communication relationships while the last two are defined to describe resource
sharing behavior.

A send sub-action generates an internal event and asynchronously sends it to the re-
cipient capsule while a call sub-action generates an internal event, sends it to the recipient
capsule, then blocks waiting for a reply, which is generated by the called action using a
reply sub-action. To simplify our analysis, we assume that if an action is triggered by a
synchronous message, that action must have a single reply sub-action, which should be the
last sub-action of that action. A lock sub-action requests a specific resource and if no one
else is using the resource, it will lock the resource to prevent others to access the same
resource before the unlock sub-action explicitly releases the resource. Other sub-actions
may be defined in the model as long as they have bounded execution times and have no
externally visible side-effects.

Sub-actions are also useful to capture conditional behavior within an action, as may
happen when the action may execute different steps depending on the state of object or the
data associated with the event. Using the notion of sub-action, alternative paths are enabled
within an action and within a transaction. However, there is a restriction that simultaneous
paths are forbidden in an action. In other words, sub-actions inside an action run in a

sequential order where no sub-action in an action can simultaneously branch into more than
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one sub-action and have them all executed. This restriction is due to the nature of thread
as an event handler and the thread that handles this event must execute the sub-actions in
sequential order. |

Thus an action A; is decomposed into a sequence of sub-actions A; =
(aii,aia,--., @i n;), Where each a; ; denotes a primitive action characterized by a worst-
case execution time C;;. The computation time of A; can be presented as the summary of

worst-case execution times of its sub-actions on the longest path.

Timing Properties

In our analysis model, we are mainly concemned with two timeliness properties: (a) arrival
rates of external events ¥;, and (b) end-to-end deadlines D;. The end-to-end deadlines
can be set for transactions as the response time requirements for the external event that
triggers the transaction. The deadline can also be specified for any action in a transaction if
necessary, howéver, it is the deadline relative to the arrival of the external event associated
with the transaction. To enable our worst-case response time analysis, we assume bounded
rate for the arrival of external events. The arrival pattern of internal events depends on the

system behavior since they are generated during the process of an external event.

5.1.4 Communication Relationship

We use binary relations to represent the communication relationships between actions,
which indicates the precedence of actions in a transaction. There are two kinds of com-

munication relationships, namely asynchronous and synchronous, as defined below:

Definition 5.1 (Asynchronous and Synchronous Relations) An asynchronous relation
A; — A; exists between action A; and Aj if A; generates an asynchronous event E;
(using a send sub-action) that triggers the execution of action A;. Likewise, a synchronous
relation A; = A; exists between action A; and A; if A; generates a synchronous event E;

(using a call sub-action) that triggers the execution of action A;.

The synchronous/asynchronous relationship is one-to-many. A single action may syn-
chronously or asynchronously trigger 0 or more actions. While these relations are defined
between actions, we present them at the sub-action level to provide better insight for our
analysis. To be more specific, a send or call sub-action generates exactly one event that

72



triggers another action and thus establishes the relation between the two actions. For ex-
ample, a;, R A;, where R € {—, <=} indicates that sub-action a; , of action A; generates
E; that triggers the execution of action A;.

In addition to the synchronous/asynchronous relationship defined above, it is also use-
ful to define a causes relationship, denoted by the symbol ~», which captures the causal
relationship between actions. A causal relationship exists between two actions in the same
transaction, whenever one of the actions directly or indirectly causes the execution of the

other. A formal definition is presented as follows.

Definition 5.2 (Causes Relation)
A~ A3 (A — A7) V (A= A7) V ((FK)((Ai ~ Ak) A (Ag ~ A)))

In other words, A; causes A; if either it directly triggers the execution of A; (by gen-
erating event E;), or it indirectly causes the execution of A; through another action Ag.
Furthermore, if a causal relation A4; ~ Aj; exists, we call A; a successor of A; and we call
A; an ancestor of A;.

A synchronous relationship between two actions have a significant effect on the
scheduling behavior of a real-time system since the call sub-action will block the call-
ing action and wait for a reply from the called action. To simplify the discussion, we
define synchronous set to identify a continuous sequence of actions linked by synchronous

relationships.

Definition 5.3 (Synchronous Set) The synchronous set of A;, denoted Y (A;), is a set of
actions that can be built starting from action A; and adding all actions that are called
synchronously from it. The process is recursively repeated for each action in the set until

no more actions can be added to the set.

In our analysis, we treat synchronously-triggered actions as a natural extension of the
calling action. Thus, it is useful to define the concept of complete synchronous set to
identify a sequence of actions linked by synchronous relationships that starts with an asyn-
chronously triggered action and ends up with actions that do not have synchronous calling
sub-action. A complete synchronous set is one thread of control, executed in a run-to-
completion manner and scheduled as one action in our model. This implies one priority

and preemption threshold for all actions in the same complete synchronous set.
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Definition 5.4 (Complete Synchronous Set) The complete synchronous set of A;, de-
noted as Y(A;), is a set of actions that can be built starting from the synchronous set
of A; by recursively adding actions synchronously calling the set (i.e., all its synchronous
ancestors) and all actions that are called synchronously from the actions in the set until no
more actions can be added to the set.

In this way, each complete synchronous set starts with an action triggered by an asyn-
chronous send sub-action or an external event. We call this action as the root of the com-
plete synchronous set, and denote it as (Y (A;)). The root will serve as a unique identifier

of a complete synchronous set in our analysis later.

Since the scheduling behavior of a complete synchronous set is the same as if it is an
action, for simplicity, it is replaced by an action in our model. Therefore, in our analysis,
we only consider asynchronous relationships between actions. The computation time for
the action that replaces a complete synchronous set should be the cumulative computation

time of all actions in the complete synchronous set.

C(T(4)) = Y. C4y) (16)

Vj,Aj ET(A,;)

5.1.5 Resource Sharing Between Actions

Mutual exclusive access to shared resources has been well studied in real-time system de-
sign [Mok83, SRL90, Aud91b, RSLR88, CL90, Bak90, KRP*93, BMS90]. Resource shar-
ing protocols are introduced to prevent deadlock and bound the priority inversion caused by
resource sharing in a priority driven preemptive scheduling system. In our general model,
resource sharing may happen between actions of a specific capsule, or actions in a specific
thread. In these cases, mutual exclusive access to the shared resource is guaranteed implic-
itly, due to the non-preemptive scheduling nature within a capsule or a thread. In a more
general case, common resource can be shared by actions that neither belongs to the same
capsule nor the same thread. Therefore, we need special locking mechanisms to guarantee
the mutual exclusion. In our model, we assume that for each resource, there is only one
instance to be shared. This requires that any two actions that share the same resource can
not access it simultaneously.

We introduce two sub-actions: lock and unlock to provide mutual exclusive access to

commonly shared resource. An action should use lock before it enters the critical section
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and unlock when it leaves the critical section. The lock sub-action will lock the resource
if it is unlocked or enter the action to a waiting queue for this resource if the resource is
locked by some other action. The unlock sub-action will unlock the resource and put all
actions in the waiting queue for this resource back to the ready queue. Thus, the mutual
exclusive accessing of commonly shared resource is guaranteed.

To minimize priority inversion we use the Highest Locker Protocol (HLP) [KRP*93],
which is reviewed in Chapter 2. HLP is a refinement of the Priority Ceiling Protocol (PCP).
While keeping the merits of PCP, i.e. bounded blocking time equals the longest critical sec-
tion of lower priority actions, HLP reduces context switches and reduces the complexity
at runtime. Using HLP, the lock sub-action raises the priority of the action to the highest
priority of the set of actions that share the resource. The unlock sub-action restores the pre-
vious running priority of the action. (The previous running priority may be the preemption
threshold of the action or ceiling priority of other resources, whichever is higher, depends
on the status of the action before the lock sub-action.) The lock and unlock sub-actions im-
plement a mutex. A mutex is created for each resource, and a ceiling priority is assigned to
each mutex has the highest priority of all actions that share the resource. HLP has a desir-
able feature that it can avoid deadlock and chained blocking. However, changing runmning

priority brings complexity in our response time analysis.

5.1.6 Dual Level Scheduling

While extending our approach for event-driven complex real-time systems, we assume a
uni-processor multi-threaded architecture with preemptively scheduled threads, where each
thread is implemented as an event handler. Traditional schedulability analysis assumes one
event per thread, and each thread has a defined priority and timing constraints. Previous
attempts of integrating schedulability analysis with object-oriented design models also re-
strict analysis to a set of threads each handle a single event (see, for example [BW94]).
However, as we explained in Chapter 1, a thread usually handles several events in imple-
mentation of real systems.

This gives rise to a dual level scheduling: threads are scheduled using priority based
preemptive scheduling policy while events queued in a thread are scheduled in a priority
based non-preemptive manner. In earlier chapters, we demonstrate that our new scheduling
model with preemption threshold can nicely abstract this dual level scheduling behavior.
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For our generalized model, we extend these proposed scheduling theories to include com-
munication relationship and resource sharing. In the rest of the thesis, we use action to

refer to both the action and the event triggers it.

5.1.7 A Formal Description of the General Model

Based on previous discussions, a formal description for our general model used for schedu-

lability analysis and implementation model generation can be stated as follows:

An event-driven complex real-time system can be described as a model M =
{(E0, THI(E: € Eext) A (T: € T),1 < i < n}, where each external event
E; € Eex: is featured with an arrival function ¥; and triggers a transaction T;
that is featured with a deadline D;. A transaction T; is in turn represented as
T: = {A; = Ac|A;. A € A}, where A is the action set of the model.

Furthermore, VA; € A, A; = (r},7;, (@51, 852 - - .,ajn;)), where each sub-
action aj; has a bounded computation time Cj;, and may be of type call, send,

reply, lock, or unlock.

5.1.8 Restrictions

The schedulability analysis presented in this chapter is conducted on the above model.
We impose a few restrictions on it to simplify the analysis. Most of these restrictions are

reasonable, and do not impose serious limitations on the application of the model.

1. A synchronously triggered action has a single reply sub-action that is the last sub-

action,

2. Any reply action within an asynchronously triggered action is treated as a send ac-

tion, i.e., it generates an asynchronous event,

3. We treat the synchronously-triggered actions to be natural extensions of the calling
action. This implies that a complete synchronous set is in one thread and scheduled
as one action, which means the running priority is maintained when calling another

action.
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4. We assume that the assignment of priorities to actions follows the rule that any suc-
cessor action A; with respect to action A; must have a priority of equal or less im-

portance than action A;. Thus, we say:

(Ai ~ Aj)=(m(A;) > w(A;5)) (17

5. We assume non-preemptive scheduling within a thread or an active object (capsule).
The preemption threshold assignment is limited according to this assumption. There-
fore, an implementation model is valid if the following constraint is true:

(($(A:) = ¥(4;)) V (O(4:) = O(47)))=(7(4:) = 7(45)) A (v(4;) = 7(A:))
(18)

5.2 Schedulability Analysis

Similar to the approach we used in the simplified model, we use worst-case response time
calculations to determine the schedulability of our general model. However, the response
time of an action A; is derived relative to the arrival of the external event that triggers the
transaction that A; belongs to, instead of the arrival of the event directly triggers A;. We
stili use the pessimistic calculation with the assumption that all other actions with higher or
equal priority should finish before the current action can start. We made a minor modifica-
tion to make it more realistic. We eliminate the actions that are triggered by the execution
of the current action (they may have equal priority as the current action) in the response
time calculation.

We extend the level-i busy period analysis further to calculate the worst-case response
time for our general model. Our definition of level-i busy period in Definition 3.6 is still
valid in our general model with “job” replaced by “action”. Same as in Chapter 3, we need
to identify the critical instant that leads to the worst-case scenario.

S5.2.1 Prcblem Statement

In this section, we analyze the schedulability of our general model with given scheduling
attributes (including priority, preemption threshold, communication relationships, and ceil-
ing priorities for shared resources) through the computation of action response times. We

define the schedulability of a model as following:
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A model is said to be schedulable if all response times obtained for each trans-

action do not surpass the respective deadlines.

Each transaction has an explicitly assigned deadline. Some work has proposed
approaches for decomposing these end-to-end deadlines into deadlines for each ac-
tion [GHS94, BB99]. However, assigning deadlines is beyond the scope of this thesis
and deadline assignment is irrelevant to our schedulability analysis. In this thesis, we use a
simple approach by assuming all actions in the same transaction share the same deadline,
which is the deadline of the transaction. Since we are using HLP (Highest Locker Proto-
col) to avoid unbounded priority inversion due to resource sharing, the ceiling priority is
determined by the priority setting of actions and is no longer treated as an independent set
of variables. The effect of communication relationships is partly reflected by the restriction
on priority setting of actions, and will be analyzed later. Thus the problem of schedulability

analysis can be stated as follows:

Given a model M = {(E;, T))|(Ei € Eext) A (T; € T),1 < i < n}, where
each external event E; is featured with an arrival function ¥; and triggers
a transaction T; that is featured with a deadline D;. A transaction T; is in
turn represented as T; = {A; — Ag|(Aj, Ax € A)}. For each action in A,
A; = (m(Aj),v(A;), C(A;)), find whether the model M is schedulable with

the given configuration.

As we did for the simplified model before, we assume nominal thread assignment, where
each action has its own thread, while calculating the worst-case response time analysis.
Later in this chapter, we prove that for all valid thread assignments, the worst-case response

time is identical.

5.2.2 Scheduling Behavior Analysis

Our generalized model abstract event-driven complex real-time system, in which multiple
threads serve as event handler and scheduled by their priority. Since each thread handles
several events that has different priority, the thread priority is not fixed. In this model,
action (events) has fixed priority and preemption threshold while each critical section has a
ceiling priority.

Before an action starts execution (i.e. in the ‘ready’ state in which event is queue in the
event queue of the thread), it is scheduled by its nominal priority. When it starts execution,
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the running priority is raised to its preemption threshold before it finishes. These are the
same as in the simplified model. However, the resource sharing brings more complication.
When the execution of an action is entering a critical section, if the ceiling priority of
the resource is higher than the preemption threshold, the running priority is raised to the
ceiling priority and maintained before leaving the critical section. We extend the definition

of effective priority to include this new scenario.

Definition 5.5 (Effective Priority) The effective priority of a job equals its (nominal) pri-
ority if it is in the state ‘ready, equals its preemption threshold if it is not accessing any
shared resources and in the ‘preempted’ or ‘running’ state, and equals the higher one of
its preemption threshold or the ceiling priority of the shared resources that it is accessing

if it is in the ‘preempted’ or ‘running’ state.

With the definition of the effective priority, dynamical management of thread priorities

can be described in following rules:

e When an action is queued at a thread, then the thread’s priority is set to the maximum

of its current priority and the priority of the action being queued,

e When a thread removes an action for processing, the thread priority is set to the

action’s preemption threshold,

e When the processing of an action enters a critical section to access a shared resource,
the thread’s priority is set to the maximum of its current priority and the ceiling

priority of the resource.

e When a thread finishes processing an action, it changes its priority to the highest

priority pending action in its queue.

As with our simplified model, we define a nominal thread assignment with which each
action assigned with its own thread and a valid thread assignment as a thread assignment
that any two actions mapped into the same thread are mutually non-preemptive. For sim-
plicity, our worst-case response time equations in this chapter are based on nominal thread
assignment while we prove that they are applicable to any valid thread assignment.

The communication relationship and resource sharing makes it complicated to analyze
the scheduling behavior of our model. However, using the concept of preemption threshold
and ceiling priority for shared resources, we are able to describe the complicate scheduling
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behavior through the change of running priority. For simplicity in our discussion, we divide
the lifetime of an action into two parts: from the arrival to the start of execution and from
the start to the end of the execution.

During the period between the arrival and the start of execution, an action is in the
‘ready’ state and there are two factors affecting the length of this period:

1. Interference

Just as with a normal priority based scheduler, all actions that have higher or equal
priority than the current action will be scheduled before the current action can start.
The general model did not bring much change to this case. The only restriction we
have is that the ancestors of the current action should be finished before the current
action can start and none of its successors will be able to start before the current
action finishes. Since we made the assumption that an action will have priority less

than or equal to its ancestor, we only need to concern ourselves with successors.

2. Blocking introduced by high effective priority

In our model, there are two cases where we may have the running priority of an
action higher than its nominal priority. First, an action will start with running on
its preemption threshold. Second, an action may run on the ceiling priority of a
resource while it is in the critical section and the ceiling priority is higher than its
preemption threshold. In either case, the effective priority, which is higher than its
nominal priority, may block the start of an action that has a higher nominal priority
than the current running action but no higher than the effective priority of the current
action. In Chapter 3, we have discussed the blocking caused by preemption threshold.
The introduction of resource sharing using HLP (Highest Locker Protocol) did not
change the nature of the analysis. Nonetheless, it brings new considerations for the

maximum blocking calculation.

While having two sources of blocking: preemption threshold and ceiling priority for
shared resources, it is necessary to study the relationship between these two. We
redefine the blocking range for the general model as follows:

Definition 5.6 (Blocking Range) The blocking range of an action A; is defined as

the range of priorities given by its nominal priority and its current running priority.
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Proposition 5.1 An action A; can be blocked by at most one lower priority action
Aj. Furthermore, it must be the case that its running priority is higher than or equal
to w(A;).

Proof: The proof is trivial following the same logic shown in the proof for
Lemma 3.2. a

After the start and till the end of execution, an action is in either ‘running’ or ’pre-
empted’ state and there are another two factors affecting the length of this period:

1. Interference from actions with higher priority

The interference only comes from actions with higher priority than the effective pri-
ority of the current action. The effective priority is the maximum of the preemption
threshold or the ceiling priority of the resource if in the critical section. An action
with a priority higher than the preemption threshold of current action but lower than
the ceiling priority of a specific critical section may be blocked if it arrives while the
action is in this critical section. However, if this critical section is not at the end of
the action, the blocked higher priority action will still finish before the current action

finishes execution.

2. Effect of resource sharing with higher or lower priority actions

Since we are using the HLP, Theorem 5.1 proves that the current action will not
be blocked while trying to enter a critical section. Theorem 5.2 further proves that
sharing resources will not affect the response time of the actions interfering with the
current action unless they are sharing the same resource. We will discuss in detail
the case when higher priority actions share resources with the current actions later in

this chapter.

Theorem 5.1 There will be no blocking caused by sharing resources with lower priority

actions during the execution of an action once it gets started.

Proof: Assume actions A; and A; have priorities and preemption thresholds
(m(Az), v(A4:)) and (T(Aj),')’(fij)) respectively. We have m(A4;) > m(A;). A; and A;
share the same resource R, which has a ceiling priority 7z. 7 > m(4;) > T(A;).

We consider the following possible situation:
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(1) Aj; isin the critical section when A; arrives.
Aj has a running priority of 7z > w(A;). Therefore, A; can not start before Aj leaves
its critical section. This will cause blocking for A; before it starts.

(2) Aj; has started but has not entered the critical section when A; arrives.
Aj is running on priority y(4;). If v(A;) < w(A;), then A; will not be able to con-
tinue executing before A; finishes. Of course, this will mot block A; from accessing
its critical section. If y(A4;) > m(A;), A; will finish before A; can start. As in (a) this
will cause blocking before A; starts.

(3) Aj; has not started when A; arrives.
This includes 2 situations: A; arrives before A; but has not started when A; arrives,
and A; arrives after A;. In either situation, since m(A;) > w(A4;), A; will not get
started before A; finishes.

In summary, A; will not be blocked by A; due to resource sharing. a
Following the same reasoning, we can easily come up with the following theorem:

Theorem 5.2 Any action that interferes between the start and the end of execution of the
current action will not suffer blocking due to resource sharing from actions with lower
priority than the current action. However it may be blocked by the current action if they

share the same resource.

5.2.3 Blocking Analysis

As discussed above, blocking only happens before the current action starts and there are
two sources of blocking: preemption threshold and resource sharing. Actually, these two
sources of blocking have the same nature: a lower priority and a higher running priority
than the nominal priority of current action. This leads to an overlap between these two
kinds of blocking.

Assume two actions A; and Aj, where w(A;) > w(A;). A; has a preemption threshold
v¥(Aj;), and shares resource R with some actions (may includes A;). The resource R has a
ceiling priority m(R) and the length of critical section for R in A, is C(R). Let us look at

the following situations:
L (v(45) <7(4:)) A (m(R) < 7(4))

[n this situation, A; will not block A;.
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Yi

Blocking to A; from A;

Figure 5.4: Blocking caused by overlapped critical section

2. (v(45) Z w(A)) A (m(R) < m(Ay))
In this case, the preemption threshold of A; may cause blocking and the maximum
blocking time from A; is C(4;).

3. (7(45) < 7(A49)) A (w(R) = m(Ay))

In this case, the ceiling priority of the critical section of A; may cause blocking and
the maximum blocking time from A; is C(R). Note that A; may share more than one
resource with other actions. If the critical sections do not overlap, then the maximum
blocking time caused by A; will be the longest critical section within Aj; that satisfied
the above condition. Otherwise, the maximum blocking time will be the union of a
sequence of overlapped critical sections of A; where their ceiling priority are all
higher than 7 (A;). Figure 5.4 depicts the situation of overlapping critical section.

4. (7(4;) =2 m(A:)) A (7(R) = m(AL))
In this case, it is hard to say which one causes the blocking. However, the maximum
blocking time from A; is C(A;) again. Therefore, we can merge it with the second

situation.

According to Proposition 5.1, the maximum blocking of an action 4; comes from either
of two sources: (a) action A;, m(A;) < w(A4;) and v(4;) > w(A:), or (b) action Ag,
m(Ax) < m(A;) and v(A;) < mw(A;), and it shares resource R and w(R) > w(A;). For
(a), it is simply the longest computation time of actions. For (b), the situation is a little
complicated. We know that a resource can be shared by several actions and one action may
access several shared resources during its processing. However, for a specific resource,
there will be only one action in critical section at a time. Therefore, the maximum blocking
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" from (b) will be the longest critical section if critical sections do not overlap, and the largest
union of overlapping critical section sets otherwise, as shown in Figure 5.4.

The maximum blocking time that action A; may suffer is given by Equation 19. To
simplify the expression, we assume critical sections do not overlap. (The equation can be

- easily extended to include overlapping.)

B(A;) = MAX(max{C(4;) :: v(4;) 2 m(A:) > w(4;)},

19
B {CAn, Re) = (7(An) < (D) A (1(RR) 2 74D

where C (A, Ri) denotes the computation time for the critical section in which action A4,

accesses Ri.

5.2.4 Identifying Critical Instant

A critical instant is an instant that leads to the worst-case scenario of the response time
of an action. In our extended level-i busy period analysis, the worst-case response time is
found in a level-i busy period starting from a critical instant.

Based on our blocking analysis above, we propose the following lemma:

Lemma 5.1 In a level-i busy period, only the first instance of action Aj whose priority
7 = t will suffer blocking from actions with lower priority. Any instance after the first
instance will not suffer from blocking. Furthermore, at most only one instance of an action
Ag with m < m; and v > 7; or an action has a critical section with a ceiling priority

higher or equal to i may contribute to blocking.

Proof: It is easy to see that the start of processing first instance of action Aj ensures the
finish of all active instances of actions with lower priority and a higher effective priority.
Since in a level-i busy period, there is always at least one pending instance of action Aj,no
action with lower priority can start. Therefore, after the start of processing first instance of
action A, the following instance of A; will not suffer from blocking. ’
Furthermore, based on our blocking analysis, we can easily see that at most only cne
instance of a job 7 with m < m; and g > 7; or an action has a critical section with a

ceiling priority higher or equal to i may contribute to blocking. O

We give the definition of the critical instant of an action as follows:
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Definition 5.7 The critical instant of an action A; occurs when (1) an instance of all ex-
ternal events with higher or eaual priority comes at the same time, or in other words, all
transactions whose start acticn has higher or equal priority comes at the same time. (2) the

action that contributes the maximum blocking time has just entered its section that cause

the blocking.

With this definition, we can prove the following theorem which serves as the foundation
of our worst-case response time calculation. Note that the arrival time we used to measure
the response time for an action is the arrival time of the external event that triggers the

transaction holding the action.

Theorem 5.3 The worst-case response time for an action A; (w; i occurs during a level-i

busy period initiated by a critical instant.

Proof: The proof is trivial following the same logic used to prove Theorem 3.1. a

Let Arr4,(q) denote the arrival time of instance ‘q’ of the external event that triggers
the transaction containing A;. Let S4, (g) and F4,(g) denote the ¢*” start time and ¢** finish
time of action A; respectively. Assume external events arrive at their maximum rate. We
iteratively compute the results of S4,(¢g) and F, (q) for ¢ = 1,2,3,... until ¢ = m such
that F4,(m) < Arra,(m + 1). Then the worst-case response time of action A; is given by:

Ra, = max Fu,(q) — Arra,(q) (20)

£ g€[Lymm]

5.2.5 Computing ¢'* Start Time

As we discussed above, to calculate the g** start time of A;, we need to consider both
blocking and interference. The maximum blocking is given in Equation 19. We need to
calculate the interference. Assume that A; is in transaction 7 (A;). Interferences may come
from higher or equal priority actions from other transactions as well as inside transaction
7 (A:). However, for those actions that are successors of A; (i.e. VA; € T(4;), A; ~ Ay,
the ¢** arrival will not come before the ¢t* A; finishes. Therefore, for successors of A;
that have equal priority as A;, only their instances from 1 to q-1 will be considered for
interference.

As we know, in our model, each external event that triggers a unique transaction has a
bounded rate. Therefore, we use their maximum arriving rate for the worst-case response
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time analysis. This simplifies the arrival function for the external event. However, the
arrival patterns of the internal events are quite complex. Fortunately, we do not need the
details of these arrival patterns to compute the worst-case response time of a specific action.
We can derive the number of arrived instances without knowing the exact pattern. This
-claim is based on the following reasoning. As mentioned earlier, our model has the priority
restriction shown in Equation 17, which imposes that an action should have priority equal
to or less than its ancestor. This implies that if an external event arrives before the start of
the ¢** instance of the current action, then all higher or equal priority actions in the same
transaction triggered by that external event will arrive before the start of the g*® instance
of the current action. It is easy to see that all the ancestors of the current action will have
the same number of arrivals as the external event that triggers the whole transaction while
all its successors with equal priority as the current action will have one arrival less than
the current action. Therefore, it is safe to use the number of external event arrivals as the
number of arrivals for the ancestors of the current action and those higher or equal priority
actions in other transactions.
Equation 21 below shows how the ¢ start time of action A; can be iteratively com-

puted.
Sa:(q) = B(4A) 21)
+ ((1+|Z5]) e)
(T(A;)AT(A))A(T(A;)>n(As)) (4;5)
* ((+]F5]) ecan)
(T(A;)=T(A)A(=(Ai~ A))A (T (A;) >7( Ag)) (As)

+(g— 1) > C(4;)
(TCAN=T (AN A A7) A(r(A7) 27(AL)

5.2.6 Computing ¢'" Finish Time

Theorem 5.1 and 5.2 suggest that between the start and the end of the execution of the
current action, there is no blocking caused by resource sharing from lower priority actions.
Nonetheless, HLP makes the calculation for interference more complicated.

Action A; may access resources shared with some higher priority actions. Therefore,
there may exist a resource R whose ceiling priority 7(R) > w(4;). If 7(R) < v(4;) this
ceiling priority will not affect the scheduling behavior of A; between the start and the end
of its execution. If 7(R) > ~(A;), it requires the current action to increase its running
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priority to m(R) at the entry of the critical section thus preventing interference from action
Aj, m(R) = w(A;) > v(A;). However, if this critical section is not at the end of action
A;, the running priority will recover to y(A;) at the exit of the critical section, allowing
A; to preempt and finish before A; finishes. In this case, the ¢** finish time F4.(q) can be

iteratively computed using the equation given below:

Fale) = SA;(Q)‘*‘C(Ai)f s (22)
B (7] (38

However, when the critical section with a ceiling priority m(R) > ~(4;) is at the end of
A;, we have to divide this period into two parts to compute the ¢** finish time. The first part
is the period between the start of A; and the entry to the last critical section. The second
part is the period between the entry to the last critical section and the finish of the whole
transaction. Assuming the computation time of the critical section to be C(cs), we use
CS4,(q) to denote the entry time of the critical section, which can be iteratively computed

using the equation given below:

CSaie) = Sal(q) +C(A:) —C(es) (23)

In this case, the ¢** finish time can be iteratively computed using the equation given below:

Falg) = CSAi(q)+C(cs])__ @ S (24)
o (51 (5 o

5.3 Generating A Feasible Implementation Model

Our approach to automatic synthesis of real-time systems requires automatic assignment
of scheduling attributes such as priorities, preemption thresholds, and ceiling priority of
shared resources. Same as in Chapter 4, we are facing the feasibility problem and opti-
mization problem. In the previous section, we solved the problem of feasibility test for
an implementation model with nominal thread assignment whose scheduling attributes are
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assigned. In this section, we focus on the solution to the feasibility problem. That is, de-
signing a systematic approach to find an assignment of scheduling attributes that makes the
implementation model with nominal thread assignment schedulable, if one exists.

5.3.1 Problem Statement

The feasibility problem becomes more complicated since the communication relationship
and resource sharing introduces more variables to the design. Fortunately, our analysis
shows that these variables are more or less dependent of the priority and preemption thresh-
old. For a given priority assignment, the ceiling priority of each resource is fixed as well
as their effect on worst-case response time of each action. Therefore, we actually need to
assign only two sets of variables: the priorities and the preemption thresholds.

In the practice of real-time system design, usually there is an end-to-end timing con-
straint for each transaction. However, there is no explicit timing constraint for each action
in the transaction, Here we choose a simple approach by assuming all actions in the same
transaction share the same deadline, which is the end-to-end deadline of the transaction.
Thus the problem of generating a feasible implementation model can be stated as follows:

Given a model M = {(E;, T)|(F; € Eext) A (T; € T),1 < i < n}, where
each external event E; is featured with an arrival function V; and triggers a
transaction T; that is featured with a deadline D;. A transaction T; is in turn
represented as T; = {A; — Ai|A;j, Ax € A}. For each action in A, A; is
featured with a worst-case execution time C(A;). Find whether there exists an

assignment of scheduling attributes I1 and I such that M is schedulable.

$.3.2 Timing Properties of the Scheduling Model

Before we can start discussing the scheduling attribute assignment, it is necessary for us to
have a better understanding about the scheduling behavior of the model and its effect on the
response time of actions. In this section, we summarize several important timing properties
that may serve as guidelines for assigning scheduling attributes to the model.

Lemma 5.2 Raising the preemption threshold of action A; from v, to > may only reduce
the worst-case response time of action A; while increase the worst-case response time of

those actions with priority between v, and *y-.
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Proof: As we have shown in the last section, the calculation of response times can be
divided into 3 parts: blocking time, start time, and finish time. We will examine the effect
of changing preemption threshold one by one.

From Equation 19, we can see that the maximum blocking time of A; is determined by
the preemption threshold of lower priority actions and the ceiling priority of their critical
sections. The calculation in Equation 21 shows that the start time of A; depends on the
priority of A; and has nothing to do with its preemption threshold. Therefore, the ¢** start
time of A; won’t be affected by raising its preemption threshold.

A raised preemption threshold will reduce the interference from higher priority actions
shown in Equation 22 while keeping other terms unchanged. Of course this will result in a
decreased finish time as well as worst-case response time.

At the same time, raising the preemption threshold of A; from v, to v, will enable
A; to block actions with priority between y; and v,. If A; happens to be the action that
contributes to the maximum blocking time for these actions, they will suffer an increase in
their worst-case response times.

It is easy to see that other actions with priority lower than +, (surely including those
lower than 7(A4;)), or higher than «, will not be affected since no term in their equation will

change. O

As a direct derivative, we get a very useful property of our model as shown in Corol-
lary 5.1. As we mentioned before, there are two variables to be assigned to each action
in the model. Both of them will affect the worst-case response time of the action. Their
interaction complicates the search for a feasible assignment. The importance of Corol-
lary 5.1 lies in the fact that it decouples the effect of these two variables to some extent thus

simplifying the situation.

Corollary 5.1 The worst-case response time of action A; will not be affected by the pre-
emption threshold assignment of any action A; with w(A;) > w(A4;).

Another important derivative of Lemma 5.2 is presented as Corollary 5.2. This corollary
gives a sufficient condition for claiming a model to be unschedulable with a given priority

assignment.

Corollary 5.2 For any given priority assignment, if there exist an action A;, such that set-

ting the preemption thresholds of actions with lower priorities to the minimum schedulable
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value and setting «y; equal to the highest priority in the system can not make the specific

action A; schedulable, then the model is unschedulable with this priority assignment.

Theorem 5.4 Suppose that a model is schedulable with given priorities and preemption
thresholds. Then, if changing only the preemption threshold of A; from y; to Y(v! < 7;)
can still make A; schedulable, then the whole model is also schedulable by serting <] as the

preemption threshold of A;.

Proof: From Equation 19, 21, and 22, we can see that when the preemption threshold
of A; changes from v; to 7} (%; > v}), the worst-case response time of any action A; with
(A7) < 7w(A;) or m(A4;) > v(A;) will not change. The worst-case response time of any
action A; with priority v} > m(A;) > m(A;) will also remain the same. Furthermore, the
action A; whose priority 7} < 7(4;) < - will have no worse worst-case response time
with -] than with ;. Moreover, we already know that A; is schedulable with ;- Therefore,
if the model is schedulable with -;, it is also schedulable with vi. O

5.3.3 Preemption Threshold Assignment with Pre-Assigned Priority

The problem of feasible assignment of scheduling attributes includes three sets of variables
to be set: priority of each action, preemption threshold of each action, and ceiling priority
of each critical section. However, we found that the ceiling priority for any critical section
is determined by the priority assignment. Hence, with any given priority setting, there is
only one ceiling priority assignment for each critical section while we are using Highest
Locker Protocol (HLP). Therefore, we have only two sets of variables to assign.

As we can see from Chapter 3 and 4, the assignment of feasible priority and preemption
threshold are closely related. A feasible assignment of either one can not be determined
without the complete information about the assignment of the other. To some extent, we
can say that the preemption threshold assignment depends on the priority assignment. As
we did in the last chapter, we will first discuss the case of a system with given priority
assignment. The problem seems trivial since we have already proved in the last subsection
that the theories about our scheduling model with preemption threshold still hold with the
introduction of communication relationship and resource sharing.

The properties shown above provide guidelines for preemption threshold assignment
while priority setting is fixed. Corollary 5.1 suggests that the preemption threshold assign-
ment process starts from the lowest priority action. Theorem 5.4 indicates that the optimal
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preemption threshold setting for the current action is the minimum value that makes the
action schedulable. Furthermore, Corollary 5.2 provides a sufficient condition to claim a
model to be unschedulable. To deal with the ceiling priority of each critical section, we just
need to set it to the highest priority of the actions sharing the resource.

With these results, we found that the algorithm we proposed in Figure 4.1 is still valid
for our general mode! with pre-defined priority. Of course, the worst-case response time
calculation in the algorithm should be replaced by the equations we proposed in Section 5.2.
The algorithm still has a complexity of O(n?), where = is the number of actions. Due to the
run-to-completion scheduling within an active object (capsule), we have a restriction that
the preemption threshold of actions in an active object should be no less than the highest
priority among all actions in the same object. Therefore, we should start searching for the
feasible preemption threshold from the ceiling priority of the object that an action belongs

to. Thus, the search space is reduced.

5.3.4 Feasible Assignment of Scheduling Attributes

We face the problem of assigning both priorities and preemption thresholds. An exhaustive
search is always a natural approach to solve a problem like this. However, the search space
is exponential to the number of actions thus makes the exhaustive search not scalable and
not practical in large systems. Using some properties of the model, we systematically
construct a more efficient algorithm for finding the optimal solution.

In our general model, there are two restrictions imposed by the real world practice.
First, the priority of an action is lower than or equal to its ancestor. Second, the preemption
threshold of actions in an active object should be no less than the highest priority among
all actions in the same object. Both restrictions reduce the search space, thus improving
the performance of our algorithm. Again, we follow the basic logic used in Audsley’s
algorithm. As shown in Figure 5.5, we view our general model as a “forest”, in which
each transaction is a “tree”. The nodes represent the actions and the edges represents the
communication relationships. When we consider the candidates for the lowest priority,
we only need to consider the leaf actions in our model. The term leaf action denotes
the action that does not trigger the execution of any other action. Or in other words, the
lowest priority action should be one of the ending actions of a transaction. For any specific
priority, the candidates are actions with no successors or actions whose successors have all
been assigned a priority. Figure 5.5 shows the situation while considering priority ns. All
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Figure 5.5: An Example of Candidates

the actions shaded the darkest (or in red if colored) are candidates.

Our algorithm is a two-stage algorithm. The first stage is trying to give a good priority
assignment. We sort the candidates based on heuristic values hoping to reach the optimal
solution quicker. If we only try the “best” candidate, then the algorithm becomes a greedy
algorithm which can not guarantee optimality but will have a search space of O(n). The
logic we discussed in Section 4.2 for choosing the greedy algorithm is still valid so that we
do not need to repeat it again. The second stage takes advantage of the efficient minimum
preemption threshold assignment we discussed above for predefined priorities, which has

a search space of O(n?).

5.3.5 Simulated Annealing

As we have already shown earlier, the simulated annealing approach has the power of
providing a good approximation in a reasonable amount of time. To avoid the exponential
search space of our algorithm, we again apply simulated annealing as a good approximate
solution for the problem of feasible assignment of priority and preemption threshold.

To accommodate the general model, we need to modify our algorithm for simulated
annealing shown in Figure 4.3. While the algorithm will remain the same for most parts,
the starting priority setting and the structure of neighbourhoods should be changed. Since
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the performance of simulated annealing does not depend on the initial point, we can give an
arbitrary priority assignment that satisfies the restriction that an action should have priority
no higher than its ancestor. We can manually choose a priority ordering using the following
easy approach. Starting from a randomly chosen transaction, we assign the leaf actions
with the lowest priorities. We continue by recursively moving to their direct ancestor until
we reach the root of the transaction. In this way, each action will be assigned a unique
priority while satisfying the restrictions. Following the same process, we continue for each
transaction until all actions are assigned a unique priority. Another approach may use the
breadth first search to go through each tree and assign priorities so that it ensures priorities
in a transaction are non-increasing from the root to the leaves. The second one may perform
better since its neighbour is relatively larger than the first one at the initial stage. We use
the same energy function defined before: Maz(0, R(A4;) — D(A;)), where R(A;) stands
for the worst-case response time of A; and D(A;) stands for the deadline of A;.

The most difficult part of applying the simulated annealing approach to our general
model is the design of a neighbourhood structure. We still want to generate neighbours
by randomly swapping priorities of actions. However, a real random swap may conflict
with the precedence restriction of the general model. Generating a valid neighbour is non-
trivial in this case. The existing precedence in a transaction prevents any priority swapping
that causes an action to have either higher priority than its ancestors or lower priority than
its successors. We design the process of generating a valid neighbour as shown in Figure
5.7. The idea of the algorithm is quite simple, just trying to avoid the illegal swap of
priority, which would undo the precedence defined within transactions. To some extent,
the neighbourhood structure is similar to the candidate list shown in Figure 5.5.

To get the best performance from simulated annealing, the algorithm should have a fine
tune-up on the initial temperature, equilibrium condition, and temperature cooling speed.

This can be done through simulation of some examples. -

5.4 Optimizing the Implementation Model

In the last section, we provide the solution for the feasibility problem. In this section,
we focus on optimizing the model by reducing the number of preemptions, the number of
threads, and the per-thread costs (especially the memory space associated with the stack
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of each thread). Ultimately, minimizing the number of threads gives rise to the other re-
ductions. Just the same as with the simplified model, we use a decomposition approach to
tackle this problem. First, we extend the algorithm for minimizing the number of threads
in a valid thread assignment with given scheduling attributes. Then we show how to ex-
tend the sub-optimal approach we proposed in Chapter 4 to incorporate it into our general
model. Since the “run-to-completion” manner of an object is already considered in the fea-
sibility problem, the definition of a valid thread assignment in our general model remains
the same as in the simplified model. Most importantly, the scheduling equivalence between
a nominal thread assignment and a valid thread assignment shown in Theorem 3.4 still
holds for our general model and thus provides a ground for the discussion in this section.
Re-proving it in the context of our general model is trivial since it follows the same logic

as in the simplified model.

5.4.1 Optimal Thread Assignment

The scheduling equivalence between a nominal thread assignment and any valid thread
assignment enables us to keep the optimization process separate from the feasibility test.
We merge the threads in a feasible implementation model with nominal thread assign-
ment to minimize the number of threads in the implementation model while maintaining
its schedulability. The advantages of reduced number of threads is prominent: minimized
total memory space for stacks and reduced number of context switches.

Recall that in our simplified model, with a valid thread assignment, the jobs mapped
to the same thread must be pair-wise mutually non-preemptive. The same condition is
also applicable to the general model. This is done through proper setting of preemption
threshold. To capture the notion, we redefined the non-preemptive group for the general

model as follows:

Definition 5.8 (Non-Preemptive Group) A set of actions A = {A;, Ai,, ..., A} forms
a non-preemptive group if for every pair of actions A; € A and Ay € A, A; and Ay, are

mutually non-preemptive.

Minimum number of non-preemptive groups can still be formed using the OPT-Thread
algorithm shown in Figure 4.4 by merging the actions based on their priority and preemp-
tion threshold settings. Although the introduction of communication relationships and re-
source sharing changed the appearance of the worst-case response time equations, it does
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not affect the correctness and optimality of the algorithm. It is trivial to prove the theorems
again for the general model. Actions in the same non-preemptive group will be partitioned

into one thread and share the same stack.

5.4.2 Compare to the Approach Following ROOM Convention

Capsules in UML correspond to the ROOM concept of actors, which are objects represent-
ing independent, concurrently active logical machines. In ObjecTime Developer, a tool-set
supporting ROOM, threads are allocated to actors. Although our approach does not require
all actions of the same active object to be allocated into the same thread, we have to explore
how this tradition affects the thread assignment.

As we have discussed in preemption threshold assignment, the algorithm starts from the
ceiling priority of the object that an action belongs to. This guaranteed that the actions in
the same object naturally form a non-preemptive group. Following the convention of Ob-
JecTime Developer, all actions of a single object should go to the same thread. Therefore,
to reduce the number of threads, we have try to see whether it is possible for several ob-
Jects to share the same thread. The problem becomes how to merge these non-preemptive
groups, each representing an object, to reduce the number of threads required in the im-
plementation. To solve this problem, we defined a merging range for each non-preemptive

group as follows:

Definition 5.9 (Merging Range) The merging range of a non-preemptive group G is de-
fined as: [vrftl,éa'}é (w(Ay), vAi&_G(fy(A,-))].

Using the concept of merging range, we define a merging policy for these non-
preemptive groups as follows: if the merging ranges of two non-preemptive groups overlap,
then we merge the two groups into one. It is easy to see that the actions in the new group
are still pair-wise mutually non-preemptive. However, this merging policy defined to be
consistent with the convention of ObjecTime Developer may not be optimal, i.e., it may re-
sults in a larger number of threads while compared with the OPT-Thread algorithm shown
in Figure 4.4. '

The following example indicates a situation where these two approaches result in
different number of threads. Assume four actions A;, Az, Az, and A4 have block-
ing ranges of [my, 1], [m2, 2], [3,73], and [r4, V4] respectively. Assume that we have
M1 > Y2 > M > Y3 > W > 74 > W3 > Ty It is easy to see that the minimum number of
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non-preemptive groups is two. Now, if we know that A; € O, Ay, Az € Oy, Ay € O3 and
we start merging objects, we will get 3 non-preemptive groups.

Although merging the objects may not achieve the minimum number of threads, there
can be an option for the user. Since the minimum number of threads can be easily achieved
by applying the OPT-Thread algorithm shown in Figure 4.4, it can be used as a reference
for comparison with the number of threads results from object-based merging. In this way,

the users are free to choose from either one according to their preferences.

5.4.3 Preemption Threshold assignment to Reduce Preemptions

As in the independent job model, there might be more than one feasible implementation
models. We are facing ‘a non-trivial combinatorial optimization problem: find the one
with the minimum number of threads. The difficulty of searching through the space of
feasible implementation models that we addressed in the simplified model still holds in
the general model. Fortunately, we found the approach we used in the simplified model is
also applicable to the general model. That is: first synthesize a feasible set of scheduling
attributes as shown in the earlier section; then refine the scheduling attributes to eliminate
any unnecessary preemptability while maintaining feasibility; and finally use the refined
feasible scheduling attributes for minimum number of threads assignment.

Although we extended the model to incorporate transactions, communication relation-
ships, and resource sharing, we found that most major properties of the simplified model
still hold in our general model. This has been proved in previous sections of this chapter.
These properties enable us to use the same algorithm shown in Figure 4.5 to increase the
preemption threshold of each action to the maximum value while maintaining the feasibil-
ity of the implementation model. However, for the worst-case response time calculation
in the algorithm, the equations we proposed in this chapter should be applied. The effi-
ciency of the algorithm still holds, thus we only need to go through the actions (complete
synchronous sets) in the implementation model once. As we can see, high preemption
threshold may result in reduced number of preemptions and reduced number of threads in
the implementation model and thus improves system performance.
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Algorithm: AssignSchedAttributes(M, )

(1) Candidate := GenerateCandidate(M);
/* Terminating Condition; assign preemption thresholds */
(2) if(Candidate = {}) then
/* Use algorithm in Figure 4.1 for preemption threshold assignment */
3) return AssignThresholds()
(4) endif

/* Heuristically generate a priority assignment */
/* Assign Heuristic Value to Each Task */

5) L:={};

(6) foreach A; € Candidate do

€)) T =7, Ye:=mn; Rg:=WCRT(A:);

® if Ry > Dy then Continue ; /* prune */

)] Yk =7k ; Ri:=WCRT(Ag);

(10 if Ry < Dy then

¢8)) Hj, := GetBlockingLimit(Ay); /* positive value */
(12) else

(a3 Hp := Dy — Ryg; I* negative value */

(14)  endif

(15 L:=L+ Ag;
(16) T ==n; [* reset */
(17) end

/* Recursively perform depth first search */
(18) while (L != {}) do
* Select the job with the largest heuristic value next */
(19) Ag = GetNext(L) ;
20) T 1= T3
@D if AssignSchedAttributes(M, 7w+1) == SUCCESS then
(22) return SUCCESS ;
(23) endif
(249 L:=L-Ag;
25 TR i=n; [* reset ¥/
(26) end
(27) return FAIL

Figure 5.6: Optimal Assignment of Priority and Preemption Threshold for Extended Model
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Algorithm: GenerateValidNeighbour(A1)

(1) randomly choose an action A; from model M

(2) randomly select another action A; that —~(4; ~» Aj) A =(Aj~ Ap)

() I (VAg, Ap ~ A; = m(A;) < w(Ak)) A (VAg, A ~ Aj = (A;) < 1(Ax))
ANVALA;~ A = W(Aj) > w(Ar)) A (VA Aj~ A = w(A;) > w(A;)) then

) swap 7(4;), w(Ay)

) returmn;

(6) else

)] Goto (2);

Figure 5.7: Algorithm for Generating a Valid Neighbour
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

The demand for more complex real-time systems challenges the low-level and unscalable
design methodology used by real-time community in history. Combining the state-of-the-
art technologies in object-oriented software modeling, real-time scheduling, and automatic
code generating provides a promising approach for efficient automatic synthesis of real-
time software. This approach allows early consideration of timing issue in the real-time
software design, reduces the ad-hoc decision making in the design process, and generates
software that predictably meet the timing constraints.

To address the timing issues in this approach, we introduce a new scheduling model,
namely fixed priority scheduling with preemption threshold, which subsumes both pre-
emptive and non-preemptive scheduling models. This new scheduling model abstracts the
dual-level scheduling behavior of real-time software systems running on multi-threaded
real-time operating systems in industrial practice. With this model, we are able to assess
feasibility of a system at design stage, automatically assign scheduling attributes to gen-
erate a feasible implementation model, as well as optimize the implementation model to
reduce runtime overhead and memory requirement.

This thesis provides a profound analysis of the scheduling behavior of our new model
emphasizing on two critical issues in our automatic synthesis approach, namely feasibility
and optimization. We extend the busy period analysis in the literature by redefining the crit-
ical instant and level-i busy period. The equations for calculating worst-case response times
and the theories summarizing the scheduling behavior of the model are presented. Using
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these theories as guidelines, we provide solutions for automatic synthesis and optimization
of implementation models. Other benefits for designers using this new model include better
schedulability compared with both preemptive and non-preemptive scheduling models and
reduced run-time costs.

The automatic synthesis approach is illustrated both on a simplified model with inde-
pendent jobs and a general model that features with end-to-end transactions, communica-
tion relationships, and resource sharing. While the computation time of the branch-and-
bound algorithm for feasible implementation model generation grows exponentially with
the number of tasks, simulated annealing provides a good approximation to the optimal
solution in a reasonable amount of time.

A simulation tool is developed to implement the algorithm proposed for automatic syn-
thesis and to simulate the run time behavior of the implementation generated by the auto-
matic synthesis process. Using this tool, we provide quantitative assessment of the merits
of our approach, including schedulability improvement, preemption reduction, and number
of threads reduction. The performance evaluation shows significant improvements over the
traditional preemptive and non-preemptive scheduling model.

The use of our automatic synthesis approach allows combination of the full benefit of
code-generation technology and object-oriented modeling. Automatic synthesis largely re-
leases a designer from the burden of choosing between various implementation artifacts
(such as event priorities and mapping of events to threads), in much the same way that au-
tomatic code-generation releases a designer from the burden of deciding how to implement
the modeling abstractions.

We believe the work presented in this thesis makes an important move in real-time
system design. It will influence both future research in the area as well as the commer-
cial world of real-time object-oriented CASE tools. Our implementations will not be im-
mediately applicable to the product lines of the tool manufacturers for real-time systems,
however, interests lie in the long-term objectives, when competition for tools that integrate

real-time and object-orientation will be in high demand.

6.2 Future Work

While refining our approach of object-oriented software design for hard real-time unipro-
cessor systems, a number of extensions of this work are also under exploration. Case

100



studies will surely provide examples for applying our approach in the real world and prob-
ably give hints for further improvements. While our current approach is based on a uni-
processor architecture, we are exploring the possibility of extending it to multi-processor
and distributed system architectures. Since the main idea behind our approach is efficient
automation, we are exploring the way to apply it online to handle changing workloads or

timing requirements in a dynamic and adaptive real-time system.
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