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Abstract

The field distribution between strips in a periodic array of parallel strips was modeled. The
electric field integral equation (EFIE) together with method of moments was employed to
solve the problem. The incident plane wave was assumed to be transverse magnetic (TM)
and transverse electric (TE). The effect of the incident angle on the field between strips was
investigated. For comparison, an array of the same configuration but containing a finite
nuﬁlber of parallel strips was also modeled using the EFIE and solved via the method of
moments. Good agreement between the results from the periodic array and the finite array
was found even when the number of strips is small. It is also found that the presence of the
ground plane does not have much effect on the field distribution, but only raises the field
strength level when the observer is located below the top of the parallel strips. The results
are of interest for cellular mobile radio community in predicting the range depedence of a

signal from a base station antenna, when propagating in built up residential area.
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Chapter 1

Introduction

In mobile radio communication, it is desired to predict the radio wave propagation charac-
teristics in built-up areas. In most cities, outside the downtown area, the building height
decreases gradually from 4-6 stories near the core to 1-2 stories far away. Most of these
buildings are residential houses of nearly uniform height over large areas with occasional
high-rise apartment buildings. Macrocellular systems are often deployed in these areas. The
macrocellular system employs high-rise base station antennas, which are located on towers
or on rooftops of a high-rise building which is well above the rooftops of surrounding build-
ings, with its cell radii greater than several kilometers. In contrast, the microcellular system
employing low base station antennas (often at the height of a street light) with its cell radii
limited within one kilometer, is often deployed in downtown area where high-dense mobile
subscribers often exist. The most common macrocellular propagation scenario therefore in-
volves propagation from a base station antenna located above the rooftops of surrounding
buildings having nearly uniform height down to a subscriber at street level, which will be
the focus of this dissertation.

In a macrocellular propagation environment, the base station antenna is usually located
above the rooftops of surrounding buildings, and the mobile subscriber is usually located
on streets between these buildings. Therefore the prediction of the field strength reaching
a subscriber which is at the street level for an incident wave from a base station antenna

involves diffraction over the rooftops, reflection and transmission on and through the walls
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Figure 1.1: Wave past over multiple building rows.

due to the existence of multiple rows of buildings that lie between the subscriber and the
transmitting antenna.

The radio signal reaching the subscriber experiences attenuation due to reflection and
transmission loss of the signal on and through the walls, and diffraction loss from the rooftops
of the buildings that lie between the subscriber and the base station antenna. In most cases,
the transmitting antenna is not visible from street level. Buildings are organized along streets
with gaps between them that are smaller than the building width, or they form continuous
rows. Since gaps between buildings are not aligned with the transmitter from row to row,
‘and because the reflection and transmission loss due to the walls is usually much greater
than the diffraction loss from the rooftops of the buildings, when a large number of buildings
is involved between the subscriber and the base station antenna, the major contribution to
the subscriber at street level is believed to be coming from propagation over the rooftops
of buildings. The multi-paths the rooftop fields take to reach street level are suggested
in Fig.1.1, and include diffraction at the last row before the mobile receiver, followed by

reflection at the next row.



In order to predict the range dependence, the sector average path loss S is defined to be
the ratio of the sector average received power to the radiated power for isotropic antenna
in free space. The sector average received power is usually defined by averaging the power
measured as one end of the radio link is moved over a pasth whose length is about 20\ or so.

With this definition, S may be written as the product off three factors [2]
S= P0Q2P1- (1.1)

Here Py represents free-space path loss, which is the ratio of received to radiated power

for isotropic antennas in free space, and is given by

Py = <£§)2 (1.2)

where A is the wavelength of the operating radio sign:al, R is the distance between the
subscriber and the base station antenna.

The factor Q? gives the excess reduction in the rooftop signal at the row just before the
subscriber as a result of propagation past previous rows, and P; is the reduction due to the
diffraction of the rooftop fields down to street level.

The above definition has implied several assumptions. First, the 3-D problem is simplified
into a 2-D problem by accounting for the free space attensuation in the term P,. Second, the
excess attenuation due to the presence of the multiple rowws of building that the signal has to
propagate past before reaching the last row of building beefore the subscriber was accounted
by the term @2, which is evaluated by assuming a plane w-ave propagating past over multiple
rows of buildings. The last term P; accounts for the reduction of the signal due to the
diffraction of the rooftop fields down to street level that mre received by the subscriber.

The free space attenuation P, can be readily obtainedl once the operating frequency and
the distance between the subscriber and the base statiom antenna is given. The term P,
the rooftop diffracted field reaching the subscriber at the street level can be evaluated using

standard geometrical optics (GO) and uniform theory of .diffraction (UTD) techniques.



The evaluation of the term Q2 is not so straightforward as of the other two terms. It is
often studied by considering a plane wave propagating over an array of parallel half screens,
as suggested in Fig. 1.2. The field strength on the tip of the screen just before the subscriber
ié to be evaluated. Once this field strength is obtained, the power that is received by the
subscriber at the street-level can be readily evaluated via a standard GO/UTD procedure.

A lot of literature is found concerning the multi-edge diffraction problem. Millington (3]
studied the attenuation of radio waves by diffraction over two knife-edges in succession. The
method is to take the wavefront above the second knife-edge, obtained by the diffraction of
the wave from the source over the first knife-edge, as a source for finding the field at the
receiving point by a double application of Huygens’ principle. The incident field is assumed
to come from a point source. The solution is shown to depend on a Fresnel surface integral.

Furutsu [4] derived a generalized residue series formula.tion for the propagation of radio
waves diffracted by an arbitrary sequence of smooth rounded obstacles. Vogler [5] found
that if the radii of the obstacles are allowed to decrease to zero, then the propagation path
becomes comparable to a series of perfectly absorbing knife-edges, and the residue series for
each obstacle can be transformed into integrals over continuous variables. The attenuation
of field strength relative to free space over a path consisting of N knife-edges was expressed
by a multiple integral, which is practically difficult to evaluate when N > 2.

Lee [6] employed a path integral technique to the calculation of the electromagnetic field
on the incident shadow boundary in several edge-diffraction problems involving arbitrary
numbers of parallel half-planes. The limitation is that it could only deal with some special
cases when the source, receiver and edges of the parallel plane lie in a common plane. The
results for these special cases are exact and are often referenced to to verify results from
other approximate methods.

Walfisch (1], using a method based on direct numerical evaluation of the Kirchoff-Huygens
integral, studied the problem of incident plane wave diffraction when propagating over a

series of half-screens. The field in the aperture of the » = 0 half-screen is used to compute
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Figure 1.2: Plane wave incident on multiple rows of absorbing half-planes.

the field in the aperture of the n = 1 half-screen, and so on. Here n is the index of the
half-screens, referring to Fig. 1.2. Finally a recursive relation of the fields between successive
screens are obtained. The advantage of the Walfisch model is that it permits the treatment
of edges having randomly distributed height without increasing complexity as compared to
the case of edges with uniform heights and spacings. Because the integration were expressed
numerically from the top of each screen to infinity, which makes the direct implementation
difficult, the authors greatly simplified the process by truncating the integral limits using the
concept of the Fresnel zone [7] that is, the aperture fields which lie outside the Fresnel zones
can be neglected without introducing significant perturbation to the ray field. Although
great improvements have been made, such a numerical integration procedure is still time
consuming and the formulation is valid only for positive angles of incidence.

Saunders [8] applied Vogler’s equation into the study of diffraction by an array of ab-
sorbing half-planes with uniform heights and spacings. Using a method of solving integral-
equations proposed by Boersma [9], the integral equation for multiple edge diffraction pro-
posed by Vogler is solved for such a special case. The solution is uniformly valid when plane
wave incidence is above, level with, or below the plane of the edges. The attenuation function

is given by a closed form expression of Fresnel integrals, which is more amenable to efficient



computation than the numerical solution from [1]. A similar result was achieved by Xia
later on [10]. Both the Saunders and Xia models are in closed form and have the advantage
of being numerically efficient for scattering of incident plane wave when propagating over
uniform arrays of half-screens. _

Alternatively, UTD has also been applied to the study of radio wave attenuation when
propagating over arrays of parallel half-screens. Neve [11] proposed a UTD approach for
the computation of forward diffraction of multiple edges. In contrast to the previous for-
mulations, all screens are assumed to be perfectly electric conducting (PEC). Again, back
diffracted rays are not considered. It is found that when a\/m > 1 (where d is the spacing
between the screens, « is the angle of incidence for the plane wave and ) is the wavelength of
plane wave), the deviation between result from UTD and that of Saunders model and Wal-
fisch model is less than 1 dB for an example of uniform array of PEC half-screens. However,
the UTD approach gives erroneous results when one or more edges fall into the transition
zone of the previous edges.

Andersen [12] tried the UTD technique for diffraction by multiple edges near the transi-
tion zone. Slope diffraction was included to give an approximate solution, which coincides
well with the exact solution from [6] up to fifteen for the edge numbers. However, it loses
its accuracy for large number of edges in the transition zones. It has been shown that An-
dersen’s result for the field at the incident boundary is accurate for field diffraction over
multiple screens where the number of screens is not too large. Recall from the UTD ap-
proach attempted by [11] who employs a standard UTD procedure, that the result fails for
the grazing incidence. The mechanism by which an accurate result could be obtained by the
simply inclusion of the slope diffraction field as done by Andersen, remains unclear.

In summary, for radio wave propagation in built-up areas, it is of interest to evaluate the
signal intensity which reaches the subscriber on street level. In previous studies, the problem
is divided into a two-step procedure. The first is to account for the propagation loss when

the wave propagates over many rows of buildings. The field strength on the rooftop of the



last building before the subscriber is evaluated. Second, the field reaches the subscriber at
the street level is evaluated using standard GO and UTD techniques. The second step is
quite straightforward while the first step is much more involved.

To account for the propagation loss when the signal propagates over multiple rows of
buildings, the problem was often simplified as a plane wave propagating over a uniform
array of parallel half screens, [1, 8, 11]. The free space path loss of signals for an isotropic
antenna was introduced to compensate the over-estimation of the signal strength by using
a plane wave incidence and two dimensional geometrical structure. Either multiple physical
optics (PO) integrals or a UTD procedure is used to evaluate the field strength on the
tips of the half screens. PO has the advantage of being numerically efficient when treating
buildings of uniform heights and spacings, also PO processes are capable of dealing with the
case of near grazing incidence. However, PO becomes numerically inefficient when treating
buildings with arbitrary heights or spacings. UTD is always numerically efficient, and can
treat buildings of either uniform or nonuniform heights and spacings, but it loses accuracy
when the tips of buildings are located near the transition regions of previous buildings.

Our research will be focused on the study of the field distribution between the buildings
within multiple rows of buildings under plane wave incidence. All previous works are based
on the geometry configuration of a multiple knife-edges with the lower edges extending to
infinity. Therefore the ground effect on the attenuation function when the wave propagates
over the multiple buildings was not considered. The wave properties of the building walls
and multiple reflections between buildings are also not included in previous research. We
propose to use the field integral equation together with the method of moments to solve the
problem. The advantage of studying this propagation problem by solving the field integral
equation is, the field distribution between the buildings can be evaluated directly, rather than
the two-step procedure as suggested in (1.1), that first accounts for the attenuation due to
presence of the multiple buildings and then diffracts down to the receiver at the street level.

Further, by solving the field integral equation, all the interactions between the walls, ground
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Figure 1.3: Variation of field incident on edges of half-screens as a function of screen number
n for various values of the angle of incidence & (Taken from [1]).
and tips of buildings are inherently included in the analysis.

An interesting phenomena was discovered for the field on the tips of the half screens
when considering a plane wave propagating over a large number of half screens, that the
field strength on the tips tends to approach a constant after the wave has passed a large
number of screens. This trend is clearly depicted in Fig. 1.3, where the horizontal axis denotes
the index of the edge numbers, the vertical axis is the magnetic field intensity on top of each
edge and the various plots represent the field intensity under various values of the incident
angles. This phenomena was referred to as the “settling behavior” in [1] and verified in [11].
From Fig. 1.3, it is noticed that the number of edges the wave has to propagate to reach the
settled value is dependent on the incident angle. For instance, when incident at 1°, the field
has to pass over 15 edges, and for 0.5°, the field has to pass 65 edges to reach their settled
values. From this point, we got our initial motivation to investigate the field behavior for
the case when the number of edges becomes infinite. Due to the limited computer resources,
moment method is incapable of dealing with problems when large numbers of buildings are

involved. The phenomena of ”settling behavior” for the field on tops of buildings suggested

8



that the solution for periodic strip arrays may be employed to approximate the solution for a
finite array when the number of strips is large. The comparison of the field between a finite
and infinite array of parallel strips under transverse magnetic (TM) plane wave incidence
showed that such an approximation is quite promising even when the number of strips is
only moderately large; results for nine strips were given in [13], where the ground effect is
neglected. A key issue is that although a method of moment solution is not possible for
a large number of buildings, it is possible for a periodic array which contains an infinite
number of buildings, by using the Floquet theory.

The field distribution for infinite periodic strip arrays is formulated using Floquet theory,
which enables faster convergence over the original series in the space domain.

In this dissertation, we try to gain some insight into the field distribution behavior when
electromagnetic waves propagate past over multiple rows of buildings, by studying the field
distribution in periodic arrays of parallel strips and comparing the results against the fields in
finite arrays of parallel strips under plane wave incidence. The rows of building are modeled
by PEC strips with zero thickness, and the ground plane used to close the bottom ends of
the parallel strips, is also PEC. Due to the periodic nature of the structure, and the plane
wave incidence, the field distribution is also periodic. It is only necessary to examine the field
within a single cell. The problem is formulated using the surface equivalence theorem. The
geometrical structures are replaced with equivalent electric currents which radiate in free
space. This unknown equivalent current is expanded into a series using appropriate basis
functions. The scattered field from this unknown equivalent current can be formulated.
Using the boundary condition, an electric field integral equation (EFIE) is established. A |
system of linear equations is obtained with a method of moments procedure. The equivalent
current can be found by solving this equation. Once the equivalent current is found, it is
then a straightforward procedure to calculate the scattered field and then the total field at
any point in space.

Since the solution for the transverse magnetic (TM) and transverse electric (TE) plane



incidence is orthogonal to each other, both TM and TE polarizations of the incident field
are considered.

For the scattering problem of parallel strips with uniform heights, an alternative approach
of using the equivalence théorem is the mode matching method, which chooses the aperture
- ‘magnetic currents as the unknowns. Then matching fields on the aperture gives a magnetic
field integral equation (MFIE). The advantage of using the mode matching method is that
it permits the use of waveguide modes to expand the fields in the region that is inside,
between the parallel strips of PEC. Howevér, we decided not to use such that approach
because we wish to develop a géneral procedure for the scattering problem of parallel strips,
Where. sémetimes the waveguide modes are hé.rd to model the aperture fields. For instance,
this occurs when there are discontinuities, or aperture on the parallel strips, or when curved
surfaces are involved. These would be useful when the effect of windows or irregularities on
buildings is desired to be considered.

In the case when the bottom of the periodic arrays of parallel strips is closed with PEC
strips, the analysis can be greatly simplified by employing the image theory, however, we have
chosen not to do so, because we wish to develop a general method in the future development,
that permits other types of surfaces, for instance, rugged or lossy ground in the unit cell of
a periodic array.

Chapter 2 will present a point matching solution for the scattering from periodic arrays
of parallel strips, with TM plane wave incidence. Although TM incidence has received less
attention in mobile radio communication research compared to the TE incidence, (the an-
tennas of the base station are vertically polarized,) we choose to include this part of research
not only for the completeness of the analysis but also for the role it served as a preliminary
research for the more complicated case of TE incidence. Moreover, the computational data
for the TM incidence on periodic arrays of parallel strips is shown to compare favorably
against computational data when the periodic array is truncated on both sides.

Chapter 3 will present a method of moments (MM) solution for scattering from periodic
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arrays of parallel strips, with TE plane wave incidence. The field distribution for periodic
parallel strip arrays is formulated using Floquet theory and solved with a MM procedure. To
better model the wave propagation for a vertical antenna in a mobile radio communication
environment, the incident field is assumed to be TE, and a ground plane is incorporated
into the analysis. By solving the integral equation, the field distribution at any point can be
evaluated directly and all the interactions between the parallel strips and the ground plane
are inherently included. The solution for the periodic array of parallel strips is compared
_ against the solution for an array which consists of finite numbers of parallel strips, which is
obtained by truncating the periodic array on both sides. The solution to this finite array
of parallel strips is obtained by using TECYL, [14], an integral equation solution for TE
cylinder radiation and scattering. The two solutions agree well when the angle of incidence
is off grazing, except at some particular values of incident angle.

The following parts of this dissertation will develop the theory and equations involved
in the evaluation of field behavior when a plane wave is incident upon a periodic array of
parallel strips. Numerical results are presented and compared with results when the periodic
array is truncated on both sides. Chapter 2 will present the analysis and numerical results
for TM plane wave incident on periodic array of parallel strips. Chapter 3 will present the
analysis and numerical results for TE plane wave incident on periodic array of parallel strips,
with the bottom of the parallel strips opened or closed. The derivation for scattering from
finite arrays of parallel strips under TM incidence is enclosed in Appendix A. Appendix
B will present the mathematical details relating the formulation and derivation in Chapter
3. Appendix C lists some properties relating to convolution as was used in Appendix B.
Appendix D includes the formulation for the problem of scattering from planar arrays of
parallel cylinders with small radius under TM incidence, as a supplementary material which

is not published in [13]. Appendix E lists unpublished material — reference [15].
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Chapter 2

Scattering From Periodic Arrays of
Parallel Strips, TM Incidence

This chapter presents the point matching solution to the problem of transverse magnetic
(TM) plane wave scattering from periodic arrays of parallel strips. The first step is to
assume a TM plane wave incidence. Then the surface equivalence theorem [16] is applied
to replace the perfect electric conductive strips by free space and the unknown equivalent
electric surface current J,. Due to the fact that the geometry structure is periodic and
the incident plane wave is also periodic, the solution for the unknown current is periodic
too. We need only assume an unknown J, on one strip and can have the whole solution
by duplicating J, along the direction of periodicity with appropriate phase shift. The total
field in free space is the sum of the field radiated by J, in free space and the incident
field. Imposing the boundary conditions on the surface of parallel strips gives an electric
field integral equation (EFIE) containing J, as an unknown. The unknown current is now
expanded along the surface of the strip using pulse basis functions multiplied by unknown
complex coefficients. The EFIE can be forced to be valid at match points carefully selected
on each segments of the strip, known as the point matching method. Therefore a system of
linear equations is created. The current coefficients can be found by solving this equation.
Once the surface current is found, the fields radiated by this current are readily obtained,
and the total field is found by adding the radiated field to the incident field.

The scattering problem when the periodic array is truncated on both sides is also studied.

12
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Figure 2.1: TM plane wave incident upon a periodic parallel strip array.

The solution to this problem is formulated in Appendix A, where the surface equivalence
theorem together with a point matching procedure is used to calculate the near fields. The
reason we choose to use the point matching method is that it provides adequate smoothness
for the slightly singular kernel in the TM EFIE (Section 2.3 [17]).

In the following sections, the EFIE for the periodic structure will be established. Pulse
basis functions will be employed to expand the unknown current J., followed by a point
matching procedure to get the current J,. Examples will be given where the scattered field
at appropriate chosen observation points will be calculated and compared with the solution

of a seven-cell structure. Good agreement will be demonstrated.

2.1 The Integral Equation

Consider a periodic planar array of vertical-oriented parallel strips, with perfect electric
conductivity. The strips are assumed to have zero thickness, and extend to infinity along
z-axis and passes through z, = ns where s denotes the spacing between the parallel strips.

With a zpolarized plane wave incident on the array as in Fig.2.1,

E:(.’II, y) — Eoejk(zcos ¢+ysin @) (2'1)
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where k is the wavenumber of the incident field, k% = w?ue, w is the angular frequency, y,
€ are permeability and permittivity in free space, and ¢ is the angle of incidence measured
from the +z-axis. The time dependence e’* is used and suppressed throughout the analysis.

The surface current density J, on the strips has only a z-component. Since the geometry
is periodic and the excitation is periodic along z-axis, a periodic solution is possible. The

currents on the parallel strips can be expressed as [15]
Js(ns,y) = J,(y)el™*5¢ n = —co, +oo (2.2)

where J;(y) is the current on the strips lying on the y-axis.

The field scattered by the nth strip is given by [16]
k ! jkns co 7
Bi(zy) =~ [ HP (kB T m==o ay (2.3)

where

Ry = \/(z —ns)? + (y ~— ¥)? (2.4)

and H{? (z) is the zeroth order Hankel function of the second kind.
The electric field has only a nonzero z-component, so the subscript z is omitted in the
above equations and the following. The total field scattered from the array of parallel strips

is obtained by simply summing up the contribution from all the strips

+o0 k .
Ez,y) = > —= [ HP (kR J(y)el™ee ay’

n=-c0 % 5 (2.5)

= [ L)K@y — vy

where
+00 k .
K(z,y—vy)= 3 ——TH{ (kR,)eimecoms (2:6)
n=-—0o0
The boundary condition requires that

E* + E* =0, over all strip surfaces (2.7)
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where E°, and E* represent the scattered and incident field, respectively. Due to the peri-
odical nature, we need only ensure the boundary condition on the one strip lying on y-axis.

Using (2.5), we have the EFIE written as
[ I@KO,y —y)dy' = ~E0,y) (28)

2.2 Floquet Modes Analysis

The function expressed in (2.6) is a series containing Hankel functions which decrease only
at O(n"%) as n — oo. The Poisson summation formula can be employed to convert the
slowly convergent series into a more rapidly convergent series [15].
jkn IR emiv-vi "
K(zy—y)=-1 5 S (2.9)
S Nn=—oo ’Yﬂ-

where

2
wnp = kcosqb——? (2.10)

JVE2 —w?, k?>uw?
Vw2 — k2, k? <uw?

2.3 Point Matching Method

Tn

The point matching method is to expand the unknown equivalent current J, using pulse basis
functions, and enforcing the boundary condition at selected points on each segment. Assume
the height of the parallel strips is A, so the surface current J; is distributed in the domain
[0, h]. Equally divide the strip that lies on y-axis into P segments, with the coordinates of

each node expressed as

~1
yq=q—1,¢h,q=1,2,-~-,P+1. (2.11)

Using the pulse basis functions, the current distribution J; can be expanded as

P
Jo(y) = D _ aq94(y) (2.12)

=1
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where g,(y) is a pulse function defined as

_ 1, ye [yqr yq+1]
%) = {0: Y & [Va: Yg+1] (2.13)

Using current expression in (2.12), the scattered field can be expressed as

P Yo+
E@y)=a [ K@y-y)dy (2.14)
g=1 Yq
Using (2.14), we have the EFIE rewritten as
s = Ya+1 ’ ! i
E0.9)=Ya [ KOy-y)dy=-E(0,y) (2.15)

q:l Ye
Using point matching, we get a linear system of algebraic equation expression for the

boundary condition
P -
Zquaq =_E(O1yp)7 P = 1127“' 1P (2.16)
q=1

where y, are the matching points on the strip. The incident field term on the right is defined

by (2.1). The impedance elements Z,, can be expressed as

Yg+1
Zoo= [T KO -v) ay. (2.17)
q
Using (2.9), we have
: +o00
Zpq = _M Z _l_/y"“ e—’rnlyp—y'ldy' (2.18)
2s n=——oo In J¥q

The matching points are generally chosen at the center point of each segment, as

2p—-1
¥="oN

h’7 p=1a2a"'1N (2’19)

Performing the integration, we have

] e7n(yq+1_yp) — e’Yn(!Iq“yp) D > q

PR L1 N = T S S S, 2.20
by = — 5o > = e —e p<gq (2.20)
n=-—o00 In 9 (1 _ e—7n(yq+1°yq)/2) p=gq
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When the source region and matching points are defined as in (2.11) and (2.19), the

expression for Z,, can be further simplified. Starting with (2.20), we have

Yor1 — Y = [2(¢—p)+1Jt, p#i
Yo—Y = [2(¢—p)—1Jt, p#i
where ¢ = h/2P, equals half of the segment length. Further, we have

kn 21
Zpg = ..92_377 = (e @lapI=Dt _ g=mnCla—pbee) 5 £ g (2.21)

n=—co Va
We can see that Z,, is only a function of |p —g], so [Z] is a Toeplitz matrix. The convergence
is ensured by the exponential term for the case when p # q. When p = ¢, from (2.20), we

have (yq+1 — ¥,)/2 = t, which leads to

kn = 2
Zw=-2T 3 S (1-em) (2.22)
25 =—0c0 Tn

The exponential term keeps decreasing rapidly as n — oo. The leading term in (2.22)

becomes asymptotic as

which is absolutely convergent.

2.4 Scattered Fields

Once the surface current coefficients a, are solved for, the scattered field can then be evalu-

ated from (2.14)

. k N +00 JWnT ¥, ,
Bi(ay)=-L13 e, 3 T [T igy. (2.23)
2s g=1 n=-o0 Tn Yq
The integral in (2.23) can be evaluated in closed form as follows.
vosr , . e~ (¥=Ya+1) _ o=Tnly—vq) Y > Ygi1
/ emvVlgy = — { e=mue—v) — e=Tnlva+1-¥) Y < yq
Yq n 2 — e—’Yn(y_yq) —_ e‘7n(yq+1 "'y)) yq < Y < yq+1 (2_24)

We have formulated the problem of scattering from periodic array of parallel strips. The

equivalent current on the strip n = 0 that lies on the y-axis is obtained by solving (2.16),
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Figure 2.2: TM plane wave incident upon a seven-cell parallel strip array.

to get the current expansion coefficients a,. Once the current expansion coefficients a, is
obtained, the scattered electric field can be calculated using (2.23). The total electric field

is the summation of the scattered field and the incident field.

2.5 Results and Discussion

Let us consider an array containing eight parallel strips forming seven-cell, with a z-polarized
field incident from above the array, as illustrated in Fig. 2.2. This arrayv is obtained from
the periodic array we discussed in Fig. 2.1 by truncating the numbers of parallel strips on
both sides along z-axis. We will evaluate the field distribution in this seven-cell array and
compare the results against the field distribution in a periodic array of parallel strips with
the same height and spacing. The field distribution within the central cell is probably the
least disturbed field by the truncated edges on both ends. Without losing generality, the field
distribution along the central line, z = 3.5s, in cell @ of this seven-cell array is calculated,
and compared with the field in a periodic structure with the same height A and spacing s.
The field distribution in periodic arrays exhibits a periodic behavior while the observation
point moves from one cell to the others. It is sufficient to study the field behavior within one
cell. The field points are chosen to lie on the line z = 0.5s in the periodic array of parallel

strips.
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The field within cell @ is dominated by the height and spacing of the strip pair standing on
both sides, namely strip 4 and strip 5. The presence of the other strips also has a disturbance
on the field distribution. One would expect that, the closer the separation the greater the
disturbance. From Fig.- 2.2, we can expect that strip 6 will have a greater disturbance on
the field within cell ® than strip 7 has. We can also expect that when we add more parallel
strips and ground planes on both ends of the structure along z direction, the field within
the central cell would asymptotically approach the field distribution of a periodic structure,
as the numbers of strips tend to infinity.

Let’s consider a typical geometry of a residential area, which contains rows of two story
houses. The height is about thirty feet, the spacing between them is about sixty feet. For
radio frequency at 1 GHz, if we choose h = 33\ and s = 66, where ) is the wavelength of
the incident field, the scenario can be well approximated by our model shown in Fig. 2.2.

Fig. 2.3 through Fig. 2.6 show the plot of fields in cell ® of the seven-cell structure,
with various values for the angle of incidence of the incident plane wave. Without losing
generality, the field points are selected to move in the y-direction along the central line of
cell ® at z = 3.5s in the seven-cell array. For comparison, the field distribution along the
observation line z = 0.5s in the periodic array is also calculated and plotted in the same
figures. We chose z to be fixed and y is the variable for the field point, because we anticipate
good agreement inside the cell, but not outside the cell.

From all these plots, we see the field distribution in the central cell of the seven-cell
structure is very close to the result from a periodic structure.

For great incident angles, such as ¢ = 20° and ¢ = 10° , the field oscillates a lot around
the level |E| = 1, referring to Fig. 2.3 and Fig. 2.4. For near grazing incidence such as
¢ = 1.0° and ¢ = 0.5°, we see from Fig. 2.5 and Fig. 2.6, the field strength distribution is
largely attenuated when the observation point falls into between the top and bottom ends

of the strips, 0 < y < h. This phenomena can be understood by recalling waveguide mode
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Figure 2.3: Height kA = 33), spacing s = 66.\, incident angle ¢ = 20°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array.
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Figure 2.4: Height h = 33), spacing s = 66.\, incident angle ¢ = 10°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array.
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Figure 2.5: Height h = 33, spacing s = 66)\, incident angle ¢ = 1°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at = = 0.5s in the periodic array.
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Figure 2.6: Height h = 33, spacing s = 66, incident angle ¢ = 0.5°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array.
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theory. The wavenumbers in the z- and y-directions are given by

kz:TSE m=1727”' (2'25)
mA\?
ky = k|1 — (3;) (2.26)

where k is the wavenumber in free space.
In the above examples, s = 66, the highest propagating mode is m = 131, which gives

the minimum cutoff angle as

ke 1
¢o = cost = = cos™! 13% = 7.057°. (2.27)

So, when the incident angle ¢ < ¢, there are only evanescent modes existing inside the
waveguide, resulting a large attenuation of the field intensity inside the waveguide.

Various angles of incidence were used to calculate the field distribution in the finite and
finite arrays of parallel strips, and all yield satisfactory comparison results. The values of
incident angles have even been used to make the comparison are 1° < ¢ < 30°, with a step
of A¢ =1°.

We also tried a different set of geometrical parameters for the spacing and height of the
array of parallel strips. Let us choose 2 = —50 and s = 100\, and make the comparison of
field distribution between the seven-cell array and the periodic array.

Fig. 2.7 and Fig. 2.8 show results for the plane wave incident at ¢ = 10° and ¢ = 1°. We
see that for ¢ = 10°, the field distribution oscillates slightly around the level |E| = 1, which
means that the scattered field does not contribute much to the total field. For the near
grazing incidence ¢ = 10°, the field level is largely attenuated when the observation points
fall in between the top and bottom ends of the parallel strips, —50 < y < 0. These results
have been published by Liu and Paknys [13], where a wire grid model is used to replace the
parallel strips. Interested readers can refer to Appendix D for derivation detail which did
not appear in [13].

The Poisson summation series contains an infinite number of terms, which have to be

truncated while performing numerical computation. The summation index n runs over neg-
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ative infinity to positive infinity. While doing the numerical computation, the summation is
done by starting from the term n = 0, then add the terms n = 1,2,00and n = —-1,-2, —c0
separately.
The rule we used to truncate the series is illustrated as follows. Let
400
S= > a, (2.28)
n=—00o

be the series that is desired to be evaluated. Performing the summation over n < 0 and

n > 0 separately by denoting

1 e 1 =
S+=§a0+2an ST ==ay + Z a, (2.29)

n=1 2 n=-—1
to be the sum over the positive and negative range of n, respectively, we have
S=8t4+85" (2.30)
Let

N
Sn="3a, (2.31)
1

be the partial sum of either S* or S~. Set a typical value for the tolerance €, say € = 1073

and let the summation procedure to stop if

2N

13 an (232
£ < e .
|ISv| —

is achieved. Then the partial sum Sy is used as an approximation for the exact value S.

Otherwise, make N doubled and have the partial sums recalculated until (2.32) is satisfied.
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Chapter 3

Scattering From Periodic Arrays of
Grounded Parallel Strips, TE
Incidence

This chapter presents the method of moments solution to the problem of transverse electric
(TE) plane wave scattering from periodic arrays of grounded parallel strips. The first step is
to assume TE plane wave incidence. Then the surface equivalence theorem [16] is applied to
replace the perfect electric conductive strips and ground plane by free space and the unknown
equivalent electric surface current J. Due to the fact that the geometry structure is periodic
and the incident plane wave is also periodic, the solution of the equivalent surface current
is periodic too. We need only assume an unknown equivalent surface current J within one
cell of the structure. By duplicating J along the direction of periodicity with appropriate
phase shift, we have the whole solution. The total electric field in free space is the sum of
the electric field radiated by J in free space and the incident electric field. Imposing the
boundary conditions on the surface of parallel strips and the ground plane gives an electric
field integral equation (EFIE) containing J as an unknown. The unknown current J is
now expanded along the surfaces of the parallel strips and the ground plane as a sum of
overlapped triangular basis functions multiplied by unknown complex coefficients. An inner
product is formed between each of the appropriately chosen test functions and the integral
equation. Thus a system of linear equations are created. The current coefficients can be

found by solving this equation. Once the surface current J is found, the fields radiated by
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Figure 3.1: Scattering of plane wave on a periodic array of parallel strips, TE incidence.

this current are readily obtained, and the total field is found by adding the radiated field to
the incident field.

The scattering problem when the periodic array is truncated on both sides is also studied.
The formulation procedure for this finite array is pretty mucil the same as stated above,
except the problem is no longer periodic and the equivalent currents run on all the surfaces
of the structure. The solution to this problem is obtained by using TECYL [14], an integral
equation solution for TE cylinder radiation and scattering.

In the following sections, the EFIE for the periodic structﬁre will be established and
appropriate basis functions will be employed to expand the unknown current J, followed
by a method of moment solution to get the current J. Examples will be given where the
scattered field at appropriate chosen observation points will be calculated and compared with
the solution of the seven-cell structure from TECYL. Good agreement will be demonstrated.

The work in this chapter has been submitted as a paper [18].

3.1 The Integral Equation

Consider a TE polarized plane wave incident from above upon a grounded periodic planar
array of parallel strips. Both the ground and the parallel strips are assumed to be perfect

electric conductors (PEC). The strips are assumed to have zero thickness, extend to infinity
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along z-axis and pass through z = ns where s denotes the spacing between the strips, as
illustrated in Fig.3.1. The time dependence e’* is used and suppressed throughout the
analysis. The incident magnetic field is
Hi(z:, y) — Hoejk(zcos¢+ysin¢) (31)
H.=0, Hy;,=0

and the electric field components are
E;(z,y) = Hi(z,y)nsin ¢

E(z,y) = —H:(z,y)ncos ¢ (3.2)
E.=0
where
k? = w?pe, n= \/g, (3.3)

where w is the angular frequency, p, € are permeability and permittivity in free space, ¢ is
the angle of incidence measured from +z-axis.

The surface equivalence theorem is employed to solve the problem. Since the geometry
is periodic and the excitation is periodic along z-axis, a periodic solution is possible. The

currents on the strips and the ground plane can be expressed as
J(z + ns,y) = I(z, y)elkscos?, n=-—00, - ,+00 (3.4)

where J(z,y) is the current on the cell n = 0 (the structure between the dashed lines in
Fig. 3.1).

The vector potential for this equivalent current can be expressed as
A= [3E )Gz y—v)dl (3.5)
lo

where [y is the contour of surface for the cell n = 0, G, is the Green’s function for the

periodic array

+00 - )
Gp(:tl _ xl’ y — yl) —_ Z _lng2) (k\/(l‘ — g~ ns)2 + (y _ yl)z)ejlmscosd:o ( )
nETee 3.6
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and ng) (z) represents a Hankel function of the second kind.

Once we have the vector potential, the fields are ready to be expressed using the rela-

tionship [16]

5= —oas TZA
) (37)
H=-VxA
7
When expanded, we have the nonzero field components expressed as
1 92 9%2A
= K+ — Y .
Es Jwpe [( i 83:2) Az + Bxay] (38)
1 a2 %A
= k2 + — —= .9
Ey Jwe [( + 8y2) Ay + 6$8y} (3.9)
1 (04, OJA,
== — 3.10
7 7 ( oz Oy ) (3.10)
The boundary condition requires that
i x (E° + E*) = 0, over all surfaces, (3.11)

where E* and E’ represent the scattered and incident field, respectively. @ is the unit vector
normal to the surfaces. Due to the periodical nature, we need only to impose the boundary
condition on the cell n = 0 which lies within z € [~s/2,s/2] and y € [0, k]. An equivalent

expression of (3.11) for TE incidence is
t-(ES+E) =0, (3.12)

where t is the unit transverse vector that is tangential to the surface.

3.2 Floquet Modes Analysis

The summation series in (3.6) decays only at O(n~%) as n — oco. The Poisson summation
formula is employed to convert the slowly convergent series into a more rapidly convergent

series [19]

3= ~ ;10 o—ly—v| ,
2 Ho(k\/(x — ' —ns)2 + (y — y')2)einkscosd = 25 > e piunz—)
T Pm=—c0 (3.13)
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where

W = kcos¢—2nT7r (3.14)

<

JVk2— w2, k2> uW?
w2 —k2, kK2<uw?

Therefore, the Green’s function (3.6) for the periodic structure can be expressed as

Tn

10 o-mly-y| | ,
Gplz =2y —y) = 2= 3 T ——efnle=a) (3.15)

n=—0oo 771
The converted series is exponentially convergent when y — ' # 0, and convergent at
O(n™') when y — 3’ = 0. We see in both cases the converted series using the Poisson

summation formula is advantageous over the original expression.

3.3 Discretization

The EFIE expressions (3.11) or (3.12) need to be discretized in order to be suitable for
a computer solution. In order to discretize the EFIE, the equivalent surface current J is
expanded along the surface where it is distributed, into a sum of independent basis functions
multiplied by unknown complex coefficients. The geometry structure in cell n = 0 can be
discretized using horizontally and vertically oriented strips, with current flowing in z and
y directions, respectively. The basis function for the current expansion is triangle basis
functions that overlap two adjacent strips [17]. The reason we choose the triangle basis
function for the surface current expansion is that, it produces a §-function after applying
the second differentiation as defined in the field relations in (3.9) and (3.10). The behavior
of é-function simplifies the procedure in getting closed form expressions for the impedance
elements.

The current continuity at the junction between the horizontal and the vertical strips,
namely (0, 0), is enforced by a corner dipole with a triangle basis function straddling over
both its horizontal and vertical segment, as shown in Fig. 3.2.

The current continuity at £ = +s/2 is ensured by a basis function that straddles into

the adjacent cell, n = 1, shown by the dashed line in Fig. 3.2. Therefore by replicating the
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Figure 3.2: Strip model of the surface current on cell n = 0, discretized using triangle basis
function.

current on the horizontal strip in cell n = 0 along the z axis in a period s, continuously
flowing current on a ground plane is achieved. The current distribution on cell 7 = 0 can be

expressed by

L M
J(z,y) = aofo(z, ) + D_bifi(z)X + Y cnfum(®)¥, (3.16)

=1 m=1

where f3(z,y), fi(z) and fm(y) are triangle basis functions defined by

X <z <
fo(l‘, y) — fOz(x)i( O =T LG (3.17)
fou(¥)¥ 0<y<b.
1_*_1:—:1:1’ —c<z—1:<0
filz) = z Sz . and (3.18)
1— pa O<z—-—z<c
Y—Ym

1+ —b<y—yn <0

Frm(y) = b, (3.19)
1 Y bym.’ 0<Z/—yme

foz(z) = (— —- 1) and  fo,(y (1 ~ —) (3-20)

respectively. The coefficients aq, b, and ¢, are for the current basis on the corner dipole,
horizontal and vertical strips, are to be determined. The length of the horizontal strip in cell
n = 0 is s, we make it equally divided into L segments, with L current modes, each mode

occupying two adjacent segments. The spacing between adjacent current modes is

e S
-2
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‘The length of the vertical strip is &, equally divided into M +1 segments, with M current
modes, and each mode occupying two adjacent segments. The spacing between adjacent

current modes is
h

M+1

In Fig. 3.2 we have illustrated a discretization example with L = 6 and M = 6.

b=

Substituting (3.16) into (3.5), we obtain the vector potential

L M
A(z,y) = aoAo(z,y) + D bA(z, Y)X + Y cmAnm(z, v)§ (3.21)
=1

m=L
where Aq(z,y) is the vector potential due to the current on the corner dipole. It can be

expressed as the sum of it z and y components as

AO(xy y) = /fO ($’1 yl)Gp(x - xll Yy— yl) dl, = AOI(:E, ?/)i + AOy(xy y)s}r ( )
3.22

where Ay (z,y) and Agy(z,y) are the = and y component of the vector potential due to the

current on the corner dipole. They can be expressed as

AO::(:E’ y) = fOz(x) * Gp('t’ y) (323)

Aoy(Z,y) = foy(y) * Gp(z,9), (3.24)

where foz, foy are the z and y components of f, defined in (3.17). We note that * denotes
the convolution operator.

The two summation terms in (3.21) ;:ontain Ai(z,y) and An(z,y), which are potentials
produced by the equivalent current on the horizontal and vertical strips, respectively. They

are expressed as

Aiz,9) = [ 1(=)Go(a ~ ', 9) e’ = fi(x) * Gyl(z,) (3.25)
Am(z,y) = / Fn(¥)Go(2,y — y') @Y’ = fm(y) * Gp(z, ). (3.26)
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Substituting (3.21) and (3.26) into (3.7), we have the scattered electric field expressed as
E® =XE; (z,y) + TEg, (2, v)

L
+ D _XE;(z,y) + ¥Ej(z,v)

=1

M
+ Y RES.(z,y) +EL,(z,9)

m=1

(3.27)

3.4‘ Method of Moments Formulation

The integral equation (3.12) can be enforced by weighting the equation with pulse functions
whose domain begins in the center of one strip and extends to the center of an adjacent

strip, as

- / T(t)i - Esdt = / T(£) - Edt (3.28)
l 3

where [ is the contour of the surfaces where the boundary condition is to be ensured, £ is
the unit tangential vector along [ and T'(¢) is a pulse function to be defined.
Substituting (3.5) and (3.16) into (3.28), we have the following linear algebraic equations

L
( @020 + D_biZo+ > cmZom = Vg

=1 m=1

L
$ 40Zp0 +3 0Zp+ Y cmZom = Vyp p=1,2,---,L (3.29)
=1 m=1

L
aOZqO'*'Zbqul'*'Zc‘m.qu = %1 q=1727"'7M
=1

L m=1
We have L+ M +1 linear equations, ready to solve for the L+ M +1 expansion coefficients
in (3.16). The subscripts of the impedance elements are arranged as Z;j, where 1, j refer to
the test and source segment, respectively. The right-side of (3.29) represents the excitation
voltages on each test segment by the incident field.
The contour of integration [ is defined along the tangential line of each segment. In the

present problem, only z and y oriented segments are present, therefore the integration will

be carried along the z— and y— axis, respectively. For the corner dipole, the contour is
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defined to start at (c/2,0) and ends at (0,5/2). Therefore we have the first row of elements

expressed by

ZOk = /To(I)sz(IE, O) dz — /TO(y)EIiy((), y) dy k= 01 k=lork=m
(3.30)
where Ef. and Ej, are z— and y— component of the electric field on the corner dipole

produced by the equivalent current on either other sources or on itself. Therefore the entries

of the impedance matrix can be expressed as

Zo = [To(@)EBi(e,0)dz — [ To(y) E3,(0,v)dy (3.31)
Zy = — / T, () EL, (z, 0)dz (3.32)
Zo = — [Tyw)E 0. v)dy (3.33)

where Ej,. and Ej, are z and y components of the electric field produced by the current basis

function f5(z, ).

The excitation voltage on the corner dipole can be expressed as
Vo= — [ To(=) Bi(z,0)dz + [ To(y) E3(0, y)dy (3.34)

In the equation (3.31), To(z) and To(y) are test functions defined on the z— and y— arms

of the corner dipole, as

c b
To(x)={é celongl, To(y)={3 vebal, (3.35)

In equations (3.32) and (3.33), Tp(z) and T,(y) are test functions defined on the horizontal

and vertical strip dipoles as

To(z) =T(z —zp) and T,(y) =T(y — ¥y)s (3.36)
respectively. Also,
1 T 6 [_g, %]) 1 y e [—%’ % )
T(z) = T(y) = (3.37)
0 else. 0 else.
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Similarly we have the remaining entries of the impedance matrix written as

Zu = [To@)Ei(z,00dz — [ To(w)E3,(0,y)dy (3.38)
Zy = — / T,(z)ES (z,0)dz (3.39)
Za = — [T@E0,9)dy (3.40)

where Ef, and Ej are z and y components of the electric field produced by the current basis

function f;(z)%k

Zom = [ To(@)Esu(z,0)dz — [ To@) B3y (0,v)dy (3.41)
Zom = — / T,(z) E2.. (z, 0)dz (3.42)
Zem = — [ Ta) B (0,v)dy (3.43)

where E7 . and E; are z and y components of the electric field produced by the current
basis function f,(y)¥-
The excitation voltage for the segments on the ground plane and the parallel strips can

be expressed as

v, = /T(:c —1,)Ei(z,0)dz, p=1,2---,L (3.44)

Vo= /T(y — yg) EL(0,y) dy, ¢g=1,2,---, M (3.45)
3.5 The Impedance Matrix Entries

Using the Floquet mode analysis of the previous section, the impedance matrix entries are

found to be, as derived in Appendix B

Jn ¥R [3b k2 1-eni [[k? eJwne—1 k2 1—emb
oy =21 S I A If (L T A A
00 2ksn=z_:oo{ 4 2 * Tn w2 Jjwne * w2 bYn
1—e ™% K2\ 1—em2 k2 1 —edune 3 46
- (1+—2')b_—-+—§+——— ( )
n Tn Yn Tn JwnC
7, = n 00 giwnzp Gin Whe [(1 3 52_) e Jwnc _ 1 1 —e b _ k_z}
T ks, M 2 w2 jwne b wrl (347



—1(t—2b .
(3_1:;_2_),(1 — e—'rnb)
n kz 1~ e—"/nb 1— e—junc k2 b t Z 2b,
in +00 1+ ;2' b’y - JomC + 7— e ™
0= 5ps Z 9 k2 b 117.- e=Tn% K2\ (1 —n y -
n=—o0 — € 2)(2+6 ’hz)
e . (.48
1 — e~Jwne k2 " t=hb.
- () emiasemy)
where £ = y,.
o rsin (4) (2 (g b
kscn;m > o, ,:(—d-g + (1 - wﬁ) elons _ e_’YnE} (3-49)
4.7.77 = k? Sln eJ“-’n(-'Cp-Il)
oy = = -
ot l’cscn.;c>° (wﬁ L wn Yn (3-50)
2n IX sin? ¥s¢ e~ +3) _ o=Tn(ye—}
Z —_ 2 —JjwnTy
4T Tkse, 2= wn © - (3.51)
in & Qa(t)
=R (252)
where
- 2
(ep Tm(t 21:;(1 - En)z(l +§n)2
(1 + 7—2) 1-&)+&1- efwn%)] t 226,
Qn(t) = ¢ kb)2 9
[ k2 . t =b. (3:58)
14 52) (1= 8) + (14 6 (1= o9)]

where t = y,, and £, = e~ 3.
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+00  L—Tn(ym—0b) )
Zpm = — kzb ° (1~ e7")2sin %e]wm (3.54)
Jn Qn(£)
Zon = 5 3 2 (3.55)
where t = y, — Y, and
4 2
<1 + %) e (it=3) (1 — 6_7“6)3 lt| > 2b
™ 2

Qn(t) = ¢ %Ebz + {1+ %) (1- e‘”fn%) (220t —e™%) | =5
35252 X Y b (3.56)

5——2 1+;2- (1—em2) (2+e%) It| =0

The excitation voltages on the corner dipole, segment on ground plane and parallel strips

are expressed as

I/O 77H0 [(ejkc cos¢ __ ) tan¢ + (ejk%sincﬁ _ 1) cot ¢] , (3.57)
277 . [kc i
Vo = ?tanqbsm —2-cos ¢ | H(z,,0), p=1,2,---, L. (3.58)
and
. (kb . i
Vi = —2ncot ¢sin 7s1n¢ H*(0,9,), g=1,2,---, M. (3.59)
respectively.

The impedance matrix entries and the excitation voltages are readily evaluated using
(3.46) through (3.59). The linear system algebraic equation (3.29), can be solved and the
coefficients (ag, by, ¢y) for the equivalent surface electric currents is obtained. Substituting
(@o, b1, cm) into (3.16), the expression for the unknown equivalent surface current can be

evaluated.
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3.6 Scattered Fields

Once the surface equivalent currents are obtained, the scattered fields can be evaluated. The
scattered magnetic field can be evaluated by substituting (3.16), (3.5) and (3.6) into (3.10),

as

,_1(84, a4,
H == ( - ay) (3.60)

The total field comes from three parts: current on the corner dipole, current on the ground
plane and current on the vertical strips, respectively. We write the scattered magnetic field

as three parts,
H® =Hj + H; + H; (3.61)

where H§, H , and H denote the scattered magnetic field due to current on the corner dipole,
current on the ground plane and current on the parallel strips, respectively. The subscript 2
is suppressed here and thereafter, since the magnetic field has only a nonzero z-component

in our analysis. The magnetic field from the currents on the corner dipoles is

Hi(z,y) = 3 o ) vz (3.62)
3 T,y ___a WnT ]wn .
0 25 0, (1 ) +Qnly) y<b
where
J@n e~ Tnly—b| et —1 _dwn (1 Ef. —Tmy
Qn(y) = by e + [ ey vl Py o) le (3.63)

We see that when y > b, (3.62) is exponentially convergent. For the case y = b, the
convergence rate is at O(n~2), while for the case y < b, it is only O(n~!) as n — oco.

The scattered magnetic field from currents on horizontal oriented strips is, for y > 0

2
Hy(z,y) = —Zal 32 eente-sogms (F222) (3.64)
n=—oo n
where
__ wne
an _— 2 -



We see the terms in the series decays at least at O(n~?), which happens when y = 0,
otherwise exponential decay is ensured as n — co.

The scattered magnetic field from currents on parallel strips is

j M o0 wn R
Hi(z,y) = o Zlam _Z —- 7S (t) (3.65)
where ¢t =y — y,, and
_’Ynltl
S (b — 24 o), It > b
Sat) =4 On '
ms ¢l Lo ya(itl-b) —nltl o o ~ralitl+b)
2( =5+ [ —ge 4] b (ag6)

The series in equation (3.65) decays exponentially when || > b but only decays at O(n™1)
when [¢t| < b as n — co.

An accelerating method [17] was applied to ensure proper numerical convergence in the
calculation of the scattered field while using (3.62), (3.64) and (3.65). Mathematical details

for the calculation of the scattered fields and impedance can be found in Appendix B.

3.7 Results and Discussion

The field distribution in periodic arrays exhibits a periodic behavior while the observation
point moves from one cell to the other. It is sufficient to study the field behavior within one
cell.

Let’s consider a typical geometry of a residential area, which contains rows of two story
houses. The height is about thirty feet, the spacing between them is about sixty feet. For
radio frequency at 1 GHz, if we choose A = 33\ and s = 66\, where \ is the wavelength of
the incident field, the scenario can be well approximated by our model shown in Fig. 3.1.

For comparison, the field in an array containing a finite number of grounded parallel
strips was calculated. As an example, the geometry of an array containing eight strips is
shown in Fig. 3.3. The whole structure was divided into seven cells by the eight strips. The

calculation is made possible by using TECYL [14], a method of moments code for cylinders
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Figure 3.3: TE plane wave incident upon a grounded seven-cell parallel strips array.

under TE illumination. The study of field behavior is focused at the central cell of this finite
length array. The field distribution withim the central cell is probably the least disturbed
field by the truncated edges on both ends. We will compare the field within the cell ® of the
seven-cell structure with the field in a periomdic structure with the same height ~ and spacing
s.

The field within cell @ is dominated by~ the height and spacing of the strip pair standing
on both sides and the ground plane. The pr-esence of the other strips also create a disturbance
on the field distribution. One would expesct that, the closer the separation the greater the
disturbance. From Fig. 3.3, we can expec't that strip 6 will have a greater disturbance on
the field within cell @ than strip 7 has. We can also expect that when we add more parallel
strips and ground planes on both ends of the structure along z direction, the field within
the central cell would asymptotically approach the field distribution of a periodic structure,
as the numbers of strips tend to infinity.

In the following example, a segment le-ngth of 0.1\ is used to divide the surface of the
structure. Fig. 3.4 through Fig. 3.6 show th.e plot of fields in cell @ of the seven-cell structure.
The ground plane is absent. Without losin:g generality, the field points are selected to move
in the y-direction along the central line oif cell ® at z = 3.5s. For comparison, the field

distribution along the observation line z == 0.5s in the periodic array is also calculated and
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Figure 3.4: Height h = 33, spacing s = 66, incident angle ¢ = 3°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is absent.

plotted in the same figure. We chose z to be fixed and y is the variable for the field point,
because we anticipate good agreement inside the cell, but not outside the cell.

From Fig. 3.4, we see the field distribution in the central cell of the seven-cell structure
is very close to the result from a periodic structure.

For smaller incident angles, such as ¢ = 1°, we see from Fig. 3.5 that the difference
between the two plots becomes larger. For near grazing incidence such as ¢ = 0.5°, we see
from Fig. 3.6 the plot of the field for the seven-cell structure is very different from the plots
for the field in the periodic structure.

Fig. 3.7 through Fig. 3.9 plot the field distribution in both the seven-cell and the periodic
structure, with the lower ends of the parallel strip array closed with a perfectly conductive
plane. The other parameters remain unchanged as used in Fig. 3.4 through Fig. 3.6. Com-
pared with the results from that without the ground plane, similar trends are observed.

When the incident angle is away from grazing, say ¢ = 3°, the two plots are so close to each
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Figure 3.5: Height h = 33\, spacing s = 66, incident angle ¢ = 1°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is absent.
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Figure 3.6: Height h = 33), spacing s = 662\, incident angle ¢ = 0.5°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is absent.
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Figure 3.7: Height h = 33), spacing s = 66\, incident angle ¢ = 3°. Observer at = = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is present.

other that the result from the periodic structure can be virtually used to approximate the
field in the seven-cell structure. 0 < y < A.

When approaching grazing incidence, the deviation between the two plots becomes large.
Also noticed is that when the observation point is close to the ground plane, the field levels
are higher than the corresponding cases without the ground plane. This is reasonable since
the image effect of the ground plane strengthens the magnetic field strength in the upper
half space.

Another interesting phenomena for near grazing incidence is that the field intensity does
not show much fluctuation and attenuation when the observer moves inside between the
parallel strips, as it did when in the case of TM incidence. This trend can be clearly seen
from Fig. 3.6 and Fig. 3.9.

From either the case with or without the ground plane, we noticed the field behavior

in a periodic array deviates from the field in their corresponding seven-cell array for low
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Figure 3.8: Height h = 33, spacing s = 66\, incident angle ¢ = 1°. Observer at z = 3.5s,
the center line of cell @. in the seven-cell array, and at z = 0.5s in the periodic array Ground
plane is present.
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Figure 3.9: Height h = 33, spacing s = 66), incident angle ¢ = 0.5°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at £ = 0.5s in the periodic array. Ground
plane is present.
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incident angles. This behavior was understood in [1] where plane wave forward scattering
from uniform arrays of absorbing half screens were studied. The settled value of the field
strength on the tip of each screen can be achieved when the first Fresnel zone about the ray

through the n = N, edge just clears the n = 0 edge. The screen number N is given by [1]
A2
Ny = ;cot @ (3.67)

In our calculation examples, s = 66); a brief table was made from (3.67) to show the
dependency of Ny on ¢; refer to Table 3.1. When the observation points are selected in cell
@, we have four strips on both sides of them. The minimum value for the incident angle
required by (3.67) is 4°. This can be seen from the result in either Fig. 3.4 or Fig. 3.7 where
we have virtually identical results for the periodic array and a finite strip array, with the
number of strips as small as eight.

In solving the EFIE for the periodic array, only the equivalent current distributed in one
cell need to be solved for, unlike in the problem for a finite strip array where the current
distribution in every cell need be solved for. We noted the computation time for the examples
discussed above. The program we compiled for the computation of the periodic array of
grounded parallel strips under TE plane wave incidence is named PAGPS. The program we
use for computation of the array containing finite numbers of parallel strips with ground
plane is TECYL. The computer we used to run these two programs is a PENTIUM 1 GHz.
For the two plots shown in Fig. 3.8, running TECYL took 9h18m while running PAGPS
took Oh26m.

Besides the aforementioned examples, we also made computation using other values of
the incident angles of the incident field. Fig. 3.10 through Fig. 3.13 show computational

results for the plane wave incident at 10°, 20° and 30°, respectively. We see the comparison

¢ |05°|1°12° |3 (4°[5°[6°]|7°
No {198 |49 (12]5 |3 |1 |1 |1

Table 3.1: The number of screens needed for the field to achieve settled values.
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Figure 3.10: Height h = 33X, spacing s = 66\, incident angle ¢ = 10°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is present.

between the results from the periodic array and the seven-cell array is good. All these
examples uses § = 2kA/s for the periodic array in the convergence accelerating procedure
(refer to Appendix B for the definition of B).

Numerical examples have been shown to support our initial motivation of using the
solution for a periodic array to approximate the solution for a finite array. During the
process we tried to exhaust the range of incident angles from ¢ = 1° through ¢ = 30°, in a
step of A¢ = 1°, however, there are cases for some incident angles, the deviation between
the two plots is large. Fig. 3.14 through Fig. 3.16 show the results for the plane wave of
incident at 17°, 15° and 9°. Large deviation can be seen for the field distribution when
the observation point moves below y = A for ¢ = 17°, ¢ = 9° and throughout the whole

observation range for ¢ = 15°. What causing these bad results at some particular incident

angles remains unclear.
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Figure 3.11: Height A = 33, spacing s = 662, incident angle ¢ = 20°. Observer at = = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is present.
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Figure 3.12: Height h = 33), spacing s = 66, incident angle ¢ = 25°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is present.
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Figure 3.13: Height h = 33), spacing s = 66, incident angle ¢ = 30°. Observer at z = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is present.
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Figure 3.14: Height h = 33), spacing s = 661, incident angle ¢ = 17°. Observer at = = 3.5s,
the center line of cell @ in the seven-cell array, and at z = 0.5s in the periodic array. Ground
plane is present.
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Figure 3.15: Height h = 33, spacing s = 66\, incident angle ¢ = 15°. Observer at

the center line of cell @ in the seven-cell array, and at z

plane is present.

and at z = 0.5s in the periodic array. Ground

incident angle ¢ = 9°. Observer at z = 3.5s,
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Chapter 4

Conclusion and Further Development

Studies were made for a plane wave propagating over a periodic array of parallel strips and
over an array containing a finite number of parallel strips. Both TM and TE plane wave
incidence were considered. A method of moments solution for arrays of parallel strips is
computationally costly, either on memory or CPU time when the array contains a large
number of parallel strips. On the other hand, using the method of moments solution for
periodic arrays of parallel strips, only the surface current in one cell needs to be solved for,
thus greatly reducing the number of unknown coefficients for the surface current. Numerical
examples were given using geometrical parameters of a typical residential area. The field
distribution in a periodic array was calculated. Also the field distribution was calculated
when the periodic array was truncated on both sides. The results showed that the two
solutions were close to each other when the incident angle was not so small and the Fresnel
zone criterion was obeyed. Hence it is practical to use solutions for periodic arrays of
parallel strips to approximate the solutions for arrays which contain large numbers of parallel
strips. The extent of this approximation accuracy depends on the number of strips in the
finite parallel strip array and the angle of incidence. Therefore we conclude that except for
some particular incident angles, when the incident wave is away from grazing, the periodic
solution can be used to well approximate the solution even when the number of strips is only
moderately large.

Previous work was focused on finding the field strength that hits the tips of the parallel
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half planes that represent the buildings. This field would then be used to compute the field
at the street level. In contrast, the present work examines the field directly at the street level,
using a rigorous method of moments formulation. Similar to previous work, it was found
that low angles of incidence require a large number of buildings in the model to achieve the
“settled values” for the field, whereas at high angles only a few is needed.

The present analysis is based on arrays of PEC strips of zero thickness. Apparently two
possible aspects of generalization can be made from the present model.

One is to introduce a lossy dielectric material into the analysis. By doing so, impedance
sheets can be used to construct the model of the building and ground [20, 21]. The other is to
replace the parallel strips and ground plane with objects that have more general shapes. For
instance, one could model the buildings with rectangular cylinders, to allow rugged surface
for the ground and to introduce windows on the walls of buildings in order to better model
the environment in the real world.

For the bad results we found in our numerical example for the TE incidence, we currently

have no satisfactory explanation, and further research would be needed.
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Appendix A

Scattering From Arrays of Parallel
Strips, TM polarization

Consider a TM polarized plane wave incident upon an array of parallel strips of perfect
electric conductive, with uniform spacing, as shown in Fig. A.1. The number of parallel
strips is /V;. The strips are assumed to have zero thickness, extends to infinity along z-
axis and passes through z, = ns where s denotes the spacing between the strips, and

n=20,1,2,---, Ny — 1, with a zpolarized plane wave incident upon the array,
Ei(:z:, y) — Eoejk(z:cos¢+ysin ) (A.l)

where k is the wavenumber of the incident field, &2 = w?ue, w is the angular frequency and g,
€ are permeability and permittivity in free space, ¢ is the angle of incidence measured from
the +z axis. The time dependence e’“¢ is assumed and suppressed throughout our analysis.

The surface equivalence theorem is employed to solve the problem. The surface current
density J; is assumed on the strips, and it has only a nonzero z-component. The field

scattered by this surface current is given by [16]

B(zy) =2 [[ 1@, ) HO 6/ -2+ G-y dsdy  (A2)
'y’

where H{? (x) is the zeroth order Hankel function of the second kind. Since the electric
field and the equivalent surface current have only nonzero z-components, the subscript z is

suppressed in the above equation and in the following analysis.
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L.

1 2 3 4 5 6 7 8

Figure A.1: TM plane wave incident upon a finite parallel strip array.

The point matching method described in Chapter 2.3 is used to formulate the scattered
field. Assume the height of the parallel strips is h, so the surface current J; is distributed
in the domain z =ns, n = 1,2,--- ,N; — 1 and y € [0, h]. Equally divide the strips into
N,-segments, with the coordinates of each node expressed as

y-=j_1
7 Ny

h,j=1,2,---,N, +1. (A.3)

Using the pulse basis functions, the current distribution J; can be expanded as

Nz N‘.'I
J(z,y) = D> ayé(z — z:)g;(y) (A.4)
i=1 j=1
where z; = (i — 1)s,4=1,2,--- , N; and g¢;(y) is a pulse function defined as
1) ye [yja yj-i-l] -
gi(y) = (A.3)
’ {0, y & [ys v+l

Using the current expression in (A.4), the scattered field can be expressed as

s kn &= X (2) /
B (xy) = -3 ey [ BP(k/z — )2 + (=) dy (A.6)

=1 j=1

Merging the subscripts ¢, j into g, we have (A.6) rewritten as

N Yqt+
B@y) == 3 a0 [ HO (fo — 20 + (4~ ) dy’ (A7)

q=1
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where (z4,y,) is the coordinate of the central point of each segment. It is defined together

with the index g as

Te= (21— 1)s (A.8)
Yq = (25 — l)b (AQ)
g=J+(E-1)N, (A.10)

where 2 =1,2,--- ,N;, j=1,2,--- ,N, and b is the half-length of the segment

A
b= on (A.11)

Using the field expression (A.7) and applying the point matching method by selecting

the matching points as the central point of each segment, we have the EFIE written as

f:zpqaq:vp, p=12,---,N (A.12)
q=1
where N = NN, and
Zpqg = —’1—"% / : Hi? (k[ (zp — 24)2 + (3 — ) dy'. (A.13)
The excitation voltage is
Vp = —E(zp, y) (A.14)

It is noticed that Z,, is symmetric. Now equation (A.12) can be solved and the unknown
coefficient a, is obtained.

Once the surface current coefficients a, are solved for, the scattered field can then be
evaluated by using (A.7).

In summary, using the surface equivalence theorem, the surface electric current is assumed
to flow on strips. The PEC strips are replaced with free space, leaving the equivalent current
radiating in free space. The strips are divided into small segments. The unknown equivalent
current is now expanded along the surfaces of the parallel strips as a sum of pulse basis

functions multiplied by unknown complex coefficients. The EFIE is established by enforcing
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the boundary condition at the matching p-oints of each segment. A system of linear equation
is then established to solve for the unknow n complex coefficients of for the equivalent surface
current. Once the equivalent surface curresnt is found, the fields radiated by this current are

readily obtained, and the total field is fosund by adding the radiated field to the incident

field.
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Appendix B

Mathematical Details and
Convergence Acceleration

The purpose of this appendix is to present in detail the scattered fields and the matrix
elements in the MM analysis. It is derived for the problem of TE plane wave incident upon
periodic array of grounded parallel strips in Chapter 3.

We have already seen that the scattered fields expressed by the Poisson summation
formula does not analytically converge in some cases, referring to (3.65). Furthermore, ex-
pression (3.62), (3.64) and most of the impedance elements exhibit convergent at O(n~2) as
n — oo under some circumstances. These expressions are absolutely convergent mathemat-
ically, but are numerically slow. Special treatment is necessary to make them amenable to

numerical calculation. Look at a simple example of the series
o0
1
il B.1
pors (B.1)
which converges at O(n™?) as n — oo. If we specify a tolerance of ¢ = 103, and using the

criteria expression (2.32) (listed below for convenience)

2N
| 2 aq|
N <e

[Sul = (82

numerical test shows it requires N = 763 terms to be added to achieve the accuracy. For
the specific series in our problem, the terms needed would probably not reach such a big

number, because the terms in the Poisson summation formula (3.13) is oscillating about n.
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Nevertheless a general procedure of convergence accelerating described by Peterson et al.
[17] is adopted to our problem to deal with all these cases.

Starting from the periodic Greens function (3.13), the expression is rewritten in such a
way that part of it is expressed in the original space domain, while the remaining part is
expressed via the Poisson summation formula. Starting from (3.15), an alternative expression

may be written as
Gp(z,y) = Ga(z,y) + Gi(z, v) (B.3)
and
Go(z,y) = F 1 {Gp(w) — Ga(w)} (B.4)

where Gp(w) and G,(w) are Fourier transforms of Gp(z,y) and G,(z,vy), respectively. The

symbol F~! denotes inverse Fourier transform. G,(z, y) can be chosen as

+oo . )
Ga(.’ZI _ .’13’, y— y/) — Z _ ]Z#Héz)(_jﬂ\/(x - - TI,S)2 + (y _ yl)Z)eJknscos¢

n=-co (B.5)
We use the relation
) -2
HP(—jz) = =Ky (z) (B.6)
]71’
+o0 L )
Cale—2y—y) = 3 —Ko(B/(z—z' —ns)>+ (y — y)2)e™¢  (B7)

where Kj(z) is the modified Hankel function. Observe that Go(z,y) is obtained by replacing
the real-valued wavenumber k in G,(z,y) with the imaginary quantity —j23. Gy(z,y) in

(B.4) is expressed using the Poisson summation formula as

. g I e mly-vl  g-anly-v] on(z-z")
Gi(z,9) = F~H {Gp(w) - Galw)} = 2= 3 ( — )e] e
n=-—o00 n n 8

where

N
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We notice that the Green’s function is decomposed into two parts. The first part is an
arbitrarily chosen function which is evaluated in the original space domain. The second
part is a difference between the original Green’s function and the chosen function, which is
evaluated in the transformed spectral domain.

The following sections are organized according to the nature of the equivalent currents.
The first section is for fields generated by the current on parallel strips, the impedance
on segments on ground plane and on the corner dipole by this vertical current. The second
section calculates fields generated by the current on ground plane, the impedance on segments
on parallel strips and on the corner dipole by this horizontal current. The third section deals
with fields generated by the current on the corner dipole, the impedance on segments on
ground plane and on parallel strips by this current. Also, we will apply the accelerating

method discussed above to the calculation of these MM matrix elements.

B.1 Fields From Parallel Strips

Fields from f,,(y)¥ are given by

Bre@9) = 0 an(zy),  Emy@v) = —— (0 + 22 Anz.y) (BO)
mI )y —’queaxay m :y 2 my :y _]wue 3y2 m 1y .

19
Hmz(zr y) - pa_xAm(xa y) (B].O)

where An,(z,y) is given by (3.26), the vector potential produced by the current fm(y)¥ on

parallel strips.

B.1.1 Impedance Matrix Entries Z,,

The impedance element Z,,, is the weighted field on segment ¢ produced by the current on

segment m. It can be expressed as

qu = /Tq(y)Emy(xr y)dy

1 , o
7o [0 (¥4 22 An(av)ig

(B.11)

60



where T,(y) is the test function defined on segment g of the parallel strip.

According to (3.36) on page 33, let u = y — y,, we have

/Tq(y) (k2 + ;—;) An(z,y)dy = /T(u) (k2 + %) A(z, u + t)du,

=T(t) * (k2 -+ g—;) * Az, t) (B.12)
where ¢ = y; — ym. The final expression in (B.12) is obtained by replacing u with —u and
using the fact that T'(—u) = T'(u).

Using (3.26), we have

A(z,t) = F(t) * Gy(z, t) (B.13)

where A(z,t) is the vector potential due to the current f(t) on parallel strips, and f(t) is
the basis function for current on the vertical strip and is defined by (3.19) with y,, = 0.

Therefore Z;,, can be written as

N Jwue
- 2 +00  jwnT
=27 (k2 + 8—) > ET(t) * f(t) keIt

Zgm = L (lc2 + 68?) T(t) = f(t) * Gp(z,t)
(B.14)

" 9%ks 0t2 ) .= Tn

In the above equation, the Poisson summation expression is used for the periodic Green’s
function. Also note that z = 0. Using the definition of T(y) and f,(y) in(3.37) and (3.19)
for T'(t) and f(t), respectively, and performing the convolution with respect to ¢, we have

_ n 3R Q) ©.15)

™ 2ksh = 2

where ¢t = y, — y, and

2
( (1 + %) e"‘lﬂ(]ﬂ‘% (]_ — 3—7"1’)3 ltl Z 2b
1 212 i k2 —’Yn.2 2 —Tnb —’Yn%
Q(t, ) = ¢ Zkb + 1+17 (1—-e 2) (2—26 —-e 2) | =6
2 " . b (B.16)
5 — 2 (H-:F) (1—e™2)" (2+e7™2) [t =0
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We see the series is exponentially convergent when |t| > 2b and at O(n~2) when |¢| < 2b
as n — oo.
For cases when [t| = b and ¢ = 0, an additional order of convergence can be achieved by

using the decomposition of the Green’s function defined in (B.4). We express Z,,, as

Zom = 22, + 25, (B.17)
where
z:, = - L k2+8—2 T(t) « f(t) * Go(z,t) (B.18)
™ T jwpe ot? ¥ a\%s -
2, = - (e Z) 1) « 12) « Gyle, 1) (B.19)
™ jwue ot? v .
Using (B.7), write Z7,, as
ze = I (k2[1+112) (B.20)
™ 2wk b
where
I, = / / (1—3) [n (t+§+x—y> + fa (t+§—x—y)]dxdy (B.21)
y=0 z=0
b 3 b b
I2 = /0 [fn(t'i"z‘b_x)_2fn<t+§_z>+fn(t_§—x)]dx
and

fale) = Ko (8y/(ns)? + 22). (B.22)

The 2-D integral in (B.22) can be converted into a 1-dimensional integral by variable

substitution. The converted integral can be written as

Ilzfob(g—i—:z:—-a;—z)fn (t-i-g—:c) dzr
+/obg(1—%)2fn (t-i—g—i-x) dz+/0bf2’-(1—%)2fn (t—g—x) dz. (B.23)
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Since

Ko(z) ~ ,/%e"’ as  — oo, (B.24)

therefore the summation in (B.20) exhibits exponential decay as n — oo. Substituting (B.8)

into (B.19), we have

»  _ J7 P\ L ew e~ g—anlt
Zem = %(k2+a_tf) n:z_:ooe] E==)T(8) * £(t) = i (B.25)

Jn -io ejwn(:z:-:l:')Pn(t)

2ks, 5%,
where
( kb 2 1 1 D (un) pl(vn)
() + () - (242 -2
+2k? (i — L‘;) 2 (Pl('l:n) _ Pl(%)) it = b
Pu(t) = | L T o
(B.26)
[g (kb)? — 4] (_% _ %) +9 (po(gn) _ Poé;ln))
| - (vi‘* - a%) +2k2 (p°fy1‘”) _2 °O(:i") ) It =0
and
pi(z) = z(4—3z%+z%) (B.27)

po(z) = z(3-—1z?)
Up = e~z

—ay b
U = e 9z,

We see the terms in the difference part described by (B.26) decays as O(n™%) as — oo.
The convergence of the difference part has been improved as compared with the original

expression in (3.56), which only decreases as O(n™2) as n — oo.

B.1.2 Excitation Voltage V,

The exciting voltage defined in (3.45) is the line integral of the incident electric field along

the surface of the vertical strip in segment q. Substituting the definition of T,(y) in (3.36)
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and the incident field in (3.2) into (3.45), we have
) e+2
Vy = —nHpcos ¢eJkI°°S¢/ \ eTkvsind gy, (B.28)
3

where € = y,, is used for notational convenience. Performing the inte-gration, we have

2 b .
= —ktaqzlqb sin (k§ sin ¢) HY(z,y,)- (B.29)

B.1.3 Scattered Fields Hg

Once the surface equivalent currents are obtained, the scattered fields Hrom the parallel strips

can be evaluated. The scattered magnetic field has only a nonzero z-scomponent

—_ laAy(xv y)

H;(z,y)

where Ay(z,y) is the y-component of vector potential due to electric current on parallel
strips. It is expressed as the superposition of vector potential prodiuced by each current
basis function as indicated in (3.21) on page 31. Using (3.21) and (3.26) on page 31, we have
the magnetic field from the parallel strips expressed as
s 10 ¥
Hz(x,y) = -5 Z Crnfm(y) * Gp(xv Y)- (B-31)
I‘L 6x m=1
Using the Poisson summation expression for G,(z,y) in (3.15) on -page 29, we have
i & N
Hiw) =53 cm 3 Z2enef () xe il (B32)
s m=1 n=—oo 771.

Using the definition of f(y) in (3.19) on page 30 and perform the: convolution, we have

H(z,y) = 2’—5 f_l an nio ‘;—gefwnxsn ) (B.33)
where
e:"ltl (et ~2+ e™™), [t > b
)= 2{1- %l) + %; [e”"('tl"”) — 2=t 4 e'*‘“‘“‘b)ﬂ [t <b (B.34)
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Again t = y, — ym here. The series in equation (B.33) decays exponentially when [¢t| > b,
at O(n~2) when [¢| = b and only decays at O(n~!) when |¢| < b. Again, the accelerating
method described in the beginning of Appendix B is employed when |t| < b. Decomposing

H; into two parts, we have
H; =H, + H, (B.35)

where H, will be evaluated in space domain, while the differential term Hy will be evaluated

in the transformed domain.
Using (3.26) on page 31 with G,(z, y) replaced by G,(z,y), we have
10 X
Ha(x7 ?!) = _a_ Z cﬂlfm(y) * Ga(xa y)‘ (B‘36)
KHor m==1

Substituting (B.7) into the above equation and being aware that z' = 0 here, we have

M +co .
He = %aﬁ > cmfm(y) * 30 Ko(By/(z —ns)? +y2)eimhaeess. (B.37)
T Im:l

n=—oo

Performing the convolution and the partial differentiation on z, we have the field written

as
H,(z,y) = % :Z; cmn:Zihn(x, y)eintscoss, (B.38)
and
ha(z,y) = —B(z — ns) /ob (1 — —Z—) [K‘Sff) + Klgf;R;) dr (B.39)
where

RE = \/(z ~ ns)? + (t £ 7)2 (B.40)

and £ = y; — ym- In (B.39), h, can be evaluated via numerical integration. The integrand
contains a modified Hankel functions of the first kind, which exhibits exponential decay when

the argument increases. Therefore h, exhibits exponential decreases as n — co.
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Similar to (B.36) the difference term H,(z,y) can be expressed as

1 a M
Hy(z,y) = pEE > emfm(y) * Go(z,9). (B.41)

m=1
Substituting the expression of Gy(z,y) as in (B.8) into the above equation, and noticing
that Gy(z, y) is the difference of two terms in which the second term has a similar expression

as the first one, except 7, is replaced by a;,. We have the difference term written as

- M +o00 !
H@y) = £ 3 en 3 nets (S"(t) - 50 ) (B.42)

n=c " 9
where S, (2) is defined in (B.34), S}, (t) has the same expression as S, (t) except 7, is replaced

by a,. Writing it in detail, we have

j M +oo ) Pn(tv am'Yn)r t>b
Hy(z,y) = 2= 3 cm >, wnel¥"® ( _E) i_1
26‘ m—=1 n—=——oo 201 b ’YZL CY% + Pn (t, Qp, 711)7 t S b(B43)
where
1
Pn(t, O, ’Yn) = 3 [fn.('Yn) - fn(an)] (B.44)
and
e—Enlt—bl J— 26_&1‘ + e"fﬂ(t'*'b)
fn(§) = (B.45)

&
The bottom case in (B.43) decays at O(n~*) while the top case decays exponentially as

n — oo.

B.1.4 Weighted Fields on Horizontal Strips Z,,,

The impedance element Z,,, is the weighted field on segment p of the horizontal strip due

to current segment m of the vertical strip, and can be expressed as
Zym = — / T,(z)E:,(z,0) dz (B.46)

where T3,(z) is the test function defined in (3.37), E is the electric field produced by the

current on the parallel strips which is expressed in (B.10).
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Using the vector potential expression (3.26) and the Poisson summation expression for

the periodic Green’s function, we have

1 8 Am(z,y)
- B.47
Zpm Jwpe / Tp(=) 8x6y dz (B.47)
y +oo
—_— .777 1 w-;(I—-J-") il ”fn'y ¥ l 4
= ks, 2 5 /T »(2) 57 eJ dz - / fm(y) e dy  (B.48)

where f(y) is the basis function defined in (3.19). Performing the integrals under the condi-

tion y,, > b, we have

d . ,
— pJwn(z—2") — jwn (zp—2') .
/Tp(x)aer dr = 2jsin® : DnC junm(z, (B.49)
—Tn(ym—b)
/fm(y,) aa—ye—7“'y—ylldy’ = e—'T"-(l — e M%)2 (B.50)

Notice that z’ = 0 = y here. Therefore the impedance is expressed as
+oo —7n(ym—b) WhC -
Zpm = ~10)2 g B glwnp B.51
ksbn_z_oo — e ") 25in 5 ( )
We see that terms in the summation series of (B.51) is exponentially decayed when
Ym > b, and is at O(n~2) when y,, = b. An additional order of convergence can be achieved

by using the decomposition of the Green’s function defined in (B.4). We express Z,, as

Zom = Zym & Zym (B.52)
where
a — 4 . ’ ’ . B' 3
me ]wﬂen—;oo/ p(-’lf) z8y /Jm(y )Go(z,y y') dy'dz (B.53)
Using (B.7), we write Z2, as
Z8 =ﬂ f jnejnkscos¢ (B,54)
o 2mkb

and

b c c ¢ c
1rn=/0 (fn(g,b—y)—fn(g’”y)‘f"(“i’b_y”f"(—?”y))d (B.55)
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where

fa(@,y) = Ko(B/(z, — ns +z)? + 32). (B.56)
The difference part is obtained in a similar procedure as in obtaining (B.43), and is

expressed as

n=—00
1 1 0 e—Tmb  g—anb N e=21b  g—2anb (B.57)
oo Yn oq VA a2

We see that the terms in (B.57) decrease as O(n™?%) as n — oo.

B.1.5 Weighted Fields on The Corner Dipole Z;,

The impedance element Zy,, is the weighted field on the corner dipole due to the current
on parallel strips. It is obtained in a similar way as we did in Section B.1.1, except with a

different test function. It is written as
Zom = ~ / T(t)t - Edt (B.58)
4

where E is the field produced by the current on parallel strips, T'(t) is the test function on
the corner dipole which is expressed by Ty(z) and Tg(y) separately for the z- and y- arms of
the corner dipole, as defined in (3.35). The line integral is defined along the surface of the
corner dipole. ! denotes the the contour of the whole corner dipole and t is the tangential
vector along [, refer to Fig. B.1 for illustration.

Using the field expressions (B.10) and the test function (3.35), we have
Zom = / To(z) B (2, 0)dz — / To(y) B,y (0,y) dy. (B.59)

Write it in detail, we have

1 92 2, O
Zom = e | D) 525 Aotz = [ T30 (¥ + ) Anies )]

(B.60)
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Figure B.1: Surface Current on Corner Dipole.

Using the vector potential expression (3.26) and the Poisson summation expression for the

periodic Green’s function, we have

+00 1

ZOm _— JT’ Z

o . 9
— plwn(z—2') L2 — —Tnly—yml|
~5ks & {/To(a:)azef de - 5o F (Y —ym) * @

2
—ein==) [Ty(y) (k2 * 57 ) F(@ = ym) x el y"*'dy} (B.61)

Making further manipulations, we have

3 ; 7 1 4
_ giwn(z—z') = ’ wn(z—')
/ To(z)5¢ dz / T!(z)e’ dz, (B.62)
5o (U= ym) x Il = iy ) Tl (8.63)
and
. 82
[T (8 + 22) 1= ) e vmlay (B.64)

2
= To(ym) * (k2 + 8?;2 ) f(ym) * e ™lomlay

Therefore the impedance element can be expressed as

5= @nl) (B.65)

n=—0o0 ’YTL

Zom = 2ksb

and

re‘“'"(t‘%”)(l —a)*)(1+a)? [(1 + :—z) (1-0)+a(l- ej“”‘%)] t>2b
kb\? i

Qn(t) = ¢ (—) +(1 —a)?

{(1+k2) (1-a=-a?) +(1+a)? (1—&“"2)}

A

t = b (B.66)
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where
t=Ym, anda= e_7n%- (B67)

We see that when t = b, the terms in Zp,, decay at O(n~2) as n — co. An additional order
of convergence can be achieved by using the decomposition of the Green’s function defined

in (B.4). We can express Zg,, as
Zom =28, + 2% . (B.68)

Similar to (B.61), Z&,, can be written as

ze, = I 3= (k%y i lI’~') ginkscose (B.69)
om T ok £~ YT )
where
3 b T
I = /y=o /Izo (1 — 3) [fn(0,6+z — ) + £2(0,b — z — 3)] dzdy (B.70)

T _ b c ’ E BN _ ' I '
1= [7 (G b+ ) = £ G =0 = 9) = £a(0, =0 +9) + fal0,~b — )] dy -

b
I3 = /Ob [fn(o, g —b+y) = fal0,5 b~ ¥) = fal0, b +y") + fa(0, b — y’)] dzé’]-3 )

Merging I with I and denoting I*¥ = I* — I¥, we have

° b
I* = -/0 [fn(gy —b+ y,) - fn(%: —b— y/) - fn(o, —'g + y') + fn(o, "’5 - yl)] dy’

(B.73)
where
falu,v) = Ko(ﬁ\/(u — ns)? + v2). (B.74)
Now (B.69) becomes
; +00
a Jn 1 T in
Zin = g & (k%{f -1 v) ginkscosd, (B.75)
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Figure B.2: Triangle function and pulse function.
The 2-D integral in I¥ can be converted into 1-D integrals. We denote
B=L+1 (B.76)
where
3 b z
L = / (1 _ -) 72(0,b + = — y)dzdy (B.77)
y=0 Jz=0 b

L = /y=0 /::0 (1- %) £2(0,b = z — y)dzdy.

I, and I, can be expressed as 1-D integrals via coordinate rotation. Denoting I; = I;; +

Iis + I13 and I, = I5; + Iy, + I3, we have the results written as

i = /O%x (1 - —) 200,z + )d:t: (B.78)
Lo = /0% g G— %) fn(0, 7 + b)dz

Ls = /0% g (% %)2/21(0 z+ 3b)dx

In = /0%:1:(1 5"'5) £20, b—x)dx

o = [HC-D) r0

o= [15(G-5) oo
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B.2 Fields From the Ground Plane

1 ., 0° 1 @&
Bu = — (k +—ax2)Az(z,y), By=— Ay (B79)
H, = —104y) (B.80)
g Oy

B.2.1 Impedance Matrix Entries Zpl

The entry in the impedance matrix relating to the averaged field on section p due to current

on section [ is given by

Zy = — / T,(z) E5,(z, 0)dz (B.81)

_ 1 . 02

= / T, (z) [k +@] Ai(z,y)dz

— 1 2 82 / ! ’
= _jw,ue/Tp(x) [k + @} /fl(:z:)Gp(:z: — 7', y)dz'dx

2
- .t T(z) = [k2 + 86?} f(z) = Gp(z, y)

Jwpe

y +00 =Tl 82 .
. Jn € 2 Wnz
= She X T(z)*f(x)*[k +axz]e’

where z = £, — z;. The convolution is carried out on z-axis. The test and basis functions
are defined as pulse and triangle function depicted in Fig. B.2, except the parameter c is
used here instead of b.

We define the Fourier transform pair as

Fw) = [ "™ Hz)e—TvTdy (B.82)
flz) = 51; /_ ;mF(w)ej“’du (B.83)

and using the convolution theorem, we can express (B.82) as

g IR e~mlvl

Zn = 2ks

(B? — w2) T(wn) F(wy)e?n= (B.84)

n=—00 'Yn
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where

sin %< sin o

Tw) = 2722 =2 (B.85)
4 sin® ¥ sin o\ 2
Flw) = S22 =c( - ) (B.86)

and o = wc/2. Writing it in detail, and noting that y = 0 here, we have

m to [ k2 jom(2p=21)
4jm ( 1) sin® 2 giun(zp - (B.87)

Wn Tn

We see the terms in (B.87) decay only as O(n™2) as n — oco. We can rewrite it as

Zu = Z% + 2 (B.88)
where
o = 2j77 7::0 (k2I1 + 1—2> pinkscos® (B.89)
and where

L = //(1—9 [f(tn——§+:c+x')+f(tn—g-i—x—:c')} dzdz’  (B.90)

L = [f(tn+f+x)—2f(tn—§+x)+f(tn—§—x)] dz

2

o, ©
(=]

with ¢, = £, — z; — ns and f(z) = Ko(B|z|).

Similarly, the 2-D integrals in [; can be converted into 1-D integrals as

L =1 + Lo+ 13+ 114 (B.91)
where
z c
Iu ZA T (1 —_ %) f(tn - 5 +.’L‘)d$ (B.92)

cc z\2 c
Ilz—/o‘ 2(1—;) f(tn+§+$)d$
T c
I13—‘/(; .‘E(]. %)f(tn+§—$)dx
cc z\?2 c
I14—'/(; 5(1 Z) f(tn—g—x)dit.



The difference part is expressed as

4jn X (k2 elon(me==) e /11
VA kscn;_oo (wg 1 o o) (B.93)
We see the terms in (B.93) decay as O(n™*) as n — oo.
B.2.2 Excitation Voltage V/
v, = / T(z — z,)% - Ei(z, 0)dz (B.94)

= %tanqﬁsin (%EcosqS) H"i(z:p,O), p=12---,L.

B.2.3 Scattered Fields H g

The scattered magnetic field is

A
1= 104 (B.95)
p Oy
Using the current expansion and Poisson sum for the Green’s function, we have
H® 1 L o *f “’Ynlyl /f( Jw (z—z1— ‘r)d (B 96)
= —— T)eln T .
25 = 3yn__°° Yn
For y > 0 we can have the scattered field written as
: sin oy, \ 2
Hi(z,y) = —Za, Z gl (=) g =Ty ( ) (B.97)
n=-—00 Qn
where
o = Wn
n 2 -

We see the terms in the series decays at least at O(n~?), which happens when y = 0,

otherwise exponential decaying is ensured.
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B.2.4 Weighted Fields on Parallel Strips Z

The weighted field on segment ¢ due to current segment [ is similar to (B.82), as

1 8?
Zg = —jwue/Tq(y)mAz(x,y)dy (B.98)
1 62 (4 4 !
- ‘]WﬂE/TQ(y) 61‘8 /f(.'L' - xl)Gp(x -z ,y)dl' dy
_ Jn +°° 1 Ay — jwnlz—a!) gt
= = [ q(y) e ay- [ (=) D ient= g

where T'(y) and f(z) are test and basis function defined in y and z axis. Performing the

integral under the condition y, > b, we have

/Tq(y)%e‘"’“ly—ylldy = e Wa+3) _ o~mm(ve~} (B.99)
/ f,(a:’)aiej“’"(z‘z')dx’ = e F(wy) @) (B.100)
T
+ 2 ((wpe
— jil. . Sl ( 2 )ejwn(:z:—a:l)
C Wn
a2
= ]'2-5“; Fn gfun(z—z1), (B.101)

Note that £ = ¢y’ = 0 here, therefore

+00 oin? ~Ta(Ya+3) — e=n(va—%
sin“on ., o e”7eWat2) =By

(B.102)

n=—oo %n Tn

where
WpC

(o 2% '—2—
We see that terms in the summation series of (B.102) are exponentially decaying.

B.2.5 Weighted Fields on the Corner Dipole Z

Zy = _/E!.Edz = —/El - (%dz + $dy) (B.103)

< -}
= /02 E} (z,0)dr — /;2 Eg,(0,y)dy

= Z.+ 2,
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where Ej, and Ej, are field due to the currents on z axis, except the z-arm of the corner
dipole. Ty(z) and Tp(y) are pulse functions defined in the Section B.3. The contour of
integration is defined in Fig. B.1. The entry in the impedance matrix relating to the averaged

field on the corner dipole due to current on section [ is given by

Tu = [/ To(2) (k+%) Ade)ds + [ To) 52 A y)dy] (B-104)

Looking at the two integrals, we have

/ Ty(z) (kz + %) Az, y)dz (B.105)
= /To(z) (kQ + :_;) flz —z) * Gp(z — =1, y)dz
= To(¢) * (A,2 + aiz-) f(t) = Gp(t, y)

- o° =
=F 1 {To(&)) (kz + %3) F(w)Gp(w,y)}
where t = —z;, and ép(w, y) is the Fourier Transform of G,(t,y) and

+oo 1

/ , y)dy ﬁ.n__oo"yn /To(y _ye —Tnly— y'dy

/ f —:Ez)—?—ej“’“(z—zl)d:c'. (B.106)
oz

These integrals can be evaluated in closed form, as follows

/To(y)%e_"”"y_ylldy = e Mzl _ o~mly'] (B.107)
/ f(x’—x,)%d'“n(f-z'>dx’ = JwnF(w,)elrE=20) (B.108)
; +00 —jwnx;
Zm = 92{:7 3 £ ——F(wn)T" (wn) (B.109)
n=—00 n

_ 2 3% erermah’ ()

SC n="c Tn w3 (ejwn% B 1)

2n 2 e—jwaz sin® (“’—“—c-) k2

= " ksc Z

2
n=-—0o 711 Wn (.d

&t —1)
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on X e—jwazi sin? (9-35) -
(2) - — Wn 3
VA ksc,,}; — ™ (1 — e7n5) (B.110)

277 +oo e—Jwnzi sin2 (Eg&)

>

ppos - " (1—e=2). (B.111)
n=-00 n n

Ly =

Now we sum the three terms up, noting that the first terms in Z® and Zy cancel with each
other, we have

+00 ,—jwnz; sin? ( ¥nc 2 2\ .
P (z)[5_+(1_k_2> i~ gmi].

ksc, = Tn Wn w2 w

n

(B.112)

We see the terms in (B.112) decay only as O(n"2) as n — co. We rewrite Z,; as two

parts
ZO[ = Zgl + Zgl’ (B.113)
We write Z§ as
Ze — ﬂ -*io I ejnkscosq& (B.114)
o 2k, = "
where
2 1
I, =—k°I; + —6-12 (B.115)
and
Lo= 7 [ (1=2) falta+2~,0) + falta — 2 ~ 9, 0)] deds’ (B.116)

I2 = Ac [fn(tn—x: g)_fn(tn +$1 g)—fn(tn—g—$,0)+fn(tn_§+$,0):| diL'

with ¢, = z; + ns, and fr(z,y) = Ko(BVzZ + y?).
Similarly, the 2-D integrals in I; can be expressed as 1-D integrals via coordinate rotation.
Denoting
Lh=Ih+ho+ L3+ I + L+ I (B.117)
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we have the results written as

3 z c

Iy = /0 r(1—2—c) Falta = £ +2,0)dz (B.118)
$5c/3 =z

Li; = /0- §<Z—Z>fn(tn+$,o)d$
$c/l  z\? c

[13 = A 5(5—-0—) fn(tn+§+x,0)dx

Ly = /ng(l—;c)fn(tn z,0)dz
$c(3 =z c

e =[5 (G-3) Sl — gm0
$c/1 z\?

I3 = /02§<‘2"‘Z> faltn —c—z,0)dz

B.3 Fields From the Corner Dipole

The field components produced by the z and y segments are

2 2
E:I:(xa y) = J(j:ue [(kz -+ %) AOJ:(-'L'«; y) + af—aony(x, y)] (B.llg)
Ey(z,y) = 1 [(kz + 8—2> Agy(z,y) + '8—2".4.0 (z y)J (B.120)
’ jwue Oy? v Ozdy
H,(z,y) = & (‘?—Ao (z,y) — ’a_AO:c(-T y)) : (B.121)
’ p\oéz U By ’

B.3.1 Impedance Matrix Entries Zy

Applying test functions on both sides of the above equation, we have
_ / T(2)E° - idt = / T()E: - tdt (B.122)
i l
where [ denotes the the contour of the whole corner dipole, t is the tangential vector along

[. Refer to Fig. B.1 for illustration. We select the test function T'(¢) in such a way that the

integral yields the average of the field along the contour of the whole corner dipole.
L 1y
Zo= [* Bz — [* Bjay
0 0
U R
= [ Ezde+ [* Bydz - [* Eyay - [* Bzay
=LZzz+ Zay + Zyy + Zyz
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where Z,, and Z., denotes the averaged field on z-segment of the corner dipole generated
by J. and Jy, respectively. Similarly, Zyy and Z,, denote the averaged field on y-segment of
the corner dipole generated by J, and J,, respectively.
Further, we denote Z,, = Z{}) + Z{2). Performing the double integration, we have
kn X 1 - efwnc/2 [e—iwnc _ 1 1

zZQ = o 3 ( e T ) (B.123)

25 £ WnTn JWn

: -+o00 1— Jwnec/2 k2 e—jwnc -1
I ° +1

2ksn=—oo 771 w—rzl jwnc
: T 1 _ piwnc/2 —jwnc __ 1
z@ = I € € +1 (B.124)
2ks <= Tn Jwnc
; Foo 1 _ jwnef/2 1 — e~b
Zy = 20 el e "~ _ 1) . (B.125)
2ks 5=, T bYn

It is noticed that the first term in Z{2 is canceled with the first term in Z,,, which yields

: +oo 1 — e_-,'cu,,,c/2 e—jwnc —1 1— e—’ynb
Z(2) 7 = Jn )
sz T Ly 2ks 2 jwne * bYn

n=——0oo 7n

(B.126)

Similarly, we denote Z,, = Z{!) + Z{2). Performing the double integration, we have

Jkn X Q1)
zZy = > v (B.127)
n=—oo T
+o0 k2
= ‘7ks n—Z_oo 711 Q(’Yn
in 0 1 _ o—1ab/2 1 — e—nb/2
z@ — _Jn 3% 1o <1+_8__) (B.128)
2k377.=—00 7n b')"n.
- +oo — »—Tnb/2 —jwne __
Zy = 97’7 1-e¢ <1+e—_—1) (B.129)
2ks = Yn Jwne

where

3b 1—e % 1—e 3
Q(7n) - Z - __7n (l -+ _b’)’n ) .

We also notice that the first term in Zg) is canceled with the first term in Z,;, which

yields

zZ@ 4L 7 J_77
w T L Jime b7

+00 1— e—'ynb/2 e—jwnc -1 1 — 6—7nb/2
2ks ( ’

n=—oo Tn

(B.130)
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Summing up, (B.123) becomes
jn = {3b k2 1 —elun

Zog =L 2E
00 2ksn=—oo 4 711 N Tn

1—e Mm% E2\ 1—e™m3 k2 1 —eJunc
1t S | }.
Tn V2 bvn Y2 Jwne

It is noticed that the terms in the above series converges at O(n™2) as n — oo. An
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additional order of convergence can be achieved by using the decomposition of the Green’s

function defined in (B.4). We express Zgg as

Zoo = 2§ + Z¢,. (B.131)
Next, we write Z§, as
Z8 =L kn_z_:oof einkscos o (B.132)
where
I, =k (If+I¥)+%I$+%Iy (B.133)
and
rr = /y;o Lzo (1 - %) Ko(Blns + = — y|)dzdy (B.134)
=L 09 Ko(ﬁ\/(m)? T (o — 9)P)dady
R A I
P o= [rcgn-rov-)a
and

fn(z,y) = Ko (ﬁ\/(ns +z)2 + y2) : (B.135)

Similarly, the 2-D integrals in I; car be expressed as 1-D integrals via coordinate rotation.

Denoting
F=Li+Ih+sand [f =1}, + 1T, + I (B.136)

80



Tx) T(y)

o
S
[p}

]

Q
)

Q-

<

Figure B.3: Current basis and test function on the corner dipole.

we have the results written as
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) fn(——; + z,0)dz (B.137)
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B.3.2 Excitation Voltage V

The excitation voltage is defined as a line integral of the tangential incident electric field on

the surface of the corner dipole, as expressed in the LHS of (B.122).
Vo = /l T(t)E: - tdt (B.138)
:
= =d d
[% E. :z:—i—/o E,dy
= ]nk 0 [(esz‘m" - 1) tan @ + (ejkgs ¢ — 1) cot¢] :

The basis and test functions applied on the z and y arms are depicted in Fig. B.3.
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B.3.3 Scattered Fields Hj

The magnetic field from the currents on corner dipoles is

1 (8A, OA,
H, ==~ ( 5~ e ) : (B.13w9)

Now we formulate the contributions from A, and A, separately in the following sectionss.
Field From J,

1 10 9 e—mly-vI

— el P]wn(z:—-z:’)
H.(z,y) 23a0n-— By /fo(:r) dz’ (B.140)
1 1o 5 e—'rnly—y l

= o > 2 o) e

2s 2.0y e
+00 a e~y .
= ao Z F(wn)eJ“’“"
Tl——OO
eme _1 1\ .
= —ao Z ( - = )ej“’“"‘e"”‘y.
n=—oo 2 JWn

Note in the above, we have used the fact that y' = 0 and assumed y > 0. Also the Fourier

transform is defined in (B.83), and the convolution theorem is applied.

Field From J,

1 X190

55% 2 =

n=—oo

] Wn iy (z—
— 23a° Z In pdwn( I’)/fo(y)e —Tnly— y'dy

n—=—oo /M

I

Hz(x’ y) ern(:c—I’)/fo(y e 7nly—yldy

Tn Oz

The integral can be evaluated in closed form for y < 0, as

b _
(e 1 —_ 1) —Tny y 2 b

e'Yn(y—b)
(1 - —) (1 + W) e ¥ y<b. (B.141)

[ folw)e 7 lay =
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Therefore the scattered magnetic field from J, is, (note =’ = 0 here)

Tnb __
( (e bh 1 — 1) e—'Vuy y 2 b
;. +oo _ " e (y—b)
B = o 35 Baame ] 5 (1Y) 4 ¢
25 ntteo T b | y<b. (B.142)
— 14+ =) ey
{ bYn

The Total Field From Corner Dipoles

Using (B.141) and (B.142), we have the scattered magnetic field by the corner dipole

s 1 400 — Qn N y 2 b
where
_ JWn s e dwne — 1  Gw, (1 k? .
=g [ wic 12 (bfrn ta)e (B-144

We see that for the case y > b, exponential convergence is ensured. For the case y = b,
the convergence rate is at O(n~2), while for the case y < b, is only O(n~!). Again, the

accelerating procedure is employed, we write

H: =H*+ H® (B.145)
Next, we write H¢ as
ao +o0o X
H* = o= > (If + Ig)e7m*ecs? (B.146)
27Tn:—oo
where
c '\ Ki(BR:) , ,
T S Iiebl A Uinh VA .147
I By ; (1 c) 7 dz (B.147)
b "\ Ki(BRy)
vy — . _ y_ 1 ’
IY B(x — ns) /0 (1 b) R, dy
and
R, = \/(a: —z' —ns)? + y? (B.148)

Ry = (z-ns)2+(y—y)2
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The difference part which is evaluated in the spectral domain comes out to be

Q5 (y. wn, %,an) y>b
1 +oo X y
H%(z,y) = —aq Z eln® (1 — —)]wn —- -
2s 2 y<b
= A (B.149)
+ Q5 (y,wm'rn, Q)
where
b . jwn e"YﬂIy—bl p— e"’Yny e—anly—bl — e—any
QY wny Yy o) = = ( P - ) (B.150)
—jwnc __ 2 2
+ Q_l (6—7713:’ _ 6—0'13/) + ._i_ k_e_’Yny + — ﬁ *Qny
w121.c jw‘n ’Yn a‘%

We see that for the case y > b, the terms exhibit exponential decay, for the case y = b,

decrease as O(n™*) and for case y < b, decrease as O(n™3) as n — co.

B.3.4 Weighted Fields on Horizontal Strips Zno
Zpo = = [ T,(2) (3, y)dz

where T,(z) is the weighting function, and E, is the z-component of the field from the corner

dipole.
The field from the corner dipole consists of contributions from the horizontal and vertical

current components, and is given by

Ef = —¢ (k2 ) / Jz(z") Z HP (kR,)e/™=*dz’ (B.151)
J,  _ 77 ’ (2) inkzs
El = -1 axay — [, J(y)n_z_:wHo (kRa)e™™*=2dy’. (B.152)

Applying the Poisson summation, we have

Jwn(z—z')

EF = ”’ ( B+ 2) / J=(z") }: € e~ mlv—v gy (B.153)
5?2 +00 ern(a: z') _

By = 2]:3 Bsz:ay/ Iy (y') Z — e Vigy', (B.154)
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We denote Z,, = Z, + Zy, which accounts for the contributions from J, and Jy, respec-

tively. We have

Zy 2'7:3 S~ e /T(x — zp) /J (=" [kz + -a?—] e?nE=T) dr'dr (B.155)
sy giwn(z—z) ,
zZ, = 2k3n§_j°o/T(x :z:p)/J (y)axé‘ — e =Ygy dz. (B.156)
The expression can be written as a convolution form

Z, Qi:; Jf 17:;z—_le(t) * Jo(t) [k2 + 5—22] glent (B.157)
zZ, = ;Z%:f %T(t) .2 efwnt Jy(y) * %e-%'y vi (B.158)

where ¢ = z,, y = 3’ = 0. Performing the convolution, we have
Z, = %ngwi::_—wf’(wn”ﬂ%) (k? — w2) et (B.159)
— :_Snjzlej;:zp sin “’;C [ (1 - f—z) % +1- Q%J (B.160)
z, = 3 ksn_&o]iﬂ )7t T (1)) % e~ Tl (B.161)

Using Z, and Z,, we have

june o7 “’3]  (B.163)

Zpo = — sin
p0

n +o0 erJnIP . WpC 1 k2 e—jwnc -1 . 1 — e—'ynb k2
ksn:—oo 7‘!1. 2

w?
B.3.5 Weighted Fields on Parallel Strips Zq0

The weighted field on segment g of the parallel stripe due to the current on corner dipole is

given by

Zg =— / T(y — yq)¥ - E(0,y)dy (B.164)

where T'(y —y,) is the test function applied on segment ¢, and E is the electric field produced

by the corner dipoles. Note the corner dipole has current of both z and y components, the

85



above expression can be written as

Zgo = — /T(y — )y - E¥(0, y)dy — /T(y —y)¥ - E°(0,y)dy = Z, + Z;
(B.165)
where EY and E* are fields produced by the current on the y and z arm of the corner dipole,

respectively. Using the decomposition shown in (B.165), we evaluate the contribution from

Jy and J, separately.

Contribution From J,

iy 90 giun(z—') 21 .
Z, =L ¥ //T(y v)J (¥') [kz ] 1 lv=Yl g/ dy.

2ks, S0 (B.166)
Note that z = z’ = 0 here. Performing the double integration, we have
Zy, = Y(Yn B.167
vy 21€Sn_z._°°Q (7 ( )
where
D (B ) (25 ) 2
+ —e ™ —e ,
Tn 073 bn
y_ ) Kb 1—em2 1+1c_2
=t 12
" o B " t =b. (B.168)
(l—e""f) (2 + e M3) _— ,
bn e (e ‘)
and t = y,.

Contribution From J,

= }: / J(z /) 9 er"(z_z)d,l://T(y_y )ie-vnly—y'ldy
% 2’“3 Tn v ¥y " (B.169)
We note that £ =y’ = 0 here. Performing the double integration, we have
i 90 e=ra(t—4) — g—Jwne
_ Jn € T b _qy [ LT B.170
o= ks, 2 e Y ( Jame 1) ‘ (B.170)
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Merging Z, with Z,, we have
Tn

2
. (1+5
g

n=—oo

qo“z_k‘z <k2b 1— e Mm%

%,4

r 6—771 (t— %b)

(1 —e™mb)

1 —_ e"'an

k2

1 — e June
i R
\ Jwﬂc 711_

-

(5)

) e 7"2(1 +e‘7"2)]
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Appendix C

Some Properties Relating to
Convolution

In the formulation of the impedance elements and the scattered fields, we will encounter the
evaluation of some integrals which are given below for quick reference.
In derivation of impedance between segments on parallel strips, we encountered the fol-
lowing integral, refer to (B.14)
1 2

Zan = =z [T0) (24 27 Am(z.v)dy (1)

which need the following properties relating the Fourier transform of functions, convolution

between functions, with §-functions or its derivatives.

fi(&)=g(&) = f(&)*g'(2) (C.2)
F@) =) = f(¥) (C.3)
f@)*6'@) = f'¥) (C.4)

where f(t) and g(t) are assumed to be continuous. Assuming J;(z) and Jy(y) are triangular

functions defined as

Jo(z) = {(Z - 1) 0<z=q (C.5)
0 else.
y
J, () = {(1 -5 osuse (C.6)
0 else.
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we have

LW = —3 k) - uly~ )+ ) ©7)
Hw) = ~306) -5y —b)]+5) (C8)

where u(y) is the unit function. Further we have these integrals

/J(y') a_a:lje—'rnly—y’ldy = J(y) = gy_e—’rnlyl = J'(y) * e~ Tnlvl (C.9)
b

= b / e~ Tlv=tlgy 4 eyl (C.10)
0

J'(y) xe M = _% [e—vnlyl — e—*rnly—bl] + %e—%lyl (C.11)

(C.12)

‘The Fourier transform of J;(zx) and J,(y) are

e 7w 1 1 1 — g—Jwb 1
_ - 4 C.13
Tz(w) = % 7 and Jy(w) 25 + 7 ( )

Take the definition in (3.35) on page 33, the Fourier transform of the test function Ty(z)

and Ty(y) are

— e—iw§ — e Jws
Tow) =127 nd To(w) = 2272 (C.14)

Jw Jw

Some general properties relating to Fourier transforms are listed for quick reference

/ To(2') e @ dg! = J,(z) % T = T, (w,)ed "  (C.15)
/ Jz(x’)%ej“’"(z‘x')dz' = J(2) % T = ju, T (wn) eI " (C.16)
/ T(z)e =gy = T(—w,)e e’ (C.17)
/ T(z)%ej‘”"(”‘z')dx = jwnT (—wn)e 94n (C.18)
/ T(y)gy-e"”"y'dy = —T'(y) x e~ (C.19)
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Appendix D

Scattering From Periodic Planar
Arrays of Parallel Cylinders with
Small Radius, TM polarization

Consider a periodic planar array of parallel cylinders with small radius, perfect conductivity
and infinite length. Let all the cylinders have the same radius a which is much smaller than
the wavelength. The axis of cylinder n is parallel with the z-axis and passes through the
point (zn,ys) = (0, ns) where s denotes the spacing between axes. With a z-polarized plane

wave incident on the array as in Fig.D.1,
Ei(z,y) = Boe/tzcoso+ysing) (D.1)

Consider the surface current density J; to be uniformly distributed around the surface

of the cylinder. Then the field scattered from the cylinder n is given by

E = —I Jo(kan) HS® (kpa) (D-2)
where

2 = wz,ue

pn = (& —2n)2+ (¥~ m)?

I, = =Fr

I, = 2mwa,J;



S l
o o o o & o o
o— 6o oG —6—6 o
Dx ¢
©c O o= 0 N O O
O O O O Oo-Og- O
) Ez

Figure D.1: Plane wave incident on periodic planar array.

where the superscript (2) is understood on the Hankel function Hy(z) here after.
The electric field intensity has only a z component, so the subscript z is omitted in the
above equations and the following. The field scattered by the array of cylinders is obtained

from (D.2) simply by summing on n.
D.1 Boundary Conditions in General

The boundary condition requires that
E® + E* = 0, over all cylinder surfaces. (D.3)

Here E*, and E* represent the scattered and incident field, respectively. Using the equiv-
alent principle, equivalent currents are assumed on cylinder surfaces, with the conducting
cylinders removed, leaving an array of cylindrical current sheets radiating in free space.

Assume the total number of cylinder is P, we may write the total scattered field as

P
E°=)"E, (D.4)
=1
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where E is the field radiated from surface current on p-th cylinder. Due to the geometrical
feature, we further expand (D.3) as
P
En(ZTm, Ym) +:L;1,Ep =—E! (Tm,Ym), m=1,2,--- P (D.5)
where the 7 means that the term p = m is excluded in the summation. The above summation
is over all the cylinders. The points (zm, ym) represent the relevant cylinder where the B. C.
is to be ensured.

Strictly speaking, the boundary condition should be satisfied on surface of all the cylin-
ders. While the radii of cylinders were assumed to be small, an approximation is made here
to ensure B. C. only at the center of each cylinder. Hence (z, ym) in (D.5) is referred to the
center of cylinder m and terms relates to fields are considered as the averaged value around
the circumference of the cylinder.

The first term in (D.5) is separated from the summation, since it represents the self-term
which is the radiation from the current on the surface of the same cylinder. The field on
surface of a cylinder radiated from the surface current on the same cylinder has a different
expression from the field on surface of a cylinder radiated from the surface current on other

cylinders.

D.2 Boundary Conditions for Periodic Arrays

Consider an array periodic in y direction and finite in the z direction. The number of rows in
z direction is M. Since the geometry is periodic and the excitation is periodic along y-axis,

a periodic solution is possible:
Ifn — I{Oejnkssin‘ﬁ, 1= 1, 2’ SR M, n = —00, +00 (DG)

where [, is the current on p-th and n-th element in z and y-direction, respectively. I, is
the current on an element lying on z-axis in the same row. In view of (D.6), there is only

one unknown current for each row of cylinders. I, can be determined by applying B. C. on
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elements lying on the z-axis. The scattered field on each cylinder at z-axis can be expressed
as, for cylinder at (z,, 0)
M
E,(z,,0) = 2 Eyi(zp, 0) (D.7)

where indices p and ¢ are counted along z-direction, E,;(z,) represents field on cylinder p
lying at (z,,0) from all the contribution of cylinders lying in the ith row, i.e. summation
over y-direction, which can be expressed as

+00

> Jo(ka)Hy(kpinp)ei™kssiné, i#p

Ep‘i(xzh 0) = _Izltl) nETe +00
Ho(ka) + Y Jo(ka)Hy(nks) cos(nkssing), i=p (D.8)

n=1

where

Pinp = \/(:rp — ;)24 (yp —ns)?2 = \/(:z:p — z;)2 + (ns)?

1" ’ w
0 = iO']O(ka) =T#J0(ka)fio

I is related to the current on the ith element lying on z-axis, the subscript 0 is suppressed
hereafter. The equation for B. C. can then be rewritten as
M -
> Zpd] = Ei(zp,0), p=1,2,---, M (D.9)
i=1

where Z; is given in (D.8) as

+o0
> Jo(ka) Ho(kpinp)elmFssing, 1#Dp
Zp’: = mETee +o00 (DlO)
Hy(ka) + Jo(ka)d_ Ho(nks)cosnkssing, i=p
n=1

and the incident field term on the right is defined by (D.23). The series contained above can

be converted to a rapidly convergent series using the Poisson summation theorem, namely

fori#p

+o0 94 +c0 e~ Tn lzp~z:i]
Z HO (kpinp)ejnkssin bi _]ejkyp sin ¢; Z 6_72n1r-yp/s (D.ll)
n=-—00 s n=—oo Tn
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where

9 2
’yn=\/<ksin¢i+%) — k%, n=0,%£1,£2,--- 40

Since y, = 0 for Z,;, we have for i # p
Zy = Jo(ka)%]- n:z: LZ_I' (D.12)
When ¢ = p the Poisson series is slowly convergent since the exponential term over |Tp—z:]
vanishes. A summation formula is available in Gradshteyn and Ryzhik’s table [22]. Further,
we see from (D.12) that when the cylinders on z-axis is equally spaced. [Z,:] is a Toeplitz

matrix.

D.3 Scattered Fields

Once the surface currents I} for the cylinders on z-axis, is solved from (D.9), the scattered

field can then be evaluated

M +00 ) )
E(z,y) = =3I S Ho(kpi)e™ssin® (D.13)
=1 n=-—o0

where p;p, = \/(:1: — z;)?2 + (y — ns)2.

Again, the summation over n can be done via the Poisson summation formula, therefore

the scattered field can be expressed as
M

s 1" 2j jky sin ¢; = €
E(z,y) = Z_[io?ej i

=1 n=-—oo Tn

—Ynlz—z;

[
einmyls (D.14)

D.4 Fields Radiated From Cylinders

First, we consider a line source carrying electrical current I located at (0, ¢'). The field is

wul

Ez(p7 pl) = - 4

Ho(klp — F']) (D.15)

Er use the addition theorem for Hankel functions, and rewrite (D.15) as

I ing—ey [ Ju(kp)Ho(kp'), p<p'
Ez ' — _w/J' n(¢—9¢') n ) D.
(P, #) 4 _zozoej { H,(kp)Jn(kp'), p>p' (D-16)
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(x,y)

Figure D.2: Field from a uniformly distributed cylindrical current sheet.

xy)

Figure D.3: The average field on surface of a cylinder.

Now consider a surface current J; uniformly distributed on a cylindrical sheet with radius
a, as shown in Fig.D.2. The segment current is dI = J;ad¢ where J; is the surface current

density. The electric field contributed from all the segments along the circumference is

Bu(p) = =222 [ y(fo — ') (D.17)

Performing the integral over ¢', we have

wpul { Jo(kp)Ho(ka), p<a (D.18)

E(0) = ==\ Holkp)dolka), p > a
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D.5 Averaged Field on Surface of a Cylinder

Counsider the average of the field on surface of cylinder j from a uniformly distributed cylin-

drical current sheet on surface of cylinder 7, as shown in Fig.D.3. We have from (D.18)

I
Eji(pj) = —2’/1’0._-,' Jo(kai) /;Ho(klpij + a]-l)dl (Dlg)

where

pi = T ty;

pij = \/(CEJ —~ ;)2 + (y; — v:)?

where a;, a; are radii of cylinder 7 and j, respectively, a; is the vector from the center of

cylinder j to the circumference, p;; is the vector from the centers of cylinder 7 to the center

of cylinder j. Expand Hy(k|p;; + a;|) as
w .
Hy(klps; + a5]) = D_2(=)"Jalkaj) Ha(kps;)e™®54%), py; > a;
where ¢; is in local coordinate on cylinder j. Performing the integral over @4, we have

Eji(pj) = —IiJo(ka:) Jo(kaz) Ho (kpi;) (D.20)
D.6 Averaged Incident Field on Surface of a Cylinder

Consider the following plane wave incident on surface of a cylinder with a small but finite

radius a.

Ei(:c, y) — Eoejk(a:cos ¢i+ysin ¢;) (D.21)

where ¢; is the incident angle. Using a cylindrical wave expansion for plane waves [16],

eq.(11-55b)
ejkpcos(¢—¢’) — f:jnjn(kp)ejn(¢—¢l)
—o0

we have the average incident field on surface of a cylinder located on (0, 0)

—_ R 1 2r .
F=s [ Bo)di=5 [ E(a,é)dp= Ju(ko) (D.22)

= 2ma
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When the cylinder is located in (zo,yo) instead of (0,0), we may make a coordinate

transform and rewrite the incident field as

Ei(.’l?, y) = Eoejk(zcos¢i+ysin¢;)

= E, eI kl(zo+2z') cos gi+(ya+y') sin ¢:]

— Ei(xo , yo)ejk(z' cos @i+’ sin ¢;)

Performing the integral procedure similar to that in deriving (D.22) in coordinate X’O'Y”,

we have the averaged incident field when the cylinder located away from origin written as
Ei(x0, y0) = Jo(ka) E*(zq, yo) (D.23)

where Ei(zy,o) denotes the averaged incident field on the cylinder under illumination cen-

tered at (zo, yo). E*(zo,yo) is defined in (D.21), and a is the radius of the cylinder.

D.7 A Summation Formula

A summation formula in [22] can be used to calculate the self-impedance term.

1
Z Jo(kz) cos kzt = R S 1

+
— 2 \/‘ £2 E\/ﬁ (27l + tz)? z.. \[ 2 — (2nl — £33 24)

and
s 1 z =1 1
kz_—.:l No(kz)coskat = —= (C +1In 21?) (Zl i g —l—)
x 1 1
- 2 ( - 27#) (D.25)

l=m+1 \/ eml +tz)?2 — z2

_ f: L. 1
{=n+1 \/(27rl —_ tx)Z — $2 271’l
where £ > 0,0 <t < 1, C = 0.577,215,664,90. .. is Euler’s constant, and m, n satisfy the

conditions

2rm < z(l—t) < 27m(m+1) (D.26)
2rn < z(l1+t) < 27n(n+1) ’
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In applying this to periodic wire arrays, we see that z = ks and ¢ = sin ¢. Therefore

< i(1 —singd) < m+1
(D.27)
n < X(l-{—sinq&) < n+1
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Appendix E

Periodic Planar Array of Parallel
Cylinders with Small Radius

Considering that the material referred to by J. H. Richmond [15] is not accessible to general

public, we include his note here for reader’s reference.
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Fericdic Flanar Armay of Parallel.Cylinders with Small Ré'ldius.

T™ g Folarization

Consider a periodic plemar array of parallel cylinders with Vamall

radius, perfect conductivity and infinite length. Let 21l the cflindera

have the same radius "a" wh3ch is much smaller than the wavelength.
The axis of cylinder n is pamxallel with the z axis and passes through the
point (xn,yr) = (0, ns) where s cenotes the spacing betwesen axes. Viith a

g-polarized plane wave incideert on the arrey as in Figure 7,

20. E;(x,y) = B, e,jk(x coaf + y sinf)
and the excitation voltage is
e =i e o _Jmks sing

TE,

Pw

_l.()m

RE

Fig, 7. Plan= wazve incident on periodic planar arrzay.

)

quation 16 represents an infinite system cf simultancous linear
N ” .
equations for the currents T__'n induced on the cylinders, _Since the o

envirorment 3s periodic and the excitation is periodic, a reriocic

solution is possible:

" 1" .
22, 1 I, exp(J rks =ind)



In view of eq. 22, there ia only one unknown current: I:, and it can be

determined by enforcing equation 16 with m = 0, With m = O, we note that

Pon

= |n|l s . Frem eqa. 16 — 22 we obtain:
i ©
23. 1 59(_1(.&.2 + 2 Z H (nks) cos(nks sin¢)] = E
e Jo(ka) = °

Although the infinite series in eg. 23 converges slowly, summstion
formulas are available in:

I. S. Cradshteyn and I. M, Ryzhik, "Table of Integrals, Series and Products",
Academic Fress, New York, pages 976-977, Section 8.522,
From eq. 19 the field scattered by the arrzy of cylinders is
®

- s _ n 3J nks sing
2&». Ez - - Io Z Ho(k pn) (3
-
where
: 2
25, P, = \/x2 + (y - ns)

A more convenient expression for the scattered field is

-~ Tn [x J20my/s

- 144 s
26, EI = - 25 I, e.iky sing@
8

where

7. Yn = \/?k sing + 2n::/a)2 -k

mé[\/]

Most of the modes in eq. 26 have a positive real value for Yn These
"evanescent modes" decay exponentially to negligible values when the
observer moves far away from the array of cylirders. The zero—order mode ,

however, has n = O ard

8. Y, = X cos@

Thie mode is Just the reflected plane wzve when x is positive. Thus, the
reflection and trans:n:.sszon coefficierts of tle array of cylinders are

29. R = -2 I, end T = 1+R

E_ ks cos@

In eq.25 , the modes with n differing from zero are cazlled "higher-order mcies',
If a higher-order mcde has a pure imaginary value of Y s it is a propagasting

plene wave and is called a "grztirg mode". An evanescent mode mzkes the
transition to a grating mode at the "cutoff condition" ar "cuton condition®

defined by Yn = Q0. For each greting mode, the direction of propagztion is
readily determined from egs.26 end27 .
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