INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materiais (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0800

UMI

A Neural Network Approach for Generating Derivative Information from Quan-
tized Position Measurements

Asif Nadeem Zaidi

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented as Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science
Concordia University
Montreal, Quebec, Canada

October 1995

© Asif N. Zaidi, 1995

i~i

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Weillington
Ottawa ON K1A ON4

Canada
Your fie Votre reférence

Our fig Notre reférence

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-448754

Canada

Abstract

A Neural Network Approach for Generating Derivative Information from
Quantized Position Measurements
Asif Nadeem Zaidi

In the control of robot and other mechanized systems. there exists a need for the generation of first
and higher order derivative information. Not much effort has been made to address this issue.
Instead much of the work, especially in robot control, has relied on a priori knowledge of the sys-

tem dynamics to determine the derivative information.

The goal of this thesis is to propose a generalized methodology to determine first and higher order
derivative information without any a priori knowledge of a system’s dynamics. For illustration
purposes the system that we will concentrate on is a flexible joint robot manipulator. In achieving
our objective. we impose three restrictions on the resulting methodology. First, the acquisition of
the derivative information required for the control of a robot manipulator must be done without
assuming knowledge of the robot’s joint position or its dynamics. Second, we must not use any
additional hardware than is absolutely necessary. Thus, for our flexible manipulator system. we
must only use a sensor to measure the position variable. The derivative information (velocity.
acceleration and jerk)-must be determined by the proposed methodology. Third, the derivative

information must be determined in real time.

We accomplish the objectives using Tap Delay Neural Networks (TDNN). We incorporate the
proposed methodology into the control system of a flexible joint manipulator. Numerous simula-
tion results show the success of our proposed scheme within robot control loops. Additionally, we
compare the performance of a number of alternatives within this scheme with that using conven-
tional linear filtering techniques. Again, we see the superiority of the proposed TDNN scheme

over the linear filtering approach.

To my parents -
Mohammad Zaidi & Azra Hameed

Acknowledgments

First and foremost, I would like to thank my family for their patience and support throughout my

education.

I would like to thank my supervisors Dr. Baher S. Haroun and Dr. Rajnikant V. Patel for their
guidance of this thesis. I would also like to Dr. Asim Al-Khalili for guiding this thesis to its end.
This work was supported by Fonds pour la Formation de Chercheurs et 1’ Aide a la Recherche
(FCAR) of the Province of Quebec under Grant ER-1042. The author wishes to acknowledge this

support.

Table of Contents

List of Figures VIl
Abbreviations X
1.0 Introduction 1
1.1 Examples of systems where derivative information is usedccceeeeeueeennn.... 3
1.2 Motivation and overview Of thesiscoeeeeinirenereeeeeeeeiee e eeaeeeenaes 9
2.0 Neural Networks, Sensors and DSP 11
2.1 Tap Delay Neural NEtWOIKScccceicreeeeeeecceereeccrerceeaentreteeseeereressssseseseessanes 11
2.1.1 Robotics and Neural Networks...........ccccoeeiereimrrcreeeecenrnreierereeeeecesecesesenenans 13
2.1.1.1 Robotics Problemsc...cceeveerueeiernreerieeeeeeeeeeeeeereeecess s seneneesns 14
2.1.1.2 Inverse DYNAMICS ...cocueeiecriieciieiececececeeeneeccreeecteeterecesseeersssessssnssesssees 14
2.2 SEDSOTS .oonieieiececececccssececnteacasamesssesnseaase s snseseassmaassssasasssessseasseessssnesssssnsennrenesesass 16
2.2.1 OVerview Of SEISOTS........ctouiiicareeeecctaeneneeeeateeecteecaentesssaeeesssessssresasessnsanes 16
2.2.2 Incremental Optical ENCOAErSeoreimuiiniceeenicencrnetecaeneneseee s e ceenavens 19
2.2.2.1 Direction of ROtationcccceieemiioioriiirencieeeereenseaeceeeee e veeeeeeeeeaens 22
2.2.2.2 Position and Velocity COMPULAtONcccccoveeeremrerreneesceencerrensemeeascnens 22
2.2.2.3 Advantages/Disadvantages of Incremental Encoders 23
2.2.2.4 Data Acquisition in Incremental Encoderoeoeeeereeeeeeeceeenn. 25
2.3 Digital Signal PrOCESSINEc..ccomrrreermereeceeeoeeneaciaenecteacecesaresassneasessseeennssnsesesanes 27
2.3.1 Higher-order Differentiators..........ccoccccoeecomereravcmeeeeeeciiineneeeaseseeeeesseesernsenns 27
2.3.1.1 Review of previous research in higher-order differentiators 29
2.3.2 Effect of quantization noise on a Signalc.ccceveceeeveeeenrercreesresnersaccerennnne 30
2.3.3 SUMMATY ..ot ctteccnrece st e ceeessesacotesesnteessonesesss e sesmeassasesassassnnsnsessnsnnss 33
3.0 Proposed Methodology for Estimating Derivative Information 3s
3.1 Investigation of problems associated with generating higher-order derivatives ...35
3.1.1 Control system for a single-joint manipulator........ccceeeoveeoieeeroreeeccceereeeneennn.. 36
3.1.2 Closed-l00p SYStEIM TESPONSEccceeeeeeecerermerecrsnseressrsnrssrerssesessssssnsmssseesnes 37
3.2 Proposed methodology to generate derivativesc.ccccceecveeemreeeerneneeernesensenneens 39

3.2.2 Tap delay neural network architecture............cccooeceeroererceeeererereeee e 42

3.3 SUMIMATY coueeeeeceeeecntctneencnccsiesstensssetesaseasassessssnnsnsssnnsesssserssssesssssesssnssssssnns 43

4.0 Closed-loop Behaviour with Derivative Estimator 44
4.1 Neural network SMOONETuoveeivneeiiinieicrteececeececeme e csecesecenesraesnnaansesnssannes 45
4.1.1 Results from the neural network smoother........ccccoeeeeeiecmnecoicreeeeeeeeeeeen 46

4.2 Neural network differentiatorscoo oottt ne e eaees 47
4.2.1 Results of neural network differentiators..........ccccccevveviniciarcccnrcennnn.. 48

4.3 Generalization capability of derivative eSMAtorcccceevecmirrcvereceescrecccesenennnnn. 52
4.4 System response with derivative eSHMALOLccooveereceemmmrsnmmrrcerssecsereseesscrecsneens 55

4.5 SUMMATY ceiriiiicoeeeeictrtitesretts e sssssstssaseseccsasesssnsassesoness sesesssasssascasssesssnssaensnnnnes 64
5.0 Considerations for Real Time Implementation 65
5.1 Firstalternative to the derivative eSHMALOLccccceriirarrirsrerirrsinreenecesneseseneanennes 65
5.2 Second alternative to the derivative eSHMALOrccccceviecmeretinrrrceriecereeceeneceereennnes 67

5.3 Third alternative to the derivative €SHMALOLcccccceeoviuememmemerrmnieeneeecrreceaceens 70
5.4 SUIMMATY croocereee et sse e oa e te e tsseaeae e cmsesasesmss et csssenneacesasesssssnasaans 72
6.0 Conclusion 73
7.0 References 75
8.0 Appendix 77

Figure 1
Figure 2
Figure 3
Figure 4
Figure §

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Figure 11
Figure 12
Figure 13
Figure 14

Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Figure 33

List of Figures

Chamey and Josin’s control scheme.

Training architecture.

Troudet’s evaluation of closed-loop controller architecture.

Zeman’s control scheme.

The TDNN cell. The D delayed values of this vector are also entered.
b W, represents the weight vector on the drh delayed copy of the input.
Block diagram of future robot systems.

Typical robot position transducers.

Schematic representation of an optical encoder.

Incremental Encoder Disk with Offset Sensor Configuration.

Pulse signals from an incremental encoder: a) clockwise rotation,

b) anti-clockwise rotation, c) reference pulse signal.

Hardware for optical incremental encoder (for a single output pulse).
Angular resolution of optical incremental encoder.

Schematic of computer interface for an incremental position encoder.
Schematic of computer interface circuit to measure position with
direction detection and higher resolution.

Noise introduced by quantization.

Effect of differentiating quantized position signal to get velocity signal.

Effect of quantized differentiation signal to get acceleration signal.

Effect of differentiating quantized acceleration signal to get jerk signal.

The control system for an arbitrary n-th order, single-joint robot.
Tracking performance of control system without any hardware
considerations.

Tracking performance of control system when using a 12-bit sensor.
Tracking performance of control system when using an 8-bit sensor.
Modified diagram of the control scheme.

Proposed Derivative Estimator Architecture.

TDNN architecture.

Result of the NN smoother when the position signal is quantized to
12 bits.

Result of the NN smoother when the position signal is quantized

to 8 bits.

Result of the neural network differentiator to generate first-order
derivative when the input sample is quantized to 12 bits.

Result of the neural network differentiator to generate first-order
derivative when the input sample is quantized to 8 bits.

Result of the neural network differentiator to generate second-order
derivative when the input sample is quantized to 12 bits.

Result of the neural network differentiator to generate second-order
derivative when the input sample is quantized to 8 bits.

Result of the neural network differentiator to generate third-order
derivative when the input sample is quantized to 12 bits.

Result of the neural network differentiator to generate third-order

47

49

49

50

50

51

Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41

Figure 42
Figure 43

Figure 44
Figure 45

Figure 46
Figure 47
Figure 48
Figure 49

Figure 50
Figure 51
Figure 52
Figure 53

Figure 54
Figure 55

Figure 56

derivative when the input sample is quantized to 8 bits.
Generalization capability of the NN smoother when the input sample
is quantized to 8 bits.

Generalization capability of the NN differentiator to generate first-
order derivative when the input sample is quantized to 8 bits.
Generalization capability of the NN differentiator to generate second-
order derivative when the input sample is quantized to 8 bits.
Generalization capability of the NN differentiator to generate third-
order derivative when the input sample is quantized to 12 bits.
Control system with the proposed methodology to determine higher-
order derivative information.

Closed-loop system response showing tracking of position and velocity
components with the neural network estimators.

Closed-loop system response showing tracking of acceleration and jerk
components with the neural network estimators.

Closed-loop system response when acceleration and jerk components
are nullified.

Closed-loop system response with exponential terms.

Closed-loop system response of a pick-and-place trajectory composed
of exponential components.

Closed-loop system response of a complex trajectory composed of
exponential and sinusoidal terms.

Closed-loop system response with NN derivative estimators and a
higher-frequency component.

Closed-loop system response when sampling rate is decreased.
Closed-loop system response when sampling rate is increased.
Alternative 1 model.

Closed-loop system response showing tracking of position and
velocity components with Alternative 1 model.

Alternative 2 model.

Closed-loop system response showing tracking of position and
velocity components with Alternative 2 model.

Response using a linear filter.

Alternative 3 model.

Piece-wise linear activation function characteristics.

Closed-loop system response when using a piece-wise linear
activation function.

Summary of performance of different derivative estimator architectures.

51

53

53

54

54

55

56

57

58
59

60

61

62
63
63
66

67
68

68
69
70
71

71
72

DSP

LED
TDNN
ASIC

Abbreviations

Artificial Neural Network
Digital Signal Processing
Finite Impulse Response
Infinite Impulse Response
Light Emitting Diode

Tap Delay Neural Network

Application Specific Integrated Circuit

Chapter 1
Introduction

Over the last decade, interest in the control of flexible-joint robots has increased significantly.
Flexible-joint robots bring an added complexity which is not found in rigid robots. This new
dimension enables the robot to function with an accuracy and reliability which can not be
achieved when flexibility is ignored. This advantage also brings with it the difficult task of con-
trolling the manipulator. This is because the bandwidth of the system has increased signifi-
cantly and dynamic effects which previously were beyond the frequency range of interest in
rigid manipulators now have to be considered in the controller design. Consequently, the tech-
niques that have been utilized in the control of rigid manipulators [2] cannot be applied directly
to the control of flexible-joint manipulators. The control of rigid joint manipulators typically
employs measurements of the position and velocity of the joints - the states of the system. A
typical flexible-joint manipulator state consists of position, velocity, acceleration and jerk (rate
of change of acceleration). Therefore, control requires the additional measurements of the
acceleration and jerk components. The inclusion of two additional quantities adds several
dimensions of complexity with respect to the task of data acquisition. The majority of sensor
systems made are primarily for determining the position component. We can find sensor sys-
tems to measure velocity and acceleration but finding sensor systems to measure jerk is impos-
sible. The overall weight of a sensor system is also an issue when it is incorporated to measure
the desired signals in a flexible robot manipulator. It is necessary to ensure that the overall
weight of the sensor system does not over-burden the manipulator. If this constraint is not satis-
fied then there exists a risk of significantly altering the dynamics of the robot manipulator. Fur-
thermore, the task of implementing a sensor system to measure a variable is made more
complicated since a mechanism must be put in place to filter the quantization noise. A sensor

implicitly quantizes the input variable and, as is well known, quantization adds noise to the

2

resulting signal. Thus the sensor system must ensure that the effect of quantization noise is
reduced as much as possible. This in itself is a problem and it adds to the cost of the overall
sensor system. Another limitation that is placed is that the acquisition of the control parameters
must be done in real time. This is especially true in control systems or DSP systems where
speed is of the essence. A system is worthless if it cannot satisfy this constraint. Thus the prob-
lem of finding an effective methodology to determine the higher-order derivatives remains an

open area of research.

Therefore, the aim of this research work is to design a methodology to determine higher-order
derivative information. In order to illustrate our design, we shall concentrate on the information
that is required for the control of a flexible-joint manipulator from quantized position measure-
ments. To achieve this end, we impose three requirements on the proposed methodology. First,
the acquisition of the parameters required for the control of the system must be achieved with-
out any knowledge of the dynamics of the system. Second, a minimum amount of hardware

must be utilized and third, acquisition of the signals must be done in real time.

Previously, two schemes have been employed to determine higher-order derivative informa-
tion. One scheme is to have a mathematical knowledge of the system and use it to derive a for-
mulation from which we can calculate the required values. The second scheme is to use
physical sensors to measure each feedback signal. The problem associated with the first scheme
is that a knowledge of the dynamics of the system is required, whereas the problem with the
second scheme is the use of additional hardware. This poses a problem since it increases the
weight of the overall flexible-joint manipulator and thus alters the system dynamics. Also,
despite rapid advances in micro-sensor and VLSI technologies, sensors to measure velocity and
acceleration are fraught with errors and, as was said earlier, sensors to measure jerk are non-
existent. The previous control algorithms for flexible-joint robots have implicitly assumed that

the required quantities (position, velocity, acceleration and jerk) are readily available with high

3

accuracy. In this thesis we show that such an assumption ignores several practical difficulties

and maybe detrimental to the design of the overall control algorithm.

Next, we discuss case studies where higher-order derivative information is required for the con-
trol of a system. In reviewing these works two things should be noticed. First, the authors have
not indicated how the signals required for the control will be generated. Second, there is a wide
variety of applications which require the use of higher-order derivative information. Thus it is
of vital importance to have a standardized methodology to generate higher-order derivative

information.

1.1 Examples of systems where derivative information is used

In [3], Charmney and Josin replaced a PID controller [4] by a neural network controller for
manipulator joint control. PID controllers are essentially designed for linear time-invariant sys-
tems and have constant gains. However, in a dynamic system like a robot manipulator a con-
troller is required which can function well for a non-linear, time-varying system. The use of a
neural network as a servo controller adds the ability for adaptation for non-linear control of a
robot manipulator system. The authors tested the two controllers on their manipulator under
different joint loading conditions. The results indicated that the neural network controller was
superior in terms of tracking the desired trajectory when compared to the PID controller. The
control system setip which was used is shown in Figure 1. Note the use of the derivatives to

compute velocity feedback.

Desired position Select PD or NN control

Host —1 pD * Joint Position
Computer Circuit — Motor Sensor
Actual position
Robot Controller
y Vv
Data Acquisition/Control
Pre- A,e Neural
e 7“&—"
Calc. A dt Network
Emor
AB + AB +JA0 dt
Neural Network Computer

Figure 1 : Charney and Josin’s control scheme.

The neural network used is of a feedforward nature consisting of three inputs and one output. In
addition to the input layers, there are two hidden layers consisting of a sigmoidal activation
function. and an output layer consisting of a linear activation function. The inputs to the net-
work were determined by considering the response of the physical joint to be controlled which

in this case are posiion, velocity and acceleration. The inputs to the network are defined as:

A8 =

comamnd eacmal

- - d _
a6 = 940 = A0, — 40, _,

A8, + A8 _,

faedr = — ———
2

The next work we explore deals with the control of an aircraft flight [5]. The objective of this
research work is to develop a neural based aircraft fight control scheme. The crux of the
research is an analysis of the trade-off in achieving adequate performance versus control in the
presence of actuator nonlinearities. An aircraft control design was chosen with two control
inputs and two controlled outputs. The control design problem was set up as that of following

the trajectories generated from a model of the desired vehicle response dynamics from pilot

command inputs.

The training architecture is represented in Figure 2. For each pilot selected trajectory Zg, (5) . a
commanded trajectory z.(») is generated. Prior to training, the variables z () are discretized
and scaled into # (1) = [V. (1) /V% Q. (1) /Q° , where V2 and @7 are of the order of magni-

tude of the maximum values of V_(1) (aircraft velocity) and @_(» (pitch rate) respectively.

As shown in Figure 2, two control inputs & are calculated by a two-hidden layer feedfor-
ward net that has eight inputs (or four inputs associated to the O and V variables) and two neu-
rons in the output layer. These pairs consist of the scaled output vector #(;) (Term D); the
tracking error &,(z) (Term C) between the scaled vehicle output vector ' (z,) and its desired
scaled value at timer, , ; the discrete time derivative of the tracking error é.(z) (Term B): and
the time average of the tracking error j;'_’:ﬁ (Term A). Each neuron has the standard activa-

3 3 tk
tion function: y=ranh(x).

As we see from the above input parameters, they are composed of a sum of the tracking errors
and control input commands and rates. This is termed the “objective function™ and it is the

task of the neural network to minimize this function.

6

Once the training was finished, the trained neural network was placed in the control system as

shown in Figure 3. It was shown in the results that the neurocontrol learned with such a training

results in very accurate control.

Zs
Term D SEL
Term A ()
Term B Neural “ Tk)
Controller __|__. Vehicle (1) zs(tk)
|: Model |————— D >
lat— Term C -
% © ez(tiv1)
2 |- D |=
Figure 2 : Training architecture.
Term A
—
Term B N
- . s ———1 Neuro a(t) -
ZSEL Desired |zdt) u(t
S_. D ics Term C | Controller |t Acmuators|—4 ;/: gé: lle
Filter |
Term D -
(1)

—

Figure 3 : Troudet's evaluation of closed-loop controlier architecture.

The last system we examine is a flexible-joint robot manipulator for which the control scheme

is shown in Figure 4.

Robot
a:®
—’
44-q4"V q.-4°Y

Figure 4 : Zeman'’s control scheme.
As we can see a partitioned control strategy has been employed. The inner loop has the respon-
sibility of linearizing the plant. A neural network that was trained off-line is used here. This
neural net serves as the controller. For a single-joint manipulator with a dynamical model of
order n (which is four in this case), this network will have n+1/ inputs and a single output. The
first n inputs q¢.4.4,....¢"~! (in this case position, velocity, acceleration, jerk) are connected to
the plant. The highest order net input is connected to the outer loop feedback signal v. The inner
loop is closed by connecting the net’s output u to the robot’s input (driving torque). Thus any
given input vector gq.4, 3.4" " !,v will produce a unique net output «. The neural network con-
troller and the inner loop together form the model-based portion of the controller, so named
because it models the inverse dynamics of the robot. The second portion of the controller is the
outer loop, commonly referred to as the servo portion. The servo design treats the robot as a
black-box and does not need any information from the robot with regard to its dynamic struc-
ture. Only the order of the system (four in the case of a single joint manipulator) is needed. A

linear feedback strategy (PD control) is applied to the outer loop. The servo error is defined as

e4+k3e3+k2e2+k1e1+k3e0 =0 (@)

8

where kg, k. k3, k3 are feedback gain constants which can be set to provide any desired closed-
loop system poles without any specific knowledge of the system dynamics. The resulting con-

trol law (v) is given by

v = gheky(@a) +hy (50D +k (aga)) + k() @

Their work showed that for a manipulator with unspecified nonlinear dynamics a control strat-
egy can be devised. However, one of the limitations that was observed in their work was the
need to generate the higher-order derivatives. These were assumed to be accurately generated.
A mathematical model of the non-linear dynamical system was used to determine the deriva-
tives. We use this system in this thesis as a demonstration of our approach for higher-order
derivative estimation. Our methodology modifies the control loop by incorporating a structure

called the “derivative estimator”. This will be explained later in Chapter 3.

We now give a brief synopsis of the research work that has been done in systems that require

the use of higher-order derivative information.

In [6]. the authors discuss the performance of a neural network controller with a non-linear
plant in a feedback control system in the presence of different noise disturbances. They con-
cluded that a neural network controller trained with noisy data adapts better to the presence of
disturbances than a-neural network controller trained with clean data. While they achieved their
initial aims their work was incomplete in that they did not address how they were going to gen-
erate the higher-order derivative information. This is especially important in this case since

their system (a one-link rigid manipulator) required the velocity feedback.

In [7]. they propose a position/force hybrid control of a robotic manipulator based on neural

networks. The proposed method had shown a wider applicability with respect to changes in the

9

manipulator’s orientation. Again the control system required the use of derivative information

and this fact was not addressed.

The same conclusion can be drawn in [8], with respect to the generation of derivative informa-
tion. This research work is devoted to the problem of controlling a class of dynamic systems via

controllers based on neural networks.

In all the above mentioned works (and, in general, for most physical systems), the overall con-
trol scheme involves the use of first and/or higher-order derivative information. An assumption
is made that the derivative information is available and accurate. For example, in [1] it is said
explicitly “... we will assume that the required derivatives (of joint positions) can somehow be
obtained.”” We will demonstrate in Chapter 3 that in practice this assumption does not always
hold. Additional means to obtain the derivative information must be incorporated when imple-

menting the control methodology.

1.2 Motivation and overview of thesis

We have indicated the purpose of this research work - namely that of deriving a methodology
which will enable one to generate the derivative information required for the control of a flexi-
ble-joint manipulator. We have shown examples of systems where derivative information was
used for the control of their respective systems. However, all of the above examples and others
usually omit the consideration of how this information is going to be determined. It is implicidy
assumed that the feedback quantities can be accurately determined by appropriate instrumenta-
tion. We show in this thesis that disregard of this fact is detrimental to the overall performance
of the control algorithm. We propose a neural network structure to perform derivative estima-
tion. Our criterion for judging the success of our neural network system is based on how well

the overall control system will track the desired trajectory.

10

Our approach incorporates the use of a sensor to measure the position component. To model the
quantization ability of a sensor, we implement a quantizer. The resolution of this quantizer can
be adjusted by the control engineer. We investigate the effect of changing the bit resolution of
the quantizer on the tracking of the desired trajectory. We then use neural networks to generate
the derivative information from this position parameter - i.e. we will build neural network dif-
ferentiators. Using this approach satisfies our three constraints of using a minimum amount of
hardware, eliminating our dependence on a mathematical knowledge of the system and obtain-
ing the system response in real time. Next, we explore neural network architectures where the
total number of computations is reduced thereby reducing the real time required to obtain the
derivative information. Again we judge the success of our derivative estimator based on the cri-

terion specified above.

In Chapter 2, we will give a brief review on some background material that we need for under-
standing this work. We discuss three areas. First, we discuss the need for a model-free estima-
tion procedure in robot control. Second, we discuss the different types of sensors that are
generally available. Third, we give a brief review of DSP theory with special emphasis on
quantization effects, and techniques used for digital differentiaton. In Chapter 3. we discuss
the methodology that was employed to generate the derivative information from position mea-
surements. We show the results of our proposed methodology in Chapter 4. As we mentioned
earlier, any mctho&?)logy must ensure that the feedback quantities are obtained in real time.
This is the subject of discussion in Chapter 5. We explore neural network architectures where
the number of computations is reduced substantially and yet the system specifications are met.

We conclude the work in Chapter 6.

1"

Chapter 2
Neural Networks, Sensors and DSP

This chapter introduces the concepts of neural networks, sensors and digital signal processing
as they are used in the context of this thesis. The material presented here is not new, but rather
itis a review of the areas mentioned above. References are given at each point which the reader

can then examine for further details.

We first start by giving a brief discussion on a type of neural networks known as Tap Delay
Neural Networks (TDNNs). In this thesis, we study the control of a flexible-joint robot manip-
ulator system. We give a brief model of the robot which indicates the relationship between the
force required to move the manipulator along a desired trajectory and its states. We see the
dependence of this force (torque) on the generation of derivatives of the joint position. We then
proceed to describe a sensor system that can be used to measure the position variable. Finally.
in the last section, we show conventional digital filtering techniques to generate the higher-
order derivative information. We also review previous research work done in the area of digital
differentiators. In this section, we pay special attention to quantization effects and comment on

the result of differentiating a quantized signal.

2.1 Tap Delay Neural Networks

Tap Delay Neural N:,tworks (TDNNs) have been used mainly in the field of speech-processing.
They are used in an attempt to account for the dynamically changing nature of speech by build-
ing temporal delays in a multi-layer perceptron network and integrating information across
time in the upper layers of the network. This property of representing the relationships between
events in time is very attractive in building neural network differentiators. The most common

technique to arrive at approximate higher-order derivatives is by finite differences. This is a

12

standard procedure in numerical analysis and in digital simulations of analog systems. Using
the methodology of finite differences involves taking the differences of consecutive samples
from the original signal. This is illustrated in equation (3):

d _y(n)=y(n-1)
IOy _pr= —F A

where T is the sample rate of the differentiator. If more accurate differentiation is required then

the following algorithm should be applied to the digital signal:

y(n)-a,y(n-1) —a,y(n-2)...-a _y(n-D)
d _ 1 2 d
n®leonr = T @

where D can be any value depending on the amount of accuracy one wants. This ability of a
TDNN to represent relationships between events in time cannot be found in conventional neu-
ral networks and thus TDNNs will be used. The most extensive use of TDNNs comes in the
research work of Waibel [9, 10]. In a TDNN. each cell in the network effectively receives not
only its nominal input vector but “delayed” values of the input so that it can learn local correla-

tions in the data. A schematic of a TDNN is shown in Figure 5:

13

Figure 5 : The TDNN cell. The D delayed values of this vector are aiso entered.
o W, represents the weight vector on the dth delayed copy of the input.

At time “p”, the layer 1 cells receive the “present” plus “D” (assumed two for this example)
delays of the input vectors, say X(p), X(p-1), Xx(p-2), while layer 2 receives the present plus four

delays of the output of layer 1, say y(p),...y(p-4). The output of the TDNN is given as

D »
Y (P) = SLZ W,y (p-d)} ©)
=0
The S() can be any activation function - piecewise linear, step, hyperbolic tangent etc. [14].

Z.1L1 Robotics and Neural Networks

In this section we_will concentrate on one particular area where neural networks are used -
namely robotics. Robot manipulators are essentially open-chain kinematic mechanisms. There
is coupling between motions of individual segments. To further exacerbate the problems, the
parameters of a manipulator are dependent upon its configuration, and the governing equations
are highly non-linear [11]. The desired trajectory of the endpoint of the arms is specified in Car-

tesian space, while motions are actually obtained from actuators located at the joints. The trans-

14

formation from Cartesian to joint co-ordinates is a computationally intensive problem and is

dependent on the algorithm used and on knowledge of the robot parameters [12, 13].

As we see, the control of robot manipulators requires a knowledge of the mathematical proper-
ties of the system. In many cases, it is almost impossible to determine this accurately. In lieu of
this, some means must exist whereby this dependency can be learned or predicted. Artificial
Neural Networks (ANN) offer a viable option. ANN’s can in principle be trained to approxi-
mate relations between variables regardless of their analytical dependency [14]. Hence, it is
possible to solve the robot control problem with model-free estimation systems - using ANN'’s

trained with a large number of examples.

2.1.1.1 Robotics Problems

There are three fundamental problems in the control of a robot manipulator: task planning, tra-
jectory planning and motion control. Task planning phase is concerned with information man-
agement and co-ordination of the job to be performed. Trajectory planning involves finding
the sequence of points through which the manipulator end point must pass. When a trajectory is
given, the motion control problem is invoked. This involves the determination of joint torques
which will allow the arm to follow the desired trajectory while satisfying the physical con-

straints of the robot.

ANN’s find applications in all the areas mentioned above. However, this thesis work mainly
deals with the last area (motion control) primarily because this is where derivative information

is required.
21.1.2 Inverse Dynamics
The robot control problem is the problem of computing the torques which are to be applied to

the joints (the task of inverse dynamics) to drive the robot manipulator along a desired trajec-

15
tory. In general, the desired motions will be subject to motion constraints or performance crite-
ria, such as minimum overshoot or minimum time. The computation of the necessary torques

requires consideration of the necessary parameters such as inertia and damping.

For the purpose of this thesis, we have chosen a single-link manipulator with joint flexibility.
The manipulator is described in [1] as follows: “The manipulator consists of a motor which is
elastically coupled to a uniform thin bar of length |, mass m and moment of inertia (1/3) mi?’.
The complete equations of motion are given in [1]. Here we will just show the relationship

between the joint variables and the torque generated for the manipulator in open loop:

1
A8,

[= (1) (a,4,-0,4,) 8+ (a)-A;) 8-p(a; +a) g +ug™ (A,-A))sin(q) +ajapucos(q)g (6)

We can see two things from equation (6). First, inspite of being able to derive a mathematical
equation the formulation is very cumbersome. In some systems obtaining a formula in closed
form is very difficult analytically and requires a symbolic software such as MAPLE. This is the
basis of the work in [1], where a controller was devised to eliminate the knowledge of the math-
ematical formulation presented in equation (6). Second, we notice the use of higher-order
derivatives of the position variable (q(Z), q(3, q(4)) where it was assumed that these parameters
would be available by the use of appropriate instrumentation. For the purposes of this thesis.
we will assume that we can only measure the position component and the acquisition of the
higher-order derivative information will be made by the proposed methodology. This assump-

tion is made because we want to use a minimum amount of hardware.

In the next section we will give a brief descriptica of a system we can usc t0 measure the posi-

tion component.

16

2.2 Sensors

We saw from Section 2.1, that it will be necessary to measure the position variable and the cor-
responding higher-order derivative information. In this section we will show the techniques
that can be used to measure the position variable. While it is true that sensors to measure veloc-
ity do exist [15], we assume that the generation of the velocity component (and also the acceler-
ation and jerk components) will be made by the proposed methodology. We will first start by
giving a brief overview of sensors and then describe an incremental optical encoder system.
This is the type of system typically used to measure the position of the joints of a robot manip-

ulator.

Z.2.1 Overview of Sensors

The control structure of a robot involves knowledge of the position of each joint in order to cal-
culate the position of the end-effector thus enabling successful completion of the prograthmed
task. The movements of the joint can be angular or linear depending on the type of robot -
Polar, Cartesian. Resolute, Cylindrical, Prismatic. Refer to [10] for a more in-depth explana-
tion. An appropriate algorithm is then used to calculate the end-effector position in the Carte-

sian co-ordinates of the task space of the robot.

Research work is currently being done to involve the use of external sensory feedback (extero-
ceptors) as shown in Figure 6. Using this would allow one to forgo measuring the position of

the joint measurements [15].

17

..................................

User Robot Robot Robot
Interaction Controller Actuators End-Effect

Feedback
Devices
(position
Sensors)

Exteroceptive
Devices

sensory information

Figure 6 : Block diagram of future robot systems.
This technique is based on adaptive techniques, similar to the way in which the human body
functions. However, this technique is largely in the research stages and has not found its way in

commercial systems.

For the time being, internal position transducers remain the most reliable way for obtaining any
information of the robot arm. There are two main types of position transducers: absolute and

incremental.

(Transducers ?

Absolute

.

Resistive

Potentiometer Coded optical Slotted optical
encoder disks encoder disks

Figure 7 : Typical robot position transducers.

18

The output of an incremental encoder is a pulse signal that is generated when the disk rotates as
a result of the motion of the robot. By counting the pulses, both angular displacement and angu-
lar velocity can be measured. Displacement is obtained with respect to a reference point on the

disk as indicated by a reference pulse (index pulse) generated on that location on that disk.

An absolute encoder (also known as whole-word encoder) has many pulse tracks on its trans-
ducer disk. When the disk of an absolute encoder rotates, several pulse trains - equivalent to the
number of tracks on the disk - are generated simultaneously. At a given instant, the magnitude
of each pulse signal will have one of two states - i.e. a binary state, as determined by a level
detector. This signal corresponds to a binary digit (a O or 1). Thus, the set of pulse trains gives
an encoded binary number at any point in time. The pulse windows on the tracks can be orga-
nized into a specific pattern so that each of these encoded patterns correspond to the angular

position of the disk at the time when the particular binary number is detected.

The same signal generation mechanism can be used in both types of encoders. There are four
commonly used means to achieve signal generation:

» Optical sensor method

e Sliding contact method

e Magnetic saturation method

¢ Proximity sensor method
We will only describe the signal generation in the first method. The other three methods are

adequately covered in [15].

The optical encoder uses an opaque disk that has a circular track (or as in the case of an abso-
lute encoder, several tracks) with some arrangement of identical slots. A parallel beam of light
(from an LED) is projected to all tracks from one side of the disk. The transmitted light is

picked of from the other side of the track using photosensors. Each track has usually one photo-

19
sensor as shown in Figure 8 (in subsequent sections we will show that there might be two pho-

tosensors per track to increase the resolution).

.

Photosensor

Figure 8 : Schematic representation of an optical encoder.
Since the light from the LED is interrupted by the opaque areas. the signal registered is a series
of voltage pulses. This signal is then interpreted to get the angular position and angular velocity

of the disk.

In the following sections we will describe in more detail an incremental optical encoder. We
will also describe how it can interfaced with a digital processor to get the required measure-
ments.

&.2.2 Incremental Optical Encoders

There are two possible configurations to for an incremental encoder disk: 1) the offset sensor
configuration, 2) the offset track configuration. An example of the former case is shown in Fig-

ure 9.

20

PD2

Reference
Slot

Reference
Pulse Photodiode

Figure 9 : Incremental Encoder Disk with Offset Sensor Configuration.

The disk has a circular track with equally spaced transparent slots. The area of the opaque
region between the slots is equivalent to the area of the slots. Two photodiode sensors (PD1 and
PD2) are located on the slot. They are offset from each other by half a slot length. The ideal

waveforms of the output signals (v and v;) are shown in Figure 10.

In the second configuration, two identical tracks are used, one offset from the other by a quarter
pitch. In this case, one photo-diode sensor is positioned facing each track without any circum-

ferential offset. The output waveforms are the same as before.

In both variations of the incremental encoder, we see that there is a separate track containing a
“Reference Slot” and a “Reference Pulse Photodiode”. This track is used to generate a refer-
ence pulse per revolution of the disk. This pulse is used to initiate the counting operation (see
Figure 10c). Additionally, the index pulse count gives the number of complete revolutions.
Note that the pulse width and pulse-to-pulse period are constant in each sensor output when the
disk rotates at constant angular velocity. When the disk accelerates, the pulse width decreases

and when disk decelerates, the pulse width increases.

Vi 90°

il
Lags by 90°
ot
Time
V2
1 .
(@)
Vi 900
Leads by 90°
—>
Time
\p)
/L 1 — _
b) Time
—
c Time

21

Figure 10 : Puise signals from an incremental encoder: a) clockwise rotation,

b) anti-clockwise rotation, c) reference puise signal.

The hardware for generating the mechanism is shown in Figure 11.

Figure 11 : Hardware for optical incremental encoder (for a single output pulse).

2.2.2.1 Directi { Rotati
The offset of the two photodiode sensors is used to determine the direction of rotation of the
disk. From Figure 1la, it can be seen clearly that the disk rotates in a clockwise direction
whereas in Figure 11b, the disk is rotating in an anti-clockwise direction. Thus the direction of
rotation can be determined by the phase difference of the two signals using appropriate phase

difference circuitry.

One method of determining the phase difference is to time the pulses. Let us assume, if the
counting is initiated when the v, signal begins to rise and if n; is the number of clock cycles
until v, begins to rise and n, is the number of clock cycles until v; begins to rise, thenn; > nj -
n; corresponds to a clockwise rotation and nj < n; - n; corresponds to an anti-clockwise rota-

tion.

2.22.2 Positi 1 Velocity C (ati

To compute the angular position, ©, suppose that the maximum possible count is M pulses and

the range of the encoder is $@p,,,. Then the angle corresponding to a count of n pulses is

) N

23

Assuming the data size is r bits, then the maximum number of pulses is

M=2" @®)

where zero count is included.

Note that if @p,, is 27 and Oy, is 0, then O,y and Opyiy, Will correspond to the same posi-

tion of the code disk. To avoid this ambiguity, the following is used

e . =)]

Two methods exist to compute the velocity: 1) the pulse-counting method and 2) the pulse-tim-
ing method. In the first method, the pulse count (n) over the sampling period (7) is measured.
Consequently. the average time for one pulse is T/n. If there are N slots on a disk, the average

time for one revolution is NT/n. Thus the angular velocity () is

2nn
©= T (10)

In the second method, let us assume that the clock frequency is f Hz. If m cycles of the clock
signal are counted during an encoder period (interval between two adjacent slots), the time for
the encoder cycle is m/f. Assuming there are N windows, the average time for one revolution of

—

the disk is Nm/f. Thus the angular velocity (©) is

®©=— amn

An advantage of incremental encoders is that there is no wear and tear. Consequently, an incre-

mental encoder lasts longer than most other types of sensors mentioned earlier. A single incre-

24

mental encoder can serve both as a position sensor and as a velocity sensor. This eliminates the
need for using a conventional analog speed sensor like a tachometer [15]. A further advantage
of using an incremental encoder over a tachometer is the elimination of an A/D converter. The
pulses generated are then directly counted (by an up/down counter) and timed thereby provid-

ing both position and velocity.

A disadvantage of the incremental encoder is the poor angular resolution AQt. This is dependent
on the number of transparent slots on the disk n. the width Wp, of the photodiode active area

which in turn depends on the photodiode mounting distance from the disk centre.

At
Reference Photodiode
Slot ———— P 4
o L —

Figure 12 : Angular resoiution of optical incremental encoder.

Ad=360/n -

W, =rsin (360 / n)

p

For example, to design an incremental position transducer with a resolution of +3° one would
require an encoder disk of a minimum of 120 slots. Typical commercial sensors have a resolu-

tion of 0.08° over /2.

25

To processor

CLK

\V/
1 Counter
. (angular
position)

Data

Counter
(No. of
Revs)
Reset Clear
input from
processor

Figure 13 : Schematic of computer interface circuit for an incremental position
encoder.

The optical encoder output is a pulse train. In order to measure the position, the interface hard-
ware needs to count the pulses produced when moving from the last position. However, this lat-
ter position must be known at all times for the robot controller because this encoder can provide
only an incremental-position measurement, that is it can only show how much the position has
changed since the last move operation. To overcome this problem, the robot needs to be reset to
a known position after the switch-on (usually referred to as the “home” position) and keep track
of the joint absolute positions in the computer memory by updating it with the incremental
position measurements after each move. In the event that there is a power surge, the robot needs
to be reset to its home position. The main components for this circuit are thus an amplifier and

a digital counter. However, the previous implementation assumes that direction is not being

26
sensed and thus it is not known whether to add or subtract the incremental position from the
previous one stored in memory. Additionally, the interface circuit requires a form of local mem-
ory so that the transducer output can hold it until the processor needs it, and a sequence detec-
tion circuit to determine the direction of rotation by comparison of the two transducer outputs).

The modified circuit is shown in Figure 14:

Up/Down
Sequence
Detection]
Circuit
Count channel
l" To
Counter | Data processor

=5 Reset position

Reset

Figure 14 : Schematic of computer interface circuit to measure position with
direction detection and higher resolution.

The arrangement provides an efficient means of data acquisition because the counting process

can continue without interruption while the count is being read by the processor from the latch

buffer.

27
2.3 Digital Signal Processing
In the context of this thesis, we concentrate on one particular aspect of digital signal process-
ing. We study the task of generating first and higher-order derivatives from a measured vari-
able. Higher-order differentiators yield samples of a bandlimited continuous time signal. In this
work, we study higher-order differentiators that have been designed as non-recursive linear-
phase filters that approximate the ideal frequency characteristic which varies as a power of fre-
quency with frequency. Below, we will first give a mathematical formulation of the conditions
imposed on a non-recursive filter which is to be used as a differentiator. We will then give a

brief summary of the research work done in this area.

231 Higher-order Diff tiat
Consider a nonrecursive digital filter with N taps having an impulse response h(n) (n=0to N-1).
For the case of a linear phase filter having a symmetric impulse response we have hA(n) = h(N-1-

n). Consequently the frequency response is H(V) = M(w)eS VN2 here

£

Z a(n)cos (nw) | N odd
n=0 12)
(%’)
Za(n) cos (n—%)w N even
\\#=!t J

M(w) =

If Nis odd,
a(0) = h{(N-1)/2] and a(n) = 2h[(N-1)12-n] for 1 < n < (N-1)/2.

If Niseven,

a(n) =2h(N2 -n) for 1 <n < N/2.

For the case of an antisymmetric response, we have h(n) = -h(N-1-n). Therefore, H(Y) =
M(w)ed®2 - WN-1)/2) ghere

¢ =D \
2
Y b(mysin(aw) | N odd
a=]
Zb(n) sin(n—%)w N even
\\7=1 J

If Nis odd,

b(n) = 2h[(N-1)2 -n] for 1 £ n < (N-1)/2.
If Niseven,

b(n) = 2h(N/2-n) for 1 Sn < N/2.

An ideal k-th order differentiator has a frequency response Hj(%) = D(®)e¥P'2 where D() =
(@21 for 0 S W < @p < 7. The upper passband edge frequency is Wp. For an even order dif-
ferentiator (k is even), hle(j‘”) is a real valued function. Thus only a non-recursive filter with a
symmetrical impulse response can be used for the design of even order differentiators. A full-
band differentiator ((.0p = T) can be designed only when N is odd. When N is even, it is neces-
sary that Wy, < Tt. Thus when Hj(%) is purely imaginary (i.e. when k is odd), it is necessary to
design a non-recursive filter with an anti-symmetrical impulse response. For this case, a full-

band differentiator can be designed only when N is even.

29

Digital differentiators can be classified into two categories: non-recursive and recursive. In
non-recursive filters, the design approaches used are extensions of those used for first-order dif-
ferentiators [16, 17, 18]. In [16], the minimax method is based on the Remez exchange algo-
rithm which has been extended to incorporate the parameters involved in the design of the
higher-order differentiators. The eigenfilter method has been extended to the design of higher-
order differentiators in [17], by formulating an error function in quadratic form. The error func-
tion involves the square of the difference between the desired amplitude response and ampli-
tude response of the designed filter. In this method, the desired amplitude response is equal to
the amplitude response of the designed filter at an arbitrary reference frequency, as opposed to
the being equal to the ideal amplitude characteristic. The filter coefficients are found by com-
puting the eigenvector corresponding to the smallest eigenvalue of a positive-definite symmet-
ric matrix. In [18], the least-squares approach is extended to the design of higher-order
differentiators. The procedure involves formulating the absolute mean-square error between the
practical and ideal differentiator as a quadratic function. The coefficients of the differentiators
are obtained by solving a system of linear equations. The motivation of this approach is three-
fold: a) to achieve a direct route that explicitly considers the ideal amplitude response in the
design procedure, b) offer a closed form solution for the filter coefficients and c¢) devise a non-

iterative method to-obtain this solution with a low computational complexity.

Recursive digital differentiators have been designed using non-linear and linear programming
techniques [19, 20]. In [19], the coefficients for the recursive differentiator have been optimally
chosen to minimize a square-error criterion based on the magnitude of the frequency response.
In [20], a linear programming technique has been used to simultaneously approximate magni-

tude and group-delay characteristics.

30

As we can see, a lot of work has been done in this area. The techniques mentioned above are
just a small sample of the work that has been done in designing filters for differentiators. Our
work also involves building a filter for the purpose of generating first and higher-order deriva-
tives. We have adopted the strategy of using neural networks. We will further elaborate on the
specifics of this strategy in Chapter 3.

2.3.2 Effect of tizati . ienal
The variables ¢...4"~" from Figure 4 represent the variables of the manipulator needed to
control the flexible arm. The “n” represents the order of the plant (which in this case is four).
The variables are respectively position, velocity, acceleration and jerk (rate of change of accel-
eration). The position component can be easily measured using any commercial sensor. As we
have indicated in Section 2.2, the sensors measure the joint position to a certain precision. The
resulting measurement of the position signal is thus quantized. The effect of quantization on a

signal introduces noise into the resulting signal [21]. This can be seen in Figure 15.

Original and Quanttzed Signal
q . . v v . v

s(1).qft)

Quantkaton Esror

‘0 1 2 3

]
o

Figure 15 : Noise introduced by quantization.

31
As we saw in Section 2.1, the most common technique to perform differentiation is by the use
of finite differences. Approximations of derivatives are obtained by repeated application of

equation (1):

dk _d dk- 1 14
d—tk)’(l)',,.r-z —FT'Y(X)) (14)
However, as we have mentioned earlier, our measured position signal is quantized to a specific
resolution. If we apply successive differentiation to the above quantized position signal, then

we get the results shown in Figure 16, Figure 17 and Figure 18.

s{th ot

Quandzation Error

Time

Figure 16 : Effect of differentiating quantized position signal to get velocity
signal.

32

1000 v - Y ; Y H v
soo Il (TR Rk - o4
Il‘\ ! ‘;ll : ! “I |‘I l] r

sthaf

R
—soo |

-1 : i H i .
000 1 2 3 a s 6 7)

1000

s00 H[§

o I

|
-so0 I '

Quantzation Emor

—1000;5 1 2 3 a s 3 7 B
Time

Figure 17 : Effect of quantized differentiation signal to get acceleration signal.

Figure 18 : Effect of differentiating quantized acceleration signal to get jerk
signal.

As we see from these figures, successive differentiation of a quantized signal only adds more
noise to the resulting waveform. The resulting signal is severely distorted. By the time the jerk
component is determined, the signal is almost all noise. Most of the pertinent information is
lost. We will show in the following chapter that with such information, the control system is

unable to track the desired trajectory. Some means must exist to filter out this quantization

33

noise. The most common approach is to use a Finite Impulse Response (FIR) or an Infinite

Impulse Response (IIR) [19] filter.

2.3.3 _Summary

We started this chapter by giving a brief overview of TDNNs. We explained why we will use
TDNNSs and not conventional neural networks. The ability of TDNNSs to represent relationships
between events in time can only be done through the use of TDNNs. We then proceeded to
examine the role of neural networks in robot control. We are mainly concerned with how a neu-
ral network will be able to compute the inverse dynamics of a flexible-joint manipulator. We
described the model of the manipulator that we will use in our investigation. We saw the com-
plexity of the mathematical description of the robot. For the generation of the torque signal, we
need to compute several control variables - namely the position variable and its derivatives; for
a rigid manipulator this requires the first and second derivatives and for a flexible joint mahipu-

lator, this requires upto the fourth derivative information.

In Section 2.2, we presented various types of sensors that are available on the market. For the
purposes of this thesis, we require only the use of a sensor to measure the position of the robot
arm. We recommend the use of an incremental sensor as outlined in Section 2.2.2. We assume
that sensors to measure the first and higher-order derivative (velocity, acceleration, jerk) are not

available. —

In Section 2.3, we gave a brief mathematical overview of the constraints imposed on a system
that has the task of performing differentiation. Our conclusion was that for an FIR filter to per-

form full-band differentiation, it must have an even number of taps.

We then proceeded to review some research work that has been done in the area of digital filter-

ing. We concluded that all of the previous works mentioned required a priori knowledge of the

34

system. This does not satisfy our initial specifications as this is one of the things we want to

avoid.

We concluded this section, by showing the effects of differentiating a quantized signal. Our
conclusion was that filtering of the quantization noise is mandatory if we are to derive the infor-

mation necessary for the control of our manipulator system.

In the next chapter, we will show how we used the concepts outlined in this chapter and applied

them to achieve the main goal of the thesis.

Chapter 3

Proposed Methodology for Estimating Derivative Informa-
tion

In this chapter, we propose a generalized methodology for determining first and higher-order
derivatives of quantized measurements obtained using only position sensors. Our goal is to
achieve this objective without use of specialized high-precision sensors, and at the same time to
filter the noise arising from quantization. We accomplish this using neural networks and a type
of neural networks known as Tap Delay Neural Networks (TDNN). In Chapter 4, we show the

simulation results of our proposed methodology.

3.1 Investigation of problems associated with generating higher-order
derivatives

We have mentioned in Chapter 2 that many control applications require the generation of posi-
tion and velocity components and possibly higher-order derivatives for control of a mechanical
system. Indeed, for the robot control problem considered in this thesis, we will need to generate

acceleration and jerk components as well.

While sensors are abundant for measuring position, one must nevertheless take into account a
process to filter the quantization noise which arises as a result of the finite resolution of the sen-
sor. We show in Se;ﬁon 3.2 how a sensor with an 8-bit or a 12-bit resolution can severely dis-
tort the performance of a control system which is able to track the desired trajectory perfectly
when no such sensors are used. Consequently, a means must exist to eliminate or reduce quan-

tization noise.

Sensors to measure velocity and acceleration, while not abundant, are still available on the mar-

ket. However, using sensors implies the use of additional hardware - a factor we are trying to

36

minimize. Even if sensors were utilized to measure velocity and acceleration, extensive filter-
ing techniques would still be needed to eliminate the quantization noise. For the purpose of this
research work, we will need to measure a component called ‘jerk’ (rate of change of accelera-
tion). Sensors to measure this component are non-existent. Previous approaches that have
required the use of higher-order derivative information for the control of a system have gener-
ated these parameters assuming a perfect knowledge of the position measurements and knowl-
edge of the system dynamics. We would like to develop an approach which will eliminate the

dependence on such knowledge.

The control system which we use to test our hypothesis was shown in Chapter 1 and is shown
here in Figure 20. In this research work [1], a neural network was used as a controller for a flex-
ible-joint manipulatorl. As we can see, the position (g), velocity (4), acceleration (§) and jerk
(¢?) are needed for feedback to control the robot manipulator. We will develop an approach

which will enable us to generate these feedback variables.

Robot

q__q(3)

Figure 19 : The control system for an arbitrary n-th order, single-joint robot.

!For complex systems (like a flexible-joint manipulator) accurate knowledge of complete dynamics may not be available and neural
networks can be used as controllers.

37

We can see that a partitioned control strategy was employed for the control system. This strat-
egy fulfills the criterion that had originally been specified - the controller design must be attain-
able without the availability of the robot’s dynamical equation and the overall system response

must conform precisely to some independently-provided performance specification.

3.1.2 Closed-loop system response

We now examine the performance of the closed-loop system. We first show the results that
were obtained as a result of the research done in [1]. This implies that we will not take into
account any hardware considerations (namely the bit resolution of the sensor). We will next

show the performance of the system when we incorporate the effect of quantization into the

overall control system.

Posillon

Figure 20 : Tracking performance of control system without any hardware
considerations.

38

Figure 21 : Tracking performance of control system when using a 12-bit sensor.
From Figure 21, we see that with a 12-bit quantization level, the tracking of the desired trajec-
tory has been severely degraded. However, in the interests of reducing the cost of the overall

sensor system, we experiment using a lower quantization level. We show the results achieved

using an 8-bit quantization level. This is illustrated in Figure 22.

39

4 r . -
2 S Y T 1 U 1} S 0 ISUSUUUUUOY | R ... -
= : :
8 o . .- - - —_— 4
= : :
2k LJ R B R R T .
: L
_q ; A ;
o 1 2 3 4q S
Time

Figure 22 : Tracking performance of control system when using an 8-bit sensor.

From the above results, we can see the effects of quantization on the tracking of a desired tra-
jectory. At an 8-bit quantization level, the tracking has been completely degraded and is not at
all within acceptable limits. Typical resolution of commercial incremental sensors is usually
within the range of 8-12 bits. It will be our objective to resolve the effect of this inherent quan-

tization problem when a sensor is used to measure the position variable.

3.2 Proposed methodology to generate derivatives

Due to the finite resolution of the encoder, quantization noise is introduced in the position sig-
nal. We have seen the effect that a quantized position signal and its derivatives have in tracking
a given trajectory (Figure 21 and Figure 22). The proposed methodology should ensure that the
two problems mentioned earlier (that of filtering the quantization noise and that of generating
higher-order derivative information) be taken care of. Solutions for filtering the quantization

noise include using an IIR or FIR filter. For the problem of generating higher-order derivatives,

40
a myriad of parameter estimation methods exist [16, 17, 18]. However, the problem with most
of these methods is their dependence on the formulation of a mathematical model of the system
- the very thing we are trying to avoid. To solve these two problems, we propose the following

modification to the control system:

Quantized
Position

Robot |- Q

Derivative
Estimator

q4-qe® q.9®

Figure 23 : Modified diagram of the control scheme.

In Figure 23 we have a block ‘Q’ which models the bit resolution of a sensor. This parameter
can be adjusted by the user. The quantized position signal will then be transmitted into another
block called the ‘Derivative Estimator’. The purpose of this neural network computational
machine will be to generate the derivative information. In the following section, we will

explain the structure of the derivative estimator.

41

321 Derivati imaf hitect

The purpose of the block NN, in Figure 24 is to filter the quantized position signal. The filtered
position signal will then be used in the servo computations to achieve the appropriate control.
The training sequence used is of paramount importance in any neural network system. Addi-
tionally, using a neural network can filter other non-linearities that can arise in a dynamical sys-
tem.

Our method uses a quantized position input with frequencies in the range from 1-5 HzZ over a
range from O - /2 degrees of joint motion. We have added noise to this noise to model the non-
linear effects of a dynamical system. The output of the neural network is a smoothed version of

. . . 5 .
the signal. The position signal used in our training sequence was Z A;sin (.1) where w; = 1.
t H
i=0

Quantized Position
NNp TDNNv TDNNa TDNNj
4
7/
7 to servo

—_—

Figure 24 : Proposed Derivative Estimator Architecture.

The next step is to generate the required derivatives from the position signal. For this, we have

used TDNNSs. This will be described in the following section.

*We assume that the robot will be operating in this range. These can be changed if desired.

42
3.2.2 Tap delay neural network architecture

The purpose of the blocks TDNN,, TDNN,, TDNN,; in Figure 24 is to generate from quantized
robot position measurements the velocity, acceleration and jerk components respectively that

are required for the controller. The TDNN structure we used is shown in Figure 25:

—
Dy m
NN Filtered
Velocity,
D, .
| Acceleration,
\ / Jerk
Quantized
- D
Position ! NN topology: 20-35-10-1
1

Figure 25 : TDNN architecture.

The training sequence used for generating the velocity, acceleration and jerk information is as
follows: The position signal is the same as the one used previously - i.e. quantized position
input with frequenctfes in the range from 1-5 Hz over a range from O - /2 degrees of joint
motion with some noise to model the non-linearities in a dynamical system. The velocity,

acceleration and jerk signals used for training are of the following form respectively:

s
Velocity = D A;0.cos (0,1)
i=0

=

s
Acceleration = | ¥ -A,w?sin (wy))
-~

s
Jerk = (Z ~apwlcos (i)
i=0

3.3 Summary

At the start of the thesis, we indicated the importance of having a means to determine the feed-
back signals when developing a control strategy. We reviewed case studies which indicated
how well a robot manipulator can be controlled under different conditions. These works relied
on a mathematical foundation for the generation of the control parameters. They made the
assumption that appropriate instrumentation is available for determining the feedback signals.
We have taken the research of [1] where they developed a neural network control strategy for a
flexible-joint manipulator and showed that when hardware considerations are taken into

account the control algorithm does not perform as required.

We proceeded to propose a methodology that enables one to determine the control parameters.
This methodology is dependent on the use of neural networks. This satisfies the three con-
straints mentioned in Chapter 1. First, we do not require any a priori knowledge of the robot’s
dynamics. Second since we are using only a sensor to measure the position component, we

eliminate the use of additional hardware, and third, we achieve real time performance.

In Chapter 4, we will present the training procedure and the simulation results of the neural net-
works used in the derivative estimator. We also show the simulation results when the derivative

estimators are used as part of the closed-loop control system.

Chapter 4
Closed-loop Behaviour with Derivative Estimator

In this chapter we explain the training procedure for the neural networks in the derivative esti-
mator architecture presented in Chapter 3. We then show simulation results which indicate how

well the neural networks performed their task as differentiators.

The neural networks were implemented using a commercial software neural network imple-

mentation environment (MATLAB 4.1) and run on a SUN SPARCstation 10.

We trained our neural networks using quantized robot position measurements. Our position
samples were quantized to 8 bits and 12 bits. We trained four networks - one for eliminating the
quantization noise from the measured samples of the position variable and three for the genera-

tion of the required derivative information - velocity, acceleration, jerk.

The neural networks were trained off-line. The data sampling rate was 500 samples per second.
After the training was finished, the networks were tested to see how well they trained. Over-
sampling (sampling more information that the network was trained with per unit time) and
undersampling (sampling less information that the network was trained with per unit time)

were also attempted.

—

We term our neural network used for filtering the quantization noise a ‘smoother’. This is
because it eliminates/reduces the noise arising from quantization and thus smooths the input
signals. The other neural networks are given the term ‘differentiators’. This is because they

perform differentiation of the input signal.

4.1 Neural network smoother

The neural network used for this application was a layered feedforward network consisting of
one input and one output. The processing units were arranged in three layers: one input layer,
one hidden layer and one output layer. The layers were completely connected. The hidden layer
consisted of fifteen processing units. Each processing unit processes the quantized input signal
by a weighted sum with a bias and this is then processed by a sigmoid activation function. Dif-
ferent network configurations were attempted. But we selected one which utilized as few neu-

rons as possible.

The input signal to the network was chosen by considering the fact that the robot will move in
an arbitrary joint space trajectory (subject to actuator constraints) that can be presented to it.
The most general type of training signal would be white noise. However, since the expected
system can only function in low frequencies, we employed a summation of arbitrarily chosen

sinusoids given by

pos = 0.5sin (¢) + 2sin (2¢) + 1.5sin (3¢) + 3sin (41) +0.2sin (1.57) + 5sin (51) 5))

The input signal in equation (15) is a representative of the input space of operating frequencies
that the robot will operate in. The input signal is quantized to a specific resolution - either 8 bits
or 12 bits. This represents the signal as measured by a sensor system. By quantizing the input
signal, we add noise to the resulting signal. Consequently, using a simulated noise signal gener-
ates a uniformly populated input space during learning. As a result, during network recall, any
input vector presented to it will be relatively close to some of the vectors used during training;
the distances over which the net has to interpolate will remain small. The noise signal also
results in an unordered presentation of the inputs during learning. This is a desirable condition

for convergence to a global minimum when using, as we do, the generalized delta training rule.

4.1.1 Resuits from the neural network smoother

In Figure 26 and Figure 27 we see the result of using the neural network smoother. We show
results when the position signal is quantized to 8 bits and 12 bits respectively. We have divided
each figure into two parts: In the top half, we show the quantized position sample that was used
for training (PAM signal) and the continuous signal. In the bottom half, we show the recall abil-
ity of the network. Also, in the second half, we superimpose a continuous version of the signal

as an indication of how well the network was trained.

8 =zo
§ o QuanuzccE vcrswn of tralmng SIgnal 1 2b)
1
5
Z
=
&
20 - - —
g e
< :
0 7 2 s 5 7

Time

Figure 26 : Result of the NN smoother when the position signal is quantized to
12 bits.

47

"g 20 : : R 4
= M D, . P : - :
8 1o ..} ..., Quantized version of training signal (8b).]
=1 : : :
[s] . e AT, SRS, N A . -
g - : : : B :
O I o T TN oo s
= siooth vession A
2 2% 1 2 3 a S 6 7
20
S
=
8
o

Figure 27 : Result of the NN smoother when the position signal is quantized to
8 bits.

We see from Figure 26 and Figure 27, the ability of the neural network to filter quantization
noise. In the second-half of each plot, we see that we cannot distinguish between the signal that
has been produced as a result of the neural network and the way it is in its non-quantized form.

It is this filtered version of the position signal that we use as part of the servo computations (see

equation (2)).

4.2 Neural network differentiators
The neural network used for each derivative (velocity, acceleration and jerk) was a layered
feedforward network consisting of twenty inputs and one output. The processing units were

arranged in four layers: one input layer, two hidden layers and one output layer. The layers

were completely connected.

The input layer consists of delayed samples of the quantized robot position measurements. The

total number of delays was determined by a process of trial and error and was finally set to

48

twenty. In Section 2.3.1, it was m_cntioncd that for an FIR filter to achieve full-band differentia-
tion an even number of taps is required. We have tried different numbers of taps. But we could
only achieve perfect training and recall when the number of taps was even. A higher number of
even taps (greater than 20) was also tried. In those architectures, accurate training and recall
was also achieved. However, in the interests of reducing the cost of the implementation of the
neural network algorithm on a commercial DSP, the least number of taps which could success-

fully perform the task of differentiation was used.

The first hidden layer consisted of thirty-five processing units and the second hidden layer con-
sisted of ten processing units. Again this was determined by a process of trial and error. Each
processing unit processed the input signal by a weighted sum with a bias and this was then pro-
cessed by a sigmoidal activation function. The inputs to the network were the same as those
used for the smoother, i.e., they were quantized versions of the signal in equation (15). They

represent signals that are measured by a sensor.

In the next section we will show the simulation results to indicate how well the neural network

differentiators performed their task of differentiating

$.2.1 Results of I pet Kk diff tiat
We now show simulation results of the neural network differentiators. We present results for
both 8 and 12 bits of quantization. In the top-half of each plot, we present the position signal
that was used for training the neural network. In the bottom half of each plot we present the out-

put of the neural network. Superimposed on this is the desired version of the signal.

49

Posttion -~ PAM and continous

(@)

Velocty
(@)

Time

Figure 28 : Result of the neural network differentiator to generate first-order
derivative when the input sample is quantized to 12 bits.

Positon - PAM and continous

- N
e 0 0O

Velocity

-10

-20

Figure 29 : Result of the neural network differentiator to generate first-order
derivative when the input sample is quantized to 8 bits.

Acceleration

Acceleralion

Postlion - PAV and continous
(=]

Position - PAM and continous

- N
0 0O

-10
-20

300
200
100

-100
-200

20
10

200
100

-100
—200

50

Figure 30 : Result of the neural network differentiator to generate second-order
derivative when the input sample is quantized to 12 bits. .

Quanuzed versxon of i mput. signal (8b)

Figure 31 : Result of the neural network differentiator to generate second-order
derivative when the input sample is quantized to 8 bits.

51

N
a

T Y Y ™

|
0O 0O o

)
N
0

Posttion - PAV and continous

1000
S00

Jerk

—-500
-1000
-15S00

Figure 32 : Result of the neural network differentiator to generate third-order
derivative when the input sample is quantized to 12 bits.

Position - PAM and conlinous

Jerk

Figure 33 : Result of the neural network differentiator to generate third-order
derivative when the input sample is quantized to 8 bits.

52

From the previous results, we see the ability of the neural networks to perform differentiation.
At a quantization level of 12 bits we see that the results of the neural networks used for generat-
ing the first-order, second-order and third-order derivatives (the velocity. acceleration and jerk
components respectively) are very accurate. When we decrease the bit resolution to 8 bits, we
notice that the filtered signal is not as smooth as the continuous signal. Nevertheless, it is still
within acceptable limits. It is the output of these networks that we will use in the servo portion

of the robot controller.

We have shown the ability of the neural network smoother and the differentiators to perform
their respective functions when they were given the signal with which they were trained. In the
next section, we will show the ability of the neural networks to generalize - an inherent ability

of neural networks.

4.3 Generalization capability of derivative estimator

The signal that we used is of the following form:

pos = 2sin (1) +0.5e "% +0.2e "7 + 2sin (51) + 1.2sin (0.51) (16)

This signal is composed of terms that were not present in the neural network derivative estima-
tor at the time of training. Thus the use of this signal can be a test to see how well the neural
networks can generalize. Note that we are still limiting the frequency range to 1-5 Hz. We will
show the result only for the case where the position signal is quantized to 8 bits. It is implied

that the results are better when the bit resolution is set to 12 bits.

Postion

53

Figure 34 : Generalization capability of the NN smoother when the input sample
is quantized to 8 bits.

..

...

Ly T N T Y T TR T T YY)

rene

eeeeer

.............................

Njpereer
[A\] TP
H

Figure 35 : Generalization capability of the NN differentiator to generate first-

order derivative when the input sample is quantized to 8 bits.

54

60 M H M T 13 H
3 : A h
40 - - - e § —f‘ i] g é - -
: ; : Actual :
2ol fA S0 YOUUUUL Y R WO UUURY U0, -SUUUURY (UL TR
g
= : : ' :
é ofF----- v BEEIE CRRLE g..... .- f -;-
—-20 ok L .é £l ' N i‘, ..;”
: ,) ' | : g y :
\ t : 1 y \ R :
-40 - [N | NP S T 1] » T F et ..
/AR ¥ S T VAN
M : ©" g Désirec :‘
~80 1 2 3 a 5 G 7

Figure 36 : Generalization capability of the NN differentiator to generate
second-order derivative when the input sample is quantized to 8 bits.

300 T T v T T T

P S

200F----#-§--=-------- g

100

Jerk

ccetleccecceciRecccfeccccecnns PO | P

—1006

.........

-200

—300

Figure 37 : Generalization capability of the NN differentiator to generate third-
order derivative when the input sample is quantized to 12 bits.

55

Our results were very encouraging. They showed that NN derivative estimators have the capa-

bility of generalization and could be used successfully for a range of signals.

Next, we will put our neural network derivative estimator to a test within the flexible joint robot
control scheme. The NN derivative estimators will be used to generate the feedback signals
which will be sent to the controller. Note that this part was previously done assuming exact
knowledge of position measurements (no quantization noise) or knowledge of the system

dynamics.

4.4 System response with derivative estimator
After training the neural networks, we tested the closed-loop system with the following control

structure:

q (n)
d Controller Robot Quantized
r Position
9494 q.q™"
= | Quantized Position
NNp TDNNv TDNNa TDNNj
-9

Figure 38 : Control system with the proposed methodology to determine
higher-order derivative information.

The trajectory we tested was of the following form:

The path shown in equation (17) is representative of the trajectory that a robot manipulator may
be required to follow [11]. The results obtained are shown in Figure 39 and Figure 40. Note that

the results are for tracking a desired trajectory when the sensor is quantized to a resolution of 8

bits.

Postion

pos = 0.13sin (31) +0.75sin (0.21) +0.75¢2" + 0.5¢-0-2¢

............. ;.Ac.ﬁia.l.....,,.......‘......é..,.._... [L I S
1 o 2 3 q
Time

FiEuro 39 : Closed-loop system response showing tracking of position and

velocity components with the neural network estimators.

..............

Acceleration
o
1

................

—-4a

57

Figure 40 : Closed-loop system response showing tracking of acceleration and

jerk components with the neural network estimators.

From Figure 39, we see the tracking of position is very accurate. After the initial transient

response, the system error was less than 0.1%. The tracking of the velocity component, while

not accurate is still within acceptable limits.

From Figure 40. we see that the tracking of the acceleration and jerk components are totally

corrupted. It could be possible that these two components are not needed for the control. How-

ever, this is not the.case. When we nullified the effect of the acceleration and jerk components

in the servo equation (equation (16)), we get the following results for the tracking of the posi-

tion and velocity components:

58

Figure 41 : Closed-loop system response when the acceleration and jerk
components are nullified

We see that despite the fact that we were not able to track the acceleration and jerk components,
they play a significant role in tracking of the desired trajectory. However, it is more important
to track the position and velocity components than to track the acceleration and jerk compo-
nents. It is the integrity of these components that we will try to maintain when we derive alter-

natives to the scheme.

From the results we discover another very interesting fact about our neural network based
approach for determining the feedback signals. Earlier in Section 2.2.2.2 we had mentioned
that a commercial s:nsor can measure position with a 12-bit resolution range of 0-1/2 degrees
joint motion. From our results we see that we have achieved an 8-bit resolution over this range.

This is indeed very promising since it reduces the overall cost of the sensor system.

As further proof of the concept of our methodology, we present results for the different desired

trajectories for the flexible-joint manipulator. The desired trajectory was of the following form:

59

pos = 0.75e'2' +0.5¢702¢

This trajectory represents exponential signals. The derivative estimator neural networks, if

trained properly, will be able to generate the required derivative information and thus allow the

desired trajectory to be tracked. The results are shown in Figure 42.

Posttion

Figure 42 : Closed-loop system response with exponential terms.

From the above results we see that even when a considerably different signal than the one used
in training is applied, we can achieve excellent tracking. Other trajectories we tested were of

the “pick-and-place” form and were composed of exponential terms. An example of this is

given below:

pos = 0.75e'2t +0.5 e'o'zt +1-3

The results for the above trajectory are shown in Figure 43:

Figure 43 : Closed-loop system response of a pick-and-place trajectory
composed of exponential terms.

Again we achieved successful tracking of the desired path. Several other trajectories were also
tested. In all cases, the controller was successfully able to track the desired trajectory. One of

the more complicated trajectories tested was of the form:

pos = 4.5sin (31) +0.75cos (21) +0.756031 .+ 0.5¢02¢ ~ 3,3

The results are shown in Figure 44:

61

Poskion

Figure 44 : Closed-loop system response of a complex trajectory of
exponential and sinusoidal terms.

We indicated in Section 3.2.1 that the neural networks had been trained for upto a frequency of

5Hz. We changed the frequency of one particular component to 6Hz and tested the response of

our closed-loop system. The trajectory was of the following form:

pos = 0.13sin (6r) +0.75sin (02r) +0.75e2! +0.5¢0-2¢ _ 3

—

The results are shown in Figure 45:

62

Figure 45 : Closed-loop system response with NN derivative estimators and a
higher-frequency component.

We can see from the results that the trajectory cannot be tracked. This seems to indicate that for
the NN derivative estimator to work, the desired trajectory must be composed only of the fre-
quency components that are present in the original training signals. This is consistent with what

is known about neural network training and recall.

At the beginning of this chapter, we stated that we tested our closed-loop control system when
our neural network derivative estimators were undersampled and oversampled. The results of
this investigation indicate that the same sampling frequency must be used in recall as the one
used at the time of training. We indicate the results of the experiment for both under-sampling

and over-sampling in Figure 46 and Figure 47:

o
-
N
Wherense
1.3
«n
4)]
N

5 & 7

Time

mr

et
eesreeee

I
sierene

Y)
1] X

Figure 47 : Closed-loop system response when sampling rate is increased.

4.5 Summary

In this chapter, we showed that neural networks can be trained to perform as low-pass filters
and also as differentiators. In addition we showed the generalization capability of our deriva-
tive estimators. In both cases, the simulation results indicate that the neural networks fulfilled

the functionality for which they were trained.

Next, we performed the ultimate test on our derivative estimators: we incorporated the deriva-
tive estimator architecture into the control system for a flexible joint manipulator and investi-
gated the tracking of several different trajectories. Our criterion for judging the success of our
proposed methodology was how well the desired trajectory is tracked. The results were encour-
aging and showed that a neural network strategy can be used to determine the derivative feed-
back signals. The simulation results indicate that the error between the actual path and the
desired path was well within acceptable limits. This strategy also satisfied our initial goals of
having a means to determine the control parameters without any a priori knowledge of the
robot’s dynamics or exact knowledge of position measurements and the minimum use of hard-
ware to determine the control parameters. Our proposed methodology also proved that we can
use an 8-bit sensor over a 0—7/2 range of joint motion to obtain the derivative feedback sig-

nals.

We can see from the structure of our neural network derivative estimator that we have to per-
form a large number of computations. In total, for all the neural networks, there are 6266 multi-
ply-accumulate operations. Assuming this algorithm is coded on a typical DSP chip with a
clock rate of 33MHz, the total time will amount to 208ms. It would be to our advantage to
reduce the number of computations and thus reduce the time taken for the control parameters to
be generated. With this in mind, we explored the closed-loop system performance with variants

of the neural network derivative estimator. This is the subject of discussion in Chapter 5.

Chapter 5
Considerations for Real Time Implementation.

In this chapter, we optimize the architecture of the neural network derivative estimator so as to
reduce the number of computations. We present three variants to the neural network based esti-
mator shown in Figure 24. The first alternative architecture consists of replacing the neural net-
work differentiators to compute acceleration and jerk signals by computational machines which
perform first order differentiation i.e. the resulting signal will be determined by the difference
of two consecutive samples. The first derivative is still determined by a TDNN. In the second
alternative architecture, all the derivative information is determined by first order differentia-
tion. In the third alternative, we modify the activation function. We trained our neural network
differentiators using a sigmoid activation function. During recall (i.e. when the neural network
derivative estimators were placed in the closed-loop system of the flexible-joint manipulator).
we replace the sigmoid activation functdon by a piece-wise linear activation function. It is
important to note that we did not train the networks again with the new activation function.

As we can see, the proposed changes modify the original structure substantially. The aim of
these changes is to reduce the total number of multiply-accumulate operations and thus the
computation time. Our criterion for judging the success of our new architectures will again be
by how well the desired trajectory is tracked. Additionally, we compared the performance of
our closed-loop system with the performance when a linear filter (5-th order elliptic filter) is

used as part of the derivative estimator.

5.1 First alternative to the derivative estimator

The first alternative we propose to an all neural network based estimator is shown in Figure 48:

Quantized Position

! v

NN, TDNN, D, D;
4
- // y
o servo
X(n) Y(@) = X() - X@-1)

Figure 48 : Alternative 1 model.

In Alternative 1, we use a neural network to filter out the quantization noise present in the posi-
tion signal and a TDNN to generate the velocity signal. The other signals (acceleration and
jerk) are determined using first-order differentiation. The results that we obtained are shown on

Figure 49:

67

Posttion

P KPP TR R P - N AR

Figure 49 : Closed-loop system response showing tracking of position and
velocity components with Alternative 1 model.
Again, we see the success of our new architecture. We have maintained the integrity of result-
ing position signal. Furthermore, we have reduced the total number of multiply-accumulate
operations to 2128. The total time taken for this number of operations (assuming a 33MHz
clock rate) is estimated to be 70 ms - almost three times faster than the all neural network esti-

mator.

5.2 Second alternative to the derivative estimator

The second alternative utilizes a neural network to filter out the quantization noise, and differ-
entiation to generate the higher-order information. The resulting architecture and its corre-

sponding result are shown on Figure 50:

68

Quantized Position

y J Yy

to servo

X(n) Y(@) = X(m) - X(n-1)

Figure 50 : Alternative 2 model.

Figure 51 : Closed-loop system response showing tracking of position and
velocity components with Alternative 2 model.
Again, we see the success of the resulting architecture. In fact, in this architecture we see that
the tracking of the velocity is more accurate than in the previous architectures. This is because

we are using first-order differentiation from the position signal. The more accurate the tracking

69
of the original signal, the more accurate will be the tracking of the corresponding derivative.
Using a neural network adds non-linearities to the resulting signal and corrupts it to a certain
extent. The total number of multiply accumulate operations is reduced to 44. The total time
taken for this number of operations (assuming a 33 MHz clock rate) is estimated to be 1.5 ms.
As we mentioned earlier, the filtering of the quantization noise can be carried out using either
an FIR or an [IR filter. We have demonstrated in earlier sections how we propose to use an FIR
neural net filter. To have a basis for comparison, we also implemented a Sth-order elliptic filter
for the purpose of removing the quantization noise (See Figure 50). The result is shown in Fig-

ure 52:

Figure 52 : Response using a linear filter.

We see that our model performs better than an IIR approach. We have tried several different
types of the IR filter - Chebychev, Butterworth and different orders. However, we obtained

almost the same results with each architecture.

70
5.3 Third alternative to the derivative estimator

All the neural networks we have used so far employ a sigmoid activation function. Though a
CORDIC solution exists to implement transcendental functions, it is inefficient in terms of
wasted CPU cycles. This is especially important in an ASIC digital implementation. An
approach that we recommend is to use a piecewise linear activation function. This is shown in
Figure 54 along with a table of the gains in the respective regions. By varying the magnitude of
these slopes, we approximate the sigmoid activation function and achieve the same perfor-
mance. The magnitudes of the slopes were selected by a curve fitting approach. The results

reported use the derivative estimator architecture proposed in the Alternative 2 model.

Quantized Position

' v '

to servo

X(n) Y(m) = X(n) - X(n-1)

Figure 53 : Alternative 3 model’.

3The activation function is of the form shown in Figure 54.

. . f(‘x): : Region Range Gain
| 1| =100 Jor
SR | A 2 [1000075 | g3
3 -0.75 10 +0.75 0.6
' 4 [0750+1.00 [g3
1 213 ;4 ;s’x 5 | #w+= o1

Figure 54 : Piece-wise linear activation function characteristics.

The corresponding results are shown in Figure 55:

............. N e S S
............. DESITEA. - - - e e et e
- -“vAcma:l-...-..---.--...-...>..------»»--E-..;--.-.-.-.-.-—; -----------------

1 2 3 4 15

Figure 55 : Closed-loop system response when using a piece-wise linear
activation function.

71

We see that the integrity of the desired trajectory is maintained despite there being some noise

in the resulting signal. The resulting velocity signal is thus more noisy but still within accept-

72

able limits. The total number of multiply-accumulate operations is now 40 and the total compu-

tational ime is estimated to be 1.2ms - a substantial reduction from the original 200ms.

5.4 Summary

The motivation behind this chapter was the desire to reduce the total number of computations
performed by the neural networks in the original derivative estimator architecture. We explored

three variants of the afore-mentioned architecture.

In Figure 56, we summarize the results:

Figure 56 : Summary of performance of different derivative estimator
architectures

TYPE OF TOTAL NUMBER OF
DERIVATIVE MULTIPLY-ACCUMULATE
ESTIMATOR OPERATIONS
ARCHITECTURE

All neural
network
(Figure 24)

[T o E—

a. All time units are estimations.

We can see that substantial savings have occurred both with respect to the total number of com-
putations and the time taken from the original all neural network based derivative estimator
architecture. The ideal derivative estimator architecture is of the Altemative 3 model. Addition-
ally, we compared this scheme to a linear filtering scheme using a Sth-order elliptic filter. Again

the superiority of our approach was quite apparent.

73

Chapter 6
Conclusion

At the start of the thesis, we made a claim that a control algorithm developed without any
regard to how the feedback signals will be measured cannot fulfill its objective of controlling
the system when hardware implementations consideration are taken into account. To demon-
strate this hypothesis, we used the control algorithm presented in [1] which is concerned with
the problem of controlling a flexible-joint manipulator. We showed that when a sensor with a 8-
12-bit quantization level is incorporated into the control system to determine the control param-
eters, the controller cannot track the desired trajectory.

In this thesis we proposed a methodology to alleviate this practical and essential implementa-
tion problem not addressed in theoretical approaches. This methodology consists of using neu-
ral networks. The neural networks can be divided in two blocks: the first part consists of
filtering the quantization noise arising as a result of the signal being measured by a sensor, and
the second part consists of neural networks to determine the first and higher-order derivatives
required for feedback.

The neural network approach has been the preferred solution because it obviates the need for a
mathematical knowledge of the systems dynamics and can be implemented in hardware in real
time.

The simulation results showed the success of our proposed methodology. Our criterion for
Jjudging the success of our approach was how well a desired trajectory is tracked. This criterion
was satisfied by our design.

As neural networks are very computationally intensive. we investigated architectures where we
attempted to reduce the number of computations and thus improve real time performance. For
these architectures, our simulation results were very promising. Again our criterion of tracking

the desired trajectory with little error was successfully met. Additionally, we compared our -

74

scheme to that using linear filtering techniques. We have achieved far superior results both in
terms of accuracy and real time response.

In this thesis, we have shown the training procedure for the neural networks used to filter quan-
tization noise and to perform the task of differentiation. Our simulation results have shown that
for practical quantization levels (8-12 bits), control of a non-linear dynamical system requiring
derivative information can be achieved using neural networks for providing accurate derivative
feedback.

The emphasis of this research has been on solving the problem of determining the feedback sig-
nals for a flexible-joint manipulator, but our approach can be applied to any application where
derivatives are needed for the control of a system.

There are several ways in which the results of this thesis can be developed further. From a neu-
ral network perspective, we can utilize different algorithms to perform the task of filtering the
quantization noise and differentiation. An algorithm we suggest is the Cerebellar Model Artic-
ulation Controller (CMAC). CMAC is capable of fast learning and is excellent at interpolation
and approximation. Comparison between the performance of the neural networks trained by the
CMAC algorithm and those trained by the Back-propagation algorithm (which was used in this
work) should prove interesting. From a VLSI systems perspective, we can construct a DSP
architecture using synthesis tools. An investigation into the design space of an optimal DSP

system architectures is another possibility for investigation.

75

Chapter 7
References

[1] V. Zeman, “A Neural Network Based Approach To The Control Of Flexible Joint Manipulators”, M_A_Sc The-
sis, Concordia University, 1991

[2] M.W.Spong, M. Vidyasagar, “Robot Dynamics and Control”, John Wiley and Sons, New York, 1989.

[3] Douglas M. Chamey and Gary M. Josin, “Neural Network Servo Control of a Joint Manipulator in Real
Time”, Int Joint Conference on Neural Networks, pp. 1989-1994, 1992.

(4] Chi-Tsong Chen, Analog and Digital Control System Design: Transfer Function, State Space, and Algebraic
Methods, Fort Worth: Saunders College Publication, 1993

(5] T. Troudet, S.Garg, D. Mattern, W. Merrill, “Towards Practical Control Design Using Neural Computation”,
Int. Joint Conference on Neural Networks, vol I, pp 11675-11680, 1990.

[6]1 Q. Li. C.L.Teo, AN.Poo, G.S.Hong, “Response of a Feedback System with a Neural Network Controller in the
Presence of Disturbances", Int. Joint Conference on Neural Networks (Singapore), pp.1560-1565, 1991.

(71 M. Tokita. T. Mituoka, T. Fukuda, T. Shibata, F. Arai, “Position and Force Hybrid Control of Robotic Manipu-
lator by Neural Nerworks", Int. Joint Conference on Neural Networks. pp.113-121, 1991.

(81S.Zak, “Robust Tracking Control of Dynamic Systems with Neural Networks”, Int. Joint Conference on Neural
Networks, vol [I, pp I1563-11566, 1990.

[91 A. Waibel, H. Sawai, K. Shikano, “Consonant recognition by modular construction of large phonemic time-
delay neural nerworks", Proceedings of the [EEE Int. Conference on Acoustics. Speech and Signal Processing,
Glasgow, Scodand, vol. 1, pp. 112-115, 1989.

(10] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K. Lang, “Phoneme Recognition Using Time-Delay Neural
Nerworks”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, pp. 328-339, 1989.

[11]J. Craig, “Introduction to Robotics”, Addison-Wesley Publishing Co., Reading, MA 1986.

[12] R. Dubey, J. Euler, “Real time Implementation of an Optimization Scheme for Seven-Degrees-Of-Freedom
Redundant Manipulators”, IEEE Transactions on Robotics and Automation, Vol. 7, No. §, PP- 235-256, October
1991

[13] C.G. Lee, PR. Chang, “A Maximum Pipelined CORDIC Architecture for Inverse Kinematic Position Compu-
tation”, IEEE Journal of Robotics and Automation, Vol RA-3, No. §, October 1987.

{14] R. Hecht-Nielson, “Neurocomputing”, Reading, MA: Addision-Wesley,1990.
{15] Peter Hauptmann, “Sensors: principles & applications”, Englewood Cliffs, NJ: Prentice Hall, 1993.

(16] C.A.Rahenkamp, B.VK.V. Kumar, “Modifications to the McClellan, Parks and Rabiner computer program
for designing higher-order differentiating FIR filters,” IEEE trans. Acoust, Speech, Signal Processing, vol.

76

ASSP-34, pp.1671-1674. Dec. 1986.

[17] 8.C.Pei, JJ.Shyu, “Eigenfilter design of higher-order digital differentiators,” [EEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-37, pp. 505-511. April 1989.

(18] S. Sunder, R.P.Ramachandran, “Least-Squares Design Of Higher-Order Non-Recursive Differentiators”,
IEEE Transactions on Signal Processing, April 1994.

[19] L.R.Rabiner, K. Steigliz, “The design of wideband recursive and nonrecursive digital differentiators”, [EEE
Trans. Audio Electroacoustics, vol. AU-18, pp. 204-209, June 1970.

[20] A.T.Chottera, G.A Jullien, “A linear programming approach to recursive filter design with linear phase”,
I[EEE Trans. Circuits Systems, vol. CAS-29, pp 139-149, March 1982.

[21] Alan V. Oppenheim, Ronald W. Schafer “Discrete-time Signal Processing”, Englewood Cliffs, NJ: Prentice
Hall, 1989.

Chapter 8
Appendix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%ﬁ%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%ﬁ%%%%%%%%%%%%%%%
RAM

% %%% % %% PROG 1 BEE%%%H% %%
2% %% %% % This models the control ~ BXEHHBH B %%
%% %% % %% system with the all NN estimator %% %%%% %% %%
%% %% %% % BHBBEDH %%

%%%%%%%%%%%%%%%%%%%%%%%S%%%%‘i%%%%%%%%ﬂ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5%%%

y0 =[0; 0; 0; 0];
netvec = [0; 0; 0; 0; O;
q=(0;0; 0; 0; O[;

qd = [0; 0; 0; G; Of;
netout = 0;

index = I;

load POSNN
Wipas = Wi;
W2pos = W2;
Blpos =BI;
B2pos = B2;

load vel
Wivel = W1;
W2vel = W2;
W3vel = W3;
Bivel =BI:;
B2vel = B2;
B3vel = B3;

load nndiffaccl
Wlace = WI;
W2ace = W2;
W3acc = W3;
Blacc=BI;
B2acc =B2;
B3ace = B3;

load andiffjrk]
Wljerk = W;
W2jerk = W2;
W3jerk = W3;
Bljerk =B1;
B2jerk = B2;
B3jerk = B3;

xn20=0;
xn19=0;
xn]8=0;
xnl17=0;
xn16=0;
xnl5=0;
xnl14=0;
xnl13=0;
xn12=0;
xnl1=0;
xn10=0;

xxx = [xn; x02; xn3; xn4; xnS; x06; xa7; xo8; xn9; xn10; xn11; xn12; xal3;

xal4;xn15; xn16; xa17; xn18; xn19; xn20};

for 1=0:0.02:10
i

tvec = (tvec; if;

q = observer(y0.netout);

x20=xn19;
xn19=xn18;
xnl8=xn17;
xnl17=xnl6;
xnl6=xn1S§;
xnlS=xnl4;
xnl4=xnl3;
xn13=xnl2;
xnl2=xnl1l;
xnll=xnl0;
xn10=xn9;
xn9=xn8;
xn8=xn7;
xn7=xn6;
xn6=xnS;
xnS5=xnd;
xnd=xn3;
xn3=xn2;
xn2=xn;
xn= yO(l);

xxx = {xn; xn2; xn3; xn4; xnS; xn6; xn7; xo8; xn9; xn10;

nlS; xnl6; xn17; xnl8; xn19; xn20);

xxv = xxx/10;
Xxa = xxx/50;
xxj = xxx/75;

posi = tansig(Wipos®xn/1. Blpos);
Posl = tansicW2pos*pasl, B2pos);
apos(index) = pos2*2;

vell= tansig(Wlvel*xxv, Blvel):
vel2= tansig(W2vel*vell, B2vel);
vel3= tansig(W3vel*vel?2, B3vel);

accl = tansig(Wlacc®xxa, Blace);
acc2 = ansig(W2acc®accl, B2ace):
acc3 = ansig(W3acc®ace2, Blacc):

Jjrkl = tansig(W ljerk®xxj, Bl Jerk);
Jrk2 = tansig(W2jerk®jrkl, B2jerk);
Jrk3 = ansig(W3jerk®mk2, B3jetk);

qa(l) = apos(index):
qn(2) = vel3*7S;
qa(3) = acc3*250;
qn(¥) = jrk3*300;
qn(S) = apos(index);

qd = desirin(i); |
expout = fexpout; qn);
theout = [d\cﬁ; qzl:
tmpl = servo(qd,qn, 160000,32000,2400.80);
serverr = [serverr; tmpl };

netvec = qn;

netvec(s) = unpl;

acti = [neti; netvec];

netin = getvec;

betout = theoru(netin,y0);

netsv = [netsv; netout};

(LY} = cinoded5(‘dynplant2® i,i+0.02,y0,netout);
unp? = leagth(Y);

eﬁ =Y(tmp2,:);

templ=max(abs(neti(:,1)));
temp2=max (abs(neti(:,2)));
temp3=max(abs(neti(:,3)));
temp4=max(sbs(neti(:,4)));

xnll; xnl12; xn13; xnl4; x

tempS=max(abs(neti(:.5)));
torque=max(abs(netsv));

neti(:. 1) = neti(:, 1 Vtempl ;
eti(;,2) = neti(:,.2)/temp2;
geti(:,3) = aeti(;,3)temp3;
net(:,4) = neti(:, 4)temp4;
neti(;,5) = neti(:. SVtemp$;
netsvl=netsviarque;

indata = petj’;
desout = getsv]’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%S%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %% %B% PROGRAM 2 BHEBBHR%
X®%%H%% This program models the control ~ BBBBRRE
%% %% % %% system using Zemans methodology %%%%%%%
%% %% % %% %% %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%ﬁ%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

resolution = 18:

y0 =[0; 0; 0; 0]:

netvec = {0; 0; 0; 0; O);

q=(0; 0; 0; 0; 0];

qd =(0; 0; 0; 0; 0];

netout = 0;

index = [;

%% load file generated from output of nn
load uy;

for i=0:0.02:4.6
1

tvec = (tvec; §);

q = observer(y0.netout);

qd = path [10(1):

expout = [expout; q];

theout = {theout; qgl:

%%unpl = sctvo(qd.q.SGO(DO.l920(D.74w.80):
tmpl = servo(qd.q.560000,200000,7400,80);
serverr = [serverr; tmpl |;

aetves = g;

netvec(S) = umpl;

getin = prescale(netvec);

netvec = petin;

if netvec(l) > 1

petvec(l) = 1;

end

if netvec(l) <-1
netvec(l) =-1;
end

if netvec(2) > 1
actvec(Q) =1;
end

if netvec(2) < -1
netvec(2) =-1;
ead

if netvec(3) > 1
netvec@) = I;
end

if netvec(3) < -1
aetvec(3) =-I;
end

if netvec(d) > 1
netvec(d) = 1;
end

if netvec(4) < -1
netvec(d) =-1;
end

if netvec(5) > 1
netvec(S) =1;
end

if netvec(S) <-1

netvec(§) =-1;

end

netd = [neti; netin];

Al = tansig(W1®*netin", B);
A2 = ansig(W2*Al, B2);
netout = tansig(W3*A2, B3);
% getout = thearu(netin,y0);
netsv = [netsv; netout];

%%% Always change the value at the end of the following line 10 max torque
%% % generated from simtheor.m variable max(abs(petsv))

netout = getout * 1.6373e+04;

[T.Y] = cinode45(“dynplant2’ i i+0.02,y0,netout);
tmp2 = length(Y);

¥0 = Y(tmp2,:);

pos = yO(1);
Pos = convert(pos, resolution);
yO(1) = pos;

end

subplot(2,1.1)
plot(tvec, expout(:, 1),"yellow", tvec, theout(:, 1), yellow')
grid

ylabel(*Position")

subplot(2.1.2)
plg;(tvec, expout(:,2), yellow", tvec, theout(:.2)," yellow')
gri

ylabel(*Velocity")
xlabel(*Time")

%%%%%%%%%"c“é%%%%%%%%"c%%%%%%%%’r‘c‘%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%‘.’c’c%%%%%
%

%% %% %% PROGRAM 2 %% % TETR%
XBXBB%%% This program trains the position BERXEEE
RS T TLAL S necural network differentiator 2% R%%%
%% %% %% % BT TT%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%‘1‘6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

testpos
dispCioput finished")
inps=l;

Layl=10;

Lay2 = 10;
Qutps=1:

[WI.B1] = rands(LayLinps);
(W2.B2| = rands(Lay2,Layl);
[W3 B3] = rands(Outps.Lay2);

TP = {100, 10000, 0.01, 0.1, 1.05, 0.7, 0.9, 1.04};

(W1,B1.W2,B2, W3, B3,TE,TR] = trainbpx(W l.Bl.hnn'g'.WZ.BZ.‘umig'.m.BS.’pmelin'.indln.dnouqxnnn.TP);

save resultpos W1 Bl W2 B2 W3 B3 indata desoutposnn

cl = tansig(W1®indawa, BI);
<2 = unsig(W2*cl, B3);

%%%%%%%%%%%%%%%i%%%%ﬁ%%%%%i%%%iiﬁ%%
%%%%%%%%%%%%%%%i%%%%%%555%%%%5%5%5%

%% %% %% % PROGRAM 3 FERBHR%
%% %% %% % This program trains the velocity 3323 1%1
%% %% % %% ncural netwark differentistor BB E%%
%% %% % %% BEBRNED

%%%%%%%%%%%%%%%%S%%%%%%%%%%‘lﬂ%ﬁ%ii%
%%%%%%%%%%%%%%%%%%%%%%i%%ﬁ%i%%ﬁ%%%

testvel2
disp(‘input finished’);

80

inps=20;

Layl=35;
Lay2=10;
Outps=1;

[(W1,BI] = rands(Layl,inps);

[W2,B2] = rands(Lay2,Layl);

{W3,B3] =rands(Outps,Lay2);

TP =500, 100000, 0.001, 0.1, 1.05, 0.7, 0.9, 1.04];

{W1.BI,W2,B2, W3, B3,TE,TR] = trainbpx(W1,B 1,’ansig’ . W2 B2, ansig’, W3, B3, ‘purelin’, indata,desoutvel, TP);
save resultvel W1 B1 W2 B2 W3 B3

cl = tansig(W1*indata, B1);

c2 = tansig(W2°*cl, B2);

c3 = purelin(W3°*c2, B3);

%% %% %% %% %% %% %% %% %% X% % %% %% %% %D% %% %%%
% %% %R BB%RETTRRBEHE%BH%%%%%H%TRH%%%%%%

%% %% %% % PROGRAM 4 B%%%%%%
%% %% %% % This program trains the acceleration %% %% %%
%% %% % %% neural network differentiator %% %% XE%%
%% %% %% % B%HBER%

%% %% %% %% % % %% % % %% %% %% %% % %% %% %% %% %% % %
%% %% % % %% %% %% % %%% % %% %% %% BH%%H%%% %% % %% %

testace;
disp(“input finished’);

ds(Layl.inps);
ds(Lay2.Layl);
ds(Outps.Lay2):

F:
+

TP =[(100. 60000, 0.001, 0.1, 1.0S, 0.7. 0.9, 1.04};
(W1.B1.W2,B2.W3.B3,TE,TR] = trainbpx(W 1.B1, tansig", W2,B2. tansig’ . W3.B3. purelin" indata,desoutacc, TP);
save resultacc W] Bl W2 B2 W3 B3

¢l = @ansig(W!*indaw. Bl);
<2 =tansig(W2*cl. B2);

BEEERTDRRRETETETTBRNTBBTR%TBB%R%%%%RH%%
% % %% % % %% % % %% % %o %% % BB %% %% %% %% %% %% %H%%%

%% %% % %% PROGRAM § %%% %% %%
%% % %% This program wrains the jerk %% %R %% %
%% %% %% ncural network differentiator %% %% %% %
%Ce% %% % %% %% %% %

%% %% %% %% %% %% %% %%% %% BT %% %% HTHRE %% R%%
%% %%%% %% %% %% %% %% %% % %% %% %% %% %% %% % %% %

testjrk;

disp(‘input finished’);
inps=20;

Lay1=20;

Lay2 =135;

Outps=1;

(W2B2) S rads(ayd Loy

(W3,B3} = rands(Outps,Lay2);

TP =[100, 5000, 0.01, 0.1, 1.05, 0.7, 0.9, 1.04];

(W1,B1,W2,82,W3,B3,TE.TR] = trainbpx(W1,B1,'tansig’, W2,B2,"tansig’, W3, B3, ‘purelin’ indata, desoutjrk, TP);
save nndiffirk] W1 Bl W2 B2 W3 B3

cl = tansig(W1*indata, B1);

€2 = tansig(W2ec], B2);

B% B%BX%%%
BB RB% This program performs the FBBE%%%
B %%%% %% digitization of the input signal BHBBRE%

fombre=number;
if oumber<0
number=-] *aumber;

end

temp I=fix(aumber);
numbextnumber-lcmpl ;

result=number*2;
bin:ﬁx(r&mll):

if bin==<]
result=result-1:
end

answer(| }=bin;
for i=2:resolution

result=result*2; -
bin=fix(cesulr),

if bin=1
result=result-| -
end

answer(i)=bun;

end

for i=1 resolutiog

if answer(i)=1
temp(A)=24(-1+j);
end
realno:«.um((:mp):

end

redno:tcmplﬂuluo:
if nombre < 0
realno=-1*realno;
end

number=0;

82

