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ABSTRACT

Wigner Functions for a Class of Semidirect Product Groups

ANNA EwA KRASOWSKA

We define and construct Wigner functions for the class of semidirect product
groups G = R® x H whose linear part H C GL(n,R) is a closed Lie subgroup of
GL(n,R) admitting at least one open and free orbit in R™.

Such groups are classified up to conjugacy in dim n = 3 and in dim n = 4 under the
further requirement that they possess a semisimple ideal.

The general construction is based on three main requirements:

i) the exponential map ezp : g — G has a dense image in G, with complement of (left
or right) Haar measure zero;

ii) the group admits a square-integrable representation;

iii) the Lebesgue measure d.X* in the dual of the Lie algebra can be decomposed as
dX* = de(A)ox(X3)dU(X3), X5 € O3 where Of denotes a coadjoint orbit parame-
trized by an index A , dx()) is a measure on the parameter space, o, is a positive
function on that orbit and 2,(X3) is the invariant measure under the coadjoint action
of G.

We discuss in detail all these elements in the case of semidirect product groups
G =R™ x H of the kind described above and give an explicit form of the generalized
Wigner function related to them.

Cases of special interest are those for which the domain of the generalized Wigner
function can be endowed with the structure of phase space: a sufficient condition for

this to be is given in terms of purely geometrical properties of the coadjoint orbits.



Relevant examples are discussed with emphasis on the case of the quaternionic
group as a 4-dimensional wavelet group; this is a natural non-abelian extension of
the known notions of wavelet groups in 1 and 2 dimensions which have extensive

applications in signal analysis.
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0.1 Introduction

The study of quantum mechanical systems in the language of quasi-probability dis-
tribution functions had its beginnings in the early 30’s when E.P.Wigner published
his paper “On the Quantum Correction For Thermodynamic Equilibrium”. In that
paper Wigner defined a real function ( now called the Wigner function) over a classi-
cal phase space of position and momentum variables, which was a Fourier transform

of the shifted wave function () and its complex conjugate ¥(9).

1 L. _amz T
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This function provides us with the same (complete) information about the state of a
system as the wave function 9(g) itself in the Schrédinger picture of Quantum Me-
chanics. It is well known that according to the Heisenberg uncertainty principle, one
cannot define a true phase space probability distribution for a quantum mechanical
particle. Moreover, the Wigner function may assume negative values, which makes it
clear that it cannot be interpreted as a joint probability distribution for position and
momentum. However, if integrated over ', the Wigner function gives the position
distribution |1(g)|* and integrated over § it gives the momentum distribution |12;(p‘)|2
which explains the use of the quasi-probability distribution terminology. In spite of
the problem of interpretation, the Wigner function has proven to be of great use in
the study of quantum mechanical systems.

In signal analysis the search for a joint time-frequency description of signals is in
principle very similar to the problem of finding a joint (quasi-)distribution of position
and momentum in Quantum Mechanics. Thus, the Wigner function has been applied
successfully also in signal analysis by L.Ville, where it is often called the Wigner-Ville

distribution function.



There are many situations in signal analysis, when a classical Fourier analysis is
not well adapted to represent a signal. In a piece of music or speech, for instance,
the frequencies are constantly changing. This time evolution of frequencies calls for a
joint time-frequency representation such as a wavelet transform or a Wigner function.
These two concepts both arise from the theory of square-integrable group represen-
tations and are closely related as shown in [2] and as will be described later in this
thesis. In many cases, however, the signal we would like to analyze has a built-in
symmetry different from that of the Heisenberg -Weyl group. It seems natural to rep-
resent images as a function on a phase space related to the STM (2) group (a group
of rotations, dilations and translations). In the case of an optical signal, a Wigner
function should underline a symmetry of the optical system. This calls for a new
definition of the Wigner function, which was the main idea in the work of S.T.Alj et
al.([2]). In this paper the authors have defined a general Wigner function for 2 wide
class of groups G, which posses a square-integrable representation and for which the
range of the exponential map ezp : g — G is dense in G. We discuss this construc-
tion in Chapter 3 and use it to build Wigner functions for groups of a special type,
namely, semidirect product groups G =R" x H, H C GL(n,R) such that H acts on
Rr (dual space to R") with open free orbits. Groups of this type, studied previously
by D.Bernier and K.F.Taylor in the context of wavelets([9]), are of importance in
signal ana.l_ysis.

The rest of this thesis is organized as follows:

In the first chapter we classify all 3- dimensional connected Lie groups H, which act
with open free orbits @ on R®. The fact, which we prove, that each n-dimensional
Lie algebra of such a group contain an (n — 1)-dimensional ideal, greatly simplifies
our work in dimension n = 3. In dimension n = 4 the classification is given for groups

which contain a semisimple ideal. We also obtain the classification of irreducible ones
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(none of the cases in dim 3 is irreducible) .

In the second chapter we introduce all mathematical concepts and tools necessary to
define generalized Wigner functions. The main objects are square integrable repre-
sentations and the corresponding Duflo-Moore operators, which are defined there. In
the case of a semidirect product group G =R" x H , whose linear part H acts on R”
with open free orbits, it is shown that each coadjoint G-orbit O in g*, dual to the Lie
algebra g, has the structure of cotangent bundle O; = T°®;. The Lebesgue measure
in the dual space g* can be decomposed as: dX* = 0;(X*)dQ;(X*), where dQ;(X *)
is the invariant measure on O} with respect to the coadjoint action of G. The simple
structure of the groups under consideration allows us to relate Duflo-Moore operators
to the Radon derivative 5(X*) and express them both using the structure constants
of the Lie algebra g.

In the third chapter we recall the original Wigner function and its generalized version
[2] together with their main properties. The explicit form of a general Wigner func-
tion for semidirect product groups G = R" x H (as before) is given, together with a
sufficient condition for its domain to be interpreted as a phase space.

In the last chapter we present some relevant examples of Wigner functions for semi-
direct product groups G = R™ x H such that H acts with open free orbits in R®. The
interesting case of the quaternionic group is considered as a non-abelian extension of

1- and 2-dimensional wavelet groups.



Chapter 1

Classification of groups admitting
open free orbits

1.1 Setting

Our convention will be to denote elements of R™ by column vectors and those of R™, its
dual, by row vectors; generically,  will denote a column vector and ZT a row vector.
In the following, H will be a closed connected Lie subgroup of GL(n,K) (where K is
C or R) such that there are open and free orbits(i.e. a generic point has only trivial
stabilizer) in V = K™. We notice at once that we must have dim(H) = dimV =n.
Let L',..., L™ be generators of the Lie algebra h = Lie(H). We adopt the following
notation: For any L € b the vector field associated to its action is denoted by L :=
SHETLYS, = Y 7 i,

With this notation we can consider the map

A'p - N'TV
LEA---AL* — LIA---AL®

and hence define the function over V (for fixed basis {L!, ..., L"}

GTL!
AWT) =dw' A . AdWLPA ALY =det | .. (1.1)
FTL"



For brevity we will suppress the dependence on b and consider it as a function on V
(after fixing a linear coordinate system). At this point , let us introduce the adjoint
action Ad of the group H on its Lie algebra § :

AdpL :=hLh™!

The matrix of the adjoint action computed with respect to the basis {L,..., L*}will
be denoted as M,. We have the following

Lemma 1.1.1 If H C GL(n,R) is a group whose Lie algebra is by, then forany he H C
GL(n) we have
A(@Th) = det(h) det(Ady)A(ST) .

Proof. We have

GThL! LM,
A@Th)=det [ .. | =det(h)det
JThL™ GTL™M;,
= det(h)det(Ady)A(ST) . (1.2)

This ends the proof. Q.E.D.

Clearly the expression x := det(k)det Ad, is a character of the group H. The
corresponding infinitesimal character  enters in a differential equation satisfied by

the determinant:
Corollary 1.1.1 For any L € § we have
LA =u(L)d,  p(L):=Trv(L) + Try(ads) . (1.3)

Proof. It suffices to take h = exp(tL) in Lemma 1.1.1 and then LA(ZT) =
SAWGTR),o = & (det(etr)det( Ad ) AT ), =4 (det(e“')det(e“d(‘”))[ JAW@) =
(Trv (L) + Try(adr))A(@T) . Q.E.D.

fe=o

The first claim is that u # 0 and hence ¥ is not a trivial character: if this would be
the case, the group would preserve the level surfaces of A (considered as an ordinary
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function) and hence the orbits would be neither open nor free.

Let F* be a basis in the kernel of u, witha =1,..,n ~ 1. The corresponding vectors
F are then tangent to the level surface of A, since F°A = p(F*)A =0.

Lemma 1.1.2 The subspace F := K{F?, wy FP1} C | is an ideal.

Proof. The subalgebra F = ker(u) is the Lie subalgebra of the kernel of the character
det(h) det(Ady) (which is a normal subgroup), and hence it is an ideal. QE.D.

1.2 Classification in dim n =2

The 2-dimensional case has been already investigated in [15], therefore we will only

state the main result.

Theorem 1.2.1 Suppose that H C GL(2, R) acts on R? with open orbits.

(a) If H is connected abelian, it is conjugate to (ezactly) one of the following three
groups:

(i)H={(_ab ”) ;a,bek,42+b2>o},

a

(ii)H:{(g 2) :a,beR+},

(i) H = {(g Z) :a,bGR,a>0}.

(b) If H is connected nonabelian, it is conjugate to (ezactly) one element of the family
H¢, such that ¢ € R — {1},given by

H=={(g :) :a,béR,a>0}.



(c) If H is not connected, then after o suitable change of coordinates its connected

component Hy is equal to one of the groups from parts(a) or(b). H is a finite extension

of Hy, more precisely H C FHy, where F C GL(2, R) is the finite group generated by
(i) (é _01>, for the case (a)(),

(i) (é _(_)1> and (2 é), for the case (a)(ii),
(iii) (é _01) and ((1) -01) , for the cases (a)(iii) and ().

1.3 Classification in dim n = 3

In order to classify all groups H acting with open and free orbits in R?® we will classify
their infinitesimal counterparts . The task is equivalent under the assumption that
H is connected. The classification is over R, which clearly contains the complex case
(i.e. some cases that are conjugated by a complex matrix can be distinct over R) Let
L € b with u(L) = 1. Since F =ker(y) is a two dimensional ideal, in a suitable basis

F!, F? it has the commutation-relations
[FL,F}|=¢eF?; e=0,1.
First of all we notice that § is solvable:
[b.b] € F, [F,F] C span(F)

Since F is an ideal, ad(L) is a derivation of F, i.e.

(ed(L))[F", F*|5 = [(ad(L)) F*, F*]= + [F", (ad(L)) F*] = (1.4)

We can show that if € = 1 (i.e. F is not abelian) then all derivations of F are inner
(i.e. can be represented by ad(F) for some F € F). To see that we can write the

general form of each derivation of F as :
DF? =01F1 +02F2
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DF? = by F' + by F? (1.5)

The condition that D is a derivation together with commutation relation [F1,F? =

F? gives a; =0 = b;.Thus (1.5) can be rewritten as:

DFI = ang
DF? = b,F? (1.6)

We can clearly represent each derivation D of F as ad(F) where F = b F! ~ o, F?

since:

[bgFl —ang,Fl] =¢12F2
b2 F* — a, F2, F? = b, F? (1.7)

Thus, we can always choose L’ € § such that it commutes with F. ynamely L' = L-F;,
(such that adL = adFy). b is then a trivial central extension of F.

Case 1: e=1

[L,FY)=0; [L,F* =0; [F',F=F*.

Case 2: € = 0 We have that ad(L) € End(F) ~ GL(2,R), and hence we can
represent it by an arbitrary matrix (Z’ 3)
In this case, in order to classify the groups with abelian ideal F we will proceed as
follows. First we fix a conjugacy class of the representation for F in GL(3,R). The
normalizer Ngr,g)(F) of the abelian ideal (hence vector subspace) F in GL(3,R)

acts on F by automorphisms

AdgLar) : Noraw)(F) — GL(F) .

Therefore we will act with it on ad(L) in order to bring it into some canonical form.
We have described the abstract Lie algebras that may possibly occur: we still

have to implement suitable three dimensional representations of them (clearly up to
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conjugacy). In order not to overburden the notation we will use the same symbols to
denote both the Lie algebra elements and the matrices representing them.
Before going to special cases we notice that since § is solvable then according to Lie’s

theorem (28, 16] its elements can be represented as lower triangular complex matrices.

Case 1

The Lie algebra reads
(L,F=0; [L, F=0; [F',F=F?.

It is clear that F? must be strictly lower-triangular (over C), because if it had any
diagonal part, the commutation relation [F!, 2] would not hold. Therefore, since all
eigenvalues are zeros, F? as a real matrix can be written in Jordan canonical form as
2 x 2 nilpotent Jordan block, in which case (Case 1.a) (F?)> =0ora3x3 nilpotent
Jordan block and hence we have (Case 1.b) (F2)3 =0 # (F?)2.
The matrix representing F' (denoted by the same symbol) belongs to the affine
subspace

F'={[F", FY = F* , Te(F") = ~Try(ad(F")) = ~1}
Let Nera,r)(R{F?}) denote the normalizer of F2 in GL(3,R); we are to describe in
each sub-case the quotient F'/Ngy(3p)(R{F?}).
Case l.a: (F?)2=0.
We can assume (in a suitable basis) that F? has a 1 in the (3, 1) entry. After a direct

inspection the affine space F! has the following form:

000 A0 0
F2=(0 0 O) ; Fl=QF'=| Ay —24;,-2 0

100 A3y Aszz A +1



Notice that we can always assume that Ay; = 0 by shifting F! by F2.
The normalizer subgroup of F? inside GL(3) is

w00
NotaayR{F*}) =S w2 wvi 0 .
Y3 V5 e

There are three conjugacy classes in the quotient space F! [Nerar) (R{F?})

1. F! diagonalizable. Suppose that 4, ; # —1, -2 or that Ay = —1,43, =0
or A;y =—32,4;; =0, then F! is diagonalizable,

A 0 0
Fr=| 0 -204u+1) o |,

0 0 A +1
by conjugating it by the matrix

1 0 0
¢ = —Ag‘l 3 A1‘1 +2 0
AiAsp  Az2 34 +3

or (in the two other cases)

1 00 1 0 0
b= Ay 10],e=]0 1 o
0 01 0 A2 1

Notice that we can exclude the case the F! is diagonalizable and Ay = -1
for otherwise F'x and F?x would always be proportional to [1,0, 0] and the
resulting group would not have open orbits.

We have now two sub-cases

(a.) AI,I # —%:
In this case the commutation relations imply that L = diag(Ly;, Ly, Ly).

10



By imposing the normalization condition Tr(L) + Try(ad(L)) = 1 we have
L22 =]~ 2L11

Ly 0 0 0 00
L= 0 1-2L, 0 | ,F?=<|0 0 0]},
0 0 Ly 100

Ay 0 0
Fl=| 0 -2(4,+1 o0
0 0 Al']_ +1

A= —2.‘3222(111'1 + 1)

N

(b) A1 =-%:

The commutation relations and the condition Tr(L) + Try(ad(L)) = 1 give

that
Ly 0 0
L=|Ly 1-2L;; O .
0 0 Lu

Now in the generic case, by acting with the normalizer of F we can diag-

onalize L and we have the same form as above (but with Ay = -3/2)

Y

conversely, if Ly; = —4 and Ly; # 0 we can only put it in Jordan form

3 00 000 -2 0 0
L={1 3 0),F=f0oo00],F=|0 -2o0
00 3 100 0 0 %
1
A=—-3-.’L'32.1.'2

2. F! not diagonalizable (eigenvalues —1,0, 0). If A;; = —1 and A3 # 0
then each F! can be put in the form

-1 00
F'=10 0 0},
0 10

by a matrix
1 0 0
Ag1Azs Axz O
A 0 1

11



The normalization condition Tr(L) + Try(ad(L)) = 1 and the commutation

relations give

§ 0 0 0 00 -1 00
L={0 3 O0),F’=joo0o0),Frf={0 00
0 Lj2 % 1 00 0 10
1
A=§.'L‘33.
The normalizer of F is given by

$n 0 O
Norar(F)={®=[0 43 0 :
$2 s ¢s

and by conjugating L by such subgroup we can always bring it into canonical

form, i.e. with Ly =0, 1.

. F! not diagonalizable (eigenvalues ~3-31. fA, 1 =-%and 4; #0

then each F! can be put in the form

-2 0 0
Fl=11 -2 0],
0 0 3
by a matrix
Az 0 0
0 1 0

Az1Asz2 Asaz 1

Imposing the commutation relations and normalization as before we obtain

I

i 00 000 -2 0 0
L=|Ly 5 0| ,FP=|00 0] ,F'=|1 -0

0 0 3 100 0 0 1%
A=§:z:2z32.

The normalizer of F is now given by

¢p 0 O
Netae)(F) =S ®={¢2 ¢4 0 ,
¢3 0 o

12



and by conjugating L by such subgroup we can -again- always bring it into

canonical form, i.e. with Ly; =0, 1.

Case Lb: (F2)? £0 = (F?)°
Up to conjugacy the matrix F? is given by

000
F°=1!100]).
010

In this case the equation [F!, F?| = F? and Tr(F') = —1 can be solved to give (up

-possibly- by a shift of F?)
~4 0 0
F'={ 0 -} o0].
K o0 -§-
The normalizer of F? now is

é1 0 0
NotamR{F*})={®=| ¢ ¢1+a 0 .
3 b h+2a

By acting with such a matrix on F! we actually recognize that we can always bring

o

K to zero.
Then the commutations [L, F'] = (L, F?| = 0 give necessarily that L = 3id (we have
used the normalization Tr(L) + Try(ad(L)) = 1) and we find:

00 000 -3 0 0
L= 3 0] . FP=|1 00|, Fl=|0 -1
001 010 0 0

A= —%1‘3 (—2 3z + 1.‘22)

(=X

Wi O

Before passing to the analysis of the second case, a few words about the reality of the

matrices.
The matrix F? spans [h, b], therefore it belongs to the real Lie algebra of matrices

and it can be put into Jordan form over R. The other two matrices are fixed up to
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the action of the normalizer of 2, which is in both cases upper-triangular: therefore,
if any of the eigenvalues of other elements of § are complex (and hence they come
in conjugate pairs) we cannot put the matrices into real form. Therefore in all cases
above if the algebra is a subalgebra of the real matrices, all free parameters that

appear must be real.

Case 2

Now, the two matrices F'!, F? span an abelian subalgebra of gi(V'). Moreover, from

the equation
Tr(F") = ~Try(ad(F")) =0,

we obtain that actually they belong to si(V). There are only six conjugacy classes of

such subalgebras:
(a.1)
F':=diag(1,-1,0) ; F?:=diag(0,1,-1);
(a.2)
1 0 0 00 O
Fle={0 - 0] ;F:=[00 -1}
0 0 -3 01 0
(b)
000 000
Ft:={0 0 0|;F*={00 0].
1 00 010
(o)
000 000
Ft=[{1 0 0);F*=|00 0
010 1 0
(d)



(e)

000 000
Fl:={100);F:=[000]);
000 100

We can deal right away with cases (a.1) and (a.2): first of all they belong to the
same conjugacy class over C. They can be simultaneously diagonalized (over C) and
then span a Cartan -subalgebra of si(3,C), namely the abelian subalgebra of traceless
diagonal matrices. Now the adjoint action of the matrix L must leave this diagonal
subalgebra invariant, ( ad(L).F C F) which implies that L is diagonal too!. We have
proved that L should belong to the set of diagonal matrices, which gives only an
abelian action (corresponding to ad(L) = 0). Since we can always shift L by € in
such a way that it is proportional to the identity matrix we can take it to be (imposing

the normalization Tr(L) + Try(ad(L)) = 1) equal to 11, so that we have:

Case 2.a.1
100 1 0 0 00 0
L={0 } 0}, ,Fl=|0 -10|,F={0o1 o],
00 % 0 0 0 00 -1
A=21$2.’B3.
Case 2.a.2

We now look at the other three cases. For each of them we are to impose the com-
mutation relations
F1 a b\ [(F!
) () = (2 3) (&) (18
1 =TryL + Try(ad(L)) = Try (L) + (a + d)

'In other words, ad(L) belongs to the normalizer of a CSA and hence belongs to the same CSA
(28]
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This is in principle an overdetermined system for the entries of L and hence we can
expect some compatibility constraints on the values of the parameters a,b,c,d. More-
over, at each stage, it should be noted that we can always add any linear combination
of F', F? to L without changing the commutation relations.

Finally we can act on L with the normalizer of the subalgebra F inside GL(3,R) in
order to reduce the free parameters.

Case 2.b Imposing the form (b) on the matrices F!',F? and solving the system in
Eq. (1.8) we get that L has the form

i-e ~b 0 000 000
L=| - $-d 0] ,F=f{000|,F=|000
0 0o 3 100 010

A= -%233 .

It is clear that the normalizer of F is constituted by matrices & of the form

¢éu 0 O
=\ dar b ¢u| .
d31 ®32 das
In particular one notices that the map

Adgrzw) : Nerar)(F) = GL(F) ~ GL(2,R) .

is surjective. Therefore we can conjugate L by a suitable element of Neriar)(F) and
bring the action of ad(L) into one of the three Jordan forms (over R):
Case 2.b.1 ad(L) diagonalizable over R:

§+[£1 0 0
L= 0 %"l-[lz 0

0 o !

Case 2.b.2 ad(L) diagonalizable over C

3t v
1
L= v 3tu

0 0

Wi~ O O
N———
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Case 2.b.3 ad(L) not diagonalizable.

3+ 1 0
L=("0 l+p 0
0 0 i

Case 2.c Imposing the form (c) on the matrices F?, F? we find that compatibility

imposes d = 2a and ¢ =0 so that L has the form

$—=2a 0 0 000 0 00
L= 0 i—a b ,F'=1100],F*=|0 0 0
0 0 3 010 1 00
A= —%1’33 .
The normalizer of F consists of upper triangular matrices. Now the map

Adgrar) : Norar)(F) = GL(F) ~ GL(2,R) ,

is a surjection over (some) Borel subgroup of upper triangular matrices of GL(2, R).
One can check that then one can put L into the form (according to a = 0 or a # 0)

Case 2.c.1 a # 0, (then the eigenvalues of ad(L) are a and 2a, so that it is semisimple

l-2a 0 o0
L: 0 %—G 0
o o0 i

Case 2.c.2 a =0 #b, ad(L) is not diagonalizable.

(1)

Case 2.d Imposing the form (d) on the matrices F!, F? we find that compatibility

over R)

Qwi- O
L = O

imposes @ = b = ¢ =0 so that L has the form

d 00 10 0 0 00
L=|1000)],F'={({01 0| ,F={|10 0
0 01 0 0 -2 0 00

2

A= —z31,° .
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It is clear that d can not be eliminated because it is one of the eigenvalues (i.e. its
value is invariant under conjugation).

Case 2.e This does not give any group with open free orbits as one can check directly
that the'determinant A is identically zero (irrespective of the form of L). Indeed,
F'x and F?x are always proportional to the vector [1,0, 0].

Summarizing the previous discussion, we have proved

Proposition 1.3.1 The closed connected subgroups of GL(3,R) which act with
open-—free orbits on a three dimensional space fall, up to conjugacy, among the con-
nected groups obtained by exponentiation of the algebra generated by the matrices
below. We also write the form of the group element.

Case 1.a.1

m 0 0 000
L=[0 1-24 0} ,F*=|00 0],
0 0 1 00

H2 0 0
Fl=|0 -2u+1) 0
0 0 we+1

A= —23232(y2+ 1)
[L,FI] =0= [L,F2] ; [FI,F'z] =F?

whL zH2 0 0
H={h= 0 wl-2mz—2u-2 0 w,ze€R}, teR
¢ 0 wh zprHl
Case 1.a.2
300 0 00 -2 0 0
L={1 30| ,F=|000],F=|0 =20
00 3 1 00 0 0 3
A= _§2321.2
[L,F'l=0=[L,FY; [F' F}=F?
wz? 0 0
H=qh=| 3uwln(wz) w2® 0 |, w,zeR%, teR
t 0 w
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Case 1.a.3 For p =0, 1;

3 00 000 -1 00
L=|0 ; 0} ,FP={0 00| ,F*=|0 0 0
0 p } 100 0 10
1
A-§$33
[L,F']=0=[L,FY; [F', F|=F?
w2® 0 0
H={h= 0 w 0 |, wzeR} teR

t win(z lwf) w

Case l.a4 For pu=0

b

1
0 0 00
0) ,F?={0 0 0| ,F'=
3 100

i)

|
(=) leN
{
Ou'n o
L O O
SN—

A—%:r.gz;,z
[L,F]=0=[L,F%; [F',F}] = F?
w2z’ 0 0
H=dh=] 3wlln(z*"'w*) wz® 0 |, z,weR%, teR
t 0 w
Case 1.b
1o 000 ~4 0 0
2 1 1
L={0} o], FP={100],P=[0 -1 0
00 1 010 0 0 2
1
A=—-:1:3( 23z + 79°)
[L,F=0=([L F2] [F',FY = F?
0 0
1 0 |, wz2eR}, teR
Case 2.a.1
oo 1 0 0 00 0
L={0 ; 0|,F'=|0~-10},F=[{01 0],
00 i 0 0 0 00 -1



A = 112924

[L,F)=0=[L,F?; [F', F=0

z 0O
H=q¢h=|0 w 0], tz,weR}
0 0 ¢

QWi O
WO O
S——

*xy

—

i
/N
o O -

{
ON'HO
|
Mlv—-oo
\—/

by

X

)
NN
O O O
- O O

{
O._‘O
\—/

A= 51‘1(322 +z5%)

[L,F}=0=[L,F¥; [F,F}] =0
2z 0 0
H={h=|0 wcos(t) —wsin(t) |, z,weR}, teR

0 wsin(t) wecos(t)

Case 2.b.1
j-m 0 0 000 000
L={ 0 3-m O),F'=[000|,F=(00 0
0 0 3 100 010
A=—%$33

[L,FY = wF", [L,F?Y = pF?, [F', F? =0

witdn 0 0
H={h= 0 w*¥ 0], weR} t,zeR
t z w

Case 2.b.2
i-p ~v 0 0 00 0 00
L={ v 4-p 0] ,F'=[000]|,F=|000
0 0 3 100 010
1
A=—§$33
[L,F'] = pF' +vF? [L,F? = —vF*+ uF?, [FY,F¥ =0
e? (=31 cos(3uwr) —e?(-3Ksin(3wr) 0O
H={h=| e03sin(3wv) e“13¥cos(3wr) 0 |w,tzeR

t z ev
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- 0 0 000 0
L= 1 3-p 0),F'={000],F=]0
0 0 3 1 00 0

[L,F')=pF', [L,F*] = F' 4+ uF? [F' F% =0
wi-3k 0 O

H={h=] 3w w** 0 |weR% tzeR

t z w
Case 2.c.1
t-22 0 0 000 0
L= 0 3-p 0] ,F'=|100),F=|o0
0 0 i 010 1
A=—%$33

[L,FY) = uF', [L,F% =2uF?, [F',F¥ =0
w0 0
H={h= t w3 0 |,weR} t,zeR

z tuwH oy

Case 2.c.2

31» 00 0 00O 00

L={0 } 1) ,F'=l100],F=[00
0 0 % 010 10
1

A=-§I33

[L,Fl] = F?, (L, le =0, [Fl,Fz] =0

w 0 z
H={h=]| t w 0 JweR}, t,zeR

z “3wh(w)+t w

Case 2.d

p 00 10 0 00
L=100O0]),Ft={01 0 ]|,F*=]10
0 01 0 0 =2 0 0
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A = ~z315°

[L,F =0, [L, F*} =pF? [F',F* =0

w0 0
H={h= z t 0], weR} t,zeR
0 0 &

Corollary 1.3.1 The closed connected subgroups of GL(3, C) which act with open—
free orbits on a three dimensional complex space fall, up to conjugacy, among the
connected groups obtained by exponentiation of the algebra generated by the matrices
given in Prop. 1.3.1 (except case 2.a.2 and 2.b.2 which are the same as case 2.a.1 and
2.b.1 -respectively- over C) with the following restrictions:

in cases 2.b.1, 2.c.1 and 2.d, the parameters y;, u, 4 appearing there must be rational

(and hence we may assume integer by rescaling L).

Proof. The rationality condition follows from the requirement that the exponential
group is a closed subgroup of GL(3,C). Indeed each group is a subgroup of upper
triangular matrices and the intersection with the subgroup of diagonal matrices must
be closed. Then this implies that the ratios of the diagonal elements of L must be
rational. The form of the group elements are the same given in Prop. 1.3.1 where

one has to read instead of R} C* and C instead of R. Q.E.D.

1.4 Classification in dim n = 4 with semisimple
ideal

If n = 4 the ideal F is three-dimensional: in this case it can be semisimple (i.e.
isomorphic to si(2,R) or su(2)) or not, in which case (since there are no semisimple
algebras of dimension smaller than three) it must be completely solvable. We shall
classify the cases in which F is (semi)-simple (hence isomorphic to either si(2,R) or
su(2,R)).
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Since F is simple and ad(L) is a derivation of F, then it must be inner (because all
derivations of semisimple Lie algebras are inner), i.e. 3F € F s.t. [L-FF]=0.In
other words § is a trivial central extension of F.

Now, the matrix representation of F is a four dimensional real representation of
a real form of s!(2,C) (which are sl(2,R), so(3)) i.e. (excluding the trivial and the
two dimensional one for reasons that we would not get a open—free action), it must
be either the direct sum of the two-dimensional one or the (embedding of the) three
dimensional one or the four dimensional irreducible (over C). We can exclude the
three dimensional representation because each vector has a nontrivial stabilizer.
Over R we have the following two cases -irreducible or reducible- according to the
representation of FC.
Irreducible
It is well known that there are only two real forms of si(2,C), i.e. so(3) ~ su(2) or
sl(2,R) >~ s0(2,1).
As there are no real, irreducible 4-dimensional representations of so(3) , the only

possibility is that F provides a 4-dim. irrep. of si(2, R), which is given up to conjugacy

by
30 0 0 0000 0100
01 0 0 3000 -_loo10
H=1, 0 -1 0 Fr = 0400 F= 0001
00 0 -3 0030 0000

Since [L, F] = 0 and the representation is irreducible, there is only one choice for

L, i.e. the identity matrix. The corresponding determinant is (for the normalization
L=31)

A=-9 T1ZoTeT3 + 4 le33 + 9/2 1121‘42 - 3/2 .’L‘32.’L‘22 +3 1.'4.'1.'23 .

As there are no real four dimensional irreducible representations of s0(3) ~ su(2),

this is the only real case.
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Reducible

The representation is the sum of two two~dimensional ones, Ve = V@ C®#c V28C As
the two sub-representations must be equivalent, the commutant in End(V) is easily
described: the restriction to each of V; must be proportional to the identity, and the
maps L;; = mi(Lyy,) : Vi = V; must be intertwiners. It is convenient to represent
V=V 8V, as a tensor product V = R? ® V;. With this notation, if p is the two—
dimensional representation of si(2,C), we have F = 1 ® p, and the commutant is
easily described as End(R?) ® 1.

In more concrete terms, the matrices are

1 0 0 0 0 00O
0 -1 0 0 1 000
H=lo o 1 o |'"F=lo 00 ol
0 0 0 -1 0010
0100 a 0 b6 0
- _{0 000 10 a 0 b
F=looo1|*=|codol"
0 00O 0 c 0 d
where we should add the normalization condition Tr(L) = 2(a +d) = 1. In any case

the determinant of the action is
1 2
A= 5(12124 b .’L‘2Z3) .

By conjugating with a matrix of the form SL(2,R)®1 we can bring L into canonical

Jordan form (over R)

0
! )®14n+m=
Ha

H 1
0 2
Lo

L=(& f)®1,
1
4
1

4

%) o1

4

The Lie algebra is always the same abstract algebra h ~ R @ si(2, R).
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As for the other real form of si(2,C), namely su(2) ~ so(3), there is a 4-
dimensional real representation which is irreducible over R but not over C: such
a representation is given by quaternions H ~ R* we have the rep. of the other real

form of sl(2,C) as in

0 -1 0 0 0 0 -10 00 0 -1
|1 o 0o o 2|0 0 o 1| 5 |00 -1 0
F=lo o o =1"F=[1 0 0o o/ F={o1 0 o

0 0 1 0 0 -1 0 0 10 0 0

The commutant is non-trivial (as Schur’s lemma does not apply this being a reducible

rep. over C) and it is constituted by matrices of the form

0 —Q2 —Qj3 a4

a 0 —-a; -a
L= (111 + 2 4 3

as a4 0 =-a

-a4 a3 a 0
The normalization Tr(L) = 1 fixes a; = %, but the other parameters are free and give
inequivalent representations of the same Lie algebra,  ~ R @ su(2). The particular
choice a; = a3 = a4 = 0 gives exactly the action of quaternions on themselves on the
right (at the group level the group is H =R, - SU(2) = R, - Spin(3).

The determinant of the action is

A= (112 + 1'22 + 232 + 242)2

1
4
Proposition 1.4.1 The closed connected subgroups of GL(4,R) which act with

open—free orbits on a four dimensional space and whose subalgebra F is simple, fall

~up to conjugacy—, among the connected groups listed below.

Irreducible The group is Ry - SL(2,R) where the representation of SL(2, R)
is the spin 3/2 irreducible one and R, acts by dilations.

9 3
A = -9 1,297473 + 41125 + 5 %z - 51:321:22 + 34153 .
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Reducible 1 The abstract group is R, - SL(2,R) and the vector space has
the structure of R? @ R? where SL(2,R) acts reducibly and R, is one of the
following three subgroups depending on the real parameter u € R.

0 0

SL(2,R) —  ad—be=1 (1.9)

oo n R
O O A o
o 0 O

b
d
(a) RY — {diag (w“,w“,wé“‘,wi‘“) ; WE RI}
f(w 0 In(w*)w 0

O L S B weR:
00 w 0

\o o o w
( /w cos In(w*) 0 wsinlh@®% 0

0 w cos In(w*¥) 0 wsinln@*)

c) R - ; wERS
() RE~ —wsnln@¥ 0  weosh@® 0 vER
(\ 0 -wsnh@® 0 weosl®
1 2
A= 3 (T124 — To23) (1.10)

Irreducible over R The group is R} - SU(2) where SU(2) acts in the real
representation given by unit quaternions on themselves from the left and R} is

given by exponentiation of the generator

0 (15)] a3 —Q4
—Q2 0 Q4 as
—-a3 —-aq4 O as

Qaq —Q3 —a2 0

1
=-1
1+

for any real a;,a;,a;. The determinant is given by

1
A= Z (2:12 + 2:22 +$L‘32 +.’L'42)2



Chapter 2

Some mathematical preliminaries

We begin with some basic properties of semi-direct product groups of the type men-
tioned above and in particular take a closer look at their non-trivial orbits,i.e. orbits of
maximal dimension. Let G = R™ x H be the semidirect product group with elements
g= (5, h), be R", and h € H and the multiplication law :

(B1,h1) (By, bo) = (B, + hy5p, hyhy) 2.1)

Here H is assumed to be a closed subgroup of GL(n, R) and, as mentioned eatlier, we

will consider only the case where H is an n-dimensional subgroup of GL(n,R) such

that there exists at least one open free orbit, Orr = {E Th|he H }, for some k7 in

lﬁ"(the dual of R™). An element g € G can be written in matrix form as

_(h &
g—()'TIr

where h € H, b € R™ and (7 is the zero vector in R". The inverse element is:

(bt -l
I 6T 1 )

Note that A is an n x n matrix with non-zero determinant, which acts on £ € R*

from the left in the usual way, £ — hZ, and similarly, it acts on Z7 € R from the
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right, 27 = £7h.

The left invariant Haar measure, dug, of G is

. 1 .
dug(b,h) = [deth| db dug(h), (2.2)

db being the Lebesgue measure on R* and dpy the left invariant Haar measure of .
While it is the left invariant measure that we shall consistently use, it is nonetheless
worthwhile to write down at this point the right invariant Haar measure dy, as well,
in terms of the left Haar measure and the modular functions Ag, Ay, of the groups
G and H, respectively:

= - P Ag(h
duo(, ) = Ao(6. ) dun(f ) = T

Let g = Lie(G) be the Lie algebra of G and {L!,L?,..., L**} a basis of it. We

choose this basis in a way such that the first n elements, {L!, L?, ..., L™}, arenxn ma-

du. (b, h). (2.3)

trices, forming a basis in § = Lie(H), and the last n elements, (L™, L2 L L),
which are the generators of translations, form a basis in R®. An element X € g can

be written in matrix form as:

X=o L'+ z1,L%+ ... + 20, L = ( é(f. 13’) (2.4)

where X, is an n x n matrix with entries depending on z;, % = l..n, and z,
is & column vector with components Zpi1,Zn4,...,22,. Also it will be useful to
introduce the vector Z,, with components z;, i = 1...n, and the vector of matrices
X =(L' L?...,L"). Next, for any @ € R", we define the matrix [%4] whose columns

are the vectors L'z, i =1,2,...n,
(X7 = (L'g, L%, ..., L*4). (2.5)
The adjoint action of the group on its Lie algebra,as introduced in the previous

chapter, is given by

hX;h-! —-hX,h-'5+ hf,,)

X—Ad, X :=gXg~' = ( (-)‘lr 0 (2-6)
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Introducing the matrix M (h) such that,
hL*h™ = )" L'M(h)f, (2.7)
=1
the adjoint action of an element g = (5, h) € G may conveniently be written in terms

of its action on the 2n-dimensional vector (;") as:
P

7] - q:)-—Mbh (_.q> 28
( ) ( A ( i ) 7 ’ ( )
where M(b, h) is the 2n x 2n-matrix

M(h) 0’*) , (2.9)

MED = (o)
Q.. being the n x7n null matrix. Note that M(h) is just the matrix of the adjoint action
of h on § (the Lie algebra of H) computed with respect to the basis {LY,L2,...,L").
Similarly, M(b,h) is the matrix of the adjoint action of g = (b, h) on g, the Lie

algebra of G. By abuse of notation, we shall also write,
P

Ady X, = M(h)Z,,  Ady, X = M(5,h) ( ;‘3) : (2.10)

The coadjoint action of G on g*, the dual space of its Lie algebra, can now be
immediately read off from (2.9). Indeed, let {L;}2*, be the basis of g* which is dual
to the basis {L'}?", of g, i.e.,

(Ly; DY =¢&, 4i,j=12,...,%.
A general element X* € g* then has the form,
X = i'yiL: , ¥ €eR
i=1
and again we introduce the row vectors,

> " =T
=N ™), 3T =N ), AT = (L ).

29



Using the relation
(Adf,X' i X) =(X"; Adg-1 X)),

we easily obtain from (2.9),

X' = (3T 5 15 T - Mh™) O,
Ad:b h) = (7qT, 7pT)M(-h Ib,h 1) - (7qT, pT) (h_(l[xgl) h_l) . (2.11)

Thus, under the coadjoint action, a vector (57, 7,T) changes to:

:y.q’ T :quM(h-l) + ,-Y-pTh-—l [xE],

='T 3ThH-1
Y h™.

)
i

(2.12)

Let us also note that the modular functions appearing in (2.3) can be written (19]

in terms of the coadjoint operators as:

- Axn(h) - S
Ag(b h) = |det Ad(b h) | = [det B[’ Ag(h) = |det Ady | = m (2.13)

Before leaving this section we make a further important assumption on the nature
of the group G. We require that the range in G of the exponential map be a dense
set whose complement has Haar measure zero. (This includes, for example, groups of
exponential type.) Thus, by exponentiating (2.4), we may write any element (up to

a set of measure zero) of G as

b'e (ex" 62 Slll(‘.hx

g=e= (% ; ) X €N, (2.14)

where N € g is the domain of the exponential map, which contains the origin and
has the property that if X € N then —X € N. The n x n matrix sinch 4 is defined

as the sum of an infinite series:

. 1 1 1
sinchA=1I,+ '3—!A2 5.4.4 FAG (2.15)
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I. being the n x n unit matrix. When the matrix A has an inverse, sinch A can also
be formally written as:

e —e-4

sinch4 = oA

= A lsinh A. (2.16)

It will also be useful to introduce the matrix valued functions,

F(X,) = e%sin ’gq
X2 x3
- L+§+—f+4—f+--- 217) .
and
2
¥\l X, -1__ ¢
F(=X,)' = eXF(X,) .
_ X, Ic—lB"X:
= L+3 +Y (-1) Tk (2.18)

k>1
where the By are the Bernoulli numbers, B; = , B, = 31 Ba =5, Ba= 3%, etc,,

and generally,

2k 22&-1 Z n2k

Later we shall need to express the Haar measure dug in terms of the coordinates

of the Lie algebra, using the exponential map. Writing
dpc(e*) = ma(Z,, £p) A, dZ, (2.19)
the density function m(%,, Z,) is easily calculated, using (2.14). Indeed, from (2.2),

dug(eX) = duG(e'f' smch—-:z:,,,eiﬁ!)

- |det1 eXIIdet(e )Idus(ex)dz
= ldet(e-—fzsinch%ﬂdug(ex') dz, (2.20)

31



It is also possible to write iz #(e) in terms of the Lebesgue measure, dZ; = dz,dz,...dz,,

times some density function my [20],

dpy (e ') = my (%) dz,
l1—-e —adX, - _w%& . Xq ‘..
det W d.‘tq = det(e sinch (ad—2—)) dzq (221)

where ad X is the linear map on g which is the infinitesimal generator of the adjoint
action Ad,, g€ G:

edX(L) = [X,L], and Ad, = Ad,x =e*X. (2.22)
Finally, the left Haar measure on G takes the form :

dug(e*) =

det(e™T" sinch (%) ) det(e=*% sinch (ad%) )

dZ, dz,, (2.23)

and the density function mg(%) appearing in (2.19) is:

mg(Z) = |det(e ~% sinch (X )) det(e“‘“‘zi sinch (ad%)ﬂ
= |det F(~X,) det F(—adX,)| (2.24)

2.1 Orbits and invariant measures

It is now possible to determine the non-trivial coadjoint orbits of G, which will be
the main focus of our attention. These are orbits of fixed vectors in g" under the
coadjoint action (2.12). Consider first the vector (07,£7) € R?, & # 0 and let

O* gz ey be its orbit under the coadjoint action, i.e.,
Ogren ={(F %) =0T kF")M(-b~'5,h7") | G,h) e R* x H}.  (2.25)
Then, from (2.12),
T o= ETh7E =77,
I = kTl (2.26)
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The vectors -7PT generate the orbit 5,;,- of the subgroup H in R. We now show that,
for any "y'pT, the vector ’y'qT = -'f,,T[aeE] is an element of the cotangent space of 5,;1-
at this point. Indeed, for any i = 1,2,...,n, consider a curve, Z(¢)T in 5,;7 of the
type,

@' (t)T =57,  te[-e, CR. (2.27)
Then, @*(0) = 47, and

dii(t)T l
dt le=o

=5 L =T, (2.28)

is a vector tangent to 6,;,- at "y‘PT. Recall that we are assuming that the action of H
on R is open free. Hence the stability subgroup of the vector &7 under the action
kT~ ETh s just the unit element of H and the orbit 5,;7 is an open set of ]ﬁ",
consequently of dimension n. This implies that the vectors i;fT are non-zero and
linearly independent and hence form a basis for the tangent space T;;é,;,. at "y’pT.

Let £iT = (¢1,¢2 . i) in components, and define the matrix
(7)) =[] = [61,8....,6n), (2.29)
where the vectors 9-: are its columns:
0T = (¢, 6%, ..M,  i=12,....n (2.30)

The vectors §; form a basis for the cotangent space T;p,@,-;, of 5,;-,- at ‘/‘PT. Thus, if

b* are the components of the vector 5,

T, X6 =Y 697, (2.31)
=1

implying that [§7[Xb)|T = [%5|T5, is just a cotangent vector at 3T, Letting & run

through all of R", these vectors generate the whole cotangent space at "y’pT. Thus,
Grin =T"Or, (2.32)
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and if £ is a vector such that the orbit 5;,— is open and free, the orbit 0(‘6 r ) bas
dimension 2n. It is known [9] that if one such open free orbit exists, then there exists
a finite discrete set of them, corresponding to vectors EJ-T, J=12,...,N < o0, for
which Uf’gla,;jr is dense in R™.
To see this it is sufficient to consider the function A defined in Eq. (1.1): the union
of lower dimensional orbits coincides with the zero set of A, which is a subvariety
of dimension < n — 1 (remember that A is a homogeneous polynomial of degree n)
and hence the union of open orbits is dense. The number of different open orbits is
then equal to the number of connected components of R where A never vanishes
and it is finite as a simple compactness argument shows on the projective space
R*/R, ~ ™1,

Similarly, let us compute the coadjoint orbit of a vector (£T,07) € R*™. As
before,

Oergmy = (% 5) = @0 )M(-h" 5, b)) | Gh) e R* x H},  (2.33)
and again from (2.12),
,7:' = fTM(h-l),
§I = 0T (2.34)

and these orbits all have dimension lower than 2n. From the point of view of repre-
sentation theory, these are the trivial orbits.

Using the coordinates ¥* to identify g* with R**, we arrive at the result:

Theorem 2.1.1 If the action of H on R s open free, the set of non-trivial coadjoint
orbits in g* is finite and discrete and their union is dense in 8°. Moreover, each

nontrivial coadjoint orbit, OZV ETy is the cotangent bundle, T‘C’)\,;r, of an open free
lad? 7
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orbit, 5;;- C ]ﬁ", of a vector EJT € R under the action of H. Under the coadjoint
]

action of G = R™ x H the dual space of its Lie algebra decomposes as
s ., D2m _ N . - - A.
g ~ R = [u,.=1o(6,,,;j,)] uv = [Uf;lT o,s,] uv, (2.35)

where V' is o set consisting of lower (than 2n) dimensional orbits and therefore of

Lebesgue measure zero in R?".

The orbits 0(‘61' iry being homoageneous symplectic manifolds [21), carry invariant
i
measures under the coadjoint action (2.11 - 2.12). Indeed, if ¢57 denotes the Lebesgue
measure dvy! dy? ... dy*", restricted to the orbit 0(.61’ iy
"y

(2.13) it is easy to check that under the coadjoint action it transforms as,

then using (2.12) and

d5' T = Ag(b, h)d5 7. (2.36)
On the other hand, the mapping Kj: 5;‘-’1- — H,
Kj (~7pT) = hv where :Y.pT = ic.jTh_ly (237)

is a homeomorphism. Thus, it follows that the measure

AH [nj (:pr)]

W) =@ T o) =
P

(2.38)
is invariant on O(%T,EJ.T)

Note, finally, that each one of the orbits O(‘GT in
k;

G itself. Indeed, using (2.26), (2.31) and (2.37) let us define a map,

under the coadjoint action.

is homeomorphic to the group

Ri: Ogrgn — R 2 H, %57, 77) = B,b) = (OF7)71, x,(77), (239)

where 6(’7PT) is the matrix of tangent vectors defined in (2.29). Then, K; is a home-

omorphism and it is straightforward to verify that
K;o Ad_fm = Ly 0 K;, (2.40)
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where L, (9) = gog, 9 € G. More explicitly, if (:Y;I‘, '7:) —g= (5, h) under X;, then
Ad}, (77, % ) = (b0, ho) (B, h) = (By + b5, hoh). (2.41)

In other words, the homeomorphism %;, from the coadjoint orbit O°- to the

@TET)
group R" x H, intertwines the coadjoint action on the orbit with the left action on

the group and furthermore, under this homeomorphism the invariant measure df2; on
the orbit transforms to the left Haar measure dug on the group.
Before leaving this section, we describe a second, in a way more intrinsic, method

for arriving at the invariant measure (2.38), using the fact that the orbits 0(‘0 TET)

are symplectic manifolds and thus carry G-invariant two-forms [21] which can be
computed using the structure constants of the group. As before, {L*}?*n, will be a
basis for the Lie algebra g and {L{}Z, the dual basis of g*. The Lie algebra of the

group G is determined by the commutation relations,
, L] = Z gk (2.42)

where the cff are the structure constants. Thus, in this basis, the linear maps adL*

have the matrix elements [adL'}] =c}. Let X* = Y2 4iL: € O,

GTET) C g” and let

us define a matrix ©(F7) at this point by

[OGFT)7 = ) adL'l, +* = Ec;’ 7. (2.43)

k=1
Using ©(77T) matrix, we now identify the Lie algebra g with the tangent space,

Tx-Or to the orbit O

GTET) at the point X*. (Note that this tangent space

@T.kT)

is naturally isomorphic to g* itself). Since the orbit 0 % is open free, it has dimen-
sion n and its cotangent bundle, i.e., the orbit O GTETy has dimension 2n. Thus,

TX°OGTJ=T)

Similarly, we shall use the dual basis {dy*}2n, for the cotangent space, TX.O('O,. iy

has dimension 2n and in it we shall use the standard basis (&
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From (2.43) we see that for i = 1,2,...,2n, the vectors Yo eF N¥g form
a linearly independent set of tangent vectors to the orbit 0‘0,. i
X* (under the coadjoint action). Thus, for X = S niLi € g, it follows that

2i=[O®F 7)Y % defines a vector in Tx.O"-

at the point

and hence we have the identifi-

@77
cation map, ¢x- : g Tx-O(ﬁ.T iy
2n N 8
x-(X) = Z o z: ay =Y [OGFT) z 5 (2.44)
i.j.k=1 ij=1

as an isomorphism of vector spaces. The G-invariant 2-form (symplectic form) is then
defined as:

wx-(¢x-(X), 6x- (L)) =< X*;[X, L] >, (2.45)
which using (2.42) and (2.44) can be expressed in the form,
2n . . n ) .
wxe = ) wxels dr Ady = Y [O(FT)); dy Ad, (2.46)
f,j=1 f,=1
where [©(57T)];; are the elements of the inverse matrix [©(7T)]-!. From this the

G-invariant measure on the orbit O~

GTET) is computed to be

A
dOy(77) = Mdetfux-)T dr' dy? ... dy™" = —— 4yl dy? . dyPn,
i(77) = Aldetfwx-])7 dvy' dy = G T Y v
where A is a constant. By multiplying the basis vectors L' by appropriate constants,
A can be made equal to one. We shall assume that this has been done and then write,

. 1
dQ;(77) = (detfwy-])2 dy' dy? ... dv?" = dyl dy? ... dy*n.
i(77) = (detlwx-])? dy* dy* ... dy GeoEmE
(2.47)

Comparing with (2.38) we find,

0;(7T) = (det[O(F 7)))%. (2.48)
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2.2 Representations of G

In order to construct Wigner functions for the group G = R™ x H we shall use
its quasi-regular representation. This representation acts via the unitary operators

U(b, h) on the Hilbert space § = LX(R", dz):
(U}, b)f)(Z) = |deth|~% f(h~}(z ~ ) fes. (2.49)

This representation is in general not irreducible, but is always multiplicity free. More-
over, the existence of open free orbits implies that every non-trivial irreducible sub-
representation of G is contained in U and each such representation is square integrable
[9] in a sense to be made precise presently.

In order to obtain the irreducible sub-representations of U, it is useful to look at the
unitarily equivalent representation (6,h) = FU (6,h)F~!, where F : LR~ djj) —

L*(R",dkT) is the Fourier transform operator:

(FA(ET) =

(2;);3 /R ) e*TEf(3) dz.

The action of J(5, h) on a vector fed=L¥Rdk T) is easily seen to have the
form,

(U6, h)f)(ET) = |det hj} &% ™8 F(ETh). (2.50)
We shall also need the form of this representation, written in terms of Lie algebra

variables, using the exponential map (2.14):
(T(X)FIET) = | dete~Xe| eFTF-Xa%) F(f Te=Xa), (2.51)

Let E,-T € Iﬁ", J=12,...,N, be a maximal set of vectors whose orbits 5,;;-
P

under H are open free and mutually disjoint. Then by Theorem 211, U¥

]=10Ej‘1' 1S

dense in R® and U;T’:IT‘azf is dense in the dual, g°, of the Lie algebra of G. Set
P
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H; = L2(55,7' dkT) (the restriction of the Lebesgue measure to the orbit is implied).
Then, it is not hard to see that each of these spaces is an invariant subspace for
U. Moreover, the restriction ff,-, of 7 to 5,-, is irreducible [9], and is in fact the
representation of R® x H which is induced from the character Xi(£) = exp ik T%) of
the abelian subgroup R". Thus,

-

=05, U@ h) =el0h), (2.52)

and it follows from Mackey’s theory of induced representations [22] for semidirect
product groups that these irreducible representations exhaust all nontrivial irreducible
representations of G.

Recall next that the unitary dual G of the group G is defined to be the set of all
equivalence classes of unitary irreducible representations of G. In the present case we
see that G is just the discrete set G = {1,2,..., N}. The Plancherel measure ve 13]
of such a group is thus a simple counting measure and the left regular representation

U, of G decomposes as the direct sum
Ug) =0, Ui(g), g9€G, N<oo, (2.53)
of sub-representations Uj carried by the Hilbert spaces 7, such that,
L¥(G,duc) = &l %] | (2.54)

dpc denoting the left invariant Haar measure of G. Each sub-representation U} (g)
is unitarily equivalent to a direct sum, of copies of the irreducible representation (7,—,
with infinite multiplicity (equal to the dimension of the carrier Hilbert space, 9 i, of
ﬁj ). Recall, that the left regular representation Uy is a unitary representation which

acts on L*(G, dug) in the manner,

Udg)f)(9) = flg7'd),  feL*G,dug), geG, (2.55)
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and (2.53 - 2.54) then give its Plancherel decomposition [14]. The decomposition

(2.54) also implies a similar decomposition of the right regular representation, U,, of
G:

(U-9)f)9) = Bel9)if(ds),  feL¥G,dug), geG,  (2.56)

in the manner,

Ug) =@, Ui(g), geG. (2.57)

The operators Uy(g) and U,(g) commute with each other for all 9 € G and combining
them one has a double representation, Up(g,, go) = Ue(91)Ur(g2), of the direct product
group, G x G on L*(G,dyg):

(Up(91,92)£)(9) = (Ue(91)U:(g2) £)(9) = Ac(g2)7 £ (9 gg0), (91.92) € G x G.
(2.58)

It then follows that the decomposition (2.54) also accommodates the decomposition

Uo(g1,92) = &L,Ub(91,92),  (91,92) € G x G, (2.59)

of this double representation into the irreducible components U%(g;,gz), carried by
the subspaces $5} of L2(G, dpg). The diagonal part of this representation, Un(g,9),
is again a representation of G on L*(G,duc) for which the %} are also invariant

subspaces, and the decomposition,
Un(g,9) =@;L,Up(9.9), 9€G, (2.60)

clearly holds. The sub-representations Ul(g,g) are not, however, irreducible. Note
also that Up(g,e) = Uu(g), Uple,g) = U.{g) and if P/ is the projection operator,
PILYG,duc) = 535, then

PUp(g1.92) = Up(91,92)P,  (g1,92) €G x G. (2.61)
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Next consider the Hilbert spaces, Lz(O('ar z7)9€), of functions on the coadjoint
;i
orbits, where d©; is the invariant measure under the coadjoint action, obtained in

(2.38). These spaces carry (reducible) unitary representations U} of G of the type,
UH@F)F) = FFMER),  9€G, Fel (Ogr;r ), (262

where M(b,h) is the matrix of the coadjoint action Ad::?.h)-l’ as in (2.11). Let us
write,
5 = &Ll Ofrir,d),  U'g) =l U%(g). (2.63)
We shall see later, once the Wigner transform has been constructed, that using this
transform it will be possible to embed the Hilbert space L*(G, dug) isometrically into
%" in a manner which will intertwine U*(g) with Upn(g,9).
Note, additionally, that in view of the homeomorphism between the orbits 0(‘6 TET)
and the group G, it is possible to map each UJ‘-’ unitarily onto the left regular rep-
resentation Uy Indeed, it is easy to see, by virtue of (2.39) and (2.40) that the

map:
Vj : Lz(o(.ﬁr_zjf)ydgj) — Lz(Gv d#G)’ (‘/JF)(g) =Fo E—I(g)v (2’64)
is unitary and

V;Ud(b, h)V;! = U5, h). (2.65)

]

2.3 Square-integrability of representations

The irreducible representations (7, in (2.52) all have one other property, of importance
to us here. These representations are square-integrable [1]. Recall that a unitary
irreducible representation U of a group G on a Hilbert space ) is square-integrable

if there exists a non-zero vector n € §), called an admissible vector, such that:

o(n) = /G | < Ulghnln > Pduc(g) < oo (2.66)
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The existence of one such vector and irreducibility of the representation imply that
the set of all admissible vectors A is dense in §. If the group is unimodular then
A coincides with §), otherwise it is a proper subset of it. (For a more detailed
description of square-integrable representations and their properties, see e.g., [1]).
For any square-integrable representation U there exists a unique positive operator C
on §) whose domain coincides with A and such that if n,, 7y € A and ¢y, ¢, € § the
following orthogonality relation holds:

/G <Ul(g)mlde > <U(g)mlgr > duc = < Cm|Crma >< o)y > (2.67)

This result is due to Duflo and Moore [14] and the operator C is usually referred to
in the literature as the Duflo-Moore operator. If G is unimodular, C is a multiple of
the identity, otherwise, it is an unbounded operator.

For semidirect product groups G = R™ x H of the type discussed in the previous
sections, with open free orbits, the irreducible representations ﬁj (5,h), appearing in

the decomposition (2.52) are all square-integrable and one has the result [9]:

Theorem 2.3.1 Let H be a closed subgroup of GL.(R) and let G = R™ x H. Let
5,;11- be an open free H-orbit in R™. Then the restriction ffj(g, h), of the quasiregular
representation to the Hilbert space L*(D,dkT), is irreducible and square-integrable.
The corresponding Duflo-Moore operator C; assumes the form:

(CiH)(ET) = (2m) ¥ [e;(RT)H £(RT), (2.68)

on Lz(ﬁgr,dET), where ¢; : 5;;— — R* is a positive, Lebesque measurable function
J p4

which transforms under the action of H as:

¢;(kTh) =%cj<éf), (2.69)

for almost all kT (with respect to the Lebesgue measure). Furthermore, every irre-
ducible representation of G is of this type and the quasi-regular representation is a
multiplicity-free direct sum of these representations.
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It has also been shown in [9] that cj(kT) is precisely the density function which
converts the Lebesgue measure dk T restricted to the orbit 5,;_1, to the invariant
]

measure dv; on it:
dv;(ET) =c;(ET) dkT and dy;(KTh) = dv;(k7), (2.70)

and can be defined simply to be the transform of the left Haar measure dug of H
under the homeomorphism (2.37),

dv;(kT) = dup(x;(KT)). (2.11)

If 7 € Opr is an arbitrary point and 47 = £Th™!, (see (2.37)), then in view of
b}

(2.69) we may set,
|det h|
Ag(h)’

for almost all L € 5,;jr (with respect to the Lebesgue measure), where \ is a

(%) =A

constant. (Clearly, with this choice of of the density cj('?pr) the invariance condition
in (2.70) is satisfied). In view of (2.71) we may, by multiplying duy by a constant if
necessary, make A = 1. Assuming that this has been done, we may write (for almost
all 3,7),

CJ(:Y’ T) = l det [KJ(‘-Y.pT)”
P Agle;(37)]

Comparing with (2.3),(2.38) and (2.48), and using the homeomorphism &; : O('ar i)
e |
R" x H in (2.39), we have the result,

(2.72)

—

Theorem 2.3.2 Let H be a closed subgroup of GL,(R) and let G =R*x H. Let 5,; T
be an open free H-orbit in R* and let T‘@,;;- be its cotangent bundle with invariant
7

measure dS2;. Then the following equalities hold:
(7)) = 03(FT) = (det[O@(FT)))% = AglR;(77)], (2.73)
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(ezcept at most on a set of measure zero ), where c; is the function defining the Duflo-
Moore operator of the unitary irreducible representation ﬁ, of G, associated to the
orbit 5,;1, 0;(77) is the Radon-Nikodym derivative, 457 /dQ;, at the point 5T =
T = 07 m ™ 9™) € T, [OGTY = £, ik, of
being the structure constants of G, and & K; the homeomorphism between T* 0'1- and

R"™ x H, normalized so that %;(§T ET) = (0,e).

2.4 The Plancherel transform

It is known (see, for example, [1]) that the orthogonality relations (2.67) for a square-
integrable representation U of the group G have an extension to Hilbert-Schmidt
operators on ). Let B;(5)) denote the Hilbert space of all Hilbert-Schmidt operators
pon 5. This Hilbert space is equipped with the scalar product,

(P11 p2)8 = Tr{p}ps].

Then there exists a dense set D ¢ B;($) such that for any p € D, the (closure
of) the operator U(g)*pC~! is of trace class (C being the Duflo-Moore operator).
Furthermore, the function

folg) =Tr{U(9)*sCY, (2.74)

is an element of L%(G,dug) and moreover,

”fP”%z(G,duc) = ”P"Lzs- (2.75)

Thus, we may define an isometric linear map, W - By() — L*(G, dug) which,
for p € D, is given by (2.74) and is then extended by continuity to all of B,($).
Additionally, as a consequence of the relation,

CU(g) = [Ac(g)]* U(9)C, (2.76)
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20 intertwines the representation U(g;) AU(gz), of G x G on the Hilbert space By(%),

where

Ulg@) AU(g)(p) =U(@)eU(g2)",  p€ByH), (91.92) €EGXG, (277

with the double representation Up(g;,g2) (see (2.58)) on L*(G,dug). For the group
G = R" x H, with open free orbits, each irreducible representation U; gives rise
in this way to a double representation U} (gy,g2) on 32(5,-) and an isometric map
E,- : 82(5,-) — L¥G,dpg), j=1,2,...,N. The range of this map is the subspace
5} (see (2.53) - (2.53)). The inverse is a unitary map ﬁ; L: %5 — By(8;), which
on a dense set of elements f € ) is defined as,

o~

T =T, Oy = /G £()7:(9) duc(s), (2.78)

and is just the restriction of the Plancherel transform [14] to the subspace 5} of
L*(G,duc). Let us write US(g1,92) = ©,Uh(g1,92) and BY = @, B,(5;). The
Plancherel map is now defined as P = e;-‘;liﬁ;‘, and the Plancherel theorem [14]
may be stated for this case as:

Theorem 2.4.1 Let G =R" x H admit open free orbits. Then the map
P:LXG,duc) — Bf,  P(f); =T;'f = Ty(f)C;, (2.79)

defined initially on a dense set of elements f € D C LYG,dug) N LG, dpg), is
an isometry and hence can be extended as a unitary map to all of L*(G,dug). The

inverse of this map is P~1 =10 = @j.v:lﬁj, where

(2;0)(g) = Tx((9)"pC; Y, (2.80)

again defined initially on a dense set of vectors p € 32(51') and then extended by

continuily.
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The map P intertwines the double representation U, p(91,92) of GXG on L*(G, dug)
with the representation US(gy,g;) = @I»”:ﬁ,-(gl) A (7,—(92) on BP, where for each
J=12,...N, the representation ﬁj(gl) A 171-(92) of G x G 1s irreducible on Bg(ﬁj).
Furthermore, P maps the left regular representation Ue(g) of G unitarily to the repre-
sentation fjj(gl)/\l,-, on Bg(ﬁj), (I; being the identity operator on 5,» ), and hence the
restriction of Uy(g) to §33, in the decomposition (2.53) - (2.54), is an infinite direct

sum of representations equivalent to ff}(g).
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Chapter 3

Wigner function

3.1 The standard Wigner function

Let us begin with a revision of some basic properties of the function defined in (26].
The quasiprobability distribution function WM is defined for any quantum mechan-
ical state ¢ € L?(R",dZ) on the flat phase space I' = R?" as

wglann =g [ sa-DeFoqr Dz, @y

wl 8

The vector ¢ represents the position of the system, p'its momentum at the point § and
h is Planck’s constant. The phase space [ can also be viewed as an orbit * under
the coadjoint action of Heisenberg-Weyl group Ggw in the dual space gy to its Lie
algebra gy, and this is the starting point of [2] for constructing a generalization of

the Wigner function. Canonical transformations of the phase space I" of the form:
(¢:8) = (7~ G.F - &), (3.2)

can be viewed as the coadjoint action of Gyw on an orbit O® in 85w and lead to

unitary transformations on the space of wave functions ¢:

-

¢ — Uldo, fo)p = = @Ro-PRly (3.3)
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where @ and P are the usual n-vector operators of position and momentum respec-
tively. It can be shown that the Wigner function satisfies the following covariance
condition related to (3.2) and (3.3):

WU (g, p0)8 | §,5:h) = WM (| §— Go, 5 — oz h) (3.4)

The other important property of the Wigner function is the existence of the so called
marginality conditions, which build a bridge to the theory of classical probability
distributions. The two conditions are:

/R WaM(g | .5 h) d5 = |6(3)]? (3.5)

and
/ WM (5| 5.5 h) d7 = |35 (3.6)

where a is the Fourier transform of ¢.0On the contrary, in general for a given ¢ there
exist in general regions of phase space over which the function WM (¢ | §,P,h) can
also assume negative values and hence WM cannot be probability density in the

usual sense, whence the denomination of quasi-probability.

3.2 Group -Theoretical approach to the original
Wigner function

It is possible to derive the original Wigner function from a unitary irreducible repre-
sentation Upy, of the Heisenberg-Weyl group Gw, parametrized by the value of the
central element .

(Uiw (6, €,m)9) (k) = eXeMME~E/ A0k _ g) (3.7)

Let us consider the case # = 0 and A = 1 ( equivalent to setting fh = 1). The
representation Upw(n, §) = Uxw (0, 7,£) is irreducible on § = L*(R, dk) and square
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integrable with respect to the homogeneous space Gyw /0 = R2. The corresponding
orthogonality relation is then:

5 L, ST TEB06: > < Ui (n, € > dndé =< dulgn >< >
(3.8)
At this point let us stress the fact that this is not the same square-integrability
condition we discussed in Chapter 2, since we integrate here over homogeneous space
Grw/© and not over the whole group.
Each element g in Gyw can be written as an image of some element X in 8w =
Lie(Ggw) under the exponential map ezp : Lie(Gaw) — Ggw: g =X

Adopting the following matrix notation for g and X:

0 z -y =z 1 n & 4
100 0 -y {0 1 0 ¢
=100 0 | 9=|0 0 1 -n
00 0 O 0 0 0 1
we can find that
l z -y =
X _ 01 0 -y
“=loo 1 -z (3.9)
00 0 1

The left Haar measure on G #wye dut = dn d€ can be rewritten as du = dzdy and the
representation U(n, §) as U(z, —y):

(U(z, —y)8) (k) = e ¥ =Dg(k — z) (3.10)

Now ,the relation (3.8 ) takes the form:

511".'/&2 < Uyw(x, “3’)¢1¢'1 >< Ugw(r, -y)(bz[zpz > d-nds

=< ¢y, >< P, |ap, > (3.11)

The Wigner function can be defined as a Fourier transform of an element
< Unw(z,~y)ély >€ L*}(R?)

(g,lr)z /R, €™M < U (z, —y)¢ly > dzdy (3.12)

W(o, ¥l7) =
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After simple computation we obtain

1 .
W, 9l) = 5= /R b= )Y + S)da (3.13)

which is exactly the Wigner Function (1) after puttingy, =p, Yo =gq, h =1 and
Y=2¢.

Defining the Wigner function corresponding to two wave functions ¢ and % one can
relate the Wigner formalism with the Schrédinger picture of Quantum Mechanics by
the so called overlap condition:

/R _ dadgpW (9, 9lg,2)W (v, ulg, p) =< djw >< ol > (3.14)

3.3 General Wigner function

The method introduced in [2] allows one to construct Wigner functions for a wide
class of groups, possessing a square-integrable representation, as generalizations of
(1). Denoting this representation by U and its carrier space by £, the generalized
Wigner function for a Hilbert-Schmidt operator p € B,($) is defined by the following

expression:
Wl =g | TR o PIme@liE (a15)
or equivalently
oy _ 1 -4T% _ ;-1 -X =T N
W@ 7) = g [ 5 <O > o ma@lies (110

This formula contains some symbols which we are presently defined: ey 0€H
and ¥ is in the domain of the Duflo-Moore operator C related to the representation
U. The density function m¢ again expresses the Haar measure on G in terms of the

Lebesgue measure df on g (see (2.19)):

dug(eX) = mg(2)dE (3-17)
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where X € g is expressed in terms of the components of the vector 7 in the basis
{L, L%,..L*} (ie,.X = T2 r;L%). We assume that there exist a symmetric subset
Ny of Lie algebra g, such that the exponential map restricted to it is a bijection onto
a dense set in G. The function ¢ is defined by expressing the Lebesgue measure d X*

in g° in terms of invariant measures d{2, on the coadjoint orbits O as follows:
dX* = de(A)ar(X")d(X") (3.18)

where the index \ parametrizes coadjoint orbit and dx()) is a measure on the parame-
ter space. This decomposability is not guaranteed in general and has to be assumed

or proved for specific cases.

3.4 Basic Properties of general Wigner function

The appearance of o, in the formula for the Wigner function is necessary in order to

have the following important covariance property :
W(U(9)pU(9)"I77) = W(p| Ady-1#5T) (3.19)

which clearly can be regarded as a generalization of the covariance (3.4) for the
original Wigner Function. The overlap condition (3.14) in this more general setting

becomes:

L. T i) = el (3:20)

3.5 Wavelet — general Wigner function relation

In order to establish this correspondence we need to introduce a (generalized) wavelet

transform arising from a square-integrable group representation U. To any admissible



vector 7 we can associate the map from the Hilbert space $ (carrier space of U) to

the Hilbert space of square-integrable functions on G:

¢ — foelg) = <U(g)nl¢ > (3.21)

1
[e(n)]2

where c(n) is as in(2.66). This map is an isometry as shown in [17]:

/G Frola)Pdilg) = (1912 (3.22)

It is then clear that for any fixed admissible 7 an arbitrary vector ¢ € § can be
represented both by a wavelet transform f, 4(g) or by a Wigner function W (), ¢|7).
In slightly different notation using a Hilbert-Schmidt operator of the form:

1l
o= ¢ ><1|C
Pno [c (T)) i] l 77'
the Wigner-wavelet relation is [2] :
1 Tz »
Wiond¥") = oy [ Tl o lFImGxhax a2y

3.6 Wigner function for Semidirect product groups

Before going to the case of semidirect product groups, let us make a few comments
about the general construction.

We can see that the construction of the original Wigner function presented in section
3.1 is very similar to the general one, where both density functions m(X) and o(57)
are equal to one and a Duflo-Moore operator is Just an identity operator. The only
difference is that we need to consider square integrability of Heisenberg-Weyl group
representation with respect to the homogeneous space G aw /0 instead of square in-
tegrability with respect to the whole group.

It should be stressed that this general procedure of constructing Wigner Functions
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rests on two requirements.

The first one is the decomposability (3.18) of the Lebesgue measure dX*. The second
is that we consider only groups with square-integrable representations.

Semidirect product groups which we consider in this thesis satisfy both these condi-
tions as we have seen in Chapter 2. Using their square-integrable representations as

introduced in (2.51) we can rewrite the general Wigner function (2.51) as:

WEIN) = oy [ a2 [ oo

X,
%

|det e *s|2 exp (iaTe~ = sinch %fp)a(a%-xv)[a(yf)m(f)]% (3.24)

Changing variables: w7 = wTe~% sinch 521 and using the form for the density

function m(Z) given in Eq.(2.24) we obtain:

~ o~ 1 .-T’-.
W(s,¥17") R /N e dZ dZ,e~ " %

X X, X 1%
~T i T~V 17 = eT ~[ - e~ 7 =T\} e 7
o-dw ¢ et (w sinch E})q& (u sinch 3;’») 7(7")? |det in '—Yz’-
i
det (e-“i‘a’ sinch ad%) ’ (3.25)

We have shown in Theorem 2.3.2 that the Duflo-Moore operator in this case is re-
lated to the decomposition (3.18) of Lebesgue measure in g and that we can use the
structure constants of the Lie algebra g to expressed them both. Applying the result
(2.73) together with (2.69) and integrating over Z, we finally obtain:
X, X
~ e~ - 5T e?" ~f . e“‘z"
W@yl = | dEe Wiy ('YE -—-) ¢ (7 ——)

Nog sinch )—gi ? sinch 5{»

w1\ * i |det(sinch ad%s)
c|—=x) ()1 ———2
sinch < det(sinch 32)

Here we used the fact that the domain N, of the exponential map exp : g - G

3
2

Dj

(3.26)

in the case of semidirect product groups, is given by Ngg x R*, where Ny, is the
corresponding domain the exponential map exp : h — H. Again we assume that this

map is a bijection onto a dense set in H such that its complement has measure zero.
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3.7 Domain of the Wigner Function

As we have already mentioned, the advantage of using the original Wigner function
as well as the Wigner function related to the wavelet group, is that it allows us
to represent a signal as a function on a phase space (position-momentum or time-
frequency). In other words we would like to be able to represent a signal as a function
supported on coadjoint orbit, which together with a symplectic form © (discussed
earlier in 2.43) can be considered as a phase space. We will investigate now under
what condition this is the case for a Wigner function derived in the previous section.
Recall first that the open free coadjoint orbits O; in g -for semidirect product groups
- are in one to one correspondence with open free H-orbits 5,- C R™: indeed according
to Thm 5.1, any O is a cotangent bundle of the form O; =T0; =0, x R™.
Let W5, denote the Wigner function derived from a representation of G acting on
$ = L¥®;), which can be conveniently be thought of as the closed subspace of
L*(R") of functions which vanish almost everywhere outside O;. We are going to find
sufficient conditions for a Wigner function W, to have support concentrated on the
corresponding coadjoint orbit OF = &; x R".
Let us start by recalling the A function (polynomial) introduced in section 1.1.
T L
AG) =det | T L2 (3.27)
7L,

where {Ly, .., Ln_1, La} is the basis in g. We have the following:
Proposition 3.7.1 Let G be a semidirect product group R™ x H s.t. H acts on
R with open, free orbits {5,},’;1 If the orbits ®; are dihedral comes (i.e. if the
zero level set of function A in (3.27) can be decomposed into hyperplanes) then the
Wigner function W, has support concentrated on the corresponding coadjoint orbit

0: =R" x 6{.
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To prove it we will need the following lemma:

Lemma 3.7.2 If a hyperplane II(T) = 0 is q subset of A(5F) = 0 then it is invariant
under H.

Proof of Lemma 3.7.2
We will show first that we can always find 57 € II-1(0) s.t. there exists a neigh-
borhood Usr such that

U.;g' NI-Y0) = Ugn A~Y0) (3.28)

Let us introduce a basis {Z}, ..., Z,} in R" such that the first n—1 elements constitute
a basis in the hyperplane I1(7) = 0. In these coordinates, the the hyperplane can
be written as [1(¥7) = 4" and the function A can be factored as:

A(F) = (7)*P(F")

such that P(¥) does not contain 4" as a factor. Then P(y!, -1 L0) = 0iff P(F) =0
(which would imply A(7) =0 ,a contradiction) or P(¥) contains 4" as a factor, which
would contradict (3.7). Thus we can always choose Yo = (1, ---» Ya—1,0) such that
P(%) = r # 0 and (%) = 0. Since P is a polynomial, there exists an open
neighborhood Usr of 7§ such that P(¥]) € (r — ¢,7 + €). Thus we have (3.28).
Thus, for any ¥ € U'Yo" the intersection of its orbit O;zr with U;g- belongs to II.
This implies that for every 57 € U.;ur h7" € II. We can choose a basis of II formed
by N — 1 linearly independent elements {Z!,..., n-1} C Usgr. Since §Z; C I is true
for every basis element then also for every 77 € I ,§5F C II, i.e. the hyperplane IT
is stable under § and hence also under H (by exponentiation). QED
Proof of Proposition 3.7.1

One sees from Eq.(3.26) that a sufficient condition for Wigner transform to preserve
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the decomposition into orbits O is that point 37 s_ix:;:;:? does not leave O; as X,
varies in Ng,, or equivalently that the ‘sinch’ map preserves the orbits (which is not
guaranteed because sinch (X) is not an element of the group H).
Let us take again a basis {Z;, ..., Z,_;, Zp}in R™ such as the first n—1 elements belong
to the (n—1)-dim hyperplane as in Lemma (3.7.2) In the coordinates introduced above
an element X of the Lie algebra § of the group H is of the form:

Xl,l Xl,n—l 0

X =
Xo-11 - Xpcgar O
Xn,l Xn.n—l Xn.n

because X must preserve the hyperplane 7" = 0. Calculating the sinch of such

element X we obtain:

51'1 Sl.n—l 0
S = sinch (X) = Sn — 1’1 N Sn_lvn_], 0
Sn'l ses Sn,n—l Sin(:h (Xn,n)

Notice that sinch (X, ,) > 0 from definition (2.15).

Applying sinch (X) to any vector 77 in R® written in the basis {Z:}} we have :
sinch (X)(7", ., ¥"™,7") = (v", ..., sinch (X, ))7")

Therefore the sign of y* remains unchanged, which also means that the hyperplane
v* = 0 divides R™ into two halfspaces, invariant under the sinch map.

Since A~*(0) is a union of hyperplanes II; U II,... U II, we can repeat the argument
for each of them, proving that each open orbit is preserved. QED

In order to illustrate the problem of domain we give an example of a group for which

the corresponding function A cannot be factored (over R) into hyperplanes.
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Example

Consider a group where Lie algebra § has the following basis (equivalent to the case
Lb of the classification after change of basis ):

100 000 10 0
L=|010)] F'={1 00| F°=[0 0 0 (3.29)
001 010 00 -1

The orbit structure in R™ is given by the equation: A(&) = —33(~2z32; +22) =0
which clearly cannot be factored into hyperplanes.

We have the following open orbits in R":

O, - above the hyperplane z3 = 0 and inside the cone —2z,z; + z2<0 (A>0)

52 - above the hyperplane z; = 0 and outside the cone 2237, +23 > 0 (A <0)
53 - below the hyperplane z; = 0 and inside the cone -2z3z1 +23 <0 (A > 0)

54 - below the hyperplane z; = 0 and outside the cone(-2z3z; +23 >0 A< 0)

In order to see that the sinch map does not preserve orbits let us choose a point

in &, : &g = (wy,ws,ws) and apply to it sinch (tF!) = 132 (1) g , t € R. Then
one can compute A(d sinch (¢F')) = L ws (Bwsw +w32t26f- 3(322).1 It is clear that,
as a function of ¢, it changes sign whenever 2wyw; — wyp? < 0. This also means that
the sinch map mixes two orbits 51 with 52 and also 53 with 54. By a continuity
argument, this mixing property holds for a suitable open neighborhood of F! in the
Lie algebra, i.e. a set of positive Lebesgue measure.
As a consequence, a Wigner function W(:;, JIX‘) corresponding to two functions
supported in 51, 5, 12; € L2(51) will have its support spread on both coadjoint orbits
O} and 0. To see that let us fix 77 = @f € Oj(recall that X* = (3F,77) € 0°).
Then the Wigner function, as a function of "y‘g' eRm, is just the Fourier transform of
a function F(X,)

Wa@di) = | dzetrx, (3:30)
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where:

= -5
FX)=9|of—|g|aT—=2__
(Xs) =9 (w" sinch i‘;)‘b(“’“ sinch %
-1
g 1 ? 1 |det(sinch ad%e
c(wg. ) (@) )
sinch 32

det(sinch 3%)
Since the map sinch (X)) brings &y from O, to o, ( support of 3, 12) the function

1
2

(3.31)

F(X,) is not identically zero, e.g. for X, in a suitable open neighborhood of F!. Then
its Fourier transform ng(a, zﬂf ) is also not identically zero. This means that the

Wigner function W (g, $|X *) does not vanishes outside the orbit 0;.
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Chapter 4

Examples

It is very easy task to calculate explicitly Wigner function for each particular case from
its general form for semidirect product groups derived earlier (3.26). Let us consider
first examples of connected 4-dimensional semidirect product groups G = R? x H
with open free H-orbits in R2. According to the theorem 1.2.1 there are only three
conjugacy classes of them, i.e. when H is diagonal group, SIM(2) or one of the infinite
family of H,. groups. We give Wigner functions for each of these cases.

Then we present an interesting example of an 8-dimensional group G = H x H*,

where H is a vector space of quaternions and H* a group of invertible quaternions.

4.1 The diagonal group

Let H be the diagonal subgroup of GLy(R) thatis H = {( % f ) ;a1,a2 € R—{0}}
2

The Wigner functions are defined on the coadjoint G—orbits 0 - of the element

% =(0,0,%,5),i = £1,5 = =1 the union of which is dense in R-.

I
ez
sinch Z

< s 1 —iylzy ~iylzg T
W) = 5 | dmidme ey, )

e? Iy

sinch 51)s1nch-1~s1nch—3

Where we used the following relations:

. I 0 e — e*t 0
5=(32) <=(3 &)

99

(12 (4.1)



o X (sinch% 0
smch—z--( 0 sinch-’g)

%) = Ir'y|

4.2 The SIM(2) group

Let G denote the SIM(2) i.e. the group of dilations rotations and translations in
R%. G =R? x H where H = {(Z’ ;b) : (a,0) € R? - {0,0}}. The Wigner
function is defined on O;,g- ={(v7%7,7") : (13,1) # (0,0)} ( the coadjoint orbit
of %o = (0,0, 1,0) ). This case was studied in [3]. The corresponding Wigner function

is:

X
( 3)2 + (‘74)2 / —imMA=ird T = -il — -11
—_— €
Wi an = 1 [ W o )
22+ 62
2cosh A ~2cos Gd/\do (42)
Where:
-
X;=(5 ) 6€02m),0>=0
e*cosd —esing
e = (e"sinﬂ e* cosé )
. Xy _2coshA ~2cosd
det smch-2—- = YY)
and

(7)) =1(V"2 + (v

Since H is abelian, det (sinch adi;l) =1

4.3 The one parameter family of groups H,

Consider now the one parameter family of groups H, = {(z aoc) :a,b€R,a> 0}

for ¢ # 0. The Wigner functions are defined on coadjoint orbits O, = {(y,4?, 43, 4
¥ >0}t and O_ = {(+},7*,7%,7* : 1* <0}
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In both cases the Wigner Function takes the form:

. - 5{ - e-éi
W(é, =T (h’ l ) -ry‘zl-t-yzzg - € =
(¢ 'I’I ) 21‘, Nog d’('yp s_in Ch- _)él)qs(‘yp s-in. Ch- %i)
1 5111(2113?l 1

( 3
sinch £¢" sinch 2 sinch E,Lc) (43)

X = Ty 0
A Iy CIT)

X ( e 0 )
ent = c c
(c-1)21 (ezx ezt) e*l

(in the case c=1 we should take the lim._.; )

Where:

sinch Xy _ sinch 0
2~ \ (% 2(sinch § - sinch ) sinch =
det(sinch ad-)-;i) = sinch (& ‘21)x1

and (%) = |42
4.4 Quaternionic groups

Quaternions constitute a (nonabelian) field of numbers; they can be thought of as an
extension of complex numbers in a similar way as complex numbers are an extension
of the real ones. More specifically they are obtained by adding two more "imaginary
units” customarily denoted by j, k such that the following relations are fulfilled:

P=t=kl=-1;ij=k jk=i ki=j.

The generic quaternion can be written as Zg + T1i + Z2j + z3k where 9, 71, T2, 73
are real numbers, or as zg + z.j, where 2y = ¢ + z;i and z; = z, + z3i are complex

numbers.
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A very practical way of dealing with quaternions is to represent them as 2 x 2 matrices

with complex entries

[ To+izy zp+1iz4
1 —ZTo+123 zo—iz; )

By identifying the set of quaternions with R* one can endow this latter space with a

notion of muitiplication.

It is also worthwhile to recall that any nonzero quaternion admits a (multiplicative)

inverse which can be expressed by taking the inverse of the matrix representing it.
Let us consider now the semidirect product group G = H x H* where H denotes

the vector space of quaternions and H* the group of invertible quaternions. An

element of the group can be written in the form:

—(h h
= (5 )
where hy € H* and h, € H. Then the element of the lie algebra g = Lie(G) is:

— XQ XP
*=(% %)

Where X, and X, are both quaternions which can be written in coordinates as :

(zo-i-z’zl zz+i:z:3> X_(:t:4+i:z:5 zs+i2:7)
7= p=

-T2 +1Z3 Tp—1iT; —ZT¢+1T7 T4 —1ZTs
2 4

The group can be equivalently written, in a manner more consistent with the rest of

the thesis, as R* x M(h,) where M(h,) € GL(4,R) is of the form :

o ~I1 —IT2 -—ZIj
Ty Zg —Z3 I
2 I3 Iy -—In
I3 —ITp I Zg

M(hg) =

The quaternionic notation makes it easy to relate this group to the G; = R x R*
and G, = C x C* = SIM(2), which are the wavelet groups in 1 and 2 dimensions

respectively. It seems quite natural to use the field of quaternions to define a wavelet
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group in 4 dimensions. The concept of wavelet groups can be therefore extended (in
rather straightforward way) to any Clifford algebra.
The Wigner function is defined on the single coadjoint orbit @* = g" - {0}.

=T IX;P —<X2 XS Ve e%" ~ 6—5}
W) = Gy /a T e B g
1 | Xl sin R
16 (cosh? 2 _ cos? %)2 R dX, (4.4)
where R = (2} + 23 + £3)# We also used :
e(X") =X
dpc(eX) = det(e~3 sinch %)%Rdx

All those computation can be easily repeated for any Clifford algebra.
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Chapter 5

Conclusions and outlook

In this thesis we have considered the particularly relevant case of Wigner functions
associated to open and free actions of groups which generalize the well-known wavelet
and similitude groups.

Within this framework, we have classified connected semidirect product groups G =
R" x H admitting open free H-orbits in R™ in dimensions n = 3 and n = 4, the latter
with the further assumption that there exists a semisimple ideal. The starting point
for this classification was the use of a particular quasi-invariant function A, which
can be defined in any dimension. Our classification extends the results of H. Fiihr
which treated the case n = 2, however, using different methods.

Subsequently we have undertaken a detailed study of the square-integrable rep-
resentations of such groups. The geometry of their coadjoint orbits allows us to
construct the corresponding Wigner functions explicitly. In attempting to interpret
the support of such Wigner functions as phase spaces(symplectic manifolds) we have
also proved that if the H-orbits @, in R™ are dihedral cones then the Wigner transform
maps each Hilbert-Schmidt operator p € L2(5,») into a function supported on the cor-
responding coadjoint orbit O;. Each such orbit has the natural Kirillov symplectic
structure and hence can be interpreted as a phase space.

Finally we have implemented the general framework outlined above for some rele-

vant examples, the most interesting being the quaternionic group. Indeed, this group
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is the most natural candidate for the definition of a 4-dimensional non-abelian wavelet
group; it extends the sequence of R x R} (wavelets), C x C* ~ SIM(2) (similitude
group) by H x H*.

As a possible continuation of this work we may consider generalized wavelet groups
defined on Clifford algebras (as all of the three cases R,C,H are), thus providing an
infinite class of examples with (possibly) extra features coming from their algebraic
structure.

A second generalization would consider the cases of groups with not necessarily
open-free action: in this cases one should replace the notion of square integrabil-
ity with respect to the whole group by a weaker square integrability on a suitable
homogeneous space.

A third important direction in which one could move involves groups with non
square-integrable representations most notably the kinematical groups, such as the
Poincaré or the Galilei groups. Indeed, the construction of the generalized Wigner
Function we were using in this thesis is based on the requirement that the group have
a square-integrable representation and also that the image of the exponential map be

a dense set in G with its complement having Haar measure zero.
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