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ABSTRACT

A Critical Literature Review of
Case-Based Reasoning and Its Educational Applications

Le Zhong

This critical literature review documents the shifts and variations in Case-Based
Reasoning (CBR) terminology and reasoning models that have arisen in the past twenty
years. Different versions of CBR theory, differences in terminology across these versions,
and shifts in terminology within individual programs of theory development and research in
CBR are identified. A framework for understanding the shifts and variations in CBR
literature, and a framework for categorizing the variations in CBR cognitive science literature
are proposed. Finally, educational applications of CBR are examined within the context and
framework for understanding CBR I developed, and possible variations of these applications

are explored.
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CHAPTER1

INTRODUCTION

In my reading of the case-based reasoning (CBR) literature and my attempt to
distinguish CBR from rule-based reasoning in people’s cognitive processing, I have noted
some problems: lack of clarity in terminology in the CBR literature, shifting senses of
CBR in the field and related fields, even within one individual’s research program. The
meaning of the basic concept “case”, for example, is inconsistent in the literature. The
term “case” first appeared in Schank’s Dynamic Memory (1982) as designating episodic
knowledge units. Researchers in artificial intelligence soon extended the meaning of the
term to encompass any kind of specific knowledge tied to specific situations, including
events, heuristics, small rules, models, and units of structured information that could be
useful for an expert system (e.g., Kolodner, 1993; Leake, Kinley & Wilson, 1997).
However, researchers in cognitive psychology often do not recognize heuristics, small
rules, and models as cases—although they do not appear to have a consensus regarding
what cases are either. Some cognitive psychology researchers view cases as instances in a
person’s memory (e.g., Didierjean & Cauzinille-Marmeche, 1998), while some others
include instances from other sources, such as examples found by a person in a textbook
that do not reside in her memory, as cases as well (e.g., Vanlehn, 1999). There is no
consensus on whether cases have to be actual experiences, or, in that sense, contain
information that can be experienced. Researchers in education also refer to “cases” as
different things in the literature. Much of the confusion comes directly from the
confusion in the psychological CBR literature. Some education researchers interpret

cases as actual, personal experiences gained from learning by doing (e.g., Schank, 1996);
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some researchers believe there is not much difference between case-based reasoning and
exemplar-based reasoning and use the terms interchangeably (e.g., Bareiss, 1989); and
there is no agreement on whether heuristics and models from a source other than a
person’s memory could count as a case. Without a consensus or a clear definition of what
cases are, case-based reasoning, and many other key terms are often used and referred to
vaguely.

The ambiguity in CBR terminology makes it difficult to understand CBR theory
and its relationship to other theories, as well as the extent to which these other theories
and research conducted according to them lend support to CBR. Many educational and
psychological issues have been connected to CBR, including models of memory,
reasoning by analogy, learning from examples, problem-solving strategies and accounts
of expertise. The risk for confusion in discussing the relationship of these topics to CBR
is high, as there is no agreement on what is CBR, on which to base the discussion. In
discussing the relationship of reasoning by analogy and CBR, for example, some
researchers equate reasoning by analogy with CBR (e.g., Bhatta and Goel, 1997;
Vanlehn, 1997), some researchers take CBR as a kind of reasoning by analogy
(Kolodner, 1997), and some researchers claim that reasoning by analogy is one step of
the CBR process (e.g., Leake, 1996). This situation is largely a result of inconsistency in
the use and interpretation of CBR terminology, and the lack of documentation of various
versions of CBR terminology commonly used.

In addition, the shifting senses of CBR challenges the rationale, termino_logy and
precise design parameters of CBR applications, including some significant instructional

applications and innovations that are widely used today, such as goal-based scenarios



(Schank, 1994), leamning by design (Kolodner, 1997; Kolodner et al., 1998), case-based
advisory systems (e.g., Ferguson et al., 1992) and knowledge-sharing systems (e.g.,
Kitano and Shimazu, 1995). The structure, content, goal, and educational approach of
these applications and innovations might vary with the different versions of CBR. For
example, in a case-based knowledge-sharing system, the issue of where and how
heuristics and models should be documented, presented, and used, as well as the issue of
how much emphasis the system should put on generalization, is largely affected by how
CBR is interpreted by the designer of the system. It would be interesting for instructional
designers and educational researchers to note how the design parameters or terminology
of these applications might shift with the different versions of CBR.

In response to the situation outlined above, I will undertake a critical review of the
CBR literature, analyze its relationship to related educational issues, and explore its
educational implications and applications. I will document different versions of CBR
theory, differences in terminology across these versions, and also shifts in terminology
within individual programs of theory development and research in CBR. Then, I will
explore educational and cognitive research under various themes that support and dispute
CBR in order to discuss the validity of CBR, and analyze the relationship of CBR with
those other bodies of research. Finally, I will examine the educational implications of
CBR within the context and framework for understanding CBR I will have developed

earlier in the thesis, and explore the possible variations of CBR educational applications.



CHAPTER 2

CASE-BASED REASONING

2.1. Overview

What is case-based reasoning (CBR)? What is the standard definition and what are
the major shifts of the definition over time? What are the major variations in the CBR
literature? In this section, I will present an overview of case-based reasoning and the

major variations in response to these questions.

2:1.1. Standard Definition of Case-Based Reasoning

In the CBR community, there are two explanations of the term that are widely used
and cited.

One is from Riesbeck’s and Schank’s (1989) Inside Case-based reasoning: “A
case-based reasoner solves new problems by adapting solutions that were used to solve
old problems”. This description is a definition of a case-based reasoner rather than case-
based reasoning, yet it presents the central concept of CBR, and thus has been cited quite
often in the CBR community tc describe CBR (e.g., Watson, 1995). We could adjust
Riesbeck and Schank’s statement to: Case-based reasoning means to solve new problems
by adapting solutions that were used to solve old problems. Here, the term “solve a new
problem” seems to be used in its broadest sense, incorporating all possible goal-based
reasoning tasks that a reasoner might be involved in.

Another popular description of CBR comes from Kolodner’s (1993) well-known

CBR book:



Case-based reasoning means reasoning based on previous cases or

experiences. A case-based reasoner uses remembered cases to suggest a

means of solving a new problem, to suggest how to adapt a solution that

doesn’t quite work, to warn of possible failures, to interpret a new situation,

to critique a solution in progress, or to focus attention on some part of a

situation or problem. (p.4)

This definition is different from Riesbeck’s and Schank’s description in that it
extends the meaning of CBR to include all reasoning based on previous cases or
experiences as CBR, both directly or indirectly. Thus, rules, patterns, models, or
exceptional rules that a reasoner derived from experiences could all count as part of the
case-based reasoning system, or even part of the cases. Likewise, once any of the above
mentioned information is used by a reasoner, the reasoning process could be considered

to be CBR.

2.1.2. Shifts of the Definition Over Time, and Variations in the Literature

The definition of case-based reasoning has gradually shifted in two directions,
which correspond with the two different motivations for CBR research. The two primary
motivations that drive CBR studies are: First, from cognitive science, the desire to model
human reasoning and learning; second, from artificial intelligence, the pragmatic desire
to develop technology to make Al systems more effective. Correspondingly, the two
directions of CBR definitional shifts are: First, from cognitive science, the trend of
imposing new limits to traditional CBR definitions in order to differentiate CBR from

reasoning by analogy. Second, from artificial intelligence, the trend of making limits of



traditional CBR definitions more flexible to incorporate elements that could enhance the
performance of CBR expert systems.

In addition, CBR has been used in two ways along both directions. There is CBR in
its typical sense, and CBR as a generic term. I will outline typical CBR in both cognitive
science-oriented CBR studies and Al-oriented CBR studies in the following paragraphs,
and then discuss what CBR in its general sense refers to.

First, in studies oriented towards using CBR to model human reasoning and
learning, CBR in its typical sense is characterized by its focus on a) specific episodes
rather than abstract knowledge and structural similarity (Leake, 1995), and b) near
analogs rather than cross-domain analogs (Kolodner, 1997). This focus is brought about
by the fact that CBR cognitive research was largely based on observations of people’s
reasoning process in solving real-life problems, and reasoning that uses nearly matching
analogs of episodic memory units is employing the type of analogs used most
extensively, easily, and successfully by people (Kolodner, 1997). In recent years, CBR in
its typical sense has been further narrowed down. For example, Kolodner, who proposed
one of the standard CBR definitions described in the last section, subsequently, confined
her description of CBR to “analogical reasoning using near analogs... (that) is always
done with a purpose” (Kolodner, 1997, p. 60). There have been efforts in the CBR
community to integrate reasoning using domain knowledge (conceptual knowledge,
rules, models, etc.) and various types of abstract reasoning with CBR in order to achieve
a unified approach to reasoning. At the same time, the core CBR component is focused
on reasoning tasks and processes of a smaller scope. The variations in the literature

related to typical CBR in cognitive science mainly involve the following issues:



* knowledge representation in the CBR system and the role of

generalized information in the system (e.g., Bareiss, 1989; Hammond, 1990;

Kolodner, 1983; 1984; 1985; 1993; Porter, 1990; Riesbeck & Schank, 1989;

Schank, 1982);

*  whether the reuse of knowledge means reuse of knowledge in the
same chunk size only (e.g., Didierjean & Cauzinille-Marmeche, 1998;
Kolodner, 1996; Watson, 1995);

* the nature and scope of CBR (e.g., Bareiss, 1989; Schank, 1982;

Kolodner, 1993; Porter, 1990).

In studies oriented towards building more effective Al expert systems, the different
versions of CBR are mostly a variation of: “adapting big chunks of integrated
information to solve new problems” (Aha & Ram, 1995). There are two characteristics
that distinguish CBR from other similar approaches. First, a typical case-based reasoner
is able to modify or adapt a retrieved solution when applied in a different problem-
solving context. Second, a typical case is usually assumed to have a certain degree of
richness of the information contained in it, and a certain complexity with respect to its
internal organization. The term CBR in Al literature is used in a more flexible way and in
a broader sense than the same term in cognitive science literature. Other than the above
characteristics, the CBR framework and specific methodologies in Al engineering vary to
a large extent depending on the goals of the case-based reasoners and other pragmatic
concerns.

What CBR means in its typical sense in Al literature can be quite different from

what it means in cognitive science literature. In AL, CBR is an approach that could be



translated into various methods of building expert systems. But in cognitive science, CBR
in its typical sense is considered a plausible model of cognition, and is thus more well-
defined and narrowly-defined. Many expert systems that could be considered as
employing a CBR approach from the AI CBR perspective would not be considered CBR
models from the cognitive science CBR perspective. For example, large chunks of cases,
such as an entire instructional design project, as well as small pieces of specific
knowledge tied to specific situations, such as graphics, heuristics, rules, models, and
patterns, could all be considered to be cases in Al CBR in its typical sense. In contrast, in
cognitive science literature, cases are usually small episodic memory units that are not
generalized. Another example of the differences between these two versions of CBR is:
typical pragmatic CBR systems often integrate CBR with other available reasoning
systems based on engineering concemns; thus, many of those integrated systems do not
model human reasoning and are not accepted as CBR in cognitive science literature.

Besides the two versions of CBR described above, there are also CBR used as a
generic term in Al and CBR used as a generic term in cognitive science. In both Al and
cognitive science, CBR in a general sense covers a wider scope of issues.

In the cognitive science literature, CBR as a generic term often refers to reasoning
by analogy or reuse of contexualized information. In addition to reasoning based on near
analogs and reasoning based on specific cases as addressed by the typical version CBR in
cognitive science, the general version also covers cross-domain reasoning by analogy,
schema-mediated reasoning by analogy, and structural mapping.

In the Al literature, CBR as a generic term refers to a new approach of building

expert systems that differs from previous approaches which require reasoning from



scratch with rules or models. That is, it covers all methods of building expert systems that
reuse chunks of contexualized information. More specifically, CBR in its general sense is
often used to refer to the following approaches similar to typical CBR: exemplar-based
reasoning, instance-based reasoning, memory-based reasoning, case-based reasoning (in
its typical sense), and analogy-based reasoning (Aamodt & Plaza, 1994). As can be seen
from here, CBR in its typical sense in Al is one of the approaches covered by CBR used
as a generic term in AL

In summary, at the current stage, there are four general versions of CBR: CBR in
its typical sense in cognitive science literature, CBR in its general sense in cognitive
science literature, CBR in its typical sense in Al literature, and CBR in its general sense

in Al literature. These four categories and corresponding trends are summarized in Table

2.1

Table2.1.

Major categories and trends of CBR

Category Typical meaning Trend
CBR in its typical sense in Reasoning based on specific CBR is gradually narrowed down,
cognitive science literature experiences rather than schema.  addressing an increasingly limited
using mainly near analogs scope of reasoning tasks.
(within-domain analogy but not
cross-domain analogy).
CBR as a generic term in Reasoning by analogy, orreuse  The line between CBR and reasoning
cognitive science literature of contexualized information. by analogy is becoming blurred.
CBR in its typical sense in An approach to problem-solving  CBR is gradually extended to address
artificial intelligence by adapting big chunks of more reasoning tasks, especially by
literature integrated information from taking integrated approaches.
previous experiences to solve
new problems. (specific
parameters very flexible)
CBR as a generic term in Exemplar-based reasoning, Various approaches are often
artificial intelligence instance-based reasoning, integrated together on the basis of
literature memory-based reasoning, case-  engineering considerations.
based reasoning (in its typical

sense), and analogy-based
reasoning.




Besides the differences across these versions of CBR, there are also variations
within each version around issues like case representation, knowledge structure, and
where should knowledge be considered to reside (e.g., do cases residing outside the
reasoner count as cases). The variations within general and typical CBR in Al mainly
result from pragmatic and engineering considerations in building systems for different
domains and different tasks. In those situations, flexibility in using the CBR approach is
acceptable, and there seems to be little need for standardization. Therefore, I will not
further discuss the variations within those versions of CBR. In cognitive science,
however, it is desirable for researchers to have a more standardized version of CBR on
which to base discussion of CBR and its relationship to other theories. It is especially
important for us to categorize variations within the typical version of CBR in cognitive
science because several educational applications and innovations are based on this
version of CBR. These variations are closely related to how we should approach the
design of these educational applications. It would be interesting to identify the
differences among major CBR cognitive models, and examine these various models using
empirical evidence from research in related fields. The rest of this chapter is an attempt to
categorize the variations and confusions related to CBR cognitive models, followed by a
discussion of how related theories support or oppose these models. At the end of this
chapter is a discussion of the plausibility of each popular CBR cognitive model and the
circumstances under which they are most plausible. In the next chapter, I will relate the

discussions in this chapter to the popular educational applications of CBR.
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2.2 CBR as a Cognitive Model

In this section, I will attempt to propose a framework for understanding popular
variations of CBR as a cognitive model. First, I will describe the basic CBR cognitive
model, then I will present the major variations, and finally, I will summarize and discuss
the confusions in the literature, and propose a framework for categorizing and

understanding the variations and confusions.

2.2.1. The Basic CBR Cognitive Model

Basically, from the CBR perspective, a reasoner is a being in the world that has
goals (Schank, 1982). The being seeks to navigate its world in a way that can help it to
successfully achieve its goals. It has experiences, some successful and some not as
successful, some pleasant and some not so pleasant, that allow it to learn about its
environment and ways of using that environment to achieve its goals. As it has
experiences, it seeks to process its experiences in a way that allow it to achieve its goals
more productively in the future. Therefore, in addition to storing its experiences, it is also
engaged in interpreting these experiences to derive lessons that might be useful to its
future, anticipating when those lessons might be useful, and labeling its experiences
appropriately so that it will be able to recognize the applicability of an experience ina
later situation. In addition, a case-based reasoner is also engaged in noticing the
similarities and differences between similar situations and experiences so that it can draw
conclusions about its world and notice the subtle differences that suggest when each of
the lessons it has learned is most appropriately applicable. Essential to its leamning is

expectation failure — it needs to attempt to apply what it thinks is relevant and fail at that
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in order to notice subtleties it had not previously been aware of, it needs to have its
assumptions about the world challenged in order to find out the bugs and holes in its
knowledge.

In the CBR cognitive model, cases are experiences and interpretations of
experiences. Cases have several subcomponents: the setting, the actors and their goals, a
sequence of events, results, explanations linking results to goals, and the means of
achieving the results and goals (Kolodner, 2000). The better the interpretations of each of
these pieces, and the richer the explanations linking these pieces to each other, the more
useful a case will be when it is remembered later. The explanations that tie pieces of a
case together allow individuals to derive lessons from the case.

Cases reside in an individual’s memory, and the set of cases in any individual’s
memory is referred to as her case library. Cases in an individual’s case library might be
derived from her own experiences or from the experiences of others.

The indexes and indexing scheme allow people to locate the right cases in their
memory. People can find the right cases in their memories if they “indexed” them well
when they entered the cases into the library, and if their indexing scheme is well-
structured enough so that they can re-create an index for an appropriate case when trying
to locate something in memory. If the reasoner cannot recognize a past experience as
being applicable in a new situation, she will have no case to apply.

The primary CBR cognitive processes are retrieval, adaptation, problem-solving,
and leamning.

The retrieval process starts when one is faced with a new situation. At this time,

one’s memory searches for old cases in order to better solve the new problems. The
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retrieval process involves the searching and finding of one or more old cases that are
analogous to the person’s description of the new situation. If one’s description of the new
situation already matches these situations, the retrieval process may be a one-step search
and find process. If not, the retrieval process may also involve re-interpretation, and re-
representation of the situation in different or more specific terms, or from a different
point of view. Such re-interpretation might be done incrementally, creating better and
better descriptions of a situation on the basis of what is recalled or not recalled in earlier
probes and its usefulness.

Once a case or cases are retrieved, they can be used in several ways to solve a
problem. First, an old solution could be used to solve a new problem. Second, pieces of
several old situations could be merged to create a new solution. Third, predictions could
be made based on an old solution. Fourth, one or more old situations could be compared
to and/or contrasted with the new situation to determine important issues to focus on; or
what needs to be adapted, and so on (Kolodner, 1997). All these processes are called
adaptation.

The next step is action that is based on inferences, which leads to resulits.

Learning takes place when the results are different than expected. Many things can
be learned: for example, a new case, a new knowledge structure, new knowledge leamed
through explanation, a new way to index.

Although the primary processes and the underlying approach are the same, the
various running CBR cognitive models are quite different. In the following sections, I
will present the major CBR cognitive models one by one, and then summarize the

confusions and variations.
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2.2.2. Major Variations

2.2.2.1. Schank’s Dynamic Memory Cognitive Model

The cognitive model proposed by Dynamic Memory (Schank, 1982) is the
theoretical foundation of CBR research as well as the first CBR cognitive model.
Dynamic Memory was first proposed by Schank as a model of episodic memory for
understanding. The central idea of this model is that memory is dynamically changing as
a result of its experiences. According to Schank (1982), our memories are flexible, open-
ended systems that are constantly changing with the new things we encounter, the
questions that arise in our minds as we encounter new things, and the way we answer
these questions. We understand by trying to use what we already know to assimilate or
accommodate new things we encounter. Understanding causes us to encounter old
experiences and general knowledge structures as we process new information because we
use expectations generated from what we already know to predict and understand the new
information. If what we already know cannot explain the new experiences, or contradicts
with the new experiences, we reflect on our past experiences and the memory structure
we derived from them, and refine or/and reorganize our memory. Thus, there is an
understanding and leaming cycle in which remembering, understanding, experiencing,
and learning can not be separated from each other. As long as we encounter new things,
our memory will never be the same. In the following section, I will introduce the
Dynamic Memory cognitive model as presented in Schank’s Dynamic Memory published

in 1982.
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2.2.2.1.1. The original Dynamic Memory cognitive model

The knowledge representation in the Dynamic Memory cognitive model is
basically a combination of generalizations and instances, with specific events (cases) at
the bottom, attached to the higher-level generalizations (schema). Both cases and schema
are organized in the same memory structures, both are indexed in the same ways, and
both are accessed by the same retrieval processes. More specifically, Schank (1982)
suggested a top-down hierarchical structure in which MOPs (terms defined below) hold
scenes, scenes hold scripts, and both scenes and scripts hold events. There is another
knowledge structure called TOPs, which is domain-independent, (unlike MOPs which are
domain specific), and holds specific scenes, scripts or events that share similar goals and
plans. According to Schank, within TOPs, the scenes and scripts have goals and plans for
actions appropriate to the events that they represent. Schank’s definition or explanation of
these terms are:

MOP: A MOP consists of a set of scenes directed toward the achievement of

a goal. A MOP always has one major scene whose goal is the essence or

purpose of the events organized by the MOP. (p.97)

Scene: A memory structure that groups together actions with a shared goal,

that occurred at the same time. It provides a sequence of general actions.

Specific memories are stored in scenes, indexed with respect to how they

differ from general actions in the scene. (p.95)

Script: Scripts embody specific predictions connected to the more general

scene that dominates them. (p.84)

15



TOP: New structures that coordinate or emphasize the abstract significance

of a combination of episodes. Structures that represent this abstract, domain-

independent information. ..(p.111)... TOPs are goal based (p.114).

For example, according to Schank (1982), if a person went to the university clinic
and waited in the waiting room, this episode would be an event, which could be
organized in a script for “waiting in the university clinic waiting room”. This script, in
turn, could be a generalized knowledge structure attached to a more general scene for
“waiting room”. Finally, the waiting room scene could be one of the scenes that falls
under the MOP for “professional office visit”, along with other scenes such as
“reception” and “professional office”. We can see from here that the relationship between
scripts and scenes is: Scenes are instantiated by scripts. Or, to put it another way, scripts
are specific versions of scenes; scripts are abstracted from specific experiences whereas
scenes are abstracted from specific scripts.

An example for TOPs that Schank (1982) provided is: If someone watching West
Side Story is reminded of Romeo and Juliet, then this person probably has a TOP for
“mutual pursuit of love against outside opposition which resulted in death of both lovers”
or “faked death of one lover for the mutual pursuit of love resulted in suicide of her/his
love, which in turn led to the suicide of herself/himself”.

At an even higher level of abstraction in Dynamic Memory are universal MOPs
(U-MOPs) and universal scenes (U-scenes) which carry no context information. Schank
suggested several possible U-MOPs and U-scenes, such as UM-AGREEMENT, UM-
PERFORMANCE, UM-FIX-PROBLEM, PRECONDITION U-scene, ENABLEMENT

U-scene, PREPARATORY U-scene, etc. For example, UM-agreement is a possible U-
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MOP that might be generalized from and linked to MOPs for diplomatic business
negotiation, group collaboration, and so on. It contains decontexualized information
about reaching agreements that are universal to all MOPs that involve this task. Schank
(1982) claims that the U-MOPs and U-scenes make it possible for us to make
generalizations and contrast general scenes. U-MOPs organize U-scenes, just like MOPs
organize general scenes. U-scenes point to generalized scenes, which color them, just like
generalized scenes point to scripts which color them. Any experience will be processed,
in part, by episodic information attached to each of these structures and will affect each
of the structures that helped in the processing.

In summary, the Dynamic Memory cognitive model takes a successive abstractions
approach, proposing that episodic memory uses a sequence of structures in successive
abstraction. It suggests that we reason from top-down, using generalizations such as
scripts, scenes and MOPs when we dealing with new situations that are very familiar, and
alternatively by referring to specific instances when these instances are unique and there
is not yet a generalization for such experiences. In addition, it hypothesizes that our
memory processes information in a parallel fashion; thus all structures are active at the
same time, and they all guide processing and store memories. It also suggests that there
are a variety of structures in memory, each abstracting out certain features of an event in
such a way as to make that structure general enough to be of use in representing
information from distinctly different events that are similar to the extent that they can
share elements of the same structure. The higher level the structure responsible for
processing, the greater its generality and hence the greater the possibility for leaming

across contexts.
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This memory structure described above is actually one of redundant discrimination
networks (Kolodner, 1993). A redundant discrimination network uses several different
discrimination networks, each with a different ordering of questions, to organize
information. Each discrimination network (Feigenbaum, 1963) is a hierarchical structure
in which each intemal node is a question that subdivides the set of items stored
underneath. Each child node represents a different answer to the question posed by its
parent, and each child node organizes the cases that have its answer. More important
questions are placed higher in the hierarchy than less important ones. The networks are
searched in parallel. If the answer to a question in one network is missing, search in that
network is discontinued but continues in the other networks. Figure 2.1. illustrates a
redundant discrimination network from CYRUS, one of the first CBR systems which
implemented the Dynamic Memory cognitive model.

In this figure, triangles represent questions, and labels on arcs represent answers.
Boxes are MOPs and sub-MOPs/lower-level MOPs (MOPn in the figure).

In terms of processes, the Dynamic Memory model suggests that remembering,
understanding, experiencing, and learning is a cycle, and these processes cannot be
separated from each other.

According to Schank, the key to successful reasoning is reminding, either it is
finding a generalized knowledge structure or a specific event. When a new case
description is given and the best matching is searched for, we would start searching from
the highest level of our generalized knowledge structure. If a generalized knowledge
structure (schema) that fits the situation is available, we would reason on the generalized

level; if the available schema is not complete and points to specific cases for exceptional
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situations, we use both schema and cases to process the new information; if there is no
schema available, we rely solely on cases to process the new information. Whatever form

the knowledge we use to process new information takes, it should provide the best

inferences.
Diplomatic Meetings
The actor is Cyrus Vance.
Participants are foreign diplomats.
Topics are international contracts.
Participants talked to each other.
Goal was to resolve disputed contract.
Begin Dayan Gromyko SALT CampDavid Jerusalem
| |
EvV4 EV2 EV2 EV3
MOP2 MOP3
Participants include Begin. Topic is Camp David Accords.
Topic concerns Israel and Arabs. Participants are Israeli.

Z 7N

Camp David Begin Dayan
EV3 MOP4 MOP4 EVA4

Figure 2.1. A redundant discrimination network from CYRUS based on Schank’s

Dynamic Memory cognitive CBR model (Kolodner, 1993, p305).
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Schank (1982) proposed that the reminding process relies on the processing
structures and indexing. The processing structures are the same as the storing structures;
and the indices are part of the storing structures. According to him, knowledge structures
and individual instances have indices that carry information conceming the category they
are in and the way they differ from the category. Indexing is primarily the process of
matching indices. Transfer takes place when two cases with different context information
share similar higher-level generalizations as stored in the higher-level storing structures.
Reasoning across contexts could also take place when we reason with structures other
than MOPs, such as TOPs, U-MOPs or U-scenes, because only MOPs are context-based
knowledge structures.

In the Dynamic Memory cognitive model, a new experience is categorized under
the schema with the instances that are used to process it, and it is indexed according to
how it differs from them. Thus, reminding makes it possible for us to remember because
it provides information on where and how to store the new information. We invalidate,
reorganize, and refine our memory by retrieving our knowledge and matching it with our
new experiences. If our expectations and indices that were once useful cease to be useful
or turn out to be mistaken, we experience expectation failures. Expectation failures drive
us to refine our knowledge structures by adding new deviations or changing expectations.
Or, if we experience several events that are similar to an instance in our memory that
used to be unique, we would reorganize our memory by stopping to record that instance
as a deviation, and creating a new generalized structure for these experiences.

As the first CBR cognitive model, and the CBR model that continues to influence

cognitive CBR research for the longest time, the Dynamic Memory model gradually
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evolved with the development of cognitive CBR research, explaining new research
findings, incorporating important new theoretical hypotheses, and extending its scope to

address more reasoning issues.

2.2.2.1.2. The extension of the Dynamic Memory cognitive model

In the 1980°s, the Dynamic Memory cognitive model added a new element in its
theory on CBR processing by incorporating a new hypothesis on a process called
“situation assessment” — a process of sizing up a new situation and determining what the
indexes for a similar case would be if it were in the case library. The issue of situation
assessment was at first not addressed in the theory of Dynamic Memory. However, as
Schank’s student Kolodner worked on the development of computational models of
Dynamic Memory, she discovered that this process is primary to successful case-based
reasoning. Soon after this new element is added to the computational model of Dynamic
Memory, Schank incorporated the situation assessment process as another primary step of
the CBR process in his cognitive model.

Over the late 1980’s, the Dynamic Memory cognitive model has been extended by
CBR researchers to address issues of a larger scope. As introduced in the beginning of
this section, the Dynamic Memory cognitive model was originally a model of episodic
memory. Schank acknowledged at that time that there are many other types of
information stored in our memory, which are not included as part of his cognitive model
(Schank, 1982). But as CBR research flourished, researchers started to address issues in
reasoning processes that involve other types of knowledge, such as reasoning in planning,
design, problem-solving, interpretation, and many other fields in which people often use

information stored in semantic memory. For example, from their perspective, the memory
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of experts in a certain domain are well-indexed large case libraries consisting of
important success and failures cases in the domain. In these later CBR models based on
Dynamic Memory, information that is usually considered to be part of the semantic
memory are integrated into the cases and considered part of the Dynamic Memory system
as well.

While it is still an issue whether those shifted interpretations of the Dynamic
Memory model could count as new versions of Dynamic Memory, by the year 1995 it is
clear that a new version of Dynamic Memory is formed, as Schank himself introduced an
evolved Dynamic Memory model in discussing the application of CBR in education.
Partly influenced by the trend of cognitive CBR research, and partly inspired by his
research on case-based teaching in the early 1990’s, Schank introduced an extended
Dynamic Memory model to address both episodic and semantic memory.

In this new integrated Dynamic Memory cognitive model, Schank proposed that
our memory system consists of four types of knowledge: cases (including indices and
structure of cases), skills, strategies, and conceptual knowledge. The concept of “cases” is
the same as proposed in the original Dynamic Memory cognitive model, while the
concept of skills, strategies, and conceptual knowledge are new. I will briefly introduce
each of these new concepts in the following paragraphs.

Skills, which we often consider part of our semantic memory as they are
independent of specific experiences or contexts, are viewed by Schank as scripts in his

new model.! Schank proposed that what we usually consider to be skills are actually

! Scripts are also sometimes referred to as “microscripts™ or “scriptlets” in Schank’s publications (e.g., Schank,
1986; 1991; 1995; 1999), but Schank claimed that these terms are not really different in meaning (Schank, 1996).
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scripts (such as addition) or packages of scripts (such as math, or biology). There are
three broad classes of scripts: cognitive, physical, and perceptual. Cognitive scripts are
knowledge about use, physical scripts are knowledge about operations, perceptual scripts
are knowledge about observations. If we could say “John knows how to use X, X is a
cognitive script, for example, to add, and to prove a theorem in plane geometry are
cognitive scripts. If we could say “John knows how to operate an X", X is a physical
script, for example, to dissect a frog, and to run a chemical experiment are physical
scripts. If we could say “John knows how to recognize an X", X is a perceptual script, for
example, to interpret chemical equations are perceptual scripts. While all three kind of
scripts tend to be implicit in our memory, we tend to talk about cognitive scripts, but not
physical or perceptual scripts. Schank further suggested that our scripts may change from
one type to another over time. For example, as a skill becomes more automated, the
cognitive script corresponding to it may change into a physical one. Although Schank
claimed that his notion of “script” did not change over time, what he ended up referring
to as scripts in his new publications seems to differ from the original definition quoted
earlier in this section: “Scripts embody specific predictions connected to the more general
scene that dominates them.” Scripts, in the original Dynamic Memory cognitive model,
are generalized but contexualized information that serve as *“prototype stories” for sets of
similar cases. However, scripts in the new model, corresponding to skills, often refer to
decontexualized abstract knowledge processed at a high level in our memory hierarchy
independent of the context in which they are first acquired. It appears that the term
“script” shifted in the new Dynamic Memory modei to include all procedural knowledge

we have abstracted from cases.



“Strategies” is a new concept that Schank introduced into his new cognitive model.
Strategies are domain-independent rules and heuristics that people invent while engaged
in universal processes or generalize from particular cases. There are many kinds of
strategies, some of the most common ones are communications strategies, human
relations strategies, and reasoning strategies. Strategies are different from skills in that
they are not executable procedures, but rather principles, rules, and heuristics that people
accumulate with experience by trying to engage in processes. Schank suggested that
strategies have all the characteristics of TOPs and indices, namely, they are domain-
independent, generated or developed from particular cases and so on.

Schank also introduced conceptual knowledge, a type of knowledge conventionally
considered not part of CBR systems, into his modified model. Conceptual knowledge is
factual, declarative knowledge that is explicit in our memory. Unlike the first three types
of knowledge, conceptual knowledge is not necessarily acquired from experience or
generalized from cases. Schank (1995) suggests that we could acquire conceptual
knowledge from many sources, but unless we are motivated to remember it or frequently
retrieve it from our memory, it is unlikely for it to remain in our memory for long.
Schank is most concerned with the type of knowledge that tends to remain long in our
memory. Thus, in his new model, he focused on one type of conceptual knowledge,
termed “explicit functional knowledge (EFK)”. Explicit functional knowledge (EFK) is
conceptual knowledge that people are genuinely interested in or use quite frequently.
Schank suggested that EFK is of two basic types: physical and cognitive. If we need to
know something in order to do something, we are talking about physical EFK. If we need

to know something in order to know something else, we are talking about cognitive EFK.
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Schank further proposed that the processes and structure of EFK are analogous to that of
cases. Thus, this type of knowledge is also organized in hierarchies, reinforced by
repeated use, and combines together to allow people to become adept at complex
cognitive activities.

This new Dynamic Memory cognitive model proposed a new perspective on many
forms of knowledge in human memory, but overall, it maintained the original processing
structure. Although new types of knowledge are introduced in the new Dynamic Memory
model, Schank did not specify how the integration of these four types of knowledge
would be achieved in the memory system. Thus, although it has inspired much research
on the application of CBR in the field of education, there has so far been few applications
or computational models in AI CBR based on this model. Another factor that might
contribute to the phenomena of limited AI CBR research on this model is probably the
fact that much of the reasoning Schank addressed in his new model is not case-based
reasoning. By integrating skills, strategies, and conceptual knowledge into his cognitive
model, Schank extended his model to the degree that reasoning directly from cases to
solve problems is a very limited portion of the reasoning that is carried out by his
proposed memory system. Also, by claiming that we use cases directly when they are
exceptions and generalized knowledge or structures when these types of knowledge exist
in our memory system, Schank implied that reasoning directly from cases is only
temporary as those exceptional cases tend to get generalized in the future and are
jettisoned soon after. Although Schank claims that much of the other types of knowledge

that we have are acquired through cases, his cognitive model seems to differ from typical



CBR models which base their reasoning primarily on cases, and process information

largely at the case level.

2.2.2.1.2. CBR systems based on the Dynamic Memory cognitive model

So far, several computational CBR systems have been developed to implement the
Dynamic Memory cognitive model. Among them are Lebowitz’s IPP (1983a, 1983b) and
Kolodner’s CYRUS (1983; 1984; 1985), the forerunners of case-based reasoning
programs. In addition, many case-based advising systems, such as the ASK systems
(Ferguson et al, 1992, Schank et al, 1991) also uses the Dynamic Memory cognitive
model. In such systems, the Dynamic Memory CBR model is not used as the
computational model of the CBR system, but rather as the conceptual framework guiding
the design of interaction between users and the CBR systems.

As the theoretical background of CBR, the Dynamic Memory model has
profoundly influenced CBR cognitive research. Much CBR research, both cognitive and
pragmatic, is based on Dynamic Memory’s view about human memory and its claims
about human reasoning. The Dynamic Memory model is also the basis of another popular

CBR model, as will be described in the next section.

2.2.2.2. Kolodner’s “knowledge-poor” CBR cognitive model

2.2.2.2.1. The original CBR cognitive model proposed by Kolodner

Kolodner started her research on CBR modeling using Schank’s Dynamic Memory
cognitive model. In the early 1980’s, Kolodner’s and Schank’s CBR models are basically
the same. But, as one of the most active CBR researchers, Kolodner soon formed her own

CBR model (I will discuss the differences at the end of this section). Kolodner’s CBR
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cognitive model is sometimes referred to as a “knowledge-poor” approach as it addresses
reasoning issues in domains in which there is a lack of generalized rules and models to
follow. Her CBR model values the concrete over the abstract (Kolodner, 1993), and she
suggests that individuals think in terms of cases, which are interpretations of their
experiences that are applied to new situations.

The case memory in Kolodner’s model is a hierarchical structure of what is cailed
generalized episodes (GEs) (Kolodner & Simpson, 1989). A generalized episode is more
or less the equivalent of a MOP. It has the same structure as an episode, but describes a
general type, not a specific experience. It is almost as specific as an episode, lacking only
details. The basic idea is the same as the Dynamic Memory cognitive model here, that is,
to organize specific cases which share similar properties under a more general structure.
A GE contains three different types of objects: norms, indices, and cases. A norm is a
feature common to all cases indexed under a GE. An index is a feature which
discriminates among a GE’s cases. It may point to a more specific GE, or directly to a
case.

Cases in Kolodner’s model are different than cases in the Dynamic Memory model.
In fact, the size of cases in Kolodner’s model corresponds with that of MOPs in Schank’s
model. Cases here are represented by a header that holds global information about the
case and a set of causally connected subparts, called snippets (Kolodner, 1988). Snippets
correspond with the concept of scenes in Dynamic Memory. Given the size of the cases,
Kolodner proposed that cases could have subgoals. For cases that have subgoals, each
snippet under the cases represents pursual of one reasoning subgoal or a set of subgoals.

Each snippet contains information pertaining to pursuit of its goal(s), which includes the
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snippet’s problem description, actions taken in pursuit of its goal, and pointers to related
snippets. Snippets are independently indexed, just as the full cases are. Kolodner suggests
that snippets are different than the scenes of MOPs because they have subgoals — Schank
never discussed subgoals at all in proposing scenes as the components of MOPs
(Kolodner, 1989).

The organizational structure of Kolodner’s CBR model is one of redundant
discrimination networks combined with shared feature networks (Kolodner, 1984, 1988).
Redundant discrimination networks were introduced in the previous section as the
memory structure of the Dynamic Memory model. Shared-feature networks are a
hierarchical structure in which cases that share many features are clustered together. Each
internal node of a shared-feature network holds features shared by the cases below it.
Items without those features are stored in or below that node’s siblings. Figure 2.2

illustrates a shared-feature network organizing mediation cases.

Disputes
PN

Disputant is a country Disputant is a child
Disputed object is a land mass Disputed object is a food
/ \ / \
Physical dispute  Political dispute Obiect is an orange Object is candy
(Korea) (Panama) Disputants are sisters (Candy)
Disputants are teens
/ \

Disputants want Disputants want
objectas awhole  different parts of object

(Orangel) (Orange2)

Figure 2.2. A shared-feature network (Kolodner, 1993, p297)
In Kolodner’s CBR model, a node is either a generalized episode (containing the

norms), an index name, index value or a case (Kolodner, 1993). Each index is a pair of
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index name and index value. It points from a GE to another GE or to a case. The indexing
scheme is redundant, as described above, so there are multiple paths to a particular case
or GE.

When a new case description is given and the best matching is searched for,
Kolodner proposes that the input case structure will be pushed down the network
structure, starting at the root (highest level of the hierarchy). The search procedure is
similar to that of the Dynamic Memory model. When one or more features of the case
matches one or more features of a GE, the case is further discriminated based on its
remaining features. Eventually, the case with most features in common with the input
case is found. During the process of storing a new case, when a feature of the new case
matches a features of an existing case, a generalized episode (GE) is created. The two
cases are then discriminated by indexing them under different indices below this
generalized episode. If - during the storage of a case — two cases or two GEs end up
under the same index, a new GE is automatically created. The retrieval process in
Kolodner’s model is carried out by finding the GE with most norms in common with the
problem description and then traversing the indices under that GE so as to find the case
which contains most of the additional problem features. Storing a new case is performed
in the same way, with the additional process of dynamically creating generalized

episodes, as described above.

2.2.2.2.2. How Kolodner’s CBR cognitive model differs from the Dynamic
Memory CBR model
Kolodner’s CBR cognitive model is different from Schank’s Dynamic Memory

cognitive model in three major ways:
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First, Kolodner’s model extended the scope of reasoning beyond what Schank
initially proposed in his Dynamic Memory model. She argued that it is plausible that the
same retrieval processes and memory structures which support remindings in
understanding also support tasks such as problem-solving, planning, and design
(Kolodner, 1987). Thus, the nature of her CBR cognitive model is different from that of
Dynamic Memory. So, also is the nature of “cases” different in her model. For example,
in Kolodner’s model, information such as rules, models, patterns and constraints, are
often embedded in the CBR system and considered part of the cases, rather than stored at
a higher level in the memory system as proposed by Schank (1982) in his Dynamic
Memory model. Although Kolodner’s CBR model also has hierarchies, she did not claim
that the hierarchies in her CBR model are actually the Rule-Based Reasoning (RBR) or
Model-Based Reasoning (MBR) systems of our memory, like Schank did (Schank, 1996),
nor did she suggest that CBR and the other reasoning processes share certain portions of
their organizational stnictures, as proposed by Schank in his new version of Dynamic
Memory (Schank, 1996). Although Kolodner also proposed that hierarchical structures of
abstract knowledge exist, she suggests that those that are abstracted in CBR systems are
not necessarily the rules, models, or patterns. Instead, Kolodner proposed that RBR and
MBR might be components of a larger memory system just like CBR, although CBR is
the primary form of reasoning and cases are the primary generator of inferences. The
other reasoning models closely interact with the case-based reasoning system by
corresponding to parts of the cases and procedures of the CBR system such as indexing

and adaptation.
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Second, as described earlier in this section, the concept of cases in Kolodner’s
model differs from that of Schank’s model. The grain size of cases in Schank’s model is
much smaller than those in Kolodner’s model. In addition, cases in Kolodner’s model are
represented in a distributed way rather than a monolithic way. The cases in Kolodner’s
model are more structured, and the sub-parts of these cases could be directly retrieved to
be used in solving new problems.

Third, Kolodner’s model added new components to the CBR cognitive model that
Dynamic Memory did not previously include. One is situation assessment, the process of
analyzing a raw situation and elaborating it such that its description is in the same
vocabulary as cases already in the case library. Basically, when we encounter a new
situation and try to retrieve usefiil cases, we need to describe the new situation and the
current reasoning goal in a way that makes it possible for us to retrieve useful old cases
from memory. Situation assessment procedures allow us to determine what the indexes
for the new situation would be if it were stored in the case library. This process was not
addressed by the original Dynamic Memory cognitive model. Another component that
Kolodner added is case subparts called snippets, which represent the pursual of case
subgoals. Snippets and case representation in Kolodner’s model have been described
previously in this section. They are new in CBR because Schank did not discuss subgoals
in cases or scenes when he first proposed the Dynamic Memory CBR model.

Fourth, the role of cases in the cognitive model is different in Kolodner’s approach
when compared with Schank’s approach. Whereas Schank suggests that we mostly use
generalized knowledge structures, or schema, in our reasoning unless the schema is

incomplete or unavailable (Schank, 1982), Kolodner suggests that concrete information is
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always preferred in the reasoning process (Kolodner, 1993, 1995, 1997). Kolodner’s
model is more typically one of case-based reasoning as it puts more emphasis on
reasoning at the case level, unlike Schank who suggests that we reason at all levels. Much
of the information that is stored in the generalized structure in the Dynamic Memory
model is considered to be stored in cases in Kolodner’s model, and much of the
processing that is done at the generalized level in Dynamic Memory is considered to be
done at the case level in Kolodner’s model. For example, while both models suggest that
we use causal models to reason about cases, Kolodner suggests that the explanations are
stored in cases as a result of interactions between the cases and the causal models,
whereas Schank suggests that the explanations are stored as part of all knowledge
structures and, as well, as an independent structure itself to organize cases in hierarchies.
In addition, while both models acknowledge the importance of case structure in
reasoning, especially cross-contextual reasoning, Kolodner suggests that cases are stored
with a certain structure so that mapping can be done at the case level using mapping
algorithms, whereas Schank suggests that it is the higher-level knowledge structures that

make cross-contextual reasoning possible.

2.2.2.2.3. Shift of Kolodner’s knowledge-poor CBR cognitive model

In the late 1990’s, Kolodner’s knowledge-poor CBR cognitive model shifted a bit
to explain reasoning processes in knowledge-intensive domains. Kolodner (1996)
proposed that by facilitating the explanation-generation process and the generalization
process, case-based reasoning could support rule-based reasoning (RBR) and model-
based reasoning (MBR). CBR as a cognitive model is integrated in a broader memory

system by matching case components and generalizations drawn from cases with rules
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and models from other sub-systems of the broader memory system (Kolodner, 1996).
Kolodner (1997) stated that, since CBR is one approach to reasoning by analogy which
has a strong emphasis on the role of surface features, it could compliment RBR and MBR
which focus on reasoning with abstract knowledge and deep features, and could also
serve as the source from which rules and models in RBR and MBR are generated
(Kolodner, 1997).

2.2.2.2.4. CBR systems based on Kolodner’s knowledge-poor cognitive model

Kolodner’s knowledge-poor CBR model has served as the basis of numerous CBR
systems, including CASEY (Koton, 1988a; 1988b; 1989), CELIA (Redmond, 1989a;
1989b; 1989¢; 1990a; 1990b; 1991; 1992), JULIA (Hinrichs, 1988; 1989;1992; Hinrichs
& Kolodner, 1991), and MEDIATOR (Simpon, 1985; Kolodner & Simpson, 1988; 1989).
CELIA, for example, acts as an apprentice mechanic. It models the memory and
reasoning capabilities of a novice troubleshooter. CELIA solves problems by itself, and
in addition, it learns by watching and listening to a teacher explain her reasoning about
particular cases. As it listens to and understands the teacher, it integrates those
experiences and what is learned from them with what it already knows. When
experiments were run with CELIA (Redmond, 1992), it was found that the acquisition of
cases was more useful in ensuring successful problem solving during early learning than
for augmentation or refinement of domain or task knowledge. CELIA also suggests some
minimal amount of knowledge that the student should have in order to make the most of
their experiences. It also shows that it is better to present a variety of types of problems
early on rather than concentrating on several very similar ones. As we shall see later (in

the next chapter), experimental resuits from systems such as CELIA had a large impact
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on subsequent cognitive CBR research, and especially on research regarding the
application of CBR in education.

Besides Schank’s and Kolodner’s CBR cognitive models, there is a third CBR
model that has been quite popular in the field. This is Bareiss’ and Porter’s Category and
Exemplar CBR model.

2.2.2.3. The Category and Exemplar Model

2.2.2.3.1. The Category and Exemplar model

Ray Bareiss and Bruce Porter (Bareiss, 1989, Porter, 1990) proposed a Category
and Exemplar CBR model in the PROTOS system. The psychological and philosophical
basis of this approach is the view that real-world. natural concepts should be defined
extensionally. Different features are assigned different importance in describing a case’s
membership in a category. According to them, any attempt to generalize a set of cases
should — if attempted at all - be done very cautiously. This fundamental view of concept
representation forms the basis for this cognitive model, which distinguishes it from other
CBR models.

In Bareiss and Porter’s approach, the case memory is embedded in a network
structure of categories, cases, and different kinds of connections. Categories are the
extensional equivalent of concepts. Each category is represented by a set of retained
cases. Cases in the Category and Exemplar model are called exemplars. They serve as
exemplars of categories that people learn and models for interpreting new cases. The four
kinds of connections between categories and cases are: reminding links, prototype links,

difference links, and censor links. Reminding links associate features of cases with
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categories. Bareiss and Porter suggest that we use reminding links to make a guess at a
category as the first step of our reminding process. Prototype links connect categories to
items that most typify the category. Exemplars that are exceptional cases are not linked to
the category by prototype links. Difference links, or indexes, record important differences
between items (cases or categories). Difference links are recorded when near misses
occurred in the reasoning process. They connect items to each other according to their
differentiating features. Reminding links and difference links allow us to chose the best
candidate from a category in the beginning of the reminding process, and they also allow
us to proceed with our reminding process by moving from the first candidate item
retrieved to other candidate items according to the differences between the candidate item
and the new item identified by the match procedure. Censor links are leamnt as a result of
incorrect matches. We use them to rule out connections between items that might

otherwise be made.

Feature-1 Feature-2 Feature-3 Feature-4 Feature-5 |

Figure 2.3. Structure of the Category and Exemplar model (Porter, 1990)
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Within this memory organization, the categories are inter-linked within a semantic
network, which also contains the features and intermediate states referred to by other
terms. This network represents a background of general domain knowledge, which
enables explanatory support to some of the CBR tasks. For example, a core mechanism of
case matching is a method called “knowledge-based pattern matching” (Porter, 1990).
Knowledge-based pattern matching means using domain knowledge within the category
structure to construct explanations so as to relate the features of the new case to those of
the exemplar. For example, if we have not seen a chair with four legs before, but know
about chairs with a pedestal, when we see a four-legged chair, we might match the
feature “four legs” of a new case to “pedestal” in exemplar X from the category “chair”
based on the explanation “four legs is a specialization of “seat support’, which has
another specialization ‘pedestal’”. This explanation based on domain knowledge suggests
that the features are equivalent because they have the common generalization “seat
support”. Knowledge-based pattern matching is basically a search procedure. It searches
for the strongest chain of known relations (also called chain of inferences) in the category
structure, linking each feature of the exemplar to a feature of the new case. A chain of
known relations is not a proof of equivalence, but rather the strongest argument that can
be made, based on existing knowledge. Therefore, general domain knowledge is used to

enable matching of features that are semantically similar.

2.2.2.3.2. How the Category and Exemplar model differ from Schank’s and
Kolodner’s CBR models

Unlike Kolodner’s model which is largely based on superficial, syntactical

similarities among problem descriptors, the Category and Exemplar model attempts to

36



retrieve cases based on features that have deeper, semantically-based similarities. In order
to match cases based on semantic similarities and relative importance of features, an
extensive body of general domain knowledge is needed to produce an explanation of why
two cases match and how strong is the match. Thus, it is often referred to as the
“knowledge-intensive” approach (e.g., Aamodt & Plaza, 1994), whereas Kolodner’s
research is referred to as a “knowledge-poor” approach.

The knowledge representation in the Category and Exemplar model is different
from Schank’s and Kolodner’s CBR cognitive models not only because of its integration
of case-based reasoning with domain knowledge, but also because of the way cases are
organized and represented. Each case is considered to be the center of its range of
coverage (Bareiss, 1989) within its category. The range of coverage is the range in which
a case can closely match all cases in the region. This range is determined by the
reasoner’s domain knowledge. As the reasoner gains domain knowledge about the
commonly occurring features of a category, her ability to use the knowledge to explain
the equivalence of features improves. Since each case has its range of coverage, if a new
case falls under the existing range of coverage, it would not be interesting enough to be
retained in the memory system, because it could not teach us a new lesson. According to
the Category and Exemplar model, only new cases that cannot be adequately explained
by an existing case and those that we failed to predict correctly are retained in our
memory. Otherwise, the new case will not retained in memory, but the prototypicality of
the available case whose range of coverage the new case fell under will be increased to
reflect the fact that it closely matched another instance of the category. Cases that have

high prototypicality are also called “prototype cases”. Unlike Schank’s and Kolodner’s

37



CBR models which place cases that are often encountered at a higher level of abstraction
in the memory structure, the Category and Exemplar model proposes that prototype cases
reside at the same level as the other cases in the memory system — although they are
given priority in the retrieval process.

In addition, the Category and Exemplar model is unique in that each case is
accompanied by explanations of why it is related to the category. Bareiss and Porter
proposed that when rich explanations are generated, fewer exemplars are needed to leam
a category because each exemplar will implicitly cover a wider range of featural
variations. Explanations also enable effective learning of the case-category connections,

which allow efficient access to the category structure.

2.2.2.3.3. CBR systems based on the Category and Exemplar cognitive model

The most faithful implementation of the Category and Exemplar model is
PROTOS (Bareiss, 1989; Bareiss, Porter, and Murray 1989; Bareiss, Porter, and Weir,
1988; Porter, Bareiss, & Holte, 1990), PROTOS acts as an apprentice in diagnosing
audiological disorders. Given a description of a situation or object, it classifies the
situation or object by type. That is, given a description of the symptoms and test results of
some patient, PROTOS determines which hearing disorder that patient has. When it
misclassifies an item, its expert consultant steps in and informs PROTOS of its mistake
and what knowledge it needed to classify the item correctly. Other CBR systems that are
based on the Category and Exemplar model includes ORCA (Bareiss & Slator, 1991;
1992; Slator & Bareiss, 1992), and GREBE (Branting & Porter, 1991; Branting, 1991a;

1991b; 1991c¢; 1991d).
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2.2.2.4. Other Variations

Besides the above three CBR cognitive models, there are also some other models
that are quite different from them. Many of these models are the result of the trend to
integrate the CBR method with other methods and representations of problem-solving,
such as rule-induction or model-based reasoning. Another trend that led to the creation of
some CBR modeis are efforts to model expert reasoning in specific domains. In fact,
these efforts often yield integrated CBR models, as well. Those other CBR models, built
to model reasoning in specific domains but using a purely CBR approach, are often
limited in their scope—they could hardly be applied to domains in which a large
component of the domain knowledge is other than case knowledge (Cunningham, 1993;
Dupuy, 1988; Wendel, 1993). Therefore, in this section, I will focus instead on the new
integrated CBR models that follow innovative approaches.

In the integrated CBR models, the cases, heuristic rules, and deep models are
integrated into a unified knowledge structure. The main role of the general knowledge is
to provide explanatory support to the case-based processes (Adamodt, 1993). Rules or
deep models may also be used to solve problems on their own if the case-based method
fails. The domain knowledge used in a CBR system is learnt from cases as well as other
sources. [n these CBR models, the overall architecture of the CBR system determines the
interactions and control regime between the CBR method and other components. The
majority of integrated CBR models are created with engineering considerations rather
than from a cognitive science perspective. However, there are a few cognitive models
available. For example, the modified Dynamic Memory CBR model and the Category

and Exemplar CBR model can both be classified as integrated CBR cognitive models.
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Other models that are approached from a cognitive perspective includes the QMC
(Qualitative Modeling in CBR system) model, which integrates model knowledge with
cases (Aarts & Rousu, 1997) based on Qualitative Process Theory (QPT) (Forbus, 1984);
the MMA (Massive Memory Architecture) model (Plaza, 1993), which combine various
CBR methods with rules and models; and the FABEL model (Sporl, 1995), which
integrates case-based, schema-based and model-based reasoning.

QMC (Aarts & Rousu, 1997) integrates qualitative modeling (Forbus, 1984) with
typical case-based reasoning. The qualitative modeling component of QMC represents
processes, variables, and their relationships, called “influences”. Processes are activities
that may influence the state of a variable. For instance, when flying a plane, the process
of climbing influences the variable alfitude; the altitude of a plane will increase if the
process is active. Variables are important features that moderate the end outcomes of a
process. Processes and variables are linked by “influences”. Not only are variables
influenced by processes, processes may also be influenced by variables. For example,
JSuel consumption is influenced by the variable friction. In addition, variables can also be
linked to one another by influences. For instance, altitude influences friction.

The qualitative model is integrated with case-based reasoning by mapping case
components with qualitative model components. First, variables may directly correspond
to case features. QMC distinguishes case features that are related to a situation (or input)
and case features that reflect the outcome of the case. Those outcome case features are
mapped to process variables. When the outcome features are directly related to case
outcomes, or when domain knowledge indicates that they are important variables linking

to the processes, those case features are directly mapped to corresponding variables in the



qualitative model. However, not all outcome features can be directly linked to the
outcome of the case, or easily matched to available domain knowledge. These kinds of
case features cannot be directly mapped onto variables. Under such circumstances, the
reasoner sometimes make assumptions about how certain variables in the qualitative
model might influence such indirect outcome features. Those assumptions are stored as
remarks attached to the variables, pointing to the outcome features that might be related
to the variables. When a new case that has one of those indirect outcome features is
encountered, the remarks will be activated, and the variable will be tried. Another way
QMC integrates qualitative modeling with case-based reasoning is to map processes,
operations and plans in cases to processes in the qualitative model. This kind of mapping
relies on the appropriate definition of operations.

MMA is another integrated CBR approach. It is an integrated architecture for
leamning and problem-solving based on reuse of case experiences. A goal of MMA is
understanding the relationship between leamning and problem-solving and incorporating
this understanding into a reflective or introspective framework. It seeks to model the
reflection processes which allows the reasoning system to inspect its own past behavior
in order to learn how to change its structure so as to improve its future performance.
Case-based reasoning methods are implemented by retrieval methods (to retrieve past
cases), a language of preferences (to select the best case) and a form of derivational
analogy (to reuse the retrieved method in the context of the current problem). Leaming in
MMA is viewed as a form of introspective inference, where the reasoning is not about a
domain but about the past behavior of the system and about ways to modify and improve

this behavior. This view supports integration of case-based learning as well as other
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forms of learning from examples, like inductive methods, which are also integrated into
the MMA and combined with CBR methods.

Another system that takes a similar approach to MMA is INRECA (Manago,
1993). These systems are closely related to the multistrategy learning systems (Michalski,
1992): the issues of integrating different problem-solving and leaming methods are
essential to them.

FABLE is an integrated CBR model based on the analysis of knowledge
acquisition experiences in a building design domain. FABLE represents knowledge in the
forms of cases, schemata, and generic models. Since it models reasoning in the domain of
building design, cases in FABLE are arrangements of complex design objects. These
design objects have concrete values like a type, a set of features, a location, etc., ora
reference to other existing design objects. Schemata are step-wise abstractions from
cases. Schemata can be instantiated and thus get specialized to cases. The constraints for
the specialization usually emerge from the concrete situation and from the surrounding
context. The models in FABEL define the scope of the assessment functions and serve as
a framework for the adaptation functions.

These integrated approaches to CBR are examples rather than schools of integrated
CBR research. In fact, there has been a plethora of research on integrated CBR models in
recent years, especially in Europe. But so far, the only two popular integrated models are
Schank’s new Dynamic Memory model and Bariess’s and Porter’s Category and
Exemplar model. This is probably due to the fact that most of the integrated CBR

research has been done from an engineering standpoint.
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In the next sections, I will summarize the confusions and lack of standardization in
cognitive CBR research, and then propose a framework for understanding the major

variations of CBR cognitive models.

2:2.3. Summary of Confusions and Lack of Standardization

The variations that led to confusions about CBR cognitive models mainly fall
under five categories: 1) case content and representation; 2) organizational structure and
knowledge representation in the CBR cognitive model; 3) the role of general domain
knowledge in the CBR model; 4) processing and reasoning issues; 5) the scope of CBR.

First, although all CBR models focus on reasoning with cases, the nature of cases,
and case representation varies from model to model. The typical definition of case is
something like:

A case is a contexualized piece of knowledge representing an experience that

teaches a lesson fundamental to achieving the goals of the reasoner.

(Kolodner, 1993, p.13)

This does not specify exactly what information should be represented in a case. Are
cases small pieces of experience that represent one part of, or one facet of, a larger unit of
experience, as described in Schank’s Dynamic Memory model? Or are cases larger pieces
of experiences that contains smaller sub-parts in them, as described in Kolodner’s
knowledge-poor CBR model? For example, if I went to a bookstore and accidentally
found a map I was looking for, would that experience be one case in my memory
composed of snippets “trip to the store”, “browsing books”, “found the map”, “buying the
map”, and so on, or would that experience be broken down into cases such as “trip to the

store”, “found maps in the bookstore”, and linked together by a “going to bookstore”
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MOP? Are cases applied individually, or are they loosely connected sets of events that
are reconstructed at retrieval time? These issues are still being debated in the field.
Schank’s model and Kolodner’s model are representative to the two approaches to case
representation (Alterman, 1989). Cases in Schank’s model are called monolithic cases,
and cases in Kolodner’s model are called distributed cases (Alterman, 1989).

Second, as it is not clear what cases are and what the grain size of cases should be,
it is also unclear how should the cases be organized in the CBR system. Knowledge
representation proposed in CBR models range from very flat (as in the Category and
Exemplar model, where cases that are encountered several times are stored at the same
level with exceptional cases) to highly hierarchical (as in the Dynamic Memory model,
where cases go through successive abstraction and turn into knowledge stored at higher
levels). In structured models of CBR knowledge representation, it is also unclear on what
bases are information generalized from cases, and what are the forms of the generalized
knowledge in the memory structure. There are also several versions of memory
organizational structure. Besides redundant discrimination networks (as in Dynamic
Memory), redundant discrimination networks combined with shared-feature networks (as
in Kolodner’s model), semantic networks combined with Category and Exemplar (as in
the Category and Exemplar model), and several other integrated approaches (as described
in the “other variations” section), popular organizational structures also include shared-
feature networks, discrimination networks, and prioritized discrimination networks
(discrimination networks with priority given to important features). I will not describe
these organizational structures in detail here, since a more detailed discussion of these

organizational structures can be found in Kolodner’s Case-Based Reasoning (1993).



Third, approaches to general knowledge in CBR cognitive models vary
considerably. There are three types of generalized knowledge that are often considered
part of the CBR system: general descriptions of particular kinds of situations,
generalizations of the ways intentional and functional components of situations interact
with each other, and adaptation methods. Besides these three types of knowledge, other
forms of general knowledge, such as rules, models, and conceptual knowledge, are
approached differently by various CBR models. Many researchers advocate integrated
approaches in which CBR interacts with general knowledge in other sub-systems of our
memory. QMC, MMA and FABEL are examples of this approach. Some other
researchers view general knowledge, or a large portion of general knowledge, as part of
the CBR system. For example, in Schank’s moderated Dynamic Memory model, skills
are equated with scripts in CBR and some rules are considered to be ossified cases
(Schank, 1996); in the Category and Exemplar model, the semantic network is considered
part of the CBR system. Some researchers who take a radical stance in this approach even
claimed that “In a broad sense, everything is a case” (Riesbeck & Schank, 1989, P.11).
So far, there is no consensus on exactly what role general knowledge plays in CBR, what
types of general knowledge reside in CBR and where do they reside, or how does CBR
interact with general knowledge in other systems.

Fourth, variations in these issues discussed above have resulted in variations in
specific processing and reasoning issues. For example, although most CBR models
acknowledge a top-down processing structure, there has been no consensus on whether
cases are preferred over generalized knowledge, or are generalized knowledge preferred

over cases. When we program our VCR after having done it for several times, for

45



example, would we be reminded of a generalized knowledge structure (script, GE, etc.),
or a specific previous experience of programming the VCR that is organized under that
generalized structure, or a prototype experience that is an exemplar of our experiences of
programming the VCR? If there is an appropriate generalized knowledge structure
available, would we stop the retrieval process, or carry on until we retrieve a case? Is the
structural mapping process done using higher-level knowledge structures, or is it done at
the case level, or is it done by using both cases and general knowledge? Do we process
information in a parallel fashion using knowledge at different generalization levels, or
even from different memory sub-systems at the same time, or do we always process
information using one type of knowledge? Those questions have generated much
confusion about the case-based reasoning process, but so far, there has been no
standardization on these issues.

Fifth, because of all those variations, it is unclear what is the scope of CBR as a
cognitive model. Is it a unified approach to reasoning and memory or is it one of the sub-
systems of a broader memory system? If CBR is a component of a larger memory system,
when is it applied, and how does it interact with the other components? Under what
circumstances are CBR extensively used so that we could use the CBR cognitive models
to interpret phenomena or make predictions? Different CBR cognitive models approach
these issues differently. For example, the moderated Dynamic Memory model and the
Category and Exemplar model of CBR takes CBR as an unified model of cognition,
while Koldoner’s CBR model and some integrated approaches to CBR acknowledge that

CBR is part of a larger memory system. In addition, each integrated model of CBR



approaches CBR interaction with other systems differently. There has been, so far, no
consensus in the field of CBR cognitive research on the scope of CBR.
Acknowledging these variations, [ will present a framework for understanding the

major variations of CBR cognitive models in the next section.
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2.2.4. A Framework for Understanding the Major Variations of CBR
Cognitive Models

Corresponding to the variations identified, I propose the following framework
(presented in Table 2.2, pp. 49-50) to help us understand the variations and confusions in
cognitive CBR literature. The major CBR cognitive models are analyzed and compared
according to this framework, variations in the field that are not represented by the major
models are presented under “other variations” along each dimension of the framework.

The five dimensions of variations in CBR cognitive models identified and
discussed in the previous section could be used to form a framework for us to clarify the
variations and confusions in cognitive CBR literature. Each major CBR model’s
approach to these five issues has been described in the sections dedicated respectively to
each of those models. But in this section, in order to make these approaches more
obvious for the framework I am proposing, and to make comparison across the major
CBR cognitive models easier, I will summarize the main points of each CBR model’s
approach along each of the five dimensions, and present them in a table form (see Table
2.2). In Table 2.2, the major CBR cognitive models are analyzed and compared according
to the framework I am proposing for understanding variations in cognitive CBR
literature. Variations in the field that are not represented by the major models are

presented under “other variations” along each dimension of the framework.
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This framework outlines the variations and confusions in the field caused by the
different hypotheses in different versions of CBR cognitive models. It would be
interesting to discuss which of these CBR cognitive models are more plausible, or which
claims from certain models are more plausible than claims from other models. But, so far,
there seem to be no psychological experiment carried out to accomplish this, and
therefore, no empirical evidence available to directly prove which propositions are right
and which ones are wrong. In addition, each one of these models is well-formed to a
degree that if stretched, it could provide explanations for tangential empirical evidence
from related fields. Therefore, it is difficult to discuss which hypotheses or which models
are “more true”, or more supported, than others.

On a speculative note however, based on common sense, it seems to me that claims
of CBR being one method of reasoning are more plausible than claims of certain CBR
models being unified models of cognition (i.e., a cognitive model that underlies all
human learning, reasoning, and performance.) More specifically, the moderated Dynamic
Memory cognitive model and the Category and Exemplar model are claimed to be
unified models of cognition, but it is hard for us to use these models to explain issues
such as, e.g., those related to human emotions, why music therapy and art therapy have
an impact on human behavior, etc.. It might be more reasonable if we limit our efforts to
using CBR cognitive models to explain human cognition within task domains in which
these models seem to be employed as the central way of learning and reasoning. For
example, CBR cognitive models might be particularly useful in predicting and explaining
reasoning in complex domains or dynamically changing domains in which there are no

rules or models to comply; or domains in which there are many long lines of reasoning
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which are repeatedly used. In addition, people also seem to prefer cases as the initial
source of information to learn or reason about a certain domain when they are new to it

and do not have any general domain knowledge, such as principles or rules, to abide by.
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CHAPTER 3. EDUCATIONAL APPLICATIONS OF

CASE-BASED REASONING

3.1. Major Applications

Case-based reasoning has been applied to many instructional applications and
innovations that are widely used today, such as goal-based scenarios (Schank, 1994),
learning by design (Kolodner, 1997; Kolodner et al., 1998), case-based learning
environments (Schank, 1990; Jonassen, 1996), knowledge-sharing systems (e.g., Kitano
and Shimazu, 1995) and case-based advising systems. However, the structure, content,
goal, and educational approach of these applications and innovations might vary with the
different versions of CBR. In this chapter, I will first provide an overview of these CBR
educational applications, introducing their design parameters, the CBR cognitive model
they base their design on, and how the design of these applications links to the CBR
model they use. Then, I will analyze how the design parameters or terminology of these

applications might shift with the different versions of CBR.

3.1.1. Goal-Based Scenario

3.1.1.1. Overview of Goal-Based Scenario

Goal-based Scenario (Schank, Fano, Bell, & Jona, 1994) is a framework for
leaming environments developed by Roger Schank, one of the originators of CBR. The
goal-based scenario (GBS) framework is created based on Schank’s Dynamic Memory

CBR cognitive model. The initial goal of the GBS research group was to create a case-
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based teaching environment that induces learners to acquire cases actively so that learners
can have a large case library, just like the experts.

What Schank’s group ended up creating as GBS is essentially a simulation
environment in which learners assume a main role, which has associated with ita
mission. Learners start the scenario with the goal to successfully accomplish this mission
or task associated with their role(s) in the scenario. On the surface, GBS is quite similar
to a typical gaming environment. What makes GBS a learning environment is: first, in
order to achieve their goal(s) to pursue the mission successfully, the learners need to
acquire particular skills and knowledge - this is where and when the learning takes place;
second, the learning environment also includes a set of resources that can help learners
acquire the skills necessary to do so. The primary part of these resources is a CBR system
with a case library of success and failure stories in the subject matter, well-indexed so
that they could be presented to the learners at the right time, either when they just
experienced an expectation failure or require support of a certain kind. The cases are
often recorded in the form of video clips as experts telling war stories, and the search
system is often presented as experts ready to answer leamers' questions or to give them
various forms of feedback.

By using these approaches, GBS presents an interesting situation for the learners to
apply knowledge and skills and fail. Learners are motivated to explore, and when they
fail, they are ready to hear a case, and be genuinely interested in the case presented. By
encouraging expectation failures, GBS alsc allows both the system and the learners to
detect what needs to be learnt, and which cases are relevant at a certain point. In addition,

the use of CBR systems makes it possible for the system to make intelligent decisions
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about which case to present and not only when learners experience expectation failures,
but also when they are curious about a certain topic and ask the system questions.

I will present a GBS learning environment, Sickle Cell Counselor (Bell & Bareiss,
1993), as an example to illustrate this framework. Sickle Cell Counselor is a GBS
leaming environment designed to help museum visitors gain a basic understanding of
sickle cell disease. In this system, learners (i.e., museum visitors) are engaged in a
mission of assisting couples who seek genetic counseling to leam more about the disease.
Learners play the role of the counselor, the couples in the GBS come to the counselor and
express (for various reasons) an urgent desire to learn more about the disease. With the
goal of advising these couples based on their specific circumstances, leamers embark on
the mission performing a variety of activities related to the diagnosis of sickle cell
disease. In the course of running these tasks, such as performing laboratory tests,
calculating the probabilities of different outcomes, and advising clients about the results
of their tests, leamners learn about the various aspects of sickle cell disease. When the
leamers need support or feel they want extra information, they can consult the experts
provided by the GBS environment. Sickle Cell Counselor presents four experts that can
be reached at all times throughout the mission: a physician, a geneticist, a lab technician,
and a guide. The physician and geneticist offer expert knowledge about sickle cell disease
to users at appropriate times. The lab technician helps the leamers with the mechanics of
the blood lab. The guide serves as the voice of the tutor, offering help and suggestions
regarding not only how to navigate through the program, but also what to look for and
what to try next. Basically, leamers take on the role of experts when they embark on the

mission in this GBS framework, but because they are not actually experts in this domain
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and cannot finish the tasks on their own, they are motivated to learn more about the
domain so as to finish the mission. They seek information from the experts in the system
and gain knowledge in the process of finishing their tasks. By the time they have leamnt
enough from the system to successfully complete their mission, they would have gained
enough knowledge about sickle cell disease from the GBS.

Having presented the basic framework of GBS, I will now introduce the structure
and main components of GBS from an instructional design perspective. Overall, a GBS is
made up of two main parts: the mission context and mission structure. Each of these two
parts is in turn composed of two subparts, as illustrated in Figure 3.1.

The mission context deals with the development of the thematic aspects of the
GBS. It is composed of the mission and the cover story. The mission is the overall goal of
the GBS. The cover story is the premise under which the mission will be pursued. The
mission specifies the goal the learners are trying to accomplish and sets the tone for the
student’s actions. The cover story defines more specifically the role the leamner plays, the
scenes where the action takes place, and provides other details that makes the GBS

plausible and enticing to the student.

[ [ Mission
Mission Context
1Cover Story
Goal - Based Scenario{ ( Control
Design
Mission
Mission Structure; Discovery
Explanation
| Scenario Operations

Figure 3.1. The structure of components in a goal-based scenario
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The mission structure is the means by which the student will pursue a mission. In
the real world, GBS missions can often be achieved by numerous plans, but in 2 GBS
leaming environment, only plans that require the execution of the skills intended to be
taught by the GBS are supported. The mission structure specifies the plans to be
supported in terms of the themes developed in the cover story.

Based on the mission structure of a GBS, the mission focus and scenario operations
will be considered. The mission focus is the style of the activity in which the mission
structure will be implemented. It provides the overall framework around which the rest of
the GBS can be structured. There are four types of mission foci: control, design,
discovery, and explanation. GBSs that have a control mission focus have the learner’s
principal activities centered around managing an organization, operating a complex
system, controlling a mechanism, and so on. GBSs that have a design mission focus have
the interactions centered around generative activities such as creating an artifact,
specifying how a system should be organized, or specifying how a process should be
executed, etc. If the mission focus of a GBS is explanation, the tasks of the GBS involve
articulating an explanation explicitly through the design of an artifact. If the mission
focus is discovery, the primary activities of the leamer must be to infer the laws
goveming the microworld, notice opportunities to participate in activities or acquire
resources, or discover how to deal successfully with the simulated agents that populate
the microworld. In addition, a mission focus may include a combination of these
approaches. The scenario operations are the actual activities the learner will be

performing while engaged in a GBS. For example, activities such as answering a
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question, using a tool to shape part of an artifact, searching for a piece of information,

and deciding between, alternatives are all scenario operations.

3:1.1.2. GBS and the Moderated Dynamic Memory Model

Underlying this GBS framework are three key components drawn from Schank's
Dynamic Memory CBR model: 1) leaming by doing: providing a realistic computer-
mediated environment where learners can actively engage in the tasks; 2) learning from
failure, whereby learners are deemed ready to acquire new knowledge when they
encounter failure, so as to avoid similar mistakes in the future; and 3) learning from
stories: use stories to present memorable ways to illustrate general principles while
providing concrete details that learners can apply to different contexts (Schank, 1994).

These underlying components are drawn from Schank’s Dynamic Memory CBR
cognitive model. Although at the time the GBS framework was proposed, the new
version of the Dynamic Memory CBR model was not yet published, many key concepts
in the new model were used in the GBS framework. It appears that the moderated version
of Dynamic Memory model and the GBS framework influenced the formation of each
other. In the following paragraphs, I will use the moderated Dynamic Memory model to
explain decisions made with regard to the design parameters of GBS.

The learning by doing component of GBS corresponds with the Dynamic Memory
model in two ways. First, as described in the last chapter, leamning, in Schank’s cognitive
model, is a bottom-up process of successive abstraction. The Dynamic Memory model
asserts that people learn by acquiring cases and generalizing higher-level abstract
structures from cases. Learning by doing is the most natural way to accumulate cases and

facilitate generalization. In addition, Schank claims that skills, one of the four types of
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knowledge in our memory system (cases, skills, strategies, and conceptual knowledge),
can only be leamt by doing. Therefore, the only way for leamers to acquire all types of
knowledge is to let them learn by doing. Second, the Dynamic Memory CBR model
suggests that cases learnt by doing are more concrete and memorable, because they
contain more detailed information for us to create indices from. Schank (1995) claimed
that cases from other people’s stories are distilled every time they are re-told, risking the
chance of losing critical details or missing important information. If we learn by doing,
we will have more indexes for a case, and it is more likely for us to access the case in the
future. Every time we access a case for reuse, it is reinforced in our memory. Thus, cases
learnt by doing are more likely to be remembered for a long time. Furthermore, the
richness of cases acquired by doing something enable us to better detect nuances so as to
make sound generalizations and/or assist future decision-making. Thus, cases learnt by
doing tend to be more useful in future reasoning than cases acquired from other people’s
experience.

Leamning from failure is a new concept that Schank proposed on the basis of the
Dynamic Memory CBR model (Schank, 1982). As described in the last chapter, in
Schank’s CBR cognitive model, expectation failures are one of the major components of
the indexing system. All exceptional memory units are indexed in the Dynamic Memory
system by indices generated from people’s expectation failures. Thus, it is important for
the reasoner to experience expectation failure in order to obtain a well-indexed CBR
system. Furthermore, Schank suggested in his cognitive model that expectation failures
make the memory system unstable and leave the reasoner eager to find explanations. That

is, people are motivated to learn more when they realize that they do not know enough
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about a certain topic. Therefore, expectation failures can serve as a source of intrinsic
motivation for people to learn. Schank also suggested that it is advantageous for learners
to learn by doing and learn from failures because it is easier for them to detect small
holes and bugs in their knowledge this way. More cases are retrieved and tested when the
reasoner is actively involved in the reasoning process, and when a problem is detected,
more cases will be invalidated or reinterpreted.

Learning from stories is also a core underlying component of GBS. It serves as the
case-based teaching part of the GBS system. Schank views leaming as the accumulation
and indexing of cases, and thinking as the finding and consideration of an old case to use
for decision-making about a new case (Schank, 1996). Thus, one of the main objectives
of GBS is to support learners’ acquisition of cases on an as-needed basis. Cases are
presented in the form of stories. These stories contain information that help learners
understand a situation, the solution that was derived, why it was derived, what happened
as a result, as well as the explanations that tie those pieces together, just as in the way
cases would be recorded in an expert CBR system.

Another lesson that the leaming from stories component drew from the Dynamic
Memory cognitive model is to support learners accumulating both cases about success
and cases about failures. Research based on the Dynamic Memory model shows that it is
important for a CBR system to have both success and failure cases in order for it to be
able to predict potential problems and generate efficient strategies (Kolodner, 1984). In a
GBS, stories about success are valuable for the advice they give about how to proceed or
what strategies to use, stories about failures provide advice about what to avoid or issues

to focus on, and the combination of success and failure stories provide learners the basis



for making predictions, generating indices, and inventing strategies. Finally, stories in
GBS are indexed in ways that anticipate their use, making it possible for the GBS system
to find cases that provide adequate scaffolding.

These underlying notions, when applied to each aspect of the design structure, are
specified into a set of design criteria for the four main components of GBS (Schank et al.
1994). These design criteria are presented in Table 3.1. pp. 62-63. Some of them are not
directly drawn from the CBR model per se, but are rather pragmatic concerns about
linking the main components together and building a powerful leaming environment. But
the other ones, such as empowerment, flexible achievement, frequent practice
opportunities, and responsiveness, directly correspond to the principles drawn from the
Dynamic Memory cognitive model. For example, the Dynamic Memory model suggests
that good reasoning is partly a resuit of being able to retrieve the right case or the right
generalized knowledge structure at the right time. Indexing and generalization is key to
this process. Useful indices and generalizations are created when the reasoner has enough
cases to make decisions about, e.g., which features are important, when would the case
(and/or similar cases) be applicable, and what are the aspects to focus on in similar cases.
Corresponding to these claims of the Dynamic Memory model, the frequent practice
opportunities criteria of the GBS framework emphasize giving learners opportunities to
practice their target skills in a wide variety of contexts, so as to support generalization
and indexing based on important features; and the empowerment criterion reinforces this
approach by focusing on helping the learners realize the applicability of the cases and
generalized knowledge they have acquired. These GBS design criteria that are derived

from the Dynamic Memory cognitive model are bolded in Table 3.1.
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I will analyze these design criteria in more detail and discuss possible ways these
criteria might shift if the application were based on other CBR models, as well as new
components that could be added to the GBS framework, later in the analysis section of
this chapter. But before that, I will first present two other popular applications of CBR.

Table 3.1.
Design Criteria of GBS Design Components (Part I)
GBS Design criteria | Definition of design criteria
component

Thematic The process of achieving the mission must be thematically consistent

coherence with the goal itself.

Realism/ The GBS must be realistic and rich enough to provide varied

richness opportunities for learning the target skills. Not only must
opportunities for the acquisition of the target skills arise, but they
must arise in a realistic and varied enough way to render the skills
useful to the student.

Control/ Students should be put in control. They should feel responsible for the

empowerment completion of the task.

Challenge The various components of the GBS should promote a consistent degree

Every consistency of difficulty. They must ensure that an environment presents neither
component insurmountable obstacles nor trivial and distracting subtasks.

Responsiveness | The GBS components must convey the right feedback in a manner
that is useful, timely, and understandable to the student. Students
should be able to observe the causal effects of their operations.

Pedagogical The proposed scenario should be compatible with and supports the

support acquisition of target skills. The target skills must make sense in the
context of the proposed scenario. Ample opportunities must arise for the
use of the skills.

Pedagogical goal | The strategies and materials used to assist the student must be carefully

resources chosen to match both the skills being taught and the premise of the
GBS.

Goal distinction | The goal should be clear, plausible, and consistent with the cover story.
Progress towards the goal as well as its accomplishment should be
obvious to the student.

Goal motivation | Much of the motivation to work through the GBS will come from the
desire to complete the mission. The mission should be a goal that the
students already have, or one that there is reason to believe the students
will enthusiastically adopt.

Mission Target skill Completion of the mission should require mastery of the target skills
dependence and knowledge.

Flexible A mission should be selected that can be achieved many different

achievement ways, yet for which no single solution is guaranteed to work every
time.

Task consistency | The overall focus of the student’s activities should be suggested by the

mission and cover story. Possible mission focuses include explanation,
control, discovery, and design.
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Table3.1.

Design Criteria of GBS Design Components (Part IT)

GBS L .. L
component Design criteria | Definition of design criteria
Student The mission focus should promote a student’s sense of personal
investment investment in the mission.
Progress Pedagogical goals should depend principally on the progress of trying to
emphasis complete the mission.
Mission Artifact The “artifact” of the mission focus, be it a design, an explanation, or
focus dependence otherwise, should reflect the student’s understanding of the domain and
embody a solution to the problem at hand. The properties of the artifact
and its performance within the cover story should reflect the strengths and
weaknesses of the solution.
Role The cover story should provide a desirable role for the student within a
coherence lausible, exciting, and accessible story.
Target skill The cover story should be designed to lead to situations that
density mazximized the need to apply the target skills and minimize the need
for others.
Frequent Advancing the cover story should require minimal time and effort
Cover story | practice relative to that spent on acquiring target skills and knowledge. The
opportunities | cover story should provide situations that allow the target skills to be
racticed in an wide variety of contexts.
Integrated Additional assistance required by students should be provided using
support materials consistent with the cover story when possible.
Expressivity | Students should be provided with a sufficient number of operations to
allow them to pursue the mission as they see fit. The operations available
Scenario should include those that can lead to a failure in achieving the mission.
operations Causal Operations and their outcomes should be consistent with the cover story
consistency and mission.
Peripheral The student should be relieved of operations that are not central to the
support agogical goals of the GBS.

3.1.2. Learning By Design

3.1.2.1. Overview of Learning by Design

Learning by design (Kolodner et al. 1997) is a CBR approach to learning science

concepts and skills proposed by Kolodner and her students. The learning by design

(LBD) framework uses design challenges (science projects) as the learning context, and a

series of reflection tools and classroom rituals as ways of facilitating reflection. LBD is
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different from goal-based scenarios (GBSs) in that it involves designing and building on
top of tasks such as decision-making, testing, and explaining, which are typical GBS
tasks. In addition, unlike GBSs that have a mission structure and a set of possible paths
for learners to follow, LBD encourages leamers to create their own solutions and explore.
It allows learners to experiment and play around, rather than restricting them to set paths
which allow no turning back, like GBSs do. Furthermore, LBD gives reflection and
generalization a central role. It advocates explicit reflections and articulations — a process
emphasized but not directly facilitated in GBS.

The two major components of LBD learning environments are a) the design
challenge, and b) the reflection tools and classroom rituals.

Design challenges in LBD are centered on the design and construction of working
devices or working models that illustrate physical phenomena or that measure
phenomena. Design challenges provide opportunities for learners to engage in and learn
complex cognitive, social, practical, and communication skills. For example, students
design parachutes (made from coffee filters) to leam about air resistance, gravity, and
their relationship; they design miniature vehicles and their propulsion systems to leam
about forces, motion, and Newton’s laws; and they design ways of managing the erosion
on barrier islands to leamn about erosion, water currents, and the relationship between
people and the environment.

Reflection tools in LBD include: tools to support the recording of design
experiences, tools to prompt explanation of design decisions and design experiences,
tools to support generalization and the formation of useful cases in memory, and tools

that present appropriate experts’ cases to learners (Kolodner, 2000). The system of



classroom rituals that compliments the reflection tools includes activities that help
learners relate past experiences to present situations (messing about), activities that help
them anticipate what they need to leam more about (whiteboarding), and activities that
support learners to share their ideas with one another (gallery walks and pinups)
(Kolodner, 2000).

Tools to support the recording of design experiences are either paper-based or
computer-based. They works like journals or design logs, helping learners to keep track
of their design experiences so that they can remember what they did and draw lessons
from their experiences.

Tools to prompt explanation of design decisions and design experiences encourage
learners to link their experiences with causal models and rules. Learners engage in group
activities articulating and explaining their decisions and experiences. They get to actively
reflect upon their experiences, explain their decisions in a clear and coherent manner, get
feedback from others, and re-examine their decisions and experiences based on the
feedback they received.

Tools to support generalization and the formation of useful cases in memory
prompt students to extract and articulate the content and skills they are learning from
their experiences and write them up as stories to share with other students. These tools
help leamners to focus on the important aspects of their experiences, to distinguish core
content, skills, and rules or models learnt from other experiences that are less important.
The story write-up process also helps learners to view their experiences in a more

structured way. In order to summarize their experiences and write them up as stories,
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learners need to structure their experiences in a way that only the most important aspects
and the key variables will be present.

Tools that present appropriate experts’ cases to learners retrieve useful cases
written by experts from the case library based on learners’ needs. These tools also help
learners to extract the science and advice that can help them with their design challenge
from those cases presented.

The messing about classroom ritual is basically guided play done in small groups,
helping learners to make connections between a design challenge and what they already
know (Kolodner, 2000). For example, playing with toy cars and seeing which can go over
hills and which cannot, gets learners thinking about what it takes to get a vehicle over a
hill and the different ways they have made things move.

The whiteboarding classroom ritual follows messing about. It is a whole-class
activity in which learners articulate together what they discovered during messing about
and generate ideas about how to proceed and which learning issues to pursue (Kolodner,
2000).

The gallery walks and pinups classroom rituals give small groups of students the
opportunity to share their plans with the whole class and hear other students’ ideas
(Kolodner, 2000). Pin-ups and gallery walks require students to articulate what they are
doing well enough for others to understand; they also provide students with ideas to build
on in moving forward, a venue for getting feedback on their articulations, for asking for
advice and getting suggestions, and for vicarious experience applying the concepts and

skills they are leaming.



3.1.2.1. LBD and Kolodner's Knowledge-Poor CBR Model

In order to better understand the links between the above-described LBD design
features and Kolodner's CBR model, I will first present here Kolodner’s claims of CBR’s
implications in leaming, which serve as the conceptual framework of the LBD approach.
Based on her claims, I will then proceed to analyze the connections between the features
of LBD and Kolodner’s CBR cognitive model.

According to Kolodner (1997), CBR suggests five important facilitators for
learning effectively from hands-on activities: 1) having the kinds of experiences that
afford learming what needs to be learned; 2) interpreting those experiences so as to
recognize what can be learned from them, drawing connections between their parts so as
to transform them into useful cases, and extracting lessons that might be applied
elsewhere; 3) anticipating their usefulness so as to be able to develop indices for these
cases that will allow their applicability to be recognized in the future; 4) experiencing
failure of an individual’s conceptions to work as expected, explaining those failures, and
trying again (iteration); and 5) learning to use cases effectively to reason.

The use of design challenges in LBD corresponds with the notion of a) providing
learners the kinds of experiences that afford leaming what needs to be leamt, and b)
providing learners the opportunities to experience expectation failures, and prompting
learners to explain those failures and try again.

First, CBR emphasizes the importance of accumulating concrete experiences from
learning by doing and learning from failure (as discussed in the last section with the GBS
approach). It also suggests that expectation failures from the learming by doing approach

provides leamners intrinsic motivation to learn more. Design challenges is a leamning by
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doing approach to learning science which provides abundant opportunities to learn from
failure. In addition, CBR suggests that the right kinds of experiences for leamners should
be those that afford concrete, authentic, and timely feedback so that learners have the
opportunity to confront their conceptions and identify what they still need to learn
(Kolodner, 2000). This kind of feedback helps learners to generate explanations for their
experiences, to recognize what can be learned from them, to create useful indices and
connections to other experiences, and to extract lessons that might be applied elsewhere.
Designing, building, and testing working devices provides this kind of concrete,
authentic, and timely feedback.

Second, according to Kolodner (1998), CBR suggests that it takes several
encounters with a concept or skill to leamn it well. The first encounter allows the learner
to build an impoverished picture of the concept or skill. Later encounters, in which that
impoverished pictures is applied and fails to work as expected, let a learner know that her
knowledge base is incomplete or incorrect, prompting the engaged learner to want to
revise her knowledge, cases, or indexing so that it works better. In addition, based on her
CBR cognitive model, Kolodner (1998) claims that encounters that cover the range of
applicability of the concept or skill allow the leamer to see its varied uses, and the other
concepts or skills to which it is related. So, the opportunity to encounter a concept of skill
repeatedly, in a variety of contexts, will lead learners to move iteratively toward better
and better development of the skills and concepts they are learning. Design challenges
provides opportunities to lear the target skills and concepts in a range of situations and

under a variety of conditions. They encourage leamers to try to solve a problem or
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achieve a challenge, use the impasses and failures of expectation to show what needs to
be learned, investigate to learn more, and try again.

To summarize, design challenges help leamers acquire the right experiences, as the
construction and trial of real devices gives them the motivation to want to learn, the
opportunity to discover what they need to learn, the opportunity to experience uses of
science, and the opportunity to test their conceptions and discover the bugs and holes in
their knowledge.

The reflection tools and classroom rituals, on the other hand, seem to correspond to
the following principles suggested by CBR: a) help learners to explain their experiences
so that they can recognize what can be learned from them, draw connections between
their parts to make them useful cases, and extract lessons that might be applied
elsewhere; b) help leamers construct useful indices for these experiences so as to be able
to use them later; and c) help learners learn how to use cases effectively to reason and
form good “intellectual habits” in doing case-based reasoning.

The reflection tools and classroom rituals are combined with each other to
explicitly address these principles. Tools to support recording of experiences help
learners to keep track of “raw data” on every aspect of their experiences so that it is less
likely for learners to forget important aspects of their experiences. The information
recorded in them supports the use of the other tools and classroom rituals. Tools to
prompt explanation of design decisions and design experiences directly aim at the
principles: a) “help learners to explain their experiences” and c) “help leamers leam how
to use cases effectively to reason”. Tools to support generalization and the formation of

useful cases in memory, on the other hand, directly correspond to all three principles
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mentioned above. The classroom rituals, messing about, whiteboarding, gallery walks,
and pinups are complimentary to the reflection tools. They correspond to all three
principles mentioned above, as well, helping leamers to identify what they need to leam,
derive well-articulated cases from their experiences and insert them into their own
memories, and prompting them to engage in active explanation, reflection, and
articulation processes.

The LBD framework will be further discussed in the analysis section, where the
design features of this framework will be analyzed from the perspectives of other major
CBR cognitive models. In the next section, I will present some CBR educational

applications that apply CBR pragmatic models.

3:1.3. Case-Based Advisory Systems and Knowledge-Sharing Systems

Unlike GBS and LBD, which derive their conceptual framework and design
principles from CBR cognitive models but are not actual CBR systems, there are also
some other CBR educational applications that directly use pragmatic CBR models to
attack educational issues. Case-based advisory systems, an interactive model of CBR
systems, is typical of this approach. Case-based kmowledge-sharing systems are a
variation of the case-based advisory systems, extended to accommodate user
collaboration, user creation and editing of cases. In this section, I will introduce the
framework of case-based advisory systems first. Then, I will discuss the framework of
case-based knowledge-sharing systems on the basis of what is added in this new extended

approach to case-based advisory systems.
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3.1.3.1. Case-Based Advisory Systems

Case-based advisory systems are also often called case-based aiding systems. They
use interactive CBR engineering models to support human reasoning. I will briefly
provide a background of interactive CBR here. Pragmatic CBR systems could be divided
into two categories: automated CBR systems, and interactive CBR systems. Automated
CBR systems solve problems without human intervention. Most of the CBR systems that
implement CBR cognitive models, for example, are automated CBR systems. Interactive
CBR systems, on the other hand, work with people to solve problems. Some interactive
CBR systems require human support for their reasoning tasks. For example, some CBR
systems need people to help with their adaptation, decision-making, or evaluation in
order to successfully complete their tasks. Some interactive CBR systems, on the other
hand, are designed to support human reasoning. For example, some such systems act as
case retrievers, providing cases to a user who employs the cases to reason, while some
provide other forms of support, such as help with adaptation or help with evaluation. The
degree of automation in interactive CBR systems varies. But no matter what degree of
automation is used, those interactive CBR systems designed to support human reasoning
are usually case-based advisory systems.

Case-based advisory system provide users the opportunity to learn on the job. The
more automated ones can act like an expert looking over the shoulder of the user,
providing timely support on an as-needed bases. The simpler ones use their case libraries
to augment the memory of a user solving a problem, and perhaps provide other forms of
support as well. With the support of case-based advisory systems, the users can make

decisions on things such as which cases could be used, which adaptations to apply, and
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which potential problems to address. In the following section, I will discuss in more

detail how case-based advisory system support the reasoning and learning or their users.

3.1.3.1. 1. Ways in which case-based advisory systems support user reasoning

and learning

Case-based advisory systems typically support users in three ways: inform users of
potentially useful cases, provide adaptation support, and provide evaluation support.

First, case-based advisory systems can augment the user’s memory. The case
library of a case-based advisory system is usually buiit to cover the range of reasoning
tasks the system will be responsible for supporting, and cover the range of well-known
solutions and well-known mistakes (Kolodner, 1993). When users are trying to
understand and assess situations, such representative sets of cases allow them to interpret
or understand a situation in the context of other similar situations. Those similar
situations can not only point out to users what to focus on and what outcomes might
arise, but also allow them to argue and justify the pros and cons of interpreting a situation
in a certain way. It is especially helpful when users are interpreting open-ended and ill-
defined concepts. In the process of problem-solving, similar cases retrieved from the
case-based advisory systems’ case library allow users to a) propose solutions to problems
quickly, avoiding the time necessary to derive those answers from scratch; b) propose
solutions in domains that they do not completely understand; c) be aware of the potential
for problems that have occurred in the past and take actions to avoid repeating past
mistakes; and d) focus their reasoning on important parts of a problem. In addition, the
variety of cases included in the case-based advisory systems exposes users to multiple

situations, multiple decisions, and muitiple perspectives. This multiplicity helps to build
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awareness of knowing what skills to apply and when to apply them. A beneficial side
effect of using the case-based advisory systems to augment users’ memory is that users
could acquire a representative set of cases for their own case libraries (memories) in the
process of using the systems to support their reasoning.

Second, the case-based advisory systems can support the adaptation process of
reasoners by suggesting adaptation strategies, applicable conditions of adaptation
strategies, and past adaptation processes which could be usefully recorded as part of the
cases in their case libraries. Some case-based advisory systems which integrate CBR
method with semantic networks or other reasoning methods such as rule-based reasoning
or model-based reasoning can also provide users with relevant domain knowledge to
support their adaptation. Adaptation support from case-based advisory systems can help
users identify what to change, find out what available adaptation or repair strategies there
are and what are their conditions, determine what appropriate strategies are and, in the
case when several appropriate strategies suggest different adaptations, can help users to
choose among several appropriate strategies.

Third, case-based advisory systems can also help users with evaluation by showing
them the factors that should be considered during evaluation and clustering cases to make
comparison easy. This could be done by a) retrieving and presenting cases which have
similar situations and similar solutions to the ones the users are evaluating, and b)
suggesting what factors should the users focus on when they are comparing and
contrasting new situations and their solutions to old ones in order to determine if an old
outcome can apply to a new situation. The outcome of the old situations can be projected

on the new ones, allowing the outcome of the new solutions to be predicted. When
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different old cases can be used to predict different outcomes, the factors suggested by
case-based advisory systems can also help the users to do argumentation, i.e., to
determine which of the old cases are indeed similar enough to the new one for the
projection to make sense. This process has the potential to help the users in several ways.
First, it can point out what the potential problems with a proposed solution are, pointing
the way toward repairing solutions appropriately. Second, it can point out what might be
changed to make a good solution better. Third, scenarios used during critiquing can serve
as justifications for whatever solution is decided upon. Fourth, it can help the users
realize what is important to pay attention to in future problem solving.

Because of the fact that case-based advisory systems have the potential to support
not only reasoning but also leaming in so many ways, some case-based advisory systems
have been built especially for instructional purposes. In the following section, I will
briefly describe a popular series of case-based advisory training systems — the ASK

systems (Ferguson et al., 1992).

3.1.3.1. 2. The ASK systems

The ASK systems (Ferguson et al., 1992) are hypermedia case-based advisory
systems designed to simulate a conversation between a novice (the user) and an expert
(the system). This series of systems (e.g., ASK-Tom, ASK-Michael, Advise the
president, Trans-ASK, Engines of Education) are basically CBR systems which
consistently predict what a user might be interested in, and accordingly, retrieve cases for
her to choose from.

A user starts using an ASK system by first “zooming” from the top level structure

of a domain to a specific case. This could be done by identifying an area of interest, then
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choosing a theme from that area of interest, and subsequently choosing a case of interest
from that theme. Afterwards, the users start the “browsing” process in which they go
from case to case in a manner similar to conversing with an expert. A user starts
browsing with the first case she chooses at the end of the zooming process. The case
summary and follow-up questions related to that case will be presented in a case screen,
and the user can either a) choose to view the full case, or b) choose to follow up a
question to go to another case screen. If she choose to view the full case, a story in the
form of a short video will be presented. When the user finishes viewing or reading the
first case, she will be brought back to the case screen. Then, she could follow the links to
another case screen and repeat the cycle.

I will use ASK-Tom (Ferguson et al., 1992) as an example to illustrate the
approach. ASK-Tom teaches novice bank consultants in Anderson Consulting about trust
bank consulting. When ASK-Tom is started, it displays the big picture diagram of trust
bank consulting (see Figure 3.2.), which presents several topic areas. Clicking on the
nodes or links in this big picture diagram causes the screen to display either a more
specific big-picture diagram, describing, for example, the temporal layout of a typical
consulting engagement at a trust bank (Figure 3.3.), or else a screen showing a set of
themes and stories that they organize (Figure 3.4.). Big-picture diagram screens always
ultimately lead to a theme screen, like the one shown in Figure 3.4. When the users reach
the theme screen, they will find, under each theme, several listings representing
individual stories that correspond to various aspects of the theme. Once a choice is made,
the system presents the story screen of the story chosen (see Figure 3.5.). The clip named

in the center of the screen is a link to the video clip of the main story. The questions
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linked to the main story are questions that the users might ask in a conversation with the
expert following their previous conversation. These questions are predicted by the CBR
system using a conversation model. Choosing one question linked to the current story
brings the user to another story screen (Figure 3.6), and the cycle repeats itself. The
overall the structure of an ASK system can be illustrated in a diagram of ASK-Tom’s

structure, as shown in Figure 3.7.

Figure 3.2. The big picture diagram displayed on the first screen of ASK-Tom (Ferguson

etal., 1992)
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Figure 3.3. A sub-level big picture diagram in ASK-Tom reached from the screen in

Figure 3.2. (Ferguson et al., 1992)
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Figure 3.4. A theme screen in ASK-Tom reached from the screen in Figure 3.2.

(Ferguson et al., 1992)
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Figure 3.5. A story screen in ASK-Tom reached from the screen in Figure 3.3. (Ferguson

etal., 1992)

Figure 3.6. A story screen in ASK-Tom reached from the screen in Figure 3.4. (Ferguson
etal., 1992)

78



\\ 3G

.y

[ prinstuidietnttendd ——
///”57/ Eiiz/ 555/
/ — — / THEMES
/ /5557/5357\ /

/ \,-----------.

[ A —— LA 2 2 X X ¥ % X 3

STORIES

Figure 3.7. An overview of the ASK-Tom system (Ferguson et al., 1992)

The tree of all big-picture models in the system forms a conceptual map of the
domain, organized around its most important agents, relationships, and processes. These
big-picture models not only mediate the users’ choices of areas of interest, but also help

the learners understand the structure of the domain, and prompt them to see individual
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cases as illustrations of general principles. By using case-based reasoning algorithms,
these case-based advisory systems are able to provide users with a coherent model of the
subject matter. This coherent model, in turn, enables the users to assimilate the answers
to their questions in a way that they can then use those answers to solve problems.

It should also be noted here that the ASK systems use a story-telling approach to
instruction implied by the Dynamic Memory cognitive model. The ASK systems are
designed with the assumptions that expertise can be represented as a large, diverse bank
of cases organized by a knowledge structure similar to the structure of the subject
domain, and that novices could learn to become experts in a certain domain by becoming
familiar with the expert’s case library.

The ASK system as described above is an example of the case-based advisory
systems. In the next section, I will introduce another type of instructional CBR system -

the case-based knowledge-sharing systems.

3.1.3.2. Case-Based Knowledge-Sharing Systems

Case-based knowledge sharing systems are case-based advisory systems extended
to both augment users’ memory and be augmented by users’ memory. Users’ experiences
of reasoning with the support of case-based knowledge sharing systems are selectively
collected to be recorded as new cases for the systems’ case libraries. Such CBR systems
are usually used to serve as corporate memory. A case-based knowledge-sharing system
starts with a representative case library, and is constantly augmented by new cases to
update and perfect its case library. The basic idea is to gradually build up a system that
could act as a large-scale case-based reasoner which consists of the case-based

knowledge-sharing system itself and all users of the system. This large-scale case-based
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reasoner would solve problems by 1) assessing the problem situation on the users’ side
using the case library of the system; 2) retrieving similar cases from the case library
either by the system automatically or through special requests from users; 3) interpreting
the current case using past experiences and adapting available cases to solve new
problems, usually done by the users with the support of the system; and 4) evaluating the
solution and recording useful lessons learnt as new cases, which is done by the users but
recorded into the system. The valuable experiences of all reasoners who use the system
would be incorporated into the large case-based reasoner’s memory. In turn, this
“memory of the community” would use the collective experiences and expertise of the
system and the entire user community to support the reasoning of each reasoner.

In addition to all benefits offered by case-based advisory systems, a case-based
knowledge-sharing system also offers a forum for building and sharing the wisdom and
insights derived from diverse sources. They encourage users to contribute their expertise
through cases to a community of users within an organization, thereby enabling best
practices of the community to be dissemniated quickly. Since contributions from all users
can not only serve as a source of information, but also serve as a source of inspiration and
criticism, the collective experiences of members in the community can generate ideas that
no individual would have developed alone, which leads to higher quality reasoning and
more learning gains. In time, this will also result in a higher-quality case library in the
case-based knowledge-sharing system.

Another feature that is often included in case-based knowledge-sharing systems,
but not case-based advisory systems, is the collaboration tools. The collaborations tools

allow users to discuss certain cases or reasoning tasks, to annotate cases in the system,
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and to provide other forms of support to one another complimentary to the kinds of
support the system provides. The communications which carry these “other forms of
support” are sometimes also recorded in the knowledge-sharing system for later
reference.

In the following section, I will analyze the major educational applications of CBR,

and discuss the possible shifts and variations of their design parameters.
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3.2. Analysis

As discussed in the last chapter, there are several versions of CBR. The CBR
educational applications presented use different versions to serve as their conceptual
framework. How would the design of these applications shift with the variations of CBR
models? In this section, I will analyze the design of these CBR applications and discuss
what are the possible ways that the design of these applications would change, and
especially what possible improvements to these applications could other CBR models

suggest.

3.2.1. Analysis of Goal-Based Scenario

The goal-based scenario framework is built upon Schank’s moderated Dynamic
Memory CBR cognitive model. This version of CBR suggests that leamning is the
acquisition of cases, skills, strategies, and conceptual knowledge. It implies an approach
to learning which emphasizes leaming by doing, leaming from failure, and learning from
stories. The design parameters of the GBS approach have been introduced in the
overview section. In this analysis section, I will focus on the design parameters that are
derived specifically from the Dynamic Memory CBR cognitive model rather than those
that are derived from the basic CBR model. The presentation of each design parameter or
group of design parameters that are based on a certain aspect of the Dynamic Memory
CBR model will be followed by a discussion of how would the design parameter(s) shift
if other CBR cognitive models were used as the underlying conceptual framework. The
analysis of each design parameter or group of design parameters is presented under a

separate sub-heading.
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3.2.1.1. GBS’s Top-Down Approach to Design

First, the moderated Dynamic Memory CBR model implies that a leaming
environment should revolve around the target knowledge and skills that it aims to teach
by helping learners accumulate the kind of cases that can lead to the acquisition of that
knowledge and generalization of those skills. That is, the design of a learning
environment should take a top-down approach, starting with the higher-level knowledge
(skills and strategies) to focus on, then going down to the bottom level to choose specific
cases that would facilitate the generalization of the higher-level knowledge, and finally
incorporating the conceptual knowledge to be taught into those cases. The cases chosen
should be ones that are directly linked to at least one of the target skills, and the set of
cases should be diverse in context and include both success and failure cases.

Correspondingly, in the design of GBS, the structure (mission structure) and
content (scenario operations, mission, mission focus, cover story) of the learning
environment is determined by the target knowledge and skills. Experiences that do not
directly contribute to the generalization of target skills are minimized (the targez skill
density design criteria and peripheral support design criteria, see page 64). Experiences
that directly contribute to the abstraction of target skills are not only maximized, but also
designed to be diverse in context, and to include both experiences of success and
experiences of failure (the frequent practice opportunities design criteria, see page 64,
and the realism/richness design criteria, see page 63). Strategies and conceptual
knowledge are presented either as part of a scenario, or as part of the experts’ stories

which are presented to leamers when they experience expectation failures. Frequent



opportunities are provided for leamers to practice the strategies they learnt and reuse the
conceptual knowledge they acquired.

The other CBR cognitive models, i.e., Kolodner’s knowledge-poor CBR cognitive
model, the Category and Exemplar CBR cognitive model, and the integrated CBR
cognitive models, would suggest a slightly different approach. While the Dynamic
Memory cognitive model focuses on generalization based on the accumulation of cases,
the other versions of CBR cognitive models do not propose that generalizations from
cases are more important than concrete cases themselves in a reasoning system. In
Kolodner’s CBR cognitive model, for example, generalizations are important mainly
because they allow efficient retrieval of cases. But when it comes to reasoning, concrete
cases are always preferred over generalized information. Therefore, according to her
CBR model, helping leamers acquire the right kind of experiences (a representative and
reliable set of cases), interpret them the right way, and retain the important parts of those
experiences, and helping learners to learn how to reason from cases effectively, should be
the main objective of a learning environment. Supporting the generalization of skills and
strategies, while also considered important in Kolodner’s CBR cognitive model, is not
suggested to be the ultimate goal of a iearning environment.

In addition, Kolodner’s CBR cognitive model, the case of the Category and
Exemplar model, and many of the integrated CBR models, do not consider skills and
strategies as part of the CBR knowledge structure that has to be generalized from cases.
These systems propose that skills and strategies might reside in systems separate from the
CBR system but closely matched to information in the CBR system. As cases and those

forms of knowledge may not reside in the same system, there is no need for a strictly
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“top-down” approach to the design of a leaming environment. According to these
models, the generalization process does not have to be central in leaming because
abstract knowledge does not have to be personally generalized by the learners. For
example, learners could acquire general knowledge, such as a rule like Newton’s First
Law, by generating explanations to link abstract knowledge and examples to illustrate
that piece of abstract knowledge, rather than accumulating a number of cases so as to be
able to generate that rule. In fact, the Category and Exemplar model, as well as several
integrated CBR models, imply that the learning of a certain domain could best be
achieved by learning domain knowledge directly, acquiring cases either by doing or from
examples, and generating explanations between domain knowledge and specific cases. I

will discuss this point in more detail in the following section.

3.2.1.2. Learning by Doing without Prior Acquisition of General Domain Knowledge

As mentioned earlier, according to the Dynamic Memory CBR model, leamning is a
bottom-up process. That is, the accumulation of cases is considered the basis of all
subsequent types of learning. Therefore, according to Schank (1995), learning by doing
does not require prior learning of *“background knowledge”, and should happen before
any other types of learning. Therefore, general domain knowledge, strategies and skills
should not be introduced before leamners start to learn by doing.

The GBS framework uses exactly this approach. Learners engage in a mission
immediately after they start using a GBS; no other forms of knowledge are introduced
prior to the accumulation of cases through learning by doing.

This approach is contrary to what the Category and Exemplar model proposes.

According to the Category and Exemplar model, general domain knowledge not only
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helps leamners to interpret their experiences more efficiently and effectively, but also
makes their experiences more useful because the range of coverage of cases is
determined by the available domain knowledge. Therefore, presenting some domain
knowledge to learners before they start to learn by doing is a recommended way to
structure instruction. Studies conducted on a computational model of Kolodner’s CBR
model (CELIA) also suggest that acquiring some background knowledge before learning
by doing can help learners make the most of the cases they acquire (Redmond, 1992). As
mentioned earlier, the other versions of CBR models suggest that learning could be
achieved by a combination of direct learning (presentation of skills, strategies and
conceptual knowledge), leaming from examples, learning by doing, learning from
explanations, learning through reflection, and so on.

If GBS were based on these alternative CBR cognitive models, some presentation
of target knowledge and skills might be added in the beginning of a GBS. For example,
there could be a “modeling” session before the mission starts, in which an expert models
the use of the target skills and strategies, and presents a minimal amount of conceptual

knowledge to leamers as background information.

3.2.1.3. Focus on Lower Levels of the Knowledge Structure

Although the moderated Dynamic Memory CBR model is a unified model of
memory, it focuses on the lower levels of the knowledge structure, such as cases, scripts
(skills) and MOPs. That is, it mainly addresses issues related to reasoning that is either
directly based on cases, or based on a general knowledge structure that could be directly
abstracted from cases. The moderated Dynamic Memory CBR model does not

specifically discuss how exactly do we reason with highly abstracted knowledge such as
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U-MOPs or U-Scenes proposed in the original Dynamic Memory cognitive model, or
how the overall knowledge representation of a reasoner affects her reasoning given the
same set of cases in the case library. Schank’s focus on specific experiences and
abstractions of those experiences at a lower level (less abstracted level) resulted in a GBS
framework with few features to help leamners structure their knowledge representation,
link their experiences with general domain knowledge, or engage in abstract thinking. For
example, the GBS framework does not include features to present domain knowledge
representation to leamers or ask learners to compare their knowledge structure with that
of an expert. Neither does GBS have features to encourage leamers to explain their
experiences with general principles or domain knowledge. Feedback in GBS is provided
to leamners in the form of experts’ war stories, which are not clearly structured and focus
on specific experiences rather than higher-level abstract knowledge.

The Category and Exemplar CBR model and many integrated CBR models which
combine CBR and rule-based reasoning (RBR) or model-based reasoning (MBR)
approach this issue differently. In these models, using a causal representation is thought
to add significant explanatory and predictive capabilities to the reasoner. A coherent
knowledge model, and rich explanation links between case knowledge and abstract
knowledge or domain knowledge are considered key in learning. Therefore, these models
suggest that learners should be aware of the knowledge structure of a domain (when
applicable), actively engage in explaining their experiences with abstract domain
knowledge or by applying domain knowledge in their reasoning, and get feedback in a

form that facilitates the linking between cases and abstract domain knowledge.
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If GBS were to be built based on the Category and Exemplar model, or CBR
models which integrates CBR with RBR or MBR, features such as an advanced organizer
or concept map might be added; reflection tools and self-explanation tools might be
incorporated; tasks which require complex abstract thinking might be presented to the
learner, and work space as well as system feedback might be provided at the same time to
facilitate abstract reasoning. In addition, the experts’ stories might highlight abstract
knowledge, and feedback that specifically features abstract domain knowledge or domain

knowledge structure might also be included in the framework.

3.2.2. Analysis of Learning By Design

Learning By Design (LBD) has Kolodner’s knowledge-poor CBR model as its
underlying conceptual framework. Kolodner’s CBR cognitive model suggests five
important facilitators for learning: 1) having the kinds of experiences that afford learning
what needs to be leamned; 2) interpreting those experiences so as to recognize what can be
learned from them, drawing connections between their parts so as to transform them into
useful cases, and extracting lessons that might be applied elsewhere; 3) anticipating their
usefulness so as to be able to develop indices for these cases that will allow their
applicability to be recognized in the future; 4) experiencing failure of an individual’s
conceptions to work as expected, explaining those failures, and trying again (iteration);
and 5) learning to use cases effectively to reason. These facilitators correspond to design
parameters in the design challenge, reflection tools, and classroom rituals of the LBD
framework, as have been discussed in the section “LBD and Kolodner's Knowledge-Poor
CBR Model” (p.77). The following discussion focuses on analyzing LBD design

parameters that are derived specifically from Kolodner’s CBR model instead of from the
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basic CBR model. Possible shifts and variations of these parameters they would result if
they were based on other CBR cognitive models will be discussed. The analysis of LBD
design parameters suggested by each specific aspect of Kolodner’s CBR model are

presented under a separate sub-heading.

3:2.2.1. Focus on the acquisition of high-quality cases

First, Kolodner’s CBR cognitive model focuses on reasoning directly based on
cases and thus implies an instructional approach in which the acquisition of high-quality
cases is key. The design of the LBD framework applies this notion by using design
challenges, software tools and classroom rituals which help learners acquire rich,
concrete cases. Design challenges provide leamners a context in which they need to be
constantly exploring and experimenting. Software tools and classroom rituals are
designed in a way to prompt leamners to record their experiences, articulate their
experiences, reflect on their experiences and generate rich explanations. In addition, the
reflection tools in the LBD framework help leamers to structure their cases and
remember the important aspects of them by asking learners to record their experiences in
a structured way and by providing guidelines to help leamers to realize on what aspects
of their experiences should they focus. On the other hand, since Kolodner’s CBR
cognitive model emphasizes the acquisition of cases rather than the acquisition of general
episodes (GEs), she did not specifically address the issue of designing cases tightly
around target knowledge and skills so as to avoid tasks that do not directly contribute to
the acquisition of certain generalized knowledge. For example, in LBD, learners may
spend a large amount of time in the process of building the objects they designed before

they can test them. Much of this building process may not be directly related to the target
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knowledge and skills, but the LBD framework encourages learners to spend time
exploring and experimenting with it. The LBD framework does not incorporate features
to minimize this kind of task so as to maximize tasks that directly contribute to the
acquisition of target knowledge and skills.

This approach is very different from the approach suggested by Schank’s Dynamic
Memory cognitive model. As has been discussed earlier with the analysis of the GBS
framework, the Dynamic Memory cognitive model implies that learners’ time should
always be spent on tasks that will help them generalize target knowledge and skills.
Peripheral support, pedagogical support, and target skill density are some of the design
criteria or elements of that framework.

If the LBD framework were based on Schank’s Dynamic Memory cognitive model,
learning by doing activities that do not directly lead to the acquisition of target
knowledge and skills would be limited. Peripheral support might be provided to relieve
learners of operations that are not central to the pedagogical goals of the LBD curriculum
unit. Reflection tools might include features to help students reduce the time spent on
writing or typing. Classroom rituals might be designed in a way which allow learners to
spend more time on articulating and explaining their own project and less on listening to

others and providing feedback on other leamers’ projects.

3.2.2.2. Mapping of case knowledge to general domain knowledge

Kolodner’s CBR cognitive model views general domain knowledge as knowledge
which resides in memory systems other than CBR but is closely matched to information
in the CBR system. Therefore, according to her CBR model, not only would

generalization from cases help leamers acquire general domain knowledge, but
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explanations to link cases with general domain knowledge will also facilitate this type of
learning. The LBD framework implements this concept by incorporating a series of
reflection tools and classroom rituals to promote explicit reflection, explanation, and
articulation. These LBD components are designed in a way to encourage learners to use
knowledge from their semantic memory (e.g., science concepts, rules, models) to
interpret, explain and reflect upon knowledge in their CBR system.

This approach to learning is again quite different from that of the Dynamic
Memory cognitive model, as the latter puts less emphasis on the matching of general
domain knowledge with specific cases. If the Dynamic Memory cognitive model were
used as the underlying conceptual framework of LBD, reflection tools and classroom
rituals might be more centered on generalizing deep structure out of specific cases rather
than linking generalized knowledge with cases. In addition, the reflection tools and
classroom rituals would have a less important role in the LBD framework.

The Category and Exemplar CBR model also proposes that knowledge residing in
cases and knowledge structures generalized from cases (categories) are mapped to
general domain knowledge, and suggests that rich explanation promotes learning. But the
Category and Exemplar model has a concept that is not included in Kolodner’s model and
not addressed in the LBD framework: range of coverage. If LBD were designed based on
the Category and Exemplar model, learners would be encouraged to discuss topics such
as: in what kind of situations would their cases be useful; when would the general domain
knowledge they leamt be applicable; and, how to use their general domain knowledge to

determine what new situations are similar to situations they have experienced before.

92



3:2.2.3. Learn to reason with cases effectively

One unique aspect addressed by Kolodner’s CBR cognitive model is that people’s
ability to reason with cases varies. Certain ways of structuring cases and organizing the
case library, and certain ways of using cases are suggested to enable some reasoners to
reason more efficiently and effectively than others. Kolodner proposed that lessons learnt
from AI CBR research on how to build effective CBR cognitive models can be applied in
education to teach people how to do case-based reasoning better. For example, some
people are biased in their reasoning because they assume an answer from a previous case
is right without justifying it with regard to the new case. Helping these people learn how
to justify case-based suggestions and how to make justification or evaluation a part of
their intellectual habit for case-based reasoning tasks will enable them to make more
thoughtful decisions in the future. In the LBD framework, guidelines are provided in
reflection tools to help leamners focus on the important aspects of their experiences;
distinguish core content, skills, rules and models from less important parts of their
experiences; and store the important aspects of their experiences in a structured manner.
Guidelines for helping leamers select the most useful indices are included as part of the
reflection tools and classroom rituals. Learners are acquainted with every step of the
case-based reasoning cycle, as well as how to perform each step of the process. In
addition, activities are incorporated to support leamners construct 2 memory system with
case-based knowledge tightly interlinked with semantic memory units. These design
features help leamners to be aware of how to do case-based reasoning, and through

practice, help learners to form good habits for reasoning with cases.
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The other CBR models are not as concerned with this issue, and do not propose

specific features to help learners in this aspect.

3.2.3. Analysis of Case-Based Advisory Systems and Knowledge-Sharing
Systems

Case-based advisory systems and knowledge-sharing systems are different from
GBS and LBD, not only because they are CBR systems, but also because the majority of
them are designed to be job aids rather than educational systems. Most of them are built
with engineering and economic concems, and do not follow any CBR cognitive model
strictly. Factors such as the nature of the subject matter, the target audience, and the
resources available, often determine what the framework of a specific case-based
advisory system or case-based knowledge-sharing system would be.

Therefore, in this section, I will not discuss how the design parameters of these
systems might change, as there are no standardized system frameworks. Instead, I will
present a few features that various CBR cognitive models might suggest the case-based
advisory systems and knowledge-sharing systems to include. Some of these features have

been discussed earlier in the analysis of GBS and LBD.

3:2.3.1. Present cases as well s overall knowledge representation

As mentioned in the previous discussion, Kolodner’s CBR model, the Category
and Exemplar model, and some integrated CBR models suggest that there are semantic
networks of general domain knowledge in people’s memory. These CBR models
acknowledge the fact that overall knowledge representation of a person’s semantic

networks could affect her reasoning capacity. Therefore, these CBR models might
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suggest the case-based advisory systems and knowledge-sharing systems should make the
overall knowledge representation of the subject domain available to the users. If the CBR
systems themselves are structured according to the structure of the subject domain, for
example, it might be beneficial to make the structure of the CBR system and indices of
cases available to users. In addition, tables, figures, concept maps, and other means of

helping users understand the field better would also be desirable to be included in the

systems.

3.2.3.2. Make explicit important features, deep structure, and rules, models or
strategies used

Kolodner’s CBR cognitive model suggests that making important features, deep
structure, and rules, models or strategies explicit to users helps them to focus on the
important factors and make more thoughtful decisions. Her model implies that case-based
advisory systems should present cases in such a manner to their users, and in the case of
case-based knowledge-sharing systems, in addition to presenting cases in such a way,
those systems should also have features to help users input their experiences into the
system in a similar structured manner.

Schank’s moderated Dynamic Memory CBR model also implies that presenting
cases in such a structured way would facilitate reasoning because it helps users to create a
more effective indexing scheme. In addition, the Dynamic Memory CBR model suggests
that it is desirable to present strategies in the context of cases, because a) strategies could
only be acquired from cases, and b) after the users acquire strategies from those cases,
their overall reasoning capability will be enhanced, and they would be better prepared to

reason effectively and efficiently.

95



3.2.3.3. Explain cases with generalized domain knowledge

The Category and Exemplar model and several integrated CBR models emphasize
rich explanatory links between case knowledge and generalized domain knowledge. It
proposes that cases, when explained with generalized domain knowledge, are easier to
retrieve, easier to adapt, more predictive, and more memorable. Therefore, it suggests
that case-based advisory systems and knowledge-sharing systems should include
explanations which refer to generalized domain knowledge in their cases, and case-based
knowledge-sharing systems, in particular, should include features or guidelines to
encourage users to explain their experiences with generalized domain knowledge

whenever possible.

3.2.3.4. Avoid reasoning bias by presenting exceptions

If the case-based advisory systems and knowledge-sharing systems use the above-
mentioned approach (explain cases with generalized domain knowledge), the Dynamic
Memory cognitive model would suggest that exceptions to the generalized knowledge
should also be made available to users. The Category and Exemplar model also suggests
that information should be provided to users to help them be aware of similar situations

in which the generalized domain knowledge would apply.

3.2.3.5. Support effective CBR
Finally, as discussed in the analysis of the LBD framework, Kolodner’s CBR
model suggests that support should be provided to help users employ the cases

effectively. Support in the form of guidelines, hints, procedures to follow, reflection



tools, and so on could be incorporated into the case-based advisory systems and

knowledge-sharing systems.

3:2.4. Summary of Analysis

To summarize the analysis of goal-based scenarios, learning by design, case-based
advisory systems and knowledge-sharing systems, possible shifts of design parameters in
the major CBR educational applications are summarized in table 3.2 through 3.4. In
Table 3.2. and Table 3.3., original design parameters of the CBR educational applications
(i.e., GBS and LBD) are summarized and presented in the first column. To the right of
each group of these original design parameters, possible variations corresponding to these
parameters are briefly described under the alternative CBR cognitive models which
suggest these modifications. Therefore, within the column of each CBR cognitive model,
we can find that model’s unique approach to the design of GBS or LBD. In Table 3.4,
design parameters of case-based advisory systems and knowledge-sharing systems
suggested by various CBR cognitive models are reviewed in brief under each of the
models. These three tables could be used as a set of guidelines for designing CBR

educational applications.
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Table. 3.2. Possible variations of design parameters in GBS

Original GBS design Possible variations of GBS design parameters
parameters basedonthe  _suggested by other CBR cognitive models
moderated Dynamic Kolodner’s CBR model Category and Other integrated
Memory cognitive model Exemplar model approaches
The top-down approachto  Focus on the acquisition  Target skills and knowledge does not have to
designing learning of high-quality cases be genenalized from the CBR system. They
environments rather than generalization  could be leamnt in an integrated way.

of target knowledge and

skills

Encouraging learning by Help leamners acquire some background knowledge before they start to
doing without prior learn by doing.

acquisition of general

domain knowledge

Focus on lower levels of Use RBR and MBR to Present overall knowledge representation to

the knowledge structure provide feedback or learners. Provide or facilitate the generation of
explain expert’s stories rich explanations linking cases with higher-
when applicable. level abstract knowledge.

Table. 3.3. Possible variations of design parameters in LBD

Original LBD design Possible variations of GBS design parameters
parameters based on _suggested by other CBR cognitive models

Kolodner’s knowledge- The Dynamic Memory CBR  Category and Exemplar  Integrated
poor CBR cognitive model  model model approaches

Focus on the acquisition of Top-down approach;
high-quality cases rather minimize learners’ time
than generalization of spent on tasks that do not
target knowledge and skills  directly lead to the

generalization of target
skills and knowledge.
Emphasis on mapping of Emphasis on generalization ~ Enhance this approach
case knowledge to general  instead of mapping by adding features to
domain knowledge help leamners reflect on
the range of coverage
of their cases
Support for leaming to
reason with cases [other CBR cognitive models do not address this issue]
effectively.
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Table. 3.4. Design parameters of case-based advisory systems and knowledge-sharing

systems suggested by various CBR cognitive models

Design Parameters suggested by:
The Dynamic Memory Kolodner’s CBR Category and Integrated approaches
cognitive model cognitive model Exemplar model
Present cases as well as overall knowledge representation
Present cases ina Make explicit important

structured way so as to features, deep structure,

support indexing; present  and rules, models, or
strategies in the context of  strategies used

cases.
Present and facilitate the generation of rich
explanatory links between case knowledge and
generalized domain knowledge.
If generalized knowledge is
presented, help users be
aware of exceptions.
Provide support to help
users employ the cases
effectively

It should be noted here that these CBR approaches to building instructional
environments may not be applicable to all target domains. Cases are only useful to
learners if they can understand these cases enough to distinguish surface features from
structural features. In domains in which a leamer would need to use a lot of general
knowledge in order to perform, a CBR leaming-by-doing approach, such as GBS, may
not be the best way to structure learning. For example, when medical students are
learning to perform medical diagnosis, they need a large amount of background
knowledge about the conditions, symptoms, underlying physiology, incidence for
different populations, and so on. A GBS framework which suggest learners to learn by
doing without acquiring background knowledge would not be appropriate in this
situation. The LBD approach, on the other hand, is best suited for situations in which

students in a community of learners have a lot of time to learn certain rules and concepts
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in domains where rules and models can be easily manipulated. When leamers are
leaming under time constraints, when collaboration and getting feedback is difficult, or
when they are learning subjects that can not be designed and tested, such as literature, it
is difficult to implement the LBD approach. As for the case-based advisory systems and
knowledge-sharing systems: it is only worth building these systems when we are trying to
assist reasoning tasks that involve long lines or reasoning, or reasoning in ill-defined
domains. Otherwise, a simple database might suffice. In addition, CBR approaches to
learning are often not aimed at helping learners acquire factual knowledge or hone high-
level abstract reasoning skills in well-defined domains. In situations in which we are
trying to teach or provide information about simple facts, or trying to provide learners
opportunities to practice higher-level abstract reasoning skills in well-defined domains,

other instructional approaches might be more suitable.
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Chapter 4

SUMMARY AND CONCLUSION

Case-based reasoning (CBR) has been an active area of research for the past two
decades. It was initially proposed and implemented as a cognitive model by artificial
intelligence researchers, and then applied as a model for building expert systems. Since
the early 1990’s, several popular educational applications and innovations have been
developed based on lessons leamt from CBR research, and many educational theories
have been linked to the CBR cognitive model. However, due to the lack of
standardization in the CBR literature, the variations and shifts in CBR terminology and
reasoning models have caused much confusion.

In response to this situation, in this thesis [ have reviewed the CBR literature and
identified major versions of CBR in the field, and trend shifts in the CBR research over
time. In doing so I have proposed there are currently four versions of case-based
reasoning: CBR in its typical sense in cognitive science literature, CBR in its general
sense in cognitive science literature, CBR in its typical sense in artificial intelligence
literature, and CBR in its general sense in artificial intelligence literature. These four
versions are the result of a) two types of interest motivating CBR research, and b) two
ways of using the terminology. The two different motivations for CBR research are: the
desire to model human reasoning and learning in the cognitive science CBR community,
and the desire to develop technology to make Al systems function more effectively in the
artificial intelligence CBR community. In both types of CBR research, the term CBR has

been used in two ways: there is CBR in its typical sense, and CBR as a generic term.
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Recall that table 2.2. summarized these four versions and the trends in CBR research
corresponding to each version.

Besides the differences across these versions of CBR, there are also variations
within each version around issues such as case representations, knowledge structure, and
where should knowledge be considered to reside. This thesis focused on the shifts and
variations in the CBR cognitive model, and proposed a framework for clarifying and
understanding these differences (see Table 2.2, pp. 49-50). This framework is developed
by identifying major versions of CBR cognitive models, analyzing their shifts when
applicable, and comparing and contrasting these different versions with one another. The
major CBR cognitive models are: Schank’s Dynamic Memory cognitive model (Schank,
1982), Kolodner’s “knowledge-poor” CBR cognitive model (Kolodner, 1993), Bareiss
and Porter’s Category and Exemplar CBR cognitive model (Bareiss, 1989, Porter, 1990),
and various integrated approaches (e.g., Aarts & Rousu, 1997; Plaza, 1993; Sporl, 1995).
The variations that led to confusions about CBR cognitive models are summarized into
five categories: case content and representation, organizational structure and knowledge
representation in the CBR cognitive model; the role of general domain knowledge in the
CBR model, processing and reasoning issues, and the scope of CBR. The framework for
understanding major variations of CBR cognitive models corresponds to the variations
identified, and presents the approach of each popular version of the CBR cognitive model
along each of the five dimensions of variation.

Finally, major CBR educational applications -~ Goal-Based Scenario (GBS),
Leamning By Design (LBD), and case-based advisory systems and knowledge-sharing

systems — were introduced and analyzed based on their ties to the CBR cognitive models
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they derive from, and how their design parameters would change were they based on
other cognitive models. The goal-based scenario framework is based on Schank’s
moderated Dynamic Memory cognitive model. Its design parameters that are based
specifically on this CBR model are: a) the top-down approach to designing learning
environments; b) encouraging learning by doing without prior acquisition of general
domain knowledge; and c) the focus on lower levels of the knowledge structure rather
than the overall or higher-level knowledge structure. These parameters are challenged by
alternative CBR cognitive models. Possible variations are shown in table 3.2.

Learning by design is based on Kolodner’s knowledge-poor CBR model. LBD
design parameters that are suggested by unique aspects of this CBR model include: a) its
focus on the acquisition of high-quality cases rather than generalization of target
knowledge and skills; b) emphasis on mapping of case knowledge to general domain
knowledge, and; c) support for learning to reason with cases effectively. Possible
variations of these design parameters are summarized in table 3.3.

Case-based advisory systems and knowledge-sharing systems are usually not
strictly based on any particular CBR cognitive model. But there are a few features that
various CBR cognitive models might suggest these systems should include (see table
3.4).

By clarifying CBR terminology, identifying major categories and trends in CBR
research, and proposing a framework for understanding the variations of CBR and CBR
cognitive models, this thesis provides researchers in CBR and CBR-related fields a
means to better understand literature on or related to CBR, as well as a basis for

discussing CBR and related issues in the future. Researchers could use the framework
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outlined in this thesis to determine which version of CBR a certain piece of research
refers to, and make judgments on the discussion or research findings on that basis. They
could also clarify which version of CBR are they using in their research, so that potential
confusion and misunderstanding could be avoided.

This thesis also suggests areas in which further research and discussions are needed
in order to standarize the terminologies and clear up confusions in the field. Efforts to test
the different hypotheses in major CBR cognitive models are desired, and further
standarization of CBR in cognitive science is needed. These types of research will not
only help us to discard false hypotheses and thereby reduce the variations in the field, but
also suggest which approaches to designing CBR educational applications would be most
appropriate.

Finally, the discussion of commcn design parameters in CBR educational
applications and the possible shifts of those design parameters in this thesis could serve
as guidelines for instructional designers. It provides them a fresh perspective of looking
at goal-based scenarios, learning by design, case-based advisory systems, and case-based
knowledge-sharing systems. With the aid of the analysis in this thesis, instructional
designers could make more well-informed decisions about how to approach a certain
CBR educational application based on from whence the design parameters of the
framework for that application are derived, what are the alternative approaches and what

are their sources, as well as when to use that particular application.
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