INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learmning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

INCREMENTAL VALIDATION OF
POLICY-BASED SYSTEMS

ANGUS GRAHAM

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

May 2001

© Angus Graham, 2001

Il e

Bibliothéque nationale

du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services blbhographlques
385 Waellington Street 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre rélérence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownerskip of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent €tre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

il

Canadi

0-612-64080-9

ABSTRACT

Incremental Validation of Policy-Based Systems
Angus Graham

Policy-based systems are gaining popularity as a way to manage applications with
dynamic behaviour. These systems have policies specifying the desired behaviour,
entered into the system by either end-users or system administrators. In order to assure
that the policies don’t violate any stipulated properties of the system or conflict with one
another, the policies must be validated. This validation process can take a very large

amount of time as the system’s policy base grows.

This thesis suggests an incremental validation method, whereby a system which
has been determined to be consistent can be validated when a new rule is added to the
system. “Trigger chaining” is a concept introduced in this thesis that examines which
policies are triggered by the firing of a particular policy. This concept leads to new kinds
of conflicts. An algorithm is suggested for incremental detection of such conflicts and is
shown to operate in linear time, as opposed to complete revalidation which has quadratic
complexity. Trigger chaining also leads to the detection of cyclic conflicts which are

briefly discussed.

Decision tables are suggested as a suitable format for the internal representation
of policies. This format provides a method of checking a policy set for completeness and
could help in checking for conflicts. Also decision tables are shown to be a natural
format for storing policies. It is also known how to convert decision tables into
executable rules, making the transition from decision table-based policies to rule engine

policies a simple one.

- iii -

To my parents

-1v -

Acknowledgements

The researching, preparing, and writing of my thesis has been a long, challenging,
and rewarding experience. There are many people who have helped me along my
Jjourney. Some who have helped me labour over an idea, some who have graced me with
their wisdom and experience, and some who have simply made my life more enjoyable.
Without these people I would be no farther along than when I started. In particular, I
would like to give thanks to the following people:

Dr. Thiruvengadam Radhakrishnan, for his constant flow of ideas and his
inspiring words. Thanks for teaching me the art of patience and diplomacy. Thanks for
giving me the freedom to explore ideas on my own and guiding me in the right direction
with your wisdom. '

Dr. Clifford Grossner, for helping me appreciate the skill of organization and for
helping me strive for perfection. Thanks for the knowledge and insights you have given
me both for the academic world and the business world.

Nortel Networks for their financial support during the researching of this thesis.
Thanks to Richard Brunet for taking me under his wing while at Nortel.

Yota Karvelas for being the perfect lab partner. I have bounced many ideas off
her head only to have them come back clearer and more solid. Thanks for all the laughs,
and always encouraging me to turn up the music, no matter how weird it was.

My parents, Marilyn and Ray, for all the love, moral, and financial support they
have given me and all the sacrifices they have made for me over the years.

Emily Bradshaw for all her love and moral support. Thanks for listening to my
problems whenever I needed an ear, no matter how big, how small, or how computer
science-related they may have been.

Josie McSoriley for helping me through a summer of setbacks, and for being
supportive during a difficult time in my thesis work.

My cats, Daisy and Alice, for reminding me on a daily basis that above all the
most important things in life are eating, sleeping, bathing, and a good chase around the

backyard.

Table Of Contents

LIST OF FIGURES

1. INTRODUCTION

1.1. POLICY BASED SYSTEMS AND POLICY VALIDATION

1.2. ORGANIZATION OF THIS THESIS

2. POLICY BASED SYSTEMS

2.1. INTRODUCTION TO POLICIES

2.2. WHY POLICIES ARE NEEDED

2.3. PoLICY MODELS

2.3.1. Specifying Policy.

\O WO 00 h

2.3.2. Detecting and Resolving Conflicts..

23.3. Policy Execution

2.34. Policy Implementations

12
15
15
15

2.34.1. IETF’s Policy Framework
2.34.2. Lubu and Sloman’s Policy Framework

19

2.4. OUR PoLICY MODEL

24.1. Policy Specification

24.2. Detecting and Resolving Conflicts

24.3. Policy Execution

24.4. Policy Scope

3. POLICY AS DECISION TABLES

3.1. INTRODUCTION TO DECISION TABLES

3.2. PROPOSAL FOR USING DECISION TABLES AS AN INTERNAL POLICY REPRESENATION
3.2.1. Checking for Completeness

.....................

3.2.2. Consistency Checking

3.2.3. Storing Policies as Decision Tables

3.24. Conversion of Decision Tables to Code
3.3. SUMMARY

4. INCREMENTAL VALIDATION.

4.1. WHY IS INCREMENTAL VALIDATION NEEDED

4.2. SIMPLE INCREMENTAL CONFLICT DETECTION
4.3. A SIMPLE IMPROVEMENT TO VALIDATION

-vi-

21
22
22
22
23

27

27
30
31
36
38
42
43

45

45
45
49

4.3.1. Development of the Concepts for Algorithm V, S50
43.2. AlgorithmV, 55
433. AnalysisofV,; 56

4.4. TRIGGER CHAINING 58
44.1. AlgorithmV, 60
442. Stepl 66
4.42.1. Improvement to Step 1 66

4.422. Explanation of Improvement 67

4.4.23. Analysis of Improvement 69

443. Step2 70
444. Step3 71
4.4.5. Analysis 74
4.45.1. Complete Re-validation 74

4.452. Algorithm V, 74

4.5. CycLic CONFLICT DETECTION 76
4.6. SUMMARY 77

5. ARCHITECTURE FOR INCREMENTAL VALIDATION 79
5.1. ANEXISTING ARCHITECTUREcocsrsesiesestsorsissssesessessosseresssssssssosarasarsessnsssarassntosasessasassssssasesssasssnsseas 79
5.2. 'WHAT 1s NEEDED IN A CONFLICT HANDLER 80
5.3. SCENARIOS 82
5.3.1. Adding a policy 82
5.3.2. Modifying an Existing Policy 83
5.3.3. Deleting a Policy 83
5.34. Adding an Event, Condition, or Action 83
5.3.5. Deleting an Event, Condition, or Action 83

5.4. TRANSITION TO ENFORCING UPDATED POLICIES 84
54.1. Stop and Reload Method 84
5.4.2. Static Object-Policies Method 85

5.5. SUMMARY 85

6. CONCLUSION 86
7. FUTURE WORK 88
8. REFERENCES 90

- vii -

List of Figures

FIGURE 1 - AN EXAMPLE DECISION TABLE
FIGURE 2 - AN EXAMPLE OF OUR MODIFIED DECISION TABLE FORMAT
FIGURE 3 —~ POTENTIALLY CONFLICTING RULES WITH Ry

FiGURE 4 - DECISION TABLE BEFORE VALIDATION PROCESS

FIGURE 5 — ALL IRRELEVANT ROWS ARE ELIMINATED

FIGURE 6 — ALL EMPTY CONDITION ENTRY ROWS ARE ELIMINATED

FIGURE 7 — TABLE IS SPLIT BY MODALITY

FIGURE 8 ~ ALL NON-OPPOSING ACTIONS ARE ELIMINATED

FIGURE 9 — ALL EMPTY ACTION ENTRY RULES ARE ELIMINATED

FIGURE 10 — ONLY THE CONFLICTING RULES REMAIN

FIGURE 11 — GRAPHICAL COMPARISON OF V3 AND V),

FIGURE 12 — TRIGGER GRAPH FOR A SET OF RULES

FIGURE 13 — A CONSISTENT TRIGGER GRAPH

FIGURE 14 — NEW RULE ADDED ABOVE TWO TREES WITH COMMON EVENTS
FIGURE 15 — NEW RULE ADDED ABOVE TwO TREES WITH DIFFERENT EVENTS
FIGURE 16 —~ NEW RULE ADDED ABOVE TWO TREES AND BELOW ANOTHER

FIGURE 17 - A GRAPHICAL COMPARISON OF THE TWO ALGORITHMS

FIGURE 18 — A CYCLIC CONFLICT

FIGURE 19 - KANTHIMATHINATHAN’S POLlCY ARCHITECTURE

- viii -

29
41
50
31
31
52
52
53
54
54
58
60
61
62
63
64
75
77
80

1. Intrbduction

1.1. Policy Based Systems and Policy Validation

Policy based systems offer the capabilities to dynamically change the behaviour
of software. Such systems are gaining wide popularity in the industry today.
Applications for these systems range from event notification software [1],[2],[3] to

network management [4],[5],{171,[19] to electronic commerce [12},[11].

Policies can be entered into a system to instruct the system what actions should be
taken when certain events occur, who is permitted to perform particular actions, and who
is not. The system can either allow all end-users to enter their own policies, or to have
one or multiple policy administrators to be in charge of this task. Policies can be entered
before the execution of the system begins, but many systems allow the entry of policies to
occur during system execution as well. The form in which the policies are entered varies
from system to system. Some systems require that policies are entered in a strict code-

like format, whereas others allow natural language input.

When policies are entered into the system, they must be checked to see if their
syntax is correct. This consists of making sure the policy uses language understood by
the system, and in such a way that the system understands what is meant by the policy. If
the policy is not syntactically correct, the policy will not be understood by the system and
there will be no way to execute it. This however, is not the only requirement a policy

must meet in order to be accepted by the system.

- After syntax checking the policies must be validated. When a new policy is
entered into the system, it is not necessarily consistent with the rest of the system. A
policy could order a combination of actions which are illegal in the application, or actions
that conflict with actions specified by another policy. To detect any such anomalies, a

validation process is needed. Validation can be performed at specification time, before

-1-

any of the policies have been executed, or at runtime, catching conflicts as they are

triggered but before they are executed.

Detecting conflicts between policies is an important concern, and solutions have
been provided to tackle the problems of both specification time and run time policy
validation. Validating at specification time ensures that conflicts will be detected before
the execution of the system. Eliminating these conflicts before the execution of the
system means that less time must be spent resolving the conflicts at runtime. Validating
at runtime allows the system to catch conflicts which could not be predicted before the
execution of the system. These two types of validation complement each other and

therefore both forms are needed.

As policy based systems get larger, the problem of policy validation becomes
more complex. Systems may have a very large number of policies, which would mean
the validation process would take a long time if all policies are considered. However if a
small change is made, the number of policies affected by this change could be relatively
small. If the entire set of policies is validated every time a small change is made, then the
system is spending a great deal of time performing validation which may not be practical,
or necessary. Similarly in order to validate some systems, the policies may have to be
brought offline in order to perfbrm the validation. If the policy set is changed often, this
would pose a serious problem when providing users with continuous service. Clearly this
delay makes it unacceptable to revalidate the entire set of policies every time a change is

made if the set of policies is large.

In this thesis, we will suggest incremental policy validation as a solution to
validating large policy sets. More specifically, we will examine how to determine if a set
of policies is consistent after a small change to the set has been made. This will be done
by finding only those policies which are affected by the changed policies, and then
validating that small subset. We will look at conflicts being detected at specification time

as opposed to at run time. We will also provide a method of incremental validation that

performs well as the number of policies grow. This method will be analysed to show its

time complexity and compared to a non-incremental validation solution.

We will introduce the notion of storing policies in decision tables in the system.
It will be shown how this format can help check a set of policies for completeness. Also
we indicate that the method used for checking decision tables for consistency could
possibly be used in future to detect conflicts in policies. In order to accommodate all of
the policy information, the decision table format was modified. These modifications are
explained, as well as the methods to enter policy in this format and to create executable

rules out of this format.

The concept of “trigger chaining” has been introduced in this thesis in order to see
which policies will be triggered by the firing of a particular policy. This new concept
introduces a new kind of conflict, in that a policy firing immediately after another may
undo the actions of the first. This new type of conflict is explained and a method of
incremental validation is developed in order to detect these conflicts. The method is
analysed and compared to performing an exhaustive revalidation of the entire system.
The concept of trigger chaining also introduces another kind of conflict, a cyclic conflict,

which is introduced but not discussed in detail in this thesis.

Policy scope is something we have introduced into our policy model. Scope is
what nodes of the system a particular policy should affect. Some policies should affect
the whole system, while other policies may only be applicable to certain areas of the
system. Scope is an important factor when looking at policy conflicts. Two policies

which might otherwise conflict will not if their scopes don’t overlap.

1.2. Organization of this Thesis

In Chapter 2 policy and its terminology are introduced, and a couple of policy
frameworks are presented as examples. We also present the policy model used in this
thesis. Chapter 3 introduces the benefits of storing policies in a modified decision table

-3-

format. In Chapter 4 we present a solution to the problem of incremental policy
validation. We also introduce the concept of trigger chaining and provide an incremental
validation solution for trigger chaining conflicts. An analysis of the algorithm is
performed in this chapter to demonstrate that the algorithm performs well as the number
of policies gets to be very large. In Chapter 5 we present an existing policy framework
and demonstrate how our incremental validation technique would be added to this
system. Chapter 6 examines the contributions of this thesis, while Chapter 7 discusses

directions for possible future work.

2. Policy Based Systems

Policy-based systems have been studied by many different researchers in recent
years. This chapter gives a summary of their research. We will start by giving a quick
introduction to policies and the common terminology used when discussing policies.
Next we will discuss why there is so much interest in policy-based systems and how
policies can benefit software. We will next look at various policy models, in particular
looking at how they specify policies, detect and resolve policy conflicts, and perform the
execution of the policies. Finally, we will discuss our own policy model which we have
developed using earlier models as a base. Our model will also introduce a new concept:

policy scope, which is not present in any earlier models.

2.1. Introduction to Policies

The definition of a pelicy given by Lupu and Sloman [4] is “information which
can be used to modify the behaviour of a system”. A policy is often made up of a set of
rules related to a particular aspect of an entity. Use of policies is not restricted to
software. They can be used to describe how situations are to be handled in many real-life
scenarios. An example would be a professor’s policy governing the submission of a term
paper. In this case the policy is made up of rules which the professor follows to

determine what to do when a paper is handed in late, etc.

A rule is defined as a set of actions, which are either to be performed on, or
prevented from executing on a particular entity when certain criteria are met. The rules
have an attribute specifying which events trigger the rule. However, there is also a rule
attribute called a constraint. The constraint is a second-level condition that must be
matched in order for the rule to fire. Rules following this format are said to follow the
Event Condition Action (ECA) rule paradigm [12]. Several systems use the ECA rule
paradigm [17],[4],[12]. The object which is to be manipulated by the actions of the

policy is called the policy target whereas the object which is interpreting the policy is the
policy subject [6].

Because there are multiple policies in a given system, it is important to examine
how one policy will affect another. If there are two policies which are triggered to fire at
the same time, and they contradict one another, these policies are said to conflict. By
contradict, we mean that one policy states to perform an action a, and another policy
states to perform the opposite action & or an incompatible action b. A pair of
incompatible actions would be two actions which cannot be performed by the same
subject at the same time, for example proposing a budget and approving a budget.
Cholvy and Cuppens [7] say a rule is inconsistent if there exists a world such that it leads
to a conflict. We can therefore say that a rule which does not lead to a conflict is

consistent.

Intuitively a conflict refers to a real conflict. This means should the system
execute, the conflict will definitely occur and interrupt the system’s execution if no
attempt at resolving the conflict is taken. The process of checking policies to see if they
conflict is called policy validation. The term validation in this context has a different
meaning than the one associated with software engineering. The term validation in
software engineering is the process of checking if the implemented software meets the
expectations of the user [8]. Although policies could be checked to see if they represent

the expectations of the user, the term validation will not be used to this end.

Often times, conflicts can be detected when the policies are entered into the
system [9]. It is very important to deal with conflicts that are detected at specification
time, because when the system executes, the conflict will definitely occur, resulting in an
execution problem. This could be due to a specification error, and so it is important to

detect any possible conflicts at specification time and notify the administrator [6].

Conflicts can also be detected at run-time. Although it is often advantageous to

detect potential conflicts at specification time, this may not always be possible. Some

-6-

conditions are based on states of the system which are unknown at the time of policy
specification [6],[9]. In this case, the only way to detect the conflict is while the system
is executing [4]. Although the notion of run-time conflicts is an important area of
conflict detection in policy systems, this thesis will focus on the problem of specification

time conflict detection.

A potential conflict is present in a set of policies when there are two policies
which may or may not result in a conflict at runtime. The conflict is dependent on some
variable values or the state of the system. The difference between a conflict and a
potential conflict is that a conflict will definitely occur at runtime whereas a potential
conflict may or may not happen at runtime. For example, if one rule fires when x = 5 and
another rule with opposing actions fires when x =y, it is impossible to determine whether
the two rules will be triggered at the same time before the system is running and the value
of y is known. If a system has a potential conflict, and at runtime the state necessary to
trigger the potential conflict is reached, then the potential conflict becomes a real conflict
[10]. In the example given above, if at runtime we see that the value of y is 5, then the

two rules will trigger at the same time and we get a real conflict.

It is important to look at Cholvy and Cuppens’ definition of an inconsistent
system again [7]. They state that if there exists a world such that there is a conflict in that
world, then the system is inconsistent. The world they refer to would be the siate of the
system, including the state of all attributes in the system, which events are occurring, etc.
Therefore even if there is a potential conflict, the system is considered inconsistent
according to Cholvy and Cuppens. If a systerri has a real conflict in it, it too then would
be considered inconsistent, but to indicate the difference, we will say that the system is in

a state of conflict.

Definition 2.1.1:
A system is said to be inconsistent if and only if there is a potential conflict or a

real conflict between two or more of its policies.

When a system is in a state of conflict, it is important to somehow resolve the
conflict. In order to resolve the conflict, one or more actions are cancelled, but this is not
an obvious solution. Actions cannot be cancelled arbitrarily, and the goal is to remove
the least number of actions. There are two philosophies to canceling actions. If all
actions are assumed to be atomic then canceling one action will not affect the others. The
other approach is to cancel all actions that are triggered by the same event. In this
approach either all the actions associated with a particular event will succeed together or

- fail together. This, although it cancels more actions, sometimes makes more sense. For
example if a rule states to perform three actions which are all related to.each other, such
as package item, update inventory, and ship item, and the action package item is
canceled, then the entire process will no longer make sense. It would make more sense to

cancel all three actions in this case [12].

2.2. Why Policies are Needed

In today’s world, software users are no longer content with software that performs
a fixed set of functions in a preset manner. Users have various individual needs, and they
want software to meet those needs. In recent years the software industry has been
moving towards building software which can be customized by the user so that it can
meet the individual’s needs. Policies are one way in which this customizability can be
delivered. By developing a common policy framework, software can easily be built
around this framework, without having to design a new method of making the software

customizable for each software system.

Policies also separate the behaviour aspect of the software from the main
functions. This allows either the main functionality of the software, or the user’s custom
behaviour to be changed without affecting the other aspects of the software. This is very
important, since one would not want a user to have to redefine all of their rules if one of
the non-customizable components of the system was upgraded. Similarly one would not
want to have to change the code of the main software system if the policy framework is

upgraded. For this reason, policies are interpreted as opposed to being compiled [4].

-8-

Policies also offer a level of abstraction from code. If rules had to be defined in
code, then customizing the software would be a very tedious process. An easy to use
front end interface is a solution to this, but in the end, all custom behaviour needs to be
defined in a low level form which can be understood by the software. If, say, the user
interface lets users enter their behaviour in natural language, then there may be vague
terms or double meanings which may prevent analysis of the policies at that level.
Similarly analyzing it at a low-level such as code level is not always ideal either, since at
that level abstract concepts like what the entire series of given commands is trying to
achieve is lost. There should be some middle layer which is not as abstract as natural
language and does not have any of its ambiguities, but at the same time still carries the
overall concepts and goals which the low-level code loses. Policies offer this middle
layer. Users can enter policies directly using some formal policy definition language, or
can enter it at a higher level and have it translated to the definition language
automatically. A policy can be analyzed for correctness and consistency before it is

translated to the final code to be executed [17].

2.3. Policy Models

In this section we present various policy models created by other researchers. We
discuss the features of each model and indicate both their‘strengths and weaknesses. The
main criteria being examined are how the policies are entered into the system and how
conflicts are detected and resolved, and how policies are executed. Finally two complete

policy frameworks are presented.

23.1. Specifying Policy

In order for policy based systems to get their policies, there needs to be some way
a policy administrator can enter policies into the system. The system may have only one
policy administrator, or it may allow all of its end users to enter policies. The system

could even have multiple levels of policy administrators. For example, a manager may

-9.

be permitted to set policy for all of his subordinates, while the subordinates can only set

policies for themselves.

Sometimes policy is specified at a fine level using mathematical formalisms such
as first order logic [13],[14], sometimes it is stated at a very high-level such as natural
language [17], or a GUI based interface [15]. More commonly, however, a policy
definition language is used to specify the policy. Even in the case that policy is
specified at a higher level, the policies are often converted into a policy definition

language form, which can then be used to analyze them [17],[14].

The role of the policy definition language is to represent the conditions that
trigger the policy and the actions to be carried out when it is triggered. It must be formal
enough to eliminate any possible ambiguities found in natural language. It should also be
high-level enough to be able to represent the concept of the policy’s behaviour as
opposed to a series of low-level instructions [13]. This will allow the policy to be
analyzed for such things as correctness of behaviour before it is translated to low-level
instructions. Not only this, but being at a higher level than code will make it easier for
the administrator to enter the policies, and understand them when re-reading them in the

case that he needs to make further changes to the policies.

Jajodia, Samarati, and Subrahmanian [16] proposed the Authorization
Specification Language (ASL) in order to specify access control policies. It provides
authorization policies to specify whether an action is authorized or denied for a
particular combination of [<object>, <user>, <role>] sets. Since the language is meant
for access control purposes, this single type of policies is sufficient. One problem with

this model, however, is that all authorizations are given the same level of importance.

Bertino, Jajodia, and Samarati [21] proposed a model that is also meant for
authorization policies only. They do, however, divide the notion of authorizations into
two levels: weak authorizations and strong authorizations. If there is a strong

authorization for one action and a weak authorization for the opposite action, the strong

-10-

authorization always overrides the weak one. When there is a strong authorization for
one action and another strong authorization for the opposite action an inconsistency is
said to have occurred. This model was used for access control policies for databases, so
having only authorization policies was sufficient. This may not be flexible enough,
however, for other types of applications. There are other languages, which provide

further types of policies, such as a policy enforcing that an action must be done.

Koch, Kress, and Kramer [17] proposed a language where policy can have three
possible modality values: obligation (having to do something), permission (permitted to
do something), and prohibition (not permitted to do something). These three modality
values take their base from standard deontic logic [27]. This seems to be a common
approach that is used, with some variation, in other models [1][18][19]. The
authorization policies used by Jajodia, Samarati, and Subrahmanian are similar to policies
in Koch, Kress, and Kramer’s language using the permission and prohibition modality

values.

Another language proposed is that of Lupu and Sloman [4]. In their language
they use only two modalities: authorization and obligation. They also allow positive and
negative modifiers to be used with these modalities, so that rules can have positive or
negative authorization (can or cannot do), or positive or negative obligation (must or

must not do).

Lupu and Sloman state that their notion of authorization is independent of their
concept of obligation, and so their approach is not based on deontic logic as Koch, Krell,
and Kramer’s is. According to Lupu and Sloman, whether it is permissible to do
something or not has no bearing on whether or not that action must be done. With Lupu
and Sloman’s representation, both of these states can be represented without affecting the
other. E.g., a person may have permission from the file system to delete all his or her
files, but that person’s boss may state that they must not doit. In this case the person has
positive authorization to delete his files but also has negative obligation for the same

action.

-11 -

One of the main differences lies in where the modality is interpreted. For
obligations the modality is interpreted at the subject, whereas authorizations tend to be
interpreted at the target. This is because authorizations are designed to protect the target,
so subjects cannot be trusted to obey the modality in this case. On the other hand, if there
is an obligation such as “The subject must not disclose any information to the target until
after the final submission date”, the target may in fact want to receive the information
contrary to the rule. Therefore in this case it is the subject which must interpret the

modality in order to ensure that it is taken into account [4].

Cuppens and Saurel’s language [20] provides each rule with a more powerful
conditional argument. Instead of only specifying a requirement that must be met in order
for the rule to fire, their language also provides the keywords before, during, and after for
use in the conditional argument. This means that policy designers can specify that the

policy should fire before, during, or after a certain condition has been met.

2.3.2. Detecting and Resolving Conflicts
Lupu and Sloman define two types of conflicts that can occur between policies
given the above model: modality conflicts and application specific conflicts.
According to their definition, a modality conflict arises when two policies with opposite
modality refer to the same subject, actions, and targets. This can happen in three ways:
- The subjects are both obligated-to and obligated-not-to perform actions on the
targets.
- The subjects are both authorized and forbidden to perform actions on the
targets.
- The subjects are obligated but forbidden to perform actions on the targets.
Note that since Lupu and Sloman do not imply authorization with obligation, the third
type of conlfict is possible [6].

-12-

Application specific conflicts occur when two rules contradict each other due to
the context of the application. Examples of this are:

conflict of priorities for resources

conflict of duties

conflict of interest

actions that perform opposing tasks

For example, assume that one rule instructs user X to submit a budget to the organization
he works for, and say that another rule instructs the user to approve all budgets in the
system. From looking at the policies without any knowledge of the world there is no
apparent conflict, but with common sense, we know that in most organizations the person
who approves budgets cannot approve his own budget. This of course may or may not be
relevant to a particular application. Therefore, these restrictions are unique to the
application and the rules cannot be considered to conflict without some sort of extra
application specific knowledge. This extra knowledge is entered in the form of meta-
policies. The meta-policies describe assumptions the system must make and explains
how the system’s “world” works. A set of policies may be consistent in one application

and inconsistent in another due to the difference in the applications’ meta-policy or world

rules [6].

Lupu and Sloman provide a method of checking policies as they are specified for
conflicts. Although they acknowledge the need for run-time conflict checking, they do
not discuss any methods which would be useful in performing this type of checking.
Similarly, their method of static (specification time) policy validation involves examining
the entire set of policies, or at very least all the policies found in one domain. They do
not provide any method of incrementally checking a very small number of policies when

a new policy is added or modified, to determine if the new set of policies is consistent

[6].

Fraser and Badger [23] proposed a way to detect conflicts for new rules that are
introduced at run-time. Their approach examines the new rules to see first if the new

policy is well formed. If so the next test is to see if it conflicts with the rest of the rule

-13-

base, and if so, the new rule is rejected. The technique proposed, however, was for use

with the Domain and Type Enforcement prototype kernel, and so was specific to DTE.

Howard, Lutfiyya, Katchabaw, and Bauer [22] provide a generic policy based
architecture. Their approach is designed to allow dynamic modification' of policies at
run-time. They do not, however, discuss the notion of policies conflicting with each
other in any way, and therefore do not provide any mechanisms to check for conflicts.
They do provide a policy validation service in their architecture, but its purpose is to

check if any managed objects violate any policy rules.

Chomicki, Lobo, and Naqvi [12] propose a way to resolve conflicts. Instead of
detecting conflicts at specification time, they perform detection and resolution at run
time. There are monitors in the system which detect actions that cannot occur together,
and then decide whether to delete one of them, or delete one of them plus the other
actions that were meant to execute along with it. They suggest obtaining priorities for
each policy from the user in order to decide which actions should be canceled when
conflicts arise. Since the detection and resolution is performed at run time, predicting
which rules will conflict is not 2 problem. However, there may be some rules which by
examining them at specification time, we know will always conflict. If these conflicts
were detected at specification time, the policy administrator could modify the rules so
that this conflict is avoided at run time. Their approach offers no specification time
conflict detection, which could eliminate some of the automatic conflict resolution

needed.

Lupu and Sloman also propose a few ways to resolve conflicts once they are
detected. The first is to always give priority to negative policies. For example if one
policy gives positive authorization for an action and another policy gives negative
authorization for the same action, the policy giving negative authorization overrides the
positive one. The second method of resolution they suggest is to give each policy an
explicit priority value. This can then be used to give rules precedence in the event of a

conflict. The third method they suggest is to examine the distance in the class hierarchy

-14-

of the object being managed from the policy managing it. For example, let us say one
policy is from the person class and another conflicting policy is from the human
resources employee class which is a subclass of the employee class, which is a subclass
of the person class. In this case the latter rule takes precedence, since the managed
object, the human resources employee, is closer to that subclass than the general person
class in the class hierarchy. The final method suggested is similar to the above method,
but it is based on the domain structure, as opposed to the class hierarchy. A policy
applying to a subdomain takes precedence over a policy applying to an ancestor domain

because it is more specialized and targets fewer objects [6].

2.3.3. Policy Execution

Moore, Ellesson, Strassner, and Westerinen [26] state that a declarative approach
to policy systems is better suited than a procedural one. They do not rule out the
possibility that a policy framework can be successfully implemented using a procedural
approach, but they think it would not be as natural an adaptation. This allows various
implementations to use different algorithms for the testing of conditions and the sequence
of action execution. The declarative rules state only the relationships between attributes
to be tested and the actions to be executed. The opinion that a declarative approach is
more suited to the problem of policy systems appears to be a common one, as many other

researchers propose policy frameworks in the same manner [4][17][12].

2.3.4. Policy Implementations

2.3.4.1. |ETF’s Policy Framework

The Internet Engineering Task Force (IETF) has been developing a policy
framework that is vendor independent, interoperable, and scalable. Although they deal
mainly with the application of network management, they acknowledge that their policy

framework could easily be adapted for other uses as well.

.-15-

There are three main requirements according to the IETF that a policy framework
must meet. First there must be a repository in order to store and retrieve policies. By
storing all the policies in one location, the policies can be re-used by several devices.

This also helps maintain consistency throughout the policies [24].

Second, there must be a common format to enter the policies. With a common
policy format that is vendor independent, the same policies can be compatible with many
different applications. For example, a management application may need to manage
several similar devices, such as printers, that come from different vendors. If there is a
standard policy format being used, then the same policy can be used to manage all the
devices. This prevents the policies for each device from having inconsistencies as they

might if the same policy was entered for each device in a slightly different format [24].

Finally, a policy framework needs a way to communicate the policy beyond the
repository. This is necessary for scalability [24]. If there are a large number of nodes
accessing the repository for policies, a bottleneck will occur. There needs to be some
way to distribute the policies so that the repository is not overwhelmed with requests for

policy information.

In addition to these three main requirements, they have identified a few other
issues which should be examined: security, timely delivery of policies, and dealing with
mobile devices [241. We will not dwell on these as they are beyond the scope of this

thesis.

IETF’s approach differs from management tools such as SNMP [25] in that they
propose some degree of automation of management. When the system already contains
information that is needed to manage the system, the policy can retrieve it automatically
without needing an administrator to re-enter it. This helps achieve the goal of managing

the network with the minimum amount of human intervention [24].

-16 -

In addition to the requirements of the framework itself, the IETF have identified
certain requirements that must be met by a policy specification language (PSL):

- away to state which actions should be taken by the policy-managed entity

- away to state which conditions must be met in order to take the above actions

- away to state what the policy is to control (policy subject)

- getting status information about the policy subject

- describing properties of the policy subject

- describing the relationship of multiple policy actions (e.g., one is dependent

on the completion another, etc.)

- security information

In IETF’s model, policy is represented by a set of policy rules. Each rule is made
up of conditions and actions. The rules can be grouped into policy groups. These groups
can be nested, and therefore give a way to represent policy hierarchy. A policy group is
limited to an aggregation of policy rules or other policy groups. A policy group cannot
be both. Policies do not need to be contained in a policy group. A one-rule policy that is
not part of a group is called a stand-alone policy [26].

A rule’s set of conditions can either consist of an ANDed set of conditions
(Disjunctive Normal Form) or an ORed set of conditions (Conjunctive Normal Form).
When a rule’s set of conditions evaluate to TRUE, the actions associated with that rule
are executed. The rule can specify to execute the actions in a particular order, state that
the order is mandatory or merely recommended, or state that there is no recommended

order of execution at all [26].

IETF also allows their rules to have a priority value. Two policies may apply at
the same time but may state different things. This is where priority values come in
handy. For example, one policy may state that everyone in the department gets 100
pages of printer quota, but another policy may state that Dr. Jones gets 500 pages of
printer quota. Since both rules apply, there needs to be some way to distinguish which
one should takg priority. In this case the rule stating that Dr. Jones gets 500 pages of

-17-

printer quota should have a higher priority to indicate that it takes precedence over the

other rule [26].

IETF’s policy model was designed with a declarative, non-procedural approach.
In declarative languages, rules and functions are declared and then executed according to
an execution algorithm. The rules are not specified to execute in a particular order. This
contrasts to a procedural approach where the order of execution of various functions is
strictly stated. Although their model can be implemented using a procedural language, it
is better suited to declarative languages, since the condition testing sequence and action

execution sequence are not specified in the policy repository {26].

IETF’s framework uses roles which policies are associated with, instead of
assigning policies to specific resources. The policies are associated with the roles and the
resources are also associated with various roles. If the role of a resource changes, there is
no need to change its policies. All that needs to be done is to reassign the resource to a
different role which has a different set of policies associated with it. Also if the policies
governing a certain role are changed, then all resources associated with that role will take
on the new behaviour. Compare this to having to change the policies for each of the
individual resources, possibly introducing inconsistencies among the various policies due

to human error [26].

Roles also help in avoiding certain conflicts. By specifying certain policies for
one role and other policies for another role, all the policies can coexist even if some of
the policies conflict. As long as all the rules in each rule are consistent, and the two roles
cannot be active at the same time, there will not be a conflict. This can make specifying
policies easier, since not all policies need to be consistent with each other when there is

no chance they will be used at the same time [26].

-18-

2.3.4.2. Lupu and Sloman’s Policy Framework

Lupu and Sloman proposed a management framework that included a policy
service. Their framework consists of:
- A domain service to group target objects.
- A policy service to allow policies to be specified, stored, and distributed to
agents which will interpret them.
- A monitoring service to monitor managed objects for occurring events and to

notify interested agents [4].

A domain is used to group objects based on certain attributes, such as
geographical location, object type, functionality, etc. or simply even for the user’s
convenience. In Lupu and Sloman’s framework, domains contain multiple objects and
can also contain other domains, called subdomains. Domains can also overlap with each
other. This means that an object X can be a member of two or more domains. Path
names are used to identify domains. For example, domain C which is a subdomain of B

which is a subdomain of A can be referred to as /A/B/C [4].

The policy service is the component of the system that allows a user to specify the
behaviour of their policy. The service provides tools to the user to define policies. All
the policies are also stored in this component as objects. Policies can be members of
domains. This allows the policies to have other authorization policies governing who can

access and modify them [4].

A policy editor is used by an administrator to enter, modify, delete, enable, and
disable policies in the policy system. The administrator checks for any conflicts and then
changes the policies accordingly. Authorization policies are then distributed to target
agents, and obligation policies are sent to subject agents [4]. Once the policies have been
distributed to the appropriate targets and subjects, they may be enabled or disabled by the
administrator without having to redistribute the policies [28]. There are manager agents
which register themselves with the monitoring service. This allows the manager agents

to receive any relevant events coming from the managed objects. If a manager agent

-19-

receives an event which triggers an obligation policy, the agent queries the domain
service to determine which target objects are affected, and then performs the actions

stated in the policy on the targets [4].

The policies in the system are represented by rules. The rules have an attribute
specifying which events trigger the rule. However, there is also a rule attribute called a
constraint. The constraint is a second-level condition that must be matched in order for
the rule to fire. For example a rule may fire upon receiving event A but only between the
hours of 9:00am and 5:00pm. This time period condition would be expressed in the
constraint part of the rule. As with most rules there is also an action attribute stating

which actions should be taken upon the rule firing [28].

Roles associate behaviour with a position as opposed to a particular individual.
For example if Eric Jones is a manager, he has certain responsibilities based on that
manager position. If he were to be promoted to senior manager, then his responsibilities
would change. If we were to modify his policies to reflect his new position, we may
introduce errors, or the responsibilities tied to his position may not be consistent with
someone else’s policies who is in the same position. It is much simpler to associate those
responsibilities with the roles of manager, and senior manager themselves. Then the
individual can be associated with the role. If the role changes, the individual can simply

be associated with a new role and disassociated from the old one [6].

Lupu and Sloman also suggest that it is useful for each role to have its own
context in which to operate. This prevents a user from playing multiple roles at once, and
performing actions in one role which he is not permitted to but is permitted by another
role. For example, if Role A permits an action and Role B prohibits it, then the behaviour
would be determined by whichever role is active at the time [6]. A good example of this
is a police officer. While on duty a police officer has certain privileges such as to drive
faster than the speed limit, and certain restrictions such as not being able to consume

alcohol. Off duty the police officer does not have all of the same privileges or

-20-

restrictions. His role of being a police officer is no longer active and so the privileges

and restrictions associated with that role no longer affect him.

Roles are implemented using domains. The positions of the organization to be
modeled can be represented by domains. A role is then considered to be the set of
policies with a particular domain as the subject. A person, represented as an object, can
be added to or removed from the domain, without changing the policies associated

directly with that person, or the role the person takes on [4].

Roles often have relationships, which are ties between two roles. For example, a
senior manager has a relationship with each of its managers. Lupu and Sloman also
provide a way to associate these relationships to the roles using policies. This allows
policies to express the relationship between roles in terms of rights and duties of both

parties towards each other [6].

This framework could easily be generalized to serve as a general purpose policy
application framework. Domains can still be used to group objects together, and roles

can still be used to show relationships and responsibilities between objects.

2.4. Our Policy Model

In this thesis, we are attempting solve the problem of incremental policy
validation regardless of what application the policy is being used for. We have created
our own policy model, which takes some of its elements from work by other researchers.
In particular policy specification and policy execution are taken straight from other work.
We have based our conflict detection on other work, but have extended it to be more

efficient and more complete. Also, we have introduced a new concept into our model:

policy scope.

-21-

2.4.1. Policy Specification

Out of all the specification languages we examined, Lupu and Sloman’s language
appears to be the most flexible. It offers both positive and negative modifications of
authorization and obligation policies, and allows policies to have priority values. We
find that it meets all the needs for policy specification. Therefore we have chosen to use
their policy specification language for our policy model. Although this thesis does not
focus on policy entry, we assume that all policies entered into the system are done so in

the form of Lupu and Sloman’s policy specification language.

2.4.2. Detecting and Resolving Conflicts

Since we are using Lupu and Sloman’s policy specification language, our policies
can have the same type of modality and application specific conflicts indicated by Lupu
and Sloman. Therefore our conflict detection methods will aim to find these types of
conflicts. Lupu and Sloman provided ways to detect these conflicts by examining the
policies at specification time. In this thesis we will provide a way to determine if a set of
policies is consistent when adding a new rule to a pool of consistent rules. We also
include some new types of conflicts. If we know that one policy firing will cause another
policy to fire, we introduce new conflicts that we can detect. We call this type of conflict

a trigger chaining conflict and we will discuss it further in Chapter 4.

2.4.3. Policy Execution

Our model will store policies in an internal policy format in order to perform
conflict checking and other analysis on the policies. In order to execute the policies, they
must be transformed from this internal representation to a format which can be executed.
Although we are not concerned with how this is done, for the purposes of this thesis we
assume that after conflict checking and analysis, the policies are transformed into rules
that can be entered in a rule engine such as an expert system. There has already been a
lot of research done in the field of rule engines and many rule engines are available on

the market today.

-22-

2.4.4. Policy Scope

In our model we introduce the concept of policy scope. Up to this point it has
been implicitly assumed that all policies apply to the entire system. This, however, may
not be desirable. It may be beneficial to have some policies, which, rather than affect the
system as a whole, only affect a well-defined subset of the system. In this case we call
policies which do affect the whole system global policies, and policies which are local to
a particular subsection of the system local policies. Take for example an organizational
hierarchy. There may be an administrator who is authorized to set policy for the entire
organization. In this case his policies would be global. On the other hand, there may be
an individual user who wants to set a policy for how his e-mail should be delivered. In
this case he should not be able to set the policy for everyone, only for himself. In this
case it would be a local policy. Note that in some cases the policy could be global or
local depending on the scope of the hierarchy being examined. For example if a manager
is able to set a policy for all his subordinates, the policy would be considered global to
the department, but it does not affect the entire organization. Therefore, when looking at

the entire organization, the policy would be considered local.

An example of this would be a university department that has policies governing
printers and how they are used. The department owns the printers so every member of
the department uses the same policy for all the printers, therefore it can be considered a
global policy. If a professor, however, purchases his own printer for use by his students,
he may have his own custom policy he wants to enforce over his printer. In this case the
printer policy for the private printer is not applicable to the whole system and is a local
policy. Note that because global policies reach to the same nodes that are governed by
local policies, local policies must have a higher priority value. Without this higher
priority the local policy will never be taken into account since the global policy will be

used all the time.

Similarly, the concept of consistency can be divided into two subdivisions:
globally consistent and locally consistent. If a system is completely consistent, that is to

say that every single one of its policies coexist with all other policies in the system

-23-

without causing conflicts, then we can say that the system is globally consistent.
However, we may be able to predict that there may be little chance of a particular policy
ever interacting with another policy. In this case it may be unnecessary to strive for
global consistency. Instead it may be necessary to determine only that certain subsets of
policies are consistent within themselves. If a subset’s policies can coexist with all other
policies in the subset without causing conflict, but may cause conflicts with policies not
in the subset, we say that the subset is locally consistent and globally inconsistent. A
policy that is globally consistent implies that it is locally consistent. Similarly a policy

that is locally inconsistent implies that it is globally inconsistent.

Theorem 1:
Let S be the entire set of policies, and let there be a set of policies X such that

X € S. Then we can say:

1.1. GloballyConsistent(S) => LocallyConsistent(X)

1.2. LocallyConsistent(X) # GloballyConsistent(S)

1.3. LocallyInconsistent(S) = GloballyInconsistent(X) [Dual of 1.1]

1.4. GloballyInconsistent(X) # LocallyInconsistent(S) [Dual of 1.2]

Proof:

1.1. If S is globally consistent then every policy in S can coexist with every other
policy in S without causing any conflicts. Since all policies in X are policies in
S, then every policy in X can coexist with every other policy in X without
conflict. Therefore X is locally consistent.

1.2. Say we have a set of policies X such that every policy in X can coexist with
every other policy in X without causing conflicts. Then X is consistent. Let us
say that one policy in X says “Close door A at 1:00pm”. Now say that S is made
up of all the policies in X plus one more policy which says “Open door A at

1:00pm”. Since this new policy conflicts with a policy in X, we must in this case

-24-

say that S in inconsistent. Therefore X being consistent does not imply that S is
consistent.

1.3. If X is inconsistent then there are two or more policies in X that conflict with
each other. Since S contains all the policies in X, it also contains the policies
which conflict. Therefore S is also inconsistent.

1.4. Say that the set of policies S contains two policies: “Open door A at 1:00pm”
and “Close door A at 1:00pm”. These policies conflict and so S can be said to be
inconsistent. Now say that we have X which is made up of only one of these
policies. Since X contains only one policy, it cannot be inconsistent with any
other policies. Therefore global inconsistency of S does not imply local

inconsistency of S.

A local policy is not compared at every node when checking for global
consistency, since the Scope of local policies does not reach the entire set of nodes.
Instead it is only examined for local consistency at the nodes it affects. If a local policy
is inconsistent at any node it affects, then it is impossible for the system to be globally
consistent. One possible way of resolving a global conflict is for the policy administrator
to make the conflicting global policies each local to a particular node or set of nodes. If
only one of the policies is made local then one of the policies is still global and there will
still be a conflict in those selected nodes that are locally affected by the first policy. For
example say that global policies A and B conflict. Now say that in order to fix the
conflict, policy A is made local to node N1. Now there will be consistency on every
node, except for N1, because B being global, it too affects N1. Therefore N1 is still
locally inconsistent. Similarly, if policies A and B were both made to be local to N1,
then N1 would of course be locally incomsistent, thereby not changing the status of the

system from being globally inconsistent.
Since we know that a system containing nodes that are locally inconsistent is

globally inconsistent, we can use this information when checking for the consistency of

the system. If one node is found to be locally inconsistent, we can halt validation and

-25.

declare that the entire system is globally inconsistent, without having to check the

remaining nodes.

-26 -

3. Policy as Decision Tables

Decision tables are a formal way to specify the behaviour of a software system. It
groups conditions with actions that will be performed upon the conditions being met.
These groups of conditions and actions are called rules and stored as a column in the
table. Decision tables offer an easy way to analyze whether a set of rules is complete and
consistent. This will benefit us by allowing policy rules to be checked for completeness,

as discussed in section 3.2.1.

3.1. Introduction to Decision Tables

A decision table is made up of four parts. The top left quadrant of a decision table
is called the condition stub. The condition stub lists all the possible conditions that can
occur in the system. It can be listed as asking a binary question (yes/no, do/don’t do,
etc.) or something more general such as colour or value. The bottom left quadrant is
called the action stub. The action stub lists all the possible actions that can be performed
by the system. As with the condition stub, the items in the action stub can be written to
expect a binary answer (yes/no for example), or to expect a value such as “Sell car for”,

which expects a dollar value [29].

Michael Montalbano defines the condition stub as a vector of conditions and an
action stub as a vector of actions. He then defines a condition as a set of condition values
and an action as a set of action values [29]. Ihave extended these last two definitions in
order to make them more complete. According to Montalbano, a condition is a set of
condition values. Therefore a condition called Cost whose value set is the set of integers
and another condition called Sold for whose value set is also the set of integers would be
identical, since their values are both from the set of integers. I find that in order for the
condition to have any meaning, it must be given some sort of context. The clue for that
context is often contained in the name of the condition. Therefore when I refer to the

term condition 1 will be referring to a set of condition values and the condition name

=27 -

associated with that set. Similarly, when I refer to an action I will be referring to a set of
action values and the action name associated with that set. In Figure 1 we can see that
there is a condition name called “All Reports Submitted” which is associated with the
values yes and no. We consider all of this information to make up a condition called “All

Reports Submitted”.

The top right quadrant of a decision table is made up of condition entries. The
condition entries hold the answers to the questions asked in the condition stub. The
bottom right quadrant is made up of action entries. The action entries hold the answers to
the action questions asked in the action stub. Each column of answers in the table is
called a rule [30]. The set of condition values that make up a rule is called a condition
set. The set of action values that make up a rule is called an action set. Each rule
indicates which conditions must be met (condition set} in order for the actions indicated
in the rule (action set) to be performed [29]. When the events and states in the system
(called a transaction), match the conditions specified in a rule, the actions in that rule are

executed [30].

One thing to note is that a rule can have an explicit answer to a condition listed in
the stub, such as yes, no, 5, after 6:00pm, etc., or can be left blank for that value. A blank
value is referred to as a don’t-care-entry. Don’t-care-entries imply the entire set of
possible values for the corresponding condition and so match any value when tested.

This is important when we discuss testing the consistency of the table later on [29].

Note that both condition sets and action sets, although given the name sets, are in
fact represented as vectors. The order of the values in a condition set, for example, is
important, and will have an entirely different meaning if changed around. For example,
suppose we have a condition stub containing two questions: number of students, and
professors available to teach. Now say we have a condition set of 1000, 20. This means
that there are 1000 students and 20 professors available to teach. This gives us a student
to teacher ratio of 50:1. If we mix up the condition set, however, we now incorrectly see

that we have 20 students and 1000 available professors. The values by themselves are

-28-

useless. We need to know the order in which they appear in order to abstract some
meaning from the values. Therefore, our condition sets and action sets are in fact,
vectors. Note that to some, the strict definition of a vector is an ordered set of scalars.
Montalbano has decided for simplicity to overlook this restriction and use vector as
meaning an ordered set of some type of element, be it rules, conditions, actions, etc. All

statements in this thesis referring to vectors use Montalbano’s wider definition of vectors

[29].

There are two types of decision tables. Tables with entry sections expecting to
have binary answers to the questions in the stubs such as yes/no, do/don’t do, etc. are
called limited-entry decision tables. On the other hand if the answers are expected to be a
little more general such as red, 3, after 6:00pm, etc., then the table is called an extended-
entry decision table. Tables which contain both types of answers are called mixed-entry
tables [29]. Note that wild-card or don’t-care entries represent two or more values
implicitly, therefore tables which contain wild-card entries are considered extended-entry

tables, even if all other values are only yes or no [30].

An example decision table giving rules on how to set up a thesis defence is shown

below in Figure 1.

All Reports
Submitted
Room Booked

Chairman
Appointed

Book a Room

YES NO YES
YES NO NO YES

Announce the Exam

Appoint Chair
Find Examiners

Figure 1 - An Example Decision Table

-29-

Notice that there are no rules with duplicate condition sets. Theoretically there
could be, but there is no need for their separate existence because they could be merged.
Suppose we were to have two rules with identical conditions indicated, but different
actions specified. Then we could simply merge the two columns such that there is one
column with the union of the actions listed in the two old columns. To the contrary, there
could be two columns with identical actions but different conditions. This is because it is

more difficult to merge columns based on differing conditions, although it is possible.

There are two types of rules in a decision table: simple rules and composite rules.
Simple rules have at most one simple value listed in the condition entry. An example of
this would be a rule with one condition, Time of departure with a value of 5:00pm. A
composite rule (sometimes called complex rule) has one or more entries with iwo or more
values. An example of this would be a rule with the same one condition, Time of
departure, with a value of (5:00pm v 9:00am) [29]. Note that since a don’t-care-entry
represents two or more values, a rule containing a don’t-care-entry is considered

composite [31].

3.2. Proposal for Using Decision Tables as an Internal Policy
Represenation

There are two things that decision tables make easy: detecting conflicts between
rules in the decision table, and checking to see if the table is complete. Since it is
important to check our policies for conflicts and may be important to check them for
completeness, the format of decision tables to store policies seems appropriate. We will
examine both completeness checking and conflict checking in decision tables and discuss
how they can be used with policies. In their standard format, decision tables are not
sufficient to store policies. Modifications will have to be made in order to store all the
policy information. Furthermore, we will discuss the problem of converting policies

from the internal decision table representation to that of executable code.

-30-

Note that in this section I will use example condition sets of rules to demonstrate
certain ideas. The notation I use is the following:
RuleName: {(valuela, valuelb, valuelc), ~(value2a), (%)}

Where:

RuleName is the name of the rule.

The curly braces { and } show the end of the rules values.

Values for a particular attribute are grouped in parentheses and separated by

commas. Each set of parentheses are also separated by commas.

The value (*) denotes the don’t-care-value.

The value —(valueZa) denotes NOT (valuela)i.e., (*) - (value2a).

Since the actions were not important for our present discussion, I have omitted

- them in this notation. This notation only shows the condition part of the rule.

3.2.1. Checking for Completeness

When writing policies, it is often important to know whether or not a policy set
will cover any possible situation the system will ever come across. A policy set which
does this is said to be complete. Completeness is something that is often difficult to
check when a policy is written at a high level, especially when there are many possible

conditions to be met. Decision tables prove themselves very useful in this area.

In order to check if a policy set is complete, we must first know how many simple
rules are theoretically possible within our table. Recall that a simple rule has exactly one
condition value corresponding to each condition in the stub. Therefore the number of
possible simple rules in our table is equal to the number of possible values for the first
condition multiplied by the number of possible values for the second condition multiplied
by the number of possible values for the third condition, etc. [29] For example, let us say
that I have policy describing costs of used cars. I have three conditions in my table:
Colour, Year, and Make. Let us say that Colour can be one of four values: black, green,

red, blue; Year can be one of twenty values: 198! through 2000; and Make can be one of

-31-

three values: Honda, Volvo, Toyota. The number of simple rules possible in this table is
equal to the number of possible conditions that can occur in the system, which is equal to
4 (number of possible colours) * 20 (number of possible years) * 3 (number of possible

makes) = 240.

Once it is known how many simple rules the table can represent, the next step is
to find out how many simple rules the table actually represents. If the table only contains
simple rules, this is simply a matter of counting how many rules are in the table.
However, often times tables will contain composite rules. Composite rules represent
multiple simple rules, and so it is necessary to figure out how many simple rules each
composite rule represents. In order to do this, we multiply the number of values entered
for each condition in the rule [29]. For example, if I have a rule with the condition values

{(red, black), (1995, 1996, 1997, 1998), (*)}
then the number of simple rules this composite rule represents is 2 (number of values for
first condition) * 4 (number of values for second condition) * 3 (number of values for
third condition) = 24. Note that since the last value was a don’t-care value, it in effect

represents all possible values for that condition.

This is not completely correct, however. Let us say that we have two rules with
condition sets: |

{(red, black) (1995, 1996, 1997, 1998), (*)} and

{(*), (1997, 1998), (*)}
According to the above discussion, the first rule represents 2 * 4 * 3 = 24 simple rules,
and the second rule represents 4 * I8 * 3 = 216 simple rules. Since our table can
represent 4 * 20 * 3 = 240 rules and we are representing 24 + 216 = 240 rules, we might
be tempted to say that our policy set is complete. This is not correct, however. Note that
the condition set {(red), (1995), (Honda)} can be represented by both rules. Note also
that the condition set {{blue), (1997), (Honda)} is not represented by our policy set. Our
policy set contains overlapping conditions, and therefore some of them have been

counted twice. Two rules which do not overlap are said to be disjoint. In order to count

-32-

the number of simple rules represented by our policy, all of our rules must be disjoint.

We must then create disjoint rules from the rules in our policy set [29].

First, a set of overlap-rules are created. Overlap-rules are rules generated to

express the overlap of rules in the table.

Definition 3.2.1.1:
An overlap-rule Rg is created from two rules R; and Rj, such that if R; has

condition set X:{x;, X2, ..., Xp} and R, has condition set Y:{yi, y2, ..., ¥m}, Ro will have

condition set Z:{zi, z2, ..., Zp} where Z=X N Y.

For example, using the two rules above, the overlap-rule would be {(red, black),
(1995, 1996), (*)}. Using our technique of counting how many simple rules a rule

represents, we can see that our overlap rule represents twelve simple rules.

What we need to do is replace one of the two rules that overlap with one or more
rules that represent the old rule without the overlap. To do this we suggest the following
procedure:

1) Find the rule representing the overlap in the two rules. Call this rule Ro.

For each slot in Ro:

2) Call the position of that slot P. If the slot contains only one value, is the null
value, or is the don’t-care value, do nothing. Otherwise create a rule. The
new rule’s values are Ro.

3) - The value in slot P of the new rule is then replaced by:
the intersection of the value in slot P of R» and the complement of the value in
slot P of Ro.

4) Eliminate the original R».

Example:
We have the two rules:

R;: {(red, black), (1995, 1996, 1997, 1998), (*)} and

-33-

Ra: {(*), ~(1997, 1998), (*)}

First we find the overlap rule Ro, which in this case is:
Ro: {(red, black), (1995, 1996), (*)}

We look at the first slot in Rg which is (red, black). It is more than one value so
we create a new rule R,, which takes its values from Ro.
{(red, black), (1995, 1996), (*)}

Now we replace the value in the first slot with the intersection of the first slot
from R; and the complement of the first slot in Ro.
R)' N =Ry = (*)n ~(red, black)
= (*) (blue, green)

= (blue, green)

Now we have:
R, {(blue, green), (1995, 1996), (*)}

Next we examine the second slot of Ro. It is (1995, 1996), which again contains
more than one value so we create another rule identical to Ro.
{(red, black), (1995, 1996), (*)}

This time we replace the second slot’s value of the new rule with the intersection
of the second slot in R, and the complement of the second slot in Ro.
R# N-Ry =~(1997,1998) N —(1995, 1996)
= —(1995, 1996, 1997, 1998)

Now we have:
Rop: {(red, black), —(1995, 1996, 1997, 1998), (*)}

-34-

Next we look at the third slot of Ro. It is (*), which is the don’t-care value so we
do nothing. Finally we eliminate the original R.
Now as our rules we have:

R;: {(red, black), (1995, 1996, 1997, 1998), (*)} and

R, {(blue, green), (1995, 1996), (*)}

Rap: {(red, black), —(1995, 1996, 1997, 1998), (*)}

From our earlier calculations we determined that criginally R; had a simple rule
count of 24, R, had a simple rule count of 216, and that there were 12 rules which
overlapped. Therefore we were representing 228 rules.

Our new count is:

R)2*¥4*3=24

Ry)2%*18%* 3 =108

Ry)2*16*%3=96

Total =24 + 108 + 96 = 228

Therefore our new rules do represent the same number of rules as the old one. If

we now find the overlap rules we get:
Roi2a: {9, (1995, 1996), (*)}
Ro12: {(red, black), T, (*)}

Ro26, 260 {1, ~(1997, 1998), (*)}

Notice that every single rule has a null value somewhere, meaning that none of
our new rules overlap with each other. In this example, with only two rules, it was not
really necessary to remove the redundancy between the rules, since we could calculate
the overlap simply by seeing how many simple rules the overlap rule represented. In a
larger system, however, it may be necessary. Let us say we had three rules A, B, and C.
A represents 100 rules, B represents 100 rules, and C represents 100 rules. Let’s say the

entire system can represent 250 rules. We may know that the overlap-rule for A N B

represents 50 rules, the one for B N C represents 50 rules, and the one for A N C

-35-

represents 50 rules. But it is complicated to determine which of these overlap-rules also
overlap. For exampie we may have over-counted the number of simple rules that are
represented by the overlap rules if A N B N C is not empty. It is much easier to
transform the policy set into one that does not overlap at all and then count the equivalent

simple rules.

It is not always desirable to have a rule set that covers every single possible
combination of conditions. In that case, checking for completeness will always return a
negative result. If there is a standard completeness checking mechanism in the system
that checks every single table for completeness, an else rule with a null action set can be
added to cover any rules not covered by the rest of the table, thereby making the table
artificially complete.

3.2.2. Consistency Checking

Because of the structure of decision tables, it is easy to see particular
combinations of conditions and actions when looking at one. [29] This would certainly
make it easier for humans to analyze the rules and determine if they are consistent. If a
new rule is added to the decision table or an existing rule is modified, first find all
conditions that are indicated by the rule in question. Next go along the row for each
condition and find all columns that also indicate that condition. (By indicated we mean
they have some value other than the don’t-care-value.) Each column that does is a rule
that could potentially be triggered at the same time as the updated rule. Out of those
rules, any one that has an action that conflicts with an action in the original rule can be

said to potentially conflict with the original rule.

However, for our purposes, humans will not be used to check for consistency of
the rules. What interests us is whether this structure eases consistency checking in some
way the computer doing the checking can use. There has been research on how computer

programs can best perform consistency checking using computer algorithms, however, it

-36-

may first be useful to see if this type of conflict checking will solve the problem of
detecting policy conflicts.

As mentioned in the previous chapter, policy is concerned with two overall types
of inconsistency: modality conflicts and application specific conflicts. In classic decision
table theory, the concern is with two other types of conflicts: intercolumn inconsistency

and intracolumn inconsistency.

Intercolumn inconsistency occurs when two rules in the decision table have
overlapping conditions. What happens is that when the conditions for the two rules are
matched at run time, the system does not know which rule it should act upon [29]. This
is also referred to as having an ambiguous table. When the two rules with overlapping
conditions have the same actions, the ambiguity is said to be apparent. If the rules
specify different actions to be performed, the ambiguity is said to be real [32]. In

decision table terminology, having a real ambiguity means the table is inconsistent [35].

It has been said that ambiguities must be detected and removed from decision
tables [31]. However, King and Johnson have argued that this is an unnecessary
restriction to those applications which require only one action for a set of conditions.
They argue that some applications may require that two or more actions be performed
when one set of conditions is matched, and that this is perfectly acceptable. Rules that
permit this behaviour are called multi-action rules [32]. Lew also used these kinds of
rules by providing a vector action set as opposed to a single action for each rule. He also
allowed all actions to execute in the case that two rules with the same conditions

specified different actions [35].

For our purposes, it is perfectly acceptable to have more than one action executed
upon a set of conditions being matched. Not only can this be done if we have one rule
specifying multiple actions, but also if two separate rules happen to be triggered at the

same time. Therefore, detecting the presence or lack of ambiguities in our table will not

-37-

lead to concluding whether or not our set of policies is consistent, since our notion of

consistency is different from that associated with single-action-rule decision tables.

Intracolumn inconsistency refers to a rule having conflict within itself [29]. For
exﬁmple, say one condition asks what year their driver’s license was obtained and another
asks for the year of birth. Based on driving laws, we know that people under a certain
age cannot have driver’s licenses. In that case if there is a rule which has a value for year
of birth that does not allow a license and there is a non-null value for the year the driver’s
license issuance, then we have an inconsistency. For decision tables this often seems to
be a conflict between two conditions, but it seems logical that this can be extended to
cover an action combination that does not make sense according to the “world” the
system operates in. For example, if one action says to delete a file, and another action
says to modify the file, we would have an inconsistency. Intracolumn inconsistency
checking, therefore, seems to map quite well to the notion of application specific
conflicts in policy. How this can be done is not discussed in this thesis and is left for

future work.

3.2.3. Storing Policies as Decision Tables

Now that we have seen the benefits of representing policy as decision tables, it is
important to know how to transform policies represented in another form to the decision

table representation.

For the purpose of storing policy rules in decision tables, we will consider an
event trigger to be a specialized form of condition. In this way, we will not need to
modify our decision tables to be able to specify which events will trigger particular rules.
We can simply make a condition indicating that if the event occurs that the condition has
been met. This solves the problem of representing both events and conditions in the table
which is only meant to represent conditions. For the remainder of this section the word

condition in a decision table will refer to our expanded notion of condition which is either

-38 -

a condition from the rule or an event from the rule. For example in Figure 2, Room

Booked could refer to either a condition or event.

Since all policy rules may at one time fit into one table, the table must have a row
for each possible condition statement that appears in the rules. This does not act as a
restriction on the number of condition statements the system can represent. Let us say
that we are adding a new rule which has a condition statement never before seen in the
system. All that needs to be done is to add a row to the table with the new condition
statement. Then the new column can be built for the rule in the normal fashion. Since
the other rules didn’t care about this condition, we need not modify the other rules. They

will already have a blank entry for that condition indicating a don’t-care-value.

Similarly the table must have a row for each possible action that rules can
perform. As with the condition statements, if a new action appears in a rule which the
system has not listed, a new row can be built on demand for that action. Notice that in
Figure 2, that if Rule 5 were added to the system and the action Defend did not appear in
the table, that it could be added to the table. The other rules would get a don’t-care-entry

in that row, which would not affect them in any way.

Since actions and condition statements can be added to the table as needed, there
is no need to examine the rules, and construct the rows all at once before entering the
rules. The table can be built increrhentally, adding rows as needed. For example, if our
system can produce 10 events but we are unaware of how many events are possible at the
time of building the table, there will be no problem. The table is created using the first
rule which let us say indicates two events, so the table now contains two events. Now we
take the second rule which let us suppose indicates two different events. These new
events are added to the table as the second rule is added to the table and the process is

continued, adding new conditions and actions as the rules containing them are processed.

Our table is missing two important attributes that are represented in the PSL we

are using, however: the notion of modality, and the order of execution. In Sloman’s PSL,

-39-

each rule has a single modality value. Therefore, we extend the decision table structure
such that each column in the entries section has a value representing the modality. The
question is where should this value be located. Modality is not something that affects
whether or not a rule should be triggered, so it really shouldn’t appear in the condition
part of a rule. However, it is not really an action either, but a modifier on the actions. It
determines whether the actions should be executed, permitted to execute, prohibited to
execute, or must not execute. In that case, we should really have another horizontal
divider in our table. This third section will hold exactly one row representing the
modality values for all the rules. To fit with the rest of the table, the modality section of
the table should have a modality stub. Since there is only one row, the item in the stub
will never change, and will in fact have no real purpose except to be consistent with the
rest of the table. We’ll call this stub item Modality. The value in the entries section
corresponding to this stub can be exactly one of the values used in Sloman’s PSL for each

rule: A+, A-, O+, or O-.

If two rules are triggered at the same time, we may wish there to be priority
values associated with each rule as suggested by Sloman, in order to determine which
rule should be fired first. Therefore, we need another modification to the decision table
in order to indicate this priority value. Again, this value is neither a condition upon
which we can determine if the rule should fire, nor an action to perform. Therefore we
should create another section in our decision table for this purpose. As with the Modality
row, we will create another row with the stub called Priority. The entries in the Priority
can be varied depending on the sort of priority used in the policy specification language.
It could be numeric values, strings such as HIGH, MEDIUM, LOW, or some other form
of priority indicator. The table, being only an intermediate form for the policy to be

stored and analyzed, does not need to restrict the values it can accept.

The order of appearance of actions in a decision table rule does not normally
affect the order of execution of these actions. If it did, then a particular action X would
always be performed before another action Y because actions in the same table always

appear in the same order. This may be contrary to what is desired for the behaviour of

-40 -

the rules. Therefore, we modify the action entry of the decision table such that it gives us
a way to represent the desired sequence of execution of the actions. The table should
allow each action to have a corresponding value representing when the action is to be
executed compared to the other actions. There are two ways this can be done: absolute
ordering and priority ordering. Using absolute ordering we can specify that a particular
action will be the first to execute, another action will be the second to execute, etc. Using
relative ordering, we can specify execution priorities for each action. That way, some
actions could have the same priority, when it is not important which is executed first.
Then, if there are multiple actions of the same priority, there is no need to wait for one if
it cannot execute right away. The other actions of equal priority can be executed in the

mean time, and waiting will resume if the remaining action still cannot execute.

All Reports
Submitted
Room Booked

Chairman
Appointed

Book a Room

Announce the
Exam '
Appoint Chair

Find Examiners
Defend

Figure 2 - An Example of our Modified Decision Table Format

Figure 2 shows an example of the modified decision table we have just described,
with the new and modified areas shaded. Notice that in RuleS there is a priority value

associated with the rule, but no priority value given in the action entry. If there is no

-41-

action priority value given, the system can determine in which order to perform the

actions.

Our next concern is how the policies should be grouped. A policy rule is stored in
a decision table as a rule in the table. How to store entire policies or policy sets is not as
obvious a choice. A single decision table could be used to store the rules of one single
policy, all the policies in a particular policy set, or all the policies in the entire system.
There is really no restriction in this respect. However, large decision tables could
become unwieldy in terms of memory usage, thereby increasing the time needed to
update the table or analyze it for consistency [33]. Therefore, it may be beneficial to
store each policy as a separate decision table. This is also advantageous because in order
to check for local consistency, often only one policy will need to be compared with itself,
so no unnecessary policies will have to be examined if all the rules related to the policy
are contained within that decision table. On the other hand, storing entire sets of policies
(such as all the policies of -a university department) in a single decision table can help to

organize policies by keeping related policies together.

In the case where multiple policies are needed in order to check for consistency,
two or more tables can be temporarily merged into one larger table for the purpose of
analysis. Research has been done on how to best merge decision tables into larger tables
in order to optimize performance times, such as the work of Shwayder [33]. In our case,

merging the tables would be a similar process, but for a different reason.

Now that our table contains all the necessary attributes needed to represent our
policies, we must figure out how to convert them from their policy definition language,

into our table.

3.2.4. Conversion of Decision Tables to Code

We now have our information in a table where it can be analyzed for

completeness, correctness, and consistency. Once this has been done, the decision tables

-42-

must be transformed into some form that can be executed. There have been several
algorithms devised on how to translate the information given in decision tables into an
executable code form [34],[35],[36],[37]. Generally these algorithms translate the

contents of the decision table into a flowchart or execution tree.

However, with declarative languages such as CLIPS [38], JESS [39], and
PROLOG [40], we could simply form rules in the desired language directly from the
rules in the decision table. This would also take care of the problem of deciding exactly
how the rules should be executed. Rule engines have been developed over many years
with algorithms designed for the execution of declarative rules. In that case, all we need
is a translation from the policy terms in our decision table rules to actual executable terms

in the declarative language.

Vanthienen and Wets [41] have discussed how easy it is to convert decision tables
into rules that are executable by an expert system shell. For example we could use
column based translation. This involves creating one rule in the expert system shell for
every column or rule that we have in the decision table. This is the most obvious
translation method, although they also discuss two other translation methods into expert
system rules: entry based translation and row based translation. Entry based translation is
where each entry in the table is turned into a rule in the expert system shell. Row based
translation creates a rule in the expert system shell for every action indicated in the
decision table. Therefore the problem of converting decision tables to executable rules

has already been solved, and we can benefit from these research results.

3.3. Summary

The power of decision tables is the ability to check its rules for completeness and
to check for consistency. Since rules from decision tables can easily be adapted from
policy rules, the decision table format seems like a natural method of storing policies in a
declarative manner. Although the consistency checking normally performed on decision

tables does not map perfectly to the problem of consistency checking between policies,

-43 -

they do serve as a helpful tool in performing completeness checking. With rule engines
available, all that is required to make policies executable is to take the decision table rules

and translate them to the expert system shell language.

4. Incremental Validation

4.1. Why is Incremental Validation Needed

Clearly stated, the problem of incremental policy validation is this: Assume that
there is a pool of rules R. Let us say for now there are a thousand of them. Assume that
these rules have been validated somehow to check for conflicts, and R has been
determined to be consistent — i.e., there are no conflicts within R. Suppose a change, AR,
is made to R, such that the number of rules that have changes are much smaller than the
total number of rules in R. We want to see if the set of rules R is still consistent without
having to revalidate the entire set. We are aiming to revalidate R with significantly less
effort than is needed to revalidate the entire set of rules. In particular we will show that

this can be done in linear time.

4.2, Simple Incremental Conflict Detection

Let us assume that our system does not have all the properties of a distributed
system, in particular the property that events multiple events can occur at the same time.
We assume that events cannot happen concurrently. One event must occur before or after

another, even if they are separated by only an extremely small time interval.

Then, two rules can be triggered at the same time if and 6nly if they contain the
same triggering event in their conditional statements. Furthermore, the common event
between them must be the final event to occur out of all the events listed in the
conditional statements for both rules. This is because we assume that two events cannot
occur simultaneously. For example: if R; fires upon events A, B, and C occurring, and
R, fires upon events A, D, and E occurring, then A must be the event that occurs last if
these two rules are to conflict. If events A, B, and D are fired, then if event C or E

occurs, then one of the rules will be triggered. Since both events cannot occur at the

- 45 -

same time, only one of the rules will be triggered at a time. The only way the two rules
can be triggered at the same time is if events B, C, D, and E were fired, and then event A
is fired last. Note that in the condition section of our decision table we are including both
the event triggers and the conditions obtained from the policy specification language.
The;efore for the remainder of this chapter, when we refer to a condition in the decision
table, we are referring to either a policy’s condition or a policy’s event. There will be no

difference between the two in our conflict detection algorithm.

Theorem 1:
Two rules can be triggered at the same time if and only if the condition
entries for both rules contain at least one common condition.

Corollary 1:
Out of all the conditions in the condition entries for both rules, one of the
common conditions must occur last in order for both rules to be triggered

at the same time.

Theorem 2:

If a set of rules S is the union of two sets of rules S; and S,, where S, is
consistent, and S, is inconsistent, then S will be inconsistent.
Proof:
If S, is inconsistent, that means that S, contains two or more rules such
that they conflict with each other. Since S is the union of S; and S,, S will
also contain this set of conflicting rules. Therefore S is inconsistent.
Corollary 2:
Any set of rules containing a rule which is inconsistent with itself, is an
inconsistent set.
Example: if rule R; states that it should lock door A and open door A, this
is inconsistent. Therefore the entire set of rules S in which R, is contained

is inconsistent.

Theorem 3:

Proof:

2 we can see that if we find a rule which is inconsistent with itself, then we can stop the
validation process and declare that the set of rules is inconsistent. From Theorem 3 we
can determine that if we add a new rule to a set of rules previously said to be consistent,

we cannot say that the new set is consistent without re-validating the set, even if the rule

If the set of rules S is the union of the sets of rules S; and S,, where S; is
consistent, and S, is also consistent, then there is no conclusion on

whether S is consistent or not. It could be either consistent or inconsistent.

Say S; contains one rule R;: on event X open window A.

Say S, contains one rule Ry: on event X close window A.

It is quite obvious that S; is consistent, since there are no other rules in S,
and R; does not conflict with itself. The same can be said of S,. Now if
we take S = S| U S, we can see that R; and R; will be triggered at the
same time, and that they have conflicting actions. This means that if event
X occurs, that a conflict will occur between R; and R,. Therefore S is
non-consistent. Thus, the union of a consistent set of rules with another

consistent set of rules does not necessarily yield a consistent set of rules.

Theorem 2 and Theorem 3 lead us to two important observations. From Theorem

1s consistent with itself.

system is inconsistent. If the rule is consistent with itself, then move onto the next

Therefore our incremental validation algorithm can begin with the following step:

See if a rule is consistent with itself. If it is not, then we can determine that the

validation step.

There are two ways a rule can be inconsistent with itself: if it contains mutually

exclusive conditions, or if it contains opposing actions.

-47-

Mutually Exclusive Conditions

If a rule depends on two conditions that can never occur together, then the rule is
said to be inconsistent. An example of this would be if a rule had a condition
“x = Y6’) ~ (x = ‘97)". These two statements can of course never be true at
the same time, so we know that the rule will never be triggered. Although this will not
result in a runtime conflict, it means that the rule is useless as it will never be fired, and

so the user should be warned. Therefore we consider this rule inconsistent.

Opposing Actions

If a rule contains two actions that oppose each other, then the rule is said to be
inconsistent. An example of this would be if a rule had an action that said “Close Door
A” and another action that said “Open Door A”. The end result of these actions is
completely dependent on the order that these two actions are performed. Therefore we

consider this rule to be inconsistent.

The next step in our algorithm would be to check the new rule to make sure it is

not inconsistent with any other rules.

Algorithm Vg: _

1. See if the new rule Ry contains two conditions that can never occur together. If so,
halt, and return that the new rule is inconsistent.

2. See if the new rule Ry contains two actions which oppose each other. If so, halt, and
return that the new rule is inconsistent.

3. For each rule in the policy system, compare it with Ry to see if they have a common

condition and an cpposing action. If so, halt, and return that the two rules conflict.

Given that there are r rules in the system, this process would take O(n), since the
new rule needs to be compared with every rule in the system. Compare this with
complete revalidation which compares every rule with every other rule, taking o).
Algorithm Vy, is effective, but it compares the new rule with rules which have no chance

of conflicting. There must be a more effective way to validate our system of rules.

-48 -

4.3. A Simple Improvement to Validation

In the algorithm Vj, every single rule in the system was compared with the rule
that was changed. We could improve our algorithm by comparing the new rule only with
rules that have a possibility of conflicting. We must find a way to determine which rules

should be examined.

We know that in order for two rules to conflict with each other, that they must be
triggered at the same time. From Theorem 1 we know that in order for two rules to be
triggered at the same time, they must both contain at least one common condition.
Therefore if two rules do not have any conditions in common, we know they can never

conflict, and thus we do not need to compare these two rules when validating.

This makes the set of rules that we need to compare smaller, but can we shrink the
set even further. In order for two rules to potentially conflict, two conditions must be
met. As mentioned above, the first condition is that both rules contain at least one
common condition to trigger them. This means the rules can both be triggered at the
same time. The second condition is that each rule must contain an opposing action with
the same modality, or the same action with opposing modality. This means if the rules
are triggered at the same time, each rule will attempt to do the opposite of the other rule.
Depending on which rule we choose to perform first, the outcome will be completely
different. Therefore we can compare the new rule to two subsets of rules:

(a) those rules which have an action opposite to one in the new rule but

the same modality. '
(b) those rules which have an identical action to one in the new rule but

has the opposite modality.

Any rule which is in both of these subsets does not even need to be compared

with the new rule, since it automatically meets the definition of potentially conflicting

-49-

with the new rule. Therefore, it is enough to know which rules fall in both of these

subsets of S. Then we can find all the rules that potentially conflict with the new rule.

Potential Action Potential Modality
Conflicts Conflicts

o

v,

Potential Conflicts

Figure 3 — Potentially Conflicting Rules with Ry

The following explains the symbols in Figure 3:

S : The entire set of rules in the system

Sc: The set of rules that contain a common condition with the new rule, Ry
Sa: The set of rules that contain an action found in Ry

Sa-: The set of rules that contain an action opposite to Ry

Sm: The set of rules with the same modality value as Ry

Sm.: The set of rules with an opposing modality value to Ry

Ca=Sc N Sm N Sa. : The set of rules with a potential action conflict with Ry

Cum = Sc N Sm- M Sa : The set of rules with a potential modality conflict with Ry

4.3.1. Development of the Concepts for Algorithm V,

Let us examine a policy set in decision table form, and see how we can determine
which rules potentially conflict. Let us say that initially the table was validated as

consistent, and we added a new rule, R;. We must now find out if R; potentially conflicts

~-50-

with any rules in the table. Let us begin by constructing an exact copy of our decision
table, which we can manipulate to eliminate rules we know don’t match conflict criteria.
(See Figure 4.)

Al AR

Figure S — All Irrelevant Rows are Eliminated

-51-

The first thing we know is that in order for a rule to conflict with R; it must
contain at least one common condition with R;. Therefore we can eliminate all

conditions from the table that R; does not have. (See Figure 5.)

Next, we can eliminate the rules whose condition entries are all empty. (See

Figure 6.)

Figure 6 — All Empty Condition Entry Rows are Eliminated

Ry | R3 Ry | R4 | R6
M| A+ | A+ M| A+ | A- | A-
ci| v ca|l v | v
c3lv |V c3| v
Al N Al N
v B A2l
A3V A3l V| v
Ad Ad NE

Figure 7 — Table is Split by Modality

-52-

The next thing we know is that in order for two rules to have a modality conflict
they must have opposite modality values. In order for two rules to have an action conflict
they must have the same modality values. Therefore, we must examine all rules that have
the opposite and the same modality values to Ry, and can ignore the rest. Let us create a
new table containing all rules with the opposite modality value as Rn. Let us create
another table containing all rules with the same modality value as Ry. (See Figure 7.)
We are creating two tables instead of one because the actions that follow on each of the
tables will not be the same. Note that if our new rule was of modality O+, then we would
split our table into three tables: one for O+, one for O-, and one for A-, since we can have

O+/0- and O+/A- modality conflicts.

In the table that contains rules with the opposite modality value as Ry, we are
looking for modality conflicts. In order for two rules to have a modality conflict, they
must contain at least one common action. Therefore let us eliminate all actions in the
table that are not found in Ry. Similarly in the other table, the one with the same
modality value as Ry, we are looking for action conflicts. In order for two rules to have
an action conflict, one rule must contain an action that is an opposing action to an action
in the second rule. Therefore let us eliminate all actions in this table that are not

opposing actions to an action found in Ry. (See Figure 8.)

Rnx | R3 Rx | R4 | R6

Figure 8 - All Non-Opposing Actions are Eliminated

-53-

Once this is done, we can again eliminate some rules from each of the tables.

This time we remove all rules whose action entries are all empty. (See Figure 9.)

1 RRiie]
NP PREN [

Figure 9 — All Empty Action Entry Rules are Eliminated

Finally, we remove Ry from the table with the same modglity value as Ry, and the
other table if it still exists. Now any rules that are left in either of the two tables are rules
that potentially conflict with Ry. In Figure 10 we can see that R4 has potential modality

conflict with Ry.

Figure 10 - Only the Conflicting Rules Remain

Let us examine what we know about the table with the same modality value as
Rn. We will call this table Ta. We know that any rule found in T, has at least one
condition in common with Ry. In fact, we know that the conditions it has in common are

the conditions that are indicated in T, after performing the steps above. We also know

-54.-

that any rule in T4 has at least one action which is an opposing action to one found in Ry.
Again we also know exactly which actions they are: they are the ones indicated in Ta.
Finally we know, of course, that any rule in the table has the same modality value as Ry.
These rules then meet all the requirements necessary to have an action conflict with Ry,
therefore we know that all these rules have a potential action conflict with Ry. All the
actions and conditions that would be responsible for each rule’s conflict are the non-

empty entry values in each rule in Ta.

Similarly, in the table with the opposite modality value as Ry, which we will call
Ty, we know that any rule found in this table has at least one condition in common with
Rn. As with Ty, the common conditions are indicated in the table. We also know that
any rule in Ty has at least one action in common with Ry, and again, these actions are
indicated for each rule in the table. Finally, of course, we know that each rule in Ty has
the modality value opposite to Rn. These rules meet all the necessary requirements to
have a modality conflict with Ry, therefore we can say that these rules have a potential
modality conflict with Rx. Again, all the actions and conditions responsible for each

rule’s conflict are the non-empty entry values in each rule in Tyu.

4.3.2. Algorithm V,

Ry: the new rule
D: the input decision table

Algorithm V(Rn,D):

1. Create a duplicate of the policy decision table D. Call this table D’.

2. Eliminate from D’ any conditions not found in the rule being examined, Ry.

3. Eliminate from D’ any rules whose condition entries are all empty.

4. Split D’. Make a new table Ty, containing all rules with the opposite modality to Rn,
and a new table Ta, containing all rules with the same modality as Ry. Eliminate all
other rules from D’.

5. In Ta, eliminate any actions that are not opposing actions in Rn. In Ty, eliminate any

actions that are not found in Ry.

-55-

6. In T, and Ty, eliminate any rules whose action entries are all empty.

7. Eliminate Ry from T and Twm.

8. The rules that remain potentially conflict with Ry, and the non-empty entries
correspond to the conditions and actions that overlap with Rn. Table T4 contains
rules that have action conflicts with Ry. Table Ty contains rules that have modality

conflicts with Ry.

4.3.3. Analysis of V4

We should see if we are doing each step in the right order to obtain the most
efficient solution. First we will examine whether the table should be divided before or
after removing the conditions. If we divided the table into two smaller tables before we
had removed any non-relevant actions, we would have to remove the same conditions for
each table. The way we do it, we are only removing each condition once. Therefore, by
removing the conditions before dividing the table, we are being twice as efficient as

compared to removing them after dividing.

We next examine whether the table should be divided before or after removing
the actions. If we divided the table into two smaller tables after we had removed any
non-relevant actions, we would have had a lot more work. Since in each table, different
kinds of rules were removed, we would not have been able to remove rules and then
divide the table. When we pick which rules to remove, we are deciding what kind of
conflicts we are looking for. By removing, say, all rules that don’t have identical actions
to those in Ry, we are choosing to look for modality conflicts. Therefore, once this step
is done, the table can no longer be used to find action conflicts. In order to find action
conflicts, we would have to start the entire process from D again. Therefore, by dividing
before removing actions, we save doing the entire procedure twice. By similar
arguments, it is éasy to see that removing irrelevant conditions before removing actions is

also the more efficient approach.

-56-

Say we had a table with C conditions, A actions, and n rules. Our approach starts
by examining each condition once and eliminating it if necessary. This takes C
operations. Next each rule is examined to see if its condition entries are all empty, and
the rule is removed if so. This takes n operations. Let us assume as the worst case that
no rules were removed in the previous step leaving us with n rules. The table is then split
into two smaller tables, by examining each rule and putting all rules of opposite modality
into one table and all rules of the same modality into another table. Let us assume the
worst case, that all rules in the original table had a modality value either the same as or
opposite to Ry’s modality value. Then this takes n operations and all the fules are still
present. Say that the first new table contains n; rules and the second contains n; rules.
Next each action is examined to see if it is a possible conflicting action. This is done for
each action in each of the two tables so this takes 2 * A operations. Finally each rule is
examined in each of the tables, to check if all its action entries are empty, and the rule is
removed if so. This takes n; operations for the first table and »; operations for the second
table. Note that n; + n, = n, therefore this step takes n operations. Then we can say that
our entire process takes C +n +n + 2 * A + n = C + 2A + 3n operations in the worst

case.

Let us say we had done the validation by comparing Ry with each other rule in the
system (Algorithm Vp). For each rule R; compared with Ry, we must examine each
condition of R; which takes ¢; comparisons, and each action of R; which takes a;
comparisons. Assume c¢; has an average value of cag and a; has an average value of agy,.
Therefore each rule compared with Ry takes aag + Cavg Operations. Assuming we have n
rules in the system, there are n — I rules to compare with Ry, therefore (azg + cavg) * (n —
1) operations to perform. This method takes davghn + Cavgh - @avg - Cavg Operations, while
our algorithm using decision tables takes C + 2A + 3n operations. Keep in mind that the
number of conditions and actions that are possible in a system generally stay constant,
therefore as more rules are added to the system, Algorithm V; takes only 2 more
operations per rule. Compare this to Algorithm Vy. In the absolute best case each rule
has one single condition and one single éction, therefore the aggn + cagn becomes 2n,

and so as n increases, the number of operations needed is less than Algorithm V. If

-57-

however, there is more than 1 action or condition per rule, then the number of operations
rise at a rate greater than or equal to Algorithm V,. Therefore except under the rare
condition where each rule only has one condition and one action, Algorithm V; will

perform better for large » values.

[= =" Algorithm VO
| =~=—=Algorithm V1

2000 1:

N = no. of rules
cavg=3
a-avg = 3
C=100

A= 100

Number of Comparisons

1000 £

50 100 150 200 250 300 350 400 450 500
Number of Rules

Figure 11 — Graphical Comparison of Vo and V,

4.4. Trigger Chaining

Suppose we know not only which conditions and actions a rule contains, but also
which rules a particular rule may trigger. For example if the execution of R; results in an

event! that is in the condition of Ry, then we can say that R, potentially triggers R,.

Definition 4.4.1:
A rule R; triggers R; if and only if there exists an event E, such that E is caused to

occur upon the execution of R;, and E causes R; to fire.

1 “The execution of R1 results in an event” is abbreviated as “R1 throws an event” throughout the rest of

the thesis

-58-

Definition 4.4.2:

If there is a rule R; which upon firing creates an event E;, and another rule R,

which has E; as a condition, then we say that R; potentially triggers R,.

Therefore even though a new rule Ry may not contain a condition that is in Ry, if
it contains a condition in R, then there is a chance that it will conflict with R, as well.
This conflict does not meet the strict definition of conflict we mentioned earlier. In this
case we consider it a conflict because the action in R, could undo an action performed in
Ry, therefore the action in Ry has no lasting effect. A method to detect these conflicts is

needed in addition to conflicts that meet our earlier definition.

Definition 4.4.3:
If there is a rule R; which throws & events E,, E,, ... Ex, and another rule R5’s
conditions consist of a subset of the events E;, E,, ... Ey, then we say that R;
triggers R,. Since R;’s conditions are a subset of all the events thrown by R;, we
know that all Ry’s conditions will be met when R; fires. Therefore R,’s firing will

certainly cause R to be triggered.

We can visualize this by drawing a graph with each vertex representing a rule in
the system. Each edge from one vertex to another vertex represents a rule potentially
triggering another rule. In Figure 12 we see that R; potentially triggers R; and R3, R»
potentially triggers R4 and Rs, etc.

-59-

¥

S

Figure 12 - Trigger Graph for a Set of Rules

Definition 4.4.4:
Suppose a graph is drawn where each vertex represents a rule in a system, and an
edge from one vertex to another represents a rule potentially triggering another
rule. If there is a path from one vertex V| to another vertex V3 of length n, then

we can say that R; potentially triggers R, by degree n.

We can now say that if R; potentially triggers R, by some degree n, and R; has an

opposing action to an action in Rj, that R; and R; potentially conflict.

4.4.1. Algorithm V,

To detect the above kind of conflict, first we start by adding Ry to our graph of
the system. We do this by adding a node to represent Ry. Then we draw an arrow from
Ry to any rule that contains an event in its condition that is found in Ry’s action entry.
This is, however, only half done. This connects Ry to the nodes that it potentially
triggers, but it does not include the rules that potentially trigger Rn. Suppose we had Ra
which had opposite modality to Ry and actions in common with Ry but did not have any
conditions in common. Then looking at these two rules alone, they will not be triggered

at the same time, and therefore do not potentially conflict. Let us say, though, that there

- 60 -

is a rule Rg which causes events 1 and 2 to occur. Lets us also say that Ry gets triggered
upon event 1 occurring, and Ra gets triggered upon event 2 occurring. Therefore, when
Rg fires, R4 and Ry potentially will be triggered and could have a conflict. Then it is not
only important to look at the tree from Ry down, but to examine the whole tree that Ry is

in. So we must make the tree complete.

One way to do this is to keep a list of all rules that cause each event to occur,
sorted by event. Then when we add Ry to the graph, we see what events cause it to fire.
In this case Event 1. Then we look up Event 1 in our list and see that rules Rg and Rz
cause Event 1 to occur. Then we draw arrows from Rg to Ry and from Rz to Ry. Then
the graph is complete. We must keep track of the roots of the trees we have just

connected Ry to. These trees will be used to find any conflicts.

Let us first examine the situation to see which nodes in our graph must be

validated. Suppose we have the graph in Figure 13.

IR Iz P
SHdhanat

Figure 13 — A Consistent Trigger Graph

In Figure 13 we see that rule R, is triggered upon receiving event 1, and upon
being triggered, causes event 2 to occur. This triggers R, and R; to occur, and so on.
Suppose that we have previously validated these rules and so no rule in our graph

potentially conflicts with any other rule in our graph. This is a consistent set of rules.

-61-

Now let us add a new rule, Ry, to the system, resulting in the system shown in

Figure 14.

PON

AN .
b ERAR

Figure 14 — New Rule Added Above Two Trees with Common Events

As we can see in Figure 14, event 3 causes Ry to fire, which in turn triggers R,
and R4. All the rules in the tree whose root is Ry are triggered when Ry is triggered, in
this case: Ry, Ri, R4, Ra, R3, Rs, and Rg. This means there is the possibility of Ry
conflicting with any of these rules. Therefore we must compare Ry with every rule in the
tree containing Ry to see if there is a conflict. Not only this, but we see that event 3
causes not only Ry to be triggered, but also R;. Since none of the rules in Rn’s tree were
previously triggered upon event 3 occurring, all these rules must be checked to see if they
conflict with any of the rules in R;’s tree. In other words, one of the rules in the set {Ry,
Ri, R4, Ra, R3, Rs, Rg} could conflict with one of the rules in the set {R7, Rg, Ry}. Since
R, and Ry are triggered by the same event, they would have been triggered at the same
time, before we added Rn. We already knew that the system of rules was consistent
before Ry was added, with R; and Ry, being triggered by the same event, there is no
change, now that they are both triggered if event 3 occurs as well. Therefore no conflicts

will arise between rules in R;’s subtree and Ry4’s subtree.

Now let us assume we add Ry such that we get the situation depicted in Figure 15.

-62-

S

Figure 15 — New Rule Added Above Two Trees with Different Events

In Figure 15 we see that event 8 triggers Rn. Ry causes events 3 and 9 to occur,
thereby triggering rules R; and R, respectively and so on. As in the previous case, the
rules in R+’s subtree and the rules in R;o’s subtree must be checked to see if they conflict
with the new rule, Ry. This time, however, the two subtrees are not triggered by the same
event as in the last case. Although the system was consistent before Ry was added, that
conclusion was based on R; and Ry being triggered by different events, and therefore
they could never be fired at the same time. Now Ry firing could cause both R7 and Ry to
fire at the same time. This means that the rules in R7’s subtree could possibly conflict
with the rules in Ryo’s subtree. This must be examined. In summary, for this case, it is
important to check if Ry conflicts with any of the rules in its tree. Also we must make
sure that the rules in every child tree of Ry are consistent with the rules in every other

child tree of Ry that is triggered by a different event.

Now suppose we add Ry such that we get the graph shown in Figure 16.

-63 -

éé 58

Figure 16 — New Rule Added Above Two Trees and Below Another

In Figure 16 we have added Ry such that it is triggered by event 8, thrown by R,
and throws events 3 and 9 itself, thereby triggering R; and Rjo respectively. This has
added Ry to a tree, where Ry is not the root. As always we must check to see if Ry will
conflict with any of the rules in its tree. This time, since Ry is not the root, note that it is
not just Ry children we must check against Ry. In this case when the rules in the original
tree that Ry was added to, the rules in Ry’s subtree are also triggered, which was not the
case before. Therefore we must check the rules in the original tree to see if they conflict

with Ry’s subtree.

Since Ry triggers two rules with different events, as in the last case, we must

check that each child tree does not conflict with every other child tree of Rx.

Notice that the root of the tree Ry is contained in R;. This means that when R; is

triggered, so are all the other rules of the tree. Therefore, since there are new additions to

-64-

this tree, we must see if this tree conflicts with any other tree triggered by the same
events. In this case Ry is triggered by event 1 which triggers R;. Therefore there could
be conflicts between rules in R;’s tree and R4’s tree. Notice, though, that in R;’s tree, all
the rules not found in Ry’s subtree were originally in that tree. In this case those rules are
Ri, Ry, and R;. Since all these rules were triggered by R, in the original system, and the
original system was said to be consistent, we know that none of these rules will conflict
with the rules in Ry’s tree. Therefore the only rules that need to be compared against R4’s
tree are those found in Ry’s subtree. In summary then, for this case, Ry must be checked
to see if it conflicts with any of the rules in its tree. Also any child trees of Ry must be
checked to see if they conflict with any child trees of Ry that are triggered by a different
event. The tree that contains Ry has events that trigger the root. Ry’s subtree must be

compared against every tree that is triggered by one or more of these events.

There are three things we can conclude from all this. First of all, we know that no
matter where Ry is added, Ry must be checked to see if it potentially conflicts with any
of the rules in its tree. Second, if the tree containing Ry is triggered by events
X:{Xi, ... Xa}, then all the rules in the subtree with root Ry must be compared with all
the rules in any tree triggered by one or more events Xy € X. Third, if multiple trees are
merged into one large tree, then the rules of each merged tree must be compared with the
rules of each other merged tree. With this information we can build an algorithm to

check for the consistency of the rules with the minimum number of comparisons.

In order to find all conflicts, we must perform three steps:

1. Find any conflict between a rule in the original tree Ry was added to, and Rx’s
new subtree.

2. Find any conflict between rules in Ry’s subtree and rules in a tree whose root
is triggered by an event that also triggers the root of Rx’s tree.

3. Find any conflicts that occur between children trees of Ry.

-65 -

4.4.2. Step1

Let us start by creating a decision table that contains all the rules in Ryx’s subtree,

including Ry itself. Let’s call this table DTny. We want to compare these rules with the

rules in the original tree that Ry was added to. We can do this by adding one rule from

the original tree to DTy at a time, and using Algorithm V, to determine if there are any

conflicts after each addition. This means, though, that Algorithm V; will need to be

executed once for every rule in the original tree. There may be many rules in the original

tree and this could end up being a time consuming process. We should try to improve on

this approach. Consider the following situation:

4.4.2.1. Improvement to Step 1

1.

Make an empty rule for each modality that can exist in the system. In our
case we have a rule for A+, one for A-, one for O+, and one for O-.
Next traverse every rule in Ry’s subtree. When a rule is traversed, merge all
of its actions with the rule along with the corresponding modality. At the end
of this process, we will have four rules, each containing all the actions found
in RN’s subtree for each modality in the system. We will call the rules Ryas,
Rya-» Ryos, and Ryo..
Repeat steps 1 and 2 for the original tree to which Ry was added. This time
we get the rules Roa+, Roa-, Roos, and Roo..
Now we can compare pairs of these new compilation rules, one from each
tree, to check for conflicts. To check for modality conflicts the following pairs
of rules should be examined to see if they contain any common actions:

Rna- and Roas

Rna+ and Roa-

Rno- and Roo+

Rno+ and Roo-

Rno+ and Roa.

Rna- and Roos

- 66 -

To check for action conflicts the following pairs of rules should be
examined to see if they contain any opposing actions:
Rya- and Roa.
Rna+ and Roas
Ryo. and Roo.
Rno+ and Roo+
5. If a rule Ryx is found to conflict with the rule it was compared to we know
that there is a conflict between one of the rules in Rp’s tree and one of the
rules in Ry’s tree, and we continue on to the next step. Otherwise, we know
there are no conflicts between those two sets of rules and we can stop.
6. Take Ryx and use Algorithm 1 using the rules in Ro’s tree, to see which rule
in Rg’s tree conflicts with it. Call this rule Roc.
7. Once Roc has been found, use Algorithm 1 using the rules in Rn’s subtree to
find out which rule Roc conflicts with. Call this rule Rye. We now know

which two rules conflict with each other in Rg’s tree and Ry’s tree.

If two rules are detected as potentially conflicting, then we can stop our conflict

detection, and report the two rules that conflict. Otherwise, we must continue to Step 2.

4.4.2.2. Explanation of Improvement

Let us examine how Step 1 works. By creating the four rules, we are compiling
all the actions that will occur based on Ry being triggered and matching them with the
appropriate modality. Since we want to examine the worst case, when all rules in the tree
will be triggered, we can ignore the conditions of the rules. In this way we can think of
Ry’s tree as being all one rule, with all the possible modality values. We are simply
dividing this virtual rule into four real rules, each having one single modality value. In
order for a conflict to occur between Ry’s tree and a tree that gets triggered at the same
time as Ry, there must be two actions in each of the trees that conflict. That is to say that
either both trees contain a similar action with opposing modalities, or that both trees

contain an opposing action with identical modalities.

-67 -

We then compile the four summary rules for the original tree that Ry was added
to. Call the rule at the root of this tree Ro. Now we have four rules for each tree. Roo+
contains all actions that will be performed for modality O+ when Ro is triggered (prior to
Ry being added to the system). Similarly we have Roo., Roas, and Roa., for actions that
will be performed when Ro is triggered for modality O-, A+, and A- respectively.

We now have 8 rules: Rnos, Rno.» Rna+s Rna- Rooss Roo, Roas, and Roa.. We
can now compare Ryo+ and Roo- to see if there are any actions in Ryo. that are opposite
to an action in Roos. If so, we know we have an action conflict between the two trees,
since both rules would be triggered by the same events, and are of the same modality.
Similarly we can compare Ryxo+ with Roo. to see if there are any identical actions in both
rules. If so, we know that there is a modality conflict between the two trees, because we
know the two rules are triggered by the same events and are of opposite modality. This
can be performed for the other six rules as well. We compare Rya+ With Roas, Ryo- with
Roo., and Rya. with Roa. looking for opposite actions, which result in potential action
conflicts. We compare Ryas With Roa., Rno- with Roos, Rna- With Roas, Rno+ With Roa.,
. and Ryna. With Roo. looking for identical actions, which result in potential modality

conflicts.

By performing these ten comparisons, we can determine if there are any potential
action or modality conflicts between the two trees. It does not tell us, however, which
two rules are the ones that conflict with each other. Therefore the previous actions are
performed in order to see whether or not further conflict analysis needs to be done. Itisa
simple test to determine if there are potential conflicts present. Provided we have found
the presence of potential conflicts, it would be necessary to examine the rules further.
We should examine whether it is necessary to compare every rule in Ry’s subtree with

every rule in Ro’s original tree. In fact, it is not necessary.

We know which of the summary rules conflicted, and we can use that as a lead.

Say that Ryo. conflicted with Roo.. Then we know that there is a rule in Ry’s tree with

-68 -

modality O+ that conflicts with a rule in Ro’s tree with modality O-. We can take Ryxo+
and compare it with each rule in Ro’s tree, until we find a rule that conflicts with it. Let
us call this rule Roc. This is one of the two conflicting rules that we are looking for in
our system. Then we need to find the corresponding conflicting rule in Rx. We can
compare Roc with every rule in Ry’s tree until we find a rule that conflicts with it. Let us

call that rule Rnc.

4.4.2.3. Analysis of Improvement

Let us assume that Ry’s subtree contained x rules and Rg contained y rules. If we
were to perform comparisons with each rule in Ro with every rule in Ry’s subtree, in the
worst case there would be no conflict detected, and every rule in one tree would have to
be compared with every rule in the other tree. This would take x * y comparisons.
Assuming x and y are proportional to n, the total number of rules in the system, this

process is O(nz).

Now let us examine our newly proposed method of detecting conflicts in these
trees. The first step is to go through both trees and create summary rules for each tree.
Since all rules in both trees need to be traversed, this will take x + y operations. Next 10
comparisons are made between the summary rules to determine if there are any conflicts.
If there are no conflicts, we stop after the 10 comparisons. This means the process only

took x + y + 10 operations. If there are conflicts detected, we move onto the next step.

In the next step, one of the summary rules for Ry’s subtree is compared with the
rules in Ro. Let us assume the worst case, that the rule in Ro that is causing the conflict
will be the last rule traversed in the tree during these comparisons. In that case, finding
this rule will take y comparisons. Next, we take this conflicting rule and compare it with
the rules in Ry’s subtree. Again in the worst case, the conflicting rule in Rn’s subtree
will be the last rule examined. This will take x comparisons to find. This gives us both
of the conflicting rules, with a worst case of taking x + y + x + y = 2x + 2y operations.

Assuming x and y are proportional to n, the total number of rules in the system, this

-69 -

process is O(n). Obviously this is a significant improvement over comparing every rule

in Ry’s subtree with every rule in Ro.

443. Step2

Next, we must compare the rules in Ry’s subtree with rules found in trees with
root Rr, such that Rt and Ro have at least one triggering condition in common. We use
the same technique that was described in Step 1 to do Step 2. First we create summary
rules for the tree with root Rt. We already have summary rules for Ry from Step 1. We
then compare these rules to determine whether there is a conflict present, and if so further

analysis is performed to find the two conflicting rules.

In fact, we know that any rule in a tree with root Rr, such that R and Rt have one
triggering condition in common, cannot conflict with any rule in Rg’s tree. This is
because Ro’s tree and Rr’s tree would have been triggered by the same event before Ry
was added to the system. Since we assumed that all rules prior to Ry being added were
consistent with one another, we know that no rule in the original Rg tree will conflict
with any rule in the Ry tree. Therefore we could do step 1 and step 2 at the same time, by
compiling all of the rules in Rg’s original tree with all the rules in all the Rt’s trees, into
the same decision table. Then when the process to solve step 1 is executed, it will not
only determine whether or not a rule in Rn’s subtree conflicts with a rule in the original
Ro tree, but also if they conflict with anything in any of the Ry trees. All this is useless,

however, if it does not save any time.

Consider if we have Ry such that its subtree has y rules in it. Now say that Ro’s
original tree had x rules in it. Also let us assume there are &-/ trees Ry; that have at least
one triggering event in common with Rp. Let’s also assume each of these trees has x
rules. If we compare Ry’s subtree to Ro’s original tree, and then compare Ry’s subtree
with each Ry;, we must make k comparisons in all. In order to start we must find the
summary rules for Rn. This takes y operations. Next we must find the summary rules of

each Ry. This takes kx operations. For each pair of trees being examined, we must do

-70-

the following: First we must do 10 comparisons of the summary rules. Next we use
Algorithm 1 on Ry;’s tree, taking C + 2A + 3x operations. Finally we use Algorithm 1 on
RnN’s subtree, taking

C + 2A + 3y operations.
So, for each pair of trees being compared, we take

10 + 2C + 4A + 3x + 3y operations.
So for k pairs of trees being examined, we use

k* (10 + 2C + 4A + 3x + 3y) operations.

If we were to first merge Ro’s original tree with all of the Ry;s and then do our
comparison we would have the following. Creating the summary rules for Rx’s subtree
still takes y operations. Creating the summary rules for our new merged tree would take
kx operations (noe that the new tree has kx rules). Now we need to do 10 comparisons of
the summary rules. Next we use Algorithm 1 on our new merged tree, taking

C + 2A + 3kx operations.

Finally we use Algorithm 1 on Ry’s subtree taking a maximum of

C + 2A + 3y operations.

So in all we need
10 + 2C + 4A + 3kx + 3y operations.

Therefore it is advantageous to do Step 1 and Step 2 concurrently.

If two rules are found in Step 2 to be conflicting, then we can stop our conflict

analysis and report the conflicting rules. Otherwise we must continue on to Step 3.

4.44. Step3

Finally, we must determine if any of the rules in one of Ry’s child trees conflicts
with another rule in a different child tree of Ry. Since we already have Rya+, Rna-, Rnoss
and Rno., we can compare these with each other to see if anything in Ry’s subtree
conflicts with anything else in Ry’s subtree. To detect modality conflicts we compare:

Rna+ and Rya-

-71 -

Rno+ and Ryo-
Ryo+ and Rya.
and to detect action conflicts we compare:
Rna+ and Rya+
Ryna- and Rya-
Ryo+ and Ryos

RNO. and RNO-

If no conflicts are detected with the above comparisons, we can say that Ry has
not caused the system to become inconsistent. If conflicts have been detected however,
then we must find the exact rules causing the conflict. As in Step 1, we take one of the
conflicting Ryx and use Algorithm 1 to compare it to the rules in Ry’s subtree. We will
- find one of the conflicting rules. Let us call this rule Ryc;. Next we use Algorithm 1 to
compare Rnc; to the rules in Ry’s subtree, and we will find Rnco, the rule that conflicts

with RNCI-

Note that this algorithm may be performing some unnecessary comparisons.
Conflicts can only occur between child trees of Ry if both of the children are triggered by
different events. Our algorithm compares all descendants of Ry with all descendants of

Rn. We should examine if this is necessary.

Let us compare only the subtrees that need to be examined. In the best case, there
will be only two subtrees that need to be examined. In this case only one comparison
needs to be made. This comparison involves creating summary rules for each subtree.
Assuming each subtree contains x rules, this takes 2x operations. Next 10 comparisons of
the summary rules are made. Finally, Algorithm 1 is used twice to find the two
conflicting rules, which takes 2 * (C + 2 (A + x)) = 2C + 4A + 6x operations. Therefore
the entire process takes 2C + 4A + 6x + 10 operations.

In the worst case there are k subtrees of Ry and all of them have different

triggering events, meaning they all need to be compared with each other. Assuming each

-72-

subtree has the same number of rules, and assuming Ry’s subtree has 7 rules, we can say
each subtree has n/k rules. In order to compare all these rules with each other we must
compare the first tree with all the others, which is k-1 comparisons. The second tree is
compared with all the trees except the first tree, which is k-2 comparisons, etc., until the
second to last tree is compared to the last tree. This takes

k-i + k-2 + ... + 2 + I comparisons,
which is equal to

(k-1)*k/2 comparisons.

From above we know that comparing two trees of size x takes
2C + 4A +6x + 10 operations.

In this case we are doing this (k-1)¥k/2 times, each time with size n/k. Therefore we have
(k-1)*ki2 * (2C + 4A + 6nlk + 10)
= (12 - ki2) * (2C + 4A + 6n/k + 10)
= CK — Ck + 2AK — 2Ak + 3nk - 3n + 5K - 5k
=(B-k)*(C+2A+5)+(k-1)*3n

Now consider doing one comparison of Ry’s entire subtree with itself. Worst
case and best case would essentially be the same. Either way would take one
comparison. This comparison could at worst take

2C + 4A + 6n + 10 operations.

Therefore, comparing it to the worst case of comparing every single subtree, for k = 3 we
see that the previous case takes

6C + 12A + 6n + 30, -
which is more than the worst case for comparing the entire Ry subtree with itself. Notice
that as k increases, the complete revalidation approach takes more and more operations,

whereas our method takes a constant number of operations each time.

-73-

4.4.5. Analysis

4.45.1. Complete Re-validation

If we were to perform a complete re-validation of the system given that it contains
X rules, in the worst case we would have to compare the first rule with all other X-1 rules,
the second rule with the remaining X-2 rules, etc. Therefore this would take

X-1+X-2 + ...+ 2 + I rule comparisons.
Assume each rule has ¢, conditions and a., actions. Then each rule comparison would
require ¢4, comparisons of conditions between the two rules, and a,,, comparisons of
actions between the two rules. This is equal to

(X) * (X/2) = X*/2 rule comparisons * ¢, + aayg Operations per rule comparison

= (Cavg + Aavg) * X2 operations in total.
Therefore complete re-validation is O(X?) in the worst case. Note that since we are
performing re-validation of the entire system, the best case is the same as the worst case.

Therefore the worst case also takes (Cayg + avg) * X% operations, and thus is O(Xz).

In the best case, the first two rules that are compared would conflict and conflict

detection would end. This would take 1 operation, and thus is O(1).

4.45.2. Algorithm V3

Let us say that we had the following:

Rn = arule that is added to a system.

Ro = the root of the tree Ry was added to.

k = the number of other trees Ry; that each have at least one triggering condition
in common with Ro.

t =the average numbér of rules in each Rr;.

y = the number of trees Ry took as its children when it was added.

s = the size of the Ry new child trees.

n = the number of rules in Ry’s tree.

m = the number of rules in Ro’s original tree.

-74 -

In section 4.4.3 we showed that merging Ro’s original tree with all of the Ry;s to
compare with Ry’s subtree takes
10 + 2C + 4A + 3(kt+m) + 3n operations in the worst case.
In 4.4.4 we showed that Step 3 takes
2C + 4A + 6n + 10 operations in the worst case.
Therefore our entire process in the worst case takes
10+2C+4A+3kt+3m+3n+2C+4A +6n+ 10
=20 + 4C + 8A + 3kt + 3m + 9n operations.
Assuming m, n, and t are proportional to X, we can say that in the worst case our

algorithm is O(X).

= « Complete Revalidation

@ 12000 ——=Qur Proposed Method
o
2 10000
Q.
o
s N = 0. of ndes
g 000 na NS0
E ma= N/10
Z a0 t=N25
k=3
c-avg =2
4000 aavg=2
C =200
A =200
2000
0 o £
0 10 20 a0 48 50 80 7 80 90
Number of Rules

Figure 17 - A Graphical Comparison of the Two Algorithms

In the best case Step 1 and 2 are completed without detecting a conflict. It takes
kt + m operations to compile the summary rules for the merged tree. Next it takes n
operations to compile the summary rules for Ry’s subtree. Finally 10 comparisons are
made and it is determined there are no conflicts. Similarly in Step 3 we do 10

comparisons of Rn’s summary rules, and find no conflict. In this case, the entire process

-75-

takes 20 + kt + m operations. If once again we assume that m and t are proportional to
X, we can say that in the best case our algorithm is O(X). Figure 17 shows a graphical
comparison of the complete revalidation method with our algorithm. Note that because
of the large difference in performance the scale of the graph was chosen to illustrate that
complete revalidation performs in quadratic time. This scale gives the illusion that our

method performs in constant time, when in fact it performs in linear time with a small

slope.

4.5. Cyclic Conflict Detection

Another possibility for a conflict is if a rule R; triggers a rule R; which triggers a
rule Ry etc., until finally a rule Ry is triggered which triggers Ry again. This causes a
cycle of triggers. This means that rules are constantly being triggered, and may never
stop executing. Not only this but depending on the rules being triggered, if a job is being
passed onto the next rule, then the job will never be completed because no rule ever
tackles the problem. For example say R; owned by Bill states that upon receiving a
work-related e-mail, the e-mail should be forwarded to John, and R, owned by John
states that upon receiving a work-related e-mail, the e-mail should be forwarded to Bill.
In this case if either Bill or John ever receives a work-related e-mail one rule will trigger
the other which triggers the first rule, and this cycle continues on and on and on. The e-
mail never gets read, and many CPU cycles are wasted by from this endless passing the

buck. This behaviour needs to be detected in the rules and reported.

Let us make a graph showing each rule as a vertex in this graph. Now let us
connect the vertices using directed edges, each edge drawn from one vertex to another
representing that the first rule triggers the second. Now if we examine the graph and
detect a cycle, we know that one rule may, after a trigger chain reaction, effectively

trigger itself.

-76 -

In Figure 18 we see that R, triggers Rz which triggers Rg which triggers R;. Since

this forms a cycle in our directed graph, we know that there is a potential cyclic conflict

e
“

Figure 18 — A Cyclic Conflict

involving R;.

Note that if we were to draw a similar graph, this time having the edges
representing if a rule potentially triggers another rule, and performed the same search for
cycles, we could find potential conflicts of this sort. Since, however, the chance of all the
conditions in one of these cycles being met over and over, without a rulg to throw all the
events needed, is not particularly high in most cases, this is less likely to result in a
conflict. Still, because of the potential conflict, it is a pattern that should be detected so
that at very least the user can be wamed, and in the best case the policy will be

redesigned.

4.6. Summary

In summary, although the best case of the complete revalidation approach
performs better than our algorithm in the best case, our algorithm performs much better
in the worst case. Also our best case (having no conflicts) seems much more likely to

occur than having the two first rules in the system to conflict, as is needed for the best

-77-

case of the complete revalidation approach. Regardless of this, we have shown
considerable improvement over the complete revalidation approach with our algorithm,

and thus have demonstrated the benefits of incremental validation.

-78 -

5. Architecture for Incremental Validation

We have shown how incremental policy validation can improve the performance
of policy-based systems. It is now important to show how policy-based systems can be
built that can use incremental validation. To do this, we will take an existing policy
architecture and show what modifications will be necessary in order to take advantage of

Incremental validation.

5.1. An Existing Architecture

In his thesis, Kanthimathinathan [42] described an architecture that supports many
popular policy models. The main modules necessary for policy input are a PSL Editor, an
EA Model Handler, a Policy Handler, a Conflict Handler, and a Policy Engine, as
illustrated in Figure 19. A policy is entered into the system through the PSL Editor.
From there it is sent to the EA Model Handler where it is examined to see if the specifier
of the policy has the permissions necessary to act upon the targets and other program
entities indicated in the policy. If this level of verification succeeds, the policy is then
- sent to the Conflict Handler module. Kanthimathinathan does not mention the explicit
purpose of the Conflict Handler but presumably it is to check for such things as modality
conflicts and application specific conflicts, since after this stage the policy is sent to the
Policy Service where it begins its transformation into executable rules. These executable

rules are then sent to the Policy Engine which enforces them.

-79-

Client Server
-Specification » ’C
Module EA
. EA Model
Model > Conflict Handler Database
New or Handler :
Updated PSL ~—
Policy Editor TCP/IP Policy Handler
«—> ¢ <——>©
Event
Policy
Handler Policy Engine Database
7y N—
Events V
Actions

Figure 19 — Kanthimathinathan’s Policy Architecture

5.2. What is Needed in a Conflict Handler

We will now define what should be present in this Conflict Handler module.

Since we can add policies to the system one at a time, we can perform incremental

validation as each policy is added. Then we may think it is possible to always validate

tae policies using the incremental validation technique. However, there are cases where a

validation of the entire set of policies is necessary. Take for example the case where an

event is removed from the system. There could be two rules that have identical condition

sets. Since these rules had overlapping condition sets to begin with, they already would

have potentially conflicted, so we do not need to perform a full policy set validation due

to this. However, these rules could now become identical. This is not really a problem,

but having multiple identical rules takes up unnecessary space and processing time during

validation, so these duplicate rules should be removed.

-80-

We could also have rules which have empty condition sets. In this case, these
rules should be removed from the system. Therefore every time an event is removed
from the system, all the rules in the system should be examined and all rules with empty
condition sets should be removed. The same is true if an object that is tested in condition
statements is removed from the system. Although the entire policy set must be examined,
this scenario does not introduce any conflicts into the system, therefore it is not necessary

to perform any conflict detection between policies.

If a target or a function that can be performed on a target is removed from the
system, theén we have a similar case to the case above. We could have two or more rules
that now have identical action sets. This does not pose a problem since we are allowing
multiple rules to have identical actions sets. However, again, if these rules are identical
then they should be removed to reduce the amount of resources needed. Just like
removing an event could result in rules with empty condition sets, removing a target or
target function can result in rules with empty action sets. Therefore every time a target or
target function is removed from the system, all the rules in the system should be
examined and all rules with empty action sets should be removed. Again in this scenario
no conflicts between policies are introduced into the system and hence conflict detection

between policies is not necessary in this case.

If an event, target, or function that can be performed on a target is added to the
éystem, there is almost no change in the system. The decision tables in the system will
have to have another row added to them, which will result in a new entry for each rule.
By default this entry will be blank which represents a don’t-care-entry, accepting all
values for the new attribute. We can see then, that the set of policies will not change in
terms of what events and conditions trigger them, and what actions they perform.
Therefore, when a new event, target, or function that can be performed on a target is

added to the system, no re-validation of the set of policies is necessary.

When a new, policy is added to the policy set, or an existing policy is modified,

we have the possibility of introducing conflicts into the system. As we have shown in

-81-

Chapter 4, these conflicts can be detected efficiently using an incremental validation
technique. As long as incremental validation is performed after every policy addition or
modification, no method of validating the entire set of policies will be needed for such

modifications to the system.

Therefore, from the above case analysis, we can see that our Conflict Handler will
need two types of policy validation. The first is the incremental conflict detection
explained in Chapter 4. The second is the ability to examine all the policies for duplicate
or empty rules and remove them. If we include trigger chaining as a property we can

check for, then cyclic conflict detection should also be performed.

In order to perform incremental validation and cyclic conflict detection our

Conflict Handler can use a tree representation of the set of policies.

5.3. Scenarios

This section provides various scenarios for changing the policy set in the system.
We discuss what the flow of information when a policy is added, modified, or deleted
from the system, and what happens when conditions, events, and actions are added or

removed from the system.

5.3.1. Adding a policy

Upon adding a policy to the system, the new policy will move from the PSL
Editor to the EA Handler. From here it will be sent to the Conflict Handler. The Conflict
Handler will then create a decision table of all policies that are in the same scope as the
new policy including the new policy itself. The policy will also be added to the
appropriate place in the policy tree. The tree will then be used to perform incremental
validation on the policy. If validation fails, the policy will be removed from the policy
tree. If validation succeeds, then the policy will be added to the appropriate decision

-82-

" table, and the policy will be sent to the Policy Service where it can be translated into

executable rules and sent to a Policy Engine.

5.3.2. Modifying an Existing Policy

The scenario for modifying an existing policy is nearly identical to adding a new
policy. In this case, when performing validation, one proceeds as indicated in 5.3.1,
however, this time the policy that the new policy is replacing should be excluded from
the decision table and the policy tree. If validation succeeds, the new policy will replace
the old policy both in the decision table and policy tree. The new policy is sent to the
Policy Service which translates the policy into executable rules which are sent to the
Policy Engine. The Policy Service also requests the old policy be removed from the

Policy Engine.

5.3.3. Deleting a Policy

In the case of deleting a policy, there is no conflict detection to be done, provided
that no policies are dependent on other policies. In this case, the Conflict Handler can be
completely bypassed and the Policy Service will request the indicated policy be removed

from the Policy Engine.

5.3.4. Adding an Event, Condition, or Action

If an event, condition, or action is added to the system, then all decision tables in
the system must be modified to accommodate this change. This is done by adding a row
with the appropriate stub to all decision tables in the system. This will not result in any

conflicts, so the Conflict Handler is not needed in this case.

5.3.5. Deleting an Event, Condition, or Action

When an event, condition, or action is deleted from the system, the row

containing that attribute must be deleted from every decision table in the system. This

-83-

could result in duplicate rules, or rules that have completely empty condition entries or
action entries. In the case of duplicate rules, this does not lead to a conflict, however,
duplicate rules are unnecessary and take up an extra amount of memory and processing
time. This is especially true when validating rules, which we have shown to be
dependent on the number of rules in the system. Therefore the rules should be examined
and any duplicate rules should be removed. Similarly, if there are rules with empty
condition entries or action entries, these rules are not valid, and should be removed.
Therefore, in this case, the Conflict Handler should modify all decision tables in the
system and remove any duplicate or empty rules. The policy tree does not need to be
modified in this case. The Conflict Handler should then notify the Policy Handler which
rules should be updated or deleted from the Policy Engine.

5.4. Transition to Enforcing Updated Policies

When new policies are added to the system, the objects using the system must be
updated to use the new policies. An important question, however, is exactly how the
transition will be made to the new policies. We suggest two ways to do this: the stop and

reload method, and the static generation method.

5.4.1. Stop and Reload Method

The idea behind the stop and reload method is to provide all the objects in the
system with the very latest updates to the policies. In order to do this, the execution of
the system should be stopped, so that all objects can update their policies from the
database. The advantage of this method, of course, is that all objects will.have the very
latest version of their policies. This also means that all objects in the system will have
the same version of a particular policy and so all objects referring to a particular policy
will behave in the same manner. The disadvantage to using this technique is that the
system must be halted temporarily while the objects refresh their policies. Depending on
the number of objects and policies in the system, this may take a noticeable amount of

time and may disrupt the appearance of continuous service to the users of the system.

-84-

5.4.2. Static Object-Policies Method

The stop and reload method of policy transition required that the system halts
execution while the objects refresh their policies from the database. The static object-
policies method avoids this. With the static object-policies method, each object fetches
its policies from the database as the object is created and never updates its policies again.
If a change is made to the policy database, the change will affect the new generation of
objects, but the objects created before the policy change will retain the old version of the

policy. This solves the problem of having to halt the system every time a change is made

to the policy database. However, it does have disadvantages.

One disadvantage is that there are various objects in the system which have
differing versions of the same policy. This means that otherwise identical objects may
behave differently because of the varying policy versions. The other disadvantage is that
the policies for each generation of objects is static, and so although the policy-based
system may be dynamic, i.e., it allows policies to be changed during the execution of the
system, the objects will never inherit these new behaviours. The objects will only take on

the new behaviours if the objects are deleted and created again.

5.5. Summary

Building a system which implements incremental policy validation is not a simple
task. However, extending the architecture of a current policy-based system makes this
task somewhat easier. We have shown the components that are required to make an
existing policy-based system able to validate its policies incrementally. We have also
discussed the problem of policy transition when policies are changed in the system, and

offered two possible solutions to this problem.

-85-

6. Conclusion

The main contribution of this thesis was exploring the problem of incremental
policy validation, and providing a method of solving this problem. Incremental policy
validation is an area in which no prior work has been done so far. With the increase in
number of systems that use policies, and the large size of policy systems, incremental
policy validation will become an important problem. By validating only those rules
which have a chance of conflicting, we can substantially reduce the execution time of the

validation process of policy systems.

As a way of solving this problem, we have developed an algorithm. We have
developed the concepts used in the algorithm, in a step by step manner, and refined those
concepts to arrive at the final algorithm. Then, we analyzed the algorithm for its
performance and compared it to the complete revalidation approach of revalidating all
policies in the system. This analysis showed that incremental policy validation does offer

a significant advantage over complete revalidation.

Trigger chaining was also introduced in this thesis. Trigger chaining consists of
looking at policies to see which chain of policies they trigger. This ailows us to find
more conflicts, and so an incremental validation algorithm was suggested to find these
conflicts. This algorithm was analysed and compared to a complete revalidation method.
Our incremental validation method was shown to operate in linear time, as opposed to the

complete revalidation method which was found to have quadratic complexity.

Trigger chaining also introduced a second new type of conflict. Cyclic conflicts
were introduced as a policy which triggers a chain of policies to fire, resulting eventually
in its own execution. This new type of conflict was not examined in much detail in this
thesis. However, it was suggested that directed graphs could be used to detect these

conflicts.

-86-

We have also introduced the idea of representing policies in decision tables.
There has been much work done in the past related to decision tables which we can use
with respect to policies. The problem of decision table completeness and decision table
consistency have all been studied in the past. They helped us in refining the concepts in
our current approach to policy validation, and they can also help in some future work.
The problem of converting decision tables into executable programs has also been
examined at length by other researchers. This research can be used to solve the problem

of converting policies to some form of executable code, which needs further exploration.

Decision tables have also given us a benefit in the form of conceptual simplicity.
By representing policies in this simple representation, it is easy to see the differences
between policies, what happens when new policies are added or old policies are removed,
etc. This view makes it simpler to develop algorithms related to policies. In fact, this
representation helped in the task of developing an incremental validation algorithm, by
providing a simple way to eliminate conditions, actions, and entire rules from the search
space. We presented policies in the form of decision tables and then showed the
limitations of this format. We then extended the decision table format to meet the

requirements of representing policies.

Developing a system using incremental policy validation is not a small task. We
have taken an existing policy framework from the literature and have shown what
modifications are necessary in order to achieve a system capable of incremental

validation.

-87-

7. Future Work

In this thesis we have shown that the concept of incremental policy validation is a
valid one, and is useful. We have introduced an algorithm which solves this problem and
performs better than the complete revalidation approach. Future work may include
developing and analyzing an algorithm which performs the same task but does it with

optimum performance.

Further work could also include implementing the incremental algorithm given in
this thesis to show that it performs well in practice as well as in theory. This would
ideally be done with a large system consisting of many rules, since as we have shown, the
difference between the two algorithms becomes very apparent when there are a large

number of rules in the system.

Although we did not explicitly restrict our algorithm to simple decision tables,
whereby each entry has only yes or no values, we did not go into detail how tables with
allowing entries with multiple values would affect incremental policy validation.
Similarly we did not examine the case of two conditions that overlap. For example, in
our work we have considered conditions such as “(x = 6)”. In our system a rule with
condition “(x = 6)” would not conflict with a rule with condition “(x > 3)” since the two
conditions are not the same. Our table would have a row in the decision table for each
condition and our validation algorithm only checks if two rules are triggered by the same
row in the decision table. If we were to allow conditions such as “x” where the values

could be “= 6" or “ > 3”, then we could check for conflicts more completely.

Trigger chaining was introduced as a concept in our thesis, but it was only used to
examine incremental static policy validation. Trigger chaining may or may not have an
effect on run-time policy validation, which remains to be explored. Similarly, cyclic
conflict detection was also introduced, but was not examined in very much detail. It

would be useful to see if cyclic conflict can occur at run-time provided an incremental

-88-

static policy validation mechanism is in place. If so, it would be worth while to develop

an algorithm to solve this problem.

We introduced the notion of representing policies as decision tables in this thesis.
This is one area that could possibly be expanded upon in the future. Benefits taken from
past work in the area of decision tables could be examined to see if it can be used to
improve policy systems using this representation. For example, the notion of intracolumn
inconsistency may aid in creating a more efficient validation algorithm. Also, the
extended decision table format we introduced could possibly be expanded upon to add
functionality which our format does not currently provide. For example, the decision
table itself does not currently indicate who is able to change the policies or where the

policies sit in the organizational hierarchy.

-89-

8. References

[1]

(2]

[3]

[4]

(3]

Gruber, R. E., Krishnamurthy, B., Panagos, E., “High-Level Constructs in the
READY Event Notification System”, Eighth ACM SIGOPS European Workshop,
Sinatra, Portugal, Sept. 1998.

Krishnamurthy, B., Rosenblum, D. S., “Yeast: A General Purpose Event-Action
System”, IEEE Transactions on Software Engineering, vol. 21, no. 10, Oct. 1995.
Rosenblum, D. S., Wolf, A. L., “A Design Framework for Internet-Scale Event
Observation and Notification", Proceedings of the 6th European conference held
Jjointly with the 5th ACM SIGSOFT symposium on Software engineering, September
22 - 25, 1997, Zurich Switzerland, pp. 344-360

Lupu, E., Sloman, E. “Conflicts in Policy-Based Distributed Systems
Management”, IEEE Transactions on Software Engineering vol. 25, no.6.
Nov./Dec. 1999.

Omari, S., Boutaba, R., “Policy-Based Control Agents for Boundary Routers in
Differentiated Services IP”, First International Workshop on Mobile Agents for

Telecommunications Applications, pp. 477-490, Oct. 1999.

[6] Lupu, E., Sloman, E., “Conflict Analysis for Management Policies”, Proceedings of

the 5" International Symposium on Integrated Network Management IM’97, 1997.

[7] Cholvy, L., Cuppens, F., “Analyzing Consistency of Security Policies”, Proceedings

of the 1997 IEEE Symposium on Security and Privacy, pp.103-112, 1997.

[8] Sommerville, I., Software Engineering, Fifth Ed., Addison-Wesley, USA, 1996.

[9] Michael, J., Sibley, E., Littman, D., “Integration of Formal and Heuristic Reasoning

as a Basis for Testing and Debugging Computer Security Policy”, Proceedings of

the New Security Paradigms Workshop, Los Alamitos, California, pp. 69-75, 1993.

[10] Moffett, J. D., Sloman, M. S., “Policy Hierarchies for Distributed Systems

Management”, IEEE Journal on Selected Areas in Communications, vol. 11, no. 9,

pp- 1404-1414, Dec. 1993.

-90-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Grosof, B. N., Labrou, Y., Chan, H. Y., “A Declarative Approach to Business Rules
in Contracts: Courteous Logic Programs in XML.”, Proceedings of the First ACM
Conference on Electronic Commerce, Nov. 1999.

Chomicki, J., Lobo, J., Nagvi, S., “Conflict Resolution in Policy Management”,
www.cs.buffalo.edu/~chomicki/papers-tkde01.ps, Submitted June 12, 2000

Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M., Holmback, H.,

“Designing Conversation Policies Using Joint Intention Theory”, Proceedings of
the International Conference on Multi Agent Systems, pp. 269-276, 1998.

Grossner, C., He, X., Kurusetty, B., Mahoney, G., Radhakrishnan, T., “The Use of a
Restricted Natural Language and an Intermediate Representation in Policy Based
Systems”, Work in Progress

Falchuk, B., Karmouch, A., “Visual Modeling for Agent-Based Applications”,
IEEE Computer, Dec. 1998, pp. 31-38.

Jajodia, S., Samarati, P., Subrahmanian, V. S., “A Logical Language for Expressing
Authorizations”, Proceedings of the 1997 IEEE Symposium on Security and
Privacy, pp. 31-42, 1997.

Koch, T., Krell, C., Krimer, B., “Policy Definition Language for Automated
Management of Distributed Systems”, Proceedings of the Second IEEE
International Workshop on Systems Management, pp. 55-64, 1996.

Cuppens, F., Cholvy, L., Saurel, C., Carrere, J., “Merging Security Policies:
Analysis of a Practical Example”, Proceedings of the 11 " JEEE Computer Security
Foundations Workshop, pp.123-136, 1998.

Howard, S., Lutfiyya, H., Katchabaw, M., Bauer, M., “Supporting Dynamic Policy
Change Using CORBA System Management Facilities”, Proceedings of the 5™
IFIP/IEEE International Symposium on Integrated Network Management (IM °97),
pp- 527-538, 1997.

Cuppens, F., Saurel, C., “Specifying a Security Policy: A Case Study”, Proceedings
of the 9% IEEE Computer Security Foundations Workshop, pp.123-134, 1996.
Bertino, E., Jajodia, S., Samarati, P., “Supporting Multiple Access Control Policies
in Database Systems”, Proceedings 1996 IEEE Symposium on Security and
Privacy, pp-94-107, 1996.

-9] -

[22] Howard, S., Lutfiyya, H., Katchabaw, M., Bauer, M., “Supporting Dynamic Policy
Change Using CORBA System Management Facilities”, Proceedings of the Fifth
IFIPIIEEE International Symposium on Integrated Network Management (IM’97),
San Diego, California, May 12-16, 1997.

[23] Fraser, T., Badger, L., “Ensuring Continuity During Dynamic Security Policy
Reconfiguration in DTE”, Proceedings of the 1998 IEEE Symposium on Security
and Privacy, 1998.

[24] Mahon, H., Bernet, Y., Herzog, S., Schnizlein, J., “Requirements for a Policy
Management System”, IETF Internet Draft, www.ietf.org/intemet-drafts/draft-ietf-

policy-req-02.txt, Nov. 9, 2000.

[25] Shay, W. A., Understanding Data Communications and Networks, PWS Publishing
Company, USA, 1995.

[26] Moore, B., Ellesson, E., Strassner, J., Westerinen, A., “Policy Core Information
Model”, IETF document RFC 3060, www.ietf.org/rfc/rfc3060.txt, Feb. 2001.

[27] Hilpinen, R. (ed.), Deontic Logic: Introductory and Systematic Readings, D. Reidel,
Dordrecht-Holland, 1971.

[28] Marriott, D., Sloman, M., “Implementation of a Management Agent for Interpreting
Obligation Policy”, IEEE/IFIP Workshop on Distributed Systems Operations and
Management (DSOM °96), Laquila, Italy, Oct 1996.

[29] Montalbano, M., Decision Tables, Science Research Associates, USA, 1974.

[30] Welland, R., Decision Tables and Computer Programming, Hyden & Son, Great
Britain, 1981.
[31] Ibramsha, M., Rajaraman, V., “Detection of Logical Emors in Decision Table

Programs”, Communications of the ACM, vol. 21, no. 12, pp. 1016-1025, Dec.
1978. .
[32] King, P. J. H., Johnson, R. G., “Some Comments on the Use of Ambiguous
Decision Tables and Their Conversion to Computer Programs”, Communications of
- the ACM, vol. 16, no. 5, pp. 287-290, May 1973.
[33] Shwayder, K., “Combining Decision Rules in a Decision Table”, Communications

of the ACM, vol. 18, no. 8, pp. 476-480, Aug. 1975.

-92-

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

Muthukrishnan, C. R., Rajaraman, V., “On the Conversion of Decision Tables to
Computer Programs”, Communications of the ACM, vol. 13, no. 6, pp. 347-351,
June 1970.

Lew, A., “Optimal Conversion of Extended-Entry Decision Tables with General
Cost Criteria”, Communications of the ACM, vol. 21, no. 4, pp. 269-279, April
1978.

Shumacher, H., Sevcik, K.C., “The Synthetic Approach to Decision Table
Conversion”, Communications of the ACM, vol. 19, no. 6, pp. 343-351, June 1976.
Dathe, G., “Conversion of Decision Tables by Rule Mask Method Without Rule
Mask”, Communications of the ACM, vol. 15, no. 10, pp. 906-909, Oct. 1972.
Giarratano, J., Riley, G., Expert Systems Principles and Programming, PWS
Publishing, USA, 1998.

Jess the Java Expert System Shell, http:/herzberg.ca.sandia.gov/jess; accessed
March 12, 2001.

Rowe, N. C., Atrtificial Intelligence Through Prolog, Prentice Hall, USA, 1998.

Vanthienen, J., Wets, G., “From Decision Tables to Expert System Shells”, Data &
Knowledge Engineering 13(3), pp. 265-282, Oct. 1994.

Kanthimathinathan, V., “An Enterprise Policy Specification Tool”, M. Comp. Sci.
Thesis, Concordia University, Feb. 2001.

-93.-

