INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are availabie for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

AN OBJECT-ORIENTED FRAMEWORK FOR
EXTENSIBLE QUERY OPTIMIZATION

JinMIao Li

A THEsIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
[FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JuNE 2001
© JinMmrao Li, 2001

l*l Nfational Library Bibliothégue nationale
of Canada

du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Welli
-~ Omtawa ON K1AON4 Olla::ON K";m
Canada Canada
Your e Votre réldrence
Our e Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
€lectronique.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-64085-X

Canadi

Abstract
An Object-Oriented Framework for Extensible Query Optimization

Jinmiao Li

Query optimization is one of the important components of a Database Manage-
ment System that directly affect the performance that the user sees.

The query, written in a language like SQL, is parsed and turned into a parse tree
representing the structure of the query. The parse tree is then transformed into an
expression tree of relational algebra called a logical query plan. The logical query
plan is turned into a set of physical query plans by selecting algorithms to implement
each operator in it, and by selecting an order of execution for these operators. The
execution costs for these physical query plans are then evaluated. The one that has
least cost and that represents the complete query is selected as the optimal plan and
is used to execute the query.

Although query optimization has been studied for decades, building a query op-
timization system is still a “black art”. Problems with existing query optimization
frameworks are that either the addition of new query operators/algorithms is fixed
or the scarch strategy that is used to explore the optimal plan is fixed with respect
to the query algebra. There exists some improvement that uses object-oriented tech-
niques to achieve both flexibility and extensibility in query optimization, but this
improvement is very limited because the techniques that are used are limited.

This thesis proposes a reusable architecture for extensible query optimization. A
query optimization system is physically divided into three major components. The
framework is designed to span across these components, where each contributes to a
single purpose in the system. Design patterns and object-oriented techniques are used
to de-couple these components and improve the flexibility within each component.
This thesis also makes a clear scparation of the search strategy and the search tree.
This separation conforms to a design convention, that is, to separate interface from
implementation. We belicve this separation promotes the reusability of the system

and is good for clarity. Also, we define a search strategy interface that allows different

il

search strategies to be easily installed and be used interchangeably. Switching from
one search strategy to another only requires modification of two lines of code within
the same component. The design is further verified in light of implementation in C++.
Moreover, we belicve the documentation of a framework is as important as its design.
We attempt to provide a series of framework documents to assist the application
developer to better reuse it. These documents include the framework overview, the
framework design, examples of customization, and the framework cookbook.

iv

Acknowledgements

First of all, I would like to express my warmest thanks to my thesis supervisor, Dr.
Gregory Butler, for his paticnce and invaluable guidance. I really appreciate his
kindheartedness and humanity, and all timely and inspiring discussions he had with
me. [am grateful for his first course in software design, COMP647 (Software Design
Methodologies). Without it, this thesis would have been impossible to achieve.

There are many people who deserve my gratitude. First, I am thankful to all the
professors who shared their knowledge with me. Special thanks to Dr. V.S.Alagar,
Dr. Jaroslav Opatrny, Dr. T.Radhakrishnan, Dr. Khalid J. Siddiqui, and Mr. Aiman
Hanna. I am forever grateful to them for their inspiration, encouragement, and help.
I also want to thank Dr. Peter Grogono and Dr. Joey Paquet for their time and their
paticnce to read this thesis, and giving me valuable comments. In addition, I would
like to thank all fellow students who graciously helped me, especially those who are
in Dr. Butler’s software engineering research group.

I gratefully acknowledge Concordia University for offering me a Concordia Gradu-
ate Fellowship, Alcatel Canada Inc. for offering me a scholarship for my last academic
semester at Concordia, and the Quebec government for all financial support I received
during my studies at Concordia.

[dearly thank my parcnts and my parents-in-law, who, despite being on the other
side of the globe, keep encouraging me to achieve this challenging work. Finally, I
deeply thank my husband, Yun Mai, whose guidance, support, encouragement, and
love help me go through my graduate studies at Concordia University.

Contents

List of Tables

List of Figures

1

Introduction

1.1
1.2

Related Work and the Problem
OurWork

Background

2.1

2.2

23

24

Object-Oriented Design.
2.1.1 What [s Object-Oriented Design.
2.1.2 Inheritance and Polymorphism.
2.1.3 Evaluation Criteria for Object-Oriented Design
The Unified Modeling Language
2.2.1 Conceptual Modelof the UML
222 Use the Right Modeling Techniques
Patterns and Frameworks
2.3.1 Patterns, Design Patterns, and Frameworks
23.2 Developing A Framework
2.3.3 Documenting A Framework
Query Optimizationand OPT++
24.1 Query Optimization
242 The OPT++ Framework

vi

-~ O i = 5-

0 ©

19

3 Framework Overview 35

4 Framework Design 46
4.1 Overall Structure 46
4.2 The Search Strategy Component 50

4.2.1 Structure 50
422 DesignPatterns Used 35
4.2.3 Separation of the Search Strategy and the Search Tree 58
4.2.4 Description of the Major Classes 59

4.3 The AlgebraComponent 72
43.1 Structure e e 72
4.3.2 Major Design Issue and Design Decision 74
43.3 ClassDescriptions 75

4.4 The Search Space Component 79
441 Structure 79
44.2 DesignPatterns Used 80
4.4.3 The Necd for the Generator Hierarchy 83
444 Class Descriptions 84

5 ExceptionHandling................. 87
Dynamic Behavior 88
4.6.1 Scenario of Invoking Query Optimization 88
4.6.2 Scenario of Invoking Transformation Query Optimization . . . 89
4.6.3 The Search Strategies. 91
4.6.4 Scenario for Bottom-Up Optimization. 91
4.6.5 Scenario for Transformation Optimization 94

47 CostEvaluation 97
471 CostModel, 97
472 CaseStudy 98
473 Structure 99
474 ClassDescriptions 101
4.75 Dynamic Cost Pruping 104
476 Examples 106

5 Examples of Customization 113

5.1 Customize the Algebra Component 113
5.1.1 Define Logical Algebra 113

5.1.2 Define Physical Algebra 116
5.1.3 Define OPERATORDEFINITION Class 119

5.2 Customize the Search Space Component 125
521 ASimpleExample 126

522 AComplexExample 131

5.23 Summary 134

5.3 Customize the Search Strategy Component 135
5.3.1 Customize the Logical Properties 135

5.3.2 Customize the Physical Properties. 136
5.3.3 Customize Cost Computation 137
5.3.4 Selection of Input Format for Queries 138

5.3.5 Selection of the Search Strategies 139

5.4 Customize the System Catalog. 140
54.1 Typelnformation 141
54.2 SetInformation 142
0.4.3 Attributesand Methods, 143

5.5 Putting It All Together — Build A New Query Optimization System 144
5.5.1 ASimpleExample 145
5.5.2 A More Complex Example 152

5.6 Putting It All Together — Modify A Query Optimization System .. 157
9.6.1 Add A New Execution Algorithm 157

5.6.2 Add A New Logical Operator 158
5.6.3 Limit or Extend the Search Space 159
5.6.4 Change Search Strategies. 160

6 Framework Cookbook 163
6.1 Recipe 1: Overview of the Cookbook 163
6.2 Recipe 2: Customize the Algebra Component 163
6.3 Recipe 3: Customize the Search Space Component 165
6.1 Recipe 4: Customize the Scarch Strategy Component 166
6.5 Recipe 5: Customize Inputs to the Query Optimization System . . . 168

viii

6.6 Recipe 6: Customize Output of the Query Optimization System . .. 169

7 Conclusion 170

ix

List of Tables

© 00 =~ O O & W N -

e
[=]

CRC Card for the Search Strategy Component 48
CRC Card for the Algebra Component 49
CRC Card for the Search Space Component 50
CRCCardfortheClass HASHID 102
CRC Card for the Class HASHTABLE 103
CRC Card for the Class HASAENODE 104
Example of System Catalog: Type Information. 141
Example of System Catalog: Set Information 142
Example of System Catalog: Attributes and Methods (1/3) 143
Example of System Catalog: Attributes and Methods (2/3) 144
Example of System Catalog: Attributes and Methods (3/3) 145

List of Figures

W 00 ~J O U b= LD N -

B DD B RS B DD et e e et e b b b b et
Cl = LW N =~ O O 0 I O G W= O

26

Structural Thingsinthe UML 14
Behavioral Thingsinthe UML 15
Grouping Thingsinthe UML 16
Annotational Thingsinthe UML 16
Relationshipsinthe UML 17
Query Parsing, Optimization, and Execution 24
Operator Trees 26
Algorithm Trees 27
Bottom-Up Search Strategy 29
Basic System Design of OPT++. 31
Transformative Search Strategy 33
Simulated Annealing Search Strategy 34
An Example of Query Optimization 36
Query Optimization in Its Context 37
A Close Look at Query Optimization 38
Solution Structure 39
Simplified Architecture 40
Dynamic Behavior of Query Optimization 42
Overall Class Diagram 47
The Search Strategy Component 51
The Facade Hierarchy 31
The Search Strategy Hierarchy 52
The Search Tree Hierarchy 53
The OPERATORTREEClass o4
The ALGORITHMTREE Class 55
Facade Design Pattern 56

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
a1
92
53
o4
39
56
37
58

Strategy Design Pattern 57

Factory Method Design Pattern 58
Anlnitial Tree 63
Initial Trees 63
Expanded Trees 64
Operator Tree and Logical Properties 65
Class OPERATORTREEPROPERTY 67
Algorithm Tree and Physical Properties. 69
Class ALGORITHMTREEPROPERTY 71
Class COST i e e 71
The Operator Hierarchy 72
The Algorithm Hierarchy 73
The DBOPERATOROPERATION CLASS 73
The Search Space Component 79
The Visitor Hierarchy 80
The Generator Hierarchy 81
Visitor Design Pattern 82
Class Diagram for the Exception Handling 87
Sequence Diagram for Bottom-Up Optimization 88
Sequence Diagram for Transformation Optimization 90
Collaboration Diagram for Bottom-Up Optimization. 92
Operator Treesjlandj2 93
Algorithm TreesaJandad 93
Source Operator Tree and Destination Operator Tree 94
Collaboration Diagram for Transformation Optimization 95
Auxiliary Classes for Cost Pruning 100
Activity Diagram for Cost Pruning 105
Initial Trees 107
Resultant Trces After Expanding Tree t2 107
Resultant Trees After Expanding Tree t3 108
Resultant Tree After Expanding Treet5 108
Inmitial Trees L 109
Resultant Trees After Expanding Tree t2 110

xii

60
61
62
63

65
66
67
68
69
70

71

72
73

74
75

7
7
78
79
80
81
82

Resultant Trees After Expanding Tree t4 110

Resultant Trees After Applying Select 111
Create ANewJoinTree 111
Class Diagram for Logical Algebra Before Customization 114
Example A: Customized Logical Algebra 114
Example B: Customized Logical Algebra 116
Class Diagram for Physical Algebra Before Customization 117
Example A: Customized Physical Algebra 117
Example B: Customized Physical Algebra 119

Simple Example: Customize the EXPANDTREEGENERATOR Hierarchy 127
Simple Example: Customize the ALGORITHMTREEGENERATOR Hier-

archy 128
Simple Example: Customize the TRANSFORMTREEGENERATOR Hi-
erarchy e e e 129

Complex Example: Customize the EXPANDTREEGENERATOR Hierarchy132
Complex Example: Customize the ALGORITHMTREEGENERATOR Hi-

erarchy L e e e 133
Simple Example: Customize the Algebra Component 147
Simple Example: Customize the Search Space Component 148
Complex Example: Customize the Algebra Component (1/2) 152
Complex Example: Customize the Algebra Component (2/2) 153
Complex Example: Customize the Search Space Component 155
Add A Merge Join Algorithm 157
Limit Search Space to Bushy Join Trees 159
Limit Search Space to Left Deep Join Trees 159

Use Restricted Select Push Down Rule 160

Xiii

Chapter 1
Introduction

Query optimization has existed as a research subject for decades. But developing,
extending, and modifying a query optimization system still remains a difficult task.
Most existing query optimization systems have two major drawbacks:

e Those that allow easy addition of database operators and algorithms often have
a fixed search strategy that limits the search space in which the “best” query
plan can be found.

e Those that allow extensible search strategies often have a fixed query algebra.

OPT++ [20] is a query optimization framework written in C+-+. It is developed
by the University of Wisconsin, U.S.A. It uses object-oriented design to simplify the
task of developing, extending, and modifying a query optimization system. First,
it allows new operators/algorithms to be easily added. Second, it offers a choice of
different search strategies so that various heuristics can be experimented to limit or
extend the search space explored. Third, the flexibility in both the query algebra
and the search strategy can be achieved without compromising the efficiency of the
system.

Most of our thesis work is inspired by OPT++.

1.1 Related Work and the Problem

Query optimization is one of the important components in a DBMS system. It takes
the parsed representation of a query written in a given query langnage as inputs, and

I

outputs the best access plan that will be used to execute the query. Its responsibility
is to identify an efficient access plan for evaluating a query. It generates alternative
plans, estimates the exccution costs for them, and chooses the best one (the one with
least cost) as the result of query optimization.

Extensible query optimization systems proposed in the literature mainly fall into

two categories:

1. The traditional extensible query optimization system which is characterized by
either

e Offer a fixed search strategy while the addition of new operators and al-
gorithms is easy, or

¢ Allow extensible control over the search strategy.

2. The “pure” extensible query optimization system that uses object-oriented de-
sign to achieve a flexible search strategy, and for any search strategy, the addi-
tion of new operators and algorithms is easy.

A query optimization system that offers a fixed search strategy is always a rule-
based system. It often implements a rule rewriter to perform equivalent transforma-
tion on the query expressions. Representatives of this kind of system include: the
System-R style Optimizer [15], Starburst project [16] [31], the Exodus Optimizer Gen-
crator (7], and the Volcano Optimizer Generator [8]. The system-R style Optimizer
designs sets of rules to translate a query into a physical plan. One set of them is to
convert the query into an algebraic tree. Other sets are used to generate access paths,
join orders, aud join methods. The optimizer developed in the Starburst project first
uses a set of production rules to transform the query heuristically into equivalent
queries hopefully one has less execution cost. A set of grammar-like production rules
is then applied to construct physical query plans in a bottom-up fashion. Execu-
tion costs for these physical query plans are estimated and the sub-optimal plans are
pruned out. Optimizers generated by Exodus and Volcano first use algebraic trans-
formation rules to generate all possible operator trees that represent the input query.
They then use implementation rules to generate physical query plans according to
these operator trees.

The concept of a traditional query optimization system that allows extensible
control over the search strategy is to divide a query optimization system into regions,
which are responsible for different parts of optimization. In this system, the query is
passed through these various regions to be optimized. Some examples of these systems
include: Mitchell’s region-based optimizer [9], Sciore’s modular optimizer [4], and
Kemper's blackboard architecture [1]. The region-based optimizer creates a hierarchy
of regions. The parent region dynamically controls the sequence of regions that the
query is passed through. Instead, in the blackboard approach, knowledge sources
are responsible for controlling the path in which the query is passed through various
regions.

A “pure” extensible query optimization system uses object-oriented design to
achieve the goal that both the search strategy and the query algebra are extensible.
Lanzelotte [25] describes an object-oriented design for extending the search strategy
in a query optimization system. Kabra inherits the design of the search strategy from
Lanzelotte in his OPT++ [20]. But OPT++ differs from that described by Lanzelotte
in the modeling of the query algebra and the search space. In particular, OPT++
makes a clear separation between the logical algebra (operator tree) and the physical
algebra (access plan). Kabra argues that this separation is necessary for efficiency of
a query optimization system as well as for clarity and extensibility.

OPT++ has made significant improvements in the design of an extensible query
optimization system [20]:

o Like the Volcano Optimizer Generator and the Starburst optimizer, OPT++
incorporates extensible specification of logical algebra operators, execution al-
gorithms, logical and physical properties, and selectivity and cost estimation
functions. Interesting physical properties, input constraints for execution algo-
rithms and enforcers (“glue” operators) are also supported.

o The search strategies that arc used in Exodus and Volcano are both built into
OPT++. In other words, OPT++ offers a choice of scarch strategies that
allow the optimizer-implementor to experiment with different search strategies
and find the one that is best suited for that database system or even mix the
search strategies if needed.

o By making very specific assumptions about the kinds of manipulations that are

allowed on the operator trees and access plans, OPT++ is able to put a lot
of functionality of query optimization into the part of the code that does not
depend upon the specific query algebra.

e The flexibility that OPT++ provides is achieved without compromising the

efficiency of the optimizer.

The biggest advantage of OPT++ is that it accommodates the existing query

optimization systems and makes good use of the object-oriented techniques to achieve

great extensibility in both the search strategy and the query algebra. In spite of the
fact that OPT++ is very extensible, it has the following drawbacks:

L.

It only partially implements the design. That is, most design ideas are theo-
retical and have not been verified in light of implementation. For instance, the
division of three components in the query optimization system is not imple-
mented.

. Poor partition of the framework. It puts the whole framework in the Search

Strategy component and thus blurs the responsibility distribution of the system.

3. The design of the system is extensible, but not reusable. For instance, different
components are strongly coupled by implementation details. It also violates in-
formation encapsulation by exposing many data structures and implementation
details.

4. It is equipped with a few search strategies that are ready for use, but switching
from one to another may require all the customization code in the Search Space
component to be changed.

5. Framework documentation is insufficient.

1.2 Our Work

The first step to develop a framework for extensible query optimization is to gain

cnough understanding of its context. To better understand the mechanism of exten-

sible query optimization, we prototyped a database that included SampleOpt [19], a

customized example of OPT++. The incorporation of a query optimization system
into the prototype DBMS involved:

1. Defining an interface to wrap the query optimization system.
2. Customizing the system catalog.

3. Defining an interface for the user-defined query parser and the optimization
system.

4. Defining and implementing a mechanism that translated the optimal plan into
a self executable plan.

The second step was to develop a reusable extensible query optimization system.
Our design work started from the modeling of system requirements, which included:

1. Use case analysis — To capture the intended behaviors of extensible query
optimization.

2. Use case diagram — To model the system in its context.

Following the use case modeling was the architectural design, which mainly in-
cluded:

1. Partitioning the system.
2. Defining distribution of responsibility.
3. Designing class structure.

4. Defining relationships.

o

. Identifying the critical problems and providing solutions to them.
Next came the detailed design which included:

1. Defining data structure.

2. Implementing the algorithms for methods.

3. Implementing the relationships.

The last thing to do was to turn the detailed design into programs that make up
the final product: an extensible query optimization system.

After we had gained sufficient knowledge about extensible query optimization and
had developed such an application, we began to consider evolution of this application
into a framework. In the framework design, we did the following:

1. Identifying hot spots [30].

2. Defining protocols for customization.
3. Writing framework documentation.
Throughout this thesis work, we

e Adhered to the UML for object-oriented analysis and modeling, and effectively
applied the UML modeling techniques. We believe that the right models and
modeling techniques can clearly illustrate the most challenging design problems
and offer insights to solutions that address them.

o Kept simplifying the system design because a simple design was easy to under-
stand, easy to implement, and thus easy to complete.

e Reused successful experience such as design patterns and the partial design and
implementation of OPT++.

1.3 Contribution of the Thesis

The principal contribution of this thesis is that it proposes a reusable architecture for
extensible query optimization. In this architecture, a query optimization system is
physically divided into three major components. The query optimization framework
we are building is designed to span across these components, where cach component
contributes to a single purpose in the system. Design patterns and object-oriented
techniques are used to de-couple these components and improve the flexibility within
each component.

This thesis also makes a clear scparation of the search strategy and the search
tree. This separation conforms to a design convention: separate interface from im-
plementation. We believe this separation promotes the reusability of the system and

6

is good for clarity. Also, we define a search strategy interface that allows different
search strategics to be easily installed and be used interchangeably. Switching from
one search strategy to another only requires modification of two lines of code within
the same component.

In order to prove the feasibility of the software design for the query optimization
framework, a query optimization system was built for relational database with some
extensions to object-relational constructs such as set-valued attributes and reference-
valued attributes. Our experience shows that the software design for this system is
correct and simple enough to be implemented.

Moreover, we believe the documentation of a framework is as important as its de-
sign. We attempt to provide a series of framework documents to assist the application
developer to better reuse it. These documents include:

e A framework overview that describes the context of this framework and its
problem, solution, and consequences.

o A framework design that describes the architectural and detailed design of the
framework.

e Examples of customization that illustrate the typical uses of this framework.

e A framework cookbook that provides a general guideline for customization.

1.4 Layout of the Thesis

Chapter 2 provides a detailed description of the background that includes object-
oriented design, UML modeling, patterns and frameworks, query optimization basics,
and OPT++. We hope the background information is rich enough to lead to a better
understanding of this thesis.

Chapter 3 is the framework overview. Although it is an informal description of
the query optimization framework in short, it is expressed in a structure that is easy
to follow. The framework overview describes the problem, the context, the solution,
and the consequences.

Chapter 4 presents the framework cesign, which includes the overall structure,

design of cach component, dynamic behavior, and cost evaluation. The reason we

-~

put cost evaluation in a separate section is that it relates to the most critical problem
of query optimization and deserves some special treatment.

Chapter 5 shows examples of customization. These examples are arranged from
simple through to advanced. They reflect the general uses of the query optimization
framework.

Chapter 6 is the framework cookbook. It is a customization summary of the query
optimization framework and provides general guidelines for the application developer
to reuse it.

Chapter 7 concludes this thesis with an outline of its contributions and gives
suggestions for future work.

We assume the reader is familiar with the C++ programming language [2].

Chapter 2

Background

2.1 Object-Oriented Design

2.1.1 What Is Object-Oriented Design

Software design is creative work. In the most general sense, it is an abstract descrip-
tion of how something is built. The process of design is a process of making decisions
that involves finding a set of potential solutions to the problem, making tradeoffs
between various alternatives, analyzing their strengths and weaknesses, and making
decision to select the “best” one that address the problem precisely.

Object-oriented design is a software design approach that concerns with developing
an object-oriented model of a software system to implement the identified require-
ments. It differs from the functional approach in that it views a software system as
a community of objects, each has its own state and bchaviors. Objects interact each
other comprising the global solution space for the problem.

The basic concept in the object-oriented world is the object. Object-oriented
design describes a solution to a problem in terms of objects. Sommerville gives the
abject a definition [14]:

An object is an entity that has a state and a defined set of operations which
operate on that state. The state is represented as a set of object attributes.
The operations associated with the object provide services to other objects

(clients) which request these services when some computation is required.

A group of objects with the same state attributes and operations is called a class.

9

Objects are created according to the class definition, which is a template for its
objects. The class definition includes declarations of all the attributes and services
which should be associated with an object of that class.

Some basic characteristics of an object-oriented design are (14], [29}:

o Everything is an object. Objects are abstractions of real-world or system entities
which are responsible for managing their own private state and offering services
to other objects.

e Objects are independent entities that may readily be changed because state and
representation information is held within the object. Changes to this represen-
tation may be made without reference to other system objects.

e System functionality is expressed in terms of operations or services associated
with each object. Computation is performed by objects commmunicating with
each other, requesting that other objects perform actions rather than share
variables. Objects communicate by sending and receiving messages. A message
is a request for action bundled with whatever arguments may be necessary to
complete the task.

2.1.2 Inheritance and Polymorphism

We will discuss two important concepts in object-oriented design: Inheritance and
polymorphism. The intuitive meaning of inheritance is to organize the classes of a
system into a hierarchy. Child classes have all the properties of their parent class
in addition to the propertics defined in themselves. Budd [29] describes two explicit
benefits of inheritance:

e Software Reusability and Code Sharing
When behavior is inherited from another class, the code that provides that
behavior does not have to be rewritten. That means, these functions can be
written once and reused. Bencfits of reusable code also include increased relia-
bility and the decrecased maintenance cost.

¢ Counsistency of Interface
When two or more classes inherit from the same superclass, we are assured that
the behavior they inherit will be the same in all cases.

10

One important benefit of inheritance is that it provides programmers with the
ability to construct reusable software components. The concept of software compo-
nent promotes information hiding and makes rapid prototyping easy. On one hand,
a programmer who reuses a software component only needs to understand the nature
of the component and its interface. It is not necessary for the programmer to have
detailed information concerning matters such as the techniques used to implement
the component. On the other hand, when a software system is constructed largely
out of reusable components, development time can be concentrated on understanding
the new and unusual portion of the system. Thus, a prototype system can be quickly
developed and experimented.

Despite the great benefits of inheritance, it is expensive because: the size of the
system code is increased, the system becomes more complex because in order to
understand the behavior of a class we need to examine that of its ancestors, and
the system execution speed is decreased. But in today's software design, when the
hardware setting is no longer a major concern and the problems of maintaining and
evolving the legacy systems loom large, the benefits that the inheritance brings to us
dominate.

Polymorphism is another concept of importance in the object-oriented design that
closely relates to inheritance. The term polymorphic means “many forms” in its Greek
roots. The major meaning of polymorphism in the object-oriented design is that a
name is allowed to refer to a value of its declared type or any other subtypes of
its declared type. So, depending on the type of this object, an operation on it can
demonstrate distinguishable behavior.

Inheritance and polymorphism make software reuse in the object-oriented field
range from possible to even easy. Design pattern and framework are two important
routes to software reuse. Please refer to Section 2.3.1 for details.

2.1.3 Evaluation Criteria for Object-Oriented Design

Reiss [26] summarizes the most important evaluation criteria for an object-orientec
design:

e Correctness

A design must be correct. It must address and solve all the issues brought up

11

in the problem definition, and the solution it presents must actually solve the
given problem within the specified constraints.

o Simplicity
Classes, methods, and the overall design should all be as simple as possible.

o Cohesion and Good Coupling

Everything in a class should be directed at a single purpose. Classes serving
more than one purpose are generally better split into two simpler classes. Op-
erations should serve a single purpose. Classes should never depend on knowing
the internal implementations of other classes. All relationships among classes
should be based on operations, not on data elements. The number of opera-
tions one class provides for another (and the number of parameters in those
operations) should be minimized.

o Information Hiding
Information hiding enhances simplicity by concealing implementation details
within a particular class or method and separating those details from other
classes. It also provides for risk management since any aspects of the system
in which change might be required can be hidden inside a particular class or
method so that later changes affect only that class and not the remainder of
the system.

e Error Handing
Error handing, to be done correctly, must be thought about as part of the initial
problem statement and should be an important design criterion in considering
alternative designs.

In summnary, a good object-oriented design is not only a correct design. It should
be as simple as possible. Meantime, it promotes cohesion, good coupling, and infor-
mation hiding, and it will consider the error handing mechanism in the early design
phase.

12

2.2 The Unified Modeling Language

In general, text and pictures are used to describe a software design. Informal descrip-
tions are fine when one is doing an individual design. But problems come when a
Joint project is carried out by a group of designers. The design done by one needs to
be understood by another, maybe many years after the original design was done. In
this case, it is important to have standard design notations with fixed meanings that
everyone can understand and agree to.

Standard design notations are used to express the design work, right after the
problem is well understood and the design for the solution is well known. They may
not highlight the wicked problems that may exist in the problem domain. They may
not help the designer to increasingly comprehend the complexity of the system in its
entirety. In order to expose the weakest problem in a system and help us to better
understand the system we are building, we need a modeling language.

Unified Modeling Language (UML) is such a modeling language that is best to
express an object-oriented design with standard design notations. Most definitions in
this section are taken from [10].

2.2.1 Conceptual Model of the UML

To understand the UML, we need to form a conceptual model of the language. The
vocabulary of the UML encompasses three kinds of building blocks: things, rela-
tionships, and diagrams. Things are abstractions that are first-class citizens in a
model; relationships tie these things together; diagrams group interesting collections
of things.

2.2.1.1 Things in the UML
There are four kinds of things in the UML: Structural things, Behavioral things,

Grouping things, and Annotational things.

Structural Things Structural things are the nouns of UML models, representing
elcments that are either conceptual or physical. In the UML, basic structural things

include class, interface, collaboration, use case, active class, component, and node.

13

Class Name —
— —~<
~.
Attributes O ‘// Collaboration \l
Interface Name M Name e
Methods S ™
(a) Class (b) Interface (c) Collaboration (d) Use Case
Class Name
Attributes Component
Name
Methods
(e) Active Class (f) Component (g) Node

Figure 1: Structural Things in the UML

Class — a template of a set of objects. It reflects the same concept in the
object-oriented design. In the UML, it is rendered as a rectangle (see
Figure 1(a)).

Interface — a collection of operations that specify a service of a class or

component. It describes the observable behavior or data structure for
that element. In the UML, it is rendered as a circle (see Figure 1(b)).

Collaboration — an interaction and a society of roles and other elements
that work together to provide some cooperative behavior that is bigger
than the sum of all the elements. In the UML, it is rendered as an
ellipse with dashed lines (see Figure 1(c)).

Use case — a description of set of sequence actions that a system performs
that yields an observable result of value to a particular actor. It is
realized by a collaboration. In the UML, it is rendered as an ellipse
with solid lincs (sce Figure 1(d)).

Active class — a class whose objects own one or more processes or threads
and therefore can initiate control activity. It looks like a class except
that its objects represent clements whose behavior is concurrent with

other clements. In the UML, it is rendered as a rectangle with heavy

14

lines (see Figure 1(e)).

Component — a physical and replaceable part of a system that conforms
to and provides the realization of a set of interfaces. Examples of
components are Java beans, COM+, etc. In the UML, a component

is rendered as a rectangle with tabs(see Figure 1(f)).

Node — a physical element that exists at run time and represents a com-
putational resource, generally having at least some memory and, often
processing capability. In the UML, it is rendered as a cube (see Fig-
ure 1(g)).

Behavioral Things Behavioral things are verbs of a model, representing behavior
over time and space. There are primarily two kinds behavioral things: interaction
and state machine.

i State Name/
_—

(a) Interaction (b) State Machine

Figure 2: Behavioral Things in the UML

Interaction — a behavior that comprises a set of messages exchanged
among a set of objects within a particular context to accomplish a
specific purpose. The behavior of a society of objects or of an indi-
vidual operation may be specified with an interaction. An interaction
involves a number of messages, action sequences (the behavior invoked
by a message), and links (the connection between objects). In the
UML, a message is rendered as a directed line (sec Figure 2(a)).

State machine — a behavior that specifies the scquences of states an
object or an interaction goes through during its lifetime in responsc
to cvents, together with its responses to those events. The hehavior
of an individual class or a collaboration of classes may be specified
with a state machine. A state machine involves a number of states,

15

transitions (the flow from state to state), events (things that trigger a
transition) and activities (the responsc to a transition). In the UML,

a state is rendered as a rounded rectangle (see Figure 2(b)).

Grouping Things Grouping things are the organizational parts of the UML. The
primary grouping things in the UML are packages.

]

Package
Name

Figure 3: Grouping Things in the UML

Package — a general purpose mechanism for organizing elements into
groups. Structural things, behavioral things, and even other grouping
things may be placed in a package. A package in the UML is purely
conceptual, that means it exists only at development time. In the
UML, it is rendered as a tabbed folder (see Figure 3).

Annotational Things Annotational things are the explanatory parts of UML
models. The primary annotational thing in the UML is a note, which is a sym-
bol for constraints and comments attached to an element or a collection of elements.
In the UML, a note is rendered as a rectangle with a folded corner (sec Figure 4).

Comment
(textual or graphical)

Figure 4: Annotational Things in the UML

2.2.1.2 Relationships in the UML

There are four kinds of relationships in the UML: Dependency, Association, Genera-
tion. and Realization

Dependency — a semantic relationship between two things in which a

change to onc thing (the independent thing) may affect the semantics

16

multiplicity multiplicity

A4

role name role name

(a) Dependency (b) Association

P> D

(c) Generalization (d) Realization

Figure 5: Relationships in the UML

of the other thing (the dependent thing). In the UML, it is rendered
as a dashed line (see Figure 5(a)).

Association — a structural relationship that describes a set of links, each
is a connection among objects. Aggregation is a special kind of asso-
ciation representing a structural relationship between a whole and its
parts. In the UML, an association is rendered as a solid line, possi-
bly directed, occasionally including a label, and often containing other
adornments such as multiplicity and role names (see Figure 5(b)).

Generalization — a specialization/generalization relationship in which ob-
jects of the specialized clement (the child) are substitutable for objects
of the generalized element (the parent). In the UML, the generaliza-
tion relationship is rendered as a solid line with a hollow arrowhead
pointing to the parent (see Figure 5(c)).

Realization — a semantic relationship between classifiers, wherein one
classifier specifies a contract that another classifier guarantees to carry
out. Realization relationships are used either between interfaces and
the classes/components that realize thein or between use cases and the
collaborations that recalize them. In the UML, a realization relation-
ship is rendercd as a cross between a generalization and a dependency
relationship (sce Figure 5(d)).

2.2.1.3 Diagrams in the UML

A diagram is the graphical presentation of a set of clements. It is a projection onto a
system visualizing this system from one specific perspective. In the UML, there are
nine diagrams: Class diagram, Object diagram, Use case diagram, Sequence diagram,
Collaboration diagram, Statechart diagram, Activity diagram, Component diagram,
and Deployment diagram.

Class diagram — the most commonly used diagram in the UML to address
the static design view of a system. It consists of a set of classes,
interfaces, and collaborations and their relationships.

Object diagram — static snapshots of instances of the things found in
class diagrams. It consists of a set of objects and their relationships,
and is used to address the static design view or static process view of
a system from the perspective of real or prototypical cases.

Use case diagram — important diagram in organizing and modeling the
behaviors of a system to address the static use case view of the system.
It consists of a set of use cases and actors (a special kind of class) and
their relationships.

Sequence diagram — most commonly used diagram for interaction of a set
of objects with emphasis on the time-ordering of messages to address
the dynamic view of a system.

Collaboration diagram — important diagram to address the dynamic view
of a system that shows interaction of a set of objects with emphasis
on the structural organization of the objects that send and receive
messages.

Statechart diagram — important diagram to address the dynamic view
of a system especially in modeling the behavior of an interface, class,
or collaboration and with emphasis on the event-ordered behavior of
an object which is especially useful in modeling reactive systems. It
consists of states, transitions, events, and activities.

Activity diagram — a special kind of a statechart diagrain with emphasis
on modeling the function of a system and the flow of control among
objects.

18

Component diagram — a diagram that addresses the static implementa-
tion view of a system and shows the organizations and dependencies

among a set of components.

Deployment diagram — a diagram that addresses the static deployment
view of an architecture and shows the configuration of run-time pro-
cessing nodes and the components that live on them.

2.2.2 Use the Right Modeling Techniques

A good modeling language is necessary but not sufficient for a good software design.
Instead, the right modeling techniques and practical experience are important.

First, it is not mandatory to use all kinds of diagrams for a system design. In fact,
it is not necessary. The role of modeling is to help the developer to better understand
the problem and its solution. In many software designs, it is often to present the
static view and dynamic view of the system with a small subset of the diagrams.

Second, one kind of diagram is only a projection onto a system from one per-
spective. It is a mistake to use only one kind of diagram throughout the system
design. Alone the class diagrams or sequence diagrams do not guarantee a good un-
derstanding of a system. Class diagrams only address the static views of the system.
For a better understanding of the behaviors of this system, diagrams that show the
dynamic views of the system are required. Which dynamic diagrams to use depends
on what kinds of applications are to be modeled. For example, in a reactive system,
statechart diagrams may be used more often than the sequence diagrams or collab-
oration diagrams. In a general application, class diagrams are necessary to present
the overall and partial structure of the system. Sequence diagrams are used more
often at the beginning of the modeling. When more and more details are added later,
collaboration diagrams may be used to show the interaction of a large number of
objects and their complex relationships.

Third, diagrams are better to be presented together with a detailed text descrip-
tion. A diagram is an abstraction of the system. Despite the fact that the graphical
diagraimns can transcend the meanings of some texts, many details are still omitted.

A good design document is made up of a balanced number of diagrams, each
accompanied by a detailed textual description of it.

19

2.3 Patterns and Frameworks

2.3.1 Patterns, Design Patterns, and Frameworks

Observation shows that the experts reuse successful experience over time. Patterns
arise when specific problem/solution pairs are abstracted and the common factors are
distilled out. Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution [3]. A context is a situation in which the
problem occurs. “Problem” refers to a problem that arises repeatedly in the given
context. “Solution” is a proven resolution of the problem.

A design pattern is a medium scale pattern. It describes a commonly recurring
structure of communicating components that solves a general design problem within
a particular context. Gamma et al. [5] categorizes a collection of design patterns and
describes them in details. Design patterns that are used in this thesis are selected
from those defined by Gamma et al.

A framework is a pattern arising at the system architectural level. It is a collection
of abstract classes that provides an infrastructure common to a family of applications.
A framework dictates certain roles and responsibilities amongst its classes, and spec-
ifies the standard protocols for their collaboration. Frameworks exist to support the
development of a family of applications. Variability is factored out as hot spots and
a simple mechanism to customize each hot spot is provided. “Hot spot” is a term
coined by Pree in his book [30]. A framework is characterized by:

o Partial design;
¢ Incomplete implementation;

o Inversion of system control, and it contains the part of control that invokes the
methods supplied by the user;

o Reuse arises in all stages of system analysis, design and implementation.

Buschmann et al. [6] summarizes some properties of patterns for software archi-

tecture:

1. A pattern addresses a recurring design problem that arises in specific design

situations, and presents a solution to it.

20

2. Patterns document existing, well-proven design experience.

3. Patterns identify and specify abstractions that are above the level of single
classes and instances, or of components.

4. Patterns provide a common vocabulary and understanding for design principles.
5. Patterns are a means to documenting software architectures.

6. Patterns support the construction of software with defined properties.

7. Patterns help you build complex and heterogeneous software architectures.

8. Patterns help you to manage software complexity.

2.3.2 Developing A Framework

A framework may begin as an application that evolves to a framework, and other
applications are developed to confirm the reusability of this framework before it is
rolled out for general use [11].

A framework evolves over time. Uses of a framework may expose some insuffi-
ciency and incompleteness in the framework design. The framework is then refined
to accommodate the new raised issues and the old ones. A framework evolves as
a wider application domain is covered, hot spots (30] are more precisely identified,
customization is concisely specified, and all the jargons are clearly defined.

The major steps in developing an application framework can be summarized
as [23], [28]:

1. Identify and analyze the application domain and identify the framework. If
the application domain is large, it should be decomposed into a set of possible
frameworks that can be used to build a solution. Analyze cxisting software
solutions to identify their commonality and the differences.

2. Identify the primary abstractions. Clarify the role and responsibility of each
abstraction. Design the main communication protocols between the primary
abstractions. Document them clearly and precisely.

21

4.

5.

- Design how a user interacts with the framework. Provide concrete examples of

the user interaction, and provide a main program illustrating how the abstract
classes are related to each other and to the classes for user interaction.

Implement, test, and maintain the design.

Iterate with new applications in the same domain.

The design and implementation of frameworks relies heavily on abstract classes,

inheritance, and polymorphism.

2.3.3 Documenting A Framework

Butler [11] summarizes various styles of documentation for a framework and provides

the guidelines on how to document a framework to assist the application developers.

Examples of these framework documentation styles include:

L

Examples.

Each example illustrates a single new hot spot [30], starting with the simplest
and most common form of reuse for that hot spot, and eventually providing a
complete coverage.

. Cookbooks and Recipes

A recipe describes how to perform a typical example of reuse during applica-
tion development. The information is presented in informal natural language,
perhaps with some pictures, and usually with sample source code. A cookbook
is a collection of recipes. A guide to the contents of the recipes is generally
provided.

. Contracts

A contract specifies a set of communicating participants and their contractual
obligations.

Design Patterns

A desigu pattern provides an abstraction above the level of classes and objects.
It captures design experience at the micro-architecture level hy specifying the
relatiouship between classes and objects involved in a particular design problem.

22

5. Framework Overview
A framework overview describes the context of this framework, defines the jar-
gon of the domain, and delineates its scope: what is covered by this framework

and what is not, as well as what is fixed and what is flexible in the framework.

6. Reference Manual
A reference manual for an object-oriented system consists of a description of
each class, together with descriptions of global variables, constants, and types.

7. Design Notebooks
A design notebook collects together information related to the design of hard-
ware. The information will include background theory, analysis of situations,
and a discussion of engineering tradeoffs.

8. Other
Examples of these styles may include a use case or scenarios [13] that describes
the intended functionality, and a time thread [24] for a scenario can depict when
and where the scenario involves the framework and when and where it involves
the customized code.

The audience that Butler refers to is the application developer, who may be some-
what inexperienced as developer, or in object-oriented technology, and may be some-
what ignorant of the application domain.

Butler [11] concludes that, to document a framework to assist the application
developer, we need:

First, an overview of the framework should be prepared, both as a live presentation
and as the first recipe in the cookbook.

Second, a set of example applications that have been specifically designed as
documentation tools is required. The examples should be graded from simple through
to advanced, and should incrementally introduce one hot spot at a time. A hot spot
that is very flexible may need several examples to illustrate its range of variability,
from straightforward customization through to elaborate customization with all the
bells and whistles.

Third, a cookbook of recipes should be written, and organized along the lines of
Johnson’s pattern language [22]. The recipes should use the example applications

to make their discussion concrete. There will be cross-references between recipes,

23

recipes and source code, as well as recipes and some available documentation such as

a reference manual, contracts, or design patterns.

2.4 Query Optimization and OPT++

2.4.1 Query Optimization

Query optimization is one of the important components in a DBMS system. It takes
the parsed representation of a query written in a given query language as inputs, and
outputs the best access plan that will be used to execute the query. Its responsibility
is to identify an efficient access plan for evaluating a query. It generates alternative
plans, estimates the execution costs for them, and chooses the best one (the one with
least cost) as the result of query optimization.

2.4.1.1 Query Optimization in the DBMS Architecture
Ramakrishnan [21] presents a detailed view of query optimization in the DBMS ar-

chitecture as shown in Figure 6.

| Query
Query Parser

Parsed Query

Query Optimizer

Plan ||Plan Cost Catalog
Generator| | Estimator Manager

Evaluanion Plan

Query Plan Evaluator

Figure 6: Query Parsing, Optimization, and Execution

The query optimizer takes the output of the query parser, the parsed query, as
input, and produces an cvaluation plan that will serve as the input to the query
plan evaluator. It provides the functionality for both plan gencration and plan cost

cstimation.

24

Query optimization involves two basic steps:

1. Enumerate alternative plans. Since the search space in which the possible plans
exist is huge, typically only a subset of these plans are considered.

2. Estimate the execution cost for each plan according to a cost model, and choose
the optimal one with least cost.

2.4.1.2 Basic Concepts

Basic concepts in query optimization include: Operator, Algorithm, Logical query
plan, and Physical query plan.

Operator— An operation performed on the database. It is the basic el-
ement that makes up of a logical query plan tree. It is also called
a logical operator. Select and Join are two frequently used logical
operators in a relational database system.

Algorithm — It often refers to an implementation of an operator. For
example, Filter and Nested Loop Join are two common algorithms
for the operators Select and Join in the relational database. In some
rare cases, an algorithm may not have a corresponding operator in the
database. For examples, a Sort algorithm that enforces a sort order
to its output does not have a corresponding operator. An algorithm is
also called an execution algorithm or a physical operator.

Logical query plan — An algebraic expression that represents the partic-
ular operations to be performed on data and the necessary constraints
regarding order of operations. It is a tree of logical operators, and is
also known as an operator tree, or a logical plan.

Physical query plan — A tree of algorithms that specifies the particular
order of operations and the algorithm that is used to implement each
operation. It is also known as an access plan, an evaluation plan, an
algorithm tree, a physical plan, or simply a plan. When enumerating
possible physical plans derivable from a given logical plan, we select
for cach physical plan [12]:

25

. An order, and grouping for associative-and-commutative opera-

tions like joins, unions, and intersections.

. An algorithm for each operator in the logical plan, for instance,
deciding whether a Nested Loop Join or a Hash Join should be
used.

. Additional operators — scanning, sorting, and so on — that are
needed for the physical plans but that were not present explicitly
in the logical plan.

. The way in which arguments are passed from one operator to the
next, for instance, by sorting the intermediate result on disk or
by using iteration and passing an argument one main-memory
buffer at a time.

We assume that a query can be logically represented as an operator tree. Because
of the association and commutativity properties of some operators, a query may have
several operator tree representations. Also, since an operator may have more than
one implementation algorithm, an operator tree may have more than one algorithm

The following is an example based on the SQL query:

select e.name, p.address from Persons p, Employees ¢ where p.name=e.name;

There may be many operator trees that can be used to represent this query. We
only show two of them in Figure 7. Note that exchanging the left and right trees will

give rise to two other operator trees.

Join Select

(Person.name=Employees.name) (Employies.age-ZS)

\ Select Join

(Emplorgcs,age.y_s) (Person.name=Employees.name)

Persons Employees Persons Employees

Figure 7: Operator Trees

The first operator tree is a join tree, representing a join between the relation
Persons and the result of applying the Select operator to the refation Employees.

26

The second is a select trce, representing the Select operator is applying to the join
result of the relations Persons and Employees.

In general, translating an operator tree to an algorithm tree consists of replacing
each logical operator in the operator tree with one execution algorithm for that logical
operator. Look at the join tree, since there exist several execution algorithms for the
Join operator, each will lead to an algorithm tree. In addition, the Select operator
and the relation Employees may be implemented as an Index Scan if there is an index
on the attribute age for the relation Employees.

Nested Loop Join Merge Join Hybrid Hash Join
(Person.name=Employees.name) (Pcrson.name-Employces.name) (Person.name=Employees.name)

\lter Fmer
(Employees age=25) (Employees.age-ZS)

Table Scan 'I'able Scan Table Scan Table Scan Table Scan Index Scan
(Persons) (Employees) (Persons) (Employees) ~ (Persons) (Employees.age=2

Figure 8: Algorithm Trees

Some algorithm trees for the join tree are shown in Figure 8. We assume that
there are three implementation algorithms for the Join operator: Nested Loop Join,
Merge Join, and Hybrid Hash Join. We also assume the relation Employees has an
index on the attribute age. Compare Figure 7 to Figure 8, we can see that each
relation in the operator tree is substituted by the physical operator Table Scan on
that relation. Operator Select is converted to physical operator Filter. Operator Join
is converted to Nested Loop Join, Merge Join, or Hybrid Hash Join. A combination
of the operator Select and the relation Employees can be converted to a Table Scan
followed by a Filter or just an Index Scan.

2.4.1.3 Search Strategy

A search strategy is the approach used to explore the space of all plans for the optimal
plan. Specifically, it is responsible for building the logical plans, converting them to
physical plans, perforning cost evaluation, and finally choosing the best one that has
least cost.

27

The baseline search strategy approach is exhaustive. In this method, all possible
combinations of logical plans and physical plans are considered, execution cost is
estimated for each possible physical plan, and the one with least cost is chosen at the
end.

One example of the exhaustive approach is the Bottom-Up Search Strategy, which
is used in the System-R style optimization. In this search strategy, only a subset
of possible plans is examined. That is, only the best plans or the plans that are
sub-optimal but that have some interesting properties (such as sorted, indexed) are
considered when the plans for a larger expression are computed.

Figure 9 shows the algorithm of the Bottom-Up Search Strategy in an activity
diagram of UML. The initial operator trees are created according to the relations
involved in the query. One operator tree is picked from the operator tree repository.
If it can be expanded, it is expanded to larger operator tree(s), whose corresponding
access plans are also created. Execution costs for all access plans are estimated and
compared to each other. Equivalent access plans that have higher costs are eliminated.
The process repeats where the next operator tree in the operator tree repository is
selected. If the selected operator tree can not be expanded, the next one following it
in the repository is selected instead. If none of the operator trees can be expanded,
the process terminates. The cheapest access plan that represents the complete query
is returned as the result of the Bottom-Up search approach.

Note that the newly created operator trees that are results of tree expansion are
stored in the operator tree repository for further optimization, and all operator trees
in the repository are stored according to their increasingly size.

2.4.1.4 Cost Estimation

Cost estimation in query optimization determines the execution cost for each ac-
cess plan. The resource that is consumed when an access plan is executed includes:
CPU time, I/O cost, memory, maybe communication cost in a network environment,
or a combination of them. Since the cost estimation algorithm provides the core
functionality that will be exccuted repeatedly during the query optimization process,
efficiently evaluating the costs of the access plans is of fundamental importance.

Chaudhuri (27} summarizes the basic estimation framework deriving from the
System-R system developed by the IBM:

23

Optimize

1
-
@eate Operator Treeg---—i Operator Tree JJ
[created]

]
I

> \& J
- >&r Get Next Tree) <
L [else]
Operator Tree %k [can not be expanded]
D
I [selectedr] [can be expanded] [none can be expanded]

\lL & Return the Cheapest
eturn the Chea
| r‘m(Expand Operator Tree) (Complete plan

|
(Perform (Ist Pruning } ________ d

1

Operator Tree J :
[expanded] |
:

{

>< Convert to Access Plan)— Access Plan -L }
[creatcd] =

:

I

I

|

|

I

i

i

J

I
|
Discard Non-interesting Access Plan JJ‘
Equivalent Plans “>[[evaluated]

Figure 9: Bottom-Up Scarch Strategy

29

1. Collect statistical summaries of data that has been stored.

2. Given an operator and the statistical summary for each of its input data streams,
determine the:

(a) Statistical summary of the output data stream, and

(b) Estimated cost of executing the operation.

Step 2 can be applied iteratively to an operator tree of arbitrary depth to derive
the cost for each of its operators. The cost for an access plan can be computed by
combining the costs of all the operator nodes in the tree.

The term “statistical summary of data” refers to the statistical property of the
current logical query plan. Logical query plans for the same query or the same
part of the query should have the same statistical properties. But, the access plans
corresponding to the same query or the same part of the query may have various
estimated execution costs. That is the reason why at the end of the search, only the
access plan with the least estimated cost is selected to execute the query.

2.4.2 The OPT++ Framework

OPT++ [20] is a query optimization framework written in C++. It is developed by
the University of Wisconsin, U.S.A. It uses object-oriented design to simplify the task
of developing, extending, and modifying a query optimization system. First, it allows
new operators/algorithms to be easily added. Second, it offers a choice of different
search strategies so that various heuristics can be experimented to limit or extend the
scarch space explored. Third, the flexibility in both the query algebra and the search
strategy can be achieved without compromising the efficiency of the system.

2.4.2.1 Basic Design

Figure 10 shows the basic system design of OPT++ [20]. A query optimization sys-
tem built from OPT++ consists of two parts of code: one is the code provided by
the OPT++ framework, the other is the code supplicd by the optimizer-implementor.
OPT++ defines a scarch strategy component and a few abstract classes. The search
strategy component defines a class hierarchy for search approaches that may be used

30

OPT++ provides
this code

Optimizer
Implementor
writes this
code

Figure 10: Basic System Design of OPT++

to explore the optimal plan in query optimization. The abstract classes define inter-
faces whose implementations should be supplied by the optimizer-implementor. The
search strategy is written entirely in terms of these abstract classes.

The OPT++ framework reaps the benefits of inheritance and run-time binding of
C++ to achieve the system’s extensibility. It makes very specific assumptions about
the kinds of manipulations that are allowed on the operator trees and the access
plans. Abstract classes that represent interfaces of the operators in the database, their
corresponding algorithms, and the operations on the operator trees and algorithm
trees are all defined in the OPT++ framework. When developing a query optimization
system from OPT++, the optimizer-implementor defines the actual databasc algebra
in terms of the interfaces defined in OPT++. Algorithms for these database operators
and the manipulations on the operator trees and the algorithm trees are also written
according to the interfaces defined in OPT++. With the run-time binding mechanism
in C++, the search strategies defined in the OPT++ framework will call the actual
implementation of the operators, their algorithms, and tree/plan transformation.

2.4.2.2 Search Strategy

OPT++ claims that it is equipped with three search strategies: Bottom-Up Search
Strategy, Transformative Search Strategy, and Simulated Annealing Search Strategy.
But in its sample application SampleOpt [19], only the Bottom-Up Search Strategy is
implemented. Please refer to Section 2.4.1.3 for detailed description of its algorithm.

31

Figure 11 and Figure 12 show algorithms of the Transformative Search Strategy and
the Simulated Annealing Search Strategy described in the OPT++ documentation.
We present them as activity diagrams of the UML.

The Transformative Search Strategy is based on tree transformation. The optimizer-
implementor defines the tree transformation rules (algebraic laws). These rules are
then repeatedly applied to operator trees hopefully leading to new operator trees
whose access plans have less execution costs.

The Transformative Search Strategy begins with the creation of a complete oper-
ator tree that represents the complete query. We call it the initial operator tree. If
one or more algebraic laws can be applied to the initial operator tree, they are applied
and may lead to a few new operator trees. Corresponding access plans for the newly
created operator trees are also created. Their execution costs are computed and com-
pared to each other. Equivalent access plans that have higher costs are eliminated.
The process repeats where another operator tree is selected for transformation. If no
operator tree can be further transformed, the search process terminates. The access
plan that has the lowest cost is returned as the result of Transformation searching.

The Simulated Annealing Search Strategy is a randomized search strategy. It
defines a “temperature” variable to control the termination of search. This variable is
initialized when the search begins. Similar to the Transformative Search Strategy, the
first step is to create the initial operator tree, a complete operator tree that represents
the complete query. Corresponding access plan of the initial operator tree is also
created. We call it the current access plan. A random selection is then performed. If
the option “select plan” is sclected, another access plan for this operator tree is created
representing a different execution solution for this operator tree. Otherwise, a tree
transformation is performed on the initial operator tree. A new equivalent operator
tree may be generated. A corresponding access plan for this new operator tree is also
created. We call it the new access plan. The execution cost for the new access plan is
computed and it is compared to that of the current access plan. The access plan that
has higher cost is eliminated, and the current access plan is reset to the one that has
lower cost. The “temperature” is then decreased. The process repeats for the next
random selection. If the “temperature” equals to zero or there is no improvement in
the execution cost for a certain number of steps, the search process ends. The current
access plan is returned as the result of Simulated Annealing scarching.

32

Optimize

Create a Complete Operator Tree
Operator Tree T [created]

>, < J
e Get Next Tree)
[else]
Operator Tree [can not be transformed]
[selected]

[can(be transformed] [none can bg transformed]

> R
{--C Tree Transformation (Complete plan

eturn the Chupest)(

———————d

r Y
Operator Tree J
[equivalent]
: — C
L Convert to Access Plan Access Plan
[created]

Equivalent Plans

(Discard Non-interesting

Access Plan
[evaluated]

L'_?L:_

Figure 11: Transformative Scarch Strategy

33

? Optimize
Y

Temperature
[initialized]

[created]

Qperator Tree ,({ Createa Complete

Operator Tree

Current Access Plan
Convert to Access Plan)- [created]

I

| S—
|

l

L

v
Operator Tree
)Qandomly Select an Op InstanceD 9[[selected]

T
-

[select plan]

Operator Tree l(
=

[equivalent]

Convert to Accm Plan)

'——-—.—.——

New Access New Access Plan
>< Convert to Access Plan [created)

1
(Tree Transformation \’

< ————

14
]
——————d

v
G)mpare the Current Plah(

and the New Plan
/:\ Current Access Plan

~

[UPdated]
[accepted] l
Current Plan = New Plan
rejected]
Temperature
C Decrease Temperature)’ [updated]
[temperature =0 or no improvemen
[else]
@eturn the Current Plan)

&

Figurc 12: Simulated Annealing Scarch Strategy

34

Chapter 3
Framework Overview

This chapter is an overview of the query optimization framework, in which the context,
problem, solution (static view and dynamic view), and consequences are discussed in
detail.

Name Query Optimization Framework

Type Whitebox framework. This implies that this framework is reused by inheri-
tance of its base classes and overriding of its predefined hook methods.

Example Consider a simple University Course Query system. The purpose of this
system is to let the students query the courses they take and the professors query the
courses they teach in the current semester. The data in the database may be:

Atomic: Each student has a unique student id; each professor has a unique faculty
id; each course has a unique course id.

Set value: A student can register more than one course. A professor can teach
more than one course. So for each student or professor, there is a set of courses s/he
takes or teaches.

Reference link: The courses a student takes are stored as reference links to the
corresponding courses in the course table. The courses a professor teaches are stored
as reference links to the corresponding courses in the course table. Similarly, for each
course, there are references to the student table representing all the students who
take this course. There arc also references to the professor table representing all the

professors who teach this course. The reference links amongst these tables allow easy

navigation from one table to another.

select name from Students where id = 123;
select courses.name from Student where id = 123;
select name from Professor where courses in (select
courses from Students where id = 123);

_/ Y
Query Parser _/

L]
Query Optimization -\\
)

4"55 f‘%

Figure 13: An Example of Query Optimization

Figure 13 shows that the user-written queries are parsed by the Query Parser.
They are then optimized by the Query Optimization System according to the infor-
mation stored in the database. Tree-like plans are produced at the end.

The Query Optimization System should make it easy to experiment with different
search strategics, e.g. bottom-up optimization, transformation optimization, random-
ized optimization, or a combination of them. Because we don’t know which one is
better than the other in our system before we try them. It should also make it easy
to change the database representation. For example, the database may be simpli-
fied to only allow atomic values; it may be extended to add some object-oriented
constructs such as functions; or the index information may be added. Furthermore,
the University Course Query system may evolve to a University Course Registration
system. That means, in addition to providing the query functionality, the system
should provide functionality for data addition and data update because students and
professors may use it to register for the courses they take or teach.

No matter what changes there may be, the majority of the query optimization

36

should be kept unchanged. In other words, we need not develop a query optimization
system from scratch to cater for any changing requirement. Developing a new query
optimization system and modifying the existing optimization system are both easy.

Context Extensible query optimization for the DBMS environment.

DBMS
Algebra
Expression
A D
] System
Query Optimizer Catalog

Figure 14: Query Optimization in Its Context

Figure 14 shows the query optimization in its context. There are three pieces of
information implied in it:

¢ Query optimization is one of the components of the DBMS.

¢ Query optimization depends on the algebra expression, which is used to repre-
sent a query. Any query to be optimized must be translated into an algebra
expression in a format accepted by the query optimization.

e Query optimization depends on the system catalog information. The optimiza-
tion extracts information such as relations, indexes, costs, and so on from the
system catalog, builds the plan trees, and decides which plan is superior to the
others.

Figure 15 is a close look at query optimization. The central part is the Query
Optimization Core. It implements the majority functionality of query optimization.
There are two volatile parts in query optimization. One is the Scarch Strategy, the
other is the Database Algebra. On one hand, the Query Optimization Core depends
ou the search strategy that is used for search, which is supplicd by the Scarch Strategy

37

part. What search strategy to use is up to the user who customizes the system. On
the other hand, the Query Optimization Core depends on the Database Algebra,
which encapsulates the logical operators and physical operators in a database that
can be relational, object-relational, or object-oriented.

Query Optimization
Search Database
Strategy Algebra
A ™
| I
i I
Query Optimization Core

Figure 15: A Close Look at Query Optimization

Problem There exist requirements conflicts for the query optimization system.
Some people may prefer to use it in a relational database system, some may pre-
fer an object-relational system, some may prefer an object-oriented system.

There are various search approaches that are used in query optimization such as
Bottomup, Transformation, Simulated Annealing, [terated Improvement, Two Phase
Optimization, etc. We do not know which one is best suited for the system we are
building until we experiment on them.

Building a query optimization system is hard and expensive if it is tied to the
specific database and/or search strategy. This can result in the need to develop
and maintain a few substantially different query optimization systems, one for each
database or search strategy.

The forces that influence the solution are:

e The same query optimization system can be easily modified and extended to
build a database system that is relational, object-relational, or object-oriented.

e Different search strategy approaches can be tried on the newly built system
hefore the best one is chosen.

38

e New constructs of the database algebra should be easy to add; old ones can be
easy to modify and remove.

e Code which implements the core functionality of query optimization can be
reused again and again with minimum changes. The common functionality may
include the system control flow, the cost model and cost pruning, representation

of the tree structures for the logical query plan and physical query plan, etc.

Solution Kabra proposed a solution structure. He developed a query optimiza-
tion framework named OPT++ [20] that implements the core functionality of query
optimization. But he put the whole framework in the Search Strategy component.
We believe a clear partition of the query optimization system is necessary. Each
component should contribute to a single role. It is the collaboration of different com-
ponents that makes the whole system lively. A framework that spans across different
components is then natural and reasonable. Figure 16 shows our solution structure.

Search Strategy

— Framework ___

Algebra B R Search Space

Figure 16: Solution Structure

The Search Strategy component encapsulates the search approaches that are used
to control the exploration of the optimal plan. Different search strategies can be built
in this component. It also encapsulates the cost model for plan evaluation and it
implements the cost estimation model. Representation of the tree structures for the
logical query plan and the physical query plan is also incorporated.

The Algebra component incorporates the representation of the operations on the
database and the various implementation algorithms for these operations. [t is an
abstraction of the potential operations on the various kinds of databases.

39

The Search Space component defines what the search space is. It decides what
logical query plans and physical query plans are built. The abstraction of the kinds
of operations that may perform on the database are encapsulated in this component.

The separation of the Search Strategy component, the Algebra component, and
the Search Space component has an explicit advantage in that it clarifies the roles
of different components in query optimization and helps to better understand the
complex query optimization system. On the other hand, each component contributes
to only one purpose and has a focus. Relationships amongst these components can
be simplified so that individual component can be experimented and improved with
minimum impact on the others. We believe this separation is the first step towards
building a good query optimization framework.

Note that the framework encapsulates the relationships amongst the components.
It specifies the protocols about how these components communicate. In such a way,
the majority of the code including the complex implementation of these relationships
are implemented in this framework. It therefore eases the work to develop a new
query optimization system and reduces the overhead that requires the optimizer-
implementor to understand and implement these relationships.

Structure Figure 17 shows the simplified structure of the query optimization frame-
work. It is simplified because it represents the overall structure at a high level of
abstraction and hides the implementation details. A simplified structure is easy to
understand and can help to form a conceptual model of this framework.

Search Strategy

SAccept() | SApply()

——

Figure 17: Simplified Architecture

40

The Search Strategy component encapsulates the system control flow. It imple-
ments different search approaches to explore the optimal plan. At any moment in
time, only one scarch approach dominates. This component also encapsulates the
cost model and implements the cost estimation framework. It contains the logical
query plans and physical query plans that have been built, and it performs the cost
evaluation on these plans and prunes out the sub-optimal ones. The Search Strategy
component maintains an aggregation reference to the Algebra component because
each logical query plan is represented by applying a logical operator (in the Algebra
component) to its root node, and each physical query plan is represented by applying
a physical operator (in the Algebra component) to its root node. The Search Strategy
component defines a visible method Optimize that can be called when a query is to
optimize.

The Algebra component defines the logical operators (operations on the database)
and the physical operators (implementation algorithms for these logical operators) in
the database. The Accept method allows Logical operators to be traversed by some
visitors that represent operations on them. It supports easy extension of operations
that are performed on these operators without changing and re-compiling the Algebra
component.

The Search Spacc component defines what the search space is. It defines the
operations on the Algebra. The effects of executing the operations in the Search
Space component are

® An operator tree is transformed to another. The new tree becomes bigger as a
result of tree expansion or these two trees are equivalent as a result of equivalent
tree transformation.

e A logical query plan is transformed to a physical query plan.

In our example system, operators such as Select, Join, Materialization, Unnest
and their corresponding implementation algorithms are implemented by subclassing
the base classcs defined in the Algebra component. Operations that perform on
these opcrators/algorithms including rules for transformation are implemented in the
Search Space component by subclassing its base classes or by following the protocols
defined in the framework. The Scarch Strategy component can be kept unchanged.

It can also be overridden or extended by subclassing the existing search approaches.

41

Dynamic Figure 18 describes the dynamic behavior of how a query is optimized
in a sequence diagram. It is an abstract scenario based on the simplified overall
structure. We will discuss this sequence diagram with two scenarios. For simplicity,

only one operator instance and one algorithm instance are shown in the sequence

diagram.
: Search operator : algorithm : logical : Search algorithm :
Strateqy Algebra Algebra Space Algebra
| |] I [
l { } I |
Optimize | | | | I
Accept () I : : :
,' Build Iognéal plan ' '
!
1 .
i ! {
l Build phyéucal plan I
] >Q
Perfanp cost pruning

I

f I
I !
I I
| |
| I
I I
I I
I I

Figure 18: Dynamic Behavior of Query Optimization
Scenario 1 shows the Bottomup optimization approach:
1. The Search Strategy component accepts the user request for optimizing a query.

2. The logical operators in the Algebra component are applied, which in turn call
the logical scarch space to build initial logical query plan trees.

3. The physical operators in the Algebra component are applied, which in turn call

42

~J

the physical search space to build the physical query plan trees for the logical
query plans created in step 2.

- The Search Strategy component performs the cost pruning on the physical query

plans created in step 3. Equivalent plans that have higher costs are pruned out.

- Apply all logical operators to expand the newly created logical query plan trees.

- Apply all physical operators to convert the newly created logical query plans

into physical query plans.

. Perform cost pruning on the physical query plans generated in step 6.

- Repeat step 5 to 7 until no logical query plan trees can be expanded.

Return the physical query plan with the least cost whose corresponding logical
query plan represents the complete query.

Scenario 2 shows the Transformation optimization approach:

1.

2.

The Search Strategy component accepts the user request for optimizing a query.

The logical operators in the Algebra component are applied, which in turn call
the logical search space to build a logical query plan tree that represents the
complete query.

- The physical operators in the Algebra component are applied, which in turn call

the physical search space to build the physical query plan trees for the newly
created logical query plan.

- The Search Strategy component performs the cost pruning on all newly created

physical query plans. Equivalent plans that have higher costs are pruned out.

- Algebraic laws that are defined in the logical search space are used to transform

the newly created logical query plan to its equivalents.

. Build the corresponding physical query plans for the logical query plans gener-

ated in step 5.

Perform cost pruning on the physical query plans gencrated in step 6.

43

8. Repeat step 5 to 7 until no algebraic laws can be used to transform the existing
logical query plan trees.

9. Return the physical query plan with the least cost.

Known Uses The System-R style optimizer proposed a cost estimation framework
and implemented it. The cost estimation in this query optimization framework uses
the same cost estimation model as that of the System-R optimizer.

The separation of the logical and physical operators, the implementation of the
logical and physical properties, selectivity, input constraints for execution algorithms,
enforcers (“glue” operators), cost estimation functions can also be found in the Vol-
cano Optimizer Generator, the Starburst optimizer, and OPT++. Search strategies
that are built in this framework can also be found in the Exodus Optimizer Generator,
the Volcano Optimizer Generator, and OPT++.

The object-oriented techniques such as inheritance and late binding that are used
in this framework have been proved to be beneficial to make a query optimizer ex-
tensible in OPT++.

Consequences The reuse of the query optimization framework has the following
benefits:

e Building a new query optimization system is easy.

The majority code in the query optimization including the control flow for
the search process, the different search strategy approaches, the manipulation
of the tree structure, the relationships amongst the components, and the cost
estimation functionality are already implemented in this framework. Building
a new query optimization system using this framework only needs to define
the actual logical and physical operators in database, and the operations that
are performed on them. Compared to the complexity of a query optimization
system, writing this part of code is easy.

¢ Modifying a query optimization system built from this framework is easy.
This framework is equipped with different search strategy approaches and allows
the optimizer-implementor to experiment with them and choose one that is best
suited for that system. These search strategies can also be easily modified or

extended by simply subclassing the built-in search strategy classes.

44

Limiting or extending the search space is easy. The implementation details
about how the search space is shaped are encapsulated in the Search Space
component. Any changes to them are limited within this component.

Extending the database algebra is easy. Adding new database constructs or
new execution algorithms only need to subclass the base classes in the Algebra
component and add the operations performed on these constructs in the Search

Space component.

e Maintaining this framework is easy.
This framework is implemented with proven design patterns and object-oriented
techniques. Its structure is extensible and flexible to facilitate future mainte-
nance and evolution.

The use of the query optimization framework has the following limitations:

o Complexity.
This framework is implemented as a whitcbox framework. As any white-
box framework, it is reused by inheritance. This means that the optimizer-
implementor needs to understand the interfaces defined in the framework in
order to implement them.

e Based on assumptions.
This framework is built on top of the abstract operators and execution algo-
rithms. It put specific assumptions on the kinds of manipulations on these
operators and their execution algorithms. The liability is that if these assump-
tions are incomplete, the framework is less general.

¢ Changing interfaces is hard.
The search strategies arc written with respect to the interfaces of the abstract
operators and their execution algorithms. Any change of these interfaces means
that the application systems built from this framework have to be changed
accordingly.

Chapter 4
Framework Design

This chapter presents an object-oriented design for the query optimization framework.
The structural aspects of this framework are fully discussed, including the overall
structure, detailed design of each component, and design of the exception handling.
Then the dynamic aspects of this framework are illustrated. The scenarios of how the
user interacts with this system and how a query is optimized with different approaches
are presented. Finally the cost evaluation for the physical query plans is illustrated.
The reason to put the cost evaluation in a separate section is that it is the most
critical part of query optimization and deserves some special treatment.

4.1 Overall Structure

Figure 19 shows the overall class diagram. In this figure, components of this frame-
work are represented as packages and only the top-level classes in each component
are shown.

The Search Strategy component encapsulates the system control flow. It imple-
ments different search approaches that are used to perform the search in the search
space. At any instance of time, only one search approach dominates. It also encapsu-
lates the cost model and implements the cost estimation framework. It contains the
logical query plans and physical query plans that have been built, and it performs
the cost evaluation on these plans and prunes out the sub-optimal ones. Tlie Search
Strategy component maintains an aggregation reference to the Algebra component
because each logical query plan is represented by applying an opcrator (in the Algebra

16

—

SearchStrategy l

SearchSpace

QueryOptimizerFacade

T OperatorTreevVisitor

strategwyo. .1 /
earchStrategy crea ﬁes/ creqtes

1
Generator
searchy\;/ 0.. 1
SearchTree
T
)) Vv
inputs optimumnode —ﬁ
9..1 DBAlgebra
OperatorTree
0..1 ?\-\ op
parent phynodes ? DBOperator
List<AlgorithmTree>
woputs algprith® (541 gorithm
P
AlgorithmTree [Of 0..1
‘1

Figure 19: Overall Class Diagram

47

Component Collaborators

- .search Strategy + Search Space
Responsibility + Algebra
+ Implements search strategies.

+ Controls search process.
+ Performs cost pruning.

Table 1: CRC Card for the Search Strategy Component

component) to its root node, and each physical query plan is represented by applying
an algorithm (in the Algebra component) to its root node.

The major classes in the Search Strategy component include: the QUERYOP-
TIMIZERFACADE, the SEARCHSTRATEGY, the SEARCHTREE, the OPERATORTREE,
and the ALGORITHMTREE. The class QUERYOPTIMIZERFACADE is the facade of
this system. It simplifies the use of the system. The SEARCHSTRATEGY is an ab-
stract class and provides interfaces for all search strategy approaches that are used
in query optimization. The SEARCHTREE represents the search tree that is used to
explore the optimal plan. It implements the search strategy interfaces. The OPER-
ATORTREE represents a logical query plan of a query. It is an algebraic expression
that represents the particular operations to be performed on data and the necessary
constraints rrcgarding order of operations. The ALGORITHMTREE represents a physi-
cal query plan of a query. It is a tree of algorithms that specifies the particular order
of operations and the algorithm used to implement each operation.

Table 1 shows the CRC card [29] for the Search Strategy component. The Search
Strategy component collaborates with the Algebra component and the Search Space
component. [t utilizes the available resource provided by the other two components
to perform the search process.

The Algebra component defines the logical operators (operations on the database)
and the physical operators (exccution algorithms for these logical operators) in the
database.

There are two major classes in the Algebra component: the DBOPERATOR and
the DBALGORITHM. The former defines the interfaces for all possible logical opera-
tors in the database system. The latter defines the interfaces for all possible exccution

algorithms for these logical operators. They are all abstract classes and depend on

48

Coniponent Collaborators

Algebra + Search Strategy

Responsibility + Search Space
+ Define logical operators in the database.

+ Define physical operators in the database.

Table 2: CRC Card for the Algebra Component

the optimizer-implementor to define the actual database algebra. The definitions of
the interfaces for the logical and physical operators should consider easy extension of
possible operations that are performed on them.

Table 2 shows the CRC card {29] for the Algebra component. The Algebra com-
ponent collaborates with the other two components to provide the basic database
operators and execution algorithms that will be used to build the search tree.

The Search Space component defines what the search space is. It defines the
operations on the Algebra. The effects of executing the operations in the Search
Space component are:

e A tree is transformed to another tree. The new tree becomes bigger as a result
of expansion or these two trees are equivalent as a result of some equivalent
transformations.

o A logical query plan is converted to a physical query plan.

Conceptually, there are two search spaces. One is the logical search space. It is
a space of logical query plans and decides how one logical query plan derives from
another. The other is the physical search space. It is a space of physical query plans
and decides how one physical query plan derives from another. The conversion from
the logical query plan to the physical query plan can be deemed as an operation on
the logical search space.

There are two major classes in the Scarch Space component. One is the OPER-
ATORTREEVISITOR and the other is the Generator. The OPERATORTREEVISITOR
is an abstract class and defines all operations performed on the Algebra component.
[t serves as a bridge between the Algebra component and the Scarch Space compo-
nent. The Generator is not a class defined in this framework. In fact, there are three
gencrator classes, each is defined for one of the following operations:

49

Component Collaborators

Search Space + Search Strategy
Responsibility + Algebra
+ Tree expansion / tree transformation.
+ Converts a logical plan to a physical plan.

Table 3: CRC Card for the Search Space Component

e Tree expansion
e Tree transformation
¢ Convert a logical query plan to a physical query plan.

Table 3 shows the CRC card [29] for the Search Space component. The Search
Space component collaborates with the other two components. It defines the search
space that is used to explore the best physical query plan that may exist in the search
space.

4.2 The Search Strategy Component

4.2.1 Structure

Figure 20 shows the main class diagram of the Search Strategy component. The class
details are shown in Figure 21, Figure 22, Figure 23, Figure 24, and Figure 25. The
QUERYOPTIMIZERFACADE class is an abstract class. It defines the interfaces for the
entry point of this system. There are two concrete facade classes in this framework:
the QUERYOPTIMIZERFACADEWITHPARSER and the QUERYOPTIMIZERFACADE-
WITHFORMATEDFILE. They differ in the way they pre-process queries. The former
incorporates a query parser. It can accept user-input queries, parse them, and perform
some pre-processing on these queries before further optimization. The incorporation
of a query parser makes the query optimization system standalone, which is especially
useful when the query optimization system needs to be experimented over and over
before delivery. The latter reads queries from files that are written in a certain format
specified in the framework.

50

QueryOptimizerFacade <>———>1 SearchStrategy SearchTree

i . AN

1
TransformativeSearchStrategy

BottomupSearchStrategy

1 i

QueryOptimizerFacadeWithParser ExpandedSearchTree

QueryOptimizerFacadeWithFormatedFile

TransformedSearchTree

optimumnode
parent
AlgorithmTree K>———> OperatorTree

Figure 20: The Search Strategy Component

QueryOptimizerFacade

QQueryOptimizer?acade() : QueryOptimizerFacade
Qoptimize() : AlgorithmTreer
Q-QueryOptimizerE'acade()
QSetSearchStrategy(SearchStrategy*) : void
@®PreprocessQuery() : void
@¥DoOptimize() : AlgorithmTreet*
InitializeVariables() : void
leanUpvariables() : void
ReadSystemCatalog() : void

1
]

QueryOptimizerFacadeWithParser

?Preprocessouery() : void

QueryOptimizerFacadeWithFormatedFile

?Preprocessouery() : void

Figure 21: The Facade Hierarchy

SearchStrategy

®searchStrategy() : SearchStrategy
Qoptimize() : AlgorithmTree*
@-SearchStrategy()
QGetSearchTree() : SearchTree*
reateSearchTree() : SearchTree*

i

|
BottomupSearchStrategy

QBottomupSearchStrateqy() : BottomupSearchStrategy
@-BottomupSearchStrateqy/()
WIeateSearchTree() : SearchTree*

TransformativeSearchStrategy

‘TransformativeSearchStrateqy() : TransformativeSearchStrategy
®-TransformativeSearchStrategy()
reateSearchTree() : SearchTree*

Figure 22: The Search Strategy Hierarchy

The SEARCHSTRATEGY class is an abstract class and defines the interfaces for the
search approaches in the query optimization. The SEARCHSTRATEGY class consists
of a search tree object that is used to perform the search. There are two search
strategies implemented in this framework. One is the BOTTOMUPSEARCHSTRATEGY,
and the other is the TRANSFORMATIVESEARCHSTRATEGY. They differ in that they
use different search trees to perform the search process.

The SEARCHTREE class represents the search tree that is used to explore the
optimal plan in query optimization. It encapsulates complex data structures that
are used in the search. Two scarch tree subclasses are defined in this framework.
The EXPANDEDSEARCHTREE is used by the BOTTOMUPSEARCHSTRATEGY, and
the TRANSFORMEDSEARCHTREE is used by the TRANSFORMATIVESEARCHSTRAT-
EGY. The SEARCHTREE consists of an OPERATORTREE object, which represents the
optimal logical query plan (whose physical query plan has least cost). It also consists
of two lists of OPERATORTREE objccts: one is a list of unexpanded operator trees
that will be expanded in the optimization, the other is a list of atomic operator trees

that may be used to combine with other operator trees in the tree cxpansion process.

SearchTree

unexpanded_nodes_index : int
istofrootnodes : List<OperatorTree>
listofunexpandednodes|[] : List<OperatorTree>

®SearchTree(: void) : SearchTree

§-SearchTree(: void)

’SPrune(phynode : AlgorithmTreet*) : void
‘MakeInitialTree(: void) : void

®DoSearch() : AlgorithmTree*

QNewNode(node : OperatorTree*) : void
QExpandNode(node : OperatorTree*) : void
QAddNodeToTree(node : OperatorTree*) : void
QDeleteLogNode(lognode : OperatorTree*) : void
®GetListOfRootNodes(: void) : List< OperatorTree >&
QGetListOfOperatorsToApply(OperatorTree*) : List< DBOperator >&
‘Optimize(: void) : AlgorithmTree*

Initialize(: void) : void

leanUp(: void) : void
ExpandedSearchTree

QE!xpandedSearchTree() : ExpandedSearchTree
§-ExpandedSearchTree()

QMakelnitialTree(: void) : void
QDosearch() : AlgorithmTree®*

TransformedSearchTree
isTryNext : bool

Q‘I'ransformedSearchTree() : TransformedSearchTree
§-TransformedSearchTree()

‘MakeInitialTree(: void) : void

®Dosearch() : AlgorithmTree*

®NewNode(node : OperatorTreet) : void
QExpandNode(node : OperatorTreet) : void

Figure 23: The Search Tree Hierarchy

OperatorTree

inputs : OperatorTree**
done : int
expanded : int
Op : DBOperator*
ogprops : OperatorTreeProperty*
phynodes : List<AlgorithmTree>
children : List<OperatorTree>
optimal_phynodes : List<AlgorithmTree>
enforcednodes : List<AlgorithmTree>
dependent_nodes : List<OperatorTree>

QOperatorTree()
Q®OperatorTree()
QOperatorTree()
%IsDone()
~OperatorTree()
QGetOp ()
etLogProps()
$setLogProps ()
anRemoveFromSearch()
QCanDelete()
Q§Children()
Q9Addchild()
QDeleteChild()
92ddDependent ()
@DeleteDependent ()
QGetPhyNodes ()
®NumPhyNodes ()
Q9addrhyNode()
@DeletePhyNode()
@DeleteSubOptimalPhyNode()
QaddEnforcedNode ()
@Input()
QLeftInput()
QRightInput()
@MakePhyNodes()

Figure 24: The OPERATORTREE Class

54

AlgorithmTree

inputs : AlgorithmTreer*

usedflag : int

suboptimal : int

enforcednode : int

phyprops : AlgorithmTreeProperty*
algorithm : DBAlgorithm*

$sDeletePhyNode ()
@-AlgorithmTree()
QAlgorithmTree()
@®2algorithmTRee()
Q®algorithmTree()
@®AlgorithmTree()
9Getalgo()
®GetNumInputs()
‘SetPhyProps ()
@®Input()
QLeftInput()
Q®RightInput()
Q®GetPhyProps()
Q9GetLogProps()
QGetParent ()
@®Isinteresting()
@suboptimal()
@®IsUsed()
QIsEnforcedNode()

Figure 25: The ALGORITHMTREE Class

The OPERATORTREE class is used to represent logical query plans, and the AL-
GORITHMTREE class is used to represent physical query plans associated with some
logical query plans. An OPERATORTREE instance consists of a list of inputs (in-
stances of the OPERATORTREE), and a list of associated physical query plans (in-
stances of the ALGORITHMTREE). An ALGORITHMTREE instance consists of a list of
inputs (instances of the ALGORITHMTREE), and a reference to its parent (an instance
of the OPERATORTREE).

4.2.2 Design Patterns Used

There are three patterns used in the Search Strategy component.

[51]
[4]

SUvtTSien as3es

L | L |

Figure 26: Facade Design Pattern

4.2.2.1 The Facade Design Pattern

Figure 26 shows the standard structure of the Facade pattern [5]. In the query
optimization framework, the QUERYOPTIMIZERFACADE and its subclasses play the
role of Facade of the standard structure.

There are three reasons behind the use of the facade pattern:

¢ Query optimization in the simplest sense is to give a parsed query and ask for
an optimal access plan. The use of facade simplifies the interface of the complex
optimization system. It provides the default view of this system and the clients
are not required to understand what search strategies should be used and how
they work.

e There exist dependencies hetween the clients and the system. For example,
the clients need to prepare for some inputs and initialize some environment
variables that may relate to some other subsystems. The use of facade de-
couples the system from clients and other subsystems because all interactions
are centralized in the facade class.

e The facade class defines an entry point to the query optimization system. Its
use promotes layering of the DBMS system because diffcrent layers can com-
municate only through their facades.

56

Context | Strategy »| Strategy

Contextinterface() Algoathmintertace()

I | |
CancreteStrategyA ConcretaStrategy8 ConcretaStrategyC

Algorithminterface() Algonthminteriace(} Agonthmintertace()

Figure 27: Strategy Design Pattern

4.2.2.2 The Strategy Design Pattern

Figure 27 shows the standard structure of the Strategy pattern [5]. In this framework,
the QUERYOPTIMIZERFACADE class plays the role of Context, the SEARCHSTRAT-
EGY class plays the role of Strategy, and the BOTTOMUPSEARCHSTRATEGY and
the TRANSFORMATIVESEARCHSTRATEGY play the role of Concretestrategy in the
standard structure.

There are two reasons behind the use of the Strategy design pattern:

e Different search strategy approaches that are used in query optimization only
differ in their behavior. With the use of the Strategy pattern we can configure
one of these approaches at run time in the query optimization system.

o Different search strategy approaches have tradcoffs. The Strategy pattern pro-
vides a way to offer various choices to the client.

4.2.2.3 The Factory Method Design Pattern

Figure 28 shows the standard structure of the Factory Method design pattern [5].
In this framework, the SEARCHSTRATEGY class plays the role of Creator, the BoT-
TOMUPSEARCHSTRATEGY class and the TRANSFORMATIVESEARCHSTRATEGY play
the role of ConcreteCreator, the SEARCHTREE class plays the role of Product, and
the EXPANDEDSEARCHTREE and the TRANSFORMEDSEARCHTREE play the role of
ConcreteProduct in the standard structure.

The rationale behind the use of the Factory Method design pattern is that the
SEARCHSTRATEGY abstract class does not know which search tree to use so it needs

o7

AnQperation) Q- == === ;odm=FacmMemodo 1

ConcreteProduct [~~------=1 ConcreteCreator

FactoryMethod) O-F------1 tstum new Co«umductﬁ

Figure 28: Factory Method Design Pattern

to defer their creation to its concrete subclasses.

4.2.3 Separation of the Search Strategy and the Search Tree

In the query optimization framework, we make a clear separation of the search strat-
egy and the search tree. The former represents the interface for all search strategics,
and the latter is the implementation of this interface.

We think this separation is necessary and important in the reusable object-oriented
design in order to achieve a reusable object-oriented query optimization framework.
There are many advantages for this separation. First, the separation avoids exposing
complex data structures that are used in the implementation to the client, thus pro-
moting information encapsulation. Second, the implementation of a search strategy is
volatile because it will be improved over time. The separation of the interface from its
implementation maintains a stable interface to the client and allows its implementa-
tion to be changed without re-compiling the client code. Third, with this separation,
the search strategy becomes a logical concept, thus leading to a good understanding
of the query optimization system and allowing different implementation algorithms
to be experimented for each search strategy.

4.2.4 Description of the Major Classes
4.2.4.1 The Facade Classes

The QUERYOPTIMIZERFACADE Class
The QUERYOPTIMIZERFACADE is an abstract class. It provides an entry point to
the query optimization system with two visible methods:

Optimize — optimizes a user-written query written in a query language
and returns the physical query plan that has least execution cost and
that corresponds to the complete query. By default, the Bottom-Up
Search Strategy is used to perform the search.

SetSearchStrategy — provides the sophisticated user with a choice to
change the default search strategy. The argument search strategy will
be used as the new search strategy for search.

One important method defined in this class is the PreprocessQuery. It is a pro-
tected abstract method and should be implemented by the immediate concrete sub-
classes. This method is defined to resolve the user conflicts and provides two means
for the user to access to this system. A major functionality of it is to perform semantic
checking on the input query, which includes:

1. Check relation uses. Any relation involved in the query must be a relation or
view in the system catalog.

2. Check and resolve attribute uses. Attributes mentioned in the query should
exist in some relations in the current scope. Also, if the relation name an
attribute refers to is absent in the present of this attribute, it is attached to this
attribute.

3. Check types. All attributes are of appropriate types to their use. For example,
if, in the system catalog, the attribute name of relation Persons is of type string,
then Persons.name = john is invalid while Persons.name = ‘john’ should
be accepted (supposing the syntax for string is quoted within a single quote).

The QUERYOPTIMIZERFACADEWITHFORMATEDFILE Class
The QUERYOPTIMIZERFACADEWITHFORMATEDFILE class is a subclass of the

a9

QUERYOPTIMIZERFACADE class. It implements the method PreprocessQuery. It
reads the parsed query from a file named .parsedquery which is written in a certain
format specified in the framework and then performs semantic checking.

The QUERYOPTIMIZERFACADEWITHPARSER Class

The QUERYOPTIMIZERFACADEWITHPARSER class is a subclass of the QUERYOP-
TIMIZERFACADE class. It implements the method PreprocessQuery that incorporates
a query parser developed from the Yacc framework. The incorporation of a query
parser makes the query optimization system standalone, which is good for experi-
ment purpose. This method accepts user input queries from the text mode interface,
interprets them, parses them, and performs semantic checking on them. This class is
isolated and may allow future extension to incorporate a query parser with graphical
interface without affecting the rest of the system.

4.2.4.2 Thbe Search Strategy Classes

The SEARCHSTRATEGY Class

The SEARCHSTRATEGY class is an abstract class. It defines the interfaces for all
possible search strategy approaches used in query optimization. It consists of a search
tree (an instance of the SEARCHTREE class) and defines three methods:

Optimize — a public method to optimize the user query and returns
the physical query plan that has least execution cost and that cor-
responds to the complete query. It performs its work by delegating to
the searchTree object it contains.

GetSearchTree — a public method that returns its attribute searchTree.

CreateSearchTree — a protected abstract method. It will be implemented
by the subclasses.

searchTree — a private attribute. It represents the actual search tree that
is used to perform the search.

The BOoTTOMUPSEARCHSTRATEGY Class

The BOTTOMUPSEARCHSTRATEGY class is a subelass of the SEARCHSTRATEGY
abstract class. It implements the CreateSeurchTree method and returns a newly
created object of the EXPANDEDSEARCHTREE class.

60

The TRANSFORMATIVESEARCHSTRATEGY Class
The TRANSFORMATIVESEARCHSTRATEGY class is a subclass of the SEARCHSTRAT-
EGY abstract class. It implements the CreateSearchTree method and returns a newly
created object of the TRANSFORMEDSEARCHTREE class.
The classes TRANSFORMATIVESEARCHSTRATEGY and BOTTOMUPSEARCHSTRAT-
EGY differ in the way they create and use different search trees for search.

4.2.4.3 The Search Tree Classes

The SEARCHTREE Class
The SEARCHTREE class is an abstract class. It represents a search tree that is used
to explore the search space in order to locate the “best” physical plan.
The following shows some major methods and attributes defined in this class:

Prune — a static method that is used for cost pruning on all physical
query plans.

MakelnitialTree — a public method with empty implementation. It will
be overridden in the subclasses to create initial operator tree(s).

DoSearch — a public method with empty implementation. It will be
overridden in the subclasses to perform the search on the search tree.

NewNode — a public method to add a newly created operator tree to the
search tree for later processing.

EzpandNode — a public method to expand an operator tree. An operator
tree is expanded when a logical operator is applied to it and a bigger
operator tree is built.

Initialize — a protected method to initialize the environment for search.

CleanUp — a protected method to clean up the search environment when
the optimal physical query plan is found.

listofunexpandednodes —- a protected attribute that contains lists of unex-
panded operator trees that will be expanded in an increasing order of
number of opcrations they contains.

listofrootnodes — a protected attribute that contains list of atomic oper-

ator trees that may be used to combine with other operator trecs to

61

build bigger operator trees.

unexpanded_nodes_index — a protected attribute that represents an index
for the position in the listofunexpandednodes where the unexpanded

operator trees are under expansion.

The EXPANDEDSEARCHTREE Class

The EXPANDEDSEARCHTREE class is a subclass of the SEARCHTREE class. In this
class, the methods MakelnitialTree and DoSearch are re-written. The former creates
a set of initial operator trees according to the relations mentioned in the query. For
example, for the following query, the MakelnitialTree method will create an initial
operator tree that consists of one node, that is, the relation Students.

select name from Students where id = 123;

The DoSearch method controls the search and continuously expands the operator
trees until a logical query plan representing the complete plan is reached and there is
no need to expand it. A logical query plan (an operator tree) is considered complete
when its logical properties contain all the expressions (including predicates) in the
query.

The TRANSFORMEDSEARCHTREE Class

The TRANSFORMEDSEARCHTREE class is a subclass of the SEARCHTREE class.
In this class, the methods MakelnitialTree, DoSearch, NewNode, and EzpandNode are
re-written.

MakelnitialTree — a public method that creates a complete logical query
plan that represents the complete query, and converts this logical query
plan to its corresponding physical query plans. For example, for the
query

select name from Students where id = 123;

the MakenitialTree method will create an initial operator tree as seen
in Figure 29 and the physical plans associated with it.
DoSearch — a public method that continuously transforms the initial

logical query plan to its equivalents, generates corresponding physical

62

Select
(id = 123)

Students

Figure 29: An Initial Tree

query plans, performs cost pruning, and finally returns the physical
query plan with least cost.

Methods NewNode and EzpandNode are re-written to limit the possible combi-
nations of the logical operators when the initial logical query plan is built. In the
class EXPANDEDSEARCHTREE, all logical operators are applied to explore all possi-
ble combinations to build new logical query plans. But in this class, only one logical
operator is applied at a time. Attribute isTryNext is the associated attribute that is
used for the same purpose. It limits the number of operators that can be applied to
expand an operator tree. If one operator is already applied to build a new operator
tree, then isTryNext helps to stop trying all the other operators that can be applied
to this trce to generate alternative operator trees. For example, when the query

select e.name, p.address from Persons p, Employees e
where p.name=e.name and e.age=25;

is optimized, the initial operator trecs are in Figure 30.

t Persons Q2 Employees

Figure 30: Initial Trees

When the operator tree t2 is expanded, there are two alternatives: If the Se-
lect operator is applied, operator tree t3 will be generated; If the Join operator is
applied, then t4 and t5 will be generated (see Figure 31). In the class EXPANDED-
SEARCHTREE, all the trees t3, t4, t5 are generated for further optimization. But in
this class, cither t3 or t4 and t5 are generated depending on the order of applying
these operators. That is, if operator Select is applied before the operator .Join, then
only t3 is generated. Otherwise, both t4 and t5 are generated.

63

3 Select 4 Join 5 Join
(age=25)
Employees Employees Persons Persons Employees

Figure 31: Expanded Trees

The OPERATORTREE Class
The OPERATORTREE class represents the logical query plan in query optimization.

op — a private attribute which is a pointer instance of the class DBOP-
ERATOR. The operator tree is built by applyiug the logical operator
op to the tree’s inputs. The method associated with it is GetOp, which
returns this object.

inputs — a private attribute representing the inputs (operator trees) of this
tree. The current tree is the result of applying the attribute op to the
input trees. Related methods include Input, LeftInput, and RightInput.
Input returns the Nth input if N is the provided parameter. LeftInput
returns the first input, and Right/nput returns the second input.

phynodes — a private attribute representing a list of physical query plans
associated with this operator tree. Related methods include Make-
PhyNodes, GetPhyNodes, NumPhyNodes, AddPhyNode, and DeletePhyN-
ode. MakePhyNodes dispatches to the search space to convert the
current operator tree to corresponding physical query plans. When
a logical query plan is built, all its corresponding physical plans are
generated and used for cost pruning. GetPhyNodes returns the ob-
ject. NumPhyNodes returns the number of physical query plans in
the phynodes. AddPhyNode adds a newly created physical query plan
that associates with this operator tree to the phynodes. DeletePhyN-
ode deletes a physical query plan from the list of phynodes because it
is suboptimal and is not used by others.

logprops — a private attribute representing the logical properties of the
current operator tree. It is an instance of class OPERATORTREEPROP-
ERTY and contains information such as a set of relations and predicates

64

involved in this tree, and estimated cardinality of the output, etc.

Figure 32 is an example that shows the logical properties associated with each tree

node in an operator tree for the query:

select e.name, p.address from Persons p, Employees e
where p.name=e.name and e.age=25;

Suppose operators DBRelation, Select, and Join are defined in the database.
DBRelation represents an operator that has no inputs and serves as leaves in the
operator tree and refers to the relations stored in the database. The meanings of the

other two operators are straightforward.

Join
Select
/ Relations: Employees, Persons
Predicates: e.age = 25
Relations: Employees p.name = e.name
Predicates: e.age = 25
DBRelation DBRelation
Relations: Employees Relations: Persons
Predicates: — Predicates: --—

D Operator Tree Node

D Logical Properties
Figure 32: Operator Tree and Logical Properties

Each node in the operator tree has some logical properties. These properties
arc associated with the tree that rooted at that node. Nodes in the operator tree
coutain references to their properties. For instance, in Figure 32, the Select trec node
represents the part of the operator tree rooted at it. It is actually an operator tree

too. The logical properties of this tree are that: it contains relation Employees and
the predicate e.age=25.

There are two methods related to this attribute. SetLogProps sets the logical
property object of the current tree to the supplied parameter object. GetLogProps
returns the logical property object logprops.

children — a private attribute representing logical query plans generated
from this operator tree. This attribute maintains a list of all the
logical query plans that are built from the current tree. There are
three methods related to this attribute. Children returns the children
object. AddChild inserts a child into it when a logical query plan is
built from the current tree. DeleteChild removes a child from it.

dependent_nodes — a private attribute representing a list of logical query
plans that must be deleted when the current tree is deleted. Related
methods AddDependent inserts a dependent logical query plan into it
and DeleteDependent removes a depéndent logical query plan from it.

suboptimal_phynodes — a private attribute representing physical query
plans that associated with the current tree and who are sub-optimal
but they can not be deleted because they are used as inputs to other
physical query plans. Its related method DeleteSubOptimalPhyNode
deletes a sub-optimal physical query plan if it is no longer used as
inputs to other physical query plans.

enforcednodes — a private attribute representing a list of physical query
plans that are created by being applying enforcers to the phynodes
of the current tree. Its related method AddEnforcedNode adds a new
physical query plan to it. This new physical query plan is the result
of applying an enforcer to one of the phynodes of the current tree.

The OPERATORTREEPROPERTY Class
The OPERATORTREEPROPERTY contains the logical propertics of an operator tree
(logical query plan). Figure 33 shows its structure.
Major methods and attributes include:

66

OperatorTreeProperty

numtuples : double

outputop_applied : int
index_path : char®
is_interesting : int
operations : Set<PredicateTree>
undone_tuplerefs : Set<PredicateTree>
need_unnesting : Set<PredicateTree>

peratorTreeProperty() : OperatorTreeProperty
~OperatorTreeProperty(: void)
®Duplicate() : OperatorTreeProperty*

Qoperations() : Set< PredicateTree >&
Qundone_tuplerefs() : const Set< PredicateTree >&
Qneed_unnestinq() : const Set< PredicateTree >&

®numtuples(: void) : double

®index_path(: void) : const char*

®IsEqualTo(other : const OperatorTreeProperty*) : int
®IsInteresting(: void) : int

QNumOperations(: void) : int

®1IsCompleteQuery(: void) : int

®Hash(: void) : int

Figure 33: Class OPERATORTREEPROPERTY

IsEqualTo — a public method that compares the logical properties of two
operator trees, and returns true if they are the same.

IsCompleteQuery — a public method that returns true if the current op-
erator tree is complete. An operator tree is considered complete when
its logical properties contain all the expressions (including predicates)
in the query.

IsInteresting — returns true if the operator tree it refers to contains some
interesting logical properties. Which logical property is interesting is
up to the optimizer-implementor. Normally, if the current operator
tree has a non-empty index path name, it is interesting.

Hash — a public method that hashes the current operator tree to a specific
number. If two operator trees are deemed to equivalent, their hash
numbers should be the same; otherwise, they should not.

-numtuples — a private attribute representing cstimated number of tuples
(i.e. cardinality) in the output of the operator tree. Its related method
numtuples returns this attribute.

-operations - - a private attribute representing operations that are applied

to the current tree so far. It is accumulated when an operator tree is

67

built from bottom-up. Related methods include:

NumOperations — returns the number of operations applied
so far.

operations — returns this object.

-undone_tuplerefs — a private attribute representing pointer join predi-
cates which should have applied but haven’t yet been. It has one
related method undone_tuplerefs that returns this object.

-need_unnesting — a private attribute representing set-valued attributes
that haven’t been unnested. It has one related method undone_tuplerefs
that returns this object.

Jndex_path — a private attribute holding the index path name which can
be used for an index scan. It has one related method indez_path that
returns this object.

The optimizer-implementor can add other logical properties to the class OPERA-
TORTREEPROPERTY or change definitions for interesting properties and equivalent
logical query plans. The attributes _undone._tuplerefs and _need_unnesting are defined
for uses of pointer joins and set-valued attributes. They do no harm to any query
optimization system that does not use them.

The ALGORITHMTREE Class
The ALGORITHMTREE class represents the physical query plan (access plan) in
query optimization.

algorithm — a private attribute which is a pointer instance of the class
DBALGORITHM and represents that this tree is built by applying it to
the tree’s inputs. It has one associated method GetAlgo that returns
this object.

inputs — a private attribute representing the inputs (algorithm trees)
of this trce. The current tree is the result of applying the attribute
algorithm to the inputs. There arc three related methods related to this
attribute. Input returns the Nth input if N is the provided parameter.
LeftInput returns the first input. RightInput returns the second input.

63

parent — a private attribute representing a reference to the operator tree
that associates with this algorithm tree. In other words, the current
algorithm tree is one of the physical query plans of its parent. Its
related method GetParent returns this object (an instance of the Op-
ERATORTREE class).

phyprops — a private attribute representing the physical properties of the
current algorithm tree. It is an instance of class ALGORITHMTREEP-
ROPERTY and contains information such as estimated execution cost,
sort-order, etc.

Figure 34 is an example that shows the physical properties associated with each tree
node in an algorithm tree for the query:

select e.name, p.address from Persons p, Employees e
where p.name=e.name and e.age=25;

HashJoin
(p.name=¢.name)
Cost: 130
Sort-order: -—---
Filter
/ (c.age=25)
Cost: 116
Sort-order: -
FileScan FileScan
/ (Employees) {Persons) x
Cost: 0 Cost: 0
Sort-order: —— Sort-order: ——

D Algorithm Tree Node

D Physical Properties

Figure 34: Algorithm Tree and Physical Properties

69

Suppose execution algorithms FileScan, Filter, and HashJoin are defined in the
database. FileScan represents the execution algorithm for the logical operator DBRe-
lation, which is an operator that has no inputs and serves as leaves in the operator
trce and refers to a relation stored in the database. Filter represents the execution
algorithm for the logical operator Select. HashJoin is one execution algorithm for the
logical operator Join.

Each node in the algorithm tree has some physical properties. These properties
are associated with the tree that rooted at that node. Nodes in the algorithm tree
contain references to their physical properties. For instance, in Figure 34, the Filter
tree node represents the part of the algorithm tree rooted at it. It is actually an
algorithm tree too. The physical properties of this tree are that its execution cost is
116 and its output is not in any sort order.

The two methods related to attribute phyprops are SetPhyProps and GetPhyProps.
SetPhyProps sets the physical property object of the current tree to the supplied
parameter object. GetPhyProps returns the physical property object phyprops.

suboptimal — a private boolean attribute whose value is true if the current
algorithm tree is sub-optimal because it has higher estimated execution
cost than its equivalents but it can not be deleted because it is used
as an input to other physical query plans. An algorithm tree that is
marked as sub-optimal should not be considered as input for other
algorithm trees. Its relate method SubOptimal return the value of the
suboptimal.

enforcednode — a private boolean attribute whose value is true if the
current algorithm tree is the result of the application of an enforcer. Its
related method IsEnforcedNode returns the value of the enforcednode.

The ALGORITHMTREEPROPERTY Class
The ALGORITHMTREEPROPERTY contains the physical properties for an algorithm
tree (physical query plan). Figure 35 shows its structure.
Major methods and attributes include:

IsEqualTo—- a public method that compares the physical properties of two
algorithm trees, and returns true if they are the same.

70

AlgorithmTreeProperty
inmem_ass_obj_size : long

ops_not_in_memory : Set<PredicateTree>
cost : Cost

 —

§-AlgorithmTreeProperty(: void)
QAlgorithmTreeProperty(Algorithm'rreeproperty*) : AlgorithmTreeProperty
ps_not_in_memory() : Set< PredicateTree >&
inmem_ass_obj_size(: void) : long
Qneed_inmem(need_inmem : Set< PredicateTree >&) : void
QGetCost() : Cost
@®IsEqualTo(other : const AlgorithmTreeProperty*) : int
QHash(logprops : const OperatorTreeProperty*) : int
QIsInteresting(logprops : const OperatorTreeProperty*) : int

Figure 35: Class ALGORITHMTREEPROPERTY

| Cost
&_cost : double
@cCost(: void) : Cost
@®-Cost(: void)
perator <(other : const Costs&) : int
Qoperator <=(other : const Costs) : iat
Qoperator >(other : const Costs) : int
perator >=(other : const Costs) : int
Qoperator ==(other : const Costs) : int
Qoperator !=(other : const Costs) : int
@compute(: DBAlgorithme, : AlgorithmTree*) : void

Figure 36: Class CosT

IsInteresting — returns true if the algorithm tree it refers to contains some
interesting physical properties. Which physical property is interesting
is up to the optimizer-implementor. Normally, if the result of the
current algorithm tree is in sort order, it is interesting.

Hash — a public method that hashes the current algorithm tree to a
specific number. If two algorithm trees are deemed to equivalent, their
hash numbers should be the same; otherwise, they should not.

cost — a private attribute that is an object of class COST and that
contains the estimated execution cost for the current algorithm tree.
It has an associated method GetCost, which returns this object.

Figure 36 shows the structure for the class COST. The CosT class has an attribute
—cost that contains the estimated execution cost value. It also defines a couple of

methods to compute the cost values and compare the cost values between two Cost

71

DBOperator

Qname : char*

@-DBOperator()
QDBOperator(chare, AopNumber, List< DBAlgorithm >) : DBOperator
QAccept (visitor : OperatorTreeVisitors) : void
QDuplicate() : DBOperator®
QGetName(: void) : chare
QGetNumber(: void) : iat
QGetListOfAlgorithms() : List< DBAlgorithm >
QcClones(inputs : OperatorTree** = () : List< DBOperator >
ity(: void) : int
QMakeLogProps() : OperatorTreeProperty®

7

DBUnaryOperator

Q-DBUnaryOperator(}

QDBUnaryOperator(chars, AopNumber, List<DBAlgorithm>) : DBUnaryOperator
QClones(input : OperatorTree*) : List< DBUnaryOperator >

Qarity(: void) : int

DBBinaryOperator

&-DBBinaryOperator(: void)

@DBBinaryOperator(chars, AopNumber, List<DBAlgorithm>) : DBBinaryOperator
QClones(leftinput : OperatorTreee, OperatorTree*) : List< DBBinaryOperator >
QArity(: void) : int

‘DfsNode(input : OperatorTree*, othernode : OperatorTree*) : void

Figure 37: The Operator Hierarchy

objects.

The optimizer-implementor can add other physical properties to the class ALGO-
RITHMTREEPROPERTY or change definitions for interesting properties and equivalent
physical query plans.

4.3 The Algebra Component

4.3.1 Structure

Figure 37, Figure 38, and Figure 39 show the class diagrams in the Algebra compo-
nent. This component is composed of the logical operators and the physical operators
in the database. The DBOPERATOR class is the representative of the logical opera-
tors. Operators such as Select and Join are common logical operators that are found
in the relational database. Each node in an operator trec is created by applying a
logical operator to its input trees. The DBALGORITHM class is the representative of

72

DBAlgorithm
&, name : char*
%enforcer : List<Bnforcer>*

BAlgorithm(char*, AalgoNumber, List< BEnforcer >* = 0)
~DBAlgorithm({ : void)

uplicate() : DBAlgorithm«
etName(: void) : chare
etNumber() : AlgorithmNumber

ity(: void) : int
akePhyNodes() : void
onstraint(inputnumber : int = 0) : AlgorithmTreeProperty*
lones(OperatorTree*, AlgorithmTrees* = 0) : List< DBAlgorithm >
nforceNthConstraint(OperatorTree*, AlgorithmTree*, int = 0}
akePhyProps() : AlgorithmTreeProperty*

I

DBUnaryAlgorithm

BUnaryAlgorithm(char*, AlgorithmNumber, List< Enforcer >* = ()
~DBUnaryAlgorithm()

rity(: void) : int

akePhyNodes (lognode : OperatorTree*) : void
lones(OperatorTree*, AlgorithmTreer) : List< DBUnaryAlgorithm >

g

Enforcer

Qanorcer(char'. AlgorithmNumber, List< Enforcer >+ = 0)
~Enforcer()
nforce() : List< AlgorithmTree >

BBinaryAlgorithm(char*, AlgorithmNumber, List< Enforcer >* = 0)
~DBBinaryAlgorithm¢()
ity(: void) : int
akePhyNodes(lognode : OperatorTreet) : void
lones(lognode : OperatorTree*, OperatorTree*, AlgorithmTreer)

Figure 38: The Algorithm Hierarchy

OBOperatarQperation

operations{ : vnid) : Set< PredicateTree>é

gperation(: void) : PredicateTrees

compute_nced_inmem(: Set<PredicateTrme>s. : Set<PruedlicateTreed>s, : Sat<PredicateTree>s)
inmem_{nput_ennstraint(OperatorTreer, AlgarithmTreee®, int) : Algor.: theTreeProperty
SetOperations(operations : Set_t<Predicaterrec>) : void

opname()

Figure 39: The DBOPERATOROPERATION CLASS

the physical operators. Operators such as File Scan, Index Scan, and Nested Loop
Join are common physical operators that are found in the relational database. Each
node in the algorithm tree is created by applying a physical operator to its input
trees.

Each logical operator can have more than one execution algorithm associated with
it. For example, for the Join operator in the relational database, there are several
algorithms associated with it such as Nested Loop Join, Merge Join, Hash Join, and so
on. An algorithm tree can be built by replacing the logical operators in an operator
tree with their associated physical operators. Since one logical operator may have
more than one corresponding physical operator, an operator tree may have more
than one algorithm tree associated with it.

There is a weak dependency between the logical operator aud the physical opera-
tor. Any logical operator needs to keep track of a sct of physical operators associated
with it. So when a new operator tree is built, these associated physical operators are
accessed and used to build the corresponding algorithm trees.

Since operators may differ in their arity and same as algorithms, the classes
DBUNARYOPERATOR, DBBINARYOPERATOR, DBUNARYALGORITHM, and DB-
BINARYALGORITHM are defined to represent unary logical operators, binary logical
operators, unary physical operators, and binary physical operators respectively.

4.3.2 Major Design Issue and Design Decision

The major design issue in the design of the Algebra component is that logical and
physical operators are basic elements making up of logical and physical query plans
that are used in the search. The query optimization is actually performed on the
database algebra. That means in query optimization the search strategy is inherently
non-extensible with respect to the database algebra. The question is: How can the
search strategy perform without any knowledge of the database algebra in the query
optimization framework?

OPT++ [20] solves this problem by making specific assumptions about the kinds
of manipulations that are allowed on the operator trees and the algorithm trees.
The design idea is to define abstract classes for the logical operator and the physical
operator, put assumptions of the kinds of opcrations as abstract methods in these
abstract classes, and defer the implementation to their coucrete subclasses that will

74

be defined by the optimizer-implementor. With the inheritance and run time binding
in the C++, the actual logical and physical operators of the database algebra are
called at run time.

We reuse the design and code of the Algebra component in OPT++ and make
some improvement to them. Kabra claims that he separates the Algebra and the
Search Space in his design [20]. But in his implementation code, these two components
are actually coupled. We solve this problem by introducing an Accept method in the
logical operator hierarchy. Operations on the database algebra are represented as
visitors and are moved to the Search Space component. Then the database algebra
can perform any operation on it by accepting an appropriate visitor. The net effect
is that the Algebra component is only the representation of the database algebra,
while how the elements in the algebra are used to build what shapes of operator trees
and algorithm trees is the responsibility of the Search Space component. We thus
physically separate the Algebra component and the Search Space component and
allow the Search Space to be experimented with different implementations without
affecting the Algebra component.

Logical and physical operators in the Algebra are further divided into unary and
binary. There are some slight diffcrences in behavior between the unary operator
and the binary operator. This division allows common code to share by the concrete
logical and physical operators if they belong to the same category.

4.3.3 Class Descriptions

The DBOPERATOR Class
The DBOPERATOR class is the base class in the logical operator hierarchy. It is
an abstract class and defines three abstract methods:

Arity — a logical operator can be unary, binary, etc.

Duplicate — enables a logical operator to copy itself. It provides an easy
way to initialize a newly created logical operator. For example, the
set of execution algorithms associated with a logical operator is kept
unchanged when copy.

MakeLogProps - sets up the logical properties. The logical properties

associated with a logical opcrator may include the set of relations and

75

the predicates used.
Other major methods defined in the class DBOPERATOR include:

Accept — an important method that makes the logical operator structure
flexible. By giving an argument visitor that represents one kind of
operations on this logical operator, this method allows various opera-
tions to be performed on itself without changing any definition in this
class.

GetListOfAlgorithms — returns a list of execution algorithms associated
with this logical operator. Execution algorithms that associated with
this operator are defined by the optimizer-implementor, and they are
initialized when the system starts.

Clones — an important method to produce a list of operator instances
representing different ways of applving this operator to the inputs with
different parameters. The default implementation is one way to apply

this operator. The optimizer-implementor can rewrite this method if
needed.

Each logical operator has a name (attribute) and a number (an enumeration type).
The number associated with a logical operator is initialized when the system starts.
The associated methods with these attributes are GetName and GetNumber, which
return the name and number for this logical operator respectively.

The DBUNARYOPERATOR Class

The DBUNARYOPERATOR is a subclass of the DBOPERATOR class. It is also an
abstract class. It only implements the method Arity with a return value one and
leaves the implementation of methods Duplicate and MakeLogProps to its concrete
unary logical operator classes.

The DBBINARYOPERATOR Class

The DBBINARYOPERATOR is a subclass of the DBOPERATOR class. It is also
an abstract class. It only implements the method Arity with a return value two and
lcaves the implementation of methods Duplicate and MakeLogProps to its concrete
binary logical operator classes.

76

The DBALGORITHM Class
The DBALGORITHM class is the base class in the physical operator hierarchy. It
is an abstract class and defines four abstract methods:

Arity — a physical operator can be unary, binary, etc.

Duplicate — enables a physical operator to copy itself. It provides an
easy way to initialize a newly created physical operator. For example,
the name and the number associated with a physical operator are kept
unchanged when copy.

MakePhyProps — sets up the physical properties for the algorithm tree
rooted at this physical operator. These physical properties may include
the estimated execution cost, sort order, etc.

MakePhyNodes — creates all physical query plans as a result of applying
this algorithm instance to its input operator trees.

Other major methods defined in the class DBOPERATOR include:

Constraint — ecach algorithm has constraints on its inputs. This method
takes an algorithm tree that will serve as the Nth input as input, and
returns the physical properties that are required for that tree if it is
to serve as the Nth input.

Clones — an important method to produce a list of algorithm instances
representing different ways of applying this algorithm to its inputs with
different parameters. The default implementation is one way to apply
this algorithm. The optimizer-implementor can rewrite this method if
needed.

EnforceNthConstraint — makes sure that the Nth input satisfies the re-
quired constraints. It first calls method Constraint to find out what
physical properties are required. It then calls each of the enforcers
associated with the Nth input and applies them to the Nth input tree.
Finally it returns a list of algorithm instances which might result from
the application of these enforcers to the Nth input tree. The resultants
will serve as the actual inputs of this algorithm.

Each physical operator has a name (attribute) and a number (an enumeration
type). The number associated with a physical operator is initialized when the system
starts. The associated methods with these attributes are GetName and GetNumber,
which return the name and number for this physical operator respectively.

The DBUNARYALGORITHM Class

The DBUNARYALGORITHM is a subclass of the DBALGORITHM class. It is also
an abstract class. It implements the method Arity with a return value one and the
method MakePhyNods by delegating it to the Search Space, and leaves the implemen-
tation of the method MakePhyProps to its concrete unary physical operator classes.
In addition, it overrides the method Clones to perform some operations that relate
to a unary operator.

The DBBINARYALGORITHM Class

The DBBINARYALGORITHM is a subclass of the DBALGORITHM class. It is also
an abstract class. It implements the method Arity with a return value two and the
method MakePhyNods by delegating it to the Search Space, and leaves the implemen-
tation of the method MakePhyProps to its concrete binary physical operator classes.
In addition, it overrides the method Clones to perform some operations that relate
to a binary operator.

The ENFORCER Class

A database system might have special execution algorithms that do not correspond
to any operator in the logical algebra. The purpose of these algorithms is not to
perform any logical data manipulation but to enforce physical properties in their
outputs that are required for subsequent query processing algorithms. We call these
algorithms enforcers [20]. An example of the enforcers is the sort algorithm. It can
be used to ensure the inputs of the merge join are sorted on the join attributes.

The ENFORCER class is defined to represent enforcers. It is an abstract class and

only defines one abstract method Enforce, which takes an algorithm tree and proposed
physical properties as inputs and outputs a list of algorithm trees that are results by
forcing the proposed physical properties to be added to the input algorithm tree.

73

OperatorTreeVisitor

L l

ExpandTreeVisitor TransformTreeVisitor TreeToPlanvisitor

create$, uses tules$ creates, uses

(vector< TransformTreeGenerator* >)

2

ExpandTreeGenerator Trans formTreeGenerator AlgorithmTreeGenerator

- 1

BinaryOperatorExpand BinaryAlgorithmTreeGenerator

UnaryOperatorExpand EnforcerPlan D

UnaryAlgorithmTreeGenerator

Figure 40: The Search Space Component
4.4 The Search Space Component

4.4.1 Structure

Figure 40 shows the main class diagram in the Search Space component. The class
details are shown in Figure 41 and Figure 42. There are two hierarchies in this
component. One is the visitor hicrarchy, the other is the generator hierarchy.

The visitor hierarchy performs operations on the logical algebra. The root class
OPERATORTREEVISITOR is an abstract class and is used in places where polymor-
phism is needed. The EXPANDTREEVISITOR subclass is defined to expand an opera-
tor tree in a bottom-up fashion. The TRANSFORMTREEVISITOR subclass is designed
to transform an operator tree to its equivalents. Two operator trees are equivalent if
all of their logical properties are the same. Relations and predicates are two examples
of the logical properties of an operator tree. The TREETOPLANVISITOR subclass is
designed to convert an operator tree to its corresponding algorithm trees. One opera-
tor tree may have more than one corresponding algorithm tree if any operator in this
operator tree has more than one execution algorithm. The visitor classes dispatch

their responsibility to the corresponding generator classes.

79

OperatorTreeVisitor

QOperatorTreeVisitor(tree : OperatorTree* = () : OperatorTreeVisitor
~OperatorTreevisitor()
QGetCurrent’rree() : OperatorTreer

| @SetCurrentTree(tree : OperatorTreet*) : void

TreeToPlanVisitor

‘TreeToPlanVisitor(tree : OperatorTree* = Q) : TreeToPlanVisitor
| @®-TreeToPlanvisitor()

ExpandTreevVisitor

QBxpantheeVisitor(tree : OperatorTree* = () : ExpandTreeVisitor
| ®-ExpandTreevisitor()

TransformTreeVisitor

Q’rransformTreeVisitor(tree : OperatorTree* = () : TransformTreeVisitor
@-TransformTreevisitor()
TransformOperatorTreeWithRules(tree : OperatorTree*) : OperatorTreet*
TransformOperatorTreeWithRecursion(tree : OperatorTree*) : OperatorTree*

Figure 41: The Visitor Hierarchy

The generator hierarchy implements the major functionality in the Search Space
component. There are three generator classes, each is created and used by a cor-
responding OPERATORTREEVISITOR subclass. How the search space is shaped in
query optimization depends on how these generator classes are implemented.

4.4.2 Design Patterns Used

There is one design pattern used in the Search Space component. That is the Visitor
design pattern. Figure 43 shows its standard structure [5].

In our design, the OPERATORTREEVISITOR plays the role of Visitor in the
standard structure. EXPANDTREEVISITOR, TRANSFORMTREEVISITOR, TREETO-
PLANVISITOR play the role of ConcreteVisitor. Logical algebra plays the role of
ObjectStructure. In addition, the DBOPERATOR, DBUNARYOPERATOR, and DB-
BINARYOPERATOR play the rolc of Element. Any coucrete logical operator defined
by the optimizer-implementor plays the role of ConcreteElement of the standard
structure.

The use of the Visitor design pattern in this framework has significant effect on

80

ExpandTreeGenerator

QApply(op : DBOperatore, input : OperatorTree®) : void

pply(op : DBOperator®*. input : OperatorTree*, output : OperatorTreess) : void

~ExpandTreeGenerator()

A

_

UnaryQperatorBxpand

Mpply(op : DBUnaryOperator*, input : OperatorTrees) : void
QApply (DBOperatorse, OperatorTree*, QOperatorTree*s) : void
§-UnaryOperatorExpand()

BinaryOperatorExpand

QApply(op : DBBinaryOperator*, input : OperatorTreer*) : void
@Apply (DBOperator+*, OperatorTrect, OperatorTree*s) : void
@-BinaryOperatorExpand()

@Dfsuode(: DBBinaryOperator*, : OperatorTree*, : OperatorTree*) : void
g.ofsuode(: DBOperator®*, : OperatorTree*, : OperatorTree*, : OperatorTrec*s)

AlgorithmTreeGenerator

QApply(DBAlgorithme, OperatorTrcer, AlgorithmTree**) : void
anBeApplied(: OperatorTree*, inputs : AlgorithmTree** = 0) : int
QMakePhyNodes(algo : DBAlqorithm*, : OperatorTree*) : void

L
|

UnaryAlgorithmTreeGenerator

Qapply(DBAlgorithme, OperatorTreer, AlgorithmTreer) : void
QcCanBeApplied(: OperatorTreer, : AlgorithmTreee) : int
| @MakePhyNodes(: DBAlgorithme, : OperatorTree*) : void

rnforcerPlan

BinaryAlgorithmTreeGenerator

| @MakePhyNodes(: DBAlgorithme, : OperatorTreet) : void

Qapply(: DBAlgorithm®, : OperatorTreer, : AlqorithmTree*, : AlgorithaTreer)
QCanBeAppued(: OperatorTree*, : AlgorithmTree*, : AlgorithmTreer) :

int

TransforaTrecGenerator

Qapply(troe : OperatorTree*) : OperatorTreet
QcCanBeApplied(tree : Operatorrree*) : bool

Figure 42: The Generator Hierarchy

81

|
Chand Visilor
]
! VasitConcraletlameniA(ConcreteElomantA)
i VistConcrele£lementS{ConcratetlementS)
1]
ConcreteVisitor! ConcreteVisitor2

| |
ConcreleElamentA ConcraleElementB
wmor v} Accepi{Visitor v) ?

OperationA{) OperationB()

?
mvmmmemwmﬂ v—:V’macmElommH

Figure 43: Visitor Design Pattern

82

the extensibility of the query optimization system. The interface of the logical algebra
is relatively stable because what specific algebra to use is known by the optimizer-
implementor or it can be defined by making specific assumptions on the kinds of
operations that are allowed to perform as that in OPT++. But how the search space is
shaped in query optimization is subject to change because that is still a rescarch topic.
The use of the Visitor design pattern helps to move the volatile implementation of the
operations on the logical algebra far from it and allows algorithms to be experimented
in the Search Space independently. Additional operations that may perform on the
logical algebra can be easily added at any time without the need to re-compile the
Algebra component.

4.4.3 The Need for the Generator Hierarchy

A tricky question is: Why introduce the generator hierarchy?

According to the design of the Visitor design pattern, the visitors not only repre-
sent the operations on the object structure, they actually implement these operations.
While in our design, the visitors invoke appropriate generators and delegate their im-
plementation to them.

Of course, without the generators, we can put the implementation code for the
operations inside the visitors, and the design still works. But since the visitors rep-
resent operations that perform on the logical algebra, for each logical operator XX,
there must be a VisitXX method to be defined in each visitor class. In a complex
algebra system, there will be a long list of VisitXX methods needed to be defined in
the Search Space component. While at the same time, the implementation of each
of these methods is also complex — it truly is! Obviously such a complex structure
is hard to understand and maintain. The advantages of introducing the generator
classes and moving the implementation of the operations that a normal visitor needs
to thesc generator classes are:

e Both the visitor hierarchy and the generator hierarchy are simple to handle.
The visitor classes may have complex interfaces (due to a long list of Visit
methods), but the implementation of these interfaces is simple because they
simply delegate to appropriate generators. The generator classes have com-
plicated implementation but their interfaces are simple because each concrete

generator class only implements one operation that may perform on a logical

83

operator. So the classes in the Search Space component have a well-balanced

responsibility.

o We follow the design convention to separate interface from implementation. The
visitor classes define interfaces of these operations and the generator classes
implement these interfaces. On one hand, it promotes information hiding. On
the other hand, it protects the client code from changing while allows different
implementations to be experimented.

Generators in the Search Space component are further divided into unary and
binary. There are some slight differences in behavior between the unary generator
and the binary generator. The division allows common code to share by the concrete
generators if they belong to the same category.

4.4.4 Class Descriptions

The Visitor Class Hierarchy

The OPERATORTREEVISITOR is the root class in the visitor hierarchy. It is par-
tially designed in the query optimization framework. It defines an attribute cur-
rentTree that represents the current operator tree to be manipulated and avoids the
overhead of parameter passing. This attribute has two associated methods: GetCur-
rentTree returns the current operator tree especially after tree manipulation. SetCur-
rent Tree resets the current operator tree to the parameter one. The OPERATORTREE-
VISITOR is an abstract class and leaves a series of the VisitXX methods to be defined
by the optimizer-implementor. XX refers to a logical operator in the database alge-
bra. These methods should be defined as abstract and leaves their implementation
to the concrete subclasses.

The EXPANDTREEVISITOR is a subclass of the OPERATORTREEVISITOR. It is
used to expand an operator tree in a bottom-up fashion. This class is very useful in
the Bottom-Up Search Strategy. It is also used by the Transformative Search Strategy
to build an initial operator tree from bottom-up. This class must implement a series
of the VisitXX methods and simply dispatch implementation to appropriate concrete
generator classes.

The TRANSFORMTREEVISITOR is a subclass of the OPERATORTREEVISITOR.
It is used to transform an operator tree to its equivalents. Two operator trees are

84

cquivalent if all of their logical properties are the same. This class is very useful in
the Transformative Search Strategy to transform an operator tree to another using
algebraic laws. This class must implement a series of the VisitXX methods and simply
dispatch implementation to appropriate concrete generator classes.

The TREETOPLANVISITOR is a subclass of the OPERATORTREEVISITOR. It is
used to convert an operator tree (logical query plan) to an algorithm tree (physical
query plan). This class is very useful in all scarch strategies because the conversion
from an operator tree to the corresponding algorithm trees is fundamental in query
optimization. This class must implement a series of the VisitXX methods and also
simply dispatch implementation to appropriate concrete generator classes.

The Generator Hierarchy

The generator hierarchy does not have a common root class, and it is unnecessary
to define one. Instead, we define three top-level generator classes, each corresponds
to one immediate subclass of the OPERATORTREEVISITOR class.

The first top-level generator class is the EXPANDTREEGENERATOR class. It is
designed for tree expansion. This class defines a major method Apply that is used to
create operator trees corresponding to the application of the given logical operator to
(all possible) sets of inputs, one of which is the given operator tree.

The UNARYOPERATOREXPAND is a subclass of the EXPANDTREEGENERATOR.
It overrides the Apply method to apply the given logical operator to the given operator
tree to create one new operator tree. It represents the common behavior in all unary
logical operators.

The BINARYOPERATOREXPAND a subclass of the EXPANDTREEGENERATOR. It
overrides the Apply method to apply the given logical operator to the given operator
tree to create new operator trees. The given operator tree will serve as one of the
inputs for the given operator. The other inputs will have to be found in the search
tree. This class also defines a private method DfsNode that is used by the Apply to
perform a depth first search of the search tree for suitable nodes that can be paired
with the given operator tree input. The BINARYOPERATOREXPAND class defines
methods representing the common hehavior in all binary logical operators.

The second top-level generator class is the TRANSFORMTREEGENERATOR class.
It is designed for equivalent tree transformation. This class defines two major meth-

ods:

85

CanBeApplied — returns true if the current generator can apply to the

given operator tree.

Apply — applies the current generator to the given operator tree and re-
structures the given operator tree into a new operator tree. The new
operator tree must be equivalent to the given operator tree.

The optimizer-implementor has to define concrete subclasses of the TRANSFORMTREE-
GENERATOR, each represents an algebraic law that performs on some logical oper-
ators. The newly created subclasses must overwrite the default behaviors of the
methods CanBeApplied and Apply in the base class.

The third top-level generator class is the ALGORITHMTREEGENERATOR class. It
is designed to convert an operator tree to its algorithm trees. It is an abstract class
and defines three methods:

MakePhyNodes — an abstract method that is supposed to control the
creation of the algorithm trees by applying the given physical operator
to the given algorithm tree inputs. Only non sub-optimal inputs are
considered to be used to build the new trees. The implementation of
this method is left to the concrete subclasses.

CanBeApplied — returns true if the given physical operator can apply to
the given algorithm trces.

Apply — constructs all algorithm trees for the given operator tree by
applying the given physical operator to the given algorithm trees.

The UNARYALGORITHMTREEGENERATOR and the BINARYALGORITHMTREE-
GENERATOR are two subclasses of the ALGORITHMTREEGENERATOR. In these two
classes, method MakePhyNodes is implemented and methods CanBeApplied and Ap-
ply are overridden. These two classes only differ in the way the given physical opera-
tor applies to the given inputs. In the class UNARYALGORITHMTREEGENERATOR,
a unary physical operator is applied. While in the class BINARYALGORITHM TREE-
GENERATOR, a binary physical operator is applied.

86

QueryOptimizerException

A\

LogicError CanNotOpenFile BadData

7

WrongFunctionCall

Figure 44: Class Diagram for the Exception Handling

4.5 Exception Handling

An exception handler can centralize the processing of all exceptions no matter where
they occur. It is difficult to incorporate an exception handler into a system if the Sys-
tem has been completed. Although a query optimization system is not intended to be
directly interact with the user and the exceptions that may occur are not significant,
we still consider it necessary to incorporate an exception handling mechanism.

Figure 44 shows the exception handling hierarchy in the query optimization frame-
work. The root class of the exception hierarchy is the QUERYOPTIMIZEREXCEPTION
class. It is an abstract class and defines one public method What refers to what the
exception is. Since the root class does not know what exception it will be, it defers
that to its concrete subclasses. The advantage of using a common root exception class
is that a polymorphic exception variable can be caught and be processed according to
its run-time type. For example, a C++ statement catch (QueryOptimizerEzception&
e) can be placed in the main control program and a call to e. What() will display what
specific exception is. If e is a logic error, then e. What() will display this logic error.
If e is an error that a file can not be opened, then e. What() will display the name of
the file which could not be opened.

The LOGICERROR is a subclass of the QUERYOPTIMIZEREXCEPTION that is
used to refer to logic errors in the system. It defines a private attribute errorMessage
that records what logic error it is. The What method is implemented to display
this logic error message. These logic errors are not intended to be understood by
the user of this system. Instead, they arc designed to help the system maintainer

to fix the system errors. Wrong function call is one kind of logic error and class

87

WRONGFUNCTIONCALL is defined for this purpose. It refers to the kind of errors
that a function should not be called but it is mistakely called. The What method is
overridden to display which function should not be called.

The BADDATA is a subclass of the QUERYOPTIMIZEREXCEPTION that is used
to refer to errors that data is not in the right format and could not be processed.
A private attribute errorMessage is defined to record this kind of errors. The What
method is implemented to return the error message.

The CANNOTOPENFILE is another subclass of the QUERYOPTIMIZEREXCEP-
TION that is used to refer to the common I/O errors: “Can not open files”. A private
attribute filename is defined to records the name of the file that can not be opened,
and the What method is implemented to return the error message.

4.6 Dynamic Behavior

This section shows the dynamic behaviors of the query optimization system.

4.6.1 Scenario of Invoking Query Optimization

I — e

4 | |
: <<create>> > 1 l |
i <<create>> i

i “U !
| | l l
L Optimize() [| I
N Optimize() N [
f <<create>> o
i L
?i MakenitialTree(void) -
3 DoSearch()

g

o

Figure 45: Sequence Diagram for Bottom-Up Optimization

Figure 45 shows one scenario of how the user interacts with the system and how

the system reacts to the user calls. It demonstrates the default view of this system,

that is query optimization from bottom-up. This scenario illustrates:

1.

2.

[S1]

The user creates a QUERYOPTIMIZERFACADEWITHPARSER object facade.

A BOTTOMUPSEARCHSTRATEGY object is created and will be used for search.

- The user invokes method Optimize on the facade object.
- The facade delegates the request to the BOTTOMUPSEARCHSTRATEGY object.

. The BOTTOMUPSEARCHSTRATEGY object creates an EXPANDEDSEARCHTREE

object search tree which will be used to perform search.

. The MakelnitialTree is called on the search tree. Initial logical query plans are

created according to the relations involved in the query. Their corresponding
physical query plans are also created.

The DoSearch is called on the search tree. Logical query plans are expanded
continuously. For each logical query plan, all its corresponding physical query
plans are also created, execution costs of these physical plans are estimated,
and cost pruning is performed. Equivalent plans that have higher estimated
costs are pruned out.

Repeats step 7 until no logical query plans can be further expanded.

. The physical query plan that relates to the complete query and that has the

least cost is returned as a result of Optimize.

4.6.2 Scenario of Invoking Transformation Query Optimiza-

tion

Figure 46 shows another scenario of how the user interacts with the system and how
the system reacts to the user calls. It demonstrates another view of this system, that

is query optimization bascd on transformation. This scenario illustrates:

1.

The user creates a QUERYOPTIMIZERFACADEWITHPARSER object facade.

89

w

% facade: - 38 = l
QueryQOptimizer FacadeiWithParser | | BattomupSearchra... | | IransformativeSearchtra..,
I

[I ! |

ser | ! I I
<<create>> | | I |
<c<create>> >[j : |

L <<create>> ! l I

! f {
Setsearchstrapegy(t) ’q |
<<destroy>> l l

) '

.. ,[[J [|
optimize() n opt‘im’Fe() | |

<<create>> -

| \

! Mal?e!:m’t'ia'l'l‘rec:(vo‘id)l

: DoSearch() -
l J L

i I l I

Figure 46: Sequence Diagram for Transformation Optimization

. A BOTTOMUPSEARCHSTRATEGY object is created and will be used for search.
. The user creates a TRANSFORMATIVESEARCHSTRATEGY object.

- The user invokes the SetSearchStrategy on the facade object. The default

BOTTOMUPSEARCHSTRATEGY object is substituted by the TRANSFORMA-
TIVESEARCHSTRATEGY object, which will be used for search.

- The user invokes method Optimize on the facade object.

- The facade object delegates the request to the TRANSFORMATIVESEARCH-

STRATEGY object.

. The TRANSFORMATIVESEARCHSTRATEGY object instantiates a search tree ob-

Ject with type TRANSFORMEDSEARCHTREE which will be used to perform
search.

- The MakelnitialTree is called on the scarch tree. An initial logical query plan

that represents the complete query is created. All its corresponding physical

90

query plans are also created.

9. The DoSearch is called on the search tree. The current logical query plan is
transformed into equivalent logical query plans using pre-defined algebraic laws.
For each logical query plan, all its corresponding physical query plans are also
created, execution costs of these physical plans are estimated, and cost pruning
is performed. Equivalent plans that have higher estimated costs are pruned out.

10. Repeats step 9 until no logical query plans can be transformed with pre-defined
algebraic laws.

11. The physical query plan that has the least cost is returned as a result of Opti-
mize.

4.6.3 The Search Strategies

Two search strategies that are used for search are defined in the query optimization
framework: One is the Bottom-Up Search Strategy, the other is the Transformative
Search Strategy. Please refer to Section 2.4.1.3 and Section 2.4.2.2 for the descriptions
of the algerithins Bottom-Up Search Strategy and Transformative Search Strategy,
respectively.

4.6.4 Scenario for Bottom-Up Optimization
Figure 47 shows the scenario of optimizing the following query from bottom-up :

select e.name, p.age from Persons p, Employees e where e.name=p.name;

Suppose the database algebra defines three logical operators: DBRelation, Select,
and Join. DBRelation represents an operator that has no inputs and serves as a leaf in
the operator tree and refers to a relation stored in the database. The meanings of the
other two opcrators are straightforward. Also suppose for each logical operator, there
is a physical operator associated with it, which represents the exccution algorithm
for this logical operator. There are three physical operators defined in the database
algebra:

File Scan - an execution algorithm for the DBRelation operator.

91

Filter — an execution algorithm for the Select operator.
Hash Join — an execution algorithm for the Join operator.

—>>2.1: ExpandNode(p)
~ 2.2: ExpandNode(e)

1:MakelnitialTree() ', 2:3: ExpandNode(1)
2: DoSearch() !
:BottomupSearchStrateqgy : ExpandedSearchTree
1.1 <W R U N
QuergtorTre ' AL OneratorTree QFQM
(Persons) (Employees) [op=Jain] op=Join}

i
1.1: <<creat >\:/ 1.2.1: <<creates

< V_

2.2.1.1: <<creatT> 2.2.2.1: <<create>>

a2: AlgorithmTree| | a3 : AlgorithmTree | | a4: AlgorithmTree
[algo=FileScan] [algo=FileScan] {algo=HashJoin] [algo=HashJoin]

{
.1.1:Computa\j/ 12.1.1:Computei/ 2.2.1.1.1:Comput3|/ 2.2.2.1.1:Computi,

¢l :Cost €2:Cost ¢3: Cost ¢4: Cost
value=142.9191 Ivalue=181.9791

Figure 47: Collaboration Diagram for Bottom-Up Optimization

The bottom-Up optimization begins with a call of method MakelnitialTree on
the EXPANDEDSEARCHTREE, creating initial logical query plans according to the
relations involved in the query. In Figure 47, two initial logical query plans p and e are
generated representing relations Persons and Employees respectively. When a logical
query plan is created, all its physical query plans must be generated accordingly.
Objects al and a2 are corresponding physical query plans of p and e. One important
thing in building a physical query plan is to compute its execution cost. Objects cl
and c2 are estimated execution costs for physical query plans al and a2. Since there

are no equivalent physical plans for them, they are kept for further optimization.

92

DoSearch is then called on the EXPANDEDSEARCHTREE to perform the search
based on the initial plans. Logical query plan p is expanded first. Since at this time
the plan e has not been processed, e is not visible to the tree expansion process. Plan
p is bypassed (since no logical operators can apply to it) and stored away for future
use. Logical query plan e is then expanded. Join operator is applied to both logical
query plans p and e, and two new logical query plans j1 and j2 are created. Their
structures are shown in Figure 48.

jl Join j2 Join
(e.name=p.name) (e.name=p.name)
DBRelation DBRelation DBRelation DBRelation
(Persons) (Employees) (Employees) (Persons)

Figure 48: Operator Trees j1 and j2

All corresponding physical query plans for j1 and j2 are created. Since cach
operator has only one algorithm associated with it, there is one physical query plan
for j1 and j2 respectively. They are ad and a4 in Figure 47. Their structures are
shown in Figure 49.

a3 Hash Join ad Hash Join
File Scan File Scan File Scan File Scan
(Persons) (Employees) (Employees) (Persons)

Figure 49: Algorithm Trees a3 and ad

Execution costs for physical query plan a3 and a4 are computed. They are c3
and c4 in Figure 47. Since j1 and j2 are equivalent (Both represents the complete
query) and a4 is more expensive than a3, ad is pruned out. Plan a3 is kept for further
optimization.

Logical query plan jl represents the complete query and it could not be further
cxpanded. Its physical query plan a3 is returned as the optimal plan with least cost.

93

4.6.5 Scenario for Transformation Optimization

We make the same assumptions about the database algebra as that in Section 4.6.4.
For simplicity, we only define one algebraic law Select Push Down in tree transforma-
tion in the following example. Select Push Down means putting the Select operator
as close as possible to the leaves in an operator tree where its associated relations
reside. It is a typical algebra law that is frequently used in the transformation opti-
mization. The advantage of this rule is that it greatly reduces the cardinality of its
output thus reducing the execution cost for further processing if its output will serve
as some inputs in later processing.

Figure 50(a) shows the initial logical query plan to be transformed. Figure 50(b)
shows the logical query plan after Select Push Down has performed on tree Fig-
ure 50(a).

Select foin
(a=10) (R.5=5.5)
|)
Join E:> Select
(R.b=S.b) (a=10)
2 O\
R(a,b) S(b,c) R(a,b) S(b,c)

(@) (b)
Figure 50: Source Operator Tree and Destination Operator Tree

Figure 51 shows the scenario of transforming the logical query plan in Figure 50(a)
to Figure 50(b). The transformation optimization begins with a call of method
MakenitialTree on the TRANSFORMEDSEARCHTREE, creating an initial logical plan
t1 that represents the complete query. A logical query plan is considered to be com-
plete if it encompasses all the expressions (including predicates) in the query. Logical
query plan t1 has a structure like that in Figure 50(a). When a logical query plan
is created, all its physical query plans are created accordingly. There is only one
physical query plan pl for t1 in Figure 51 because each operator in t1 has only one
execution algorithm. Onc important thing in building a physical query plan is to

94

1: MakelnitialTree(void)

2: DoSearch() 22: Accepl(v)
: —> : >
Transformative'SearchStratggx TransformedSearchTre ~Select

1.1: <<create>>/ .1.1.2 Apply(S) 2.2.1: VisitSelect
2.2.1.1.3 Apply(Select(R)) \
—_—> :
: rrentTree()
m 2.2.1.1.5: SetCurrentTree
t: ratorTree

[Select(Join(R.S))] : SelectPushDown| —=>
<«

v : TransformTreeVisitor

2.2.1.1: Apply(t1)
1.1.1:xgcreate>> .
t 2.2.1.1.1: <<creat ﬂ/ 114 <<erenten
. 13: Tl
p1 : AlgorithmTree 12 : OperatorTree [.?;oin(Sert:t;:R;:n
(algo=FileScan] [Select(R)] ’
J/ 22.1.1.1.1: <¢19$e» 23/.,1 .1.4.1: <<create>>
1.1.1.1: Compute p2: Ago‘ithmﬁee p3_: AlgorithmTree
[algo=Filter] [algo=HashJoin]
c1 : Cost
22.1.1.1.1.1: Compl.{e\L 2&1 1.4.1.1: Compute
c2 : Cost c3 : Cost

Figure 51: Collaboration Diagram for Transformation Optimization

compute its execution cost. In Figure 51, cl is the estimated execution cost for the
physical query plan pl. Since there are no equivalent physical plans for pl, it is kept
for further optimization.

DoSearchis then called on the TRANSFORMEDSEARCHTREE to perform the search
based on the initial logical plan t1. First, a TRANSFORMTREEVISITOR object v is
created. It is then accepted by the root operator (Select) of the initial logical query
plan t1. When the Select operator is visited, Select Push Down rule is applied. There
are several steps in applying the Select Push Down rule to tree t1:

L

[4]]

Select operator is applied to both inputs of the Join operator (child of the Select
operator) in Figure 50(a), which are relations R and S.

. Since Select operator can not apply to relation S, S is kept and will serve as one

of the new inputs.

- Select operator applies to relation R. A new logical query plan t2 is created. Its

physical query plan p2 is also created and execution cost c2 is computed. Since
there are no cquivalent plans for p2, it is kept for further optimization.

- A new logical query plan t3 rooted at the Join operator is created. Relation S

serves as its left input, and new logical query plan t2 serves as its right input.
Logical query plan c has a structure like Figure 50(b). Physical query plan p3
for t3 is created. Execution cost 3 for p3 is computed.

. Since physical query plan pl and p3 are equivalent while p3 is less expeunsive,

pl is pruned out. Plan p3 is kept for further optimization.

. Since no algebra laws can be further applied to transform the logical query plan

t3, t3is the optimal logical query plan (a logical query plan whose physical query
plan has least cost) and is stored in the TRANSFORMTREEVISITOR object.

The TRANSFORMEDSEARCHTREE object calls the method GetCurrentTree on
the TRANSFORMTREEV ISITOR object v to withdraw the optimal logical query
plan t3, from which the physical query plan p3 is extracted and is returned as
the result of trec transformation.

96

4.7 Cost Evaluation

The cost evaluation implements the core function of query optimization. It encapsu-
lates the cost model and the cost pruning functionality. Each physical query plan, no
matter if it is supposed to be implementing a partial or complete logical query plan,
is compared to the existing physical query plans. Equivalent physical query plans
that have higher costs are pruned out.

4.7.1 Cost Model

In the query optimization framework, the cost model is a hot spot open for customiza-
tion. Information used in estimating the execution cost of a database algorithm (a
physical operator) may include:

e Estimates of the sizes of the inputs and the output. This information is stored
in the OPERATORTREEPROPERTY instance associated with that operator tree.

e Selectivities of the predicates applied by the algorithm. This information is
computed by the Selectivity method of the PREDICATETREE class.

o Estimates of the number of CPU instructions required to execute the predicates
and expressions evaluated by the algorithm.

e Miscellaneous information likes size of memory available, page-size, etc.
Here is an example showing the cost model for a File Scan algorithm:

Costritescan = number of pages x I/O cost per page + number of pages
x number of instructions per page x execution cost per instruction

The estimated execution cost for the File Scan algorithm is the sum of the disk
[/O cost to bring the corresponding relation into the memory and the execution cost
to scan all the tuples in that relation. Amongst these parameters, the number of
pages is computed at run time, and the others are cstimated values associated with
the machine that is used for query optimization.

There are some alternative cost models proposed in the query optimization lit-
eraturc. The most frequently used one is to use the disk I[/O to predict the cost.
Although this one is good enough in the general case, it is not suitable in cases where

97

queries are evaluated on a parallel machine or collection of interconnected machines.
Therefore, it is good to predict the execution cost as precisely as possible so that it
is not only suitable for the case that the disk [/O dominates but also suitable for the
cases that does not.

4.7.2 Case Study

There are three cases when a physical query plan is evaluated:

Exact Match
1. A new physical query plan is created.

2. There exists a physical query plan in the search tree, which produces the same
output as the new one. That is, all of their logical propertics and physical
properties are the same. This old physical query plan is an exact match of the
new one.

3. Compare the estimated cost of the new physical query plan to its exact match.
If the new one is more expensive that the old one, it is deleted. Otherwise, the
new one replaces the old one and the old one is deleted.

Replacer and Replacee
1. A new physical query plan is created.

2. There not exists an exact match of the new physical query plan. But there exists
a physical query plan whose logical properties are the same as the new one, but
its physical properties are not, and its physical properties are not interesting.

3. Compare the cstimated cost of the new physical query plan to the old one. If
the old one is more expensive, it is replaced by the new one because the new
plan provides everything that the old one provides at a less cost. The old one
is deleted. We call the new plan a Replacer and the old one a Replacee.

4. The situation reverses if the old plan has interesting physical properties and it
has less cost. The new plan is deleted.

98

Others
1. A new physical query plan is created.

2. There not exists any physical query plan in the search tree that has the same
logical properties as the new one.

3. The new plan is kept around to be considered for further optimization.

4.7.3 Structure

Figure 52 shows the class diagram for hashing. They are auxiliary classes for cost
pruning. The major classes include HASHID, HASHTABLE, and HASHNODE. The
HASHNODE is the basic element for pruning. It contains references to both the
logical properties and physical properties for fast access, as well as a reference to the
physical query plan it refers to and references to a list of other hash nodes that can be
used to replace itself. The HASHTABLE maintains a hash table for all the hash nodes
that are used in pruning. It is responsible for rehashing, finding the exact match for
the physical query plan it refers to, and finding a replacee that can be replaced by the
physical query plan it refers to. HASHID is the control class in hashing. It contains a
reference to the physical query plan it refers to, a reference to a replacee that can be
replaced by itself, a reference to an exact match hash node that has the same logical
and physical properties as itself, and a list references to some other hash nodes that
can be used to replace itself. The HASHID class centralizes the control for locating
the exact match node, a replacee, and a replacer, replacing a node and/or enabling a
node to deletc itself. [t dispatches some of its work to other classes.

The logical properties and the physical properties that are used in hashing can
be fast accessed through the HASHNODE class. The estimated execution cost is
stored in the ALGORITHMTREEPROPERTY object that can also be easily accessed
through the HASENODE class. Also, for fast access purpose, both classes of HAsHID
and HASHNODE maintains a reference to the corresponding physical query plan they
refer to.

99

HashId

HashTable

logicalhashnumber : int j~arr:aysi.ze : int
physicalhashnumber : int
‘Insert()
@®Insert() : void @HashTable()
@HashId(AlgorithmTree*) : HashId §-HashTable()
FindReplacee() : void ®rindReplacee()
$InitializeHashTable() : void I Q®EmptyHashTable()
@SEmptyHashTable() : void ' Sabs()
QGetExactMatch() : AlgorithmTree* Rehash()
QGetNextReplacer() : AlgorithmTree+ FindMatch()
QGetReplacee() : AlgorithmTree*
:Replace() : void \ i
KillReplacee() : void lacers
Qsuicide() : void asharray
List<HashNode>
OperatorTree parent tl\\gode
5 N AlgorithmTree listofreplacers
AZ//Ly nod
AlgorithmTreeProperty
_cost\t phygprops exactmatgh
Cost reptagee
logprops cost : double HashNode
logprops
OperatorTreeProperty ~ HashNode()
- HashNode ()

NewPhyNode()
~HashNode ()

—

Figure 52: Auxiliary Classes for Cost Pruning

100

4.7.4 Class Descriptions
4.7.4.1 The HasHID Class

The HASHID class is responsible for searching amongst a list of hash nodes, locating

the exact match node, a replacee node, the replacer nodes, and performing the re-

placing and/or suicide operations to prune out the sub-optimal physical query plans.
The major methods and attributes are:

Insert — a public method that is used to insert a physical query plan into
the hash table.

Replace — a public method that is used to replace a suh-optimal physical
query plan in the search tree with the current one.

Suicide — a public method that is called when a physical query plan is
pruncd out of the scarch tree. It deletes itself by committing suicide.

InitializedHashTable — a static method that is used to initialize the hash
table before the cost pruning begins.

EmptyHashTable — a static method that is used to clean up the hash
table when the cost pruning ends.

node — a private attribute representing the physical query plan it refers
to.

exactmatch — a private attribute representing a physical query plan that
exists in the search tree who has the same logical and physical prop-
erties with the physical query plan associated with itself. It has an
associated method GetEzactMatch that returns this object.

replacee — a private attribute representing a physical query plan in the
search tree that can be replaced by the current one. It has two as-
sociated methods: GetReplacee returns this object and KillReplacee
deletes this object.

replacers — a private attribute representing a list of physical query plans
that can be used to replace itself. It has an associated method Get-

NeztReplacer that returns the next replacer in the list.

101

Class Collaborators

_ Hashld + AlgorithmTree
Responsibility + HashNode
+ Finds an exact match.

+ Finds a replacee.
+ Finds replacers.
+ Replaces sub-optimal plans and commits suicide.

Table 4: CRC Card for the Class HASHID

logicalhashnumber — a private attribute whose value is computed accord-
ing to the logical properties of the corresponding logical query plan.

physicalhashnumber — a private attribute whose value is computed ac-
cording to the physical properties of the corresponding physical query
plan.

Table 4 shows the CRC card [29] for the class HASHID. The HASHID class collabo-
rates with the ALGORITHMTREE class and the HASHNODE class. The first class helps
it to calculate the hash values. The latter serves as the basic element for hashing.

4.7.4.2 The HasHTABLE Class

In order to find the Exact Match, a Replacer, and a Replacee efficiently, a hash table
is used as the major data structure to facilitate the cost pruning. A node can go to
two possible buckets in the hash table. The first hash value is computed according
to the physicalhashnumber provided by the HASHID class if the physical query plan
is interesting. The bucket this kind of hash nodes go to will be used for looking for
the Exact Match of interesting nodes. The other hash value is computed according
to the logicalhashnumber that is also provided by the HASHID class. The bucket this
kinds of hash nodes go to is used to store nodes that don’t have interesting physical
properties. It is a place for looking for Replacces.

When a new node is created and inserted in the hash table, there are two possi-
bilities:

L. It is not interesting. In this case, the logical properties are used to calculate the
hash valuc and the node is inserted in the corresponding bucket.

102

Class Collaborators
HashTable + HashNode

Responsibility
+ Maintains a list of hash nodes.
+ Locates an exact match.
+ Finds replacers.
+ Locates a replacee.

Table 5: CRC Card for the Class HASHTABLE

2. It is interesting. In this case, the physical propertics are used to calculate the
hash value and the node is inserted in the corresponding bucket.

In addition, the logical properties are also used to calculate the hash values and
the nodes arc inserted in the list of replacers that are maintained at that location.
Major methods and attributes of the HASHTABLE class include:

Insert — a public method that is used to insert a hash node into the hash
table for hashing. It is used when no exact match can be found for
this hash node.

Rehash —- a public method that is used to re-hash the hash table.

FindMatch — a public method that is used to locate the exact match hash
node. Two hash nodes are exact matches if they have the same logical
properties and physical properties.

FindReplacee — a public method that is uscd to locate a hash node, which
can be replaced by the current one.

hasharray — a private attribute that is a list, each element is a list of hash
nodes.

Table 5 shows the CRC card [29] for the class HASHTABLE. The HASHTABLE
class collaborates with the HASHNODE class which provides the hasic element in the
hash table.

4.7.4.3 The HasuNobpe Class

The HASHNODE class represents the basic element for hashing.
Major methods and attributes in the HASHNODE class include:

103

Class Collaborators
HashNode + AlgorithmTree
Responsibility + HashId
+ A basic element for hashing. + OperatorTreeProperty

+ Facilitates easy access to logical properties + AlgorithmTreeProperty
and physical properties.

Table 6: CRC Card for the Class HASHNODE

NewPhyNode — a public method that is used to initialize a reference to
a physical query plan this hash node associates with, to initialize a
reference to its logical properties, and to initialize a reference to its
physical properties.

node — a private attribute representing the physical query plan this hash
node refers to.

logprops — a private attribute referring to the logical properties (an in-
stance of the OPERATORTREEPROPERTY) associated with this hash
node.

phyprops — a private attribute referring to the physical properties (an in-
stance of the ALGORITHMTREEPROPERTY) associated with this hash
node.

listofreplacers — a private attribute representing a list of hash nodes that
can replace the current one.

Table 6 shows the CRC card [29] for the class HASHNODE. The HAsHNODE
class collaborates with four classes: ALGORITHMTREE, ALGORITHMTREEPROP-
ERTY, OPERATORTREEPROPERTY, and the HASHID. It provides fast access to the
associated physical query plan, its physical and logical propertics.

4.7.5 Dynamic Cost Pruning

Figure 53 shows the algorithm of the cost pruning in an activity diagram. The cost
pruning begius with a search of an exact match (a node with the same logical and
physical properties). If it is not found, the current node is inscrted into the hash

10t

Prune{phynode)

lelse]

/
[phynode!=0]
A4

HashId
hashid(phynod

(

RlgorithmTreee

othernode~hashid.GetBExactMatch())

hashid.Ingsert

else

C

AlgorithmTree::DeletePhyNode

(phynode)

(hashid.Replace())

{othernode!=
[/els/

[phynode->GetPhyProps(} {>GetCost{) < othernode->GetPhyProps() ->GetCost ()]

C

AlgorithmTree: :DeletefhyNode
(othernode)

)

y

3 (othernode~hashid.GetNextReplacer())é——

‘ [else] 2“{& [othernode!=0j
w5 C

[else]

[(othernode=haghid.GetReplacee())!=0}

—><>

{otherncde->GetH

hyProps() ->GetCost() <

()
A4

[phynodc-x:et?hyimps(}->GetCost() <

othernode->GetPh

Props () ->GetCost ()]

(hashid.Kill

/
lReplacee())

phynode->GetPhylirops () ->GetCost()]

y
(hashid.Suicide())

¢

AlgorithaTree: :DeletePhyNode
(othernode)

C

AlgorithaTree: :DeletePhyNode
(phynode)

)

]

Figure 53: Activity Diagram for Cost Pruning

table for further evaluation. If an exact match is found and it has less cost than the
current node, the current node is deleted and the process terminates. Otherwise, the
current node replaces the exact match in the hash table. The exact match is deleted.

The cost pruning process continues to locate a replacer for the current node. If
any one in the list of replacers has less cost than the current node, the current node
is deleted and the process terminates.

If none of the replacers has less cost than the current node, The cost pruning
process continues to locate the replacee for the current node. If it is found and it
has higher cost than the current node, the replacee is deleted. Otherwise, the cost

pruning process terminates.

4.7.6 Examples
This section shows two cost pruning examples in optimizing a query:

select e.name, p.address from Persons p, Employees e
where p.name=e.name and e.age=25;

One is based on the Bottom-Up Search Strategy and the other is based on the
Transformative Search Strategy.

We assume each database operator has only one execution algorithm. So any op-
erator tree will have only one corresponding algorithm tree. Since we know algorithm
trees have the same tree structures as their operator trees, we only show the operator
trees in this example for simplicity purpose. The execution costs are gathered as
measurement results from the query optimization system built from this framework.
Please note that these costs are associated with the algorithm trees, not the operator
trees. We put them together with the operator trees in order to show the estimated
execution costs for the corresponding algorithm trees associated with these operator
trees.

4.7.6.1 Bottom-Up Query Optimization

Steps:

1. Make Initial Trees
We get two initial operator trees in Figurc 54. They represent the relations

involved in the query. They are kept around for further optimization.

106

tl Persons 2 Employees

Figure 54: Initial Trees

2. Expand Trees

(a)

(b)

Expand Tree t1

Since at this moment tree t2 has not been processed, it is invisible. No
operator can be applied to tree t1 and it is added to the list of atomic
nodes for later processing.

Expand Tree t2

Two operators can be applied to tree t2. One is the Select operator, the
other is the Join operator. When the Select operator is applied, tree t3 is
created. Its physical query plan is generated, whose estimated execution
cost is computed, that is 115.553.

When the Join operator is applied, tree t4 and t5 are generated. The
difference between tree t4 and t5 is that their inputs are in reversed order.
The physical query plans of tree t4 and t5 are generated, whose estimated
costs are 181.979 and 142.919 respectively (see Figure 55).

(cost = 115.553) (cost= 181.979) (cost = 142.919)
Select 4 Join (&) Join
(age=25)

N\ N\

Employees Employees Persons Persons Employees

(c)

Figure 55: Resultant Trees After Expanding Tree t2

Since t4 and t5 are equivalent (they have the same logical and physical
properties) and t4 is more expensive than trec t5, t4 is pruned out and
dcleted. Trees t5 and t3 are kept around for further optimization.

Expand Tree t3
Ouly one operator can be applicd to tree t3 for expansion, that is the Join

operator.

107

When the Join operator is applied, two operator trees are created. They
differ in the reversed order of their left and right inputs of the Join operator.
Physical query plans for tree t6 and t7 are generated, whose execution costs
are estimated, they are 129.745 and 129.349 respectively (see Figure 56).

(cost = 129.745) (cost = 129.349)

6 Join 7 Join
e ~
Select Select
(age=25) (age=25)
Employees Persons Persons Employees

Figure 56: Resultant Trees After Expanding Tree t3

Since tree t6 and t7 are equivalent but t6 is more expensive than t7, t6 is

pruned out and deleted. Tree t7 is kept around for further optimization.
(d) Expand Tree t5

Only operator Select can be applied to tree t5. The new operator tree

is tree t8. Its physical query plan is generated, whose execution cost is
estimated, that is 142.944 (see Figure 57).

(cost = 142.944)

8 Select
(c.age=25)

Join

N\

Persons Employees

Figurc 57: Resultant Tree After Expanding Tree t5

Since trees t8 and t7 hoth represents the same query, they are equivalent.
But t8 is more expensive than t7. It is pruned out and deleted.

108

(e) Expand Tree t7

Tree t7 represents the complete query and no other operators can be ap-
plied to it for further expansion. Physical query plan of tree t7 is returned
as the optimal plan that has least cost.

4.7.6.2 Transformation Query Optimization

Two steps are involved in Transformation Optimization:

1. Make an initial tree. An operator tree that represents the complete query is
created.

2. Transform tree. All tree transformation rules are applied to transform one
operator tree to another.

Make An Initial Tree

1. Create Initial Trees
Two initial operator trees are created according to the relations involved in the
query. They are tree t1 and t2 in Figure 58.

tl Persons Q2 Employees

Figure 58: Initial Trees

2. Expand Tree t1
Since at this moment tree t2 has not been processed, it is invisible. No operator
can be applied to tree tl1 and it is added to the list of atomic nodes for later
processing.

3. Expand Tree t2
If one operator can apply to an operator tree in the process of building the
initial operator tree that represents the complete query, we stop trying other
alternatives that may exist when applying some other operators. Suppase the
Join operator is applied before the Select operator. Since tree t2 can be applied
by the Join operator, two operators trces t3 and t4 are created. They differ in

109

the way their inputs are in reversed order. Physical query plans of these trees
are generated and their execution costs are estimated. They are 181.979 and
142.919 respectively in Figure 59.

(cost = 181.979) (cost = 142.919)
3 join 4 join
Employees Persons Persons Employees

Figure 59: Resultant Trees After Expanding Tree t2

Since tree t3 and t4 represents the same part of the query, they are equivalent.
But tree t3 is more expensive than tree t4. It is pruned out and deleted. Tree
t4 is kept around for further expansion.

4. Expand Tree t4
Only the Select operator can be applied to trce t4. The resultant operator tree
is t5 (see Figure 60). Its physical query plan is gencrated, whose execution cost
is estimated, that is 142.944.

(cost = 142,944)

5 Select
(e.age=25)

I

Join

AN

Persons Employees

Figure 60: Resultant Trees After Expanding Tree t4

Since tree t5 represents the complete query, it is the initial operator tree that has

been created in the first step of transformation optimization.

Transform Tree

For simplicity, we suppose that only rule Select Push Down is defined in the system.

110

Since the predicate (e.age=25) of the Select node in tree t5 only relates to the left
input of the Join node, rule Select Push Down can be applied to push the Select node
down the tree to the place as close as possible to its associated relation Employees.

1. Apply Select to both left and right children of Join
The first step is to apply the Select operator to both inputs of the Join node.

Since the predicate of the Select node does not relate to the relation Persons,
the left input of the Join is kept unchanged. We use a new label t6 for it.
Select operator can be applied to the right input of the Join node, we get a new
right input t7. Physical query plan of t7 is generated, whose execution cost is
estimated, that is 115.553. Both t6 and t7 are displayed in Figure 61.

(cost = 115.553)

6 Persons a (;:l:czts)

Employees

Figure 61: Resultant Trees After Applying Select

(cost = 129.349)

8 Join

N\
Select

(age=25)
[

Persons Employees

Figure 62: Create A New Join Tree

2. Apply SELECTPUSHDOWN to Trees t6 and t7
Since SELECTPUSHDOWN can not be applied to both trees t6 and t7, they arc
kept unchanged and will serve as the left and right inputs in a new operator
tree (rooted at Join operator) that will be built later.

3. Create a New Join Tree
A new opcrator tree t8 (Figure 62) rooted at the Join operator is created. Trce

111

t6 and t7 serve as the left and right inputs of this new tree. The physical query
plan of tree t8 is generated and its execution cost is estimated. It is 129.349.

Both trees t5 and t8 represent the complete query while t5 is more expensive
than t8. Tree t5 is pruncd out and deleted. Tree t8 is kept around for further
optimization.

Since no rules can be applied to tree t8, it is the resultant tree of tree transfor-

mation. Its physical query plan is returned as the optimal plan with least cost.

112

Chapter 5
Examples of Customization

This chapter will illustrate how to customize the query optimization framework based
on some examples, which are arranged from simple through to advanced. We will first
illustrate how to customize each component of the query optimization framework.
Then we show the customization of the system catalog. At the end we will illustrate
how to build a new query optimization system using the framework and how to modify
and extend an existing query optimization system built from the framework.

5.1 Customize the Algebra Component

The Algebra component incorporates the representation of the operations on the
database and the various execution algorithms for these operations. It defines the
logical and physical operators in the database system. The logical operator refers
to an operation on the database, while the physical operator refers to an execution
algorithm for a logical operator.

Since a physical operator is an execution algorithm for a logical operator, physical

operators should be defined after their corresponding logical operators have been
defined.

5.1.1 Define Logical Algebra

Figure 63 shows the structure of the logical algebra before customization. The root
class is an abstract class named DBOPERATOR. It has two immediate subclasses
DBUNARYOPERATOR and DBBINARYOPERATOR for the unary logical operators

113

DBOperator

4

DBUnaryOperator

DBBinaryOperator

DBOperatorOperation

Figure 63: Class Diagram for Logical Algebra Before Customization

DBOperator
DBUnaryOperator DBBinaryOperator
DBOperatorOperation

Figure 64: Example A: Customized Logical Algebra

and binary logical operators respectively. Both these subclasses are also abstract.
A logical operator can be unary, binary, or none. There is also a class named DB-
OPERATOROPERATION. It represents what operation is being applied by a logical
operator.

Example A Suppose we want to optimize the basic SQL construct Select-From-
Where. We will define the logical operators DBRelation, Select and Join. DBRelation
represents an opcrator that has no inputs and serves as a leaf in the operator tree and
refers to a relation stored in the database. The meanings of the other two operators
are straightforward.

Figure 64 shows the class diagram after customization. The newly added classes
are adorned in gray. For each logical operator, we definc a new class in the logical

114

algebra class hierarchy. Operator DBRELATION has no inputs so it inherits from the
root class DBOPERATOR. Operator SELECT is a unary operator (because it has only
one input) so it inherits from the DBUNARYOPERATOR. Operator JOIN is a binary
operator (because it has two inputs) so it inherits from the DBBINARYOPERATOR.
All of these new logical operators must also inherit from the class DBOPERATOROP-
ERATION. Any logical operator should have some associated operations that represent
what operations are applied by this operator.

Since classes DBOPERATOR, DBUNARYOPERATOR, and DBBINARYOPERATOR
in the framework are all abstract classes, the newly added subclasses must implement
methods Accept, Duplicate, and MakeLogProps. Given an appropriate visitor object,
the Accept method enables a potential operation to perform on a logical operator.
Duplicate method asks the logical operator to copy itself. MakeLogProps sets up
the logical properties for the operator tree rooted at this logical operator. A newly
added logical operator may need to re-write the method Clones, which is a method
representing different ways of applying this operator to its inputs, with different
parameters.

Example B Suppose we want to add three complex logical operators to example A.
The first one to add refers to reference-valued attributes that need to be de-referenced.
We name it MATERIALIZATION. The second one refers to set-valued attributes that
need unnesting. We name it UNNEST. The third one is the aggregation and grouping.
Inputs can be grouped into partitions where any two records that have same values
in the grouping attributes belong to the same partition. Operations are performed
on these partitions. Operations MIN, MAX, AVG in the SQL query are examples of
this kind of operations. We name this logical operator AGGREGATION.

Figure 65 shows the class diagram after customization. The newly added classes
are adorned in gray. For each logical operator, we define a new class in the logical
algebra class hierarchy. Operators MATERIALIZATION, UNNEST, and AGGREGATION
are all unary operators (because each of them only has one input) so they all inherit
from the DBUNARYOPERATOR. All of these new logical operators must also inherit
from the class DBOPERATOROPERATION. Any logical operator should have some
associated operations that represent what operations are applicd by this operator.

Since classes DBOPERATOR, DBUNARYOPERATOR, and DBBINARYOPERATOR
in the framework are all abstract classes, the newly added subclasses must implement

115

DBOperator

[
| 1

DBRelation DBBinaryOperator

v D

DBOperatorOperation j

Select

v

DBUnaryOperator

Figure 65: Example B: Customized Logical Algebra

methods Accept, Duplicate, and MakeLogProps. Given an appropriate visitor object,
the Accept method enables a potential operation to perform on itself. Duplicate
method asks the logical operator to copy itself. MakeLogProps sets up the logical
properties for the operator tree rooted at this logical operator. A newly added logical
operator may need to re-write the method Clones, which is a method representing
different ways of applying this operator to its inputs, with different parameters.

5.1.2 Define Physical Algebra

Figure 66 shows the structure of the physical algebra before customization. The root
class is an abstract class named DBALGORITHM. It has two immediate subclasses
DBUNARYALGORITHM and DBBINARYALGORITHM for the unary physical opera-
tors and binary physical operators respectively. Both these two subclasses are also
abstract. Any physical operator can be unary, binary, or none. Class ENFORCER is a
subclass of the DBUNARYALGORITHM. It refers to any special exccution algorithm
that docs not correspond to any operatar in the logical algebra. The purpose of this
kind of algorithm is not to perform any logical data manipulation but to enforce

physical properties in the outputs that are required for subsequent query processing.

116

DBAlgorithm

. il

DBUnaryAlgorithm DBBinaryAlgorithm

7

Enforcer

Figure 66: Class Diagram for Physical Algebra Before Customization

DBAlgorithm

b

DBUnaryAlgorithm DBBinaryAlgorithm

[

Enforcer

Figure 67: Example A: Customized Physical Algebra

For example, sort algorithm is an enforcer that can be used to ensure the inputs of
the merge join are sorted on the join attributes.

Example A Suppose we want to definc the execution algorithms for the logical
operators in Example A of Section 5.1.1. For each logical operator, we define one
corresponding execution algorithm. They are FileScan, Filter, and NestedLoopJoin
corresponding to operators DBRelation, Select, and Join respectively. FileScan is an
execution algorithm that is used to scan a relation sequentially. Filter is an execution
algorithm that ensures the output to be part of the inputs that have met some specific
conditions. NestedLoopJoin is a join execution algorithm where each tuple of its left
input nceds to find matches in all tuples of its right input.

Figure 67 shows the class diagram after customization. The newly added classes
are adorned in gray. For cach physical operator, we define a new class in the physical
algebra class hicrarchy. Opcrator FILESCAN has no inputs so it inherits from the
root class DBALGORITHM. Operator FILTER is a unary operator (because it has

117

only one input) so it inherits from the DBUNARYALGORITHM. Operator NESTED-
LoorJoOIN is a binary operator (because it has two inputs) so it inherits from the
DBBINARYALGORITHM.

Since classes DBALGORITHM, DBUNARYALGORITHM, and DBBINARYALGO-
RITHM in the framework are all abstract classes, the newly added subclasses must
implement methods Duplicate and MakePhyProps. Duplicate method requires the
physical operator to copy itself. MakePhyProps sets up the physical properties for
the algorithm tree rooted at this physical operator. Class FILESCAN is a special case.
It directly inherits from the root class DBALGORITHM, it has to implement two more
methods: Arity and MakePhyNodes. Arity is a method that returns the number of
inputs for this physical operator. MakePhyNodes is used to build the algorithm trees
by delegating to the Search Space component. A newly added physical operator may
need to re-write the method Clones, which implements different ways of applying this
operator to its inputs, with different parameters.

Example B Suppose we want to define the execution algorithms for the logical op-
erators in Example B of Section 5.1.1. For logical operator DBRELATION, we define
two execution algorithms for it. They are FILESCAN and INDEXSCAN. FILESCAN
is an exccution algorithm that is used to scan a relation sequentially, while INDEXS-
CAN is an algorithm in which an index file is used to extract all the tuples that
meet some conditions specified on the indexed attributes. For the logical operator
Join, we define two execution algorithms for it. They are NESTEDLOOPJOIN and
HasHJoIN. NESTEDLOOPJOIN is a join execution algorithm where each tuple of
its left input needs to find matches in all tuples of its right input. HASHJOIN is a
join cxecution algorithm in which tuples are matched by using hashing. MATERI-
ALIZATIONALGORITHM, UNNESTALGORITHM, and AGGREGATIONALGORITHM are
execution algorithms corresponding to logical operators MATERIALIZATION, UNNEST,
and AGGREGATION defined in Example B of Section 5.1.1. MATERIALIZATIONAL-
GORITIIM is an algorithm that is used to de-reference the reference-valued attributes,
i.c. a pointer. UNNESTALGORITHM is an algorithm that is used to unnest set-valued
attributes. AGGREGATIONALGORITHM is an algorithm that is used for aggregation
and grouping operations.

Figure 68 shows the class diagram after customization. The newly added classes

are adorned in gray. For each physical operator, we definc a new class in the physical

118

DBAlgorithm

i

l |

DBUnaryAlgorithm FileScan

A

L

l I

Enforcer Filter

DBBinaryAlgorithm

NestedLoopJoin

Figure 68: Example B: Customized Physical Algebra

algebra class hierarchy. Operators FILESCAN and INDEXSCAN have no inputs so
they inherit from the root class DBALGORITHM. Operators FILTER, UNNESTALGO-
RITHM, and AGGREGATIONALGORITHM are unary operators (because each of them
only has one input) so they inherit from the DBUNARYALGORITHM. Operators
NESTEDLOOPJOIN and HASHJOIN are binary operators (because each of them has
two inputs) so they inherit from the DBBINARYALGORITHM.

Since classcs DBALGORITHM, DBUNARYALGORITEM, and DBBINARYALGO-
RITHM in the framework are all abstract classes, the newly added subclasses must
implement methods Duplicate and MakePhyProps. Duplicate method requires the
physical operator to copy itself. MakePhyProps sets up the physical properties for
the algorithm tree rooted at this physical operator. Classes FILESCAN and INDEXS-
CAN directly inherit from the root class DBALGORITHM. They have to implement
two more methods: Arity and MekePhyNodes. Arity is a method that returns the
number of inputs for this physical operator. MakePhyNodes is used to build the
algorithm trees by delegating to the Search Space component. A newly added physi-
cal operator may need to re-write the method Clones, which is a method represents
different ways of applying this operator to its inputs, with different parameters.

5.1.3 Define OPERATORDEFINITION Class

Class OPERATORDEFINITION is defined for two purposcs:

e Defines enumeration numbers for the logical operators and physical operators.

119

e Sets up relationships between the logical operators and their corresponding
physical operators.

Example A Suppose we have defined the logical operators as that in Example A of
Section 5.1.1 and physical operators as that in Example A of Section 5.1.2. Then in
the header file where the OPERATORDEFINITION class declaration resides, we need
to add the following C++ code:

enum DBOperatorNumber { DBRelation, Select, Join };

enum DBAlgorithmNumber {
FileScan,
Filter,
NestedLoopJoin

I H

class OperatorDefinition {
public:
OperatorDefinition();
~ OperatorDefinition();

// returns all execution algorithms associated with operator

// DBRelation

List<DBAlgorithm> GetDBRelationAlgorithms();

/] returns all execution algorithms associated with operator Select
List<DBAlgorithm> GetSelectAlgorithms();

// returns all execution algorithms associated with operator Join
List<DBAlgorithm> GetJoinAlgorithms();

/] gets various logical operators defined in the database
DBRelation* GetDBRelationOperator();

Select* GetSelectOperator();

Join* GetJoinOperator();

List<DBOperator> GetAllLogicalOperators();

120

// gets various physical operators defined in the database
FileScan* GetFilescanAlgorithm();

Filter* GetFilterAlgorithm();

NestedLoopJoin* GetNestedLoopJoinAlgorithm();

private:
// execution algorithms associated with the DBRelation operator
List<DBAlgorithm> dbRelationAlgorithms;

// execution algorithms associated with the Select operator
List<DBAlgorithm> selectAlgorithms;

// execution algorithms associated with the Join operator
List<DBAlgorithm> joinAlgorithms;

// logical operators
DBRelation#* dbrelation;
Select* select;

Join* join;

// all logical operators
List<DBOperator> allOperators;

// physical operators;
FileScan* filescan;

Filter* filter;

NestedLoopJoin* nestedloopjoin;

};

The constructor of this class will create objects for all logical operators and phys-
ical operators defined in the database, put all the logical operator objects into the
attribute allOperators, and put each physical operator object into its corresponding
list of algorithms associated with a logical operator. For example, object nested-
loopjoin will be put into the list of joinAlgorithms, object filter will be put into the
list of selectAlgorithms, etc. The Get methods defined in this class are used to return

121

corresponding attribute objects. We will not dive into details for these Get methods
because their method names are explicit. The destructor of this class destroys all

objects created in the constructor.

Example B Suppose we have defined the logical operators as that in Example B of
Section 5.1.1 and physical operators as that in Example B of Section 5.1.2. Then in
the header file where the OPERATORDEFINITION class declaration resides, we need
to add the following C++ code:

enum DBOperatorNumber { DBRelation, Select, Join, Materializationm,
Unnest, Aggregation };

enum DBAlgorithmNumber {
FileScan,
IndexScan,
Filter,
NestedLoopJoin,
HashJoin,
MaterializationAlgorithm,
UnnestAlgorithm,
AggregationAlgorithm

3

class OperatorDefinition {
public:
OperatorDefinition();
~ OperatorDefinition();

// returns all execution algorithms associated with operator

// DBRelation

List<DBAlgorithm> GetDBRelationAlgorithms();

// returns all execution algorithms associated with operator Select
List<DBAlgorithm> GetSelectAlgorithms();

// returns all execution algorithms associated with operator Join

122

List<DBAlgorithm> GetJoinAlgorithms();

// returns all execution algorithms associated with Materialization
List<DBAlgorithm> GetMaterializationAlgorithms();

// returns all execution algorithms associated with operator Unnest
List<DBAlgorithm> GetUnnestAlgorithms();

// returns all execution algorithms associated with operator

// Aggregation

List<DBAlgorithm> GetAggregationAlgorithms();

// gets various logical operators defined in the database
DBRelation* GetDBRelationOperator();

Select* GetSelectOperator();

Join* GetJoinOperator();

Materialization* GetMaterializationOperator();

Unnest* GetUnnestOperator();

Aggregation* GetAggregationOperator();

// returns all the logical operators defined in the database
List<DBOperator> GetAllLogicalOperators();

// gets various physical operators defined in the database
FileScan* GetFilescanAlgorithm();

IndexScan* GetIndexScanAlgorithm();

Filter* GetFilterAlgorithm();

NestedLoopJoin* GetNestedLoopJoinAlgorithm();

HashJoin* GetHashJoinAlgorithm();
MaterializationAlgorithm#* GetMaterializationAlgorithm();
UnnestAlgorithm* GetUnnestAlgorithm();
AggregationAlgorithm* GetAggregationAlgorithm();

private:

// execution algorithms associated with the DBRelation operator
List<DBAlgorithm> dbRelationAlgorithms;

123

// execution algorithms associated with the Select operator
List<DBAlgorithm> selectAlgorithms;

// execution algorithms associated with the Join operator
List<DBAlgorithm> joinAlgorithms;

// execution algorithms associated with the Materialization operator
List<DBAlgorithm> materializationAlgorithms;

// execution algorithms associated with the Unnest operator
List<DBAlgorithm> unnestAlgorithms;

// execution algorithms associated with the Aggregation operator
List<DBAlgorithm> aggregationAlgorithms;

// logical operators

DBRelation* dbrelation;

Select* select;

Join* join;

Materialization* materializationm;
Unnest* unnest;

Aggregation* aggregation;

// all logical operators
List<DBOperator> allOperators;

// physical operators;
FileScan* filescan;

IndexScan* indexscan;

Filter* filter;
NestedLoopJoin* nestedloopjoin;
HashJoin* hashjoin;

124

MaterializationAlgorithm* materializationAlgo;
UnnestAlgorithm* unnestAlgo;
AggregationAlgorithm* aggregationAlgo;

};

The constructor of this class will create objects for all logical operators and phys-
ical operators defined in the database, put all the logical operator objects into the
attribute allOperators, and put each physical operator object into its corresponding list
of algorithms associated with a logical operator. For example, object nestedloopjoin
and hashjoin will be put into the list of joinAlgorithms, object materializationAlgo will
be put into the list of materializationAlgorithms, etc. The Get methods defined in this
class are used to return corresponding attribute objects. The destructor of this class
destroys all objects created in the constructor.

5.2 Customize the Search Space Component

The Search Space component defines what the search space is. It decides how the
logical operators and physical operators are put together to build the logical query
plans and physical query plans. The abstraction of the kinds of manipulations on the
database operators are encapsulated in this component.

Figure 40 shows the class diagram for the Search Space component before cus-
tomization. There are two hierarchies in this component. One is the visitor hierarchy,
the other is the generator hierarchy.

The visitor hierarchy performs operations on the logical algebra. The OPERA-
TORTREEVISITOR is an abstract class and is used in places where polymorphism is
needed. The EXPANDTREEVISITOR class is defined to expand an operator tree in
a bottom-up fashion. The TRANSFORMTREEVISITOR class is designed to transform
an operator tree to its equivalents. The TREETOPLANVISITOR class is designed to
convert an operator tree to its corresponding algorithm trees. One operator tree may
have more than onec related algorithm trces if any operator in this tree has more
than one execution algorithm. The visitor classes dispatch their responsibility to
corresponding generator classes.

The generator hierarchy implements the responsibility of the Search Space com-

ponent. There are three gencrator classes in the Search Space component, each is

125

created and used by a corresponding immediate OPERATORTREEVISITOR subclass.
How the search space is shaped in query optimization is actually dependent on how
these generator classes are implemented.

To customize the Search Space component, we need to customize both the visitor
hierarchy and the generator hierarchy. The customization of the TRANSFORMTREE-
VISITOR and the TRANSFORMTREEGENERATOR is optional because they are only
used in the Transformation optimization or any optimization such as Simulated An-
nealing that requires tree transformation.

3.2.1 A Simple Example

Suppose we want to optimize the basic SQL construct Select-From-Where. The log-
ical operators that are defined are DBRelation, Select, and Join, as we have seen in
Example A of Section 5.1.1. The physical operators are FileScan, Filter, and Nest-
edLoopJoin corresponding to the above logical operators as that in Example A of
Section 5.1.2.

There are several steps in customizing the Search Space component:

Step 1: Add the following methods to the class definition of OPERATORTREEVsS-
ITOR:

virtual void VisitDBRelation(DBRelation* op) = 0;
virtual voidVisitSelect(Select* op) = 0;
Virtual void VisitJoin(Join* op) =0;

Step 2: Add the following methods to all class definitions of EXPANDTREEVISITOR,
TRANSFORMTREEVISITOR, and TREETOPLANVISITOR:

virtual void VisitDBRelation(DBRelation* op);
virtual void VisitSelect(Select#* op);

virtual void VisitJoin(Join* op);

Step 3: Extend the EXPANDTREEGENERATOR class hierarchy.
For cach logical operator defined in the Algebra component, there is a corresponding
class defined for it in the EXPANDTREEGENERATOR hierarchy.

126

ExpandTreeGenerator

UnaryOperatorExpand BinaryOperatorExpand

Figure 69: Simple Example: Customize the EXPANDTREEGENERATOR Hierarchy

Figure 69 shows the class diagram after customization. The newly added classes
are adorned in gray. The EXPANDTREEGENERATOR class hierarchy has a similar
structure as the DBOPERATOR hierarchy. Each class in the EXPANDTREEGENERA-
TOR hierarchy has an associated logical operator in the DBOPERATOR hierarchy rep-
resenting an operator tree is cxpanded by the class defined in the EXPANDTREEGEN-
ERATOR hierarchy through application of the corresponding logical operator defined
in the DBOPERATOR hierarchy. The name convention for classes that are defined in
the EXPANDTREEGENERATOR hierarchy and that correspond to some logical oper-
ators is : Each name is a concatenation of the name of the logical operator and the
string “Expand”.

Since DBRELATION operator has no input, its corresponding expand class DBRE-
LATIONEXPAND inherits from the base class EXPANDTREEGENERATOR. The SE-
LECT operator is a unary operator so its expand class SELECTEXPAND inherits from
the UNARYOPERATOREXPAND. The JOIN operator is a binary operator and its ex-
pand class JOINEXPAND inherits from the BINARYOPERATOREXPAND. The newly
added classes may need to re-write the method Apply in order to change the behav-
ior when an operator tree is expanded by that expand class. Class JOINEXPAND
may need to re-write the method DfsNode to change the way a depth first search is
performed on the search tree for suitable nodes that can be paired with the given
operator tree input.

Step 4: Extend the ALGORITHMTREEGENERATOR class hierarchy.
For cach physical operator defined in the Algebra component, there is a corresponding
class defined for it in the ALGORITHMTREEGENERATOR hierarchy.

127

AlgorithmTreeGenerator

s

UnaryAlgorithmTreeGenerator BinaryAlgorithmTreeGenerator

[

EnforcerPlan

Figure 70: Simple Example: Customize the ALGORITHMTREEGENERATOR Hierar-
chy

Figure 70 shows the class diagram after customization. The newly added classes
are adorned in gray. The ALGORITHMTREEGENERATOR class hierarchy has a sim-
ilar structure as that of the DBALGORITHM hierarchy. Each class in the AL-
GORITHMTREEGENERATOR hierarchy has an associated physical operator in the
DBALGORITHM hierarchy representing an algorithm tree is built by the class de-
fined in the ALGORITHMTREEGENERATOR hierarchy through application of the cor-
responding physical operator defined in the DBALGORITHM hierarchy. The name
convention for the classes defined in the ALGORITHMTREEGENERATOR hierarchy
and that correspond to some physical operators is that each name is a concatenation
of the name of the physical operator and the string “Plan”.

Since the FILESCAN operator has no input, its corresponding plan class FileScan-
Plan inherits from the base class ALGORITHMTREEGENERATOR. The FILTER op-
erator is a unary operator so its plan class FILTERPLAN inherits from the UnaryAl-
gorithmTreeGenerator. The NESTEDLOOPJOIN operator is a binary operator and
its plan class NESTEDLOOPJOINPLAN inherits from the BINARYALGORITHMTREE-
GENERATOR. The newly added classes may need to re-write the method CanBeAp-
plied to clarify the conditions it can be applied to build an algorithm tree. They may
also re-write the method MakePhyNodes to change the behavior when an algorithm
tree is built by that plan class.

Step 5: Define algebraic laws for operator tree transformation.
TRANSFORMTREEGENERATOR represents algebraic laws that will be used in tree

transformation. There may not be one to one relatiouship between the logical operator

128

TransformTreeGenerator

Figure 71: Simple Example: Customize the TRANSFORMTREEGENERATOR Hierar-
chy

and the algebraic law. But the algebraic laws should be defined according to all the
logical operators defined in the database and try to cover all manipulations on these
logical operators that can improve the quality of the operator trees. Insufficient
algebraic laws may result in operator trees that are not good enough to be as close
as possible to the best one in the search space.

Figure 71 shows the class diagram of the TRANSFORMTREEGENERATOR hier-
archy after customization. The newly added classes are adorned in gray. For each
algebraic law, there will be a concrete class defined in the TRANSFORMTREEGEN-
ERATOR hierarchy. In this example, there are two algebraic laws that are defined
for the operator tree transformation. One is the SELECTPUSHDOWN. It is the most
important algebraic law that is frequently used in the transformation optimization.
It means putting the Select operator as close as possible to the leaves in an operator
tree where its associated relations reside. The advantage of this rule is that it greatly
reduces the cardinality of its output thus reducing the execution cost for further pro-
cessing if its output will serve as some inputs in the later process. The other rule
is JOINASSOCIATIVITY. It is the last step before producing the final logical query
plan. JOINASSOCIATIVITY means grouping the Join operators in the operator tree
together. Thinking of an operator such as Join as a multiway operator offers us op-
portunities to reorder the operands so that when the Join is executed as a sequence
of binary Joins, they take less time than if we had executed the Joins in the order
implied by the parse tree [12]. Since two argument relations play different roles in
most Join execution algorithms, a potential advantage of JOINASSOCIATIVITY is that
the smaller argument relation can be selected as the left argument and kept stored in
the memory thus it reduces the total disk I/Os for the Join operation.

129

Step 6: Implement the newly added methods in classes EXPANDTREEVISITOR,
TRANSFORMTREEVISITOR, and TREETOPLANVISITOR.

The implementation of the Visit methods in the class EXPANDTREEVISITOR is
very simple. What they need to do is to pick up appropriate concrete generator
classes and call the Apply method on them. For example, the VisitJoin method can
be written as:

void ExpandTreeVisitor::VisitJoin (Join* op) {

JoinExpand expand,
expand.Apply(op, currentTree);

The object currentTree is the current operator tree to be expanded. It is stored in
the EXPANDTREEVISITOR class.

The implementation of the Visit methods in the class TREETOPLANVISITOR is
less simple, but it is not complicated either. What they need to do is to find the
list of execution algorithms associated with that operator, itcrate through these al-
gorithms, and request them to build physical query plans by calling MakePhyNodes
on them. Since the list of cxecution algorithms associated with one logical operator
is encapsulated in that logical operator, all the Visit methods in the class TREETO-
PLANVISITOR can have the same implementation (but their function signatures are
different). The following is an example for VisitJoin method:

void TreeToPlanVisitor ::VisitJoin (Join* op) {
List<DBAlgorithm> list = op -> GetListOfAlgorithms();
For EACH_ELEMENT_OF_LIST (list) {
DBAlgorithm* algorithm = list.Element();
algorithm -> MakePhyNodes (currentTree);

The object currentTree is the operator tree to be transformed into algorithm trees.
It is stored in the class TREETOPLANVISITOR.

The implementation of the Visit methods in the class TRANSFORMTREEVISITOR
is relatively complicated. First, the tree transformation is a recursive process. Second,

130

any tree transformation is based on the previous transformation resultant tree. Third,
all rules are iterated and only some of them are used for tree transformation if they
mect the application conditions. Fourth, the order of these rules are important. Two
methods can be defined to facilitate the implementation of tree transformation:

e TransformOperatorTreeWithRules(OperatorTree* op)
The argument op is the operator tree to be transformed. This method iterates
through all algebraic laws defined in the TRANSFORMTREEGENERATOR hier-
archy and asks each law (or rule) to apply. If a rule has been applicd, then the
tree to transform for the next rule is the resultant tree, not the original one.

¢ TransformOpeatorTreeWithRecursion (OperatorTree* op)

The argument op is the operator trce to be transformed. This method trans-
forms the root tree first by calling TransformOperatorTree WithRules and pro-
viding the root tree as the argument tree. It then transforms the left and right
operator trees recursively by calling itself but giving its left and right opera-
tor trees as arguments. The Visit methods in the TRANSFORMTREEVISITOR
class only invoke the method TransformOpeatorTree WithRecursion and pass the
operator tree to transform as argument.

5.2.2 A Complex Example

We will show a more complex example in this section. We use the logical opera-
tors defined in the Example B of Section 5.1.1 and the physical operators defined in
Example B of Section 5.1.2. In other words, we add logical operators MATERIALIZA-
TION, UNNEST, and AGGREGATION and physical operators INDEXSCAN, HASHJOIN,
MATERIALIZATIONALGORITHM, UNNESTALGORITHM, AGGREGATIONALGORITHM
to the Simple Example in Section 5.2.1.

To customize this complex example, we use exactly the same number of steps as
that in the simple example. We only show the additional methods or classes to add
to the simple example for each step:

Step 1: Add the following additional methods to the class definition of OPERA-
TORTREEVISITOR:

virtual void VisitMaterialization (Materialization* op) = 0;

131

ExpandTreeGenerator <} DBRelationExpand

B

UnaryOperatorExpand BinaryOperatorExpand
| JoinExpand

SelectExpand

Figure 72: Complex Example: Customize the EXPANDTREEGENERATOR Hierarchy

virtual void VisitUnnest (Unnest* op) = 0;
virtual void Visit Aggregation (Aggregation* op) = 0;

Step 2: Add the following additional methods to each class definition of Ex-
PANDTREEVISITOR, TRANSFORMTREEVISITOR, and TREETOPLANVISITOR:

virtual void VisitMaterialization (Materialization* op) ;
virtual void VisitUnnest (Unnest* op);
virtual void Visit Aggregation (Aggregation* op);

Step 3: Extend the EXPANDTREEGENERATOR class hierarchy.
For each logical operator defined in the Algebra component, there is a corresponding
class defined for it in the EXPANDTREEGENERATOR hierarchy.

Figure 72 shows the class diagram after customization. The newly added classcs
are adorned in gray. Since logical operators MATERIALIZATION, UNNEST, AGGRE-
GATION are all unary operators, their expand classes MATERIALIZATIONEXPAND,
UNNESTEXPAND, and AGGREGATIONEXPAND all inherit from the UNARYOPERA-
TOREXPAND. The newly added classes may need to re-write the method Apply to
change the behavior when an operator tree is expanded.

Step 4: Extend the ALGORITHMTREEGENERATOR class hicrarchy.
For each physical operator defined in the Algebra component, there is a corresponding
class defined for it in the ALGORITHMTREEGENERATOR hierarchy.

132

FileScanPlan

AlgorithmTreeGenerator <:}_
|

BinaryAlgorithmTreeGenerator

UnaryAlgorithmTreeGenerator Z;

[

NestedLoopJoinPlan

|

EnforcerPlan

|

FilterPlan

Figure 73: Complex Example: Customize the ALGORITHMTREEGENERATOR Hier-
archy

Figure 73 shows the class diagram after customization. The newly added classes
are adorned in gray. Since INDEXSCAN is a physical operator with no inputs, its plan
class INDEXSCANPLAN directly inherits from the base class ALGORITHMTREEGEN-
ERATOR. MATERIALIZATIONALGORITHM, UNNESTALGORITHM, AGGREGATION-
ALGORITHM are all unary physical operators, their plan classes MATERIALIZATION-
ALGORITHMPLAN, UNNESTALGORITHMPLAN, AGGREGATIONALGORITHMPLAN all
inherit from the class UNARYALGORITHM TREEGENERATOR. HASHJOIN is binary
physical operator and its plan class HASHJOINPLAN inherits from class BINARYAL-
GORITHMTREEGENERATOR. Thesc newly added classes may need to re-write the
method CanBeApplied to clarify the conditions it can be applied to build an algo-
rithm tree. They may also re-write the method MakePhyNodes to change the behavior
when an algorithm tree is built.

Step 5: Define algebraic laws for operator tree transformation.

Currently we are not sure what algebraic laws associated with operators MATERI-
ALIZATION and UNNEST can be used to improve the logical query plan. But we do
know there are transformation rules that are related to the operator AGGREGATION.
Garcia-Molina et al. [12] propose two general algebraic laws related to the AGGRE-
GATION operator:

133

e Operator Aggregation absorbs Operator Duplicate-Elimination. That mecans
Duplicate-Elimination operation can be removed if its input is a resultant of
the Aggregation operation.

e Useless attributes can be projected out prior to application of the Aggregation
operation. That means a projection operation can be introduced to the input
of the Aggregation operation to only keep those attributes that are mentioned
in the aggregation and grouping expression.

We do not define a Duplicate-Elimination operator in our example. So the first
law is ignored. But we can define an algebraic law (may be named PROJECTIONADD)
as a subclass of the TRANSFORMTREEGENERATOR that is used to implement the
second rule proposed by Garcia-Molina et al.

Please note that if any algebraic laws relating to the newly added operators that
can be used to improve the quality of the operator tree, they should be added. In-
sufficient algebraic laws may result in operator trees that are not good enough to be
as close as possible to the best one in the search space.

Step 6: Implement the newly added methods in classes EXPANDTREEVISITOR,
TRANSFORMTREEVISITOR, and TREETOPLANVISITOR.

The implementation for methods related to the newly added operators is the same as
that in the simple example.

5.2.3 Summary

The customization of the Algebra component will affect the customization of the
Search Space component. Specifically, for each logical operator defined in the Algebra,
we need to define one Visit method related to it across the visitor hierarchy. Moreover,
we need to define a concrete class in the EXPANDTREEGENERATOR class hierarchy
to implement the functionality of applying this logical operator to an operator tree.
We may also nced to define algebraic laws (tree transformation rules) for the related
logical operators. Hopefully the application of these rules will improve the quality of
the operator trees and lead to some physical query plans with less costs.

For each physical operator decfined in the Algebra, we need to define a concrete

134

class in the ALGORITHMTREEGENERATOR class hierarchy to implement the func-
tionality of applying this physical operator to build new physical query plans.

3.3 Customize the Search Strategy Component

5.3.1 Customize the Logical Properties

The logical properties for the logical query plans are stored in the class OPERA-
TORTREEPROPERTY. Figure 33 shows its class structure before customization.

The logical properties of an operator tree are associated with the logical operator
at the tree root. So for each logical operator in the database, a constructor is added
to the class OPERATORTREEPROPERTY to construct the logical properties for the
operator tree rooted at that logical operator.

Example A Suppose the logical operators defined in the database are the same as
that in Example A of Section 5.1.1. The followings are constructors added to the
class OPERATORTREEPROPERTY:

OperatorTreeProperty (DBRelation*, OperatorTreex);
OperatorTreeProperty (Select*, OperatorTree*);
OperatorTreeProperty (Join*, OperatorTree*);

The second argument refers to the operator tree whose logical properties are to be
made.

The optimizer-implementor may need to re-define the definitions for interesting
logical properties and what equivalence of two operator trees means. S/he may also
add some other logical properties to this class.

Example B Suppose we want to add more logical operators to Example A as what
we have defined in the Example B of Section 5.1.2. That is, new logical operators
MATERIALIZATION, UNNEST, and AGGREGATION are defined. The followings arc
additional constructors added to the class OPERATORT REEPROPERTY in addition
to those in Example A:

OperatorTreeProperty (Materialization *, OperatorTree*);
OperatorTreeProperty (Unnest *, OperatorTreer);

135

OperatorTreeProperty (Aggregatioa *, OperatorTrees);

The customization of this example is similar to that in Example A.

5.3.2 Customize the Physical Properties

The physical properties for the physical query plans are stored in the class ALGO-
RITHMTREEPROPERTY. Figure 35 shows its class structure before customization.

The physical properties of an algorithm tree are associated with the physical op-
erator at the tree root. So for each physical operator in the database, a constructor is
added to the class ALGORITHMTREEPROPERTY to construct the physical properties
for the algorithm tree rooted at that physical operator.

Example A Suppose the physical operators defined in the database are the same
as that in Example A of Section 5.1.2. The followings are constructors added to the
class ALGURITHMTREEPROPERTY:

AlgorithmTreeProperty (FileScan#, AlgorithmTree#*);
AlgorithmTreeProperty (Filter*, AlgorithmTrees);
AlgorithmTreeProperty (NestedLoopJoin*, AlgorithmTree*);

The second argument refers to the algorithm tree whose physical properties are
to be made.

The optimizer-implementor may need to re-define the definitions for interesting
physical properties and what equivalence of two algorithm trees means. S/he may
also add some other physical properties to this class.

Example B Suppose we want to add more physical operators to Example A as
what we have defined in the Example B of Section 5.1.2. That is, new physical
operators INDEXSCAN, HASHJOIN, MATERIALIZATIONALGORITHM, UNNESTALGO-
RITHM, and AGGREGATIONALGORITHM are defined. The followings are additional
constructors added to the class ALGORITHMTREEPROPERTY in addition to those in
Example A:

AlgorithmTreeProperty (IndexScan*, AlgorithmTrees);
AlgorithmTreeProperty (HashJoin#, AlgorithmTrees*);

136

AlgorithmTreeProperty (MaterializationAlgorithm *, AlgorithmTree*) ;
AlgorithmTreeProperty (UnnestAlgorithm *, AlgorithmTrees);
AlgorithmTreeProperty (AggregationAlgorithm *, AlgorithmTrees);

The customization of this example is similar to that in Example A.

3.3.3 Customize Cost Computation

The execution cost information is stored in the class CosT. F igure 36 shows its class
structure before customization.

For each execution algorithm, there should be a method defined in the CoOST class
to compute the execution cost for it. The execution cost for an execution algorithm
depends on the cost model used. Here is an example showing the cost value for the
FileScan algorithm:

Costritescan = number of pages x I/O cost per page + number of pages
x number of instructions per page x execution cost per instruction

The estimated execution cost for the FileScan algorithm is the sum of the disk I/0
cost to bring the corresponding relation into the memory and the execution cost to
scan all the tuples in that relation. Amongst these parameters, the number of pages
is computed at run time, and the others are estimated values associated with the
machine that is used for query optimization.

Example A Suppose the physical operators defined in the database are the same
as that in Example A of Section 5.1.2. That is, they are FILESCAN, FILTER, and
NESTEDLOOPJOIN. The followings are methods added to the class COST:

void Compute (FileScan*, AlgorithmTree*);
void Compute (Filter*, AlgorithmTree*);
void Compute (NestedLoopJoin*, AlgorithmTrees);

The sccond argument refers to the algorithm tree whose execution cost is to com-
pute.

137

Example B Suppose we define more physical operators than that in Example A
as what we have defined in the Example B of Section 5.1.2. That is, new physical
operators INDEXSCAN, HASHJOIN, MATERIALIZATIONA LGORITHM, UNNESTALGO-
RITHM, and AGGREGATIONALGORITHM are defined. The followings are additional
methods to add to the class COST in addition to those in Example A:

void Compute (IndexScan*, AlgorithmTrees);

void Compute (HashJoin*, AlgorithmTree*);

void Compute (MaterializationAlgorithm#, AlgorithmTrees);
void Compute (UnnestAlgorithm#, AlgorithmTrees);

void Compute (AggregationAlgorithm#, AlgorithmTrees);

The second argument refers to the algorithm tree whose execution cost is to com-
pute.

5.3.4 Selection of Input Format for Queries

In this query optimization framework, we provide two ways to use the query optimiza-
tion system. Onc is a standalone query optimization system. This query optimization
system incorporates a simple Query Parser that can parse user-input queries. It is
used in cases where this system is repeatedly experimented with before delivery. The
other is an embedded query optimization system. The queries are parsed outside this
system and are turned into a file .parsedquery written with a protocol specified by
the query optimization framework. This query optimization system will read this file
in and turn it into internal representation for further optimization.

In a standalone query optimization system, the main control program will use the
C++ code:

QueryOptimizerFacade* facade
= new QueryOptimizerFacadeWithParser;

Instead, in an embedded query optimization system, the main control program
will use the C++ code:

QueryOptimizerFacade* facade
= new QueryOptimizerFacadeWithFormatedFile;

138

5.3.5 Selection of the Search Strategies

There are two search strategies equipped in this query optimization framework: the
Bottom-Up Search Strategy and the Transformative Search Strategy. The optimizer-
implementor can add some other search strategies to this framework or the query
optimization system s/he builds.

Use Bottom-Up Search Strategy This search strategy is the default search
method used in the system. No additional work needs to be done by the user. That
is, after the user has chosen the input format for the queries and instantiated the
corresponding facade object, a simple call as follows will automatically invoke the
Bottom-Up Search Strategy.

facade -> Optimize();

Use Transformative Search Strategy The user needs to create a Transformative
Search Strategy object and set it to be the one that will be used for search. That
is, after the user has chosen the input format for the queries and instantiated the
corresponding facade object, the following C++ code is written:

SearchStrategy* s = new TransformativeSearchStrategy;
facade -> SetSearchStrategy (s);
facade -> Optimize();

Then the Transformative Search Strategy will substitute the default search strat-
egy and will be used for search.

Use Randomized Search Strategy No randomized search strategies are defined
in this query optimization framework. But the user can add one without much effort.
We will give an example of using the Simulated Annealing Search Strategy whose
algorithm has been illustrated in Figure 12.

Since the Simulated Annealing Search Strategy uses the same search space as that
explored by the Bottom-Up Search Strategy and the Transformative Scarch Strategy,
no customization code in the Search Space component needs to be changed. Any
code that relates to the new scarch strategy is added within the scope of the Search
Strategy component.

139

First, we need to define the Simulated Annealing Search Strategy as an immediate
subclass of the base class SEARCHSTRATEGY. Then a scarch tree is defined in the
SEARCHTREE class hierarchy, we call it the SIMULATEDANNEALINGSEARCHTREE.
There are two ways to define the SIMULATEDANNEALINGSEARCHTREE:

e It is defined as an immediate subclass of the class SEARCHTREE. The optimizer-
implementor needs to write the method MakelnitialTree as that in the TRANS-
FORMEDSEARCHTREE in order to create a logical query plan representing the
complete query. S/he also needs to override the method DoSearch to perform
a random selection on options tree and plan. If the plan option is chosen, the
current operator tree is transformed into algorithm trees and cost evaluation
is performed. If the tree option is chosen, the current operator tree is trans-
formed into an equivalent operator tree, the algorithm trees for the new tree
are created, and the cost evaluation is performed.

e It is defined as a subclass of the TRANSFORMEDSEARCHTREE. The optimizer-
implementor nceds not define the method MakelnitialTree. S/he only re-writes
the method DoSearch with the algorithm specified above.

The use of the Simulated Annealing Search Strategy is similar to that of the
TRANSFORMATIVESEARCHSTRATEGY. That is,

SearchStrategy* s = new SimulatedAnnealingSearchStrategy;
facade->SetSearchStrategy (s);
facade -> Optimize();

Then the Simulated Annealing Search Strategy will substitute the default search
strategy and will be used for search.

5.4 Customize the System Catalog

The system catalog information used in this query optimization framework is stored
in the file .catalog in the bin subdirectory. This information can be collected from
different layers of a DBMS.

This query optimization framework uses the same systemn catalog format as that in
OPT++ [20]. The system catalog contains three parts of information: Type informa-
tion, Sct information, and Attributes/Methods information. We will illustrate therm

140

Country 300 3 Y Y extCountry
City 200 3 Y N extCity
Capital 400 3 Y Y ext-Capital
Information 400 1 Y Y extInformation
Destination 8§ 2 Y N —

Employee 250 4 Y Y extEmployee
Plant 1000 3 Y N extPlant
Department 500 0 Y Y extDepartment
Job 400 0 Y Y extJob

Task 12 2 Y Y extTask
Hotel 100 0 Y N --

Person 100 1 Y Y extPerson
Ccv 150 0 Y N -

Sale 16 2 Y N —

Continent 32 0 Y Y ext.Continent
Date 10 0 NN —

string 0 0 NN —

void 0 0 NN —

float 0 0 NN —

integer 4 0 NN —

boolean 1 0 NN -—

Data_Type Not Set 1 0 NN —

Table 7: Example of System Catalog: Type Information

using the sample catalog file provided in the SampleOpt [19] of OPT++. SampleOpt

is a complete query optimization system for object-relational query optimization. It
is built from OPT++.

3.4.1 Type Information

The first line is the number of types in the system catalog. The following is the type
information with columns from left to right representing the type name, object size
for that type, number of references, is complex, has extent, and extent name.

Table 7 is the sample type information provided in SampleOpt. It contains 22
types, each has an object size, reference information, and extent information.

141

27

Departments Department 100 YN number Il —
Employees Employee 50000 N N spousename I2 —
Persons Person 10000 YN age I3 —
Cities City 10000 YN mayor.name [4 —
Continents Continent 3 NN — - —
Countries Country 100 YN name I5 —
Tasks Task 10000 YN time I9 —
ext_Task Task 10000 NN — - —
ext_Job Job 5000 NN — - —
ext_Department Department 1000 NN -- - —
ext_Person Person 100000 NN name I6 -
ext_.Employee Employee 200000 YN first_name [10 —
ext_City City 20000 NN — - -
ext_Plant Plant 200 NN — - —_
ext_Capital Capital 160 NN — - -
ext_Continent Continent 7 NN — - -
ext_Country Country 160 YN name I8 —
ext_Information Information 1000 NN — - —
I1 Data_Type_Not Set 35 NY - Departments p

12 Data_Type_Not_Set 5000 NY - Employees c

I3 Data_Type_Not Set 200 NY — Persons c

K4 Data_Type_Not Set 5000 NY — Cities sd
Is Data_Type.Not_Set 100 NY — Countries sd
16 Data_Type_Not_Set 2000 NY — ext_Person c

I8 Data_Type_Not_Set 160 NY — ext.Country sd
I9 Data_Type_Not_Set 1000 NY — Tasks c

10 Data_Type_Not_Set 30 NY — ext_Employee ¢

Table 8: Example of System Catalog

: Set Information

5.4.2 Set Information

The first line is the number of sets in the system catalog. The following is the set
information with columns from left to right representing the set name, the corre-
sponding type name, cardinality, has index, is index, index path name, index or set
name, and index type.

Table 8 shows the sample set information provided in SampleOpt. It contains 27
sets, cach has a type name, cardinality, and index information.

142

7%

name Person string NO AurYN— Data.Type.Not.Set
address Person string NO Attr NN — Data_TypeNot.Set
age Person integer NO Attr NN — Data TypeNot Set
spouse Person Person NO Link NN— Data TypeNotSet
print Person void NO Attr NN — Data.Type NotSet
self Person Person N0 Attr YN — Data.TypeNot.Set
time Task integer NO Attr NN — Data.Type.Not.Set
team_members Task Employee Y 10 Link NN— Data TypeNot Set
employee Task Employee NO Link NN — Data.TypeNotSet
team_manager Task Employee NO Link YN— DataTypeNotSet
name Job string NO Attr YN — Data_TypeNotSet
wage Job float NO Attr NN — Data_Type_Not Set
self Job Job NO Attr YN— Data.TypeNot.Set
location Plant string NO Attr YN — Data Type.Not Set
self Plant Plant NO Attr YN — Data Type.Not Set
department Employee Department NO Link NN — Data.TypeNot Set
cv Employee CV NO Link YN— Data.TypeNotSei
sales Employee Sale Y 25 Link NN — Data.TypeNot.Set
number Employee integer NO Attr YN -— Data_Type.NotSet
age Employee integer NO Attr NN -— Data TypeNotSet
job Employee Job NO Link NN— Data.TypeNot.Set
job.description Employee string NO Attr NN — Data.Type_Not.Set
last_raise Employee Date NO Acttr NN — Data.Type-Not.Set
print Employee void NO Aur NN — Data_TypeNot Set
self Employee Employee NO Attr YN — Data.Type.NotSet
narme Employee string NO Attr YN — Data.TypeNot Set
first_name Employee string NO Attr NN — Data_ Type.NotSet
address Employee string NO Aur NN— Data Type.Not.Set
age Employee integer NO Atr NN — Data.Type_Not Set
spouse Employee Person NGO Link NN — Data.TypeNot Set

Table 9: Example of System Catalog: Attributes and Methods (1/3)

5.4.3 Attributes and Methods

The first line is the number of attributes and methods in the system catalog. The
following is the detail information with columns from left to right representing the at-
tribute/method name, the owner name, the type, is set, set size, reference string(attribute
or link), is key, has inverse relationship, name of inverse relationship, type of the in-
verse relationship.

Table 9, Table 10, and Table 11 show the sample attributes and methods infor-
mation provided in SampleOpt. It contains 75 attributes and methods, each has an

owner name (tvpe name), a type name (string, float, etc), and relationship informa-
tion.

143

print
name
floor
number
plant
print
self
president
age
continent
name
capital
self
country
name
age
mayor
self
info
country
name
age
mayor
self
info
name
self
hotels
day
night

Table 10: Example of System Catalog:

Employee
Department
Department
Department
Department
Department
Department
Country
Country
Country
Country
Country
Country
City

City

City

City

City

City
Capital
Capital
Capital
Capital
Capital
Capital
Continent
Continent
Information
Information
Information

void

string
integer
integer
Plant

void
Department
Person
integer
string
string
Capital
Country
Country
string
integer
Person

City
Information
Country
string
integer
Person
Capital
Information
string
Continent
Hotel
string
string

NoO
NO
NO
NO
NO
NoO
NO
NO
No
NoO
NoO
No
NO
NO
NO
NO
NO
No
NO
NO
NoO
NO
NO
NO
NO
NO
NO
Y75
Y 35
Y25

Attr NN —
Attr YN —
Attr NN —
Attr YN —
Link NN —
Attr NN —
Attr YN —
Link YN —
Attr NN —
Attr NN —
Attr YN —
Link Y Y country
Attr YN —
Link NN —
Attr YN —
Attr NN —
Link YN —
Attr YN —
Link YN —
Link Y Y capital
Attr YN —
Attc NN —
Link YN —
Attr YN —
Link YN —
Attr YN —
Attr YN —
Link NN —
Attr NN —
Attt NN —

Data_Type_Not_Set
Data_Type_Not_Set
Data.Type_Not_Set
Data_Type_Not._Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not _Set
Data_Type.Not_Set
Data_Type.Not Set
Data_Type_Not_Set
Capital
Data_Type_Not_Set
Data_Type_Not.Set
Data.Type_Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Country
Data.Type.Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type_Not.Set
Data_Type.Not_Set
Data_Type_Not_Set
Data_Type_Not_Set
Data_Type.Not_Sct

Attributes and Methods (2/3)

5.5 Putting It All Together — Build A New Query

Optimization System

This section will illustrate how to build a query optimization system using this query
optimization framework. Two examples will be given. All illustrations in this section
are based on the previous examples in customizing individual components. We will

not dive into details except when necessary.

144

self Information Information N O Attr YN — Data Type Not_Set

self Destination Destination N O Attr YN — Data Type Not_Set
city Destination City NO Link NN — Data.TypeNot.Set
hotel Destination Hotel NO Link NN— Data_ TypeNotSet
self Cv Ccv NO Attr NN — Data_TypeNot Set
name Ccv string NO Attr NN — Data Type.Not Set
birth_city Cv string NO Attr NN — Data TypeNot_Set
birth_country CV string NO Attr NN — Data TypeNot Set
self Sale Sale NO Attr YN — Data.Type.Not Set
dest Sale Destination NO Link NN — Data.TypeNot Set
employee Sale Employee NO Link NN — Data.Type.Not_Set
amount Sale float NO Attr NN — Data Type.Not _Set
name Hotel string NO Attr NN — Data.TypeNot Set
self Hotel Hotel NO Attr NN — Data_TypeNot.Set
location Hotel string NO Attr NN — Data_Type.Not.Set

Table 11: Example of System Catalog: Attributes and Methods (3/3)

5.5.1 A Simple Example

Suppose we want to develop a transformation query optimization system that can
accept basic SQL construct Select-From-Where. This system will be embedded in
a DBMS system. Also suppose the database uses the same system catalog as the
SampleOpt customization of OPT++ (see Section 5.4).

Several steps are sketched out as follows:

Step 1: Customize the Algebra Component

1. Define Logical Algebra
Three logical operators DBRELATION, SELECT, and JOIN are defined. Please
refer to Example A of Section 5.1.1 for detailed customization information.

2. Define Physical Algebra
Three physical operators FILESCAN, FILTER, and NESTEDLOOPJOIN are de-

fined according to the logical operators. Plcase refer to Example A of Sec-
tion 5.1.2 for detailed customization information.

3. Define OPERATORDEFINITION Class
Enumeration numbers are assigned to the logical and physical operators defined

145

above. Relationships between DBRELATION and FILESCAN, SELECT and FIL-
TER, JOIN and NESTEDLOOPJOIN are defined.

Please refer to Example A of Section 5.1.3 for detailed customization informa-
tion.

Figure 74 shows the overall class diagram of the Algebra component after cus-
tomization.

Step 2: Customize the Search Space Component
The customization of the Search Space component requires both the visitor and
generator hierarchies to be customized. Please refer to Section 5.2 for detailed cus-
tomization information.
Figure 75 shows the overall class diagram of the Search Space component after
customization.

Step 3: Customize the Search Strategy Component

1. Customize the Logical Properties
Three constructors are added to the class OPERATORTREEP ROPERTY for log-
ical operators DBRELATION, SELECT, and JOIN.

Please refer to Example A in Section 5.3.1 for detailed customization informa-
tion.

2. Customize the Physical Properties
Three constructors are added to the class ALGORITHMTREEPROPERTY for
physical operators FILESCAN, FILTER, and NESTEDLOOPJOIN.

Please refer to Example A in Section 5.3.2 for detailed customization informa-
tion.

3. Customize Cost Computation
Three Compute methods are added to the class CosT for physical operators
FILEScAN, FILTER, and NESTEDLOOPJOIN. Pleasc refer to Example A in
Section 5.3.3 for detailed customization information.

146

DBOperator

_ b

!

DBUnaryOperator

DBBinaryOperator

j| [DBOperatorOperation

DBAlgorithm <7}

r

DBUnaryaAlgorithm

Enforcer

|

DBBinaryAlgorithm

OperatorDefinition

dbrelation : DBRelation*
elect : Selectr
join : Join*
llOperators : List<DBOperator>
ilescan : FileScan*
filter : Filter»*
estedloopjoin : NestedLoopJoin®
dbRelationAlgorithms : List<DBAlgorithm>
electAlgorithms : List<DBAlgorithm>
joinAlgorithms : List<DBAlgorithm>

QOperatorDefinition()
§-OperatorDefinition()
QGetDBRelationAlgorithms()
QGetSelectAlgorithms()
QGetJoinAlgorithms()
QGetDBRelationOperator ()
QGetSelectOperator()
Q®GetJoinOperator()
QGetAllLogicalOperators()
QGetFilescanAlgorithm()
QGetFilterAlgorithm()
QGetNestedLoopJoinAlgorithm()

Figure 74: Simple Example: Customize the Algebra Component

147

OperatorTreeVisitor <:}4,

TreeToPlanVisitor

A\

1

creates, uses

ExpandTreeVisitor TransformTreeVisitor AlgorithmTreeGenerator

rules \Z

(vector< TransformTreeGenerator* >)

creat%s, uses

TransformTreeGenerator

UnaryAlgorithmTreeGenerator

&

ExpandTreeGenerator

&

1

EnforcerPlan

UnaryOperatorExpand

BinaryOperatorExpand

Figure 75: Simple Example: Customize the Search Space Component

148

4. Selection of Input Format for Queries
In the main control program, use the C++ code:

QueryOptimizerFacade* facade

= new (QueryOptimizerFacadeWithFormatedFile;

5. Selection of the Search Strategies
The user needs to create a Transformative Search Strategy object and sets it
to the one that will be used for search. That is, after the user has chosen the
input format for the queries and instantiated the corresponding facade object,
the following C++ code is written:

SearchStrategy* s = new TransformativeSearchStrategy;
facade -> SetSearchStrategy (s);
facade -> Optimize();

Then the Transformative Search Strategy will substitute the default search
strategy and will be used for search.

Step 4: Create file .parsedquery

File .parsedquery is a file that contains the information for a query being parsed.
It is read by the query optimization system and is transformed into an internal rep-
resentation for further optimization.

A .parsedquery file contains seven items of information:

Relation Information This information includes the number of relations in-
volved in the query followed by a list of paired values of relation names and the
relation variable names.

Attribute Information This information includes the number of attributes
involved in the query followed by a list of paired values of relation names the attributes
belong to and the names of the attributes.

149

Predicate Information This information includes the number of predicates
involved in the query followed by a list of information of each predicate. Information
for a predicate includes:

e Operation and number of operands
For instance, in the predicate “Cities.age=10", operation is “=" and number of
operands is 2.

e Attribute information or literal information
Attribute information is identified by the keyword “attref’ followed by the at-
tribute name as well as its input information including: the number of input,
input type, relation number, relation name, and relation variable name. For
instance, in the predicate “c.age=10", suppose c is the relation variable name
for the relation Cities which is the first relation stored in the system catalog,
then we can represent the attribute age as follows:

attref age 1 tuplevar, 1, Cities, ¢

The literal information is identified by the keyword “lit”. It also includes the
type of the literal such as integer, string, boolean, etc (defined in the system
catalog) and its value (in a double quote). For instance, we can represent the
second operand in the predicate “c.age=10" as follows:

lit integer "10"

o Target Attribute Information
This information includes a list of Attribute information written in the same
format as the attributes in the predicates.

o Group-by Information
This information includes a boolean value (0 or 1). If it is 0, there is no aggrega-
tion operation in the query. Otherwise, a list of paired values of relation names
and attribute names should be included, representing the grouping attributes
on whose values the data is partitioned.

150

e Order-by Information
This information includes a boolean value (0 or 1). Ifit is 0, there is no ordering
operation in the query. Otherwise, a list of paired values of relation names and
attribute names should be included, representing the attributes on whose values
the data is sorted. Moreover, there is another boolean value representing these

values are ordered in ascending order or not.

Example Suppose the query to be optimized is:
select name from Cities where age = 10;

Then its corresponding file .parsedquery should be:

1 Cities Cities

2
Cities name
Cities age

2
attref age
1
tuplevar 0 Cities Cities
0
lit integer "10"

1
attref name
1
tuplevar 0 Cities Cities
0

000

151

FileScan DBAlgorithm DBOperator Q { DBRelation

& A

1
I l DBBinaryOperator
DBUnaryAlgorithm DBBinaryAlgorithm

A A DBUnaryOperator %

I

Filter

DBOperatorOperation

Figure 76: Complex Example: Customize the Algebra Component (1/2)

There is only one relation involved in this query. It is Cities. Two of its attributes
name and age are referenced. There is one predicate in this query that has two
operands: attribute age and literal 10. There is only one target attribute (attribute
to be projected), that is name. No aggregation and order-by information involved in
this query. .

3.5.2 A More Complex Example

Suppose we want to develop a Bottomup query optimization system that can optimize
the basic SQL construct Select-From-Where and some more complex operations on
reference-valued attributes, set-valued attributes, and grouping and aggregation. This
system can be standalone. Also suppose the database uses the same system catalog
as the SampleOpt customization of OPT++ (see Section 5.4).

Several steps are sketched out as follows:

Step 1: Customize the Algebra Component

1. Define Logical Algebra. Six logical operators DBRELATION, SELECT, JOIN,
MATERIALIZATION, UNNEST, and AGGREGATION are defined.

152

OperatorDefinition

dbrelation : DBRelation=*

select : Select*

join : Join*

unnest : Unnest*

aggregation : Aggregation*

aterialization : Materializationw
allOperators : List<DBOperator>

filescan : FileScan*

indexscan : IndexScan®*

filter : Filter+

estedloopjoin : NestedLoopJoin*

ashjoin : HashJoin*

unnestAlgo : UnnestAlgorithm*
aggregationAlgor : AggregationAlgorithm+
aterializationAlgo : MaterializationAlgorithm*
dbRelationAlgorithms : List<DBAlgorithm>
selectAlgorithms : List<DBAlgorithm>
joinAlgorithms : List<DBAlgorithm>
aterializationAlgorithms : List<DBAlgorithm>
unnestAlgorithms : List<DBAlgorithm>
aggregationAlgorithms : List<DBAlgorithm>

QOperatorDefinition ()
@-OperatorDefinition()
QGetDBRelationAlgorithms() : List<DBAlgorithm>
QGetSelectAlgorithms() : List<DBAlgorithm>
QGetJoinAlgorithms() : List<DBAlgorithm>
<bGetUnnestOperator() : Unnest»*
QGetDBRelationOperator() : DBRelation*
QGetAggregationOperator() : Aggregation®*
QGetSelectOperator() : Select+
‘GetJoinOperator() : Joins
’GetMaterializationAlqorithm() : MaterializationAlgorithm=
‘GetUnnestAlgorithm() : UnnestAlgorithm*
QGetAggegrationAlgorithm() : AggregationAlgorithm+
QGetAllLogicalOperators() : List<DBOperator>
‘Getpilescanlllgorithm() : PileScan~
QGetFilterAlgorithm() : Filter*
‘GetIndexScanAlgorithm() : IndexScan*
@GetHashJoinAlgorithm() : HashJoin*
QGetNestedLoopJoinAlgorithm() : NestedLoopJdoin*
QGetMaterializationAlgorithms() : List<DBAlgorithm>
QGetUnnestalgorithms() : List<DBAlgorithm>
QGetAggregationAlgorithms() : List<DBAlgorithm>
etMaterializationOperator() : Materialization*

Figure 77: Complex Example: Customize the Algebra Component (2/2)

153

Please refer to Example B of Section 5.1.1 for detailed customization informa-
tion.

. Define Physical Algebra. Eight physical operators FILESCAN, INDEXSCAN,
FILTER, NESTEDLOOPJOIN, HASHJOIN, MATERIALIZATIONA LGORITHM,
UNNESTALGORITHM, and AGGREGATIONALGORITHM are defined according
to the logical operators defined above.

Please refer to Example B of Section 5.1.2 for detailed customization informa-

tion.

- Define OPERATORDEFINITION Class. Enumeration numbers are assigned to the
logical and physical operators defined above. Relationships are set up amongst
them:

¢ Logical operator DBRELATION and physical operators FILESCAN and IN-
DEXSCAN.
e Logical operator SELECT and physical operator FILTER.

e Logical operator JOIN and physical operators HasHJOIN and NESTED-
LoorJoINn.

e Logical operator MATERIALIZATION and physical operator MATERIALIZA-
TIONALGORITHM.

e Logical operator UNNEST and physical operator UNNESTALGORITHM.
e Logical operator AGGREGATION and physical operator AGGREGATION-

ALGORITHM.

Please refer to Example B of Section 5.1.3 for detailed customization information.
Figure 76 and Figure 77 show the class diagrams in the Algebra component after

customization.

Step 2: Customize the Search Space Component The customization of the
Scarch Space component requires both the visitor and generator hierarchies to be

customized. Please refer to Section 5.2 for detailed customization information.

Figure 78 shows the overall class diagram of the Search Space component after

customization.

154

OperatorTreeVisitor <:3 TreeToPlanVisitor

4 createg, uses

[1

ExpandTreevisitor TransformTreeVisitor AlgorithmTreeGenerator

rules J?

(vector< TransformTreeGenerator* >)

/ I

BinAryAlgorithmTreeGenerator

-

TransformTreeGenerator

creatds, uses

UnaryalgorithmTreeGenerator

&

EnforcerPlan

ExpandTreeGenerator

&
|

UnaryOperatorExpand

Step 3: Customize the Search Strategy Component

1. Customize the Logical Properties. Six constructors are added to the class Op-
ERATORTREEPROPERTY for logical operators DBRELATION, SELECT, JOIN,
MATERIALIZATION, UNNEST, and AGGREGATION.

Please refer to Example B in Section 5.3.1 for detailed customization informa-
tion.

2. Customize the Physical Properties. Eight constructors are added to the class
ALGORITHMTREEPROPERTY for physical operators FILESCAN, INDEXSCAN,
FILTER, NESTEDLOOPJOIN, HASHJOIN, MATERIALIZATIONAGLORITHM, AG-
GREGATIONALGORITHM, and UNNESTALGORITHM.

Please refer to Example B in Section 5.3.2 for detailed customization informa-
tion.

3. Customize Cost Computation. Eight Compute methods are added to the class
CosT for physical operators FILESCAN, INDEXScAN, FILTER, HAsHJ OIN, NEST-
EDLOOPJOIN, MATERIALIZATIONAGLORITHM, UNNESTALGORITHM, and AG-
GREGATIONALGORITHM.

Please refer to Example B in Section 5.3.3 for detailed customization informa-
tion.

4. Selection of Input Format for Queries. In the main control program, use the
C++ code:

QueryOptimizerFacade* facade

= new QueryOptimizerFacadeWithParser;

9. Selection of the Search Strategies. Since this example uses the default search
strategy for search. No additional code needs to write. That is, a simple line of
C++ code is enough:

facade -> Optimize();

156

DBAlgorithm AlgorithmTreeGenerator

b B

DBBinaryAlgorithm BinaryAlgorithmTreeGenerator

Figure 79: Add A Merge Join Algorithm

3.6 Putting It All Together — Modify A Query
Optimization System

In this section, we will illustrate how to modify a query optimization system built
from this query optimization framework. We will try to enumerate some potential
changes that may be made to the query optimization system.

5.6.1 Add A New Execution Algorithm

Adding a new execution algorithm for an existing logical operator needs to extend
both the DBALGORITHM hierarchy and the ALGORITHMTREEGENERATOR hierar-
chy. For example, we want to add a MERGEJOIN execution algorithm for the JoIn
operator. Figure 79 shows the changes of these two hierarchies.

The newly added classes are adorned in gray. Since the JOIN operator is a binary
operator, class MERGEJOIN inherits from the class DBBINARYALGORITHM and its
expand class MERGEJOINPLAN inherits from the class BINARY ALGOIRTHMGENER-
ATOR. Class MERGEJOIN should implement methods Duplicate and MakePhyProps.
It may also need to re-write the method Clones to apply this operator to its inputs
with different ways. Class MERGEJOINPLAN may need to re-write the method Can-
BeApplied to clarify the conditions it can be applied to build an algorithm tree. It may
also re-write the method MakePhyNodes to change the behavior when an algorithm
tree is built by that plan class.

The OPERATORDEFINITION class should be modificd. An enumeration number
for this algorithm should be given and this physical operator should be added to
the list of algorithms associated with its related logical operator, JOIN. The class
ALGOIRTHMTREEPROPERTY should also be changed to add a new constructor that

157

is used to set up the physical properties for this physical operator. Moreover, the
Compute method regarding to the execution cost of this algorithm should be added
to the COST class.

5.6.2 Add A New Logical Operator

Adding a new logical operator (for example, MyOperator) involves:

¢ Add a class MYOPERATOR representing the new logical operator to the DB-
OPERATOR hierarchy.

e Add a constructor to the class OPERATORTREEPROPERTY to compute the
logical properties associated with this operator.

e Add its corresponding execution algorithms as that described in Section 5.6.1.

e Add a method
virtual void VisitMyOperator (MyOperator* op) = 0 ;

to the OPERATORTREEVISITOR class definition.

o Add methods
virtual void VisitMyOperator (MyOperator* op);

to classes EXPANDTREEVISITOR, TRANSFORMTREEVISITOR, and TREETO-
PLANVISITOR.

e Add a class MYOPERATOREXPAND to the EXPANDTREEGENERATOR class
hierarchy.

o May need to add transformation rules related to MYOPERATOR to the TRANS-
FORMTREEGENERATOR class hierarchy.

ExpandTreeGenerator Q—— BinaryOperatorExpand Q._ JoinExpand

Figure 80: Limit Search Space to Bushy Join Trees

ExpandTreeGenerator Q’— BinaryOperatorExpand Q— JoinExpand

Figure 81: Limit Search Space to Left Deep Join Trees

5.6.3 Limit or Extend the Search Space

The Search Space component is in charge of creating any logical query plans and
physical query plans. How the search space is shaped will affect the quality of the
final physical query plan. The query optimization system can be experimented with
changes to the search space by limiting it or extending it. No matter what the changes
will be, the modification only limits to the scope of the Search Space component.

Example A Suppose we want to limit the search space to only contain the bushy
join trees. A new class BUusHYJOINEXPAND is defined to subclass the class JOIN-
EXPAND. BUSHYJOINEXPAND overrides the Apply method to eliminate any creation
of left-deep-join trees and right-deep-join trees. The new class will be used in places
where the JOINEXPAND is used. Figure 80 shows the newly added class in its class
hierarchy.

Example B Suppose we want to limit the search space to only contain the left-
deep-join trees. A new class LEFTDEEPJOINEXPAND is defined to subclass the class
JOINEXPAND. LEFTDEEPJOINEXPAND overrides the Apply method to eliminate any
creation of bushy-join trees and right-deep-join trecs. The new class will be used in
places where the JOINEXPAND is used. Figure 81 shows the newly added class in its
class hierarchy.

In general, a binary tree is left-deep if all its right children are leaves. But in
fact, these “leaves” can be interior nodes with operators other than JoIN. If we

159

TransformTreeGenerator 'Q— SelectPushDown

Figure 82: Use Restricted Select Push Down Rule

want to avoid all right children from interior nodes, we can define a new algebra law
named RESTRICTEDSELECTPUSHDOWN as a subclass of the SELECTPusuDowN
(see Figure 82). This new class is used to substitute the original SELECTPusHDoOwWN
to enforce the SELECT operator can not push down to the right inputs.

Example C Suppose we want to extend the search space that is used to explore
the best plan.

The search space can be extended by introducing any new transformation rules.
For example, we can define a new rule that introduces a projection anywhere in the
operator tree, as long as it eliminates useless attributes that will not be used any
more by the subsequent processing and that are not in the resultant attributes. It is
obvious that use of this rule will result in several more equivalent operator trees for
the original one that will lead to generation of more physical query plans that can
be evaluated and compared. Chances of locating the physical query plans with less
costs thus increase.

Any modification to the Search Space component due an addition of a physical
operator and/or logical operator can also extend the search space explored.

5.6.4 Change Search Strategies

Changes of the search strategies would not affect the logical and physical operators
defined in the database algebra and the search space that is used to explore the opti-
mal plan. (We assume the search space designed in this query optimization framework
is enough for any potential search strategy to use.) So modification is limited in the
Search Strategy component.

This query opimization framework has equipped with two search strategies. One
is the Bottom-Up Search Strategy, the other is the Transformative Search Strategy.

160

Example A Suppose we want to use the Transformative Search Strategy for search.
Also suppose this system can accept user-input queries from keyboard. Then in the
main control program, the following C++ code is added:

QueryOptimizerFacade* facade = new QueryOptimizerFacadeWithParser;
SearchStrategy* s = new TransformativeSearchStrategy;

facade -> SetSearchStrategy (s);

facade -> Optimize();

Example B Suppose we want to restore the Bottom-Up Search Strategy for search.
Then remove the middle two lines from Example A, that is, the C++ code is changed
to:

QueryOptimizerFacade* facade = new QueryOptimizerFacadeWithParser;
facade -> Optimize();

Example C Suppose we want to add a randomized search strategy for search, e.g.
the Simulated Annealing Search Strategy. Since the Simulated Annealing Search
Strategy uses both tree transformation and conversion from the logical query plans
to physical query plans, we do not need to change anything in the Search Space
component.

First, we need to define the SIMULATEDANNEALINGSEARCHSTRATEGY as an
immediate subclass of the base class SEARCHSTRATEGY. Then a search tree is
defined in the SEARCHTREE class hierarchy, we call it the SIMULATEDANNEAL-
INGSEARCHTREE. There are two ways to define the class SIMULATEDANNEAL-
INGSEARCHTREE:

e It is defined as an immediate subclass of the class SEARCHTREE. The optimizer-
implementor needs to write the method MakelnitialTree as that in the TRANS-
FORMEDSEARCHTREE to create a logical query plan representing the complete
query. S/he also needs to override the method DoSearch to perform a random
selection on options tree and plan. If the plan option is chosen, the current oper-
ator trec is transformed into algorithm trees and cost evaluation is performed.
If the trce option is chosen, the current operator tree is transformed into an
cquivalent operator tree, the algorithm trees for the new tree are created, and
the cost evaluation is performed.

161

o It is defined as a subclass of the TRANSFORMEDSEARCHTREE. The optimizer-
implementor necd not define the method MakelnitialTree. S/he only re-writes
the method DoSearch with algorithm specified above.

The use of the Simulated Annealing Search Strategy is similar to that of the
TRANSFORMATIVESEARCHSTRATEGY. That is,

QueryOptimizerFacade* facade = new QueryOptimizerFacadeWithParser;
SearchStrategy* s = new SimulatedAnnealingSearchStrategy;

facade -> SetSearchStrategy (s);

facade -> Optimize();

162

Chapter 6

Framework Cookbook

This chapter provides a general guideline on how to customize this query optimization
framework. It is organized into a set of recipes, each is a description of a typical
customization on one aspect.

6.1 Recipe 1: Overview of the Cookbook

This first recipe provides an overview of this cookbook. Recipes 2 to 4 are descriptions
of customization of individual components of this framework. Recipes 5 and 6 are
the descriptions of the customization of the interfaces of the system built from this
framework. Each recipe follows a structure including its purpose, steps involved in
customization, and cross-reference to other recipes.

6.2 Recipe 2: Customize the Algebra Component

Purpose Define the logical operators and physical operators in the database.

Steps
1. Define logical operators

e Define a concrete subclass in the DBOPERATOR hierarchy for each logical op-
erator.

e Implement the following methods:

163

Accept — Accepts potential operations (represented by a kind of OPERATORTREE-
VISITOR) on this operator.

Duplicate — Copies itself.

MakeLogProps — Creates logical properties for the operator tree rooted at this
operator.

o The following methods may be overridden:
Clones — Provides different ways to apply this operator to its inputs, with
different parameters.

2. Define physical operators

e Define a concrete subclass in the DBALGORITHM hierarchy for each physical
operator.

e Implement the following methods:
Duplicate — Copies itself.
MakePhyProps — Creates physical properties for the algorithm tree rooted at
this operator.

e May implement the following methods:
MakePhyNodes — Builds the algorithm trees for an operator tree by delegating
to the Search Space component.

e The following methods may be overridden:
Clones — Provides different ways to apply this operator to its inputs, with
different parameters.

3. Define class OPERATORDEFINITION
e Assign an enumeration number to each logical operator.
e Assign an enumeration number to each physical operator.

e Set up the relationships between the logical operators and the physical opera-
tors.

Cross-Reference None

164

6.3 Recipe 3: Customize the Search Space Com-

ponent

Purpose Define the shape of the search space that is used to explore the optimal
plan.

Steps
1. Add abstract methods to the class definition of OPERATORTREEVISITOR for
each logical operator XX with the following format:

virtual void VisitXX(XX*) = 0;

2. Add a method to the class definitions of EXPANDTREEVISITOR, TRANS-
FORMTREEVISITOR, and TREETOPLANVISITOR for each logical operator XX with
the following format:

virtual void VisitXX(XX#);

3. Define a concrete subclass in the EXPANDTREEGENERATOR hierarchy for each
logical operator.

e Each new class name is the concatenation of the name of the corresponding
logical operator and the string “Expand”.

o The following methods may be overridden:
Apply — Determines how an operator tree is built by applying this logical
operator.
DfsNode — Performs a depth first search on the search tree to locate suitable
nodes that can be paired with the given operator tree parameter.

4. Define a concrete subclass in the ALGORITHMTREEGENERATOR hierarchy for
each physical operator.

e Each new class name is the concatenation of the name of the corresponding
physical operator and the string “Plan”.

o The following methods may be overridden:

CanBeApplied -- Returns true if this physical operator can apply to the given

165

algorithm tree inputs.
MakePhyNodes — Creates the corresponding algorithm trees for a given oper-
ator tree.

5. Define concrete subclasses that represent tree transformation rules in the TRANS-
FORMTREEGENERATOR hierarchy for related logical operators.

6. Implement the methods defined in step 2 by delegating to appropriate generator
concrete classes.

Cross-Reference Recipe 2

6.4 Recipe 4: Customize the Search Strategy Com-

ponent

Purpose Define search tree properties, cost information, and strategies for search.

Steps
1. Define logical properties

¢ Add a constructor to the class OPERATORTREEPROPERTY for each logical
operator XX with format:

OperatorTreeProperty (XX, OperatorTree*);

The second parameter refers to the operator tree whose logical properties are
to be created.

¢ May re-define the definitions for interesting logical properties and what equiv-
alence of two operator trees means.

¢ May add sowe other logical properties to this class definition.
2. Define physical properties

¢ Add a constructor to the class ALGORITHMTREEPROPERTY for each physical
operator XX with format:

166

AlgorithmTreeProperty (XX*, AlgorithmTree*);

The second parameter refers to the algorithm tree whose physical properties are
to be created.

e May re-define the definitions for interesting physical properties and what equiv-
alence of two algorithm trees means.

e May add some other physical properties to this class definition.
3. Define execution cost value.

e Add a Compute method to the class COST for each physical operator XX with
format:

Void Compute (XX*, AlgorithmTrees);

The second parameter refers to the algorithm tree whose execution cost is to
compute.

4. Selection of search strategies. Suppose facade is an instantiated object of a concrete
subclass of the QUERYOPTIMIZERFACADE.

o Use of the Bottomup Search Strategy with a direct call:
facade -> Optimize();
¢ Use of the Transformative Search Strategy with C++ code:

SearchStrategy* s = new TransformativeSearchStrategy;
facade -> SetSearchStrategy (s);
facade -> Optimize();

¢ Use of a randomized search strategy includes four steps:
1. Define a subclass XX for this new search strategy in the SEARCHSTRATEGY
hicrarchy.
2. Define a subclass in the SEARCHTREE hierarchy and usc it for search by the
newly defined search strategy XX.

167

3. Implement the following methods in the class defined in step 2:
MakeInitialTrce — Creates an operator tree that represents the complete query.
DoSearch — Builds the search tree based on the initial operator tree using the
randomized approach.

4. Use it with C++ code:

SearchStrategy* s = new XX;
facade -> SetSearchStrategy (s);
facade -> Optimize();

Cross-Reference Recipe 2, Recipe 3

6.5 Recipe 5: Customize Inputs to the Query Op-

timization System

Purpose Define interface to the client (optimizer-implementor, DBA, or DBMS)
for input.

Steps

1. Define query input format. This framework defines the following two query
input formats:

e Query written in a query language. In this case, use the following C++ code
to instantiate a facade object:

QueryQptimzerFacade* facade = new QueryOptimzerFacadeWithParser;

e Query that is parsed outside this system and is turned into a file .parsedquery
(see Section 5.5.1). In this case, use the following C++ code to instantiate a
facade object:

QueryOptimzerFacade* facade)
= new QueryﬁptimzerFacadeHithI-’omatedFile;

2. Dcfine the system catalog. The system catalog includes information for relations,
attributes, methods, indexes, and cost (e.g. object size). Please refer to Section 5.4
for more details.

168

Cross-Reference Recipe 4

6.6 Recipe 6: Customize Output of the Query Op-

timization System

Purpose Define interface to the DBMS for output.

Steps

1. Define a converter class with functionality of recursively converting each node
in the optimal plan to a corresponding node in the executable plan tree.
2. Implement all methods in the class defined in step 1.

Cross-Reference None

169

Chapter 7
Conclusion

Although query optimization has been studied for decades, developing, modifying,
and extending a query optimization system is still difficult. The problem with ex-
isting query optimization frameworks is that either the addition of new query oper-
ators/algorithms is fixed or the search strategy that is used to explore the optimal
plan is fixed with respect to the query algebra.

Kabra [20] develops a query optimization framework named OPT++ that uses
object-oriented design to simplify the task of developing, extending, and modifying
a query optimization system. First, it allows new operators/algorithms to be easily
added. Second, it offers a choice of different search strategies so that various heuris-
tics can be used to limit or extend the search space explored. Third, the flexibility
in both the query algebra and the search strategy can be achieved without compro-
mising the efficiency of the system. The biggest advantage of a query optimization
system built from OPT++ is that it accommodates most existing extensible query
optimization systems without sacrificing the performance while still maintaining a
more flexible structure. Although OPT++ is very robust, it has a few drawbacks
such as partial implementation of the design; poor partition of the framework; non-
reusable system design; switching from one search strategy to another may be hard;
framework documentation is insufficient, ctc.

This thesis proposes a reusable architecture for extensible query optimization. A
query optimization system is physically divided into three major components. The
framework is designed to span across these components, where each contributes to a
single purpose in the system. Design patterns and object-oriented techniques are used

170

to de-couple these components and improve the flexibility within each component.
This thesis also makes a clear separation of the search strategy and the search tree.
This separation conforms to a design convention, that is, separate interface from
implementation. We believe this separation promotes the reusability of the system
and is good for clarity. Also, we define a search strategy interface that allows different
search strategies to be easily installed and be used interchangeably. Switching from
one search strategy to another only requires modification of two lines of code within
the same component. The design is further verified in light of implementation in C++.
Moreover, we believe the documentation of a framework is as important as its design.
We attempt to provide a series of framework documents to assist the application
developer to better reuse it. These documents include the framework overview, the
framework design, examples of customization, and the framework cockbook.

We understand the importance of efficiency in query optimization. As we have
mentioned before, query optimization directly affects the performance that the user
sees. OPT++ has done performance comparison on different search strategies (Bot-
tomup, Transformation, and Randomized) and comparison on the transformation
query optimization system built from OPT++ and that built from the Volcano Op-
timizer Generator. It concludes that:

e For smaller queries, the exhaustive algorithms (Bottomup and Transformation)
consume much less time for optimization than the randomized algorithms and
yet produce equivalent or better plans. For larger queries, the randomized
algorithms take much less time to find plans that are almost as good as those
found by the exhaustive algorithms.

¢ The randomized strategies require a negligible amount of memory irrespective of
the size of the input query, while the exhaustive strategies require exponentially
increasing amounts of memory. Hence, for queries that are large enough, the
randomized strategies will continue to give reasonable performance while the
exhaustive strategies will fail due to lack of enough memory.

e Although the Bottomup and Transformation search strategies have comparable
performance in terms of optimization time and quality of produced plans (be-
cause both arc exhaustive strategics and explore the same scarch space), the

Bottomup strategy has a significant advantage in space consumption as it can

171

perform more aggressive pruning of operator trees.

¢ The Transformation Search Strategy of OPT++ is almost as good as that of the
Volcano search engine, with a degradation of only about 5% in the optimization
time, while space utilization is roughly equivalent.

We reuse the core code in OPT++. We believe this part of code is the major
contribution to the performance of a query optimization system. Although we do not
do the performance measurement on the query optimization system built from this
framework, we can simply conclude that the performance of the system built from
this framework is roughly as good as that built from OPT++, with a negligible degree
of degradation. But this framework provides a more general and reusable structure,
and at the same time, allows the major part code that contributes to efficiency to be
fine tuned with minimum impact on the rest of the system.

Reusable design results from evolution and iteration. The future work is to develop
a series of graded applications using this framework. In particular, the following fields
should be considered:

e Object-oriented database system.
e Use of Multidimensional index.
e Complex algebraic laws.

At this time, we are not clear how general this framework is to be easily reused
in developing applications in the above fields.

We may need to refine the framework to incorporate a memory mechanism so that
the same query will not be optimized twice. In other words, if the history shows that a
processing query has been optimized before, its optimal plan is directly picked as the
result of optimization without actually performing the optimization. Furthermore,
the file representations of a parsed query and the system catalog should be improved
as class interfaces. They also need to be generalized to accommodate various complex
query language syntax.

Difficulties encountered in this thesis work lie in the understanding of the problem
domain and the reuse of existing query optimization frameworks. They helped me

understand the importance to clarify some important concepts in query optimization

172

domain and to view the query optimization process from an object-oriented perspec-
tive. They further convince me to develop a reusable object-oriented framework for
the extensible query optimization domain, to seek means to promote its reusability,
and to maximize the benefits of reusing it.

This research work is a good trial towards a reusable object-oriented framework
for extensible query optimization.

173

Bibliography

(1] Alfons Kemper, Guido Moerkotte, and Klaus Peithner. A Blackboard Architec-
ture for Query Optimization in Object Bases. Proceedings of the 19th VLDB
Conference, 1993.

[2] B. Stroustrup. The C++ Programming Language, third edition. Addison-Wesley,
1997.

[3] Christopher Alexander. The Timeless Way of Building. Oxford University Press,
1979.

(4] Edward Sciore and John Secig Jr. A Modular query Optimizer Generator. Proceed-
ings of IEEE Conference on Data Engineering, Los Angeles, California, February
1990.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley & Sons. Inc., 1996.

(7] G. Graefe and D.J. DeWitt. The EXODUS Optimizer Generator. Proceedings
of the 1987 ACM-SIGMOD Conference, San Francisco, California, May 1987.

[8] G. Graefe and W.J. McKenna. The Volcano Optimizer Generator: Extensibility
and Efficient Search. Proceedings of IEEE Conference on Data Engineering,
Vienna, Ausiria, 1993.

174

[9] Gail Mitchell, Umeshwar Dayal, and Stanley B. Zdonik. Control of an Extensible
Query Optimzier: A Planning Based Approach. Proceedings of the 19th VLDB
Conference, Dublin, Ireland, 1993.

[10] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1999.

[11] Gregory Butler and Pierre Dénommée. Documenting Frameworks to Assist Appli-
cation Developers, Chapter of Building Application Frameworks: Object-Oriented
Foundations of Framework Design, edited by Mohamed E. Fayad, Douglas C.
Schmidt, Ralph E. Johnson. John Wiley & Sons. Inc., 1999.

[12] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database System
Implementation. Prentice Hall, 2000.

[13] I. Jacobson, M. Christorson, P. Johnsson, and G. Overgaard. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley, Reading,
Mass., 1992.

[14] Ian Sommerville. Software Engineering, fifth edition. Addison-Wesley, 1997.

[15] Johann Christoph Freytag. A Rule-Based View of Query Optimization. Proceed-
ings of the 1987 ACM-SIGMOD Conference, San Francisco, California, May
1987.

[16] Mavis K. Lee, Johann Christoph Freytag, and Guy M. Lohman. Implementing
an Interpreter for Functional Rules in a Query Optimizer. Proceedings of the
14th VLDB Conference, Los Angeles, California, pages 55-78, 1988.

(17] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Building Ap-
plication Frameworks: Object-Oriented Foundations of Framework Design. John
Wiley & Sons. Inc., 1999.

[18] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Implementing
Application Frameworks: Object-Oriented Framework at Work. John Wiley &
Sons. Inc., 1999.

[19] Navin Kabra. OPT++ User Manual. Technical Report, University of Wisconsin,
1995.

175

[20] Navin Kabra and David J. Dewitt. OPT++: An Object-Oriented Implementa-
tion for Extensible Database Query Optimization. VLDB Journal, vol.8 no.1,
pages 55-78, May 1999.

[21] Raghu Ramakrishnan. Database Management Systems. McGraw-Hill, 1997.

[22] R.E. Johnson. Documenting Frameworks using Patterns. Proceedings of OOP-
SLA’92, ACM/SIGPLAN, pages 63-76, 1992.

[23] R.E. Johnson and B. Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1, pages 22-35, 1988.

[24] R.J.A. Buhr and R.S. Casselman. Architectures with Pictures. Proceedings of
OOPSLA’'92. ACM/SiGPLAN, New York, pages 466-483, 1992.

(25] Rosana S. G. Lanzelotte and Patrick Valduriez. Extending the Search Strategy
in a Query Optimzier. Proceedings of the 17th VLDB Conference. Barcelona,
September 1991.

[26] Steven P. Reiss. A Practical Introduction To Software Design With C++. John
Wiley & Sons. Inc., 1998.

[27] Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems.
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Seattle, pages 34-43, June 1998.

28] Taligent Inc. Building Object-Oriented Frameworks. A Taligent White Paper,
1994.

(29] Timothy Budd. An Introduction to Object-Oriented Programming, second edi-
tion. Addison-Wesley, 1997.

[30] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1994.

[31] Waqar Hasan and Hamid Pirahesh. Query Rewrite Optimization in Starburst.
Research Report RJ 6367 (62349), IBM, 1988.

176

