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ABSTRACT

Evaluation of the Uniform Theory Of Diffraction
for Edge Diffraction at Low Frequency

Riman Shukayr

This thesis examines the UTD diffraction coefficient's limitations in accuracy for
a half plane and a wedge at low frequency. The UTD solutions are developed for
scattering by a strip and a square cylinder with diffraction considered as a local
phenomenon. Single and muitiple diffractions are considered, and both TE and
TM polarizations are done.

As a benchmark, moment method solutions are developed for the strip and
square cylinder. Pulse basis point matching is used after investigating its
adequacy: some moment method codes that are available in the open literature
were examined; in one instance some modifications were required to obtain
satisfactory results. For the infinite edge, comparison is done with modal
solutions and Sommerfeld’s exact solution. The UTD diffraction solution reduces
to Sommerfeld’s exact solution when the edge is a haif plane and the incident
field is a plane wave. The equivalence of these cases is not obvious and is
derived as part of this work. Other comparisons are made with resulits that are
available in the literature.

It was found that UTD, when muitiple diffraction is taken into account, can be

used to compute scattered fields and surface currents for scatterers as small as
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0.1 A in dimension, with a very high degree of accuracy. This is quite surprising,
as UTD is generally expected to only work well with electrically iarge structures

on the order of 1 A in size or larger.
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1 INTRODUCTION

The analysis of scattering problems using the uniform theory of diffraction (UTD)
is used usually for objects with dimensions of many wavelengths or larger. This
stems from the fact that UTD solutions are generated by high frequency
asymptotic techniques.

The purpose of this work is to evaluate the behavior of UTD at low frequency.
The UTD Edge diffraction solution is one of the most used tools [1] to solve
problems dealing with modeling of antennas on complex platforms. Proving the
accuracy of UTD at low frequencies could be very advantageous. A typical
application would be to predict the radiation pattern and hence the performance
of an antenna mounted on the fuselage of an airplane when the frequency used
is low or the airplane structure is electrically small. This will minimize the usage
of measurements requiring expensive scale modeling to design and locate
antennas.

To achieve this evaluation, a well proven independent method is needed to be
established and used for comparison with UTD. It is of great importance aiso to
study many scattering cases to be able to establish the major reasons that cause
UTD to fail. At a first glance, going low in frequency by itself is supposed to be a
sufficient cause for UTD solutions to degrade. it will be shown however that UTD
solutions for some electrically small scatterers are adequate and major
parameters affecting the success of UTD are the scattering problem geometry,

the incidence angle and the field polarization.



Both TEz and TMz plane wave illumination with different angles of incidence are
considered here. Different scatterer shapes also are used. These shapes are of
simple geometry and they include the infinite edge, the strip and the rectangular
cylinder. The choice of these shapes is not arbitrary since they are considered
building blocks for more complex geometries and they can be considered as a
series of tests, ascending in difficuity, for UTD to pass.

The edge is a canonical problem. The strip is a combination of two back to back
half planes where diffraction is the most severe and multiple diffraction is
existent but for which UTD is an exact solution to first order diffraction (special
case). The rectangular cylinder is the combination of four 90° edges for which
diffraction is in a sense halfway between the highest diffraction (haif plane ) and
no diffraction at all (full plane) but for which UTD is not an exact solution and
where multiple diffraction is present. Radiation patterns are usually the resuilts
thought of in a scattering problem. Since a low frequency is used however, the
radiation patterns for such small electrical scatterers hold few surprises. The
surface current density distributions are the most sensitive variables to changes
on an electrically small scatterer.

In the next chapters, the surface current densities on edges, strips and
rectangular cylinders for different illumination incidence angles and polarization

are plotted and a conclusion is made regarding the resuits obtained.

Through out this work the ¢’*’ time variation is understood and suppressed.



2 BACKGROUND

21 UTD AS A HIGH FREQUENCY METHOD

The fields generated by radiation and scattering of electromagnetic waves
incident upon conducting two-dimensional wedges could be found using modal
solutions. Most of these solutions however consist of infinite series, which are
poorly convergent [2]. To overcome this limitation, the Uniform Theory of
Diffraction (UTD) which is an extension of the Geometrical Theory of Diffraction
(GTD) uses high frequency asymptotic techniques to make the modal solution
mathematically manageable.

Typically, GTD transforms the modal solution infinite series into integrals and
then obtains a high frequency (kp large) asymptotic expansion for them by
means of residue complex calculus contour integration (geometrical optics
terms) and the conventional method of steepest descent (diffraction terms) [2].
Even though this method separates and defines clearly the total geometrical
optics and total diffracted fields, the formulation of the diffracted fields is valid
only for observations made far from the incident and reflected shadow
boundaries (kLa large).

UTD is based on GTD but uses the so-called Pauli-Clemmow modified method
of steepest descent [3], which compensates for singularities along the
corresponding shadow boundaries. This compensation is done by an additional
discontinuous function (transition function) proportional to a Fresnel integral.
Away from shadow boundaries, this integral is nearly unity and the UTD
formulation reduces to the GTD formulation. UTD provides the total field solution
for the 2-D scattering problem shown in fig 2.1a as



(a)

RSB 1 Plane wave incidence

ISB 1 ISB2

(b)

Figure 2.1: UTD 2-D wedge diffraction geometry.(a) Canonical edge. (b) Combination of two
edges (half planes, n=2) back to back to evaluate the local diffraction of each edge of a strip.



E: = E: + Ef + E  forthe TMz (soft) case (2.1)
H: = H: + H? + H? forthe TEz (hard) case 2.2)

The incident field is nonexistent beyond the incident shadow boundary (ISB), the
reflected field is nonexistent beyond the reflected shadow boundary (RSB) and
the diffracted field is given by the following [3]:

EY = E{Qr)x e7;-x D(p,.L.p.0',n) (2.3)
H? = H{(Qx)x EJ; xDy(p.L.p0',n) (2.4)

Where EX(Qr) or HY(Qg) is the field incident on the edge and the diffracted field
appearing to be generated by the edge g as a cylindrical wave. The UTD
diffraction coefficient is given by [3]:

X

co{ mz"’n;""))ﬂ(klf(c’ - ¢'))

D = 2»&;;; po |7 m{ﬂ;;@))i(m-(q, - ¢')) @)
Lo{mg_«fz),(mq, vo)

ofet o)

The - and the + signs in ¥ correspond to the soft (TMz) and hard (TEz) case
respectively. For the 2-D case we have always /& = g The distance parameter

L is given by [3]:



L= for plane wave incidence or

[=LP

- for cylindrical wave incidence (2.6)
ptp

the transition function F is

F(X)=2jJXe” [e"dr 2.7)

vX

with the expression fora(ptp’) being

a*(¢’2t¢')=2cos2( Znal: ot ')) 2.8)

in this expression, N* are the integers which most satisfy the equations:

2naN” —(pt @)= x and 20N -(pto')=-x 2.9)

It is a measure of the angular separation between the observation point and the
shadow boundaries. Away from the boundaries kLa is large and it is easy to
show that the transition function becomes unity and the diffraction coefficient
reduces to its GTD formulation.

In words, UTD shows that the scattered field by an infinite edge is the same as
the one obtained by geometrical optics with the addition of the local edge
diffraction effect. This concept of treating the edge diffraction as a local
phenomenon is very interesting and could be utilized in making the edge part of
a building block of more complex shapes than the canonical infinite edge itself.
Figure 2.1(b) shows an example of how this concept is used. The strip shown in

Figure 2.1(b) is illuminated by a plane wave at an angle of incidence of ¢'. In



geometrical optics terms it is easy to see that the incident field is present
everywhere except between ISB 1 and ISB 2 below the strip The reflected field
is present only between RSB 1 and RSB 2 above the strip. To evaluate the
diffracted field however, the strip is considered to be a combination of two edges
(back to back) one at A and the other at B. These edges are half planes (n=2).
The diffracted fields from A and B can be computed from equations 2.3 and 2.4.
The diffraction coefficient parameters must however be properly defined. For the
case of Figure 2.1(a), they are:

Di(psLi,p,@',n) and DipwL,y,y',n)

where,

pa = distance from the observer to A

ps = distance from the observer to B

La=pa ( plane wave incidence)

La=ps (plane wave incidence)

¢'= angle of incident wave with ‘o face’ of edge A

¢= angle of 5. with ‘o face’ of edge A

y'= angle of incident wave with ‘o face’ of edge B

y =angle of 5z with ‘o face’ of edge B

n=2 (half plane)

For this case, the strip upper surface was considered to be the ‘o face’ of edge B
but if it was the lower surface to be used, y and ' should be replaced by ¢ and
¢’ respectively.

The building of more complex geometries can be done also by considering A
and B to be 80° edges (back to back) and add to them another two 90° edges C
and D below to form a rectangular cylinder. The same analysis followed above
applies to the rectangular cylinder with qdditional RSBs and ISBs to respect all
the surfaces and with diffraction coefficient parameters evaluated with respect to

7



the distance from each edge and the angle from each edge ‘o face’ surface with
n being representative of the angle of the edge.

The above listed UTD formulation was derived using asymptotic approximations
for high frequencies. it should not be forgotten here that by high frequency
approximation, it is meant that kL is assumed to be large. This means that the
observation point is far away from the edge. No deep investigation however has
shown yet to what extent this formulation can be used with success when going
lower in frequency. In [3] it is mentioned that the diffraction coefficient obtained
by UTD for an incident plane wave (L=p) is found to be accurate for k.>1.0. In
[4], the field error computed by UTD as close as 0.25 A near the edge of a 90°
wedge was found to be very small.

The goal of the present work is to show to what extent the frequency can be
reduced, with the UTD formulation still being accurate. Practically speaking this
does not imply verifying only the total UTD field solution accuracy near the edge
of scattering created by incident plane waves on infinite wedges, it consists of
the following:

a) Verifying the accuracy of UTD when used on electrically small scatterers.
Since diffraction is a local phenomenon, the infinite edge canonical
solution can be used as a building block solution for different 2-D shapes
scatterers like plates and rectangular cylinders.

b) Verifying UTD success when used to figure the current singularity at the
edge, which exists in the TMz case

c) Verifying UTD success when used on electrically smail scatterers where
the phenomenon of multiple diffraction due to nearby edges becomes

important. In this case not only incidence of plane waves (at low



frequency) on edges is present only but cylindrical-like waves also and

this is of great significance.

To establish the success criteria of UTD at low frequency the following needs to
be defined:

- The type of UTD derived resuits to be assessed (i.e. radiation patterns,
field values, surface currents on scatterers, etc.)

- The formulation of UTD to be used specially in computer programs.

- The independent method (able to solve similar problems as UTD) and its
computer formulation to be used to test the UTD results. Obviously this
method should be totally UTD independent from the theoretical
formulation point of view. it should be also a well-proven method already
used with success.

The above mentioned subjects will be covered in the following sections.



2.2 CHOICE BETWEEN UTD RADIATION PATTERNS & SURFACE
CURRENTS
At the beginning of this investigation, radiation patterns were considered to be
more practical as a UTD end result. Since the interest however was to explore
the low frequency limit of UTD, the scatterers to be used must be electrically
small (dimension below 1.4). Several computer FORTRAN codes (some already
existent and some created specifically for this task) were used to plot radiation
patterns of line sources above electrically small plates and cylinders. The resuits
compared well between themselves.
The patterns however were aimost isotropic. This was something to expect for a
far field pattern when the only scatterers disturbing the incident fields had
dimensions of 0.2 1 or below. Figure 2.2 shows the radiation pattern of a
magnetic line source above an infinite strip (plate) and also above an infinite
rectangular cylinder. Both the plate and the rectangular cylinder have a width of
0.2 . The magnetic line source is 0.05A above the plate or cylinder surface. The
code used is based on the moment method. Figure 2.3 shows the radiation
pattern of a magnetic line source above an infinite plate with the same geometry
as for Figure 2.2 except that the code used is based on UTD.
It is quite obvious that both methods emphasize the fact that at such a low
frequency (electrically small scatterers) the radiation patterns are aimost uniform
and omni directional. Some plots also were done for the surface currents and
they were aimost identical non withstanding the method used to produce them. It
is interesting to note however that changes made to moment method codes to
use a smaller number of segments resuited in noticeable differences in the
surface current plots but almost none in the radiation pattern ones. After this

observation it was decided to use surface current values and plots as the criteria
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to be based upon to establish UTD resuits success at low frequency. After all,
currents are the building blocks for a muititude of practical results used by
industry and research. It is important to note at this stage the discontinuity at the
edges in Figure 2.3. Since the code used depends on a model of two simple
half plane diffractions (back to back), if ¢ = 0 deg and ¢ = 360° the diffracted
fields are very different. The same edge, as part of a strip, is expected to be
continuous as we go from ¢ = 359.9° to ¢ = 0.1°. Double diffraction will
eliminate this problem, but this, with additional details on computer codes used,
will be discussed in later sections.
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Figure 2.2: Radiation pattem (Normalized power in dB) for a magnetic line source above (height
= 0.0012) a strip (width = 0.2 4, solid line) and a rectangular cylinder (by 0.2 4) using moment
method.
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Figure 2.3: Radiation pattemn (Normalized power in dB) for a magnetic line source above (height
=0.001 1) a strip (by 0.2 1) using first order diffraction (UTD).
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2.3 COMPARING UTD GENERAL FORMULATION AND AN EXACT
SOLUTION

The formulation of the diffracted field in section 2.1 was taken from [3]. The
present work uses this formulation as the basis for all computer codes created to
compute and plot surface currents on scatterers derived from a UTD solution. As
mentioned earlier, an independent method will be used to compare resulits.
Before starting however to use the codes based on UTD it was important to gain
a high level of confidence in the formulation and its corresponding subroutine
codes. As stated in [3], for half planes illuminated with a perpendicular to edge
plane wave, there is an exact solution (obtained by Sommerfeid ). The goal in
this section is to prove that the UTD formulation in section 2.1 reduces to an
exact solution for the special case of a half plane illuminated by a plane wave
and to compute and plot the exact solution results. These results will be used to
validate resuits obtained by the UTD general formulation and subroutine code

especially.

2.3.1 Reduction of the UTD Formulation:
For a half plane illuminated by a plane wave, as shown in Figure 2.1, n=2 and

L=p. This leads to the following reductions:

Equation 2.8 becomes: at(¢i¢')=2¢osz(._¢’:§¢')

Using this reduces equation 2.5 to:
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The diffracted field of equations 2.3 and 2.4 reduces to
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the final formulation of equations 2.3 and 2.4 is:
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field ), \ 2 Nz
Fsgnlz—{p+p e fdr
V|

2.3.2 Sommerfeld Exact Solution

for the case of a half plane illuminated by a perpendicular plane wave (ref. to fig.
2.1) Sommerfeld [6][7] resoived the problem by methods based on the concept
of a two-sheeted Riemann surface. The solution for the total field (for a unity
incident field) is:
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- 2‘/5 !21) z -
eﬁpﬂo—o’)){l_';.i I e’ 2dr
(Total Field at p) sn = z\/_:.('*-') (2.11)
. ra 2 zr?
_T_ejl'mﬂ"'v')x(l_‘;j_ J' e’ 2dr

Since this is the total field solution, the goal in this section is to expand or
reduce as necessary to obtain a geometrical optic term and a diffraction term
(segregated) so that comparison could be made with equations in section 2.1.
With a variable transformation t=\/;2'——r , the integral in equation 2.11 will be:

()

2 U (2.12)

If the lower limit of the integral is negative and since the function is symmetrical,

the integral can be written as:

‘/Z 2}""’du- j'e""’dU
T e

i

Since [8][9] the Fresnel integral is |&/"dr = @,{L—iz)

[

then the final integral will be:

V24 56-)- iy 2.13)

{7
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If the lower limit of the integral in (2.12) is positive, the result will be:

‘/Z ]e""’dU

-]

(2.14)

The following tables will show the integral to be used according to the sign of its

lower limit.

ad -2z - o +7 +27

o) | = o 2
0 2Z) |nogeve  [postve [postve | negetve
Integral equation | eq 2.14 eq2.13 eq 2.13 eq 2.14
Table 2.1

o+o' o r 2z 3x 4z
m{ﬂzﬂ) positive negative negative positive
integral equation {€@Q 2.13 eq2.14 eq 2.14 eq 2.13
Table 2.2

It is quite obvious that the integral formulation changes at the reflection shadow
boundary and incident shadow boundary. This means that equation 2.13
includes a non continuous term existent for all ¢ before the RSB and another
one existent for all ¢ before the ISB. The final formulation in equation. 2.11 can
be written finally in a way to segregate between the individual geometrical optics
and the diffraction terms. For simplicity, only incidence angles above the plane
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will be considered here and unit magnitude incident fields. Taking into
consideration tables 2.1 & 2.2 and using equations 2.13 and 2.14 accordingly

transforms equation 2.11 to the following:
- -

=Wz o)
(Total field) | Fotetore ) (r—(p+) (2.15)

ool T dxsgnle{o-o) |

e 2] |
Felrodlore), Tg"" "dUx sgn(:r—(W'))l

o
w7

- ~ 7l

The first two terms are the incident field and reflected fields respectively as
determined from the geometrical optics solution. The last term is the diffracted
field and is identical to equation 2.10. Hence we have shown that the UTD half

plane solution and the exact Sommerfeld solution are identical.

2.3.3 Surface Current Computation Using Sommerfeld Exact Solution

For the case of a half plane (n=2) illuminated by a TEz plane wave with an angle
of incidence of 90°and with a unit magnitude incident magnetic field at the edge
of the plane, let's compute and plot the surface current on the lit and shadow
side of the plane using Sommerfeld’s exact solution.
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Since we are dealing with the TEz case, the total magnetic field will be always in
the z direction. This means also that J=/ixHra (/7 a normal unit vector to the

surface of the plane) has only a p component. Hence the surface curent is :

{J o =Hrowi (lit side) (2.16)

Jo=—Hrow (shadow side)

Using equation 2.15 (hard case), the total field for our example is:
a) For the lit side:

(Ulz - (p-9))=1

Uz -(p+9))=1

(p-90)= 'zzl;co(¢-¢') =0
@ =0°%@'=90° = | (p+9)= g-;cos(qp-l-«p'): 0

Mhzz;m{iﬂl):
¢+¢ co{igﬂ))

\

hence the total field is:

H; Total—l+l—(1+ J )<J— e dr
\/kp

b) For the Shadow side:

Uz—{p—9))=0

Ulz{p+o))=0
(-9)=—3Z;codlp—9)-0
P=360°0'=90°: (p+¢)=5Z;codp+9)=0
erlopem{ 24
1) szicof 20} 2
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hence the total field is:

Hrow=(1+ j)xJ;x ' dr
ko

Both surface current densities can be deduced directly using equation (2.16).

Both are exact solutions.

A FORTRAN code called SOMMERFELD.FOR was created to compute and plot
these current densities. The Fresnel integral subroutine in this case is based on
[10], it had however to be customized to get C, and S, fromC and S.

Figure 2.4 depicts the surface current density on the lit side of the plane
illuminated by a TEz plane wave at 90° with a magnetic field of unit magnitude at
the edge.

Figure 2.5 shows the surface current density on the shadow side of the piane.
Since the incident field is 7' = ¢’ ; the physical optics current on the lit side is
then J: = 2iix H' = 2§ x 3¢** = # 2 A/m. This is in fair agreement with Figure 2.4.
On the shadow side of the strip, PO gives J: =0.

The plots of Figures 2.4 and 2.5 will be compared later to the ones in chapter 3
obtained by the general UTD formulation code. The importance of this stems
from the fact that UTD is considered to be a high frequency solution for a local
phenomenon. UTD, for the special case of a half plane and plane wave
incidence, reduces to an exact solution and this will help in segregating between
the low frequency limitation (near the edge)and the geometry limitation (local
diffraction of muitiple edges) when comparing solutions of electrically small

scatterers considered to be building blocks of canonical solutions.
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Figure 2.4: Magnitude of surface current density (A/m) on the lit side of a half plane illuminated
by a TEz plane wave at 90° (Using SOMMERFELD.FOR).
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Figure 2.5: Magnitude of surface current density (A/m) on the shadow side of a half plane
illuminated by a TEz plane wave at 90°(Using SOMMERFELD. FOR).
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24 CHOICE OF AN INDEPENDENT METHOD FOR COMPARISON

Whenever possible, the UTD solutions in this work were compared to modal
solutions, exact solutions and other approximate solutions found in the open
literature. The moment method solutions however were the main ones that were
used. The moment method was chosen because it is a well established method
and computer codes were created and customized for aimost each UTD case
covered. The codes created used pulse basis functions and point matching. This
section will review quickly the moment method formulation and describe two
already existent independent moment method codes that were used in addition
to created codes. it will also explain why pulse basis functions and point

matching were chosen.

2.4.1 Two Dimensional Electric Field integral Equation

In a typical scattering problem, the solution is the accurate prediction of the
current density distributions on the surface of the scatterer. Radiation integrals
are used afterwards to compute radiated or scattered fields. The prediction of
current densities can be achieved by the integral equation method. The most
popular equations are the electric field integral equation (EFIE) and the
magnetic field integral equation (MFIE). The way they work is that the EFIE
enforces the boundary condition on the surface of the perfectly electric
conducting scatterrer for the tangential electric field. Like wise the MFIE
enforces the boundary conditions on the tangential magnetic field.

In this work only EFIEs were used to create moment method computer codes,
hence only the EFIE will be covered below. Since both TEz and TMz
polarizations are used, it is best to cover the EFIE derivation for both 2-D
polarization in two typical examples.
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a) TMz Polarization:

Consider the two dimensional scatterer (finite width strip or cylinder of any
shape) with a perimeter C, illuminated by a TMz uniform plane wave (it could be
also a cylindrical wave). Since the incident electric field has only a z component
which is independent of z variations (two dimensional), the scattered field and
hence the surface currents densities are assumed to have only 2 components
independent of z variations. This means that current on the surface of the
scatterer is composed of infinite current line sources in the z direction. The field

radiated by an infinite line source is [2][11]:

E=-ISLHko)

Where | is the current of the line source, and p is the distance from the line
source to the observation point.

Similarly, the scattered field at a certain point due to the surface current of a 2-D

scatterer illuminated by a TMz wave is:
B = =5 [0y - e
C

Where J; is the current density on the surface of the scatterer at a distance P
(from a specified origin point)

p s the vector from the origin to the observation point.

C is the perimeter of the 2-D scatterer.

To enforce the boundary conditions, the total tangential electric field must vanish
on the surface of the scatterer, thus

il - k -y - =
Ep) = 71 [ B K pm — B1lie (2.17)
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where,

Ex(pm) is the incident field on point m on the surface of the scatterer ,and

P.. is the vector from the origin to point m.
Equation (2.17) is the desired two-dimensional electric field integral equation to
be solved for the current density Jz over the surface of the scatterer. The

solution can be accomplished by using the moment method.

b) TEz Polarization:

Since the incident electric field has x and y components with no z variations, the
scattered field is assumed also to have the same characteristics. This is actually
what makes this example less straight forward then the TMz case. To derive the
EFIE for the TEz case a specific example of a strip of finite width (aligned with
the x axis) illuminated by a TEz type wave will be used. Even though this
example seems to be specific, its solution is considered a building block for
more complex scatterer geometries as it will be seen later.

Using vector potentials [2] the x and y components of the scattered electric field

can be written as:

E = —‘—t’;‘l(:j’Jx(x'iHé”(kR,.)+H§”(kR.)cos(2¢ e (2.18a)
B ==t :jJ,(f[H;”(ua,)sin(zq,")]df (2.18b)
where

w = the width of the strip (0 <x sw)
Jx = Current density on the surface of the strip

x’ = position of source current on the strip
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Rm = Distance from the source x' to the observation point m. (on the
scatterer)

¢”= Angle at x’ between R, and the strip.(positive when taken
anticlockwise from strip)

This can be generalized to any scatterer made of strips as building blocks. The
only difference is that the integration would be on the whole perimeter of the
scatterer and the x and y components of the scattered field are replaced by the
parallel and perpendicular (to the strip) component. For every strip (single
building block) the proper axis rotation will have to be done depending on the
angle of the strip relative to the actual coordinate axis.
The EFIE for this case is:

Ea = —Ew (2.19)
where the component of the scattered and incident field taken is tangential to the
scatterer at point m.

Again equation 2.19 can be solved by the moment method.

2.4.2 The Moment Method

The current density J. in equation 2.17 can be represented by [12)[13):

J (p)= Z:;l Lglp) (finite series ) (2.20)
Substituting this in equation 2.17 gives:

E.(o)= [ 1elo W5, - 5l
= E,(e)= 3 1 [elo W5, - p1ic

This takes the general form:
Vi = il,.z.... (2.21a)
n=1
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where

Vm = E(m) (known excitation function) (2.21b)
Ih = constant coefficients set. (2.21¢)
Zoa = [elo VK5, - 5'|lic (221d)

gn represent basis functions.

Equation 2.20 represents a numerical solution of the EFIE (equation 2.17). Since
for a given observation point at py, , it leads to one equation with N unknowns,
the process can be repeated for N different observation points m=1 to m=N.The
final outcome will be N linear equations each with N unknowns. This is better
represented in matrix form:

Vel = [Zmallln] (2.22)

[ = [Zewd " [Vin]- (2.23)
The [V] elements are known, the [Z] elements can be computed and the [1] vector
can be determined. This will allows us to approximate Jz(p’) using equation 2.20
and hence permit the computation of the radiation integral to determine the
scattered field anywhere. In words, equation 2.21 means that for each
observation point, the total field consists of the sum of the direct E' and scattered
E® components. To find the scattered component, the contribution of all
segments of the scatterer, which include the one where the observation is made,
must be added. The contribution of the local segment (where the observation is
made) is called the self term or diagonal term (Z,,,). This is usually the hardest
term to compute due to singularities existent when p, = p'.
Other non diagonal terms are usually easier to compute and can be

approximated.
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Ideally the basis functions set should resemble and accurately represent the
unknown current function. A limited number of basis sets are used typically in
practice, the most popular being:

a) Functions which are nonzero only over a part of the domain (surface of the
scatterer) of the function g(p'). The surface of the scatterer is divided into N
segments and the basis function is defined relatively to the limit of one or more
segments. Typical shapes of these functions include: the pulse type, the
piecewise linear or sinusoidal types.

b) Functions which are nonzero over the entire perimeter of the scatterer. They
are usually sinusoids and their use is similar to a Fourier series expansion of a
function.

Determining the best basis functions set from the ones listed in a) is not obvious.
It is believed [14] that increasing the sophistication of basis functions beyond the
pulse shape will represent more smoothly the current and hence is more
accurate. The price to pay however is computational complexity. In some cases
also the use of sinusoid function could lead in an evaluation of the integral
operator without numerical integration. The functions listed in b) are usually
used when the current distribution is known to have mainly a sinusoidal
distribution.

In this work the pulse basis function was used because it is simple and, as
explained in the next section, several trials with pulse basis and piecewise
sinusoid basis functions based codes were done in the early stage of this
investigation: Both codes have similar accuracy for radiation patterns and
current distributions.

Equation 2.11 is used as the numerical technique to solve for the current by
satisfying the boundary condition (vanishing electric fields on the scatterer
surface) only at discrete points. There is no guarantee that between these
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points, the boundary conditions will be satisfied. A method to force the boundary
conditions [13] (in an average sense at least on the entire scatterer surface) is to
use weighting functions in the domain of the integral. This means that equation
2.21 becomes

(W, Vi) = ﬁ.: 1AW, Zon ) m=1.2....N.

(W, V..) is an inner product which is a scalar operation. When both weighting

functions and basis functions are the same this is known as Galerkin method.

in the literature [15] this method is considered adequate but not superior to a
method using weighting and basis function not equal but of the same order.
Again trials with two different codes ( one using the Galerkin method and the
other not) did not prove the superiority of one method over the other. It was
beyond the scope of this work to investigate residuals of tangent electric field
over the surface of the scatterers used, but from a current density and radiation
pattern point of view, accuracies of both codes (at least for the simple shape

used) were similar.

The moment method codes created in this work use the point matching method
and pulse basis functions. It should be noted that point matching is equivalent to
using the impulse function as the weighting function.

2.4.3 Experience with TDRS and TECYL

Two independent codes based on the moment method were utilized during this
investigation in addition to the codes created especially for each scattering case.
The first code, TDRS (Two Dimensional Radiation and Scattering) was obtained
from [2]. it uses the integral equation and moment method with equal
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segmentation applied to all geometries and pulse basis functions and point
matching. it covers TEz and TMz polarization scattering of strips and cylinders.
The second code, TECYL (2-D TE radiation and scattering from conducting
CYLinders) is based on [16]{17][18]. It uses the integral equation and moment
method. it deals only with the TEz case but covers open end closed conducting

surfaces. It uses piecewise sinusoidal basis function and Galerkin's method.

In the early stages of this investigation TDRS and TECYL were used intensively
to be able to determine the radiation patterns of electrically small scatterers but

of different shapes.

In the case of a magnetic line source illuminating a strip of width = 5 A (source
heights=0.2 1) the number of segments required by TDRS was at least 50 times
higher than the number of segments required by TECYL to achieve the same
accuracy. This finding was interesting because TDRS uses pulse basis and
point matching and TECYL uses piecewise sinusoid basis and Galerkin method.
Since at that point no decision was yet taken on the independent method to be
used to compare UTD derived results, an investigation was due and what follows

is the result.

For a 2-D thin plate (strip), illuminated by an infinite magnetic line source (TEz
case), TDRS based on [2] has suggested the following impedance terms Z,,
(between segment m and segment n):

ngk_méx_" l_j_l_ -14+2 l781kA_x_,.)+ 16 5 form=n (2'24)
8 % e (kaxn)
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(2.25)

knAx 4 ]
Zm=—=41+j form=#=n&m-nl<2
. y an) jm - o
Ixm_ ”,2_ 4
ar
2
Zm = X1 [H'w["qx" x+ ), for |m-n|>2 (2.26)
4 & Hxn—xf+x)

Xm and x, being the middle points of segments m and n respectively.

Ax, = width of segment n.

it should be noted here that equation (2.26) is an exact formula.

Equation (2.25) is derived from equation (2.26) using the approximation [2] of
the Hankel function for small arguments: H™(kp) = Ji(kp)— j¥i(kp)

Ji(kp) > L7

for kp — 0 (p being the distance from a point on segment n to x,,)

Y (kP) »>-12
z B

This approximation converges for small segments (kp — 0), but since it is used
for adjacent segments (|m - n| < 2;m = ) and suppose that (Ax = 0.11) , then
kp can vary from 0.1x to 5n. At kp = 5n, it is obvious that the Hankel function

approximation is poor.

As for equation (2.24) it was derived directly from a mixed potential equation
(refer to section 2.4.1b) leading to an exact formula consisting of an integral of
Hankel H{’and H? functions. Accurate approximations were used for the
Hankel functions at that point: instead of using the crude approximation as was
done in the case of equation 2.25, additional terms [5][8] were used in
representing the Hankel function for small arguments.
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it should be noted here that for the self term, (kp) can vary from zero to 0.1 (if
segment width is 0.1 A ). As expected, convergence of this term is much better
than equation (2.25).

a) Plotting of the radiation pattern of this scattering problem was done using the
moment method solution based on equations (2.24), (2.25) and (2.26). Equation
(2.26) was computed using numerical integration.

Figure 2.6 shows radiation patterns for a segment width of 0.1 ». A comparison
made with results computed by TECYL and also GTD showed that only at a
segment width of less than 0.005 A that the radiation pattern begins to be
accurate.

b) The same problem was solved by the moment method with the following
difference: TDRS equation (2.25) was replaced by the exact formula of equation
(2.26) and it was integrated numerically.

Figures 2.7 shows the radiation patterns for a segment width of 0.1A. The plot is
identical to plots obtained by TECYL and GTD.

it is obvious that the method used in b) with segment width =0.1A (50 segments)
achieved the same result as method in a) with segment width = 0.001
(5000segments). Hence, it is safe to say that the approximations in [2] for Zmn
are bad, and that the integral should be done numerically or a more accurate
closed form used.

Great care must be taken when computing impedance terms in moment method
solutions for scattering problems. Not only the self term must be formulated
accurately but also mutual impedance terms accuracy for adjacent segments
must be taken into account to obtain acceptable results using typical segment
width of 0.1 t0 0.2 A.
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It should be noted that the penalty paid (because of loop computing adjacent
term impedances) is normally less than the penalty paid because of the increase
in the simultaneous linear equations number (due to fine slicing of segments).

It was decided after this investigation that pulse basis functions and point
matching were adequate enough for the customized moment method codes to
be created throughout this work
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Figure 2.6: Normalized radiation pattern of a 2-D strip (width = 5A) illuminated by a magnetic
line source (height = 0.2A ) at the center of the strip, with Zmn poor approximation for jm-n|<2
and m=n (segment = 0.1A, N=50) using TDRS.
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Figure 2.7: Normalized radiation pattem of a 2-D strip (width = 5A) illuminated by a magnetic
line source (height = 0.2A ). with corrected expressions for Zmn (numerical integration) for m= n
(segment = 0.1A, N=50 ) using TDRS.
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2.4.4 Evaluation of TMz & TEz Z,,, Terms

As shown in section 2.4.3, the evaluation of Z,,, terms is very important and
could lead easily to misleading results if not done properly. Approximations and
closed forms of typical Z, terms can be found in the open literature [2] [12], but
since the accuracy of results will be extremely sensitive to the adequacy of Zm
evaluation, the derivation of all Z..» impedance terms in closed or integral and
approximate forms will be done here. Only scatterers made of surfaces parallel
to the x or y axis are dealt with in this work.

a)TMz case

From equation 2.17 and 2.21d with pulse basis functions and point matching, the
impedance term of a strip segment n of width A, (aligned with the x axis) is:

xn +82
k 2@

-
where,
Rn=y(tm—x}+{(ym—y)
The integral in equation 2.27 experiences a singularity when m=n and it
becomes:
Zm =52 TP (ko) (2.28)

Now since A,is small, kp is a small argument. The approximation of the Hankel

function when kp—0 is [2] (y=1.781):

H(kp) = 1—1%::{’—’2‘2) (2.29)
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If we insert 2.29 in 2.28 we have:

g [s-s3[on() o]

Now since xin(x)=0 when x—0, then

e stpalic 3[u(%)-1] - afi-2e(2)] oo

the same analysis applies to strip segments aligned with the y axis but with Ay

replacing A, Hence the Z,., evaluations suggested are:

-ifm= =K AL 2 A
if m=n, Zmn= 2 A.{l _]”h)( e )] (2.31)
. kn ars @)
Aifmen,  Zw =21 [HO(kRe)ip (2.32)
Pn
OF  Zm= %’l x A x HO(kRw) (2.33)

Equation 2.32 is to be evaluated by numerical integration on a small segment n
of a strip on the scatterer with p being the linear distance on the surface of the

strip (usually its fixed origin is one edge of the strip).

In equation 2.32, Re=y/(xn—x}+(m—y»} and the expression is a crude

approximation but yields in general good results.
It should be noted that the p is a linear distance that can be in the x or y

direction.
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b) TEz case — non diagonal terms;

Equation 2.18 gives an expression with Hankel functions of 0 and 2™ orders.
Since most subroutines limit their output to Hanke! functions of 0 and 1* order

only and since [2]

aH§”=%HF’(ax)—aH3”(ax)

the Z,,, from equations 2.18 and 2.19 can be written as:

-Eor m and n on parallel but not the same surfaces

-’;ﬂ ’:f [(1 — cos(2¢" ), (kRn ) + ;2&— H(kRn ) cos z¢"] dp (2.34)

Zmn

- For m and n on the same surface (cos(2¢")=1)

zm=—"8ij [2-sozauo (2.35)
-Formand non ndicular surfaces
2 = B2 e 1) - Pene)sintao ) (2.36)

The terms in equations 2.34, 2.35 and 2.36 can all be computed by numerical

integration.

C)TEz case- Diagonal term (self i ance):

When m=n, the integral in equation 2.18 a, experiences a singularity. To be able
to evaluate this term, we need to follow its derivation since the beginning. The
vector potential equation can be written as

E=~jwA-VV
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in two dimensional cases and at a certain match point m [2]

(V* + & JA(m) = ~paF() and

)=~ [Ho¥im - 7l)ap

where C is the perimeter of the scatterer and p is the linear distance from the
origin. Similarly [11][12] the same can be stated for the scalar voitage potential

(v + &) ¥(pm) = -Lo(z)

(pm) = —i [p(p 7 ’(lclﬁv- - ﬁl)ip

Where p, is the surface charge density.

if the surface of the scatterer is divided into segments of width A and the current
is represented by pulse basis functions and point matching is used, the
contribution of the vector potential 4 to the electric field and hence to the

impedance from a segment n to a point m located at the middie of the segment is

Sy N[>

s _kn
Zm—4

sl

Equation 2.37 is equivalent to equation 2.30.

Since p directed surface current is related to the charge by %:— jops, then

W(pw) = -4 [ T {Hm - oo (238

Since the current is represented by a pulse, its derivative with respectto pis a

positive impulse (delta function) at o, and a negative one at p,., . Now if m=n,



and since E,',’(m=n)=—% then the contribution of the scalar voitage potential to
the seif term is
zi = -2 nMe4) (2.39)

since A is small we can use the small argument approximation of J, and Y, from

[8] and and by using Jy'= -J; and Yy'=-Y, we can write

Sie)s Tx—kexs 4. (2.40)
~ -2_1
zz'K(x =~ In(%) % 2x+§62-x3+ (2.41)

Retaining terms of order x only (small argument) results in

v _ knA . y kA 1
z..,.=—g—[-1-,%{-2h( r )'“(Tf?” (2.42)
Since Zm = Zm + Zm from equations 2.30 and 2.42
~ DAl T 1
Zm = I [1 ”{ l+2h(24%)+(k—:?}} (2.43)

Throughout this work the impedance terms derived in this section will be used

when applying moment method to a scattering problem.
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3 SCATTERING - TEz CASE

In this chapter TEz plane waves are used to illuminate scatterers. UTD obtained
surface current densities are piotted for the infinite edges, strips and rectangular
cylinders. The edge resuits are compared with Sommerfeld's solution. The strip
and cylinder results are compared with the moment method results.

3.1 EDGE SURFACE CURRENT USING UTD
To obtain the edge surface current density of Figure 2.1, we need to calculate

the total magnetic field on the surface. Since the wedge is a perfect electric
conductor and the incident plane wave is of the TEz type, the magnetic field has

only a z component and hence the current density has a p component only,

—

J=nxH.
a) On the “0” side

For a unity TEz plane wave impinging on the wedge at angle ¢ < %z :
@, =o°» and from equation 2.1 we have [, = i. + . + i°

H: = 1x ™ ") incident wave

H. =1x ™% reflected wave
from equation 2.4
<
HY =1x fj-"x Dip,L,,¢',n) diffracted field.
P

D» is the diffraction coefficient expanded in equation 2.5

@=0° (‘o’ face)
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L=p (plane wave incidence)

n=2 represents the angle of the wedge (2-n)n

b) On the ‘n’ face

Pn=nNx
For simplicity,#'< ﬂzz’- . The reason is that for larger values of ¢’, the geometry of
the problem is symmetric and the result could be deduced.

H" = U(w'—(n - l)t)x M

7

H. = Ulpn-1)r)x £

7

H: =1X£1XD.(p,L,¢,¢',n) @ = ¢ _here

P

The computer code INFEDGE.FOR was created to compute and plot the surface
current density Jp on the ‘o’ face and on the ‘n’ face of a wedge. The code is
based on the equations listed above and hence uses the generic formulation of
the UTD diffraction coefficient.

Several cases were plotted (p is in A), J, in A/m is the surface current density on
the ‘o’ face and J, is the one on the ‘n’ face.

Figure 3.1 depicts the half plane case (n=2) illuminated by a broadside incident
TEz plane wave (¢'= 90°). It is identical to the Sommerfeld solution graph in
Figures 2.4 and 2.5.

Figure 3.2 is the infinite plane case (n=1) illuminated by a incident TEz plane
wave (¢'= 90°). As expected, there is no diffraction in this case and the graph
reduces to the geometrical optic solution.

Figures 3.3 and 3.4 are for wedge and angles of 45° and 90° respectively. For
these angles, diffraction is existent and the solution is not exact.
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Figure 3.5 was produced to check the robustness of the code, the incident angle
of 135°on a 90° wedge leads to similar illumination of both faces. As expected,
both current densities are the same.

Figures 3.6 and 3.7 plot the current density on the surface of a 90° wedge for

incidence angles of 60 ° and 0.7° (almost grazing incidence) respectively.

It is clear from the results obtained that the UTD generic formulation code
produced the expected solutions for the Sommerfeld case (n=2) and the non
diffraction case (n=1).

The created UTD code is considered adequate to be used as a building block for
more complex scatterer shapes.
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Figure 3.1: Magnitude of current density induced on the ‘o’ face and ‘n’ face of an infinite half plane

illuminated by a TEz plane wave at normal incidence 9'=90° (Jin A/m, p in A).
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Figure 3.2: Magnitude of current density induced on the ‘o’ face and ‘n’ face of a wedge (n=1, infinite

plane) illuminated by a TEz plane wave at normal incidence @’=90° (J in A/m, pin ).
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Figure 3.3: Magnitude of current density induced on the ‘o’ face and ‘n’ face of a wedge (n=1.75)

illuminated by a TEz plane wave at normal incidence ¢’=90° (J in A/m, p in A).
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Figure 3.4: Magnitude of current density induced on the ‘o’ face and ‘n’ face of a wedge (n=1.5)

illuminated by a TEz plane wave at normal incidence ¢’=90° (J in A/m, p in A).
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Figure 3.5: Magnitﬁde of current density induced on the 0’ face and ‘n’ face of a wedge (n=1.5)

illuminated by a TEz plane wave at ¢’=135° (J in A/m, p in A).
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Figure 3.6: Magnitude of current density induced on the ‘o’ face and ‘n’ face of a wedge (n=1.5)

illuminated by a TEz plane wave at *=60° (J in A/m, p in ).
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Figure 3.7: Magnitude of current density induced on the ‘o’ face and *n’ face of a wedge (n=1.5)

illuminated by a TEz plane wave at almost grazing incidence ¢*=0.7° (J in A/m, p in A).
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3.2 STRIP SURFACE CURRENT USING UTD

3.2.1 Formulation
To obtain the current density on the upper and lower face of a strip illuminated
by a plane wave, the total magnetic field must be computed on these surfaces.
The strip (refer to Figure 3.8) is along the x axis with edge A at the origin and
has a width w.
The incident TEz plane wave has a unity magnetic field at the origin and has an
angle of incidence ¢’. The formulation of the solution consists in considering the
strip as a combination of two back to back infinite edges (one at A and one at B).
Cases of ¢’ between 0 and 180 degrees only will be covered here (other cases
can be deduced from symmetry). The total magnetic field on the surface of the
strip could be formulated as follows:

H™ =H +H" +H’
where H' and H’ are the incident and reflected fields respectively from

geometrical optics.

y TEz wave
HY HY
A B _
i . ———
H: H} x

Figure 3.8 : Strip of width w illuminated by a TEz plane wave at an angle @’.
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H? s the total diffracted field by edge A and edge B including mwitiple
diffractions.
Position along the x axis (with A as the origin) is denoted by p.

a) Geometrical optics fields:

-On the upper surface H' = ¢***™*
and H' =¢"™*

-Onthelowersurface H' = H =0

b) Diffracted fields :
The diffracted fields are generated by the diffraction of the incident field by

edges A and B and consequently by additional multiple diffractions of the
diffracted fields themselves. The formulation of multiple diffractions is based on
the “self consistent” principle [19)]. In other words, the following fields (ready to
be diffracted) are existent at the edges: an incident field, a multiple diffraction
field component coming to the edge from the upper side and another one from
the lower side.

if we define the following:

H’ = Total of fields generated by multiple diffractions only coming towards edge
A from the upper side at grazing incidence

Hi= Total of fields generated by muitiple diffractions only coming towards edge
A from the lower side at grazing incidence

H: = Total of fields generated by multiple diffractions only coming from the
upper side towards edge B at grazing incidence.

Hs = Total of fields generated by multiple diffractions only coming from the lower
side towards edge B at grazing incidence.

H. = Incident field at A (Unit magnitude).
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Hs = Incident field at B = (¢ ™*').
L; - pistance parameter L for a plane wave = p or w-p

L. = Distance parameter L for a cylindrical wave =_£22"_ , (w-p)p'
p+p (w-p)+p

(If the source and the observer are the same, then ;. = % = -‘5’- )

the following could be stated :

- jkw

HBX D;,(W Lp,O - ¢ 2)X£J_T
— jkw
HY = +‘LstDh(W L,0,02)x &€—

Jw

+1H1§x Dh(ws Lcsos 27[, 2)XL—
2 w |

. ~jhw ]
FH'BX Dh(w’Lp92’; . 4 -¢', Z)X%‘;-

L= +.l. u 2 ¢,2 0’2 o
Ha4 2H3x D,,(w L, 27, )x%w—

~
|+ 3 Hix Dy (w, Lo, 2727 x|

-

[ -
Hyx Da(w, ,,0,0',2)x 97;:

U ) = jiow
HE = |+ 2 H%x Da(W, L, 0 ,0 ,2)x37‘7

|+ 3 Hix Dy(w, L, 27,0 ,2) %J

FH; x Dll(wsts 27E¢', 2)x 'LJ"
w

Hj = +§H’,§x Dv(W, L., 27 0,2)x €—

Jbw
JJ
+1HAx Dy(w, L., 27,27,2)x

£y

(3.1)

(3.2)

(3.3)

34)
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note that a factor of % is multiplied with fields at grazing incidence.

Equations 3.1 to 3.4 are four equations with four unknowns that can be solved

for H: ,H., Hs and H;.
Once these four unknowns are computed, and since J, =nx H , the current

density on the surface of the strip can be obtained from:

i) On the upper surface:

2 X eﬁpuo'

~sp
+ H'.D.(p.L,,0,9',2)x £—
Vo

+'2LH§D.(P,L”0,0,2)X£1

,/;

H™ =|+Lyg:p.(p,L.,0,27,2)x e
2 Jr

(3.5

- A(w~p)

+ HaDi(Ww=p,L,,0,7 - 9',2)x £
Vw-p
+§H;D"(w- P9Ln0,0,2)x—-€£;i

Ww-p

- A(w-p)

+Lgixp.(w-p, L,0,27,2)x €2
2 [W__-pj
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ilOn the lower surface:
3 —kp
H:‘ Dh(p’ Lp ’ 2"; ¢'9 2)X %

~Jkp
+-21-H§Dn(p,Lc,2m0,2)xe7;—

l L ‘jkP
+sHiDw(p Lo, 27272 xfy-
e 2HiD: ) p (.6)
, - (w-p)
+H3Dh(W—P,Lp:27G7¢"‘¢ ,2)X%==
w-—p

~p(w—p)

+%H§DA(W—P,LC,2EO,2)X§;_—,’

~ jk(w-p)
+'2LH§DI|(W - p9Lc92”92”,2)x-j’===

3.2.2 Code and Results

The formulation of section 3.2.1 was used to create the MGTD1.FOR code. It
contains the generic UTD diffraction coefficient subroutine. The set of linear
equations was solved by forward/backward substitution method based on [20]).
The code was made flexible so that the total magnetic field could be computed
with or without multiple diffraction. Results from the moment method solution
described in section 3.3 are plotted (in small circles) for comparison:

a) 90° angle of plane wave incidence:

Several cases were considered for a 90° angle of incidence. The idea behind
that is to be able to evaluate the causes that would prevent the success of UTD
at low frequency. Since the UTD solution for a half plane illuminated by a
incident plane wave at 90° is an exact one, it would be expected that the UTD
solution success of an electrically small strip (illuminated by a plane wave at 90°
and considered to be the combination of two edges) would depend on how low a
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frequency can be used, with diffraction still being considered as a local
phenomenon.

Figures 3.9, 3.11, 3.13 and 3.15 depict the current density on strips of width 1.,
0.52, 0.22 and 0.12 respectively. Multiple diffraction was taken into account for
current computation.

Figures 3.10, 3.12, 3.14 and 3.16 depict the current density on strips of width
1.1, 0.51, 0.22 and 0.1A respectively. Only simple diffraction was considered for
current computation.

It is obvious that when muitiple diffraction is not taken into account, relatively big
errors begin to be introduced at edges for w=1A to end up with a totally different
current distribution at w=0.1A.

When multiple diffraction is taken into account, UTD results are almost identical
to moment method results. More surprising is that the UTD works quite well
down to 0.1A..

b) Other angles of incidence:

Figures 3.17, 3.18 and 3.19 depict the current distribution on a strip of width
w=0.2} illuminated by a plane wave at 60°, 10° and 0.5° (near grazing) angle of
incidence respectively.

Figures 3.20, 3.21 and 3.22 show the current distribution on a strip of width
w=0.12 illuminated by a plane wave incident at 60°, 10° and 0.5° respectively.
Both sets of figures take into account muitiple diffractions in computing current
densities. They show clearly that resuits still compare well, with the difference
between the UTD and moment method results increasing at near grazing angles
for smaller strip width. The maximum difference detected between the values of
both methods (as a percentage of the moment method value) is still however
less than 5%.
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Fig 3.9: Magnitude of current density on both surfaces of a strip of width w=1 A illuminated byaTEz
plane wave incident at ¢’=90° (J in A/m. p in 7.). [— Multiple diffraction UTD solution. 0coo MM with

500 segments]
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Fig 3.10: Magnitude of current density on both surfaces of a strip of width w=1 2 illuminated by a TEz
plane wave incident at '=90° (J in A/m. p in A). [— Single diffraction UTD solution. coo MM with 500

segments]
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Fig 3.11 : Magnitude of current distribution on a strip of width w=0.5 2 illuminated by a TEz plane wave

at @’=90° (J in A/m. p in 3.). [— Multiple diffraction UTD solution, 0oo MM with 300 segments]
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Fig 3.12: Magnitude of current density on a strip of width w=0_5X illuminated by a TEz plane wave

incident at ¢’=90° (J in A/m, p in 7.). [— Single diffraction UTD solution. oco MM with 300 segments)
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Fig 3.13: Magnitude of current density on a strip of width w=0.2) illuminated by a TEz plane wave

incident at ¢’=90° (J in A/m. p in }.). [— Multiple diffraction UTD solution. coo MM with 200

segments|
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Fig 3.14: Magnitude of current distribution on a strip of width w=0.22 illuminated by a TEz plane wave

incident at ¢p’=90°

Jin A/m. pind). [— Single diffraction UTD solution. oooc MM with 200 segments]
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Fig 3.15 : Magnitude of current distribution on a strip of width w=0. I illuminated by a TEz plane wave

incident at ’=90° (J in A/m. p in ). [— Multiple diffraction UTD solution. coo MM with 200

segments]



TEz Plane wave
2.5F T 4

Strip
2F -
—
=
]
& 1.51 Ja ;
S
o T/
1 e © o2 ©0 %¢ 0,
0.5 -

1

o ! 1 1 /] 1 ] [ i
0 0.01 002 003 004 005 006 O 07 0.08 0.09 0.1
RHO

Fig 3.16: Magnitude of current distribution on a strip of width w=0.1 X illuminated by a TEz plane wave

incident at @’=90° (J in A/m. p in ). [— Single diffraction UTD solution. 000 MM with 200 segments)
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Fig 3.17: Magnitude of current density on a strip of width w=0.2 3. illuminated by a TEz plane wave

incident at ¢’=60° (J in A/m. pin A). [— Multiple diffraction UTD solution, ooo MM with 200

scgments)
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Fig 3.18: Magnitude of current distribution on a strip of width w=0.2 1 illuminated by a TEz plane wave
incident at ¢’=10° (J in A/m. p in 2.). [— Multiple diffraction UTD solution, 000 MM with 200

segments}
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Fig 3.19: Magnitude of current distribution on a strip of width w=0.2 & illuminated by a TEz plane wave
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incident at ¢’=0.5° (J in A/m. p in 7). [— Multiple diffraction UTD solution. coo MM with 200
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Fig 3.20: Magnitude of current distribution on a strip of width w=0.1 2 illuminated by a TEz plane wave

incident at ’=60° (J in A/m. p in 2.). [— Multiple diffraction UTD solution. ooo MM with 200

segments}
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Fig 3.21: Magnitude of current distribution on a strip of width w=0. I2. illuminated by a TEz plane wave

incident at ¢'=10° (J in A/m. p in 2). [— Multiple diffraction UTD solution. coo MM with 200

segments].
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3.3 STRIP SURFACE CURRENT USING THE MOMENT METHOD

In this section, the formulation of the EFIE and moment method solution (of the
surface current density of a strip, illuminated by a TEz plane wave) will be
derived first and the code based on this formulation will be described after.

3.3.1 Formulation

To establish the integral equation of the geometry of Figure 3.8, the incident and
scattered tangential electric fields on the strip must be defined. Since the TEz
plane wave has a unity magnetic field at the origin, the tangential fields at a
point on the strip separated by a distance p from the origin are:

Hi = o™ ™* (in the z direction) 3.7)
Ei =" xsing'  (in the x direction) (3.8)
From equation 2.18, the scattered tangential electric field (in the x direction) at a

certain point m on the strip is (since ¢"=0):

E="3 7.2 Wo,- o)+ 1O Hp, - pl)lde (3.9)
The EFIE is : Ei=-E; (3.10)

Now let’'s represent the current density by the following series:

N
J:(p) = 2 L 2o)
Equation 3.9 becomes:

E:= % 25 [ edo)a0 Mo, - o))+ HP(Wp, - odp 3.11)

If we divide the strip into N segments and if we take gn to be a pulse function
with unity amplitude along the n™ segment and zero eisewhere, equation 3.11
becomes,



E= %’13’;1.- [ 19 Wp. - o)+ HPWp, - o|)]do (3.12)

Equation 3.12 can be repeated for a number of points m equal to the number of
segments with the observation being done at the middie of the segment (point
matching). This will allow equation 3.10 to become,

Vm = ﬁ::lIann, m=12..N (3.13)
where,

Vm = ne”P=* x sin o' (3.14)
Zon =32 [ [55Hon - o)+ HP (W, - o|)]ap (3.15)

From equations 2.35 and 2.43, equation 3.15 can be written as( knowing that the
segment widthis A = ¥ ):

N
for m=n
z = M{] _j.l.[_1+2[ 1_-18_1&4)4._15_2]} (3.16)
8 % de (k4)
form=n
_kn pm H{Z)("ipm‘/’l) 3.17
- 4 f pu-p ¥ G1n

Equation 3.16 is a closed form accurate approximation of the self term. Equation
(3.17) can be computed numerically as an integral.

Once the system of N linear equations with N unknowns is solved, the solution
represents the total current on the strip scatterer (since it is of zero thickness).
To obtain the current on the top and bottom surface of the strip the following
must be used,
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Jrowt = Jrop + JBonom
Froa = A% () - )
where,
n is the normal vector to the surface
H, is the tangential scattered magnetic field just above the strip (region 1)
H. . is the tangential scattered magnetic field just below the strip (region 2)
since the geometry is symmetric
H=-Hi=H =|jpu|=2xH"

Trep =A% (ﬁ, + ['1,') = (flz +-;-|er1|)/3

Tooaom = A% (81, + 73) = (- H. +12‘|-’M|)ﬁ

Since H can be computed from equation 3.7, the current density on the top and
bottom surface of the strip can be computed.

3.3.2 Code and Resuits

Computer code PSTRIP.FOR was created based on the formulaticn of the
previous section. Numerical integration was done by Simpson rule and Crout's
method was used to solve the N linear equations. Results of surface current
densities on strips were plotted to be compared with UTD results in section 3.2.
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3.4 RECTANGULAR CYLINDER SURFACE CURRENT USING UTD

After evaluating the strip, the rectangular cylinder illuminated by a TEz plane
wave (refer to Figure 3.23) was chosen for evaluation. The choice of the
rectangular cylinder was considered because it is halfway between the exact half
plane solution (n=2) and no diffraction at all (n=1). Itis also a simple geometry
subject to muitiple diffraction.

This section will formulate the solution of the problem first and cover the code
and results afterward.

3.4.1 Formulation of the GO Fields
Let's suppose the TEz plane wave (refer to Figure 3.23) has a unit magnitude
magnetic field at the origin and the incidence angle ¢’ can vary between 0° and

90°. This means that the incident fields on points A, B, C, and D are:

; e —Jt 2% cos o2 sin o'

Hi= ™R {3 ad (3.18)
; e 7k - ¥ cos '~ sin '

Hi= e™* - ‘( 2 2 ) (3.19)
; ke -k —¥% 005 '+ 2 sin o'

Ht= % o {1 aid (3.20)

Hb =0 since 0°<p'< 90° (3.21

a) On surface AB (refer to fig 3.24):

The incident field at any point is:

- :(_(p‘-_)oow———smw) (3.22)

HF = 2H. (from image theory) (3.23)
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Figure 3.23: TEz plane wave incident on rectangular cylinder.
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Figure 3.24: Cylinder sides geometry.
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b) On surface BC:

Hic= e {(F)me {30} (3.24)

Hi = 2Hic (3.25)

¢) On surface CD

Heo = Heo = 0 (3.26)
d) On surface AD
Hwo=Hw=0 (3'27)

3.4.2 Formulation of the Mulitiple Diffraction Terms

Since multiple diffraction is considered here (refer to Figure 3.23), the following
definitions apply:

Hga= Sum of all muitiple diffractions due to all edges of the rectangular cylinder
arriving at A from the B direction.

Hoa= Sum of all multiple diffractions due to all edges of the rectangular cylinder
arriving at A from the D direction.

Has, Hcs, Hgc, Hpe, Hcp and Hap have similar definitions depending on the edge.

Wxy = WXWy
wx + wy

e Dn(pL,p @,n) is the hard diffraction coefficient.

— jhwx

e K= £—, wxis the diameter of cylinder in x axis.
\I wx
e-"b'y - . . . .
o K,= J— , Wy is the diameter of cylinder in the y axis.
wy
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To find the multiple diffraction terms, a set of linear equations must be solved:

Ha = H. K. D.(wx,wx,0,0',1.5)

+3 Ha K,D.(m,‘—"zi,O,O, 1-5)

+%H,,, K« D.(wx, wxy,0, 1.5z, 1.5)

Hx = H: K, D.(wy,wy, 1.5m,7 — 9',1.5)

+%HC.K,D.(W,122,1.5;;1.5;; 1.5)

+ %H,. K, D.(wy, wxy, 1.57, 0, 1.5)

He = H: Kx Dy, w, 157, 22£-¢',1.5)

+-%HochD.(m,-‘22—x-,l.57t,l.5z, 1.5)

+ % How K Du(wx,wxy,1.57,0, 1.5)

Hu=1H, K,D.(uy,%,o,o,l.s)

+3 Ho K, D.(wy, wxy,1.57,0,1.5)

Ho=H.K,D.(wy,wy, 1.57,¢',1.5)

+-%HMK,D.(uy,—"22-,l.5ml.5m 1.5)

+ 1 Hu K, D.(wy, wx,0, 1.5, 1.5)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Hu = H.K.D.(wx,wx, 0,7 - ¢',1.5)
Lo, k.p. e, 22,0,0,15) (3.33)

+%HC.K,D.(W,W,O,1.57;L5)

HC! = H!{'KyDl(W’W:OQ%- ¢' ,1.5)
+%Hxx,u.(w,%,o,o,l.s) (3.34)

+ 12-[1,, K, D. (uy, wxy, 0,1.57:,1.5)

Hoc =+1 Hop K,D,,(uy,l‘z,l.s::,l.s:z;l.s)
2 2 (3.35)

+ ';HAD K< Di(wy, wxy,1.57,0,1.5)

Equations 3.28 to 3.35 constitute 8 equations with 8 unknowns and can be

solved for Has, Hgc, Hep Hpa, Hap, Haa, Hcs, and Hpce.

3.4.3 Formulation of the Total Field

a) on surface AB (refer to Figure 3.24):

If the following definitions are made,

Ka = e-ﬁp,. Kg = e-ﬁo.
VP, NP

wxp= XEXP wyp=2XP
wx + p wy+p

the diffracted field on AB is then:
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H.K.D.(p,,p..0,9',1.5)
+1 Hu K, D(p, w2p,,0,0,1.5)

+%Hu KA D.(pd’"ypd ’0’1’57;1'5)
(3.36)
+H’lKaDh(p,9p.90,” -¢"l'5)

+-%-H,,K, D.(p,,wxp,,0,0,1.5)

+1 Ha k., D.(p, wyp,,0,1.57,1.5)

Solving equations 3.28 to 3.35 and using equations 3.22, 3.23 and 3.36 the total
field on surface AB is
He=Ha+Ha: (3.37)

b) On surface BC (refer to Figure 3.24)

Similar definitions to the ones done in a) lead to:

H.!Ks Dn(p,sp, 91-5”9” - ¢',l-5)
éﬂc, K.D.(p,, wp, 1.57,1.57,1.5)

%H,. K, D.(p, wxp,,1.57,0,1.5)

Hyx= : (3.38)
o H¢ KcD.(pc,pc,0,§—¢ ,1.5)
é-H.c k.D.(p.,wyp,_,0,0,1.5)
éﬂx K.D.(p.,wxp,,0,1.57,1.5)
Hx=Hx+Hx (3.39)
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¢) On surface CD (refer to Figure 3.24)

H: K- D.(pc,pc,l.s;;,gb -9 ,1.5)

+ ; Ho K. D(p.,wxp,,1.5%1.5%1.5)
Ho%=+ iy.c K. D.(p. . wyp:,1.570,1.5)

+ ;Hm K. Di(p,, wxp,,1.52,1.57,1.5)

+ 12~ H.o K, D.(p,.wyp,,0,1.5%,1.5)

Hgo =Hgo

d) On surface DA (refer to Figure 3.24)

H.K.Dp,,p,,1.5%,¢',1.5)
+ -2LH,,, K.D. (p,, u{yp‘,l.SII,I.Sﬂ;I.S)

H% = +§H,, K,D(p,,wx p,,1.57,0,1.5)
+§H‘D K. D.(p,,wyp,,0,0,1.5)

+ ;Hm K,D.(p,, wxp,,0,1.57,1.5)

H£o=Hgo
Nowsince j =inx '

The current density can be computed at any point on the cylinder.

(3.40)

(3.41)

(3.42)

(3.43)
(3.44)
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3.4.4 Code and Results

Based on the formulations in sections 3.4.1, 3.4.2 and 3.4.3 code MGTDBX_.FOR
was created. The code covers angles of incidence ¢ between 0 and 90°. It uses
the generic UTD formulation for the diffraction coefficient. Results from the
moment method solution described in section 3.5 are plotted (in small circles)

also for comparison.

The resuits from MGTDBX.FOR chosen to be reproduced here, are for a square
cylinder illuminated by a TEz plane wave. The radius of the cylinder = a. The
plots of the current density are against o/a, where p is a linear distance on the
surface of the cylinder from edge A moving clockwise. This means thus at pla=1,
the position is halfway between A and B, if p/a=4 the position is at C etc...

The idea behind this method of plotting is to compare the resuilts obtained to
plots already existent in the open literature.

Figures 3.25, 3.26, 3.27 and 3.28 show the current density distribution on the
surface of a square cylinder (of radius a) with ka= 10, 5, 2 an 1 respectively and
the TEz plane wave incident at 89.9°.

These plots are in agreement with [21] [22] results (Note: [22] corrects some of
the plots found in [21]).

Differences are noticeable at edges for the UTD solution but this is expected so
close to the edge. For a = 0.1591A, the difference is more noticeable on the
shadow side with the UTD method. The difference between UTD and moment
method results (as a percentage of the moment method result) is still however
below 5% at 0.05 from edge C.

Figures 3.29 and 3.30 show the current density distribution with 60° angle of

incidence for ka=2 and 1 respectively.
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There is no equivalent to these plots in [21][22] but there is a good agreement
between the UTD and moment method resuits.
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Figure 3.25: Magnitude of current density distribution (J in A/m) on the surface of a square cylinder
(radius=a) illuminated by a TEz plane wave at an angle of incidence of 89.9” (ka=10. a=1.5915 %.).

[— UTD. 000 MM |



CURRENT DENSITY

45k TEz plane wave -
J 1 -
3.5+ 2 ka=5 4
3+ 4

Figure 3.26: Magnitude of current density (J in A/m) on a square cvlinder illuminated by a TEz plane

wave at an angle of incidence of 89.9 (ka=5. a=0.7958 5. ). [— UTD, coo MM ]
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Figure 3.27: Magnitude of current density (J in A/m) on a square cylinder illuminated by a TEz plane
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Figure 3.28: Magnitude of current density (J in A/m) on a square cylinder illuminated by a TEz plane

wave at an angle of incidence of 89.9" (ka=1. a=0.1591 3.). [— UTD. coo MM |
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Figure 3.29 : Magnitude of current density (J in A/m) on a square cylinder illuminated by a TEz plane

wave at an angle of incidence of 60 (ka=2, 2=0.3183 2. ). [— UTD. coo MM |}
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Figure 3.30: Magnitude of current density (J in A/m) on a square cylinder illuminated by a TEz plane

wave at an angle of incidence of 60° (ka=1. a=0.1591 ). [— UTD, 0coo MM ]
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3.5 RECTANGULAR CYLINDER SURFACE CURRENT USING THE
MOMENT METHOD

In this section the problem depicted in Figure 3.23 will be solved by the moment
method. First, and to be able to establish the EFIE, the formulation of the
incident and scattered fields is done followed by the EFIE moment method
solution description. At the end, the created code is described.

3.51 Incident Field Formulation

The EFIE is used here even if it is the TEz case (refer to Figure 3.23). Since the
incident TEz plane wave has a unit magnitude magnetic field at the origin,
elsewhere the incident field is at a point (x,y):

H i(x y) - e—fk(—xcos Py sin ¢')

The incident electric field is normal to both 7 and & and has an x and y
component. They are at a certain point (x,y)

E: = n x sin q)'xeﬂ*(—xm#_yd) (3.45)
Ey = —1 x cos g'xe " == #vsnd) (3.46)

3.5.2  Scattered Field Formulation

For the 2-D TEz scattering case, equation 2.18 gives the x and y component of
the scattered electric field due to the surface current on a plate. This geometry is
shown in Figure 3.31a.The axis of the plate coordinates system can be rotated
90° like in the case depicted in 3.31b so that the plate is on the y axis. In such a



case equation 2.18a is used to compute E, with the integral along the y axis
and equation 2.18b is used to compute E, with the integral along the y axis.
Rotating the coordinates axis again like in 3.31 ¢) will not change the formulation
of E, from the case in 3.31b but it will multiply the £, formulation by a
negative sign. It should be mentioned also that due to the axis rotation, ¢ is
positive in the case of 3.31a when R has a positive y component. It is however
negative in the case of 3.31cwhen R has a positive x component.

If segments of current pulses are used to represent the current distribution on
the plate, the scattered field becomes (based on equation 2.18):

a) For a pl llel to th is (refer i .31a):

If the plate of width = wx is sliced to Nx segments and the current J, on the piate

is represented by: J. = f I.gs(x)

Where g, (x)is a pulse function with unity amplitude at segment n and zero
eisewhere, then

Tt 8%
E;:Z[.. _58!1 ﬁﬁf’(k&)+ H? (kR:)cos(2¢") )dx (3.47a)
x.+A;'-
E =35l - isﬂ- [(&® (kRm )sin (20" ) (3.47b)
n=1 xn—AX

2

where x, = is the middie of segment n

Ax = is w/Nx = segment width
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Figure 3.31 : Scattered fields geometries due to surface current on plates in the x and v axis.
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b) For a plate parallel to the y axis (refer to Figure 3.31c¢):

if the currentis J, = ﬁ I.g«.(y), then similarly to the previous case,
n=1

yn+él
Ei=) I +-"—;l jz(ng’(kR..)sin(zqa"))dy (3.48a)
= o
N we
E=3h _Ls'l J‘{ng)(m.)+ H2 (kR Jeos(2¢") by (3.48b)
n=1 _Ax

I
2

where, y, = middle of segment n

Ay = wy/Ny = segment width
Since the geometry dealit with here is a rectangular cylinder with its surfaces
parallel to the x or y axis, the tangential electric field at a point on the cylinder
generated by one side is £: or £, , hence due to a certain side of the cylinder
the scattered tangential electric field at a certain point m on the surface on the
cylinder is:
B =3 Zom (3.49)

where,

N = is Nx or Ny.

Zm, = is the term between brackets in equation 3.47a, 3.47b, 3.48a or 3.48b
depending which side is the generating one (choice between equation 3.47 and
3.48) and on which side m is on (choice between a and b).
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The Z., terms are generally computed by numerical integration, or closed form
according to equations 2.34, 2.35, 2.36 or 2.43 .1t should be remembered that
depending how the EFIE is formulated Fu = ~Em or — Em = Em, the Z,,, terms
have to be muitiplied by —1. Equations 2.34, 2.35, 2.36 and 2.43 were derived
for the EFIE Fum = —Eum

3.5.3 Total Tangential Electric Field on AB

The geometry in Figure 3.23 is used to establish the total field on each segment.
The perimeter of the rectangular cylinder is divided (starting from A, clockwise)
into N segments. Each section of the perimeter parallel to the x axis is divided
into Nx segments and each section parallel to the y axis is divided into Ny
segments.

N = Nx + Ny + Nx + Ny = 2Nx + 2Ny.

Segment n = 1 is next to A and segment n = Nx is next to B and segment Nx +
Ny is next to C etc... The dimensions of the cylinder are wx and wy.

The total tangential electric field at a point m (x,, wy/2) on AB is the sum of the
tangential incident field and tangential scattered field generated by AB itself, BC,
CD and DA.

a) Tangential incident electric field.

From equation (3.45):

Ewm = Ex = 1 x sin q)'xe_jk(-hm"'_l'zl"'n ")

b) Erom AB:
En = E = flnlnm
n=1

where, Z., is the term between brackets in equation 2.47a)



Rn=‘“x--x|

¢"=0, cos(2¢”) =1

c) From BC (refer to Fiqure 3.32a):

Nx+Ny
B;n = E = ZIann

n=Nx+1

where, Z., is from equation 3.48a

ton (2] (2]

sin 2¢" = 2sin @"cos@"= 2

R R.
d) From CD (refer to Figure 3.32b):
2Nx+Ny
Efm - E = Inva
n=Nx+Ny+l
where, Zn, is from equation 3.47a

Rn = (xn — 2} + (wy)

2
cod29") = -1+ 2cos’(p") = -1+ 2(&;&)
Rm

e) From AD (refer to Figure 3.32c)

2Nx+2Ny

Euw=E = InZmn

n=2Nx+Ny+l

where, Z,, is from equation 3.48a
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Figure 3.32 : Scattered field on AB due to other cylinder segments.
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SRR

xm + ¥X

sin(2¢") = 2sin(p")cos(p") = - = 2

3.54 Total Tangential Electric Field on BC
A point m on BC has coordinate (—“ﬁ, y...)
2

a) Iincident field:

; ; —Ik(-ﬂmd—y-sindJ
Ewn = Ey = —1 x cos @'xe

b) From AB:
Nx
Efm = E; = ZInZlm

where, Z.,=is from equation 3.47b

e ffz-T (2]

sin(2¢") = 2sin(p")cos(p") = -2 2 —

c) From BC:
Nx+Ny

E;n =Fy= Zanmu

n=Nx+1

where, Z,, = is from equation 2.48b

Re = |ym - |
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Figure 3.33 : Scattered fields on BC due to other cylinder segments
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@"=0, cos(29")=1

d) From CD (refer to Figure 3.33b):

2N:+Ny
B;n - E; = ZInan

n=Nx+Ny+1

where Z., = is from equation 3.47b
2 2
Ra = J(&—xJ +(ﬂ+ y..)
2 2

sin(2¢") = 2sin(p")cos(p") = 2 2 2

e) From DA (refer to Figure 3.33¢):

2Nx+2Ny
Egm = E; = InZnn

n=2Nx+Ny+l

where Z., = is from equation 3.48b)

PR o g
cosf2¢") = ~1 + 2cosi(p") = -1+ 2(M)
Rn

2

3.5.5 Total Tangential Electric Field on CD

A point m on CD has coordinates (x.., ‘—;’ZJ

a) incident field:
; ; —jk(—x- cos ¢’+1§n 0')
Ean = Ex = n x sin @'xe 2



A X B
/’é
D C
X
(a)
B
+o" y
D X C
®)
A
EN\N
D Xa C
(c)

Figure 3.34 : Scattered fields on CD due to other cylinder segments
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b) From AB (refer to Figure 3.34a):
NX
Euw = Ex =) InZumn

n=1

where Z.,=is from equation 3.47a

Re = (= - x} + (wy}

cos29") = -1+ 2cos’(p") = -1+ 2(_:'%:_J2

c¢) From BC (refer to Figure 3.34b):

Nz+Ny
l;;1==‘E: = :E:IEZGM

n=Nx+l

where, Z.,=is from equation 3.48a

=y

wx _ o

sin(2¢") = 2sin(")codlp") = 3 2—

+y

N|§

d) From CD :
2N +Ny
lain ==AE:'== 1;25nn
n=Ne+Ny+1

where, Z.,=is from equation 3.47a
Rn = |xm — x|

co29") =1, ¢"=0

e) From AD (refer to Fiqure 3.34c¢):
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2Nx+2Ny

B;n=g= InZmn

n=2Nc+Ny+1

where, Z.,=is from equation 3.48a

2 2
Rn = x-.+l’x») +(y+ﬂ)
2 2

sin(2¢ ") = 2sin(p")codp") = - 2& 2

3.5.6 Total Tangential Electric Field on DA
A point m on DA has coordinate (‘—;1’& y...)

a) Incident field:

i i ‘fk(*’ﬁ'm @'~ ym sin ¢')
Ewm = Ey = —p x cos ¢p'xe

b) From AB (refer to Figure 3.35a):

Nr
= Ev‘ = Zannn
n=l1
where, = is from equatlon 3.47b)
\2
Rn = \(xn + -‘!3'- + - ﬂ
2 )

_W_y —ym \( wx + X
sin2p ") = 2sin(p")cos(p") = 2 2 = 2
A

Rm
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Figure 3.35: Scattered fields on DA due 10 other cylinder segments



c¢) From BC (refer to Figure 3.35b):

Eu=E = Ni’lnz....

n=~Ny.l

where, Z,,=is from equation 3.48b

Rn = J(wx}’ + (3 - y)
2
cos(2p") = -1 + 2cos’(p") = -1 + Z(y" -y)
Rn
d) From CD (refer to Figure 3.35b):
ZNxoﬂy
E;n = E_Jy = Inva
n=Ny+Ny+l
where, Z,,, = is from equation 3.47b
2 2
R =\Kx+ﬂ) +(y.+ﬂ)
2 2
% + ym % +x
sin2 ”=28in "CO ") = -
(2¢7) (¢")cosdp") = Fy

e) Erom DA:
ZNx-szy
E:m = E:vf = Iann
n=2Ny+Ny.l

where, Z,, = is from equation 3.48b
Re = |ym - 3]
¢'=0, cod2¢")=1
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3.5.7 EFIE and the Moment Method

The EFIE can be written as:
Vm = Zm]n n=1,2...N

m=1,2...N (3.50)
where,

Vm = FEw at a certain pointm

Z . = the impedance term from a sub segment n to a point m.

In = Current at sub segment n.

N = Nx + Ny + Nx + Ny = 2Nx + 2Ny

Nx = number of segments for each AB and CD

Ny = number of segments for each BC and DA

Additionally the subscript m or n indicates that the observer or the source
respectively is present at:

AB if 1<mor n < Nx

BCif Nx+1<morn=<Nx+Ny

CDif Nx+Ny+1<morn<2Nx+ Ny

DAif 2Nx+ Ny + 1 <morns 2Nx +2Ny

Equation 3.50 represents the pulse basis / point matching case of the moment
method solution of the EFIE.

3.58 Code and Resuits

Computer Code PBOX.FOR was created based on the formulations of the
previous sections. The code computes the Z,.., terms (except the self term) by
numerical integration of each sub segment n along its width A using Simpson'’s
rule. The results were plotted in section 3.4 for comparison with UTD plots.
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4 SCATTERING - TMz CASE

4.1 EDGE SURFACE CURRENT USING UTD

Obtaining the surface current on an infinite wedge illuminated by a TMz plane
wave (refer to Figure 2.1) requires the total tangential magnetic fieid on the
surface of the wedge. Equation 2.1 and 2.3 gives the total and the diffracted
electric fields respectively. The magnetic field needs to be derived from the
electric field in this case.

From Maxwell's equations:
VxE= —ja)yﬁ
Since E has a z component only,

10E: 5 _OE .5 _ _; 57
pop ¥ op % =JouH

then, the tangential magnetic field to the surface is

Ham = Hp = 41 9E: 5 (4.1)
411 Incident and Reflected Magnetic Tangential Fields

A TMz incident plane wave with unit magnitude electric field at the edge of the
wedge is assumed. It is assumed also that ¢ varies between 0° and nz?2, all
other cases being able to be deduced by symmetry. Each face of the wedge will

be treated separately here.
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a) ‘0’ face fields:
¢=0°

Ef = ejkpeos(w-o')
E = _ejkpeos(vw')

from equation 4.1,

. stocoelp—9') N
H;=#sm(¢-¢')e e =—#SIn(¢')e r (4.2a)

. o el +9') Ly S ode)
H. = Lsin(p + p)e s ~1sin(g')e (4.2b)
b) ‘n’ face fields:
Letsdefine: y=nzr-9 and y'=nr-9'

With variables y and y' the ‘n’ face become the ‘0’ face and vice versa
E: = Ulp'- (n-1)z)x =)

E:’ = U(¢'—(n _ l)tr)x eijW(V*'V')

from equation 4.1 we have (since d¢p = -9y ),

Hp = Ulp—(n - 1)) x -Lsin(c// -y')x Padan dad

(4.3 a)
n

Hp = = U(p'«(n-1)r)x Lsin(y + w')x P ev)

(4.3b)
n

4.1.2 Diffracted field
From equations 2.3 and 4.1

d_J 1,5 ~#0 D0, p,0,0',n)
Hp kﬂ p; x E.(QE)X ﬁp— x a¢ 4.4)

where ¢ = 0’ for the ‘o'face and ¢ = nx for the ‘n’ face
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Equation 4.4 can be evaluated if -aa% is known. A practical way to compute it is

by using the already existing method and subroutine for the slope diffraction
coefficient. Both are not totally equivalent and one should be derived from the
other as it will be explained below.

a) Slope diffraction

In chapter 2, formulas for UTD were introduced. As stated in equation 2.3 and
2.4, the diffracted field depends on the incident field at the edge. According to
this formula, the diffracted field will be zero if the incident field at the edge is
zero also. There are some instances where this situation occurs (zero incident

field) at the edge itself only and the incident field is not zero nearby.

This situation is dealt with by introducing a higher order diffraction dependent
not on the magnitude of the incident field but rather on its rate of change (slope).
The diffracted field due to slope diffraction is represented by an equation similar
to equations 2.3 and 2.4 but the incident field term is replaced by its derivative

(rate of change) relatively to the normal and D, is replaced by %:,i
The majority of existing codes dealing with diffraction coefficients, have also
subroutine for the siope diffraction coefficient.

Evaluation of slope diffraction is not in the scope of this work but it will be shown
below how to use g% to get %% with an easy manipulation.

b) Derivative of D, with res to @ instead @

The slope diffraction coefficient formulation can be found easily in the
literature{2][[23][24].
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The interest here, however is to use the output of a subroutine for

this coefficient and to transform it into %%

Since the slope diffraction coefficient is g%, where D, is given by equation 2.5,

the main goal is to derive each term between the brackets in equation 2.5 with

respectto ¢.

if we define 5" =p—¢' and 8” = p+¢', the term to be evaluated is,

(A= o)
Now since %%: =-1 and %% =1,

once evaluated, the terms derived with respect to 8™ need to be muitiplied by -1

to obtain the derivative with respect to ¢'. Since the diffraction coefficient has
the general formof : D: = K x (D + D: - (Ds + Ds)) where the first two D

terms only include 5.

If we define -g& = dn, then

)i

.g& =Kx(-d-d2-(as + ds)) 4.5)
¢'

To obtain the derivative with respect to ¢ and Since %% = +1 and %% = +1
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Then -%% = Kernx = (dl +d— (d3 +ds )) (4.6)

Usually subroutines will give the result of the slope diffraction as an array of d,..
It is easy to multiply the relevant terms with a minus sign to get equation 4.6 from

equation 4.5 to evaluate finally equation 4.4.

The incident, reflected and diffracted tangential magnetic fields have been
formulated, the surface current on the wedge can be obtained, from

- = 3 ﬁ

Jz n x 4.7
= |Jz| = |H |

413 Code and Resuits

Computer Code EEDGE.FOR was created based on the preceding formulation
using the modified slope diffraction coefficient.

Figures 4.1 and 4.2 show the surface current density distribution on the ‘0’ face
and ‘n’ face of a half plane and a 90° wedge respectively, illuminated by a TMz
plane wave (with a unit magnitude electric field at the edge) at 90° incidence.
Note that in Figure 4.2, physical optics predicts |J;| = 2/n = 0.0053 A/m.
Figure 4.3 shows both current curves superimposed because the illumination
(incidence 135°) is symmetrical on the edge (n=1.5). Figure 4.4 shows the case
of the half plane with aimost grazing incidence (0.05°), as expected the current
magnitude is low.

In all Figures (4.1 to 4.4), the current at the edge seems to go singular and
unbounded. This is a known [6] singularity for the TMz case. Since the UTD
code using the slope diffraction coefficient subroutine is used for the first time in
this work, an independent check was considered preferable. Figure 4.5 shows
the current distribution for the same case as in Figure 4.1 but the method used
to produce it is based on the modal solution computed by a fractional order
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Bessel functions subroutine[25). Figures 4.1 and 4.5 are identical even at the
edge.

Meixner [6] has studied this singularity for the TMz case and has introduced a
suitable condition to make sure the solution is unique. Meixner's edge condition
requires the energy density to be integrable at the edge. Figure 4.6 shows the
current density (representing only H,) multiplied by J; for the case of Figure
4.1, the value converges and is finite near the edge.

The code EEDGE.FOR is considered adequate for the present evaluation and
its formulation will be used as a building block for the solution of more complex
shapes in the next sections.
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Figure 4.1: Magnitude of current distribution on the surface of a half plane (n=2) illuminated by a TMz

plane wave at ¢* =90 ° (J in A/m.p in 2)-UTD.
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Figure 4.2: Magnitude of current distribution on the surface of a straight edge (n=1.5) illuminated by a

TMz plane wave at ¢” =90 ° (J in A/m.p in 4)-UTD.
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Figure 4.4: Magnitude of current distribution on the surface of a half plane illuminated by a TMz plane

wave at almost grazing incidence ¢’=0.05 °© (in A/m. p in 7.)- (UTD).
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4.2 STRIP SURFACE CURRENT USING UTD

421 Formulation

The same case of section 3.2.1 will be taken here with the incident wave being a
TMz plane wave (refer to Figure 3.8). The incident wave has a unit magnitude
electric field at edge A (the origin). The solution considers the present geometry
as a combination of two edges, one at A and the other at B. Both edge
contributions will be taken into consideration to get the diffracted field to be
added to the GO field. All of this however is to get the total electric field. To
obtain the surface current on the strip, the tangential magnetic field is needed.
Using Maxwell's equation H.,, will be derived from E, (TMz case):

VxE= —ouH

Since E has a z component only,

1 OE: o OB 5 _ i 0
pop % " gp % =Joul
then, the tangential magnetic field to the surface is

QE: .5, (4.8)

a) GO fields

-on the lit side:

Ef = ejkpcos(w—v')

E = _ejkpcos(ww')

from equation 4.8,

. )\ Mo codle-e’)
H = tsm(w -9 (4.9)

. N Mo cos(e+e’)
H = ‘tsm(¢+¢)e (4.10)
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-On the shadow side:
H=H =0 since 0°<¢’ <180°

b) Diffracted fieids
Since at A the field magnitude is unity, at B the incident field is:

E(Qs)= ™"

-On the lit side:
from equation (2.3):

~jkp

Ei =1x fj-x Dip, p,0,9',2)
P

—Jk(w-p)

Ef = &M% x jmx Dw - p,w- p,2mx +¢'2)

then from equation 4.8, the diffracted tangential magnetic fields are (lit side):

H: = _L_Lx He x aD"(p’ p,0, ¢'92)

4.11)

kn p D op
gi-—J_1 e HMre=etr) oD (w-pw-p2mx+9,2) @2
kn (w-p) Jw-p op

-On the shadow side:
—kp

Ei=1x -?—x Ddp, p,27,¢',2)
P

) , —k(w-p)
Eg=ejh'm’ xﬁxDs(w—p,w—p,O,ﬂ+¢',2)
w-—p
then from equation 4.8, the diffracted tangential magnetic fields are (shadow
side):

Hj = _L.l.x Nad X an(p, p’2m¢"2)
kn p P op

4.13)
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Hg _ = j 1 ejk(\'oosﬂ'-(v—l’)) . aD,(w - pyW—p, 0, T+ ¢', 2)

X
kn (w-p) Jw-p op

As shown in the previous section, computing % is a matter of multiplying two

4.14)

terms out of the four terms of the slope diffraction coefficient by a minus sign.
it should be noted here that no muitiple diffraction is considered in the present
case, since the diffracted field is zero at the surface.

From equation 4.9 to 4.14, the total tangential magnetic field is

H'=H,+H,+Hi+H; (4.15)
and the current density can be evaluated from

- = - 1'{'

Sz = mx (4.16)

4.2.2 Code and Resuits

A computer code TMzGTD1.FOR was created based on the formulation of
section 4.2.1. It uses the modified slope diffraction coefficient subroutine to

oDs
compute %0

A large number of plots were produced to verify the code, only few will be
included here. As an independent check with open literature, the code
reproduced exactly Figure 12.15 in [2]. Results from the moment method
solution described in section 4.3 are plotted (in small circles) also for
comparison.

it is worth noting that multiple diffraction was not necessary to get a good resuit
for the TMz case.
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As for the plots included here they all represent the surface current density on a
strip of different width illuminated by a TMz plane wave at different angles of
incidence:

Figure 4.7 shows the case of a strip width of 0.5 and an angle of incidence of
90°. The results of both methods are identical and exhibit the same singularity at
the edges.

Figure 4.8 is for a strip of width of 0.2), with angle of incidence of 90°. The
results of both methods are identical.

Figure 4.9 is for a strip of width of 0.2 with angle of 0.5° (aimost grazing). The
results of both methods are very similar. They look alike at edge B and stay
almost identical until 0.03 A from edge A where the moment method values
seems to go singular before the UTD ones. A large number of points were used
on the strip (using UTD) and this showed that the curve also goes singular but
much closer to the edge at A

Figure 4.10 is for a strip of width of 0.12 with angle of incidence of 90°. The plots
of both methods are almost identical in shape except that the UTD one gives
slightly higher amplitudes (around 8%).

Figure 4.11 is for a strip of width of 0.1 with angle of incidence of 10°. Both
plots look alike at edge B and stay very similar up until 0.03 from edge A where
the moment method plot seems to go singular before the UTD plot. At A, the
UTD plot goes singular also but much closer to the edge itself.

In general the UTD plots and Moment method plots are similar at low frequency
with the singular behavior difference at the edge being incidence angle
sensitive. It seems that the rate at which the singularity is reached drops
tremendously with decreasing angle of incidence (near grazing) for the edge
which is farther away from the source of the illumination. This could be explained
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by the fact that the current density depends on a modified siope diffraction
coefficient. A quick analysis of this modified coefficient (refer to sec 4.1 .2)
shows that it is equivalent to the normal diffraction coefficient with ¢ and ¢’
swapped. This means that with an illumination coming from the right side (almost
at grazing incidence), the left edge diffraction contribution depends on the
derivative of a coefficient with less variations unlike the opposite side which is at
higher rate of change next to the boundaries. This again could be the cause of
the leading term of the asymptotic solution not being the most prominent of all. it
is however understood that this difference between UTD and moment method is
on how to represent a singularity by itself and as long as these singularities are

understood the final result could be acceptable.
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4.3 STRIP SURFACE CURRENT USING THE MOMENT METHOD

4.3.1 EFIE Formulation
The incident electric field on the strip (refer to fig. 3.8) illuminated by a TMz
plane wave is :

Ei = E; = e.l*P“(P’?')

this field is tangent to the strip since it is the TMz case. The current induced on
the strip also has only a z component.

The scattered field is produced by the current J, on the strip. From equation
(2.17) and at a certain point m on the strip

— E'(pn) = Epm) = —’fl:[Jz(p)Hé”ﬂﬁm - 3)dp 4.17)

N
If the current is represented by J(p) = ) I.g«{p) and we take g, to be a pulse
n=1

function equal to unity on segment n and zero elsewhere, then equation 2.17

can be written as:

pr+l
- E'(pe)= £p=) = E1 35 1. [ 5 (n - M (4.18)
= .
4.3.2 Moment Method Formulation

Since pulse basis functions and point matching is used here, equation 4.18 can

be repeated for several points m. If we subdivide the strip into N segments with

width A = —‘A'} and we apply equation 4.18 once to the mid point of each segment,

we can write
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Venl={Zenwlll] (4.19)

where, mandn=12..N
V= Ei(pm)
k pn+l ) _
Zeon = =:’l Iﬂgﬂﬁn—Pl)“P .
pn

From equations 2.31 and 2.33, Z.., takes the form of

kx 4{1 - ,—1..{&)] m=n (4.20 a)
4 b 3 4e

y AR
":’1411;”0,3. =3 mn (4:20b)

The term (4.20b) can be changed to be a numerical integration of the Hankel
function over the segments and not only taking the average distance between
segment n and m. As it will be seen in the next section, even such an
approximation will be lead to good resuilts. It should be remembered that the
scatterers dealt with here are electrically small and the number of segments is

relatively high and hence the segment width is small.

Since equation (4.19) represents a set of N equations with N unknowns, and all
Vm and Zny, can be computed, it is possibie to solve for all |,,.

Once all the |, are known, the current on the strip is known. It must be
remembered however that this current represents the total current on the strip
(upper and lower side). As shown in section 3.3.1, a similar method could be
used to get the top current and the bottom current from the total current:
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Trop = A(Hi+42L|Jm|) z

J Bovom = -(— H: + -ZLIle) 4

43.3 Code and Results

The computer code PSTRIP.FOR was modified to include the TMz case. Figure
12.15 in [2] could also be reproduced exactly with PSTRIP. A number of plots
were produced to assess if the approximation in 4.20b is crude and would
require very fine slicing in segments. It was concluded that 4.20b is adequate for
the cases dealt with here. The results were piotted in section 4.2 for comparison
with UTD piots.
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4.4 RECTANGULAR CYLINDER SURFACE CURRENT USING UTD

The geometry to be considered is the rectangular cylinder of Figure 3.23 but
illuminated by a TMz plane wave incident at an angle ¢ between 0° an 90°. The
plane wave has a unit magnitude electric field at the origin.

The total magnetic field must be known so that current can be obtained. The
solution considers the rectangular cylinder a combination of four edges. GO
fields and diffraction from edges are combined to get the total electric field.
Since we are dealing here with the TMz case, obtaining the magnetic field from
the electric field will be required.

4.4.1 Incident and Reflected Fields
The incident fields at A, B, C and D are:
E =™ = g ‘(ﬂ "-%sm"’)
I e il

E. = e—_]k.l?c =e/ —%oosqn»%smp')

E;=0 (since 0<gp'<90)

a) On surface AB:

The incident fields at a certain point m (refer to Figure 3.24) are:
E = e H-lr-Fhoo-Fsar)

Haw = —psin o'E'

From image theory

HZ=2H!,

b) On surface BC:
g = Ao (-]
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Hu = ncos@'E’
From image theory

HZ? =2H..
c) On surface CD and DA:
E'=H =0 (since 0<p'<90)

4.4.2 Diffracted Field

Since the first diffraction will have a zero value at the surface, no multiple
diffractions will be considered here.

Since the electric field has only a z component, from Maxwell's equations:

this means that the tangential magnetic field to a certain edge surface is (as long

as the origin is taken as the edge tip)

Fn = Hp, = 41 OE: 4

Depending on the geometry, the sign will be adjusted if 5 is in the — % or — y
directions. Each surface will be considered separately (refer to Figure 3.24).

a) On surface AB:
~jkpa

Ei = Ei x ?—x Di(p4, p4,0,9',1.5)
P4

—kps

Ef = Eh x xD:(ps,pa,l.S;r,3-+ ¢',l.5)
P8 2

from equation (4.21)

HE = L[_Lazi_J_aEE_]
kn|{ ps 0@ ps Op
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b) On surface BC:

At a certain point m on BC:
—Jkps

Ef = Eb x xD,(ps,pa,o,2£+¢',1.5)
ps 2

—Jkpc

E¢ = E¢ x?—x D pc, pc,1.57,7 + ¢',1.5)
pC

from equation (4.21)

HE _L[_ 1 9Ef , J_aﬂé]
kn( ps 0p  pc Op

¢) On surface CD:
—kpc

E¢ = Eé x ?-—x Ds(pc, pc,0, 7 + ¢',1.5)
pc
Eb=0 (since 0<¢’<90)

from equation (4.21)

d) On surface DA:
d i Hpa
Eq4 = Eax ?p—x Ds(pA, PA, l.5ﬂ’,¢',l.5)
Y

d

Ep=0 (since 0<@’'<90)
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from equation (4.21)

HE = _.L[_ _l_ﬁEi]
kn| pa Op

On any surface, In paragraphs a) to d),
Hm” = Hon + HaZ ™
the evaluation of % requires the evaluation of %% As seen previously, this is

easily obtained from the slope diffraction coefficient.

443 Code and Results

A computer code HGTDBX.FOR was created based on the formulation of
sections 4.3.1 and 4.3.2. it uses the same slope diffraction coefficient subroutine
used for the strip.

As for the TEz case, current density distributions will be shown for a square
cylinder illuminated by a TMz plane wave. The diameter of the cylinder =2a. The
plots of the current densities are against pfa, where pis a linear distance on the
surface of the cylinder from edge A moving clockwise. This means that for p/a
=1, the position is halfway between A and B and if o/a = 4, the position is at C.
The reason for this representation is to be able to compare the results with plots
already existent in the open literature [21][22]. The results from the moment
method solution described in section 4.5. are plotted (in small circles) also for

comparison.
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Figures 4.12, 4.13, 4.14 and 4.15 show the current density distribution for ka=
10, 5, 2 and 1 respectively at a 89.5° angle of incidence.

UTD plots compare well with moment method plots and with references [21][22]
for all the cylinder surfaces except for side CD . it should be noted here that
edge D is receiving a grazing incidence and the effect of multiple diffraction was

not considered, hence edge D does not contribute in anyway to the field on CD.

Figures 4.16, 4.17 and 4.18 show the current density distribution for ka= 5, 2
and 1 respectively at a 60° angle of incidence (these cases are not covered in
[21][22]). UTD and moment method plots are in agreement except at the edge D.
Since with a 60° of incidence edges A, B and C are illuminated by non grazing
fields and since the effect of multiple diffraction is not accounted for here, only
edge D does not have any contribution to the field on CD and AD. The singular

behavior at edges is also similar for both methods except for edge D.

135



5 I T T i T i T

A
0N
T

H
T

w
n
T

w
T
1

i

-
18]
T

0.5

1

TMz plane wave _

1 |

a ka=10 4

CURRENT DENSITY/ Hinc
N
&)
T
QTA

1 1.5 2 25 3 3.5
RHO/a in wavelength

Fig. 4.12 : Normalized current density on the surface of a square cylinder (ka=10. a=1.5915A.)

illuminated by a TMz plane wave at @' =89.5° [— UTD. coo MM }

136



H
0
T

H
T

w
(4]
T
T

w
T

CURRENT DENSITY/ Hinc
N
N O
1

-
6]
1

0.5

1

TMz plane wave

I

a ka=5

2]
L

1 1.5 2 2.5 3

! LOOA
3.5 4

RHO/a in wavelength

ad

4T

Fig. 4.13 : Normalized current density on the surface of a square cylinder (ka=35. a=0.796A. ) illuminated

by a TMz plane wave at ¢’ =89.5°. [— UTD. ocoo MM 1

137



4.5+ TMz plane wave -1

T

4+ ) ¢ i

a ka=2

W
»

2.5

CURRENT DENSITY/ Hinc

I

1 1.5 2 25 3 35 4 4.5 5
RHO/a in wavelength

Fig. 4.14 : Normalized current density on the surface of a square cylinder (ka=2. a=0.3183A. ) illuminated

by a TMz plane wave at ¢” =89.5°. [ UTD. oco MM ]

138



5

4.5 TMz plane wave N
) T -
g 35 a ka=! .
= o
= 3 -
7]
&
a 2.5 ]
-
&
g 2 T
[+ 4
=
Q15F .
(o]
1 = oo -1
o]
(o]
0.5+ .
(o}
¢ C 0 0 o0 (o]
0 1 L 1 I i ) 1
1 1.5 2 2.5 3 35 4 45

RHO/a in waveiength

Fig. 4.15 : Normalized current density on the surface of a square cylinder (ka=1, a=0.159152 )

illuminated by a TMz plane wave at ¢’ =89.5°.[— UTD. coo MM 1

9



CURRENT DENSITY/ Hinc

q < ka=$ ~

w
n
T

o
(4]
T

1

-

0 1 i 1 1

0 1 2 3 4 5 6 7 8
RHO/a in waveiength

Fig. 4.16 : Normalized current density on the surface of a square cylinder (ka=5. a=0.7967 ) illuminated

by a TMz plane wave at ¢* =60°. [— UTD. coo MM |

140



w
(4]
i

w
o
1

g
0
Lo

CURRENT DENSITY/ Hinc
N

s
(&)
T

0.5

-

L 1

0 1 2 3 4 5 6 7 8
RHO/a in wavelength

o

Fig. 4.17 : Normalized current density on the surface of 2 square cylinder (ka=2. a=0.3183% ) illuminated

by a TMz plane wave at ¢’ =60°. [— UTD. oco MM ]

141



CURRENT DENSITY/ Hinc

0 1 2 3 4 5 6 7 8
RHO/a in wavelength

(=}

Fig. 4.18 : Normalized current density on the surface of a square cylinder (ka=1. a=0.15915% )

illuminated by a TMz plane was at ¢~ =60°. [— UTD. ooo MM ]



4.5 RECTANGULAR CYLINDER SURFACE CURRENT USING THE
MOMENT METHOD

The geometry to be considered is the same as for section 4.3. (refer to Figures
3.23 and 3.24) with a TMz plane wave illumination.

4.5.1 Incident Electric Fields
At any point m on the surface of the rectangular cylinder, the incident electric
field is :

E: (m) = e_jk- R = e—jk(_"" cos @'-ym sin @')

Since we are dealing with the TMz case there is only a z component for incident
and scattered electric fields. Hence the incident field is tangential to the surface
of the cylinder.

a) On surface AB:

= A Thor-Fec)

b) On surface BC:

E = 4w {F-0s)sne)

¢) On surface CD:

E = A {5 )omon Zne]

d) On surface DA:

R Hina bty

4.5.2 Scattered Field

From equation 2.17, the scattered TMz field due to a strip is

Ei(pw) = - 8L [ 1o )1 - 5o
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The rectangular cylinder is made of 4 surfaces, each to be considered as a strip

(aligned in the x or y direction). If each strip now is divided to Nx or Ny segments

and if we consider the current on a certain segment n to be of pulse shape, the

strip contribution to the scattered field at a certain point mis :

a) From an x aligned strip

Xa+ DX

2
- E'(m)= %12 In [HP(kRm)dx
n= Ax

Xn — ==

where,
X,= middle of segment n

Ru=f(tn—xF +(m—pnf.  m =+

- wx
Ax_Nx

b) From a y aligned strip:

_V.+A—y

N 2
_ E’(m): -k4i2| In J.Héz)(kRm )ﬁ
n= Ay

ye=3

where,
y»= middle of segment n

Re=(ze-xaf +(m-yf,  x=z¥x
Ay:Nﬂy

4.5.3 EFIE and Moment Method
The EFIE can be written as:
Vin=Zmn In

(4.22)

(4.23)

n=1,2...N (4.24)
m=12...N
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Where,

Vm = is the incident electric field at point m of the surface of the cylinder
In = Current at segment n

N = Nx+Ny+Nx+Ny=2Nx+2Ny=Total number of segments.

Nx = Number of segments for each AB and CD

Ny = Number of segments for each BC and DA.

Additionally the subscript m or n indicates that the observer or the source
respectively is present at:

ABif 1 <morn<Nx

BC if Nx <m or n < Nx+Ny

CD if Nx+Ny+1 < m or n < 2Nx+Ny

DA if 2Nx+2Ny+1 < m or n < 2Nx+2Ny

From equations 2.31 and 2.33, the formulation of the Z,,,, terms can be written

as:
i
chA[l - ,%h(%)] m=n 425 @)
Zon = 3
p-*Az-
2. [HO(Rw)dp m = n (4.25 (b))
. 4 .. a
where,
A = Ax or Ay
Pn = Xn OF yn

Re=y(xn—xP+(ym=y)F or Jm-xf+(pm-y)

point m is taken to be at the middle of the segment.
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Equation 4.25a is a closed form and equation 4.25b can be evaluated by

numerical integration.

454 Code and Resuits
A computer code HPBOX.FOR was created based on the formulation in sections
4.5.1 to 4.5.3. The results were plotted in section 4.4 for comparison with UTD

plots.
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§ CONCLUSION

The resuits obtained in Chapters 3 and 4 permit the statement of several
conclusions regarding the sensitivity of UTD edge diffraction to certain
conditions when used at low frequency.

5.1 TEz SCATERRING

Chapter 3 demonstrated that as close as 0.05 A near an edge, the value of the
current density predicted by UTD was still quite adequate. At such a low
frequency, UTD was still not sensitive to any angle of edges and their
consideration as a source of a local diffraction phenomenon and their interaction
together. All of this is true, on the condition that multiple diffraction contribution
is taken into account in the computation of the total field. It is true that solving for
muitiple diffraction terms involves solving linear equations for unknowns but it
should be remembered that the number of equations is proportional to the
number of edges and not the number of current segments.

UTD accuracy seems to be affected very slightly by the incidence angle
(especially near grazing), this is noticeable usually (in the case of the strip) on
the edge which is farther from the illumination source. In such a case the edge
diffraction coefficient is for the incidence angle which is almost at 180 degrees
from both the incident/shadow and the reflection/shadow boundaries and hence
much lower in magnitude than the diffraction coefficient of the other edge which
is for an angle in the vicinity to both boundaries. This situation affects both the
first diffraction and muitiple diffractions and the leading term in the asymptotic
solution might not be as predominant over other terms on one edge compared to
the other.
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Plane wave illumination was used exclusively in this work since the interest is for
low frequencies and hence electrically small scatterers. it should be noted
however that the contribution of waves of cylindrical type were introduced in the
total field computation. These were introduced by taking into consideration
multiple diffraction to obtain an accurate solution at low frequency. This is by
itself a very good indicator that the type of incident wave seems not to be a
parameter affecting accuracy.

It is also of general interest to state that even though UTD current density values
directly at the edge exhibited a noticeable error, they were at no time unbounded
and kept at least a faithful representation of the trend of the current density

curve.

5.2 TMz SCATTERING

As seen in Chapter 4, TMz is the most delicate case to deal with. The
fundamental difference here is that in the TMz case, the diffracted electric field
must be zero on the surfaces of an edge. This means that the first time a field is
diffracted and reaches another edge it is zero directly at the edge. This situation
prevents the straight forward evaluation of multiple diffraction. The only way at
that point to evaluate the effect of multiple diffraction is by introducing slope
diffraction which is considered as second order diffraction. The penalty imposed
by this situation on accuracy does not seem to be tremendous for directly
illuminated surfaces where first diffraction and GO fields exist (less than 10%
error). It is significant however when the only contribution to the total field comes
from muitiple diffraction (on deep shadow surfaces). Usually however these
fields are very weak in intensity in this region.

It is of great importance to note also that the UTD solution represents faithfully
the singularity at the edge of the TMz case and respects the Miexner condition
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of finite energy. It is however very sensitive to the angle of incidence in
representing this singularity. It is however understood that this difference
between UTD and moment method is on how to represent a singularity by itself
and as long as these singularities are understood the final resuit could be

acceptable.

5.3 GENERAL CONCLUSION

A general overview of the variables that could affect UTD solutions at low
frequency was done and these included the wedge angle, the interaction
between the edges, the size of the scatterers the type of illuminating wave and
its polarization and incidence angle. This study showed that for the TEz case,
low frequency scattering problems can be solved by UTD with adequate
accuracy. The TMz case however should be treated with care. UTD solutions for
this polarization are still considered adequate as long as the edge singularity is
understood and that surfaces in deep shadow are considered not to be
adequately represented.

Muitiple diffraction was quite important for the TEz case, but was less important
for the TMz case. In the TMz case, multiple diffraction effects become more
important as the frequency is lowered.
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