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Abstract

Property and Casualty Premiums based on

Tweedie Families of Generalized Linear Models

Oscar Alberto Quijano Xacur

We consider the problem of estimating accurately the pure premium of a property

and casualty insurance portfolio when the individual aggregate losses are assumed to

follow a compound Poisson distribution with gamma jump sizes. Generalized Linear

Models (GLMs) with a Tweedie response distribution are analyzed as a method for

this estimation. This approach is compared against the standard practice in the

industry of combining estimations obtained separately for the frequency and severity

by using GLMs with Poisson and gamma responses, respectively. We show that

one important difference between these two methods is the variation of the scale

parameter of the compound Poisson-gamma distribution when it is parametrized as

an exponential dispersion model. We conclude that both approaches need to be

considered during the process of model selection for the pure premium.
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Introduction

Property and Casualty insurance is a cyclical business. Accurate estimation of future

losses is of crucial importance in managing insurance risks and ensuring a solvent and

profitable operation. In recent years, the industry has adopted Generalized Linear

Models (GLMs) to improve the fit and prediction accuracy of models in insurance

portfolios.

A common distribution used for the modeling of the total loss of each policyholder

is the Compound Poisson distribution with gamma jump sizes (CPG). Using this

distribution is equivalent to assuming that the claim frequency and the claim severity

are independent and that they follow Poisson and gamma distributions, respectively.

When the CPG distribution is assumed and GLMs are used for the estimation of its

parameters, the standard practice is to fit separate GLMs for the claim frequency and

claim severity. The Tweedie family of distributions allows to parametrize the CPG

as an exponential dispersion model. This reduces the model to a single GLM for

the estimation of the CPG parameters. The purpose of this thesis is to present the

GLMs with Tweedie response as an option for modeling the individual total loss of

each policyholder and to compare it against the separate Poisson-gamma estimation.

In the first chapter an introduction to Exponential Dispersion Families of Distri-

butions is given. A formal presentation is made through a generating measure. The

additive and reproductive versions of these families are formulated as well as their

characterization through the variance function. The chapter concludes by deriving

the reparametrization of these families in terms of their mean and scale parameter

with the introduction of the unit deviance.

In Chapter 2, a brief introduction to GLMs is given. The distributional assump-

tions and maximum likelihood estimation of the coefficients are also given.

In Chapter 3 the Tweedie families of distributions are defined. Even though a

general definition is given, the chapter focuses on showing that the CPG distributions

are part of these families. References are given for other distributions.
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Chapter 4 develops the general methodology used in insurance modeling. The

classical assumptions made for the distributions of the aggregated losses are pre-

sented along with a critical analysis of these assumptions. The chapter continues by

introducing the CPG as a possible distribution for the total claim size. A discussion

follow on the differences in the estimation of its parameters by using a single Tweedie

GLM or separated ones for the frequency and severity. The chapter concludes with

two examples of applications.
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Chapter 1

The Exponential Dispersion

Families

Exponential dispersion families (EDFs) are sets of probability distributions. Many

widely used densities can be parametrized as an EDF. EDFs are also the basis for Gen-

eralized Linear Models. This chapter presents a general construction of the univariate

Additive Exponential Dispersion Families (AEDFs) and then the Reproductive Ex-

ponential Dispersion Families (REDFs) are derived from them. The goal was to show

the EDFs without going first through the Natural Exponential Families. For this

purpose the order of ideas in which our construction is made is based on Jørgensen

(1986), but the names given to the different EDFs are taken from Jørgensen (1997).

1.1 Construction of the Additive Exponential Dis-

persion Families.

In this section it is shown how an AEDF can be generated from a probability measure

that satisfies certain conditions.

Let M and κ be the moment generating function (mgf) and cumulant generating
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function (cmf) of some probability measure Q on R, respectively, and let

Θ0 =

{
θ ∈ R : M(θ) =

∫
exp(θx)dQ(x) <∞

}
.

Let Θ be the interior of Θ0 and assume that Θ 6= ∅. In general Θ0 is an interval that

includes zero (including {0}), so Θ will always be an open interval. Throughout this

chapter Q will be called the generating measure. Define the set Λ, which we will call

from now on the index set of Q, as

Λ =
{
λ ∈ R\{0} : Mλ = Mλ is the mgf of some probability measure Qλ

}
and let kλ be the cumulant distribution function for each Qλ. Now, let λ ∈ Λ be fixed

and define for each θ ∈ Θ the map

Qλ,θ(A) =

∫
A

exp (θx− λκ(θ)) dQλ(x), A ∈ B(R), (1.1)

where B(R) is the Borel σ-algebra in R.

Proposition 1.1. For every (λ, θ) ∈ Λ×Θ, the map Qλ,θ defined above is a probability

measure on the measurable space (R,B(R)).

Proof. Let (λ, θ) ∈ Λ×Θ. As exp (θx− λκ(θ)) > 0 for every x then Qλ,θ is a measure

on R, thus in order to prove that it is a probability measure it is only needed to show

that Qλ,θ(R) = 1. Now, from the definitions of Qλ and Qλ,θ

Qλ,θ(R) =

∫
exp[θx− λκ(θ)]dQλ(x)

=

∫
exp(θx)dQλ(x)

exp[κλ(θ)]

=
Mλ(θ)

exp[ln(Mλ(θ))]

=
Mλ(θ)

Mλ(θ)
= 1

4



Now it is possible to give a proper definition of an exponential dispersion family.

Definition 1.1. With Q,Θ,Λ, κ,Qλ and Qλ,θ defined as above, let Λ0 be any subset

of Λ. The additive exponential dispersion family generated by Q and Λ0 is defined as

ED(Q,Λ0) := {Qλ,θ : (λ, θ) ∈ Λ0 ×Θ} ,

where Θ, κ and Λ0 are called the canonical space, the cumulant generator and the

index set of the family, respectively. When working with a fixed member Qλ,θ, θ and

λ are called the canonical and scale parameters, respectively.

Remark 1.1. Since Θ is defined as the interior of Θ0, the canonical space in this

definition is always open. In Jørgensen (1997) the set Θ0 is the canonical space and

the family is called regular when it is open. Thus, in the sense of Jørgensen (1997)

all the exponential families treated here are regular.

It is important to clarify that we are making a distinction between the index set of

the generating measure and the index set of the family. This is not made in Jørgensen

(1997), where the index set of the family is always the one of the generating measure.

The motivation for this distinction is that sometimes it is possible to prove that a

certain set is contained in Λ and then it is possible to generate an EDF with this set

without the need of checking if there are more elements in Λ or not. In the following

example it is proved that N ⊂ Λ (we use N to denote the set of natural numbers),

and hence with N it is possible to generate the binomial family of distributions.

Example 1.1. (The binomial distribution). Using the construction described above

and a reparametrization shows that the binomial distribution can be seen as an AEDF.

Let Q be the probability measure that gives probability 0.5 to {1} and {0}, i.e.

Q(A) =
IA(0) + IA(1)

2
, A ∈ B(R), (1.2)
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where I is an indicator function. Then the moment generating function of Q is given

by

M(θ) =
1 + exp(θ)

2
, θ ∈ R,

and thus Θ = R. Now, for any n ∈ N,

Mn(θ) = M(θ)n =

(
1 + exp(θ)

2

)n
, θ ∈ R,

is the mgf of a Binomial(n, 1
2
), and therefore the corresponding measure is

Qn(A) =
n∑
j=0

(
n

j

)(
1

2

)n
IA(j), A ∈ B(R).

Then, for each θ ∈ R and A ∈ B(R), Qn,θ is defined as

Qn,θ(A) =

∫
A

exp[θx− κn(θ)]dQn(x)

=

∫
A

exp

[
θx− n ln

(
1

2
+

1

2
exp(θ)

)]
dQn(x)

=

∫
A

exp(θx)dQn(x)[
1
2

+ 1
2

exp(θ)
]n

=

n∑
j=0

(
n

j

)(
1

2

)n
exp(θj)IA(j)(

1
2

)n
[1 + exp(θ)]n

=

n∑
j=0

(
n

j

)
exp(θj)IA(j)

(1 + exp(θ))n
.

Now, if we define p := exp(θ)
1+exp(θ)

, then depending on the value of θ, p can take any value

in (0, 1). Writing θ in terms of p, gives θ = ln( p
1−p). Applying this reparametrization

6



to Qλ,θ, we get

Qλ,p(A) =

n∑
j=0

(
n

j

)
exp

[
j ln

(
p

1− p

)]
IA(j)(

1 + exp
[
ln
(

p
1−p

)])n

=

n∑
j=0

(
n

j

)(
p

1− p

)j
IA(j)(

1 + p
1−p

)n
=

n∑
j=0

(
n

j

)
pj(1− p)n−jIA(j),

which is the measure corresponding to a Binomial(n, p). Therefore, the ED(Q,N)

with Q defined as in (1.2), corresponds to the binomial family of distributions.

In this construction of the AEDF we only assumed that Θ 6= ∅. A special

important case is when 0 ∈ Θ, then Q has all finite moments, and therefore so

does Qλ. Also, assuming this we assure that κλ is infinitely differentiable. As these

properties will be very useful later in this chapter, the following definition is made.

Definition 1.2. A ED(Q,Λ) with canonical space Θ is called appropriate if 0 ∈ Θ.

1.2 General Properties

In addition to Θ,Λ, κ, κλ, Qλ and Qλ,θ defined in the previous section, for each (λ, θ) ∈

Λ×Θ, Mλ,θ will denote the mgf of Qλ,θ.

After seeing the construction of the AEDFs, a natural question arises: Take a

specific measure from the generated family, and use it as a generating measure. Does

it generate new distributions or does it give back the same family? In order to answer

this question the mgf of the members of the family will be needed.
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Theorem 1.1. For every (λ, θ) ∈ Λ×Θ

Mλ,θ(t) =

(
M(θ + t)

M(θ)

)λ
<∞, for t ∈ Θ− θ, (1.3)

where Θ− θ := { x− θ : x ∈ Θ}.

Proof. Let (λ, θ) ∈ Λ×Θ be fixed. As for any t ∈ Θ−θ, θ+ t ∈ Θ then M(θ+ t) <∞

and therefore

Mλ,θ(t) =

∫
exp(xt) exp[θx− κλ(θ)]dQλ(x)

=

∫
exp[(θ + t)x]dQλ(x)

exp(κλ(θ))

=

(
M (θ + t)

M (θ)

)λ
<∞.

Corollary 1.1. Let ED(Q,Λ0) be appropriate with 1 ∈ Λ0, then Q ∈ ED(Q,Λ0).

Proof. Taking θ = 0 and λ = 1 in (1.1) the mgf of Q is obtained, thus Q is in the

family.

It is important to note that for every θ ∈ Θ, Θ − θ is an open set that contains

zero; Thus even if 0 /∈ Θ, every member of the family has a finite mgf in an open

set containing zero. Hence, if we show that by using a member of the ED(Q,Λ) as

a generating measure we obtain the same set of mgfs, then we can conclude that we

are generating the same family. In the next theorem this is proved for appropriate

exponential families. A lemma is shown first.

Lemma 1.1. Let Qλ,θ be a member of ED(Q,Λ), where Λ is the index set of Q. If

Λ∗ is the index set of Qλ,θ then Λ/λ ⊂ Λ∗, where Λ/λ = {x/λ : x ∈ Λ}. If in addition

we assume that ED(Q,Λ) is appropriate then Λ/λ = Λ∗.

8



Proof. Let λ0 ∈ Λ/λ then there exists λ1 ∈ Λ such that λ0 = λ1
λ

, and then

Mλ0
λ,θ (t) =

[(
M (θ + t)

M (θ)

)λ]λ0
=

[(
M (θ + t)

M (θ)

)λ]λ1λ
=

(
M (θ + t)

M (θ)

)λ1
, t ∈ Θ−θ,

which is an mgf corresponding to Qλ1,θ. Thus λ0 ∈ Λ∗, and therefore Λ/λ ⊂ Λ∗.

Assume now that ED(Q,Λ) is appropriate. From Theorem 1.1 the canonical set of

an AEDF, using Qλ,θ as generating measure, is Θ − θ. Let λ0 ∈ Λ∗, then for any

θ1 ∈ Θ− θ,

M∗
λ0,θ1

(t) =

(
Mλ,θ(θ1 + t)

Mλ,θ(θ1)

)λ0
=

(
M(θ + θ1 + t)

M(θ + θ1)

)λ0λ
, t ∈ Θ− θ − θ1 (1.4)

is an mgf. As ED(Q,Λ) is appropriate then −θ ∈ Θ − θ, therefore (1.4) is also an

mgf for θ1 = −θ, i.e.

M∗
λ0,−θ(t) =

(
M(t)

M(0)

)λ0λ
= M(t)λ0λ, t ∈ Θ

is an mgf; This implies that λ0λ ∈ Λ and therefore that λ0 ∈ Λ/λ, thus we have

Λ∗ ⊂ Λ/λ.

Theorem 1.2. Let Qλ,θ be any member of the appropriate ED(Q,Λ0), then for any

(λ, θ) ∈ Λ0 ×Θ, ED(Q,Λ0) = ED(Qλ,θ,Λ0/λ).

Proof. Let (λ, θ) ∈ Λ0×Θ be fixed. From Lemma 1.1 we know that Λ0/λ is a subset

of the index set of Qλ,θ, thus ED(Qλ,θ,Λ0/λ) is well defined. Denote with Q∗λ∗,θ∗ the

members of ED(Qλ,θ,Λ0/λ) and let M∗
λ∗,θ∗ be their corresponding mgfs.

Let (λ1, θ1) ∈ Λ×Θ, then the mgf of Qλ1,θ1 is given by

Mλ1,θ1(t) =

(
M(θ1 + t)

M(θ1)

)λ1
, t ∈ Θ− θ1. (1.5)
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On the other hand, for any (λ∗, θ∗) ∈ (Θ− θ)× Λ0/λ, the mgf of Q∗λ∗,θ∗ is given by

M∗
λ∗,θ∗(t) =

(
Mλ,θ(θ

∗ + t)

Mλ,θ(θ∗)

)λ∗
=

(
M(θ + θ∗ + t)

M(θ + θ∗)

)λλ∗
, t ∈ Θ− (θ + θ∗).

Then, taking λ∗ = λ1
λ

and θ∗ = θ1 − θ we get that for every t ∈ Θ− θ1,

M∗
λ1
λ
,θ1−θ

(t) =

(
M(θ + θ1 − θ + t)

M(θ + θ1 − θ)

)λ(λ1λ )
=

(
M(θ1 + t)

M(θ1)

)λ1
= Mλ1,θ1(t),

which implies that Qλ1,θ1 ∈ ED(Qλ,θ,Λ0/λ), and therefore one family is included

in the other: ED(Q,Λ0) ⊂ ED(Qλ,θ,Λ0/λ). To prove the converse, let (λ∗, θ∗) ∈

Λ0/λ × Θ − θ. Then there exist θ0 ∈ Θ and λ0 ∈ Λ such that θ∗ = θ0 − θ and

λλ∗ = λ0. Then for every t ∈ Θ− θ0

M∗
λ∗,θ∗(t) =

(
Mλ,θ(θ

∗ + t)

Mλ,θ(θ∗)

)λ∗
=

(
M(θ + θ∗ + t)

M(θ + θ∗)

)λλ∗
=

(
M(θ0 + t)

M(θ0)

)λ0
= Mλ0,θ0(t),

which implies that Q∗λ∗,θ∗ ∈ ED(Q,Λ0), and therefore ED(Qλ,θ,Λ0/λ) ⊂ ED(Q,Λ0).

Theorem 1.3. Let ED(Q,Λ) be a appropriate AEDF, (λ, θ) ∈ Λ × Θ and let X

be a random variable with probability law Qλ,θ; Then E[X] = κ′λ(θ) = λκ′(θ) and

V[X] = κ′′λ(θ) = λκ′′(θ).

Proof. As ED(Q,Λ) is appropriate then κ is infinitely differentiable. Taking deriva-

tives from equation (1.3) the following expressions are obtained

M ′
λ,θ(t) = λ

(
M(θ + t)

M(θ)

)λ
κ′(θ + t),

M ′′
λ,θ(t) = λ

[(
M(θ + t)

M(θ)

)λ
κ′′(θ + t) + λ

(
M(θ + t)

M(θ)

)λ−1
M ′(θ + t)

M(θ)
κ′(θ + t)

]
,

10



and, in turn,

E[X] = M ′
λ,θ(0) = λκ′(θ)

E[X2] = M ′′
λ,θ(0) = λκ′′(θ) + λ2κ′(θ)2

implying that

V[X] = E[X2]− E[X]2 = λκ′′(θ)

Theorem 1.4. Let µ and ν be two finite measures on (R,B(R)) such that

ν(A) =

∫
A

fdµ,

where f is a positive function. Then ν is concentrated at one point if and only if µ is

concentrated at one point.

Proof. Suppose that µ is concentrated at a, then for any A ∈ B(R),

ν(A) =

 f(a)µ({a}) if a ∈ A

0 if a /∈ A

therefore ν is also concentrated at a. On the other hand, assume that ν is concentrated

at a, then

0 = ν({a}c) =

∫
{a}c

fdµ =

∫
fI{a}cdµ,

as fI{a}c ≥ 0. This implies that fI{a}c = 0 µ-a.e., but since f > 0 this means that

I{a}c = 0 µ-a.e., which implies that µ({a}c) = 0, therefore µ is concentrated at a.

Theorem 1.5. Let ED(Q,Λ0) be a appropriate AEDF where Q is not concentrated

at one point. Then for every θ ∈ Θ, κ′′(θ) > 0.

Proof. Without loss of generality we can assume that 1 ∈ Λ0 (because if it were not

we could just take the family ED(Q,Λ0

⋃
{1})). Let θ ∈ Θ and X be a random

11



variable with law Q1,θ, then from the definition of Q1,θ and Theorem 1.4 we know

that Q1,θ is not concentrated in one point. Thus V[X] > 0 and then from Theorem

1.3

κ′′(θ) = V[X] > 0.

Theorem 1.6. Let Q be a probability measure that is not concentrated in one point.

Assume that zero is in its canonical set and let Λ be its index set, then

(i) If λ1, λ2 ∈ Λ then λ1 + λ2 ∈ Λ.

(ii) N ⊂ Λ.

(iii) Λ ⊂ (0,∞).

Proof. For part (i) let λ1 and λ2 be in Λ, then Mλ1 and Mλ2 are the mgfs of Qλ1 and

Qλ2 respectively. Thus Mλ1+λ2 is the mgf of Qλ1 ∗ Qλ2(the convolution of Qλ1 and

Qλ2) and therefore, from the definition of Λ, λ1 + λ2 ∈ Λ. Part (ii) follows from (i)

and the fact that 1 ∈ Λ. For part (iii), let (λ, θ) ∈ Λ×Θ and X be a random variable

with law Qλ,θ, then from Theorem 1.3

V[X] = λκ′′(θ).

Now, as Q is not concentrated in one point then V[X] > 0 and κ′′(θ) > 0, which

implies that

λ =
V[X]

κ′′(θ)
> 0.

As λ was chosen arbitrarily, this shows that Λ ⊂ (0,∞).

The theorems from this section show many properties of the appropriate expo-

nential families. But, is it always possible to work with appropriate AEDFs or there

are cases where it is necessary to work with a non appropriate family? The following

theorem helps answer this question.
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Theorem 1.7. Let Q be a probability measure and let Θ and Λ be its canonical space

and index set respectively. Assume also that 0 /∈ Θ. Let θ ∈ Θ be fixed and let Λ∗ be

the index set of Q1,θ, then ED(Q,Λ) ⊂ ED(Q1,θ,Λ
∗).

Proof. From Lemma 1.1 we have that Λ ⊂ Λ∗. Denote with Q∗λ∗,θ∗ the elements of

ED(Q1,θ,Λ
∗) and let M∗

λ∗,θ∗ represent the respective mgfs. Then for any (λ∗, θ∗) ∈

Λ∗ × (Θ− θ)

M∗
λ∗,θ∗(t) =

(
M1,θ (θ∗ + t)

M1,θ (θ∗)

)λ∗
=

(
M(θ + θ∗ + t)

M(θ + θ∗)

)λ∗
, t ∈ (Θ− θ − θ∗).

Now, let Qλ∗,θ∗ be any element of ED(Θ,Λ). Taking λ∗ = λ1 and θ∗ = θ1− θ implies

that for t ∈ Θ− θ

M∗
λ1,θ1−θ(t) =

(
M(θ1 + t)

M(θ1)

)λ1
= Mλ1,θ1(t),

which implies that Qλ1,θ1 ∈ ED(Q1,θ,Λ
∗), therefore ED(Q,Λ) ⊂ ED(Q1,θ,Λ

∗).

Corollary 1.2. For every non appropriate AEDF , there exists an appropriate one

that contains it.

Proof. It follows from the previous theorem and the fact that every member of an

AEDF (appropriate or not) generates an appropriate AEDF .

Thus, the appropriate AEDF s are richer than the non appropriate ones. So from

a practical point of view it is always possible to assume that we are working with a

appropriate AEDF . In the rest of this chapter every AEDF will be assumed to be

appropriate.
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1.3 The Reproductive Exponential Dispersion Fam-

ily

The Reproductive Exponential Dispersion Families (REDFs) are formed by a repara-

metrization of the AEDFs. The development of Generalized Linear Models is based on

this version of the EDFs. Its definition and some of its main properties are presented

in this section.

Definition 1.3. A random variable X is said to belong to the ED(Q,Λ0) if its prob-

ability law is in ED(Q,Λ0).

Definition 1.4. Let (λ, θ) ∈ Λ×Θ, then the measures Pλ and Pλ,θ are defined as

Pλ(A) = Qλ(λA)

Pλ,θ(A) =

∫
A

exp (λ {θx− κ(θ)}) dPλ(x),

for every A ∈ B(R), where λA = {λx : x ∈ A}.

Theorem 1.8. Let X be a random variable in ED(Q,Λ0) with probability law Qλ,θ

and let Y = X
λ

, then the probability law of Y is Pλ,θ.

Proof. Let PX and PY be the probability distributions of X and Y , respectively,

h(x) = x
λ

and A ∈ B(R), then

PY (A) = PX(h−1(A)) = PX(λA)

= Qλ,θ(λA)

=

∫
λA

exp[θx− κλ(θ)]dQλ(x)

=

∫
exp[θx− λκ(θ)]IλA(x)dQλ(x)

=

∫
exp[θx− λκ(θ)]IA(x/λ)dQλ(x),
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then, by the change of variable formula, applying the transformation y = x
λ

we get

that

PY (A) =

∫
exp[λθy − λκ(θ)]IA(x)dPλ(x)

=

∫
exp[λ {θy − κ(θ)}]IA(x)dPλ(x)

= Pλ,θ(A).

Definition 1.5. The REDF generated by Q and Λ0 ⊂ Λ is defined as

ED∗(Q,Λ0) = {Pλ,θ : (λ, θ) ∈ Λ0 ×Θ},

for each (λ, θ) ∈ Λ×Θ and Mλ,θ denotes the mgf of Pλ,θ.

Theorem 1.9. For every (λ, θ) ∈ Λ×Θ,

Mλ,θ(t) =

(
M(θ + t

λ
)

M(θ)

)λ
<∞, t ∈ λ(Θ− θ). (1.6)

Proof. From the definition of an mgf we have that

Mλ,θ(t) =

∫
exp(xt) exp(λ(θx− κ(θ)))dPλ(x)

then, applying the change of variable y = λx in this last expression we get that

Mλ,θ(t) =

∫
exp

(y
λ
t
)

exp[θy − λκ(θ)]dQΛ(y) = Mλ,θ

(
t

λ

)
=

(
M(θ + t

λ
)

M(θ)

)λ
,

which, from Theorem 1.1, is finite for t ∈ λ(Θ− θ).

Theorem 1.10. In ED∗(Q,Λ0), let (λ, θ) ∈ Λ×Θ and Y be a random variable with

law Pλ,θ, then E[Y ] = κ′(θ) and V[Y ] = κ′′(θ)/λ.
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Proof. From Theorem 1.8 we have that Y = X/λ where X has law Qλ,θ, and then

from Theorem 1.3

E[Y ] = E
[
X

λ

]
=

1

λ
E[X] =

1

λ
(λκ′(θ)) = κ′(θ)

V[Y ] = V
[
X

λ

]
=

1

λ2
V[X] =

1

λ2
(λκ′′(θ)) =

κ′′(θ)

λ

1.4 The Variance Function

Definition 1.6. The mean-space of a ED∗(Q,Λ0) is defined as

Ω = κ′(Θ).

As a consequence of Theorem 1.5 we have that when Q is not concentrated at one

point, κ′ is strictly increasing and therefore invertible. When this happens we can

write the canonical parameter as a function of the mean in the following way: LetX be

in ED∗(Q,Λ0) with probability law Pλ,θ and let τ = κ′ and µ = E[X]. Then we have

that θ = τ−1(µ), and then the variance of X can be written as V[X] = 1
λ
(κ′′ ◦τ−1)(µ),

which motivates the following definition.

Definition 1.7. Let ED∗(Q,Λ0) be such that Q is not concentrated at one point and

let τ = κ′, then the variance function of the family is defined as V : Ω→ (0,∞),

V(µ) = κ′′ ◦ τ−1(µ).

After this definition we see that V[X] = V(µ)/λ, thus the variance function allows

us to express the variance of a random variable in an exponential family as the scale

parameter times a function of the mean. Moreover, the variance function is important

as it characterizes the family. This will be shown in the following theorems.
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Theorem 1.11. Let θ0 ∈ Θ, µ0 = τ(θ0) and θ be another element in Θ, then there

exists µ1 ∈ Ω such that

θ = θ0 +

∫ µ1

µ0

1

V(m)
dm

Proof. Let µ be any member of Ω, then as τ is invertible and τ ′ 6= 0 by the inverse

function theorem we have that

(τ−1)′(µ) =
1

τ ′(τ−1(µ))
.

But τ ′(τ−1(µ)) = κ′′(τ−1(µ)) = V(µ), then we have that

(τ−1)′(µ) =
1

V(µ)
. (1.7)

Thus

τ−1(µ)− τ−1(µ0) =

∫ µ

µ0

(τ−1)′(m)dm =

∫ µ

µ0

1

V(m)
dm,

as this last expression is true for every µ ∈ Ω then it is true for µ1 = τ(θ). Thus

substituting θ = τ−1(µ1) and θ0 = τ−1(µ0) in the last expression we get that

θ = θ0 +

∫ τ(θ)

µ0

1

V(m)
dm = θ0 +

∫ µ1

µ0

1

V(m)
dm.

Theorem 1.12. Let θ0 and θ be elements of Θ, then

κ(θ) = κ(θ0) +

∫ µ

µ0

m

V(m)
dm,

where µ0 = τ(θ0) and µ = τ(θ).

Proof. Define the function h : Θ −→ R as

h(θ) =

∫ τ(θ)

µ0

m

V(m)
dm.
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By the fundamental theorem of calculus and the chain rule we get that

h′(θ) =
τ(θ)

V(τ(θ))
τ ′(θ) =

τ(θ)τ ′(θ)

(τ ′ ◦ τ−1)(τ(θ))
=
τ(θ)τ ′(θ)

τ ′(θ)
= τ(θ)

and then, from the definition of h,

∫ µ

µ0

m

V(m)
dm− 0 = h(θ)− h(θ0) =

∫ θ

θ0

h′(x)dx =

∫ θ

θ0

τ(x)dx = κ(θ)− κ(θ0),

which implies that

κ(θ) = κ(θ0) +

∫ µ

µ0

m

V(m)
dm.

Remark 1.2. The proof of Theorems 1.11 and 1.12 depends on the fact that Ω is an

interval. This is true because κ′ is a continuous function and Ω = κ′(Θ), where Θ is

an interval.

The last two theorems show how, given the variance function of an appropriate

Exponential Dispersion Family, it is possible to obtain Θ and κ. Once κ is known then

M is also known and as it is defined in an open interval that contains zero (because

we are in an appropriate EDF) then Q can be obtained from M . Once Q is known

then Λ, the index set, is also characterized. Thus, given the variance function, the

family is characterized except for the subset of the index set that is used to generate

a given family.

1.5 The Unit Deviance

Theorem 1.13. Fix λ ∈ Λ and let θ be any element from Θ. Then for every A ∈

B(R), Pλ,θ(A) = 0 if and only if Pλ(A) = 0.

Proof. From the definition of Pλ,θ (Definition 1.4) we immediately have that for every

θ ∈ Θ, the value of Pλ(A) implies that Pλ,θ(A) = 0. Now, in order to prove the
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converse implication, suppose that Pλ,θ(A) = 0 for some A ∈ B(R). Define f :

R× R −→ R with f(x) = exp{λ[θx− κ(θ)]}, then we have that

∫
A

fdPλ =

∫
fIAdPλ = 0.

As f is non-negative, then fIA = 0 almost surely with respect to Pλ. Then f(x) > 0,

for every x, implies that Pλ(A) = 0 and hence Pλ,θ(A) = 0. Thus Pλ,θ(A) = 0 implies

Pλ(A) = 0.

The previous theorem shows that the support of the members of a REDF varies

only with λ, which justifies the following definition.

Definition 1.8. Let ED∗(Q,Λ) be a REDF and let Cλ be the support of Pλ for each

λ ∈ Λ. Then, the support of the family is given by

C =
⋃
λ∈Λ

Cλ.

Definition 1.9. Let ED∗(Q,Λ) be a REDF . The family deviance is defined as the

function d : C × Ω −→ R with

d(y, µ) = 2

[
sup
θ∈Θ
{yθ − κ(θ)} − yτ−1(µ) + κ(τ−1(µ))

]
.

Theorem 1.14. Let ED∗(Q,Λ) be a REDF . Then there exists a : R × R −→ R

such that for every (λ, θ) ∈ Λ×Θ

Pλ,θ(A) =

∫
A

a(y, λ) exp

(
−λ

2
d(x, µ)

)
dPλ(x). (1.8)

Proof. Let (λ, θ) ∈ Λ×Θ and let f : Cλ −→ R with

f(x) = exp{λ[θx− κ(θ)]},
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then we have that

Pλ,θ(A) =

∫
A

fdPλ.

From the definition of τ (Definition 1.7), we have that θ = τ−1(µ). Substituting in

the previous equation gives

f(x) = exp
(
λ{τ−1(µ)x− κ(τ−1(µ))}

)
= exp

(
−λ{−τ−1(µ)x+ κ(τ−1(µ))}

)
= exp

(
−λ
{
− sup

θ∈Θ
{xθ − κ(θ)}+ sup

θ∈Θ
{xθ − κ(θ)} − τ−1(µ)x+ κ(τ−1(µ))

})
= exp

(
λ sup
θ∈Θ
{xθ − κ(θ)}

)
exp

(
−λ

2

{
2

[
sup
θ∈Θ
{xθ − κ(θ)} − τ−1(µ)x+ κ(τ−1(µ))

]})
= exp

(
λ sup
θ∈Θ
{xθ − κ(θ)}

)
exp

(
−λ

2
d(x, µ)

)
.

Now, if we define

a(x, λ) = exp

(
λ sup
θ∈Θ
{xθ − κ(θ)}

)
,

then

f(x) = a(x, λ) exp

(
−λ

2
d(x, µ)

)
.

Corollary 1.3. Every REDF can be parametrized in terms of its mean-space (see

Definition 1.6) and index set (see Definition 1.1).
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Chapter 2

The Generalized Linear Models

2.1 Distributional Assumptions

Let Y , X and W be random variables with supports on R, Rp and R respectively.

Suppose that there exists a probability measure Q with index set Λ and Λ0 ⊂ Λ such

that for every x in the support of X (supp(X)) and w ∈ supp(W ), the conditional

distribution of Y , given X = x and W = w, is in ED∗(Q,Λ0), i.e. it belongs to a

fixed REDF. Assume that there exists c : R× R→ R such that each Pλ has density

function c(·, λ) with respect to some fixed measure. If fY |X,W denotes the density of

Y given X = x,W = w, then

fY |X,W (y|x, w) = c(y, λ) exp(λ {θy − κ(θ)}), (2.1)

for some (λ, θ) ∈ Λ0 ×Θ that depend on x and w in the following way:

1. There exists σ2 such that for every x and w,

λ =
w

σ2
.

This implies that λ varies only with the value of W .
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2. Let µx,w = E [Y |X = x,W = w]. There exists a fixed vector β = (β1, ..., βp) ∈

Rp and a one-to-one differentiable function h such that

µx,w = h(xTβ)

If g denotes the inverse of h, then writing the last equation in terms of g gives

g(µ) = xTβ.

In the jargon of GLMs, Y is called the response variable, the componentsX1, ..., Xp

of X are called the covariates, σ2 is called the dispersion parameter, g is called the

link function and the conditional distribution of Y , given X = x,W = w, is called

the response distribution.

Remark 2.1. In practice, besides the response distribution, the link function has to be

chosen. There is substantial freedom for this choice but in order for this construction

to make sense, g should be chosen such that range(h) ⊂ Ω (the mean-space).

2.2 Estimation

The estimation part of the GLMs consists in estimating β and σ from a given sample.

In many cases one is interested in estimating µx,w, for which only a β estimation is

necessary. The following theorem will be useful to find the Maximum Likelihood

Estimator(MLE) of β.

Theorem 2.1. Suppose a population that follows the distributional assumptions for

some fixed REDF and link function. Let {(yi,xi, wi)}ni=1 be a sample of (Y,X,W ),
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where xi = (xi1, ..., xip). Let

Y =


y1

y2

...

yn


, X =


x11 · · · x1p

...

xnp · · · xnp



and let H, Σ and µ be depend on β with

H(β) = diag(h′(xTi β))ni=1, Σ(β) = diag

(
wi

V (h(xTi β))

)
,

and µ(β) =


h(xT1β)

...

h(xTnβ)

 .

Assume also that the MLE of β exists and lets denote it with β̂. Then

XTH(β̂)Σ(β̂)(Y − µ(β̂)) = 0, (2.2)

where 0 is a vector of size p whose entries are all zero.

Proof. For each i, the conditional density function of Y , given X = xi and W = wi,

evaluated at yi is given by

fi(yi) = fY |X,W (yi|xi, wi) = c
(
yi,

wi
σ2

)
exp

(wi
σ2
{θiyi − κ (θi)}

)
, for some θi ∈ Θ.

(2.3)

We have that for each i

θi = τ−1(µxi,w) = (τ−1 ◦ h)(xTi β),
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substituting this in (2.3) we obtain

fi(yi) = c
(
yi,

wi
σ2

)
exp

(wi
σ2

{
(τ−1 ◦ h)(xTi β)yi −

(
(κ ◦ τ−1 ◦ h)(xTi β)

)})
.

Then the likelihood function for β is given by

L(β) =
n∏
i=1

{
c
(
yi,

wi
σ2

)
exp

(wi
σ2

{
(τ−1 ◦ h)(xTi β)yi −

(
(κ ◦ τ−1 ◦ h)(xTi β)

)})}
=

(
n∏
i=1

c
(
yi,

wi
σ2

))
exp

(
1

σ2

n∑
i=1

wi
{

(τ−1 ◦ h)(xTi β)yi −
(
(κ ◦ τ−1 ◦ h)(xTi β)

)})
.

Thus, the log-likelihood function is

`(β) =
n∑
i=1

c
(
yi,

wi
σ2

)
+

1

σ2

n∑
i=1

wi
{

(τ−1 ◦ h)(xTi β)yi −
(
(κ ◦ τ−1 ◦ h)(xTi β)

)}
. (2.4)

Let k ∈ {1, 2, ..., p}, then

∂

∂βk
`(β) =

1

σ2

n∑
i=1

wi

{
yi

(
∂

∂βk
(τ−1 ◦ h)(xTi β)

)
− ∂

∂βk
(κ ◦ τ−1 ◦ h)(xTi β)

}
. (2.5)

Now, for each i = 1, ..., n

∂

∂βk
(τ−1 ◦ h)(xTi β) =

∂

∂βk
(τ−1 ◦ h)

(
p∑
j=i

xijβj

)

= (τ−1)′

(
h

(
p∑
j=i

xijβj

))
h′

(
p∑
j=i

xijβj

)
xik

= (τ−1)′
(
h
(
xTi β

))
h′
(
xTi β

)
xik.

But, from equation (1.7) we know that (τ−1)′(h(xTi β)) = 1
V (h(xTi β))

, thus

∂

∂βk
(τ−1 ◦ h)(xTi β) =

h′(xTi β)

V (h(xTi β))
xik. (2.6)
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On the other hand,

∂

∂βk
(κ ◦ τ−1 ◦ h)(xTi β) = κ′((τ−1 ◦ h)(xTi β))

∂

∂βk
(τ−1 ◦ h)(xTi β),

and then, from (2.6) and as k′ = τ ,

∂

∂βk
(κ ◦ τ−1 ◦ h)(xTi β) =

h(xTi β)h′(xTi β)

V (h(xTi β))
xik. (2.7)

By substituting equations (2.6) and (2.7) in (2.5), the following equation can be

obtained

∂

∂βk
`(β) =

1

σ2

n∑
i=1

wi

(
yi − h(xTi β)

V (h(xTi β))

)
h′(xTi β)xik. (2.8)

Now, as V , h and h′ are continuous (V is continuous as it is the composition of two

continuous functions: κ′′ ◦ τ−1) the last expression implies that ∂
∂βk

` is a continuous

function whose domain is Rp for each k ∈ {1, 2, ..., p}. This, combined with the fact

that ∂
∂βk

`(β) reaches a maximum at β̂ implies that

∂

∂βk
`(β̂) = 0, for k = 1, ..., p.

From equation (2.8) and by performing standard operations it is possible to see that

for every β ∈ Rp,

σ2


∂
∂β1
`(β)

...

∂
∂βk

`(β)

 = XTH(β̂)Σ(β̂)(Y − µ(β̂)),

which, combined with the fact that σ2 > 0 implies that

XTH(β̂)Σ(β̂)(Y − µ(β̂)) = 0.
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An alternative proof of this theorem can be found in page 104 of Madsen and

Thyregod (2011).

Thus, we have that if the MLE exists it can be found by solving equation (2.2).

This can be done by using iteratively reweighted least squares. This method will not

be explained here, but a detailed account can be found in Chapter 4 of Björk (1996).

Definition 2.1. Let {(yi,xi, wi)}ni=1 be a sample of (Y,X,W ), where Y , X and W

follow the distributional assumptions from the previous section, with X ∈ Rp. Then,

for each β ∈ Rp the residual deviance is defined as

D(β) =
n∑
i=1

wid(yi, h(xTi β)).

Theorem 2.2. Let {(yi,xi, wi)}pi=1 be a sample of (Y,X,W ). If β̂, the MLE of β,

exists then it minimizes the residual deviance.

Proof. By using the parametrization from (1.8), (2.1) can be written as

fY |X,W (y|x, w) = c(y, λ)a(y, λ) exp

(
−λ

2
d(y, h(xTβ))

)
.

Let c∗(y, λ) = c(y, λ)a(y, λ), then the likelihood function for β can be written as

L(β) =

(
n∏
i=1

c∗(y, λ)

)
exp

(
− 1

σ2

n∑
i=1

wid(yi, h(xTi β))

)

and the corresponding log-likelihood function as

`(β) =
n∑
i=1

c∗
(
yi,

wi
σ2

)
− 1

σ2
D(β).

As the first term of the right hand side of the above equation is the same for every

value of β, from this equation it is possible to see that `(β1) ≤ `(β2) if and only if

D(β1) ≥ D(β2), which implies that if β̂ exists then it minimizes D.
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Chapter 3

The Tweedie Families of

Distributions

Definition 3.1. A REDF is called a Tweedie Family if the domain of its variance

function V is (0,∞) with

V (µ) = µp,

for some p ∈ R.

The Tweedie families contain many distributions that are characterized by the

value of p. The following table presents the well known distributions that can be seen

as a Tweedie family for different values of p.

Value of p Distribution
p = 0 Normal
p = 1 Poisson

p ∈ (1, 2) Compound Poisson - Gamma
p = 2 Gamma
p = 3 Inverse Gaussian

In addition to this, it is known that for p <∞ the Tweedie families characterize

distributions that are supported on R, while for p > 2 it characterizes distributions

that are supported on (0,∞). The case p ∈ (0, 1) does not correspond to any probabil-
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ity measure. In this chapter it will only be proved that the compound Poisson-gamma

can be reparametrized to be a Tweedie family with p ∈ (1, 2). A proof for other cases

can be found in Chapter 4 of Jørgensen (1997).

3.1 The Compound Poisson-Gamma Distribution

The goal of this section is to define and derive the mgf of the compound Poisson-

gamma distribution. This will be useful to prove the existence of the Tweedie families

for p ∈ (1, 2). A few necessary definitions and theorems are stated first.

Definition 3.2. Let N be a random variable with probability measure

P (A) =
∞∑
n=0

e−mmn

n!
IA(n), A ∈ B(R),

where m > 0. Then N is said to follow a Poisson distribution with parameter m and

it is denoted N ∼ Poisson(m)

Definition 3.3. Let N ∼ Poisson(m), X0 = 0 and X1, X2, ... be independent and

identically distributed (iid) random variables with probability distribution F and also

independent from N . The probability distribution of

S =
N∑
i=0

Xi

is called a compound Poisson distribution with rate m and jump size distribution F .

The proof of the following lemma can be found in Chapter 1 of Gerber (1979).

Lemma 3.1. Let S have a compound Poisson distribution with rate m and jump

distribution F . Assume also that F has mgf MF , then the mgf of S is given by

M(t) = exp[m(MF (t)− 1)]. (3.1)

28



Definition 3.4. Let X be a random variable with probability measure

P (A) =

∫
A
⋂

(0,∞)

xα−1 exp(−βx)βα

Γ(α)
dx, A ∈ B(R),

where α, β > 0. Then X is said to follow a gamma distribution with shape parameter

α and scale parameter β and it is denoted with X ∼ gamma(α, β).

The following lemma can be found in the Appendix A of Klugman and Willmot

(2004).

Lemma 3.2. Let X ∼ gamma(α, β), then the mgf of X is given by

M(t) =

(
1

1− t
β

)α

, t < β. (3.2)

Even though the Poisson, the compound Poisson and the gamma are well known

distributions, their definitions are given here in order to set the parametrization used

here, and for the sake of completeness. Now it is possible to state the definition of

the compound Poisson-gamma distribution.

Definition 3.5. Let S have a compound Poisson distribution with rate m and jump

size distribution gamma(α, β). Then S is said to follow a compound Poisson-gamma

distribution with parameters m,α, β and it will be denoted S ∼ CPG(m,α, β).

Theorem 3.1. Let S ∼ CPG(m,α, β), then the mgf of S is given by

M(t) = exp

(
m

{(
1

1− t
β

)α

− 1

})
, t < β. (3.3)

Proof. It follows from substituting equation (3.2) in (3.1).
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3.2 General Properties

In this section some of the properties of the Tweedie family for the case p ∈ (1, 2) are

presented.

Theorem 3.2. Suppose that ED∗(Q,Λ) is an appropriate Reproductive Exponential

Dispersion Family. Also assume that the domain of its variance function is (0,∞)

with

V (µ) = µp,

for some p ∈ (1, 2). Then there exists a > 0 such that the mgf of Q has domain

Θ = (−∞, (1− ξ)a
1
ξ−1 ) with

M(θ) = exp

{(
ξ − 1

ξ

)[(
a

1
ξ−1 +

θ

ξ − 1

)ξ
− a

ξ
ξ−1

]}
, (3.4)

where ξ = p−2
p−1

.

Proof. By the assumption that ED∗(Q,Λ) is appropriate, k is differentiable at 0 so

we can define a = τ(0) (τ = κ′). Since the domain of V is (0,∞) we have that a > 0.

From the definition of the variance function, for every m ∈ Ω

(τ ′)−1(m) = mp.

Let θ be any member of Θ and µ = τ(θ). Then by integrating both sides of the last

equation above from 0 to µ, and from the definition of τ the following relation can

be obtained

θ =
κ′(θ)1−p − a1−p

1− p
,

which implies that

κ′(θ) =
(
a1−p + θ(1− p)

) 1
1−p . (3.5)
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In addition, as the domain of V is (0,∞) then the canonical space is given by

Θ = {θ ∈ R : κ′(θ) > 0} .

Thus, θ ∈ Θ if and only if (a1−p + θ(1− p))
1

1−p > 0 therefore

Θ =

{
θ ∈ R : θ <

a1−p

p− 1

}
.

Now, integrating κ′ from 0 to θ it is possible to obtain that

κ(θ) =
(a1−p + θ(1− p))

2−p
1−p − a2−p

2− p
, θ <

a1−p

p− 1
.

Finally, by defining ξ = p−2
p−1

and rewriting the last expression in terms of ξ we get

that

κ(θ) =

(
ξ − 1

ξ

)[(
a

1
ξ−1 +

θ

ξ − 1

)ξ
− a

ξ
ξ−1

]
, θ < (1− ξ)a

1
ξ−1

and therefore

M(θ) = exp

{(
ξ − 1

ξ

)[(
a

1
ξ−1 +

θ

ξ − 1

)ξ
− a

ξ
ξ−1

]}
, θ ∈ (−∞, (1− ξ)a

1
ξ−1 ).

It is important to emphasize that the previous theorem does not prove the exis-

tence of the Tweedie families for p ∈ (1, 2). It just gives the mgf of a generator of

the family assuming that such a family exists and that it is appropriate. The follow-

ing corollary goes in the same direction, i.e. it builds assuming the existence of the

family.

Corollary 3.1. Let ED∗(Q,Λ) be appropriate. Suppose that the domain of its vari-

ance function is (0,∞) with V (µ) = µp for some p ∈ (1, 2). Let (θ, λ) ∈ Θ × Λ and
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ξ = p−2
p−1

, then there exists a ∈ R such that

Mλ,θ(t) = exp

λ(ξ − 1

ξ

)(
a

1
ξ−1 +

θ

ξ − 1

)ξ (1 + t

λ((ξ − 1)a
1
ξ−1 + θ)

)ξ
− 1

, (3.6)

for t ∈ (−∞, λ((1− ξ)a
1
ξ−1 − θ)).

Proof. It follows from substituting the M(θ) found in the previous theorem in equa-

tion (1.6).

Theorem 3.3. For every p ∈ (1, 2) there exists a probability measure Q with index

set Λ = (0,∞) such that ED∗(Q,Λ) is an appropriate REDF with variance function

V (µ) = µp, µ ∈ (0,∞).

Moreover, the elements of ED∗(Q,Λ) are all compound Poisson-gamma.

Proof. Suppose that it has been proved that equation (3.6) corresponds to a com-

pound Poisson-gamma distribution for every λ < 0, θ ∈ Θ and p ∈ (1, 2). In this

case, as equation (3.4) is a especial case of (3.6) when λ = 1 and θ = 0, then we

would immediately have the existence of Q. Furthermore, as this would have been

proved for every λ > 0 we would also have that Λ = (0,∞) and we would be done.

Let us now prove this. Let λ > 0, θ ∈ Θ and p ∈ (1, 2). Define α = −ξ and notice

that if ξ < 0 then α > 0. Define β = λ((1 − ξ)a
1
ξ−1 − θ), as Θ = (−∞, (1 − ξ)a

1
ξ−1 )

then θ < (1−ξ)a
1
ξ−1 and therefore (1−ξ)a

1
ξ−1 −θ > 0. Since also λ > 0, we have that

β > 0. Now define m = λ
(
ξ−1
ξ

)(
a

1
ξ−1 + θ

ξ−1

)ξ
, as ξ < 0 then ξ−1 < 0 and therefore

ξ−1
ξ
> 0. Similarly as θ > 0 and a > 0, then a

1
ξ−1 and θ

ξ−1
> 0, thus

(
a

1
ξ−1 + θ

ξ−1

)ξ
> 0

and therefore m > 0. Inserting these expressions for α, β and m in (3.3), we obtain

equation (3.6). This proves that (3.6) is a compound Poisson-gamma (CPG) for

every λ > 0, θ ∈ Θ and p ∈ (1, 2).

The previous theorems guarantee the existence of the Tweedie families for p ∈

(1, 2) and show that they are equivalent to a CPG distribution. From the proof of
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this theorem, we see that in order to find the corresponding parameters of the CPG

distribution, we need the mean of the generating measure at θ = 0. It is useful to

express this equivalence without the need of the generating measure. This can be

achieved by reparametrizing the family in terms of the mean-space. Thus, we denote

by Tw(p, µ, λ) a Tweedie distribution with variance function power p, mean µ and

scale parameter λ. Notice that this parametrization is justified by Corollary 1.3. By

using this parametrization, the following theorem allows us to express the equivalence

between the Tweedie family and the CPG without using the generator.

Theorem 3.4. Let p ∈ (1, 2), µ > 0 and λ > 0, then

Tw(p, µ, λ) = CPG

(
λµ2−p

2− p
,−p− 2

p− 1
,
λµ1−p

p− 1

)
.

Similarly, for m,α, β > 0,

CPG(m,α, β) = Tw

(
α + 2

α + 1
,
mα

β
,
(mα)

α+2
α+1
−1β2−α+2

α+1

α + 1

)
.

Proof. Let p ∈ (1, 2), µ > 0 and λ > 0. Theorem 3.3 implies that there exists m, α

and p such that Tw(p, µ, α) = CPG(m,α, β). Let X and Y be random variables such

that X ∼ Tw(p, µ, α) and Y ∼ CPG(m,α, β). As these two variables are equally

distributed, we have that E[X] = E[Y ] and V[X] = V[Y ]. By using the mgf from

Lemma 3.2 it is possible to see that E[Y ] = mα
β

and V[Y ] = m
(
α
β2 + α2

β2

)
. On the

other hand, from the definition of the Tweedie distribution we have that E[X] = µ

and V[X] = µp

λ
. In addition, from the proof of Theorem 3.3 we have that α = −p−2

p−1
.

Thus we have the following set of equations

α = −p− 2

p− 1
µ =

mα

β

µp

λ
= m

(
α

β2
+
α2

β2

)
(3.7)

by solving for m and β, we get that m = λµ2−p

2−p and β = λµ1−p

p−1
. Similarly, let

m,α, β > 0. By solving (3.7) for p, µ and α we obtain the second distribution
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equivalence in the theorem.

3.3 GLMs for the Tweedie Families

As EDFs, the Tweedie families are suitable as densities for GLMs. In this case, the

methods presented in Chapter 2 can be used to find estimators for β. The case

when p needs to be estimated is more complex and it will not be treated here. A

way to do it is explained in Gilchrist and Drinkwater (2000). This method has been

implemented in R (see R Development Core Team, 2010) in the Tweedie package (see

Dunn, 2010).
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Chapter 4

Modeling Premiums with Tweedie

Families using GLMs

The goal of this chapter is to show how the Tweedie distribution can be used for

modeling insurance premiums with the aid of GLMs. The first sections introduce to

non-life insurance and the basic assumptions that are made for premium modeling.

4.1 Non-life Insurance

Definition 4.1. A non-life insurance policy is an agreement between two parties, in

which one of them engages to compensate the other party for certain unpredictable

losses during a fixed time period, in exchange of a fee. The compensating party is

called the insurer, the other party is called the policyholder and the fee is called the

insurance premium.

The main idea behind insurance is that every policyholder pays a premium, which

is considerably smaller than the potential loss, but not all of them claim for financial

compensation. Thus, intuitively, the money of many pays for the losses of few.

In order to be solvent, an insurance company needs to charge enough money in

premiums to face its liabilities. Deciding how much the premium should be is not an
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easy task, and this is where probability and statistical models play a decisive role.

Several models have been used for this and there is a common background strategy

that most of them share. In order to introduce this strategy, some definitions are

needed first.

Definition 4.2. A claim is an event for which the policyholder demands financial

compensation.

Definition 4.3. The money paid by the insurer to the policyholder as the result of a

claim is called the size of the claim or simply the claim size.

Definition 4.4. The total claim size of a policy is the sum of the sizes of all the

claims made during the validity of the policy. The total claim size of a group of

policies if the sum of the total sizes of each policy in the group.

Suppose you are an insurer and you have a group of n policyholders. Let Si, for

each i = 1, ..., n, be the total size of the i-th policy. As these amounts are not known

at the beginning of the policy, we will treat them as random variables. Assume also

that {Si}ni=1 are iid with µ = E[S1] <∞. Then, by the law of large numbers

lim
n→∞

S1 + S2 + ...+ Sn
n

= µ, a.s.

which means that for large enough n,

S1 + S2 + ...+ Sn
n

≈ µ

and therefore

S1 + S2 + ...+ Sn ≈ nµ.

This implies that the total claim size of this group will be approximately nµ. Thus,

the amount of money charged to each policyholder should be based on µ. Something

noticeable from this is that n is not needed to be known, it just has to be large.
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Definition 4.5. Suppose you have a group of policyholders. Let Sn be total claim

size of the nth policyholder. The group is called homogeneous if {Sn} are iid with

E[S1] <∞.

As a consequence of the previous reasoning and definition, it is possible to sum-

marize the usual steps followed by insurance companies to analyze what premium to

charge:

1. Divide the policyholders into large enough homogeneous groups.

2. Estimate µ for each group.

3. Charge µ plus a risk factor plus fees (administration fees, profit margin, etc).

These steps carry implicitly the following two assumptions (referred from now on

as the insurability assumptions):

1. There is a set of observable characteristics of the policyholders that allows to

divide them into large enough homogeneous groups.

2. The mean of each homogeneous group can be accurately estimated.

It is not hard to find cases where these assumptions do not hold. For example

in catastrophes like hurricanes or earthquakes, several policyholders will be affected

at the same time; in this case it doesn’t seem reasonable to consider independence

between the Sis. Also, nothing guarantees that the segmenting characteristics exist

or that they are observable.

When these assumptions are accepted, there is no unique way to follow the steps

described to compute the premium. The purpose of this chapter is to show how this

can be done with the GLMs and the Tweedie family of distributions.
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4.2 The Key Ratios

Insurance companies usually offer their non-life policies with a term of one year.

Nevertheless the actual in force time of the policy can be less (for example if a

policyholder decides to cancel the policy).

Definition 4.6. The duration of a policy is the amount of time a policy is in force.

It is usually measured in years.

One of the key assumptions described in the previous section was that {Sn} are

iid. Nevertheless, even within the same homogeneous group if a policy has a duration

of 0.1 and another one has a duration of 0.9, it is not reasonable to consider that

their respective total claim sizes are equally distributed. In this section, some key

ratios are introduced along with some assumptions on them. This will help us deal

with policies that have different durations. The following definitions are valid in the

context of individual policies or groups of policies.

Definition 4.7. The claim frequency is the number of claims divided by the duration,

i.e. the average number of claims per unit time.

Definition 4.8. The claim severity is the total claim size divided by the amount of

claims, i.e. the average size per claim.

Definition 4.9. The pure premium is the total claim size divided by the duration,

i.e. the average amount paid per unit time.

Definition 4.10. The earned premium is the duration times the annual premium.

Definition 4.11. The loss ratio is the total claim size divided by the earned premium.

Notice that the claim frequency, claim severity, pure premium and loss ratio are

the result of a random outcome divided by a volume measure. As such they are called

the key ratios. The volume measure is called the exposure for each case. The analysis
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of the earned premium is not the subject of this thesis, but is included here for the

sake of completeness.

It is important to introduce some assumptions regarding the key ratios in order

to see why they are useful. For this, let us introduce some notation. Consider a fixed

policyholder and let N be his/her number of claims, Xi be the size of his/her i− th

claim and S be his/her total claim size. Notice that they are related by

S =
N∑
i=1

Xi (4.1)

where X0 = 0. As S,N and the Xi’s are not known at the beginning of the policy,

we treat them as random variables. We are interested in the distribution of these

random variables.

Certainly the duration of the policy affects these distributions, thus we include it

in the analysis. It is natural to think that the higher the duration, the more likely

the policyholder is to have more accidents, i.e. the distribution of N is influenced by

the duration. So we modify the notation to Nw, to recognize the dependency on the

duration. Then equation (4.1) makes clear that the distribution of S also depends on

the duration, so we will write Sw, but use S and N for w = 1.

Before considering the Xn’s, let us see some of the implications of the introduction

of the duration in the model. The notation Nw implies that the distribution of the

number of claims depends only on the duration. This appears reasonable, but has

some strong implications. In order to enumerate some, let w1 and w2 be the durations

of two time intervals. The following statements follow:

1. If w1 = w2, then Nw1

D
= Nw2(here

D
= means equal in distribution).

2. If w1 and w2 correspond to non-overlapping periods of time, then Nw1 is inde-

pendent of Nw2 .

3. If w1 and w2 correspond to non-overlapping periods of time, then Nw1 +Nw2

D
=
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Nw1+w2 .

4. E[Nw] = wE[N ].

It is possible to find cases in which these implications do not hold. For example,

in car insurance it is not likely that the distribution of the number of accidents for

1 month, during the winter, is the same that of 1 month during the summer. It

could also happen that a driver will drive more carefully after a first accident, which

will change the probability of having a second accident; such cases do not satisfy the

independence assumptions for non-overlapping periods of time.

Now consider the claim sizes Xi. By definition, the distribution of Xi is condi-

tioned to the occurrence of an i-th accident. Thus, it seems reasonable to assume

that the distribution of the Xi’s is not affected by the duration. Furthermore, as the

Xi’s denote payments for the same risk, we will consider them iid.

One last assumptions is needed: The Xi’s and Nw are independent. At first,

this seems as a natural assumption; Why would the number of claims affect the size

of the payments? Nevertheless experience shows that this is not as natural as it

seems. Often, events that produce more frequent claims are associated with lower

size payments, while rare events are associated with large size claims.

To conclude this section, we put together the assumptions that have been in-

troduced for the key ratios. They will be referred from now on as the key ratio

assumptions:

1. For each policyholder, the distribution of the number of claims depends only on

the duration.

2. The Xi’s are iid, their distribution is not affected by the duration and they are

independent of the number of claims.
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4.3 Group Estimation

Several assumptions have been introduced in this chapter, along with examples that

show how they are a simplification to reality. As with every theoretical model, we

have to wonder if these simplifications approximate reality sufficiently to be useful.

As it turns out these have been useful in several situations and form part of classical

insurance models. For instance these are found found in Chapter 6 of Klugman and

Willmot (2004) and Chapter 1 of Ohlsson and Johansson (2010). There have been

extensions of these assumptions, for example copulas have been used to describe the

dependency between the number and the size of the claims. Nevertheless, the results

in this and the next section depend on these classical assumptions. Thus, from here

on the insurability and the key ratio assumptions are considered to hold.

When the strategy used by insurance companies was that described in Section 4.1,

the duration was not being considered. The duration complicates the analysis in two

ways:

1. The duration for new policyholders is not known in advance.

2. In historical data for specific homogeneous groups, policyholders have different

durations and therefore their total claim sizes are not equally distributed. This

is a complication because the sample is then not iid.

The first complication is handled by insurers with a practical approach. All the

policies are standardized to a duration of 1 and policyholders are charged accordingly.

If, for some reason, the policy is terminated before the stipulated date, a portion of

the pure premium is reimbursed to the policyholder, which usually is equal to the

pure premium minus the earned premium. As a consequence, the estimation should

be made based on a duration of 1.

In order to develop a way of handling the second complication, let us assume

that we are in a homogeneous group with n policyholders, and adopt the following

notation:
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• wi denotes the duration of the i-th policy.

• Siw, N i
w, X i

j denote the random variables for the total claim size, number and

size of the j-th claim, respectively, for the i-th policyholder assuming, a duration

of w. For w = 1, S1 and N1 are used for S1
1 and N1

1 .

• µ denotes the pure premium of a policy with duration 1 for the policyholders

in the group, i.e., µ = E[S1].

It is important to distinguish µ from the observed pure premium from a sample,

thus, we give the following definition.

Definition 4.12. The empirical pure premium of a homogeneous group of policies is

defined as

M =

∑n
i=1 S

i
wi∑n

i=1 wi
. (4.2)

Notice that in this definition, the numerator and denominator correspond, respec-

tively, to the total claim size and duration of the group.

The proofs of the following lemmas can be found in the Appendix.

Lemma 4.1. For every i and w,

E[N i
w] = wE[N i].

Lemma 4.2. For every i,

µ = E[N i]E[X1].

Lemma 4.3. For every i and w,

E[Siw] = wµ.

Now, it is possible to prove the main result from this section, the unbiasedness of

M in (4.2).
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Theorem 4.1. Suppose you have a homogeneous group of n policyholders with known

durations w1, w2, ..., wn, then

E[M ] = µ.

Proof. From Lemma 4.3 and the properties of the expectation, we have that

E[M ] = E
[∑n

i=1 S
i
wi∑n

i=1wi

]
=

∑n
i=1E

[
Siwi
]∑n

i=1wi
=

∑n
i=1wiµ∑n
i=1wi

=
µ (
∑n

i=1wi)∑n
i=1wi

= µ.

This theorem is very important, as it solves the second complication. Now we

shall concentrate on the estimation of the mean of the empirical pure premium, for

which we do not need to worry about the different durations of the policyholders in

the group. This theorem also allows an important data simplification, as now we

only need to keep the total claim size and duration of the group instead of keeping a

record of the individual values.

4.4 The Tweedie as a Total Claim Size Distribu-

tion

The purpose of this section is to analyze some distributional assumptions for Si, N i

and X i
j.

We start with the discrete distribution for the number of claims N i. When at

most one claim can occur, like in life insurance the support of its distribution should

be {0, 1} and the Bernoulli distribution can be used. When several claims are pos-

sible, the support should be N
⋃
{0} for which the Poisson or the negative binomial

distributions can be used.

The claim size distribution X i
j, should be a continuous distribution with support

on (0,∞). Commonly used distributions for it are the gamma, the log-normal and the
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inverse Gaussian. Alternatively, any Tweedie distribution in Chapter 3 with p ≥ 2

can be used.

As a consequence of the previous two paragraphs, we have that the distribution

of Si should be continuous on (0,∞) with a mass at zero that corresponds to the

probability of not having a claim.

In this thesis we analyze cases in whichN i andX i
j can be modeled with the Poisson

and gamma distributions respectively. This implies that Si is Tweedie distributed

with p ∈ (1, 2), i.e., compound Poisson.

In the previous section, it was shown that E[M ] = µ. When the Tweedie distri-

butions is assumed for each Si it turns out that M is also Tweedie distributed (the

proof of this can be found in the Appendix). Thus, not only M has the same mean,

but it also belongs to the same family of distributions.

It is also important to mention the limitation of these distributions. The Poisson

distribution has variance equal to its mean. Thus it should be used when there is a

strong evidence of over-dispersion in the number of claims. The gamma distribution

is light tailed, which is not useful to model large claim payments.

4.5 Estimation of the Pure Premium with GLMs

GLMs provide a practical methodology for the segmentation and the estimation of

the pure premium for policyholders. In this context, the total claim size acts as the

response variable, the segmenting characteristics of the population as the covariates

and the duration as the weight. Some characteristics of these elements are analyzed

in the following paragraphs.

GLMs allow categorical and continuous covariates. In an insurance context their

role is to divide the population into sufficiently large homogeneous groups. This is

impossible when a continuous covariate is used. Thus, the standard practice is to

divide continuous variables into intervals so they can be considered as categorical.
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As in classical regression models, for a covariate with n possible levels, n− 1 dummy

variables are introduced in the model.

Here we consider the case where the response distribution is Tweedie with p ∈

(1, 2), i.e. we assume that the total claim size of each policyholder is Tweedie dis-

tributed. In the previous section it was mentioned that when this is the case then

so is M, i.e the empirical pure premium is Tweedie distributed. This is useful when

working with grouped data.

Another element needed for GLMs is the link function. Ideally, the link function

should be chosen with the objective of linearizing the data. Nevertheless, it is a

standard practice in pure premium modeling to use the natural logarithm as the

link function. This is because it yields a multiplicative rating structure, which is

considered more fair. An argument about this can be found in Sections 2.1 and 2.3

of Brockman and Wright (1992).

To fit the model, we need a sample (historical data), that either comes from the

databases of the insurance company, from publicly available data, or from information

that is bought from private companies or associations.

In using GLMs, the insurability and key ratio assumptions, as well as the dis-

tributional assumptions from Chapter 2 are implicitly assumed. The use of GLMs

is not exclusive to the pure premium, they can also be used to estimate all the key

ratios. In this case, the response distribution and the weight are the key ratio and

its exposure, respectively. In fact, it is not common for insurers to model the pure

premium directly.

When the total claim size distribution is assumed to be compound Poisson-gamma,

the standard practice is to multiply separate estimations for the claim frequency

and claim severity. These estimations are obtained with GLMs assuming Poisson

and gamma response distributions, respectively. We will refer to this method of

estimation as the separated Poisson-gamma approach (SPGA). Let us analyze the

differences between this method and a Tweedie GLM.
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Suppose that you have divided your portfolio of policyholders into n homogeneous

groups. When using the SPGA, the distribution of each group is CPG, or equivalently

Tweedie with p ∈ (1, 2). Thus, when using the SPGA, the distribution of the indi-

vidual total claim size of each policyholder in the i-th group is Tw(p′, µ′i, λ
′
i) for some

p′, µ1, ..., µn, λ1, ..., λn. The fact that all the groups have the same variance function

power is proved in the Appendix. On the other hand, with the Tweedie GLM, each

group has distribution Tw(p, µi, λ) for some p, µ1, ..., µn, λ. Thus, in both cases the

individual claim size of each group is Tweedie distributed, with the important differ-

ence that with the Tweedie GLM, all the groups have the same dispersion parameter,

while with the SPGA, it differs for each group. In order to have a more intuitive

understanding of this, let us see it in terms of the variance.

With the Tweedie GLM, the i-th group has variance λµpi while with the SPGA it is

λ′iµ
′p′
i . Thus, in both models we get different variances between groups, but the SPGA

has more potential variability for the variances due to the different λi’s. Nevertheless

there is a price to pay for this extra variability: a larger number of parameters.

Suppose that you use q covariates to segment your population. For the SPGA

there are 2q+ 1 parameters, q for the βis of the Poisson GLM plus q for the βis of the

gamma, plus 1 for the dispersion parameter of the gamma. On the other hand, with

the Tweedie GLM there are q + 2 parameters. The q βis, the dispersion parameter

and p. Thus, the SPGA has q − 1 more parameters than the Tweedie GLM.

From this analysis we see that the Tweedie GLM and the SPGA are appropriate

for different situations. In those cases where one common dispersion parameter is

sufficient to explain the variances for the different groups, the Tweedie GLM is more

appropriate. For such cases a SPGA would be overparametrizing. On the other hand,

a SPGA is more adequate in cases where several dispersion parameters are needed to

explain the variances among the different homogeneous groups.

There are differences worth mentioning about the model fit assessment for each

option. When using a Tweedie GLM, the goodness of fit and the distributional
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assumptions of the model can be analyzed with the theory of GLMs. On the other

hand, when using the SPGA, the theory of GLMs can be used separately for testing

the Poisson and the gamma models, but not for the final estimation of the pure

premium. In this case, in order to asses the goodness of fit of the pure premium

estimation, different techniques have to be used.

4.6 Model Assessment

As explained in the previous section, when separate GLMs for the claim frequency

and claim severity are used, the theory of GLMs is not that useful in assessing the

goodness of fit of the combined model. In recent years, data mining techniques have

gained popularity in the insurance modeling world. For instance, the lift and gain

charts are now routinely used for model selection and assessment.

4.6.1 The Lift Chart

Suppose that you have a model created to predict a certain phenomenon and suppose

that you have some observations of this phenomenon. In order to create a lift chart

based on this, the following steps should be followed:

1. By using the model generate predictions for the observations.

2. Order the observations increasingly with respect to the predictions.

3. Divide the ordered data in groups that have equal number of predictions.

4. Plot the mean of the observations and the mean of the predictions for each

group.

When this chart is made for a GLM, it is also common to add bars that correspond

the exposure of each group. An example of a lift curve with 20 groups is shown in

Figure 4.1. In this graph, the scale of the vertical axis on the left corresponds to
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the mean computed for each group and the scale of the vertical axis on the right

corresponds to the exposure.
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Figure 4.1: Example of Lift Chart

This kind of chart gives information about two aspects of the model. On the one

hand, by seeing the trend on the curve for the observed means it is possible to see

if the model more or less identifies the groups that are more costly. On the other

hand, the vertical distance between the predicted mean and the observed mean gives

an idea of how far the predictions are from the observations.

4.6.2 The Gain Chart

As with the previous chart, suppose that you have a model with some observations.

In order to create the gains chart, the following steps should be followed:

1. By using the model, generate predictions for the observations.
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2. Order the observations decreasingly with respect to the predictions, and com-

pute their cumulative percentages.

3. Let n be the number of observations. Draw the lines that connect the points

{
(

1
i
, xi
)
}ni=1, where xi is the i-th cumulative percentage.

4. Draw two reference lines. The identity line and the upper bound. The upper

bound graph is obtained by following steps 2 and 3, but ordering the observa-

tions decreasingly (this time not with respect to the model).

An example of a gain chart is shown in Figure 4.2. This graph gives a visual

representation of how well the model distinguishes the groups that are more expensive

than others. The closer the model line to the upper bound the better.
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Figure 4.2: Example of Gain Chart

In the following two sections, two examples are presented. The goal of these

examples is to show comparisons between the direct analysis of the pure premium
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with the Tweedie family and the separate Poisson-gamma approach. This is done by

using the graphs introduced in this section.

4.7 Example: Third Party Motor Insurance in Swe-

den

In Section 4.5 it was mentioned that a log-link function yields a multiplicative rat-

ing structure. Before presenting our first example we explain the meaning of this.

Suppose that you are modeling a key ratio with a GLM for which you only use cat-

egorical covariates. Assume that the classes of all your covariates are represented in

your model by n dummy variables, say X1, ..., Xn. Let βi be the coefficient of Xi for

i = 1, ..., n and β0 be the intercept of the model. Then the predicted mean µ̂ of a

given policyholder satisfies the equation

ln(µ̂) = β0 +
∑

{i:Xi=1}

βi,

and therefore

µ̂ = exp

β0 +
∑

{i:Xi=1}

βi

 = exp (β0)
∏

{i:Xi=1}

exp(βi).

Now, define Ri = exp(βi) for i = 0, ..., n. Then

µ̂ = R0

∏
{i:Xi=1}

Ri.

The Ri’s are called the relativities of the model. From the equation above we see

that for each case, the predicted mean is obtained by multiplying the appropriate

relativities. It is because of this that the model is said to have a multiplicative rating

structure.
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Kilometres Zone Bonus Make Insured Claims Payment
1 1 1 1 455.13 108 392491
1 1 1 2 69.17 19 46221
1 1 1 3 72.88 13 15694
1 1 1 4 1292.39 124 422201
1 1 1 5 191.01 40 119373
1 1 1 6 477.66 57 170913
1 1 1 7 105.58 23 56940
1 1 1 8 32.55 14 77487
1 1 1 9 9998.46 1704 6805992
1 1 2 1 314.58 45 214011

Table 4.1: Some Observations from the Third Party Motor Insurance in Sweden
Dataset

In this section a Tweedie response GLM is fitted to a publicly available motor

insurance dataset. All the computations shown in this section were done using R

with the package tweedie (see R Development Core Team, 2010 and Dunn, 2010).

The data was taken from Smyth (2011) at the address http://www.statsci.org/

data/general/motorins.html. Some information from this dataset is summarized

in Table 4.1.

There are 4 segmenting variables available in this dataset. Kilometers, with 5

categories, corresponds to different intervals of kilometers traveled per year. Zone,

with 7 categories, corresponds to different geographical zones. The classes 1 to 8 of

Make correspond to different car models, while the 9-th category corresponds to any

other make of car. Finally, Bonus, with 7 classes, corresponds to the number of years

Kilometers Zone Bonus Make
Observed Observed Observed

total claim claim
claim size frequency severity

1 1 1 1 862.371 0.237 3634.176
1 1 1 2 668.223 0.275 2432.684
1 1 1 3 215.340 0.178 1207.231
1 1 1 4 326.682 0.096 3404.847
1 1 1 5 624.957 0.209 2984.325
1 1 1 6 357.813 0.119 2998.474
1 1 1 7 539.307 0.218 2475.652
1 1 1 8 2380.553 0.430 5534.786
1 1 1 9 680.704 0.170 3994.127
1 1 2 1 680.307 0.143 4755.800

Table 4.2: Observed Key Ratios for some Homogeneous Groups
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plus one since the last claim. In this example it is assumed that each combination of

values of these variables defines a homogeneous group.

Combined Combined

Variable Poisson Gamma Poisson-Gamma Tweedie Poisson-Gamma Tweedie

coefficients coefficients coefficients coefficients relativities relativities

Intercept -1.813 8.397 6.585 6.565 723.811 709.781
Make 1 0.000 0.000 0.000 0.000 1.000 1.000

2 0.076 -0.038 0.038 0.034 1.039 1.035
3 -0.247 0.081 -0.166 -0.173 0.847 0.841
4 -0.654 -0.166 -0.820 -0.807 0.441 0.446
5 0.155 -0.089 0.066 0.053 1.068 1.055
6 -0.336 -0.039 -0.375 -0.354 0.687 0.702
7 -0.056 -0.120 -0.176 -0.148 0.839 0.862
8 -0.044 0.212 0.168 0.165 1.183 1.179
9 -0.068 -0.056 -0.124 -0.113 0.883 0.893

Bonus 1 0.000 0.000 0.000 0.000 1.000 1.000
2 -0.479 0.044 -0.435 -0.435 0.647 0.647
3 -0.693 0.070 -0.623 -0.625 0.536 0.535
4 -0.827 0.055 -0.773 -0.771 0.462 0.462
5 -0.926 0.036 -0.889 -0.882 0.411 0.414
6 -0.993 0.072 -0.922 -0.917 0.398 0.400
7 -1.327 0.116 -1.211 -1.203 0.298 0.300

Zone 1 0.000 0.000 0.000 0.000 1.000 1.000
2 -0.238 0.022 -0.216 -0.207 0.806 0.813
3 -0.386 0.048 -0.339 -0.325 0.713 0.722
4 -0.582 0.128 -0.454 -0.442 0.635 0.643
5 -0.326 0.052 -0.274 -0.258 0.760 0.773
6 -0.526 0.143 -0.383 -0.360 0.682 0.698
7 -0.731 0.022 -0.709 -0.670 0.492 0.511

Kilometres 1 0.000 0.000 0.000 0.000 1.000 1.000
2 0.213 0.023 0.235 0.219 1.265 1.244
3 0.320 0.019 0.339 0.337 1.404 1.400
4 0.405 0.040 0.445 0.456 1.561 1.577
5 0.576 0.037 0.613 0.612 1.846 1.844

Table 4.3: Coefficients and Relativities for the Different Models

The observations in this dataset are grouped. For each homogeneous group, the

columns Insured, Claim and Payment correspond to the observed duration, number of

claims and total claim size of the group respectively. In order to fit GLMs for the pure

premium, claim frequency and claim severity, the observed values of these quantities

for each group have to be computed. Some of these computations are shown in Table

4.2.

A GLM with a Tweedie response and logarithmic link function was applied to the

whole dataset to estimate the pure premium. The MLE found for p was 1.471429.

Similarly, GLMs with Poisson and gamma responses, both with the log-link function,
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Tweedie GLM Lift Curve
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Combined Poisson−gamma Lift Curve
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Figure 4.3: Lift Charts

were fitted to the claim frequency and claim severity respectively. The fitted values

obtained for the coefficients of the covariates are summarized in Table 4.3.

The columns Poisson coefficients, gamma coefficients and Tweedie coefficients

correspond to the estimation of the betas for each of the classes in each model. The
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Figure 4.4: Gain Curve for Tweedie GLM and Combined Poisson-gamma
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combined Poisson-gamma coefficient is equal to the sum of the Poisson and gamma

coefficients. There is a justification for this. On the one hand, the estimation of

the pure premium based on the separate Poisson and gamma models, is obtained by

multiplying the estimations of these two. On the other hand there is the fact that

the log-link function is being used. This implies that the contribution of each class to

the log of the pure premium is equal to the sum of the coefficients from each model.

The lift charts with 20 groups, for both methods of estimation compared to the

observations are given in Figure 4.3. From the exposure bars in these charts, we can

see that the models have ordered the groups differently. Nevertheless, in both cases

the observed means curve is increasing and the predicted means curve is not far from

it. Figure 4.4 shows the gain charts for both models in the same graph. In this chart

we see that the gain curves are almost superimposed. Thus, the lift and gain charts

indicate that the two models fit the data more or less equally well. Now, in order to

see how different are the predictions between both models, Figure 4.5 shows the PP-

plot and the QQ-plot of the models. From these graphs we see that these two models

produce very similar predictions. Thus, in this example modeling the pure premium
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directly or doing it through the claim frequency and claim severity separately gives

very similar results.

4.8 Example: Car Insurance in Toronto

The results in this section were obtained from a 4 months internship at AVIVA

Canada. AVIVA has allowed to include some graphs as long as they do not give

detailed information about the variables used in the model.

The purpose of the project was to build confidence intervals around pure premium

estimators for certain car insurance covers. These coverages are Accident Benefits

(AB), Bodily Injury (BI), Direct Compensation (DC) and Collision (COL).

The model being used to estimate the pure premium consists of a tree structure

with a GLM for each node. In effect, this tree is equivalent to having separate Poisson

gamma estimators for the claim frequency and severity, respectively, for each cover.

In order to be able to use the theory of GLMs to build confidence intervals, it is

necessary to have all the covers under one single GLM, that would include claim

frequency and severity for all the covers. The Tweedie distribution was selected as

the response distribution. The purpose of this section is to compare the results of the

Tweedie model against the tree structure.

First we describe the tree model. We cannot show the actual tree used at AVIVA,

but we explain its functioning with a simplified example. Then we will show how this

is equivalent to separate Poisson gamma analysis for each different cover.

To simplify assume that the insurance only has 2 covers, say Cover 1 and Cover

2. A possible estimation of the pure premium for these two covers is to find the

pure premium for each independently, and then to sum them. The problem with

this procedure, is that it assumes that when they both occur, their respective claim

sizes behave similarly to when they occur separately. This is not always the case and

therefore sometimes it is necessary to model their joint behavior. A way to include
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all cases in the model is to consider the following tree:

Accident

Cover 2

1
−
p 1

There is
Cover 1

Cover 1
1
−
p 2

Cover 1
& Cover 2

p
2

p
1

Figure 4.6: Tree for 2 Covers

The node on top, labeled Accident, represents the event of a claim. Then p1

represents the probability of having a claim resulting from Cover 1. Similarly, p2

represents the probability of a claim from Cover 2, given that Cover 1 is also part of

the claim. The node labeled Cover 1 represents the size of a claim related to Cover 1

only. Similarly, the node labeled Cover 2 represents the size of a claim in which only

Cover 2 applies. Finally, the node labeled Cover 1 & Cover 2 represents the size of a

claim in which both covers apply.

Let us assume now that the number of accidents is Poisson distributed with pa-

rameter λ and that the claim sizes of Cover 1, Cover 2 and Cover 1 & Cover 2

are gamma distributed with parameters (α1, β1), (α2, β2) and (α12, β12) respectively.

Then, from the properties of the compound Poisson distribution (see Section 7 from

Chapter 1 of Gerber, 1979 ), the total claim size for Cover 1 only, Cover 2 only and

Cover 1 & Cover 2 are all CPG distributed. Table 4.4 shows the parameters of the

distribution for each of these cases. Hence, the tree in Figure 4.6 combined with

the above assumptions is equivalent to separate Poisson-gamma models for both, the
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Table 4.4: Parameters for the Different Combinations of Covers

Coverage Parameters of CPG
Cover 1 only λp1(1− p2), α1, β1

Cover 2 only λ(1− p1), α2, β2

Cover 1 & Cover 2 λp1p2, α12, β12

claim frequency and claim severity.

The tree at AVIVA has several more covers, but the distributional assumptions

are similar, i.e. Poisson for the claim frequency and different gamma distributions for

the nodes that correspond to claim severities. Therefore, the total claim size for each

combination of covers corresponds to a CPG distribution. GLMs are used to estimate

the parameters of the distribution at each node. A pure premium for each combination

is estimated by multiplying the relevant parameters from the tree. The overall pure

premium is estimated by summing the pure premium of each combination.

It should be pointed out that this example differs from the previous one. Here,

the Tweedie is being compared with the sum of several Poisson-gamma combinations,

which has much more parameters. Both models were fitted using data collected from

2006 to 2008. Their respective lift and gain charts applied to the data from 2009 are

shown in Figure 4.7. These charts show a slightly better fit for the tree as the Tweedie

overestimates the pure premium for groups 55 to 85. A possible way to improve the

Tweedie fit in this case would be to make separate analyses for those groups with

observed pure premium above 500. Nevertheless, due to the limited time from the

internship this is the version last worked on.
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(a) Tweedie Lift chart (b) Tree Lift chart

(c) Tweedie Gain chart (d) Tree Gain chart

Figure 4.7: Lift Charts for the AVIVA Data
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Conclusion

The compound Poisson-gamma distribution is often used to model the total claim size

of individual policyholders. When this is the case, GLMs with a Tweedie response

provide a convenient method for the segmentation and pure premium estimation of

a property and casualty insurance portfolio. Nevertheless, the standard practice in

the industry is to combine estimations obtained separately for the claim frequency

and claim severity by using GLMs with Poisson and gamma responses, respectively.

Both approaches imply a Tweedie distribution for the total claim size of the different

homogeneous groups. The main difference between these two methods is that in

the Tweedie GLM all the groups have the same dispersion parameter, while the

standard method assigns different values to each group. This implies that, in a

given situation, one method will fit better than the other, depending if one common

dispersion parameter is sufficient to fit the variance of the different homogeneous

groups or not.

From the point of view of model assessment, the unified approach has the ad-

vantage that its goodness of fit and distributional assumptions can be tested using

the theory of GLMs. On the other hand, the standard approach requires different

techniques for its assessment. In conclusion, the Tweedie GLM is a good competitor

to the standard estimation method used in the industry. It should always be consid-

ered in the set of models to evaluate when the total claim size is believed to follow a

compound Poisson-gamma distribution.
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Appendix A

Proof of Propositions from

Chapter 4

In Chapter 4, Lemmas 4.1, 4.2 and 4.3 are for every i. Since proving it for one specific

value of i implies that it is true for all the others, the i will not be written in the

following proofs. Before proving the above mentioned lemmas, a first auxiliary result

is proved.

Lemma A.1. Let w1 and w2 be two durations with w1 ≤ w2, then

E[Nw1 ] ≤ E[Nw2 ].

Proof. Let w = w2−w1 and consider two non-overlapping time intervals of length w1

and w. Then,

Nw1 +Nw
D
= Nw2

and therefore

E[Nw1 ] + E[Nw] = E[Nw2 ].

Now, as Nw is a non-negative random variable we have E[Nw1 ] ≥ 0. Thus

E[Nw1 ] ≤ E[Nw2 ].
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Lemma A.2. For every w > 0

E[Nw] = wE[N ].

Proof. The proof is divided in three parts. First it is proved for w = 1
n
, where n ∈ N,

then for w ∈ Q
⋂

(0,∞) and finally for w ∈ (0,∞).

Let n ∈ N, and w1, ..., wn be durations that correspond to non-overlapping time

intervals with wi = 1
n

for i = 1, ...,m. Then

n∑
i=1

Nwi
D
= N and E[Nwi ] = E[N 1

n
] i = 1, ..., n,

which implies

E[N ] = E

[
n∑
i=1

Nwi

]
=

n∑
i=1

E[Nwi ] =
n∑
i=1

E
[
N 1

n

]
= nE

[
N 1

n

]

and therefore,

1

n
E[N ] = E

[
N 1

n

]
.

This proves the lemma for w = 1
n
. Now, let m,n ∈ N and w1, ..., wm be durations that

correspond to non-overlapping periods of time with wi = 1
n

for i = 1, ...,m. Then,

m∑
i=1

Nwi
D
= Nm

n
and E[Nwi ] = E

[
N 1

n

]
, i = 1, ...,m,

and therefore,

E
[
Nm

n

]
=

m∑
i=1

E [Nwi ] =
m∑
i=1

E
[
N 1

n

]
= mE

[
N 1

n

]
=
m

n
E[N ].

Let w ∈ (0,∞), {pn} and {qn} be sequences in Q
⋂

(0,∞) with pn ↑ w and qn ↓ w.
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Then from Lemma A.1, we have that for every n ∈ N

pnE[N ] = E [Npn ] ≤ E [Nw] ≤ E [Nqn ] = qnE[N ],

then

lim
n→∞

pnE[N ] ≤ E[Nw] ≤ lim
n→∞

qnE[N ],

which implies,

E[Nw] = wE[N ].

This proves the theorem for w ∈ (0,∞).

Lemma A.3. Let µ = E[S]. Then,

µ = E[N ]E[X1]

and for every w > 0,

E[Sw] = wµ.

Proof. Let w > 0. As the Xi’s are iid and independent of Nw, we have that

E[Sw] = E

[
Nw∑
i=1

Xi

]
= E

[
E

[
Nw∑
i=1

Xi|Nw

]]
= E

[
NwE [X1]

]
= E[Nw]E[X1] = wE[N ]E[X1].

which implies µ = E[S] = E[N ]E[X1] and E[Sw] = wµ.

In Chapter 4, in the example shown for the Swedish motor insurance, we worked

with grouped data. Originally we assumed that the total claim size of each pol-

icyholder follows a Tweedie distribution. Nevertheless, in building the model the

response variable was always the empirical total claim size of each policyholder, and
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as such we assumed it to also follow a Tweedie distribution. This needs to be justified,

which is the purpose of the following theorem. Two lemmas are first needed for this.

The proof of the following lemma can be found in Chapter 1 of Gerber (1979).

Lemma A.4. Let S1 and S2 be two independent compound Poisson distributions with

rates λ1 and λ2 respectively. Assume that F1 is the jump size distribution function of

S1 and F2 the one of S2. Then, the random variable S = S1 + S2 has a compound

Poisson distribution with jump size distribution function

F (x) =

(
λ1

λ1 + λ2

)
F1(x) +

(
λ2

λ1 + λ2

)
F2(x), x ∈ R.

Lemma A.5. Let X be a random variable with distribution CPG(m,α, β), k > 0

and Y = kX. Then Y ∼ CPG(m,α, β
k
).

Proof. Let MX and MY be the mgfs of X and Y respectively. From the definition of

mgf and Theorem 3.3, we have that

MY (t) = E[exp(tY )] = E[exp(tkX)] = MX(tk) = exp

(
m

{(
1

1− t
β/k

)α

− 1

})
,

which corresponds to the mgf of a CPG(m,α, β
k
).

Theorem A.1. Suppose you have a homogeneous group with n policyholders for which

the total claim size distribution, assuming a duration of 1, is Tw(p, µ, λ). Suppose

that the durations w1, ..., wn for each policyholder are known. Then M , the empirical

total claim size of the group, has distribution Tw(p, µ, w+λ), where w+ =
∑n

i=1wi.

Proof. Let Siwi represent the total claim size of the i-th policyholder taking into

consideration his/her distribution. From the hypothesis of the theorem we have that

Si ∼ Tw(p, µ, λ). By Theorem 3.4 we can equivalently say that Si ∼ CPG(m,α, β),

where m = λµ2−p

2−p , α = −p−2
p−1

and β = λµ1−p

p−1
. We have then that N i, the claim

frequency for a duration of 1, follows a Poisson distribution with parameter m, and

65



therefore N i
wi
∼ Poisson(wim). Thus Siwi ∼ CPG(wim,α, β). Define S =

∑n
i=1 Swi ,

w+ =
∑n

i=1wi and let G be the distribution function of a gamma(α, β). Then, as

a consequence of Lemma A.4, S has a compound Poisson distribution with rate w+

and distribution function

F (x) =

∑n
i=1wiG(x)

w+

=
G(x)

∑n
i=1wi

w+

= G(x),

which implies that F is a distribution function of a gamma(α, β) and therefore

S ∼ CPG(w+m,α, β). By definition, M = S
w+

and then by Lemma A.5, M ∼

CPF (w+m,α,w+β). Now, by writing m, α and β in terms of p, µ and λ and using

Theorem 3.4 we obtain that equivalently M ∼ Tw(p, µ, w+λ).

The purpose of the following theorem is to derive the Tweedie parameters for the

different homogeneous groups when the SPGA is used.

Theorem A.2. Suppose you have divided a portfolio of policyholders into homo-

geneous groups by using q explicative variables. Let xi ∈ Rq be the values of the

explicative variables for the i-th group. Let βp,βg ∈ Rq and λ > 0, and define for

each i, mi = exp(xTi βp) and µi = exp(xTi βg). If for the i-th group, the distribution of

the number of claims is Poisson(mi) and the distribution of the claim size is gamma

with mean µi and dispersion parameter λ, then

Si ∼ Tw

λ+ 2

λ+ 1
,miµi,

(
λ

λ+ 1

)
m

1
λ+1

i

µ
λ
λ+1

i

 ,

where Si is the total claim size of a member of the i-th group.

Proof. For each i, let Xi be a random variable with a gamma distribution of mean µi

and dispersion parameter λ. Let us find the parameters αi and βi of this distribution.

Under the parametrization α and β of the gamma distribution we have that E[Xi] = α
β

and V[Xi] = α
β2 . On the other hand, from the REDF parametrization we have that
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E[Xi] = µi and V[Xi] =
µ2i
λ

. Thus, we have the following equations

αi
βi

= µi,
αi
β2
i

=
µ2
i

λ
.

Solving for αi and βi we get that Xi ∼ gamma(λ, λ
µi

). Therefore Si ∼ CPG(mi, λ,
λ
µi

).

Then, by Theorem 3.4, we have that equivalently,

Si ∼ Tw

λ+ 2

λ+ 1
,miµi,

(
λ

λ+ 1

)
m

1
λ+1

i

µ
λ
λ+1

i

 .
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