INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI

PORTING GZILLA TO WINDOWS®

JIAN ZENG

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2001

© JIAN ZENG, 2001

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
385 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68525-X

Canada

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre résérence

Our fls Notre rétdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

PORTING GZILLA TO WINDOWS

JIAN ZENG

Gzilla is a GTK+-based light Web browser, and currently runs only on Unix and Linux
platforms. There are no versions supported by Windows platforms. This document
describes how the Unix programs of the Gzilla Web browser are ported to Windows.
Using the Cygwin environment and the Gzilla source code that was modified by the
author, two Windows versions of Gzilla were built: (1) GzillaXW, which was compiled
with GTK+, XFree86, Pthreads, Jpeg-6b, Libiconv, and GNU-intl and needs X Server
support; (2) GzillaWin, which was compiled with GTK+Win32, Pthreads, Jpeg-6b,

Libiconv, and GNU-intL

Acknowledgements

I would like to express my gratitude to my supervisor, Professor Bipin C. Desai, for his

guidance and support during the development of this major report.

Furthermore, I would like to express my appreciation to my friend, Jean-Claude, and my

wife, Qing Li, for their ideas, suggestions and help during the period of the project.

Finally, I wish to thank Cygwin Group, GTK Group, and XFree86 group for all their

perfect job.

v

Table of Contents

CHAPTER L...uuciiiiiiiinienteitioseiincssssensessssnessnssssssssssessessssssssssssasassssssssssssssssssssssssssas 1
1 INTRODUCTIONcooiiiiiiiiiiiiiinciisiissticnnnetsisssneesessssssssssensesesssssssssssessssssssssasasses 1
1.1 OVERVIEW ..ottt eeeeeeeesseeeetniresneaereeeteeeesassanesseseseseesennnnnnaseesasareseanens 1
1.2 AIM OF THE PROJECTcuuuutiimiuiierieeeiieeeeieeeeteeeeteestaanneesaninsesesseannssesseennnseesarennnnens 2
1.3 BACKGROUNDcooiitiiiiiiitiitititeeereereieeseeesenrereeeeeeseseeseeeseesesesssessessessessesssrnsensnns 3
1.3.1 Why does Gzilla have to be ported to Windows?.................ccoecvevennennn... 3
1.3.2 WOrking envirOnment..............ooueeeeeeevueeeeeeeieeeeieeeeeeeeeeeeeee e e 3
1.3.2.1 Expectations for UNIX Programmerscccoeceveevvieeeeiieciie e 4

1.3.2.2 Expectations for Windows Programmers.............ccccoeeevevveveeereenecrnnennn. h)
CHAPTER 2...uuuuiiiiititiiciiineneeiisetisiesssssnsnessinassssantesessssssessssssssssssasassssssssssssnssassssesssssnes 7
2 BROWSERSterttrtreirtiettisntertaieiiessnaniesesissnrteteseessssssaseassssstessessssssessss sonsnsnes 7
2.1 LIGHT WEB BROWSERS. ..c..uuiiiiiiiiiiee ittt e e e eeeeaeeeeeeeseeeeaeesneeesaeseaaeaeees 7
2.1.1 GZILIQ ottt e e et e s e ere e ennns 7
2.1.2 AMAYU..c.cocoioiiiiiiiiiiiiiiiiiiiie et ee s e eeeeree e e e e e e e e e e e e s e e e e s e eantaneasnrsaens 7

2.2 HEAVY WEB BROWSERS.....cootiiiiiiiiiiieette ettt ee e et e reenve s eara e enne s 9
2.2.1 Internet EXPLOrer (IE)..........uueueeeeeeeieeiieeieieieeeieeeeeeeteee et e 9
2.2.2 NEISCAPE ..ottt e e et e e e aneas 11

2.3 MICROBROWSER.......cciiiiiiuieieeieieeeieeenrantenrrteeeseeesassessnnesessesserssrmmnssssensiessessnens 13
2.3.1 UP.BIrOWSETueteeeeeeieereeeiteeeesevreseesensassseaaeene e esensnssasasensnn srnrnens 13
CHAPTER 3.ttt tiiinentsecetitnisssssssssssasicsssunssessssssssssassesssssssassssssassassansansessesse 16
3 UNDERSTANDING GZILLAccucvitriuernniniciiensssnnsntssssnssisssassssasnsssssaressanssasssse 16
3.1 WHATIS ABYTESINK? oottt ee et e st e e eeameseeas 16
3.2 HOW DOES A WEB PAGE GET DISPLAYED?......ccovtiiiiiiiiniiecniecnstenneeea e 17
33 HOW A PLUG-IN WORKS ...oiiiitiiiiiiiiieiieeeieeeeeeeeeeesirareesannneeessnnnnsesrnnaannnsesnnnnenes 20
3.3.1 URL_Proto_addc.ccooeoivioeiimiiaieiennieeeeeseeesieen e e e e eenas 2]
3.3.2 URL_0Pen_add............c.coouueeemieeeeieeeeeeeceeeeetie e eeeccetaeeeeeee e evnaeans 21
3.3.3 URL @XISES.c.ccoveeniiiieiiieeeeietittesaeeeeeeseesesseseeeeeseenas st e eeeaasesesessasen srnnnsen 22
3.3.4 NOP USINgG @ FD ...ttt ettt et 23
3.3.5 URL dO@S 1Ot @XISTuuueeeiaeerieeeireeeeeirreeeeeeeessrssssaseesasessnnsanseeee s s esnneens 24
3.3.6 URL FedIT@CHOMNcveveeieereeeeieeeeeeeeeeeveeee e e e e e e e eraatnr e e e ennereaeens 25
3.3.7 Storing data into the CAChe.............coueveeeeeeeeeeieeieeeeeeeeeeeeeeeee e 26
3.3.8 SEABUS BAT ...ttt e e e e e tven vt a e e e e 26

3.3.9 How to create a MIME viewer plug-in..................c..coveeeeeiveneiieeeeaeeenenn, 26

CHAPTER Q......eriieiieiiiiareninesetiressasresssssessanesesssessssssssnessessassssssssrsssesssssssssssssnssssns 28
4 SYSTEM REQUIREMENTScoiiiitiiiirininiinnticninenneeieseseressnssnsessesnsssssssnsssnns 28
4.1 HARDWAREcciiiiiiiiiiniitit ittt ettt e ee e e ae e esve e eaeeseeseeeanasnnnssran 28
4.2 SOFTWARE/LIBRARIESccccttrttiiiieeitieeeeieieteeeeeeeeee e eeteneeeesvsareaeesmeeemnmanes 29
4.2.1 Resources for compiling.............ccccoeeeviivviiiveeeiiiiiiiiieeeeeeeeeeeeeeeeeeaen 29
4.2.1.1 COmMMON rEQUITEMENLuueuuniiierrerereierinrreieeeeeerereeerreeeerieeeeseeesnnanannnans 29
4.2.1.2 Resources for GzillaWincooccviiirieiiiiiioieiicieeeee e 30
4.2.1.3 Resources for GzillaXW........ccococciiiiimiiiiiiiniceceee et 31

4.2.2 Resources for running Gzilla...................coovvvvmveneievveieeeeeieieeeeieeecreeeenns 31
4.2.2.1 Required for GzillaWinccoooeiiiiiriiiiiiice e 31
4.2.2.2 Resources for GzillaXW........ccccciiiiiiiiniieeeeee e e 31

4.2.3 OPHONAL.........ooveiiiiiiie ettt e s e st beae s 32

4.3 ENVIRONMENT ...couuniiiiiitiiiiieetieieeteieieeettntseesrareeeeeneesisnnsersrnesssnnesesnsssnernnnsses 33
4.3.1 CYBWIPL vttt ettt vt e eat e see s e e e aeeaesssrnnbnnsssnbssanansas 33
4.3.2 GCC 2.95.2ANA MAKEccoovonneiiaiiiaiiieeeeeeeeeeeeeec e e e e e e e 36
4.3.3 GTEH ..ttt ettt e s aae e e e s s s b e aa e e aeeenvsnssrasesnrneaens 37
4.3.4 CYZWINIXEFTEESBOoneeeeeieee ettt e e s 41
4.3.5 Other related software/liDrariesccoueeeeveeeiiecereivisiiciiceirieeeeeeeeeenns 44
4.3.5.1 Pthreadscoooeeeieieeieeee et e s 44
4.3.5.2 JPEE-OD oo e e 45
4.3.5.3 LibICONV/ICONV ..civiiiiiiiiiiiiietie i eree e vee e e e e ve e e e ssre s nananenns 46
4.3.54 GNU-IN. ettt e e e e resare s n s anas 47

4.3.6 X S@IVOEIS.cuooeiieeteete ettt etere et e e e e ettt reeaas e ranrabee s nneann s 47
CHAPTER S.....ooverrvenntiniinnreisssssssssetscsssssassisssssesssssssssssasssssssseorssaasssssessorsanaesanansasssses 50
S5 COMPILATION AND RESULTS......cuiiiviitrinccninininsscssosssssssssessssssassessssssssesses 50
5.1 CREATE AND MODIFY MAKEFILE......ccutuutiiiiiiieriireiiniteeeieteeeeenineeeeenarsssnseesnens 50
5.1.1 Create Makefile.Win32c.ococouieiviiiiiiiieiiiieeee e e e e e 51
5.1.2 Create Make. Win32couumieimiiiirieettee et ee e er e eee e et 52
5.1.3 Create MOAUIE.dESS..........oouueeceueeeeetiieie et 52

5.2 COMPILATION. . .ciiitutieeireeeeeeitieeee it eeeeeetianeeeeaneaerreseeerenserssesesssonersnnessesernnnaenns 33
S5.2.1 Compiling Errors and Resolving Problemscccccccovevemeeeeieeecccnnnn. 53
S.2.1.1 Compiling EITOTS..cuuviiiiiiiiiieertee et e e eeiree e e e e ee 53
5.2.1.2 LiInKINg EFTOTS...oumiiiiiiiiiiiiiiiieiiterce et e 56

5.2 L3 BUES ettt 57

5.3 GZILLA FOR WINDOWS ...ooiiiiiieiieieeeieiiteseeteieeeeeetreneentneesseeeessnesnneassanssnnesaenns 58
5.3.1 Why do GzillaXW and GzillaWin have to be built?cccccceeaueu.e.. 58

vi

532 GZILAXW ..ot 59

5.3.3 GZITAWIR ..ottt e eeeeaeae e 60
5.3.3.1 Why can GzillaWin not access the Internet?..................cceeovvrevveennnnnn 61
5.3.3.1.1 gdk_input_add is only partially complete on Windows................. 63

5.3.3.1.2 GTK+ MainLoOP..ccoeeieeieeeieeees ettt eae e 64

5.3.3.2 SOIIHOMNS ..veviieiiie et ettt e e e et e e e e eeeeseeeane 65
5.3.3.2.1 Using other GTK+ functions instead of gdk_input_add().............. 65

5.3.3.2.2 Using Glib to replace Glib-Win32cc.eocovviiviiinieeeeeeeeeeenn. 67

5.3.3.2.3 Design functions to replace gdk_input_add().......ccccvvreevvrenneennnn. 68

5.3.3.2.4 Implement full support of GTK+-Win32 for Windows.................. 69

5.3.4 SCPEENSHOL.....ccooeiiiieieee ettt e et e ee e s 70
CHAPTER G.....cocuieiiriiiicnnnnenennetinessisssssssssssssssssssssssssssssassssssssasasssssssssssssssssssssssassssns 72
6 CONCLUSION AND FUTURE WORKcooirirreeriirinrnneeiecrcnneeeeissssenessesess 72
6.1 CONCLUSION ...ctttcieeeieeceieeeeeeieereeeeeeeeseeeeeeseeeetasranaseesreesesresesesasansaenesseenreannness 72
6.2 FUTURE WORKottt sttt vt et ae e e e aae e te e sneeaseebe e e eans 72
BIBLIOGRAPHYuctierenireiiniiiieninntiieiiisesnessisosissstsseessssssssssasesssssssesessssssasans 74
APPENDICEScciiitietiettiericnnnnereisssassnesissstesosssnessassnsasasnssessssssassesessessssasossssnsaansane 78
A, GLOSSARY OF TERMS ..c.uereriiiririiiiinriiieiteteesientesrtessreetesstessessstesssesssesssessesssesennns 78
B, CONFIGFILES....ciiiiiitiitieeie ettt ete e e s e ssrae s e s s enbeeae s s eseae e s eabnnnnns 83
COMPTB. Rl vttt ettt st e e sr e e st e e e e s et e e st et e e e s e ssnataeaeasnsseaneanan 83

€. MAKEFILE......otiiiiiiiiiteete ettt ettt st s et esae e e st e bt e s b ae e nbaseeensenenns 85
Makefile. Win32........cccooueiiiiiiiieieee ettt s e e e 85
MAKE.WIN32 ..ottt e s e e s e e s e e e e e ee e s s b taeeaae e ee e nrnnnnan 91
MOAULE.AEfS ..ot ettt 96

D, UNICODE......iiiiiiiieeiieie ettt et et et e s st e e e s ae e st eesnne s ensnnnees 98
E. INSTALLING AND RUNNING GZILLAXW ..ottt ceeie e e e e 99

List of Figures

FIGURE 1.3.2.1: UNIX SHELL COMMAND INCYGWIN......coeoiiioriiiieniieeeeeeeeeeeeeeee e 5
FIGURE 1.3.2.2: UNIX SHELL COMMAND AND DOS COMMANDccoooeiiiiirceiieeeennn, 6
FIGURE 3.2: HOW A WEB PAGE GETS DISPLAYED......ccocovvitiiitieeiee et 20
FIGURE 5.3.2 GZILLAXW ARCHITECTURE FOR COMPILING/RUNTIME........cc.ccccoeeenrennnn.n. 59
FIGURE 5.3.3 GZILLAWIN ARCHITECTURE FOR COMPILING/RUNTIMEc...ceceueennnnn.. 60
FIGURE 5.3.4-1: OPEN CYGWIN FAQ ON GZILLAWINccoviiiieiiiieeiiie et 70
FIGURE 5.3.4-2: OPEN HOME PAGE OF GZILLA ON GZILLAXW......oooiviiviiiiiieee e 71
FIGURE 7: LIBICONV SUPPORT FOR THE ENCODINGeoovvieeteeireeeeieeeeeeeeeeeeeeteeeeeeneenenens 98

List of Examples

EXAMPLE 3.3.4: CALLAND DATA......coiiiiiiiececee et s aas 23
EXAMPLE 3.3.5: GZ_FILE_NOT_FOUND()....cceetirreertririeieiiteeereeeeeeeetecnee e eresseeeenesenes 24
EXAMPLE 3.3.7: STRUCTURE FOR STORING DATA INTO THE CACHE......ccvooieeivinnrecnnennn. 26
EXAMPLE 4.3.1-1: SET UP CYGWIN ENVIRONMENT VARIABLES UNDER WINDOWS............ 35
EXAMPLE 4.3.1-2: SET UP CYGWIN ENVIRONMENT VARIABLES UNDER CYGWIN............... 35
EXAMPLE 4.3.3-1: DEFINE MACRO VARIABLES INMAKE.WIN32 FILE........ccccvverennreennne. 39
EXAMPLE 4.3.3-2: DEFINE MACRO VARIABLES IN MODULE.DEFS FILEccovevieeeeennenne. 39
EXAMPLE 4.3.3-3: BUILDING AND INSTALLING GTK+ FROM SOURCE..........covvrirurreenennn. 40
EXAMPLE 4.3.5.1: DEFINE MACRO VARIABLES FOR PTHREADScccooiuuiiiieeeniereeeennreernns 45
EXAMPLE 4.3.5.2: DEFINE MACRO VARIABLES FOR JPEG-6Bccceeeeeeeiinnirereeeeennienenn. 46
EXAMPLE 4.3.5.3: DEFINE MACRO VARIABLES FOR LIBICONVcoceiriiiiiiireeneeeee . 46
EXAMPLE 4.3.5.4: DEFINE MACRO VARIABLES FOR GNU-INTL.......ccoovveiiiiniiiireeeeeieee, 47
EXAMPLE 5.2.1.1: SELECT.HFILE.....ccccvttteeitiiieeteeereeieieeetieetresesesseesneesssneeseenssesssesnsessnns 54
EXAMPLE 5.2.1.3-1: A BUG IN GZILLAURL.C FILE........cccesuirieereenereesnreeresennreenseesneeneennes 57
EXAMPLE 5.2.1.3-2: FIX THE BUG IN GZILLAURL.C FILE......cc0ceitimeurierreerenereeeieesneereenne. 58
EXAMPLE 5.3.3.2.1-1: MODIFICATION IN GZILLADNS.C.......cceuveeerriirnreeenreeseeeeenreesneeenns 65
EXAMPLE 5.3.3.2.1-2: MODIFICATION IN GZILLASOCKET.C ...c.cvveiererenrereenneeenerenneeeness 66
EXAMPLE 5.3.3.2.1-3: MODIFICATION IN GZIO.C....cooovviiiininiee e 66

Chapter 1

1 Introduction

1.1 Overview

This report presents the steps used to port the Gzilla Web browser [1] to the Win32
platform. Gzilla is a light browser actively being developed, and the source code of the
development version (v0.3.10) is used in this project. The ported Gzilla runs on Win32
platforms, which include Windows 9x/Me, Windows NT 4.0 SP4+, and Windows 2000.
Two versons of Gzilla (GzillaXW and GzillaWin) have been built for Win32; GzillaXW
is the Internet version, which has all features of Gzilla, but requires X Server support [4];
GzillaWin is the local version, which can only navigate local HTML pages without X

Server support.

This Chapter introduces the purpose of this project and discusses why Gzilla is ported to
Windows. Chapter 2 will introduce types of browsers and their features. Chapter 3 will
discuss how the Gzilla Web browser was implemented in Unix/Linux and what
techniques were used in Gzilla. Chapter 4 will present the required resources and
environment that would be used for porting Gzilla to Windows. Chapter 5 will discuss
the modifications of Gzilla source code, creating new makefiles, and building GzillaWin

and GzillaXW on Windows. Finally, chapter 6 will discuss future work, which is to

1

enhance the capabilities of Gzilla by having a single version that could navigate on the

Internet without support of the X Server.

1.2 Aim of the project

Gzilla is a free-as-in-speech, GTK+-based (2, 3] Web browser, written completely from
scratch in C. Gzilla Web browser currently runs on most Unix platforms and the versions
of Linux. It requires GTK+, GLIB [2, 3], X window [4], and related libraries (which will

be introduced in Chapter 3) in order to run.
Gzilla Web browser is known to run on at least the following platforms:

e Linux, x86

e Linux, PPC

e FreeBSD, x86

e NetBSD, SPARC
e Solaris, SPARC

The purpose of this project is to port the Gzilla Web browser to the various Windows
platforms, using Unix-hosted cross-compilers (Cygwin [5, 6]), gcc2.95.2 compiler [7],
GTK+ [2, 3], and XFree86 (the free and optimized X11R6) {4}, linking against the

Win32 API library.

1.3 Background

1.3.1 Why does Gzilla have to be ported to Windows?

Application software is becoming more powerful, but larger and larger, such as, Internet
Explorer and Netscape, and uses more computer resources. Users and organizations have
to purchase faster computers, add memory, or use faster network connections. Developers
of application programs have a responsibility to design their programs to make the best
use of these limited and expensive resources. A regular user may just want a light Web
browser (e.g., using less memory) when they navigate on the Internet. Gzilla Web

browser is one of this kind of light browsers and currently it runs only on Unix/Linux.

1.3.2 Working environment

Cygwin [5, 6] environment is used in this project. The Cygwin tools are ports of the
popular GNU development tools and utilities for Windows NT and 9x. They function
through the use of the Cygwin library which provides the UNIX system calls and
environment that these programs require. Cygwin comes with a number of command-line
utilities that are used to manage the Unix emulation portion of the Cygwin environment.
While many of these reflect their Unix counterparts, each was written specifically for
Cygwin. Most of the Unix shell commands can be run in Cygwin, however, DOS

commands cannot be supported in current version of Cygwin on Unix emulation mode.

Figure 1.3.2.1 shows an example, that a Unix shell command can run on Cygwin Unix

emulation mode, but a DOS command cannot be found on Cygwin Unix emulation mode.

1.3.2.1 Expectations for UNIX Programmers

Developers coming from a Unix background need a set of utilities they are already
comfortable using, including a working Unix shell (see Figure 1.3.2.1: Unix shell
command in Cygwin, but DOS commands are not supported in Cygwin). The compiler
tools (e.g., gcc) are the standard GNU compilers most people will have previously used
under Unix, only ported to the Windows host. Programmers wishing to port Unix
software to Windows 9X/NT/2000 will find that the Cygwin library provides a way to
port many Unix packages, with only minimal source code changes. Section 4.3.1 will

discuss how to install Cygwin and set up the environment variables on Windows.

Hone / o 24 2 2 hin
: ; doc
toe fade
inta
13%
fiboexes
tocal
man
hin
; 1@are
Monge 4 Ly

e

pri

2
3
2
2
4
2
8
3
4
2

SRR
dir: command nut found

VS Y

Figure 1.3.2.1: Unix shell command in Cygwin

1.3.2.2 Expectations for Windows Programmers

Developers coming from a Windows background will find a set of tools capable of
writing console or GUI executables that rely on the Microsoft Win32 API. The linker and
dlitool utility may be used to write Windows Dynamically Linked Libraries (DLLs). The
resource compiler "windres” is also provided with the native Windows GNUPro tools.
All tools may be used from the Microsoft command line prompt, with full support for

normal Windows pathnames.

After installing Cygwin, most Unix shell commands and DOS commands can run on the
same console since utilities (e.g., ls.exe) of Cygwin can be run on DOS_Mod in

Windows. Figure 1.3.2.2 shows an example.

COWINNTY System32d cnudexe
Cegino o

SRR I

C

P

i

e

Hoane
Mo

Do - N3

PY ARSIV

S

M H : 8 et
ExS Not e
Xt Honge
S Note
N . . Monge
P oo Mg

Honee Vedy Do S T R T

yur od e
eria] Nunmboes

e tory of I\ G

~
jors

n o wen s aen
hnl

o]

LXMW W
[N

= -
hry
RoRSs

- »,r':,ul:n AR
[EIFAPR ¥ RN
horse

"-l E

[y

Figure 1.3.2.2: Unix shell command and DOS command

This chapter introduced the purpose of this project, which is to port Gzilla to Windows.

Next chapter will introduces types of browsers and their features.

Chapter 2

2 Browsers

This chapter introduces types of browsers and their features and overheads. A light Web
browser is usually less powerful than a heavy Web browser. However, a light Web
browser is small and it uses fewer resources of the computer. A microbrowser [8] is

designed for handheld devices (e.g., cellphones, PDAs, etc.), rather than PCs.

2.1 Light Web Browsers

2.1.1 Gzilla

Gzilla [1] aims to be fast, efficient, highly extensible and fully standard-compliant. In
addition to the standard features one might expect to see in a Web browser, Gzilla will
also feature integration with the standard Unix command shell. Chapter 3 will discuss

more details about Gzilla.

2.1.2 Amaya

Amaya [9] is a browser/authoring tool that allows the user to publish documents on the
Web. It is used to demonstrate and test many of the new developments in Web protocols

and data formats. Given the very fast moving nature of Web technology, Amaya has a

central role to play. It is versatile and extensible and is available on both Unix and

Windows 95/NT platforms.

Features of Amaya include the following:

e Amaya lets users browse and author Web pages.

® Amaya maintains a consistent internal document model adhering to the DTD

(Document Type Definition).
e Amaya is able to work on several documents at a time.
e Amaya helps authors create hypertext links.
e Amaya includes a collaborative annotation application.
e Amaya is easily extended.

The current release, Amaya 4.2.1, supports HTML (Hypertext Markup Language) 4.01
[10], XHTML 1.0 (Extensible Hypertext Markup Language) [11], HTTP/1.1 (Hypertext
Transfer Protocol) [12], MathML 2.0, many CSS 2 (Cascading Style Sheets, Level 2)
[13] features, and limited SVG (Scalable Vector Graphics) [14]. It also includes an

annotation application based on XPointer (XML Pointer Language) [15] and RDF

(Resource Description Framework) [16].

2.2 Heavy Web Browsers

2.2.1 Internet Explorer (IE)

Features of Internet Explorer (IE) [17] include the following:

Increased DHTML (Dynamic HTML) [18] and CSS (Cascading Style Sheets)

[13] support.
Print Preview

IntelliSense, which gives users automated features that save time when they are
on the Web, such as automatically completing Web addresses and forms for you,

and automatically detecting your network and connection status.
Auto Search, which takes users exactly where they want to go.

Related Links, which find new sites which users are looking at, with an easy click

of a button.

Windows Radio Toolbar, which lets users tune in to their favorite radio station.
Email

History

Offline Browsing, which lets users read Web pages when they are not connected

to the Internet.

o Web Accessories, which users can customize Internet Explorer themselves.

e Search Assistant, which lets users choose their search engine and type of search.

System Requirements:

e Computer/Processor: 486DX/66 MHz or higher processor.

e Operating System: Windows 9X/ME, Windows NT 4.0 with service pack 3 or

higher, or Windows 2000.
e Memory:
For Windows 95 and Windows 98: 16 MB (megabytes) of RAM minimum
For Windows NT: 32 MB of RAM minimum
e Hard drive space:
Minimal install (browser-only):
Required for install: 45 MB
Required to run: 27 MB after restart
Typical install:
Required for install: 70 MB
Required to run: 55 MB after restart

Full install:

Required for install: 111 MB

10

Required to run: 80 MB after restart

2.2.2 Netscape
Features of Netscape [19] include the following:
® Convenient Browser. Netscape 6 combines browsing, e-mail and instant
messaging into one software package.

o Customization, which offers the flexibility to customize the browser to fit

individual needs and personalities.
* My Sidebar, which keeps the user connected to what is important to them.
o Smaller Download Size for faster installation

e Powerful, Integrated Search. Netscape Navigator includes a search field in the
main toolbar. Whether the users have a Web address, an Internet keyword or a
word or phrase to search for, they can enter it in the search field and get what they

want quickly.

o Integrated Communications, which supports for multiple accounts including AOL
e-mail and free Netscape WebMail accounts and keeps track of the business and

personal e-mail accounts as well as Internet newsgroups, all from one window.

11

Themes, which can add personality to the browser and allows the users to select a
style and appearance that matches their personality or mood. The users can pick

the “classic" theme or "modern" theme.

Password Manager, which remembers all login names and passwords at various

sites, and automatically fills them in for the users on future visits.

Cookie Manager, which is an easy-to-use, breakthrough feature that gives the
users more control over their online privacy. It allows the users to control how

cookies are set and modified on a site-by-site and cookie-by-cookie basis.

Forms Manager, which captures form information so the next time the users visit
a Web page that asks for the same data, the users can just click a button to

automatically fill it in.

System Requirements:

Windows 9X/ME, Windows NT 4.0, or Windows 2000
Pentium 233 MHz or faster processor
64 MB RAM

26 MB of free hard disk space

12

2.3 Microbrowser

2.3.1 UP.Browser

UP.Browser [8] is a WAP(Wireless Application Protocol)-compliant [20] microbrowser
that is designed and optimized for mass-market wireless telephones. Using UP.Browser,
wireless subscribers can access Web-based information and services that are hosted on
network operators’ or third-party Web servers. UP.Browser has been released in over 80
distinct phone models and over 200 new models are currently in development for all
major digital standards, including CDMA (Code Division Multiple Access), GSM
(Global System for Mobile Communication), PDC, PHS, and TDMA (Time Division

Multiple Access).
Features of UP.Browser include the following:

e WAP I.1 (Wireless Application Protocol) [20] Compatibility

e Multiple Bearer Support. UP.Browser microbrowser uses a bearer (such as, SMS
(Short Message Service), or CSD (Circuit Switched Data)) selection table
specified by the network operator to control which bearer is used for each type of

network address accessed.
e Notification via Universal Inbox

e Portability and Network Independence
13

Local Cache Store

Enhanced Security. Use of WTLS (Wireless Transport Layer Security protoco?l)
[21] ensures that communication between UP.Browser and UP.Link WAP Server
is secure. Communication between UP.Link WAP Server and the Web server can
be secured with HTTPS/SSL (Secure Sockets Layer) [22], providing virtual end-

to-end security.

Alphanumeric Data Entry. UP.Browser microbrowser enables mobile users to
enter data directly into the phone. It supports multiple text and data entry systems,

including Korean, Chinese, and Japanese input.
National Language Support
Scrolling and Graphics

One-Button Dialling. UP.Browser allows subscribers to place voice calls at the

touch of a button.

Local Application Environment (LAE). UP.Browser microbrowser allows offline

access to applications, enabling them to run locally in the hand-set.

Multimedia Support

14

e Touch- or Pen-based Operation. This enables users to navigate through

applications with a finger or pen without relying on a keyboard or telephone dial-

pad.

This Chapter introduced light Web browsers (Gzilla and Amaya), heavy Web browsers
(Internet Explorer and Netscape), and a microbrowser (UP.Browser). The next chapter
will discuss how the Gzilla Web browser was implemented in Unix/Linux and what

techniques were used in Gzilla.

15

Chapter 3

3 Understanding Gzilla

This chapter discusses how the Gzilla Web browser was implemented in Unix/Linux.
One of the main structuring mechanisms in Gzilla is a bytesink. It serves as the interface
between the application that wants to display Web data and the functions that parse the
Web data and display it in GTK+ widgets [2, 3]. Thus, modules implemented as

bytesinks could be used in many different applications without modification.

3.1 What is a bytesink?

A bytesink is a GTK+ object that implements many methods. Some of these methods
(e.g. write, close, reset, and set_base_url) are implemented by the bytesink module and
are invoked by the application. The remaining methods (e.g., request_url, link, status,
redirect, title, and request_url_img) are not implemented by the bytesink, but are
typically used as gtk_signals that are connected by the calling application. This is

analogous to the way the clicked method is defined by gtk_button.

16

3.2 How does a Web page get displayed?

If an application wishes to display a Web page, it typically executes the following

sequence of steps:

Create a new bytesink using, say, gzilla_web_new(). This creates a new GTK+

widget, accessible as bytesink->widget.

Pack the widget into the display window.

Connect the appropriate GTK signals (2, 3].

Start writing data into the bytesink using gzilla_bytesink_write().
When the end of the file is reached, call gzilla_bytesink_close ().

Keep the bytesink around so that the signals can be handled. If no signals were
connected (for example, in an embedded widget), the bytesink can be immediately

destroyed using gtk_object_destroy ().

The bytesink can always be destroyed after its widget is destroyed.

gzilla_web_new () takes a generic HTTP or MIME object as input, and dispatches a new

bytesink as soon as it parses the content type of the input object. gzilla_gif _new () or

gzilla_html_new() on GIF files and HTML files respectively can also be called in similar

cases. A diagram (see Figure 3.2) shows how a Web page gets displayed.

17

gzilla_nav_push(bw, argv{1}])

v

gzilla_nav_open_url(bw, url)

v

gzilla_web_new(url)

v

gzlla_cache_URL_open(url_head, web)

v

URL _open(url, Data)

v

gzilla_URL_open(url, Data)

v

MPir=URL _proto_fetch(Method, Size) -1

MPrr(url, Data)\
I \

*HdIr_fetch(UM_ltems, UM_Nitems, Key, Size)

if (UM_Nitems == 0)
return “gzilla_file_get”;

if UM_Nitems == 1)
return “gzilla_abort_get";

if (UM_Nitems == 2)
return “gzilla_http_get";

}

o

galla_file_get gzilla_abort_get

galla_http_get

18

gzilla_file_get(url, Data)

gzilla_http_get(url, Data)

v

gzilla_socket_new(hostname, port,
gzilla_hup_callback, (void*)IPtr)

v

gzilla_web_dispaich(web, CPtr)

v

content_type = gzilla_file_content_type

(filename)
v

Guzilla_web_dispatch_by_Type(Web,

content_type, &_FD2Pu(fd).Call,
&_FD2Pir(fd).Data)

image/gif

g2lmage_GIF(content_type.Ptr,Call,Data)
FD2Pu(fd).Call=gzilla_gif_callback

\ 4

v

gzHTML (content_type,Ptr,Call,Data)
FD2Pu(fd).Call=gzilla_htmi_callback

Content_type

image/jpeg

gzlmage_JPEG(content_type,Pir,Call, Data)
FD2Ptr(fd).Call=gzilla_jpeg_callback

A 4

gzPlain(content_type,Ptr,Call,Data)
FD2Pur(fd).Call=gzilla_plain_callback

v

Gzilla_cache_insert(web->Child_FD,
web->Cache_FD, web->url, Type)

19

G2 O_submit(FD, 0, (char*)CPir->Data,
CPtr->Block_Size)

A 4

gdk_input_add(FD, Iptr->10.0p?GDK_INPUT_WRITE:GDK_INPUT_READ,
GZBS_Input, [Pr)

Y
GZBS_Input(Data, FD, Why)

:

10_Do(FD, &Iptr->10)
[O_Clean(FD, Iptr)

Figure 3.2: How a Web page gets displayed

Note: one of the functions (gzilla_gif_callback(), gzilla_jpeg_callback(),
gzilla_htmi_callback(), gzilla_plain_callback()) will be called by the [O_Clean()

function. The page will display on the screen.

3.3 How a plug-in works

A plug-in is a file containing data used to alter, enhance, or extend the operation of a

parent application program. In Gzilla, a plug-in displays or interprets a particular file

20

format or protocol. A plug-in can open a file, socket, etc. Or it can just redirect the
browser to something else. Understanding how the plug-in works is helpful for people

who want to become familiar with the Gzilla program.

3.3.1 URL_proto_add

The most straightforward way to install a plug-in is to name the “protocol”.

For instance, all URLs that look like “file:/myfile” or “http:/fwww.gzilla.com/’, are routed

to the gzilla_file_get() or gzilla_http_get() function. These two functions were hooked in

by one of the following lines (implemented in URL_init.c file):
URL_proto_add(“file",gzilla_file_get);

or

URL_proto_add(*http",gzilla_http_get);

3.3.2 URL_open_add

URL_open_add() is looking for URLs that do not look like well-formed URLs. This

function looks like (implemented in URL_init.c file):

URL_open_add(gzilla_proto_get_url) ;

The open plug-ins are called in order from the most recently installed to the oldest, while

Netscape’s home page will be called and displayed in the same way if Netscape for Linux

21

is used. The first plug-in returning a non-negative number is considered to have

succeeded (and no more plug-ins will be called).

3.3.3 URL exists

The plug-in needs to figure out what the MIME type of the resource is and assign the
return value to the variable (content_type), then dispatch the proper MIME viewer to read
the URL. The following example can be found in gzilla_file_ge:t() function in gzillafile.c
file:

content_type = gzilla_file_content_type (filename);

gzilla_web_dispatch_by_Type(Ptr, content_type, & FD2Ptr(fd).Call,
& _FD2Ptr (£fd) .Data) ;

Note: fd is the file descriptor that the resource is being read from.

If content_type is “‘image/gif’, the MIME viewer would set gzilla_gif callback function

to the address of _FD2Ptr(fd).Call.

If content_type is ‘‘image/jpeg”, the MIME viewer would set gzilla_jpeg_callback

function to the address of _FD2P:r(fd).Call.

If content_type is “text/html”, the MIME viewer would set gzilla_html_callback function

to the address of _FD2Ptr(fd).Call.

If content_type is “text”, the MIME viewer would set gzilla_plain_callback function to

the address of _FD2Pir(fd).Call.

If the following line is added before calling gzilla_web_dispatch_by_Type() function, the

data will be cached (implemented in gzillaweb.c):

gzilla_web_FD(Ptr, £4d);

3.3.4 Not using a FD

If a file descriptor (fd) is not used, a call would look like:

void* Data=NULL;

__Jocallback_t Call=NULL;

gzilla_web_dispatch_by_ Type(Ptr, content_type, &Call, &Data);
When gzilla_web_dispatch_by_type() returned, an appropriate callback function address
would be assigned to Call. Call and Data contain the information on how to pass the data
back to the viewer. If all the data are available and do not need to be placed into the

cache (in this case, probably, the data come from the cache and do not need to be saved

back), the implemented code would look like Example 3.3.4:

Example 3.3.4: Call and Data

if (call)
{
_ _CacheFile_t FedCFile;

FedCFile.Data=theData;
23

FedCFile.Size=theDataSize;
Call(0,Data,&FedCFile);
Call(l,Data, &FedCFile);

The first Call lets the viewer know about the data. The second Call tells the viewer that

no more data will be available.

3.3.5 URL does not exist

When the plug-in gets the right format URL (e.g. http://www.abcd.com/), but the URL
does not exist, the best way to deal with this is to use the following function

(implemented in fileNFnd.c file) to send an error page to the user:
Gz_File_Not_Found (URL, Ptr);

Example 3.3.5 shows the implementation of Gz_File_Not_Found() function:

Example 3.3.5: Gz_File_Not_Found()

static char Buffy(2048];
static _ CacheFile_t FedCFile =
{NULL,NULL,NULL, "text/html",Buffy,sizeof (Buffy)};
static int Gz_File_Not_Found (const char *URL, void* Ptr)
{
void* Data=NULL;
__I0OCallback_t Call=NULL;
gzilla_web_dispatch_by_Type(Ptr, FedCFile.Type,
&Call, &Data);

if (i!Call) return -1;

24

sprintf (Buffy,
“<html><head><title>404 Not Found*
*</title></head>\n"
"<body><h1>404 Not Found</hl><p>"
"The requested file %s*
" was not found in the filesystem. *

"</p>\n</body></htmli>\n" ,URL);
Call(0, Data, &FedCFile);

Call(l, Data, &FedCFile);

return 0;

This looks really complex, but it integrates the previous few sections.

3.3.6 URL redirection

A HTML file can contain a Meta element that will redirect the URL (syntax: <META
HTTP-EQUIV="refresh” CONTENT="5;URL=http:/fwvww.gzilla.com/">). When the
parser gets the Meta element, it would call the URL redirection function, which is

implemented in gzillaweb.c file, as follows:
gzilla_web_redirect(Gzillaweb *Web, char* url);

The plug-in would use GzCache_redircet() function to add an URL redirection to the

cache (implemented in CacheRedirect.c file):

GzCache_redirect (const char* Orig_URL, const char* To_URL);

25

3.3.7 Storing data into the cache
The plug-in needs to create a cache structure to point to the data that is directly placed

into the cache, without relying on gzilla_dispatch_by_Type() function:

Example 3.3.7: Structure for storing data into the Cache

__CacheFile_t* CPtr=malloc(sizeof (*CPtr));

CPtr->Flags=0;

CPtr->Size = size of the data;

CPtr->Data = pointer to the data;

CPtr->Type = the content type of the data.

CPtr->URL = A string describing the URL; //this is used as the key

Then, call GzCache_add() function (an inline function implemented in gzillacache.h file)

to insert it:
GzCache_add (CPtr) ;

3.3.8 Status Bar

The following call will add text to the status bar at the bottom of the window.
gzilla_web_status (Ptr, "text");

3.3.9 How to create a MIME viewer plug-in

MIME viewers are implemented in the MIME_type_add() function:

int MIME_type_add(const char* Key, __View_t Method)
26

For a specific MIME content type, the plug-in would look like:

MIME_type_add("image/gif*, gzImage_GIF);

or

MIME_type_add("image/jpeg®, gzImage_JPEG) ;
or

MIME_type_add("image/jpg". gzIlmage_JPEG);
or

MIME_type_add ("text/html®*, gzHTML);
For content types of "text/curly”, a default viewer for MIME major types would be used:
MIME_mtype_add("text®, gzPlain);

All text-type data streams will be redirected to gzPlain.

Note: Other MIME content types, such as PDF, DOC, etc., are not implemented in Gzilla.
Gzlmage_GIF, gzlmage_JPEG, gzHTML, and gzPlain are callback functions which are

set up by MIME_init.c file.

This chapter discussed bytesink mechanisms and plug-in functions, which were used for
the implementation of Gzilla in Unix/Linux. The next chapter will present the required

resources and environment that would be used for porting Gzilla to Windows.
27

Chapter 4

4 System Requirements

This chapter presents the resources which were used to build GzillaXW and GzillaWin
on Windows. The following two sections are a list of system requirements for compiling
and running Gzilla Web browser on Win32. The remaining sections present the details of

what the software/libraries are and how to install them and set up the environment.

4.1 Hardware

e Minimum requirement: 486, Pentium or PentiumPro system with at least /6 MB

main memory

e 4MB~5.25MB free space is needed on the hard disk to install and use a binary
version of Gzilla (700KB~1.5MB) and related DLL files (/.SMB~3.6MB). The

amount of space depends on the optimization options in the makefile.

e To recompile from scratch, 300 MB free space is needed on the hard disk. The
system requires a file system, for example FAT32 and NTFS, that supports long

filenames.

28

4.2 Software/Libraries

GzillaXW and GzillaWin are built in this project. The reasons why two versions of Gzilla

for Win32 have to be built will be discussed in Section 5.3.1. To build these two versons,

different resources are required.

4.2.1 Resources for compiling

4.2.1.1 Common requirement

Windows 9x/NT 4.0 or Windows 2000.
For network connectivity, Windows TCP/IP has been installed.

Gzilla 0.3.10 source code. Gzilla has a stable and unstable (development) version.
However, the source code exists only in the development version; it can be

downloaded from Gzilla home page, http://www.gzilla.com.

Cygwin release 2.0 or later version. The current version, Cygwin release 2.0, is
available from the Web Site, hrp://sources.redhat.com/cygwin/. Or it can be
directly installed/updated by clicking the “Install Cygwin Now” hyperlink on

Cygwin home page, hztp://www.cygwin.com.

GCC 2.95.2 or later version for Cygwin. GCC 2.95.2 is included in Cygwin

release 2.0.

e Other libraries: jpeg-6b.1ib, intl.lib, etc. These libraries are included in Cvgwin

release 2.0 and GTK+-Win32 developer packages (extralibs-dev-20001007.zip).

4.2.1.2 Resources for GzillaWin

® GTK+-Win32 developer packages. These packages are required for people who
develop software using GLIB and/or GTK+-Win32. The pre-compiled DLLs and
libraries are available from the Web site, htrp:/fuser.sgic.fi/~tml/gimp/win32/.

Currently, the developer packages include:

- §lib-dev-20001226.zip, containing files which are necessary for developers of
software that uses GLIB (headers, DLLs and import libraries).

- libiconv-dev-20001007.zip, containing files which are used by GLIB.

- gtk+-dev-20001226.zip, containing files which are necessary for developers of
software that uses GTK+ (headers, DLLs and import libraries).

- gimp-dev-20001226.zip, containing files which are needed by people who want
to build GIMP plug-ins.

- extralibs-dev-20001007.zip, containing headers, DLLs and import libraries for
JPEG, PNG, TIFF, zlib, intl, and pthread. These are not required in general for

GTK+ development.

30

4.2.1.3 Resources for GzillaXw

o GTK+ 1.2 or later version source code. The differences between GTK+-Win32
and GTK+ will be discussed in Section 4.3.3. GTK+ source code of the stable
version 1.2 or the development version 1.3 is available from the Web site,

http:/fwww.gtk.org/.

e Cygwin/XFree86 v4.0 or later version. Download XFree86 archives, source code,

and patches from FTP server: ftp://mirrors.rcn.net/pub/sourceware/cygwin/xfree

or ftp://sources.redhat.com/pub/cygwin/xfree/.

e Other libraries: pthread.lib, iconv.lib, etc. These libraries are included in Cygwin

release 2.0 and GTK+-Win32 developer packages (extralibs-dev-20001007.zip).
4.2.2 Resources for running Gzilla

4.2.2.1 Required for GzillaWin

e DLL files. Glib-1.3.dll, Gtk-1.3.dll, Gdk-1.3.dll, and gmodule-1.3.dll are included
in GTK+-Win32 developer packages. Cygwinl.dll, iconv-1.3.dll, libjpeg.dll, and

GNU-intl.dll are included in Cygwin release 2.0.

4.2.2.2 Resources for GzillaXwW

e X Server [4]. One of X Servers, such as, Exceed, XFree86 X Server, or

Microlmages X Server. XFree86 X Server is included in the Cygwin/Xfree86 v4.0.

31

Or download an evaluation copy of Hummingbird Exceed from the Web site,
http://mwww.hummingbird.com/. Also, Microlmages X Server is available from

Microlmages, Inc. home page, http://www.microimages.con/.

o DLL files. Cygwinl.dll, iconv-1.3.dll, libjpeg.dll, and GNU-intl.dll are included in
Cygwin release 2.0. 1ibX11.dll and libXext.dll are included in Cygwin/XFree86

v4.0.

4.2.3 Optional

* GTK+-Win32 source packages. These packages are for people who want to work
with the source of GLIB, GTK+ and the GIMP for Win32. The following source

archives are available from the Web site, http:/user.sgic fi/~tml/gimp/win32/.

- glib-s5rc-20001226.zip, GLIB sources.

- gthk+-src-20001226.zip, GTK+ sources.

- gimp-src-20001226.zip, GIMP sources.

- extralibs-src-20001007.zip, sources of various libraries used by GTK+ and
GIMP.

- FreeType2 library, the libraries are:

GNU intl
JPEG 6b
PNG 1.0.3
TIFF 3.4
32

zlib 1.1.3
- gettext-src-20000722.zip, containing the sources of GNU gettext 0.10.35. This

package is required for people who want to build the gerzext utility programs (e.g.,
msgfmt etc).

e Linux or Solaris. Install original Gzilla binary version onto Linux or Solaris
machine. Run and compare with Gzilla Windows version. The binary versions
especially used for debugging the program. Download Linux from the Web site,

http://www. redhat.com.

4.3 Environment

Section 4.2 had a list of the software/libraries used in this project. This section gives a
brief description of the software/libraries, what they are, how to install them and set up

the environment.

4.3.1 Cygwin

Cygwin [5, 6] is a full-featured Win32 porting layer for UNIX applications, compatible
with all Win32 hosts. Cygwin is a Dynamic-Linked Library (DLL) that provides a large
subset of the system calls found in common UNIX implementations. The release v2.0
includes all POSIX.1/90 [23] calls except for setuid and mkfifo, all ANSI C standard
calls, and many common BSD (Berkeley System Distribution) and SVR4 (AT&T/USL

Unix System V Release 4) services including Berkeley sockets.

33

The following packages are available with Cygwin release 2.0:

ash, bash, binutils, bison, byacc. bzip2, clear. common, crypt, cygwin, dejagnu. diff,
expect, fileutils, findutils, flex, gawk, gcc, gdb. gperf, grep, groff, gzip, inetutils, jbigkit,
Jpeg. less, libpng, login, m4, make, man, mt, opengl, patch, sed, shellutils, tar, tcltk,

termcap, texinfo, textutils, tiff, time, vim, zIib.

For this project, users can choose the bold font packages to install, or upgrade them
individually by running the installation program (setup.exe), which is included in Cygwin

release 2.0.

After a new installation in the default location, the mount points will look something like

this:
Device Directory Type Flags
C:\cygwin\bin /usr/bin user binmode
C:\cygwin\lib /usr/lib user binmode
C:\cygwin / user binmode

Note that /bin and /usr/bin point to the same location, as do /lib and /usr/lib. There is a

hard-coded limit of 30 mount points.

Cygwin mounts the Cygwin installation directory as the root directory, /, and creates a

typical POSIX file system below that directory (e.g. /usr, /bin, /home, /var, /etc).

34

The PATH environment variable is used by Cygwin applications as a list of directories to

search for executable files to run.

The HOME environment variable is used by many programs to determine the location of

the home directory.

“make” uses an environment variable MAKE_MODE (UNIX or DOS) to decide if it

uses command.com or /bin/sh to run command lines.

The LD_LIBRARY_PATH environment variable is used by the Cygwin function
dlopen() as a list of directories to search for .dll files to load. Gzilla does not make use of

the dlopen() call and does not need this variable.

The instructions shown in Example 4.3.1-1 and Example 4.3.1-2 may provide some help

in defining environment variables under Windows:

Example 4.3.1-1: Set up Cygwin environment variables under Windows

C:/> SET PATH=%PATH%; C:/cygwin/bin;C:/cygwin/usr/bin;
:/cygwin/usr/local/bin

:/> SET HOME=C:/cygwin/home/localhostname

:/> SET MAKE_MODE=UNIX

:/> SET BASH=/usr/bin/bash

:/> SET SHELL=/bin/sh

n 0 0 00

Example 4.3.1-2: Set up Cygwin environment variables under Cygwin

$ export PATH=%PATHS;/bin;/usr/bin;/usr/local/bin
35

export HOME=/home/localhostname
export MAKE_MODE=UNIX

export BASH=/usr/bin/bash
export SHELL=/bin/sh

v v un n

4.3.2 GCC 2.95.2 and make

GCC 2.95.2 included in Cygwin release 2.0 is used to compile Gzilla for Windows. GCC
(GNU C Compiler by Richard Stallman) [7] is a very high quality, very portable

compiler for C, C++, Objective C, Fortran, Java and CHILL.

Using -mno-cygwin and —fnative-struct compiler options is really just a specialized and
simplified case of cross-compilation to build GTK+-Win32 (DLLs, libraries), which is a
mingw (Minimalist GNU for Windows) application [24]. Mingw is a collection of header
files and import libraries that allow use of GCC and produce native Windows32
programs that do not rely on any 3rd-party DLLs. The Mingw application does not
depend on Cygwin DLLs, but only depends on runtime libraries distributed as part of the

OS. In this project, the GCC command with its options looks like:
gcc -mno-cygwin -fnative-struct -c *.c

All of those things, which specify a set of targets to be built, the files they depend on and
the commands to execute are written onto a makefile (see section 5.1 Create and modify

makefile). For example, to set above switch onto makefile for the local version:

36

CC = gcc -mpentium -mno-cygwin -fnative-struct
For the Internet version:
CC = gcc -mpentium -fnative-struct

Make [7] (which is a tool to automate the recompilation, linking etc. of programs, taking
account of the interdependencies of modules and their modification times) reads

instructions from the makefile in order to produce them.

4.3.3 GTK+

GTK+ v1.2 [2, 3] or later version is required to compile or run Gzilla on Windows.
GTK+, which stands for the GIMP Toolkit [2, 3], is a set of libraries to create graphical
user interfaces for the X Window System [4]. It consists of the following component

libraries:
¢ GLIB - a set of functions which provides many useful data types, macros, type
conversions, string utilities and a lexical scanner [2, 3].
¢ GDK - a wrapper for low-level windowing functions [2, 3].
e GTK - an advanced widget set [2, 3].

GTK+-Win32 is a port of GTK+ to Windows 9x/NT. GTK+Win32 and GTK+ have the

same functions and can be used on Cygwin. However, GTK+ can fully support on Unix

37

and is primarily designed for the X Window System, while GTK+-Win32 is used on

Windows and includes no X Window System.

The above three component libraries are included in the GTK+-Win32 developer
packages. Installing the GTK+-Win32 developer packages is simply the process of
unzipping the glib_dev_20001226.zip and grk+_dev_20001226.zip files into the

appropriate directory (C:/cygwin/usr/local).

Several important macro definitions have been added to the makefile (see Appendices

Q).
* USER_DEV_PACKAGES - libraries prefix which specifies where related
software is installed.
e GLIB - prefix which specifies where GLIB is installed.
e GLIB_VER - version indicating which GLIB version is installed.

* GLIB_CFLAGS - header prefix which specifies a directory to search for GLIB's

header files.

e GLIB_LIBS - libraries prefix which specifies a directory to search for GLIB’s

libraries.

e GTK - prefix which specifies where GTK/GDK is installed.

38

e GTK_VER - version indicating which GTK/GDK version is installed.

* GTK_CFLAGS - header prefix which specifies a directory to search for

GTK/GDKSs’ header files.

* GTK_LIBS - libraries prefix which specifies a directory to search for

GTK/GDKSs’ libraries.

The macro variable definitions are shown in Example 4.3.3-1 and Example 4.3.3-2.

Example 4.3.3-1: Define macro variables in make.win32 file

ifndef USER_DEV_PACKAGES
USER_DEV_PACKAGES = /usr/local/src

endif
GLIB_CFLAGS = -I $(GLIB) -I $(GLIB)/gmodule
GLIB_LIBS = -L $(GLIB) -1lglib-$(GLIB_VER) -L $ (GLIB) /gmodule

-lgmodule-$(GLIB_VER) -L ${(GLIB)/gthread -lgthread-$ (GLIB_VER) -L
$ (GLIB) /gobject -lgobject-$(GLIB_VER)

GTK_CFLAGS = -I $(GTK)/gdk -I $(GTK)

GTK_LIBS = -L $(GTK)}/gtk -lgtk-$(GTK_VER) -L $(GTK)/gdk
-1lgdk-$ (GTK_VER)

Example 4.3.3-2: Define macro variables in module.defs file

GLIB = $(USER_DEV_PACKAGES)/glib
GLIB_VER = 1.3

39

GTK = $(USER_DEV_PACKAGES) /gtk
GLIB_VER = 1.3

GTK+ 1.2.8 source code has been compiled and installed onto Cygwin before building
the Internet version of Gzilla. The general instructions shown in Example 4.3.3-3 will

assist in building and installing GTK+ onto Cygwin.

Example 4.3.3-3: Building and Installing GTK+ from source

gunzip glib-1.2.8.tar.gz | tar xvf-
bash ./configure

bash make

bash make install

gunzip gtk+-1.2.8.tar.gz | tar xvf-
bash ./configure

bash make

v n o nvr N N nr N wv

bash make install

The following preprocessor macros (which are defined by the compiler, but used by
related C files), used for conditional compilation that relates to Win32, would be defined

if -mno-cygwin compiler option has been added to the makefile:

* G_OS_WIN32 is defined when compiling for Win32, and without any POSIX
emulation, other than to the extent provided by the bundled Microsoft C library
(msvert.dll) and the pthreads-win32 library. For instance, pathnames are in the

native Windows syntax.

40

* G_WITH_CYGWIN is defined if compiling for the Cygwin environment. Note
that G_OS_WIN32 is not defined in that case, as Cygwin is supposed to behave

like Unix. Building for Mingw is not supported.

The Win32 port of GLIB and related software use only G_OS_WIN32. As
G_OS_WIN32 is defined in glibconfig.h, it is available to all source files that use GLIB

(or GTK+, which uses GLIB).
Additionally, there are the compiler-specific macros:

e __GNUC__ is defined when using GCC

e _MSC_VER is defined when using the Microsoft compiler

4.3.4 Cygwin/XFree86

XFree86 [25] is a freely redistributable open-source implementation of the X Window
System [4] that runs on Unix(R) and Unix-like (like Linux, the BSDs, Mac OS X and
Solaris x86 series) operating systems and OS/2. Cygwin/XFree86 [26] is a port of
XFree86 version 4, the free and optimized X11R6 (4] implementation, to Windows

9x/NT.

Cygwin/XFree86 includes XFree86 libs and X Server. XFree86 libs are required for
people who develop X applications [4] using Cygwin/XFree86 DLLs and libraries.

XFree86 X Server is required for people who want to run the X applications which
4]

compile with XFree86 libs. However, XFree86 X Server is not reliable since it is not yet
developed. Instead of using the XFree86 X Server, an evaluation version of the Exceed X

Server was used in this project.

The following Zip files which include XFree86 libs were used to the project:

Xfree86-4.0-DLLs.tar.bz2 (XFree86 4.0.1 DLLs only)
xfree86-4.0-devel.tar .bz2 (XFree86 4.0.1 libs, and headers etc)

XFree86 X Server includes the following files

xfree86-4.0-Prog.tar.bz2 (XFree86 4.0.1 X Clients Excutables only)
Xfree86-4.0-Xnest.tar.bz2 (XFreef6 4.0.1 Xnest Server only)
xfree86-4.0-Xprt.tar.bz2 (XFree86 4.0.1 Xprint Server only)
xfreeB86-4.0-Xterm.tar .bz2 (XFree86 4.0.1 Xterm only)
xfree86-4.0-Xvfb.tar.bz2 (XFree86 Framebuffer X-server, very buddy,
required ntux_xf.dll from drivers directory)
xfree86-4.0-XWin.tar.bz2 (XFree86 4.0.1 Xwin X-Server executables
for Cygwin. Required latest Cygwinl.dll, alsc inclues
startxwin.bat)

Xfree86-4.0-fonts.tar.bz2 (XFree86 4.0.1 Fonts only)
xfree86-4.0-rgb.tar.bz2 (XFree86 4.0.1 /usr/X11R6/1ib/X11/rgb. txt
file. Also in xfree86-4.0.-devel.tar.bz2, but one of our developer
Harold Hunts wanted it separate, so here is it :=))

Xfree86-4.0-twm.tar .bz2 (Free86 4.0.1 Twm Windows Manager only)

Installing Cygwin/XFree86 development binaries (XFree libs) is simply the process of
unzipping (using utilities of bunzip2 and gnuzip) the Cygwin/XFree86 files into the

appropriate directories. Mount Cygwin disk as binary before extracting and compiling

42

XFree86 source code, i.e., umount / then mount -b c: /, otherwise most of the code in
xc/programs/Xserver will fail to compile and report syntax errors. Cygwin/XFree86

binaries need to end up in /usr/X11R6/bin.
Follow these steps to install Cygwin/XFree86 4.0 development binaries:

* Launch Cygwin environment, using either the icon of Cygwin or by running

cygwin.bat from Cygwin directory (e.g. c:/cygwin).
* Change to root directory by typing cd /, followed by a hard return.
* Decompress each of the following zipped files:

Xfree86-4.0-devel.tar.bz2

xfree86-4.0-DLLs.tar.bz2

For example, decompress xfree86-4.0-DLLs.tar.bz2. file:
bunzip2 xfree86-4.0-DLLs.tar.bz2

* bunzip2 will remove the .bz2 extension from each file, leaving the uncompressed

archive files ending with .tar

* Unarchive each of the tar files from the root directory, substituting each filename

for the example filename, rar -xf xfree86-4.0-DLLs. tar.

43

4.3.5 Other related software/libraries

Pthread, Jpeg-6b, Libiconv, and GNU-Intl are used to build Gzilla for Win32. Their
header prefix and library prefix should be specified in directory options in the makefile.

In general, follow the steps to install these software/libraries:

e Launch Cygwin environment

* Unzip Pthread, Jpeg-6b, Libiconv, and GNU-Intl packages 1o
lusr/local/src/pthreads-snap-1999-05-30, lusr/local/src/jpeg-6b,

tusrflocal/src/libiconv-1.3, and Jusr/local/src/intl.
* Add header files and libraries path to the makefile (See Appendix C).

4.3.5.1 Pthreads

Pthreads-win32 is needed to compile and install GTK+ under Cygwin. It allows multiple
tasks to run concurrently within the same program. Pthreads-win32 is an Open Source
Software (OSS) implementation of the Threads component of the POSIX Standard (e.g..

POSIX 1003.1c 1995 Standard) [23] for Microsoft’s Win32 environment.

The pthreads for Win32 package (such as, pthreads-snap-1999-05-30) includes the
precompiled DLL, header, and import libraries. However, it has to be installed manually

since no install-script is included in the package. The instruction for installation is to

copy pthread.dll into directory /usr/local/bin, pthread.h into directory /usr/local/include,

Prthread.lib and libpthread32.a into directory /usr/local/lib.

Example 4.3.5.1 shows the macro definitions in the makefile.in/makefile file for

compiling GLIB and Gmodule.

Example 4.3.5.1: Define macro variables for pthreads

#makefile

G_THREAD_CFLAGS = -I/usr/local/include

G_THREAD_LIBS = -L /usr/local/lib -lpthread

lib_LTLIBRARIES = libgmodule.la libgplugin_a.la libgplugin_b.la
libpthread32.a

#makefile.in
G_THREAD_CFLAGS = @G_THREAD_CFLAGS@
G_THREAD_LIBS = @G_THREAD_LIBS@

4.3.5.2 Jpeg-6b

Jpeg-6b library provides C code to read and write JPEG-compressed image files. The
surrounding application program receives or supplies image data a scanline at a time,
using a straightforward uncompressed image format. Jpeg-6b supports both 8- and 12-bit

data precision, but it is a compile-time choice rather than a run-time choice.

Installing Jpeg-6b development binaries is simply the process of unzipping extralibs-dev-

20001007.zip file into the appropriate directories (c:\cygwin\usrlocal\src\jpeg-6b) and

45

defining the following macros (given in Example 4.3.5.2) in make.win32 and module.defs

files (See Appendix C):

Example 4.3.5.2: Define macro variables for Jpeg-6b

JPEG = $(USER_DEV_PACKAGE) /jpeg-6b
JPEG_CFLAGS = -I$(JPEG)
JPEG_LIBS = -L$(JPEG) -llibjpeg

4.3.5.3 Libiconv/iconv

Libiconv (character set conversion library) provides an iconv() implementation, for use
on systems that do not have one, or whose implementation cannot convert from/to
Unicode (see Appendix D. Unicode). The iconv() function converts the sequence of
characters from one codeset, in the array specified by inbuf, into a sequence of

corresponding characters in another codeset, in the array specified by outbuf.

Installing Libiconv development binaries is simply the process of unzipping libconv-dev-
20001007 zip file into the appropriate directories (c:\eygwin\usrocal\src\libiconv-1.3)
and defining the following macros (see Example 4.3.5.3) in make.win32 and module.defs

files (See Appendix C):

Example 4.3.5.3: Define macro variables for Libiconv

LIBICONV_VER = 1.3

LIBICONV = $(USER_DEV_PACKAGE) /libiconv-$(LIBICONV_VER)
LIBICONV_CFLAGS = -I$(LIBICONV)/include

46

LIBICONV_LIBS = -L$(LIBICONV)/src -liconv-$ (LIBICONV_VER)

4.3.5.4 GNU-Intl

GNU-Intl is a part of GLIBC (GNU C Library). This library is used for compiling Gzilla.
Installing GNU-Intl development binaries is simply the process of unzipping extralibs-
dev-20001007.zip file into the appropriate directories (c\cygwin\usPNlocal\src\intl) and
defining the following macros (see Example 4.3.5.4) in make.win32 and module.defs

files:

Example 4.3.5.4: Define macro variables for GNU-Intl

INTL = $(USER_DEV_PACKAGE)/intl
INTL_CFLAGS = -I$(INTL)
INTL_LIBS = -L$(INTL) -lgnu-intl

4.3.6 X Servers

An X Server [4] is required for running the Internet version of Gzilla. One of following X

Servers for Windows can be selected:

o Exceed
o XFree86 X Server

® Microlmages X Server

47

X Server transforms a 386, 486, Pentium, or PS/2 computer into a fully functional X
Window terminal [4]. It allows clients to access Unix-based applications (X clients) [4]

from within the familiar Microsoft Windows environment.

An environment variable (DISPLAY) has to be set up before running the Internet version

of Gzilla:
SET DISPLAY = 127.0.0.1:0.0

This variable can be set into “Control Panel/System/Environment Variable” for Windows

NT/2000. For Windows 98, it can be written into Gzilla.bat file that looks like :

SET DISPLAY = 127.0.0.1:0.0

Gzilla.exe

Follow the steps to run the GzillaXW:

e Start X Server

o Start Gzilla.bat

This chapter presented how to create Cygwin environment and how to use the resources

of GTK+, GTK+-Win32, XFree86, Pthreads, Jpeg-6b, Libiconv, and GNU-intl for
48

porting Gzilla to Windows. The next chapter will discuss the modifications of Gzilla

source code, creating new makefiles, and building GzillaWin and GzillaXW on

Windows.

49

Chapter 5

5 Compilation and Results

This chapter discusses how to create makefiles, modify the Gzilla source code, and build

GzillaWin and GzillaXW on Windows.

5.1 Create and modify makefile

Either GTK+ source code or GTK+-Win32 developer packages are used to build Gzilla
on Windows. However, makefile, makefile.in, and configure.in files in GTK+ are not up-
to-date since Cygwin/Xfree86 and prhread are not in the includes and libs path (see
section 4.3 Environment). To build Gzilla with GTK+-Win32, a new makefile has to be

created (see section 5.1.1, 5.1.2, 5.1.3).

The make utility automatically determines which pieces of a large program need to be
recompiled, and issues commands to recompile them. A makefile, which is a script file
containing variable assignments and rules, tells the make how to build a particular
computer program or set of programs. This section will discuss how to create the
makefile (a makefile is separated into three files: makefile.win32, make.win32, and

module.defs, see Appendix C) and use it to build Gzilla with GTK+-Win32.

50

5.1.1 Create Makefile.win32

Makefile.win32 (See Appendix C) is used with gcc to build Gzilla programs in Cygwin.

Usage:
$ make -f makefile.win32 install

makefile.win32 contains variable assignments and rules. It should define INCLUDES,
DEFINES and DEPCFLAGS macros. INCLUDES specifies compiler options and
related modules header files path, which are GLIB_CFLAGS, GTK_CFLAGS, and
JPEG_CFLAGS. DEFINES are the libraries related to the modules, which include
GLIB_LIBS, GTK_LIBS, INTL_LIBS, LIBICONV_LIBS, and JPEG_LIBS. Also,

makefile. win32 should have a line like “include make.win32".

gzilla_SRC macro (C source files of Gzilla) is defined as “gzilla.c gzillabookmark.c,
etc.”. gzilla_OBJECTS macro (object files of Gzilla) is defined as “gzilla.o,
gzillabookmark.o, etc.”. Also, gcc Overall Options (e.g., -c, -0, etc.) should be defined in

makefile.win32.

See details in Appendix C Makefile.win32.

51

5.1.2 Create Make.win32

make.win32 (See Appendix C) is a makefile definition for building Gzilla that uses the

libraries (e.g., GLIB and GTK+) with gcc in Cygwin.

For the packages in the build module, directory options (-1dir and -Ldir) are defined in
the macros CFLAGS and LIBS (see examples in section 4.3 Environment). The
optimization and compiler options (e.g., -O2, -fnative-struct, etc.) are defined in the

macros OPTIMIZE and CC.

See details in Appendix C Make.win32.

5.1.3 Create module.defs

The build module (module.defs) is included in the software package whose make.win32

includes this file.

The version macros define what versions of libraries to use. The major and minor version

numbers are included in the library names (both import libraries and DLLs).

The version numbers are defined unconditionally. To produce a newer version of one of
these libraries, the new number should be defined in the specific project makefile after
including this file. These version numbers are used in the names of DLLs and import

libraries.

52

If the libraries are installed or upgraded by running Cygwin setup.exe, module.defs ftile
will be automatically updated. For example, upgrating GTK+ from v1.3 to vl.4, the

version macro define will be changed to:
GTK+_VER = 1.4

This means the makefile does not need to be updated when the libraries are upgraded in
Cygwin. Unfortunately, GTK+-Win32 is not included in Cygwin packages and it does

not have a configure-script. The value of version macro has to be updated by hand.

See details in Appendix C Module.defs.

5.2 Compilation

5.2.1 Compiling Errors and Resolving Problems

It is possible to easily port Unix programs to Windows without the need for extensive
changes to the source code in Cygwin. However, there are some compiling, linking, and
running errors when Gzilla is compiled using gcc2.95.2 on Cygwin. This section will

discuss what cause these errors and how to resolve them.

5.2.1.1 Compiling Errors

COMPILING ERROR: No such file or directory.

CAUSE: a wrong include path or the include file is not on Cygwin.
53

RESOLUTION: modify -1 option on the makefile. Add select.h file onto gzilla/src/

directory and modify “‘#include <select.h>” to “#include

“select.h”. Example 5.2.1.1

shows what contents are included in select. h file:

Example 5.2.1.1: select.h file

struct gelem {

struct gelem* g _forw;
struct gelem* gq_back;
char gq_data(];

}i

static __inline void insque(void *a, void *b)

(

struct gelem *element =

element->q forw

element->g_back

head;

head->gq_forw = element;

element->g_forw->q back

static
{

struct gelem *element =

element->g_forw->g_back
element->g_back->q forw

element->q back = 0;

a,

a;

*head = b;

head->gq_forw;

element;

___inline void remque(void *a)

element->g back;

element->gq forw;

54

Fortunately, there are only two inline functions used in Gzilla and no other functions

need to be implemented.

COMPILING ERROR: expected (" to follow ’__inline_ ' and ‘gzilla_imgsink_write’ : not

in formal parameter list

CAUSE: inlining hassle. For compilers that do not allow the ‘inline’ keyword, mostly

because of strict ANSI C compliance or dumbness, it is necessary to fall back to either

RESOLUTION: modify __inline__ to __inline. For example:

modify:

#ifndef def_imgsink_write
extern __inline__

#endif

to:

#ifndef def_imgsink_write
extern __inline
#endif

55

COMPILING ERROR: parse error before string constant

CAUSE: There are unknown errors. But the most case is that Unix C libs/headers and

Windows C libs/headers are different.

RESOLUTION: For this paticular project, add a macro define check before loading the

header files, the problem can be resolved. For example, in gzilla.c file:

#if defined (HAVE_UNISTD_H_) && HAVE_UNISTD_H_
#include <unistd.h>
#endif

Also, create config.h (See Appendix B) file to define macros and program version.

5.2.1.2 Linking Errors

LINKING ERROR: gzilla.obj : error LNK2001: unresolved external symbol

_gzilla_dicache_open

CAUSE: Frequent causes of the “Unresolved External” Error; Missing Object Files or
Libraries; Missing Function Body or Variable; Symbol cannot be Found in the Libraries
or Object Modules; Case Sensitivity; Name Decoration; A Symbol is not Public; Scoping
Problems and Pure Virtual Functions; Function Inlining; Wrong Compiler Options or

Mixing Incompatible Libraries

RESOLUTION: Add Libs directory onto makefile CFLAGS
56

5.2.1.3 Bugs

There are some bugs in Gzilla source code. Example 5.2.1.3-1 shows a function (in

gzillaurl.c file) which will return a wrong URL:

Example 5.2.1.3-1: A bug in gzllaurl.c file

char *gzilla_url_parse (const char *url, char *hostname, int
hostname_size, int *port)
{

if (! (ClPtr = strpbrk(CPtr, ":/")})
{
Size = strlen(CPtr);
if (thostname)
return (char*) CPtr+Size;
if (Size >= hostname_size)
return NULL;

strncpy (hostname, CPtr, Size); /Bug

return (char*) CPtr+Size;

For example, this function returns a hostname which is a string “www.gzilla.com??7”

when a required URL “http://www.gzilla.com/” is inputed.

This bug can be fixed as shown in Example 5.2.1.3-2:

57

Example 5.2.1.3-2: Fix the bug in gzillaurl.c file

char *gzilla_url_parse (const char *url, char *hostname, int
hostname_size, int *port)
{

if ('{(ClPtr = strpbrk(CPtr, ":/*)))
{
Size = strlen(CPtr);
if (!'hostname)
return (char*) CPtr+Size;
if (size >= hostname_size)
return NULL;
strncpy (hostname, CPtr, Size);

(*hostname+Size) = "\(’;

return (char*) CPtr+Size;

5.3 Gzilla for Windows

5.3.1 Why do GzillaXW and GzillaWin have to be built?

In this project, two versions of Guzilla (GzillaWin and GzillaXW) have been ported to
Windows. The main reason is that GzillaWin cannot navigate on the Internet while
browsing local HTML files. GzillaXW cannot work well on Windows if there is no X

Server support.
58

5.3.2 GzillaXw

GzillaXW is built with the ported Gzilla source code that was modified by the author,

GTK+ 1.2.8 source code and related libraries under Cygwin. The architecture of

GzillaXW is shown in Figure 5.3.2 below. Section 4.3 discussed how to install, set up

environment veriables and compiling/linking options for those libraries.

Gzilla
GTK
GDK
GLib
Unix Sock | pthread Xfree86

Cygwin/iconv/jpeg-6b/GNU-intl/gcc

X Server

Windows NT

Figure 5.3.2 GzllaXW Architecture for compiling/runtime

It is not difficult to run GzillaXW on Windows even though it needs X Server support.

First of all Server (e.g., Exceed) must be installed; then the follow two steps must be

carried out:

59

e Start X Server

¢ Run Gzilla.bat. Gzilla.bat includes two command lines:

SET DISPLAY=127.0.0.1:0.0

Gzilla.exe

5.3.3 GzillaWin

GzillaWin is built with the ported Gzilla source code that was modified by the author,

GTK+-Win32 1.3 libraries/Dls and related libraries under Cygwin. The architecture of

GzillaWin is shown in Figure 5.3.3 below. Section 4.3 discussed how to install, set up

environment veriables and compiling/linking options for those libraries.

Gzilla
GTK-Win32
GDK-Win32
GLib-Win32

Win Sock | pthread

Cygwin/gcc

MingW/iconv/jpeg-6b/GNU-intV/gcc

Windows NT

Figure 5.3.3 GzillaWin Architecture for compiling/runtime

60

5.3.3.1 Why can GzillaWin not access the Internet?

GzillaWin cannot access the Internet even though GzillaXW works well. From the above
architecture of GzillaWin and GzillaXW, it can be seen that the bugs come from GTK+-
Win32 since GzillaWin and GzillaXW use the same ported Gzilla source code. The
difference is that GzillaXW was built with GTK+, but GzillaWin was built with GTK+-

Win32.

Gzilla sets up three important callback functions and a lot of widget callback functions
(widget callback functions will be woken up if a widget event occurs, such as, pressing a

button, which will not be discussed here).

The three callback functions (gzilla_dns_callback, gzilla_socket_input_handler,

GZBS_Input) are set up by the following functions:

For gzilla_dns_callback, fd is defined as a pipe:

gdk_input_add(fd,
GDK_INPUT_READ,
(GdkInputFuncticn)gzilla_dns_callback,

{(gpoint) index) ;

For gzilla_socket_input_handler, fd is defined as a socket:

gdk_input_add(fd,

61

GDK_INPUT_WRITE,

(GdkInputFunction)gzilla_socket_input_handler,
(void *)SPtr);

For GZBS_Input, FD is defined as a file descriptor/socket:

gdk_input_add(FD,
Iptr->I0.0p?GDK_INPUT_WRITE1GDK_INPUT_READ,
GZBS_Input,

Iptr);

The three callbacks will sleep in gtk_main loop until an event (pipe, socket, or file 10)
occurs and control is passed to the appropriate callback function. GzillaXW will follow

the steps below if a user wants to visit a web address:

e Wake up gzilla_dns_callback to convert Web address to [P address, listen to the

related pipe.
e Wake up gzilla_socket_input_handler to create a socket connection.
e Wake up GZBS_I/nput and pass socket descriptor to GZBS_Input.
e GZBS_Input will read data from FD and put data into Gzilla buffer.

e (Call Gzilla parse and send expose-event to refresh all GTK+ widget which is used
in Gzilla

62

However, gdk_input_add does not work well in GTK+-win32 if fd is defined as a socket

or pipe. Gzilla will follow the steps below if a user wants to visit a web address:

o Wake up gzilla_dns_callback to convert Web address to IP address, listen to the

related pape.

e Wake up gzilla_socket_input_handler to create a socket connection and stop

there.
e GZBS_Input is never woken up

5.3.3.1.1 gdk_input_add is only partially complete on Windows
gdk_input_add() establishes a callback when a condition becomes true on a
pipe/socket/file descriptor. See syntax of gdk_input_add() :
gint gdk_input_add(gint source,
GdkInputCondition condition,

GdkInputFuncticn function,

gpoint data)

source: a pipe/socket/file descriptor

condition: the condition

function: the callback function

data: callback data passed to function

return: a tag that can later be used as an argument to

gdk_inpug_remove() .

63

gdk_input_add(}) is currently just wrappers around the IO Channel facility. The
GIOChannel data type aims to provide a portable method for using file descriptors, pipes,
and sockets, and integrating them into the main event loop. Currently, full support is
available on Unix platforms, though support for Windows is only partially complete (see

documents on http://www.gtk.org/glib/_glib-io-channels. html). That means it is a normal

behaviour that gdk_inpur_add() cannot work well in GTK+-Win32.

5.3.3.1.2 GTK+ MainLoop
The main event loop manages all the available sources of events for GLib and GTK+
applications. These events can come from any number of different types of sources such

as file descriptors (plain files, pipes or sockets) and timeouts.

Each event source is assigned a priority. The default priority, G_PRIORITY_DEFAULT,
is 0. Idle functions can also be added, and assigned a priority. These will be run whenever

no events with a higher priority are ready to be processed.

The GMainLoop data type represents a main event loop. A GMainLoop is created with
g_main_new(). After adding the initial event sources, g_main_run() is called. This
continuously checks for new events from each of the event sources and dispatches them.
Finally, the processing of an event from one of the sources leads to a call to

g_main_gquit() to exit the main loop, and g_main_run() returns.

64

GTK+ contains wrappers of many of these functions, e.g., gtk_main(), gtk_main_quit(),
gtk_events_pending(), gtk_idle_add(), gtk_timeout_add() and gtk_input_add_full(). In a

GTK+ application, these wrapper functions should be used.

5.3.3.2 Solutions

5.3.3.2.1 Using other GTK+ functions instead of gdk_input_add()

According to the GTK+ documents, two GLib functions could be used to replace
gdk_input_add():

g_io_channel_unix_new()

g_io_add_watch ()

In the same way, use g_source_remove(), g_idle_add(), g_idle_remove(),
g_timeout_add(), and g_timeout_remove() to replace gdk_input_remove(),

gtk_idle_add(), gtk_idle_remove(), gtk_timeout_add(), and gtk_timeout_remove().

Example 5.3.3.2.1-1, Example 5.3.3.2.1-2, and Example 5.3.3.2.1-3 show what I

modified in the Gzilla source code:

Example 5.3.3.2.1-1: Modification in Gzilladns.c

//gdk_input_add{dns_server{index] .pipefd(0],
// GDK_INPUT_READ,
// (GdkInputFunction) gzilla_dns_callback,

// (gpointer) index);

65

pipeChannel = g_io_channel_unix_new(dns_server[index].pipefd[O]);
g_io_add_watch({pipeChannel,

G_IO_IN,

(GIOFunc) gzilla_dns_callback,

(gpointer) index);

Example 5.3.3.2.1-2: Modification in Gzillasocket.c

//gdk_input_remove (SPtr->input_tag);

g_source_remove (SPtr->input_tagqg);

//SPtr->input_tag = gdk_input_add (fd,

// GDK_INPUT_WRITE,
// {(GdkInputFunction) gzilla_socket_input_handler,
// (void *)sSptry);

socketChannel = g_io_channel_unix_new(fd);
SPtr->input_tag = g_io_add_watch(socketChannel,
G_IO_0ouT,
(GIOFunc) gzilla_socket_input_handler,
(void *)SPtr);

//gdk_input_remove (SPtr->input_tag);

g_source_remove (SPtr->input_tagq);

Example 5.3.3.2.1-3: Modification in GzIO.c
//gdk_input_remove {_FD2Ptr (FD) .Param(l]);

g_source_remove(_FD2Ptr(FD) .Param{1l])) ;

//gdk_input_remove (_FD2Ptr (FD) .Param(1l]);

g_source_remove(_FD2Ptr(FD) .Param{l]) ;

66

//gdk_input_remove (_FD2Ptr{(FD) .Param{0]) ;

g_source_remove(_FD2Ptr (FD) .Param(0]) ;

//_FD2Ptr (FD) .Param[IPtr->I0.0p] = gdk_input_add(FD,
// IPtr->I0.0Op?GDK_INPUT_WRITE:GDK__INPUT_READ,
// GZBS_Input,

/7 IPLr);

fdChannel = g_io_channel_unix_new(FD);

_FD2Ptr (FD) .Param[IPtr->10.0p] = g_io_add_watch(fdChannel,
IPtr->I0.0p?G_IO_OUT:G_IO_IN,
(GIOFunc) GZBS_Input,
IPtr) ;

Recompiling GzillaWin and GzillaXW, GzillaXW works well, but GzillaWin cannot
access the Internet, which means that the modifications of Gzilla source code are correct,

but GTK+-Win32 does not fully support IO Channel on Windows.

5.3.3.2.2 Using Glib to replace Glib-Win32

It is not easy to replace GLib-Win32 by GLib because GTK-Win32 and Gdk-Win32 need
a lot of functions which are included in GLib-Win32, but not in GLib. Furthermore, the
GLib and GLib-Win32 cannot be merged to another lib/dll because GLib and GLib-
win32 compile with different base libs: GLib needs Cygwin and Unix socket , but GLib-
Win32 needs MingW and Win socket. As seen from their makefiles, there are different

compiler options used in GLib-Win32 and GLib.

GLib-Win32 uses the following compiler option:
67

-mno-cygwin -fnative-struct
GLib uses the following compiler option:
-fnative-struct

5.3.3.2.3 Design functions to replace gdk_input_add()

It is very difficult to implement gdk_input_add() function since gdk_input_add needs to
cal g_io_channel_unix_new()/g_io_add_watch() and g_io_channel_unix_new()/
g_lo_add_watch() needs other GLib functions, and so on. The author’s solution is to link
g_io_channel_unix_new(), g_io_add_watch(), and related functions to GLib library and

link other GLib functions to GLib-Win32 library. To do this, follow these two steps:

e Use g_lo_channel_unix_new(), g_lo_add_watch(), g_source_remove(),
g_idle_add(), g_idle_remove(), g_timeout_add(), and g_timeout_remove() to
replace gdk_input_add(), gdk_input_remove(), gtk_idle_add(), gtk_idle_remove(),

gtk_timeout_add(), and gtk_timeout_remove().

e Compile Gzilla with the above functions+Glib and other functions+Glib-Win32.
However, the callback functions, which are set up by the above functions could

never be woken up because GMainLoop cannot manage the sources of events

which are not in GLib-Win32 libs.

68

5.3.3.2.4 Implement full support of GTK+-Win32 for Windows
The best solution is for a group to completely implement full support of GTK+-Win32
for Windows. Hence, until the GTK+Win32 gimp contributes the implemention of full

support, Gzilla would need X Server support in Win32.

69

5.3.4 Screenshot

hots of

IS O g1ve screens

The best way is to understand what GzillaWin and GzillaXW are

GzillaWin and GzillaXW. Figure 5.3.4-1 shows whole user interface of GzillaWin, and

how GzillaWin browses on a local HTML page.

in\test. html

elease\b

\cygwin\r

c

;.jﬁl'e

mn

FAQ on GazllaW

gwin

.3.4-1: Open Cy

igure 5§

F

70

Figure 5.3.4-2 is a nice example of a typical use of GzillaXW to browse an Internet Web

page. GzillaWin and GzillaXW have simular user interface.

Figure 5.3.4-2: Open Home Page of Gzilla on GzllaXW

This chapter discussed that GzillaWin and GzillaXW were built on Windows. The next

chapter will have a conclusion of this report.

71

Chapter 6

6 Conclusion and Future Work

6.1 Conclusion

This document describes how the Gzilla-Unix browser was ported to the Windows
platform using the Cygwin environment and the gcc compiler. Cygwin provides Unix-
hosted cross-compilers and Win32 tools. Gzilla was written as a shared library that adds
the necessary Unix-like functionality that is missing from the Win32 API (fork, sockets,
etc.). Many Unix/Linux libs (libiconv.lib, jpeg.lib, etc.) have been encapsulated into the
Cygwin package. Especially in the project, GTK+-Win32 and X-Free86 (over 100MB of
source code, free and optimized X11R6) have been ported to Windows on Cygwin
environment. It is feasible to compile and execute Gzilla-Unix on Windows. Unix-like
(e.g., nternet version) and Linux-like (e.g., local version) software are possible to run on

Windows platform.

6.2 Future Work

GzillaWin and GzillaXW Web browsers have been successfully compiled under Cygwin.

They can be run on Windows. However, additional capabilities are planned for inclusion

72

in future versions. The following work is being conducted to enhance the capability of

the Gzilla-Win32 browser:

Upgrade GzillaWin and GzillaXW Web browsers. Make a single version that has

all the features of Gzilla and does not require support by X Server.

Fix and report bugs.

Add some pre-processor macros, such as, _OS_WIN32, _OS_LINUX, or
_OS_UNIX, etc., into Gzilla source code. Different compiler options can be used

to build Gzilla browser for different platforms.

Add XML [15], CSS [13], and ECMAScript [27] parsers to enhance the capability

of Gzilla browser (presently only HTML [10] parser exists in Gzilla browser).

Research and find an easy way (which fewer changes to the source code) for
porting Unix C/C++ programs to Windows and Windows C/C++ programs to

Unix.

73

Bibliography

[1] Download and find links to documentation for Gzilla by going to the Web site:

http://www.gzilla.com.

[2] Developing Linux Applications with GTK+ and GDK by Eric Harlows . Publisher:

New Riders Publishing, 02/01/99. The ISBN is 0-7357-0021-4.

[3] GTK+/GNOME Application Development by Havoc Pennington . The ISBN is 0-
7357-0078-8. Publisher: New Riders Publishing.

http://developer.gnome.org/doc/GGAD/ggad.html
[4] Documentation of X Windows System, http://www.x.org/

[5] Cygwin Users Guide, DJ Delorie, Pierre Humblet, Geoffrey Noer.

http://sources.redhat.com/cygwin/cygwin-ug-net/cygwin-ug-net.html

[6] Cygwin API Reference, DJ Delorie, Geoffrey Noer.

http://sources.redhat.com/cygwin/cygwin-api/cygwin-api.html
[7] GCC online documentation, http://gcc.gnu.org/onlinedocs/

[8} Download and find links to documentation for UP.Browser by going to the following

Web sites:
74

http://developer.openwave.com/support/techlib.html
http://developer.openwave.com/download/index.html

[9] Download and find links to documentation for Amaya by going to the Web site:

http://www.w3.org/Amaya/

(10] HTML 401 Specification, W3C Recommendation 24 December 1999,

http://www.w3.org/TR/html4/

[11] Extensible Hpypertext Markup Language 1.0 (Second Edition), W3C

Recommendation 6 October 2000, http://www.w3.0rg/TR/REC-xmV/

[12] Hypertext Transfer Protocol by R. Fielding, etc., June 1999, ftp:/fip.isi.edu/in-

notes/rfc2616.txt

[13] Cascading Style Sheets, Level 2, W3C Recommendation 12 May 1998,

http://www.w3.0rg/TR/REC-CSS2/

[14] Scalable Vector Graphics (SVG) 1.0 Specification, W3C Recommendation 2

November 2000, http://www.w3.0org/TR/SVG/

[15] XML Pointer Language (Xpointer) v1.0 W3C Draft 7 June 2000,

http://www.w3.0rg/TR/2000/WD-xptr-20000607/

75

[16] Resource Description Framework (RDF) Model and Syntax Specification, W3C

Recommendation 22 February 1999, http://www.w3.0rg/TR/REC-rdf-syntax/

[17] Download and find links to documentation for IE by going to the Web site:

http://www.microsoft.com/windows/ie/default.htm

(18] Document Object Model (DOM) Specification, W3C Recommendation,

http://www.w3.0org/DOM/

[19] Download and find links to documentation for Netscape by going to the Web site:

http://home.netscape.com/

[20] WAP Forum Specifications, June 2000,

http://www.wapforum.org/what/technical. htm

[21] Security in the WTLS by Sami Jormalainen and Jouni Laine, 1 October 2000,

http://www hut.fi/~jtlaine2/wtls/

[22] SSL 3.0 SPECIFICATION by Alan O. Freier, etc., November 1996,

http://home.netscape.com/eng/ssl3/

[23] A POSIX Standard for Better Multiprocessing, by Bradford Nichols, Dick Buttlar &

Jacqueline Proulx Farrell, Ist Edition September 1996.

[24] MingW online documentation, http://www.mingw.org/docs.shtml.
76

[25] The Concise Guide to XFree86 by Aron Hsiao, published by Que Press, copyright

2000

[26] Cygwin/XFree86 User’s Guide, by Harold Hunt.

http://www.msu.edu/~huntharo/xwin/docs/ug/cygwin-xfree-ug.html

[27] ECMAScript Language Specification, 3rd edition, December 1999,

http://www.ecma.ch/ecmal/stand/ecma-262.htm

(28] Korn, David G. UWIN - UNIX for Windows. Proceedings of the 1997 USENIX

Windows NT Annual Technical Conference.

[(29] Walli, Stephen R. OpenNT: UNIX Application Portability to Windows NT via an
Alternative Environment Subsystem. Proceedings of the 1997 USENIX Windows NT

Workshop Proceedings.

77

Appendices

A. Glossary of Terms

BSD - Berkeley System Distribution.

Bytesink - a GTK+ object that implements about a dozen methods.
CDMA - Code Division Multiple Access.

CSD - Circuit Switched Data.

CSS - Cascading Style Sheets.

Cygwin — GNU + Cugnus + Windows. Cygwin tools are ports of the popular
GNU development tools and utilities for Windows 9X/NT/2000. They function by

using the Cygwin library which provides a Unix-like API on top of the Win32

APIL

DHTML - Dynamic HTML.
DNS - Domain Name System.
DTD - Document Type Definition.

Free-as-in-speech - The GNU Project was launched in 1984 to develop a
complete Unix-like operating system which is free software: the GNU system.

Variants of the GNU operating system, which use the kernel Linux, are now

78

widely used; though these systems are often referred to as *‘Linux”, they are more

accurately called GNU/Linux systems.

FreeBSD - A free operating system based on the BSD 4.4-lite release from

Computer Systems Research Group at the University of California at Berkeley.
gee - GNU project C and C++ Compiler.

GDK - (GIMP Drawing Kit) is designed as a wrapper library that lies on top of
Xlib. It performs many common and desired operations for a programmer instead
of the programmer having to explicitly ask for such functionality from Xlib

directly.

GIMP - the GNU Image Manipulation Program. It is a freely distributed piece of
software suitable for such tasks as photo retouching, image composition and

image authoring.

GLIB - is a lower-level library that provides many useful definitions and
functions available for use when creating GDK and GTK+ applications. These
include definitions for basic types and their limits, standard macros, type
conversions, byte order, memory allocation, warnings and assertions, message
logging, timers, string utilities, hook functions, a lexical scanner, dynamic loading

of modules, and automatic string completion.

GLIBC - GNU C Library.
79

GNOME - GNU Network Object Model Environment.

GNU - a complete Unix-like operating system. GNU is a recursive acronym for

“GNU’s Not Unix”, it is pronounced *“guh-New”.
GSM - Global System for Mobile Communication.

GTK - (Gimp Toolkit) is a library for creating graphical user interfaces similar to
the general look and feel of Motif. In reality, it looks much better than Motif, It is
designed to be a small and efficient widget set. It contains common widgets and

some more complex widgets such as a file selection, and colour selection widgets.
HTML - Hypertext Markup Language.

HTTP - Hypertext Transfer Protocol.

JPEG - Joint Photographic Experts Group.

Make - is a tool to automate the recompilation, linking etc. of programs, taking

account of the interdependencies of modules and their modification times.
MIME - Multipurpose Internet Mail Extensions

Mingw - is a collection of header files and import libraries that allow one to use

GCC and produce native Windows32 programs that do not rely on any 3rd-party

DLLs.

PDA - Personal Digital Assistant.
80

Plug-in - a file containing data used to alter, enhance, or extend the operation of a

parent application program.
PNG - Portable Network Graphics.

POSIX - Portable Operating System Interface. It is a set of IEEE standards

designed to provide application portability between Unix variants.
PPC - Power PC.

RDF - Resource Description Framework.

SMS - Short Message Service.

SPARC - Scalable Processor Architecture.

SVR4 - AT&T/USL Unix System V Release 4.

SVG - Scalable Vector Graphics.

TDMA - Time Division Multiple Access.

TIFF - Tagged Image File Format.

URL - Uniform Resource Locator.

WAP - (Wireless Application Protocol) is an open international standard for

applications that use wireless communication.

WTLS - Wireless Transport Layer Security protocol.
81

X11R6 - Version 11 Release 6 of the Window System.

X Client - a local or remote application that interacts with the X Server to appear

on your PC’s screen as it would on a remote Unix or VMS terminal/workstation.
Xfree86 - the free and optimized X11R6.

XML - Extensible Hypertext Markup Language.

XPointer - XML Pointer Language.

X Server — A process which controls a bitmap display device in an X Windows

System.
SSL - Secure Sockets Layer.

X Window Terminal - a system which combines local PC, a remote host, and the
X Server. The X server bridges the gap between the two systems by monitoring

all inputs and translates that input to the X Client application.

82

B.Config Files
config.h

/* Define if you have the

#define STDC_HEADERS 1

/* Define if you have the
#define HAVE_SOCKET 1

/* Define if you have the

#define HAVE_FCNTL_H 1

/* Define if you have the
#define HAVE_JCONFIG_H 1

/* Define if you have the

#define HAVE_JERROR_H 1

/* Define if you have the
#define HAVE_JMORECFG_H 1

/* Define if you have the
#define HAVE_JPEGLIB_H 1

/* Define if you have the

#define HAVE_UNISTD_H 1

/* Define if you have the

#define HAVE_SYS_UIO_H 1

/* Name of package */

#define PACKAGE *gzilla“

ANSI C header files. */

socket function.

*/

<fcntl.h> header file. */

<jconfig.h> header file. */
<jerror.h> header file. */
<jmorecfg.h> header file. */
<jpeglib.h> header file. */
<unistd.h> header file. */
<sys/uio.h> header file. */

83

/* Version number of package */

#define VERSION "0.3.10"

84

C.Makefile
Makefile.win32

BRGBHBEHEB S

Makefile for building the Gzilla programs with gecc for Windows.

Use: make -f makefile.win32 install

BhdBBLHABABUEUEY

Change this to wherever you want to install the release version
of gzilla browser. This directory should be in your PATH.

BIN = /bin

RELEASE = /release/bin

include make.win32

GHAsAAHEHEH R
Nothing much configurable below

INCLUDES = -DHAVE_CONFIG_H \
-I .\
-I ..\
-I $(USER_DEV_PACKAGES) \
$ (GLIB_CFLAGS) \
$ (GTK_CFLAGS) \
$ (JPEG_CFLAGS)

DEFINES = $ (GLIB_LIBS) \
$(GTK_LIBS) \
$ (INTL_LIBS) \
$(LIBICONV_LIBS) \
$ (JPEG_LIBS)

85

all : \

gzilla.exe

install : all
$(INSTALL) gzilla.exe $(RELEASE)
$ (INSTALL) $(BIN)/cygwinl.dll $(RELEASE)
$ (INSTALL) $(JPEG)/libjpeg.dll $(RELEASE)
$ (INSTALL) $(INTL)/gnu-intl.dll $(RELEASE)
$ (INSTALL) $(GLIB)/glib-$(GLIB_VER) .dll $(RELEASE)
$ (INSTALL) $(GLIB)/gmodule/gmodule-$(GLIB_VER).dll $(RELEASE)
$ (INSTALL) $(GTK)/gtk/gtk-$(GTK_VER) .dll $(RELEASE)
$ (INSTALL)} $(GTK)/gdk/gdk-$(GTK_VER) .dll $(RELEASE)
$ (INSTALL) $(LIBICONV)/src/iconv-$(LIBICONV_VER).dll $(RELEASE)

rm *.exe

gzilla_SRC = \
commands.c \
gtkgzwscroller.c \
gtkgzwview.c \
gtkstatuslabel.c \
gzilla.c \
gzillabookmark.c \
gzillacache.c \
gzilladicache.c \
gzilladns.c \
gzillagif.c \
gzillahtml.c \
gzillaimage.c \
gzillaimgsink.c \
gzillajpeg.c \

gzillamisc.c \

gzillanav.c \
gzillaplain.c \
gzillasocket.c \
gzillaweb.c \
gzplugin.c \
gzw.c \
gzwborder.c \
gzwbullet.c \
gzwembedgtk.c \
gzwimage.c \
gzwpage.c \
gzwrect.c \
gzwregion.c \
gzwtest.c \
interface.c
menus.c \
I0/CacheNew.c \
I0/CacheRedirect.c \
I0o/CacheTmp.c \
I0/GzAddCacheFD.c \
I0/Gz2I0.c \
IO/GzIOData.c \
IO/Reads.c \
MIME/MIME_init.c \
MIME/MIME_view.c \
URL/FileNFnd.c \
URL/gzabout.c \
URL/gzillafile.c \
URL/gzillahttp.c \
URL/gzillaproto.c \
URL/gzillaurl.c \
URL/gzURL_open.c \

87

URL/Hdlr_add.c \
URL/Hdlr_fetch.c \
URL/URL_abs.c \
URL/URL_init.c \
URL/URL_open.c \
URL/URL_parseh.c \
JRL/URL_pparse.c \
URL/URL_protoa.c \

Cache/GzCache_items.c

gzilla_OBJECTS = \
commands.o \
gtkgzwscroller.o \
gtkgzwview.o \
gtkstatuslabel.o \
gzilla.o \
gzillabookmark.o \
gzillacache.o \
gzilladicache.o \
gzilladns.o \
gzillagif.o \
gzillahtml.o \
gzillaimage.o \
gzillaimgsink.o \
gzillajpeg.o \
gzillamisc.o \
gzillanav.o \
gzillaplain.o \
gzillasocket.o \
gzillaweb.o \
gzplugin.o \

gzw.o \

88

gzwborder.o \
gzwbullet.o \
gzwembedgtk.o \
gzwimage.o \
gzwpage.o \
gzwrect.o \
gzwregion.o \
gzwtest.o \
interface.o
menus.o \
CacheNew.o \
CacheRedirect.o \
CacheTmp.o \
GzAddCacheFD.o \
GzIO.o \
GzIQOData.o \
Reads.o \
MIME_init.o \
MIME_view.o \
FileNFnd.o \
gzabout.o \
gzillafile.o \
gzillahttp.o \
gzillaproto.o \
gzillaurl.o \
gzURL_open.o \
Hdlr_add.o \
Hdlr_fetch.o \
URL_abs.o \
URL_init.o \
URL_open.o \
URL_parseh.oc \

&9

URL_pparse.o \
URL_protoa.o \

GzCache_items.o

makefile.winl32: makefile.win32.in
sed -e ‘s,@GLIB[_])MAJOR_VERSION@,1, ‘' \
-e 's,@GLIB[_]MINCR_VERSION@, 3, ' <$< >$@

.SUFFIXES: .c .exe

EXPORTS = glib.def \
gtk.def \
gdk.def
gmodule.def
.c.exe:
$(CC) $(INCLUDES) $(OPTIMIZE) -c¢ $(gzilla_SRC)
$(CC) $(INCLUDES) $(OPTIMIZE) -o gzilla $(EXPORTS)
$(gzilla_OBJECTS) $(DEFINES)

glib-$(GLIB_VER) .dll: glib.def
gmodule-$ (GLIB_VER) .dll: gmodule.def
gtk-$ (GTK_VER) .dl1l: gtk.def

gdk-$ (GTK_VER) .d11l: gdk.def

clean::
rm *.exe

rm *.o

90

Make.win32

2332223111332 T 2
Common makefile definitions for building Gzilla and various

software that use the libraries(GLib and GTk+) with gcc on Win32

AuHBiRtaussuddun

Some libraries have headers that cannot be used from the source
directories, we have to "install* them. USRDIR is a directory

where we have an “include" subdirectory for headers.

USRDIR = /install

(2233323333 T
The makefile.win32 files in the source directories (or
subdirectories) all include this file right at the top after

defining some macros used here.

ifndef OPTIMIZE
OPTIMIZE = -02

endif

ifndef TOP
TOP =

endif

ifndef USER_DEV_PACKAGES
USER_DEV_PACKAGES = /usr/local/src
#USER_DEV_PACKAGES = /usr/local/20001023

endif

REGHBERGRRE 444

It is hard to include module.defs. There is no way to tell GNU

91

Make to include it from the same directory *this* file is in,
it? The build module can be as a freestanding directory, or
included in the software package whose makefile includes this
file.

-include $(TOP)/build/win32/module.defs

ifndef MODULE_DEFS_INCLUDED

-include build/win32/module.defs

ifndef MODULE_DEFS_INCLUDED

£ S

-include ../build/win32/module.defs

ifndef MODULE_DEFS_INCLUDED

-include ../../build/win32/module.defs
ifndef MODULE_DEFS_INCLUDED

-include ../../../build/win32/module.defs
ifndef MODULE_DEFS_INCLUDED

-include ../../../../build/win32/module.defs
ifndef MODULE_DEFS_INCLUDED

-include ../../../../../build/win32/module.defs
endif

endif

endif

endif

endif

endif
BHABGHUHBARBHES

CFLAGS and LIBS for the packages in module.defs.
In alphabetical order.

FREETYPE2_CFLAGS = -I $(FREETYPE2)/include
FREETYPE2_LIBS = -L $(FREETYPE2)/obj -1lfreetype

FriBidi headers need to be "installed".

is

92

FRIBIDI_CFLAGS = -I $(USRDIR)/include

FRIBIDI_LIBS = -L $(FRIBIDI) -lfribidi-$(FRIBIDI_VER)

GIMP_CFLAGS = -I $(GIMP)

GIMP_PLUGIN_LIBS = -L $(GIMP)/libgimp -lgimp-$(GIMP_VER) -lgimpui-
$ (GIMF_VER)

GLIB_CFLAGS = -I $(GLIB) -I $(GLIB)/gmodule

GLIB_LIBS = -L $(GLIB) -1glib-$(GLIB_VER) -L $(GLIB)/gmodule -

lgmodule-$ (GLIB_VER) -L $(GLIB)/gthread -lgthread-$(GLIB_VER) -L
$ (GLIB) /gobject -lgobject-$ (GLIB_VER)

GTK_CFLAGS = -I ${(GTK)/gdk -I $(GTK)
GTK_LIBS = -L $(GTK)/gtk -1lgtk-$(GTK_VER) -L $(GTK)/gdk -1lgdk-
$ (GTK_VER)

GTKCURRENT_CFLAGS = -I $(GTKCURRENT)/gdk -I ${GTKCURRENT)
GTKCURRENT_LIBS = -L $(GTKCURRENT)/gtk -lgtk-win32-

$ (GTKCURRENT_VER) -L $(GTKCURRENT) /gdk -lgdk-win32-

$ (GTKCURRENT_VER)

GTKGLAREA_CFLAGS = -I $(GTKGLAREA)
GTKGLAREA_LIBS = -L $(GTKGLAREA) /gtkgl -1lgtkgl-$ (GTKGLAREA_VER)

INTL_CFLAGS = -I $(INTL)
INTL_LIBS = -L $(INTL) -lgnu-intl

JPEG_CFLAGS = -I $(JPEG)

JPEG_LIBS = -L $(JPEG) -llibjpeg

LIBICONV_CFLAGS = -I $(LIBICONV)/include

LIBICONV_LIBS = -L $(LIBICONV)/src -liconv-$(LIBICONV_VER)

93

LIBXML_CFLAGS = -I $(LIBXML)
LIBXML_LIBS = -L $(LIBXML) -1xml-$(LIBXML_VER)

OPENGL_CFLAGS = $(PLATFORMSDK_CFLAGS)
OPENGL_LIBS = -lopengl32 -1glu32

PANGO_CFLAGS = -I $ (PANGO)
PANGO_LIBS = -L $(PANGO)/pango -lpango-$(PANGO_VER)
PANGOWIN32_LIBS = $(PANGO_LIBS) -lpangowin32-$ {PANGO_VER)

HHHBEGUBUHEHREY
Must use -idirafter for PlatformSDK so the mingw Win32 API

headers have precedence

PLATFORMSDK_CFLAGS = -idirafter $(PLATFORMSDK)/include

PNG_CFLAGS = -I $(PNG) $(ZLIB_CFLAGS)
PNG_LIBS = -L $(PNG}) -lpng $(ZLIB_LIBS)

TIFF_CFLAGS = -I $(TIFF)/libtiff

TIFF_LIBS = -L $(TIFF)/libtiff -1ltiff $(JPEG_LIBS) $(ZLIB_LIBS) -
luser32

ZLIB_CFLAGS = -I $(ZLIB)
ZLIB_LIBS = -L $(ZLIB) -1z
iSRS R ST

Compiler to use. The -fnative-struct switch is important so that

the produced libraries are also callable from MSVC-compiled code.
Only gcc 2.95 or later for mingw (distributed by Mumit Khan) have
#

the -fnative-struct switch.

94

CC = gcc -mpentium ~fnative-struct

RERBHBREHSH S

Variocus other tools

DLLTOOL
INSTALL

dlltool

install

CFLAGS = $(OPTIMIZE) $(INCLUDES) $(DEFINES) $(DEPCFLAGS)

(R3S S E 2

Useful rules

.SUFFIXES: .c¢ .o .i

.Cc.1:

$(CC) $(CFLAGS) -E $< >s@

The default target should be *all"

default: all

clean::

-rm *.o *.i *.exe *.dll *.a *.base *.exp

95

Module.defs

22 23T ST T
This file is included by makefiles for both GNU Make (for gcc
(mingw) builds, and NMAKE (for MSVC builds).

MODULE_DEFS_INCLUDED=1

EEEE T EE I RT Y
The version macros define what versions of libraries to use.
The version numbers are defined are used in the names of DLLs

(and import libraries).

FRIBIDI_VER = 0.1.12
GIMP_VER = 1.1
GLIB_VER 1.3
GTKEXTRA_VER = 0.99
GTKGLAREA_VER = 1.2.2
GTK_VER = 1.3
GTKCURRENT_VER
LIBGLADE_VER
LIBICONV_VER
LIBXML_VER = 1.
PANGO_VER = 0.12

1.3
0.14
1.3
8

REBBHAS RS

Locations of various source directories. USER_DEV_PACKAGES is

defined in make.{mingw,msc}

2333333 ETE TR
First stuff that is in the GNOME CVS repository.
In alphabetical order.

96

GIMP
GLIB

$ (USER_DEV_PACKAGES) /gimp

$ (USER_DEV_PACKAGES) /glib

GTK = $(USER_DEV_PACKAGES) /gtk+

GTKCURRENT = $(USER_DEV_PACKAGES) /gtk+-current
GTKGLAREA = $(USER_DEV_PACKAGES) /gtkglarea

INTL = $(USER_DEV_PACKAGES)/intl

LIBGLADE = $(USER_DEV_PACKAGES)/libglade

LIBXML = $(USER_DEV_PACKAGES) /libxml-$ (LIBXML_VER)
PANGO = $(USER_DEV_PACKAGES) /pango

HESGBGHH SRR
Stuff from other places.

FREETYPE2 = $(USER_DEV_PACKAGES) /freetype?2

FRIBIDI = $(USER_DEV_PACKAGES)/fribidi-$(FRIBIDI_VER)
GTKEXTRA = $(USER_DEV_PACKAGES) /gtk+extra

JPEG = $(USER_DEV_PACKAGES) /jpeg-6b

LIBICONV = $(USER_DEV_PACKAGES)/libiconv-$(LIBICONV_VER)
PNG = $(USER_DEV_PACKAGES) /libpng-1.0.3

TIFF = $(USER_DEV_PACKAGES) /tiff-v3.4

ZLIB = $(USER_DEV_PACKAGES)/zlib-1.1.3

RUGHAHGHERGHSHES
This is the location of pthreads for Win32,
see http://sourceware.cygnus.com/pthreads-win32/

#
We want at least the 1999-05-30 snapshot. Later ones might also
#

work.

PTHREADS = $ (USER_DEV_PACKAGES) /pthreads-snap-1999-05-30

97

D.Unicode

European languages

ASCII, ISO-8859-{1,2,3,4,5,7,9,10,13,14,15,16}, KOIS-
R, KOI8-U, KOI8-RU,
CP{1250,1251,1252,1253,1254,1257}, CP{850,866},
Mac({ Roman,CentralEurope,Iceland,Croatian, R omania },
Mac{Cyrillic,Ukraine,Greek, Turkish }, Macintosh

Semitic languages

ISO-8859-{6,8}, CP{1255,1256}, Mac{ Hebrew, Arabic)

Japanese EUC-JP, SHIFT-JIS, CP932, ISO-2022-JP, ISO-2022-JP-
2, ISO-2022-JP-1

Chinese EUC-CN, HZ, GBK, EUC-TW, BIG5, CP950, ISO-2022-
CN, ISO-2022-CN-EXT

Korean EUC-KR, CP949, IS0-2022-KR

Armenian ARMSCII-8

Georgian Georgian-Academy, Georgian-PS

Thai TIS-620, CP874, MacThai

Laotian MuleLao-1, CP1133

Vietnamese VISCII, TCVN, CP1258

Platform specifics HP-ROMANS, NEXTSTEP

Full Unicode UTF-8, UCS-2, UCS-2BE, UCS-2LE, UCS-4, UCS-4BE,

UCS-4LE, UTF-16, UTF-16BE, UTF-16LE, UTF-7,
JAVA

Full Unicode, in terms of
‘uint16_t’ or ‘uint32_t’

UCS-2-INTERNAL, UCS-4-INTERNAL

Figure 7: Libiconv support for the encoding

98

E.Installing and running GzillaXW

Installing GzillaXW on Windows:

e Install an X Server on Windows.

e Create a directory in Windows (e.g., c:\Gzilla).

* Copy gzilla.exe (which was compiled with Gtk+ and XFree86) into the directory.
¢ Copy cygwinl.dll into the directory. cygwinl.dll can be found in Cygwin package.
* Copy libjpeng.dil into the directory. libjpeng.dil can be found in Jpeg-6b package.

e Copy libX11.dll and libXert.dll into the directory. libX11.dll and libXert.dll can be

found in XFree86 package.

e Create gzilla.bat which includes the following contents:

SET DISPLAY=127.0.0.1:0.0

Gzilla

Running GzillaXW on Windows:

e Start X Server

e Run gzilla.bat.

99

