INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smaill overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

AUTOMATED TEST GENERATION FROM FORMAL
SPECIFICATIONS OF REAL-TIME REACTIVE SYSTEMS

MAO ZHENG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOrR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2002
© Mao ZHENG, 2002

i~l

‘r:fational Library guumue nationale
uisitions and Acquisitions et .
aﬁiographic Services services bibliographiques
Otawa ON K1A NG Ottws ON KTA ONA
Canada Canada
Your file Votre réidrence
Our Sla Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68212-9

Canadi

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Automated Test Generation from Formal Specifications of Real-Time
Reactive Systems

Mao Zheng, Ph.D.
Concordia University, 2002

Real-time reactive systems are among the most difficult systems to design and imple-
ment because of their size and complex functional and timing requirements. They are
often used in safety-critical contexts. Consequently, the correction of such systems
must be assured before they are deployed. This thesis addresses the quality assur-
ance of real-time reactive systems through rigorous testing methods. The thesis gives
methods to generate test cases from the formal specifications of real-time reactive
systems developed in TROMLAB framework.

The scope of this thesis encompasses two major components. A Homomorphism
Theorem is given that serves as a basis for automated test case generation from the
grid automaton associated with the extended state machine formalism. A number of
algorithms are also given for generating test cases for black-box testing of reactive class
implementations, implementations of class refinements and system configurations.
The testing methodologies are theoretically sound, yet being practical for automated
test case generation.

1ii

To my parents.

v

Acknowledgments

I would like to deeply thank my supervisor, Dr. V.S. Alagar. He guided me through-
out my study at Concordia University and played a significant role in shaping my
research career. His rigorous research attitude and professional shrewdness were fun-
damental to the success of this research work. Without his wisdom, his unfailing
guidance, constant encouragement and insightful comments, this work would not
have been possible. I am really fortunate to have had such a great supervisor to go
through this long journey.

I am grateful to the TROMLAB research group for thought-provoking discussions.

I thank the faculty, staff and students of the Computer Science Department at
Concordia University for providing me with a stimulating, and yvet personal environ-
ment to work.

I gratefully acknowledge the financial support provided by my supervisor during
my study at Concordia University. I also thank Concordia University for awarding
me the Graduate Fellowships, International Tuition Fee Remission and Carolyn and
Richard Renaud Teaching Assistantship.

On a personal level, I thank my parents and my brother for giving me all the best
that anyone can ever ask for. Their love and support accompany me at all times.

[would also like to bring attention to Catherine and Richard who have brought
significance to this accomplishment.

Contents

List of Figures ix
List of Tables xi
1 Introduction 1
1.1 Real-Time Reactive System 1
1.2 Research Goals 2
1.3 Major Contributions and Thesis Outline 4
2 TROMLAB - Context of Testing 7
2.1 Introduction 7
22 TROMFormalism 10
2.2.1 First Tier - Abstract Data Types 11
2.2.2 Second Tier - Timed Reactive Object Model 11
2.2.3 Third Tier - System Configuration Specification 16
23 CaseStudy 17

3 Formal Basis of Testing UML Models of Real-Time Reactive Sys-
tems 22
3.1 Imtroduction e 22
3.2 RTUML Typesand Domains. 23
3.21 TimeSemantics 26
3.2.2 Reactive Object Model in RTUML 27
3.23 ReactiveSystem Modelo Lo oLl 35
3.3 Automated Testing of RTUML Models 38

vi

4 Related Work

4.1
4.2
4.3
4.4

Introduction

................................

Untimed System

.............................

Timed System
Comparison With Our Work

.......................

5 Unit Testing

5.1
3.2
5.3

Introduction
Test Adequacy Criteria
Homomorphism
5331 ClockRegions
5.3.2 Definition of Grid Automaton
5.3.3 Homomorphism
5.3.4 Homomorphism Theorem
Unit Testing e
5.4.1 Algorithm GA: Grid Automaton Construction
5.4.2 The complexity of the algorithm GA
543 Example e

5.4.4 Algorithm TC: Generating Test Cases from a Grid Automaton

6 Testing Derived Classes

6.1
6.2
6.3

6.4

Introduction
Concept of Inheritancein TROM
Behavioral Inheritance
6.3.1 Attribute Redefinition
6.3.2 Transition Redefinition

6.3.3 Time-constraint Redefinition

..................

634 Example. e
Extensional Inheritance
6.4.1 State Redefinition

6.4.2 Attribute Addition oL
6.4.3 Event Addition, State Addition and Transition Addition . . .
6.4.4 Time-constraint Addition

....................

6.4.5 Example

..............................

vil

39

6.5 Polymorphic Inheritance 81
6.5.1 Attribute Addition oL, 81

6.5.2 Other Additions. 81

6.53 Example 82

6.6 Parameterized Events and General Inheritance 86
6.6.1 ParameterizedEvents. 86

6.6.2 General Inheritance 87

7 System Testing - I 95
7.1 Introduction 95
7.2 Pair Testing: Testing a pair of Objects 95
7.2.1 Algorithm for Constructing the Synchronous Product Machine 96

73 Exampleo 99

8 System Testing - II 101
81 Introduction 101
8.2 Synchronous Product foraSystem 102
8.3 Partition Algorithm 104
8.4 Test Cases for Components in a Partition. 107
8.4.1 Grid-synchronous Product 107

8.4.2 Constructing Grid-synchronous Product 109

8.4.3 Grid-synchronous Product Theorems 113

8.4.4 Test Case Generation for a Component 115

8.5 Test Case Generation for System 115

9 Conclusion 118
9.1 Test Case Generation and Systematic Testing 118
9.2 Summary of Contributions and Future Work 121
Bibliography 124

viil

List of Figures

-] O G b W N

B ORN N RN = o = s e e e = = = O 00
8§§wMHOKOOO-IO>U\J-wI\D~O

TROMLAB Architecture
Process Model for Developing Complex Reactive Systems
Overview of TROM Methodology
LSL Trait for Set o e
Anatomy of 2 Reactive Object

Template for Class Specification
Formal Specification of Class Arbiter
Template for System Configuration Specification
Class Diagram for Train, Gate, and Controller Entities
Formal Specification for GRC Controller
Statechart Diagram for Controller
Formal Specification for GRC Train
Statechart Diagram for Train
Formal Specification for GRC Gate
Statechart Diagram for Gate

Formal Specification for Train-Gate-Controller Subsystem

...................

.......................

Collaboration Diagram for 5 Train - 2 Gate - 2 Controller
RTUML and Automated Testing
ClockRegions e
Grid Automaton for 2 Time Constrained Transition
Grid Automaton for Train

..........

Grid Automaton for Controller

.....................

Grid Automaton for Gate

........................

The Principle of Inheritance

Class Specification of Channel
Class Specification of OrdChannel

ix

Class Specification of Basic-Phone 78
Class Specification of Answer-Phone: Enhancement 79
Grid Automaton of ringing-machine 79
Class Specifications of the Communicating Arbiter. 83
Grid Automatonof Remp e 835
Arbiter State Diagram 88
Formal Specification for GRC Arbiter-Simple. 89
Arbiter StateChart Diagram 92
Formal Specification for GRC Arbiter 93
Formal specification for GRC Arbiter-Continued 94
Temporal Predicates 97
Svnchronous Product of Train and Controller 100
Svnchronous Product of Controllerand Gate 100
An Example of System Configuration 102
(Train @ Controller) @ Gate 103
A General Architecture Lo Lo L oL 106
The Architecture of Train-Gate-Controller System 106
Principle of Grid-Synchronous Product 108
Two Linear Automata 112
The RoleofanOracle 120

List of Tables

1 Possible States of the Arbiter Class

2 Definitions of the Temporal Predicates

Chapter 1

Introduction

1.1 Real-Time Reactive System

The term reactive was introduced by Harel and Pnueli [HP83] to designate systems
that continuously interact with their environment through stimulus and response.
The term reactive also distinguishes the stimulus and response synchronizations in
reactive systems from those that are available in interactive and transformational
systems. The real-time behavior of a reactive system is regulated by time and persists
across some interval of time during which it responds to inputs as they occur. Two

important properties characterize real-time reactive systems:

e stimulus synchronization: the process always reacts to a stimulus from its envi-

ronment;

e response synchronization: the time elapsed between a stimulus and its response
is acceptable to the relative dynamics of the environment, so that the environ-
ment is still receptive to the response.

A real-time system is a software system that maintains an ongoing and timely
interaction with its environment. The behavior of a real-time reactive system en-
compasses concurrency, communication through sensors and actuators, and relations
between input and output over time. Such systems often operate in safety-critical
contexts, with applications in control systems for nuclear reactors, air traffic, rail-

road crossings, telecommunications, and medicine. In safety-critical applications,

the consequences of failure are extremely high, usually with a threat to human life.
Safety-critical systems are expected to perform as desired and should never fail.

Generally, the behavior of a reactive system is infinite: the process in a reactive
system is usually continuously responding to the stimuli from its environment. The
correct behavior of non-real time systems is founded on the functional correctness
of the result. By contrast, real-time reactive systems require both the functional
correctness of the result and its timing correctness. Hence, safety of such systems,
which concerns prevention of risks to human life or property, relies on good analysis
of the functional and timing properties of those systems. Nevertheless, real-time
reactive systems are large and complex and consequently understanding or describing
the behavior of such systems becomes very difficult.

In recent studies [RP93], formal methods have been applied to manage the com-
plexity in modeling and implementing real-time reactive systems. Software-development
techniques based on mathematics are called formal methods, and they are beginning
to become both practical to apply and capable of providing substantial improvements
in software quality. Two broad categories of techniques for assuring high-quality soft-
ware are formal verification [Mut00] and testing [BG93, Heg89]. Although formal
verification is based on a sounder theoretical foundation than testing, it is generally
considered impractical to formally verify large complex software products. Therefore

testing has remained the most commonly used technique for ensuring software quality.

1.2 Research Goals

The goal of this research is the investigation of testing methods for real-time reactive
systems founded on formal methods. Softwares that operate and control safety-critical
applications must be thoroughly tested before the software is installed in the opera-
tional environment. This thesis proposes a testing methodology based on the formal
software specification and gives algorithms for automated test case generation of real-
time reactive systems. We provide a theoretical basis to justify the algorithms for
test case generation and propose methods for efficiently implementing them.

The factors that contribute to the complexity of real-time reactive systems include
largeness, concurrency, time constraints on stimuli and responses, complex sequenc-

ing of events, and an incomplete knowledge of the environment wherein it is supposed

to be embedded. The complexity of the system permeates from requirement analysis
to design, verification, implementation and testing. Time constraints, in addition
to functionality, must be correctly carried through design refinements. The design
must be verified for safety properties and validated for time-dependent functionali-
ties. Verification deals with the specification of the system under consideration and
aims to ensure that design specification satisfies predefined functional and timing
requirements. A mechanical verification approach for reactive systems, proposed by
Muthiayen and Alagar [MA99], complements the testing method discussed in this
thesis.

The goal of testing is to uncover errors and improve the quality of software. Anim-
plementation of a system that has been formally verified for safety properties should
still be tested. This is to guard against the errors due to resource constraints that
might forbid the timed behavior at certain instances in the operational environment
of the software. In this thesis, a black-box testing approach is investigated, limited
to generating test cases from formal specifications. This approach is conformance-
directed, therefore the intent is to provide a method for system developer to demon-
strate conformance of the implementation to the design specification. Conformance-
directed testing need not consider potential implementation faults in detail, but must
establish that a test suite is sufficiently representative of the properties/features for
a system. It is our view that black-box testing can adequately complement formal
verification and validation effort in assuring an acceptable level of accuracy in an
implementation.

Black-box testing relies on the quality of the specification of the system under
test. If the specification is loose, the effectiveness of testing will be weak. Usually
the results obtained from an implementation are compared with an oracle and the
correctness of the implementation is certified only when they match in all test cases.
When a good formal specification of the system is available, it can be used both as an

oracle and a medium to generate test cases. The motivation for this research work

comes from the following considerations:

e The correctness and safety requirements of real-time reactive systems must be
assured in a safety-critical context. Test cases generated from a design that

correctly incorporates the safety requirements are sufficient to certifv the safety
in an implementation.

e The object-oriented software development life cycle and its artifacts adopted by
Timed Reactive Object Model (TROM) formalism [Ach93] are different from tra-
ditional real-time software development practices. Traditional software testing
does not apply directly to object-oriented software.

e There is considerable value added to the entire development process when a

rigorous testing is correctly combined with software development.

e There is an inherent limitation of formal verification for real-time reactive sys-
tems: methods based on model checking and theorem proving have exponential

time complexity even when the model of time is discrete.

e Although specification-based testing methods for untimed systems have been
studied in depth, not much work has been done for rigorous testing of timed

systems. We take up the discussion on related work in Chapter 4.

1.3 Major Contributions and Thesis Outline

In this thesis, a methodology is given for testing real-time reactive systems devel-
oped in TROMLAB [AAM98] framework. The methodology includes methods for
testing classes (unit testing), refinements of classes (inheritance testing), and system
configurations (system testing). The methodology, although strictly follows TROM
formalism, is adaptable for testing real-time reactive systems whose behavior can be
abstracted as timed labeled transition systems.

Since the behavior of a real-time reactive system may be infinite, testing its be-
havior is a non-trivial problem. The significance of the research reported in this thesis
lies in construction of a grid automaton with finite number of states and whose be-
havior can be homomorphically mapped to the infinite timed behavior of the labeled
transition system that models the behavior of a reactive class. This construction
provides the basis for an algorithm to generate test cases for unit testing.

Chapter 2 reviews TROMLAB, an environment for developing real-time reactive
systems according to TROM formalism and gives the context of the research de-
scribed in this thesis. Test case generation algorithms and a test driver for injecting
test cases into a Java implementation are being integrated with the automatic code
generation tool [Zha00]. Chapter 3 reviews TROM formalism and Real Time UML

4

(RTUML) [Mut00] to illustrate that UML models of reactive systems consistent with
TROM formalism can be constructed. The motivation here is twofold: to introduce
TROM formalism on which the testing methodology is founded, and to suggest that
our testing methodology is applicable to UML models of reactive systems that have
TROM as the semantic basis. Chapter 4 provides a survey of related work on testing
real-time reactive systems with particular emphasis on black-box testing. Although
a number of methods have been reported for testing object-oriented softwares, no
efficient method has been reported yet for a rigorous testing of real-time reactive
systems. Chapter 5 contains several major results:

e Test Adequacy: Two test adequacy criteria are given. These are used in test
case generation algorithms.

e Homomorphism: A homomorphism theorem is stated as the basis for the con-
struction of a finite state grid automaton.

e Algorithms: Algorithms are given for generating sufficient number of test cases
for a reactive class.

Chapter 6 provides methods for incrementally generating test cases for inherited
classes. Three forms of inheritance are defined in [Ach935]. Chapter 7 gives an al-
gorithm for generating test cases for testing a system configured with two interacting
objects that are instances of classes for which test cases have already been generated.
The algorithm involves two steps:

e the synchronous product machine of the two instantiated objects is constructed,
and

e test cases are generated from the grid automaton of the synchronous product
machine.

Chapter 8 discusses a method for minimizing the complexity of testing a real-time
reactive system composed with n (n > 2) objects. The system configuration is
decomposed into smaller components in such a way that

e each component, abstracted as a directed graph, is complete,

e the combined behavior of the components is equivalent to the behavior of the
whole system.

An algorithm is given for generating test cases of the whole system as a composition
of test cases generated for smaller components. The crucial step is in the utilization
of the test cases generated for pairs of interacting objects in generating test cases for

each component. Chapter 9 concludes the thesis with a discussion of future directions

of research.

Chapter 2

TROMLAB - Context of Testing

2.1 Introduction

The research work reported in this thesis has been done in the context of TROM-
LAB [AAM98], a formal framework for rigorous development of real-time reactive
systems. The prototype TROMLAB environment, shown in Figure 1, has been con-
structed over the last six vears and used as a testbed for real-time reactive systems
development.

GRAPEICAL CSER INTIRFACE

I

SOMCLATION TOOL

SDATATOR

}

|
]

Hilli

L

t
i

Figure 1: TROMLAB Architecture

The following components of TROMLAB are currently operational:

=~}

e Interpreter - [Tao96] A parser, syntax checker and internal representation
constructor;

e Simulator - [Mut96] A tool that simulate a subsystem based on the internal

representation and enables a systematic validation of the specified system;

e Browser - [Nag99] A tool that help users navigate, query and access various

system components for reuse during system development;

e UML-RT Support - [Pop99] A translator to generate TROM specification
from Real-time UML;

e Verification Assistant - [Pom99] A tool to generate PVS theory from TROM
specification for proving timing properties;

¢ Graphical User Interface - [Sri99] A visual modeling and interaction facility
for a developer using the TROMLAB environment;

e Reasoning System - [Hai99] A tool to provide a means of debugging the sys-
tem during animation by facilitating interactive queries of hypothetical nature
on system behavior.

e Code Generator - [Zha00] It automatically generate Java code from TROM
specifications.

The testing tool built as part of this thesis will be integrated with the interpreter,
the code generator, and the metrics tool being built by Ormandjieva [Orm02|.

Software development activity in TROMLAB framework, assisted by the above
tools, is carried out according to TROM formalism, integrated in the process model
shown in Figure 2. The primary distinction between traditional process models and
the process model of TROMLAB is in the integration of rigorous methods through
the different stages of development. The Graphical User Interface provides complete
transparency of the formalism to software developers in the framework.

The process model requires a formal model of the environment to be produced
and integrated with system elements. Environment objects are abstracted and their
interface to system elements are formally defined. System requirements which include
functional and timing requirements are identified and their formal descriptions are

produced. A reactive system model is composed from the software unit and the model

8

.
H
H
i / Desired s,m- Physical
E Properties (R-qmumuu Envir
H Reactive
: ''''' Software Unit
s>
: g ‘ | Testing J
: <5 .
: H .
: ¢ Reactive System Redesign :
: Model :
: H <> B
2. : Formal Model : :
Formal H of the ¢ Implementation H
: .
Properties : Environment : '
: :
! :
H H
t Verificatio
i completed. Formal Model :
H of the H
: Software Unit H
H 3 H
» .
< 7
Redesign Redesign
L .
PVS d Animation Tool
(Verification) (Validation)

Figure 2: Process Model for Developing Complex Reactive Systems

of the environment. Integration of Rational Rose with initial stages of model building
activities enables the construction of visual models of reactive systems.

The formal model of the reactive unit is not implemented until several iterations
of design take place. Validation is done by animating the reactive system design.
Simulation and reasoning are two techniques used to debug the design and predict
its behavior. Simulation and reasoning tools use the formal model and hence is
independent from any implementation constraints such as resource and process speed.
This experimentation gives better insight into what the crucial properties of the design
are and how these are directly related to the requirements. If flaws due to incorrect
functions or inconsistent timing behavior are noticed during system simulation and
reasoning, the process model allows an iterative inner cycle for redefining the formal
model of the reactive unit and validating it.

System verification takes place at the next stage of the process model. Time
critical properties, such as safety properties, are verified formally at this stage. The
system design is mechanically translated to a set of PVS theories consisting of axioms
describing the timed behavior of the system. The desired properties are formalized

and are included as lemmas in PVS theories. A mechanized verification procedure

is discussed in [Mut00]. An iterative cycle enables redesigning the system when the
design does not satisfy the desired properties.

Test suits are generated from the verified and validated design specification, and
are independent from implementation decisions. In TROMLAB framework black-box
testing is used to test the conformance of the code generated by [ZhaQ0] with respect
to the verified and validated design specifications. Thus, the generated code certified
by the black-box testing can be trusted to conform to the initial requirements.

2.2 TROM Formalism

In this section we review TROM formalism [Ach95] which is founded on merging
object-oriented and real-time technologies. Our testing approach is modular to suit
the TROM formalism’s abstract three-tiered structure. Figure 3 shows the three-
tiered structure of the TROM methodology. Abstract models from a lower tier can

be included in upper tiers. The formalism is sufficiently expressive for modeling large
real-time reactive systems.

|

' A n Requirements specification in PVvS
| Allen’s Temporal Logict ATL)
]

Tool
Validation '-[[- Formal Verification

: System Coafiguratior i System Theory: |
Subsystem + n ’ - N
Car:gun'om : Specilication ' Synch. Axioms in ATL | ¢
TROM : Timed Resctive : TROM txory:
Computaticns : Object Model ' Axioms in ATL
: Larch Shared : Birst order
Daza Mode! . Language (LSL) S Logic
......................... 3- Tiered Design - cooeete .
Operational Semantics Specification Logical Semantics

Figure 3: Overview of TROM Methodology

10

2.2.1 First Tier - Abstract Data Types

Abstract data types and theories can be specified in the first tier in Larch [GH93]
style. For instance, the abstract data type Set is defined by the LSL (Larch Shared
Language Trait) in Figure 4. The different sections of a trait define included traits, the
signature for operations on the sort defined by the trait, the assertions constraining the
operations, and the logical consequences that can be inferred from the assertions. In
Figure 4, the introduces clause declares a set of operators, each with its signature (the
sorts of its domain and range). The body of the trait contains, following the asserts
clause, equations between terms containing operations and variables. The generated
by clause states that all values of sort C can be represented by terms {} and insert.
The operators listed in the partitioned by clause are sufficient to distinguish unequal
set values. The implies section describes additional properties of sort C that follow
from the assertions part. The theory of a trait is the set of all logical consequences
of its assertions. It contains evervthing that logically follows from its assertions, but
nothing else. All operators listed in the converts clause are defined for terms in their
domains in the exceptions noted in the ezempting clause.

The Larch language supports a family of Interface Specification languages. Each
interface specification language is designed for a specific programming language. For
instance Larch/C++ [GH93], the interface specification language for C++ program-
ming language, can be used to specify how C++ class interfaces must be invoked by
a client program. An implementation of a data type specification is thus linked to the
interface specification. Based on LSL traits and Larch/C-++ interface specifications
Celer [AC935] and Protopsaltou {Pro96] have given black-box testing methods for data
type implementation. The code generator implemented by Zhang [Zha00] uses a small
Larch/Java interface specification language while mechanically generating Java code
in TROMLAB framework. The test suit generation methods discussed in this thesis
will assume that data type implementations have been tested by the above methods.

2.2.2 Second Tier - Timed Reactive Object Model

A TROM defines a Generic Reactive Class (GRC) parameterized with port types. A
port type is an abstract interface defining the set of messages (events) that can be
received or sent by an object of the class at a port of this type. The signature of a
port-type P gives the set of events that can occur at the port-type P, denoted by € P

11

Set(E, C) : trait

% Essential finite-set operators

includes Integer

introduces
{}—»C
insert: E,C = C
_€__:FE,C — Bool
delete : E,C — C

asserts
C generated by {}, insert
C partitioned by €
Vs:C,e,e,e: FE

(e {})
e, € insert(ey,s) ==e =e, Ve €s
delete(e,,insert(eo, s)) == if (e; = e2) then s

else insert(e,, delete(ey, s))
implies
Vee,e:Es:C
insert(e,s) # {}
insert(e, insert(e, s)) == insert(e, s)
insert(ey, insert(ey, s)) ==
insert(es, insert(ey, s))
converts €, delete
exemptingV z: E
delete(z, {})

Figure 4: LSL Trait for Set

EFP =EFUEL, , where £ is the set of input events, £F,, is the set of output events,
and €5, N EF, = 0. Message exchange can occur only between compatible ports. Two
port type P and @ are compatible if

o e?cfL o ele&l,

eelcEl o e?cEf

out

A GRC may include attributes of two kinds: (1) abstract data types imported from
the first tier, and (2) port types. The attribute functions define the association
of attributes to states. For each state, the attribute function defines a subset of
attributes that are active in the state. For a computation associated with a transition
entering a state, only the attributes associated with that state are modified and all

other attributes will be read-only in that computation.

12

The semantic model of reactive objects belonging to a GRC is a timed labeled
transition system, extended with hierarchical states, logical assertions involving clock
variables and variables of included traits. A transition between two states is specified
by a guard and an action. A guard is a conjunction of two predicates, one specifyving
the port-condition for the event labeling the transition, and the other specifying the
enabling condition on the attributes in the pre-state of the transition. An action is
specified as a predicate involving the attributes in the post-state of the transition.
A clock may be initialized as part of an action, if the event labeling the transition
triggers a future action. The guard of a constrained transition will include a predicate
involving clock variables and time constants.

Stimulus

pid | Incoming

l—) Interaction

Attributes | Are. Fund States ..., -
P X (2] :
H at :
; y 1 T
‘
Port H
Condition

: Output

Eventsi E

pid

.| Outgoing
Interaction

Response

Figure 5: Anatomy of a Reactive Object

Figure 5 shows the behavior of a reactive object. The filled arrows in the figure
indicate flow of events. An input event (?) is the result of an incoming interac-
tion defined by the external stimulus, the current state of the object, and the port

constrained by the port-condition. Every event occurrence causes a state transition

13

and may also involve a computation. A computation updates the object’s state and
attributes, shown by the arrow labeled ‘Att. Func.’. The dotted arrow connecting
the block of computation to that of time-constrained reaction signifies the enabling
of a reaction due to a computation. Based on the reading of the clock, an outstand-
ing reaction is fired by the object, thereby generating either an internal event or
an external event. All generated output events (!) will result as a response at the
port specified by the port-condition. A state update may also result in the disabling
of an outstanding reaction. A formal definition of TROM and its semantics appear

in [Mut00]. Figure 6 shows the template for a generic reactive class specification.

Class < name >
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 6: Template for Class Specification

Figure 7 is an example of the formal specification of the TROM class Arbiter.
An arbiter allocates shared resources to processes requesting them. It enqueues the
requests for a resource received from processes and allocates the resource to the next
process waiting in the queue. The specification uses the functions insert and tail
from the trait Queue(@U, UQueue), imported by the Arbiter class, to add and delete
requests made at a port of type @U. The attribute hold in class Arbiter denotes the
most recent port at which the resource was granted. The output event Grant! is time
constrained and must occur within 2 time units from the instant the input events
Regq? and Ret? have occurred.

The algorithms for testing the correctness of a class implementation are based on
the semantics of TROM formalism. The two important requirements for conformance
are the following:

e Every state in the design specification must be observable in the implementa-

tion: the attribute values and outstanding reactions in an implemented program

14

(Arbiter @U)

Class Arbiter [@QU]
Events: Req?U, Grant!U, Ret?U
States: *idle, allot, wait
Attributes: rqQueue: UQueue; hold:@QU
Traits: Queue[@U, UQueue/
Attribute-function:
allot — rqQueue; wait — rqQueue, hold;
Transition-Specifications:
R, : (idle, allot); Req?(true);
true => rqQueue’ = insert(pid, {});
R, : {allot, wait); Grant!(pid € rqQueue);
true => rqQueue’ = tail(reQueue)) A (hold’ = pid):
R; : (allot, allot), (wait, wait); Reg?(not pid € rgQueue);
true => rqQueue’ = insert(pid, rqQueue);
Ry : (wait, allot); Ret? (pid hold);
" isEmpty(rqQueue) => equal(rqQueuve’, rqQueue);
Rs : (wait, idle); Ret? (pid = hold);
isEmpty(rqQueue) = true;
Time-Constraints:
TC, : (Ry, Grant, [0,2], 0)
TC, : (Ry, Grant, [0,2], 0)
end

Figure T: Formal Specification of Class Arbiter

must match the specification.

e Every transition in the state machine description of the design must have an
implementation: the abstract computation specified in the action part must
have a correct implementation.

2.2.3 Third Tier - System Configuration Specification

A system configuration is the collaboration of a finite number of objects instantiated
from the second tier. Objects collaborate through message passing. Only compatible
ports of collaborating objects can exchange messages. The specification template
shown in Figure 8 has three sections:

Subsystem < name >
Include:
Instantiate:
Configure:

end

Figure 8: Template for System Configuration Specification

Include Predefined subsystems are included in the Include section. Ports that are
free in the included subsystems may be linked to ports of objects instantiated
in the subsystem being defined.

Instantiate Reactive objects are instantiated from the GRCs defined in the second
tier. An instantiation has the syntax (c: X[@P : 3,@Q : 2]). The effect of this
declaration is the creation of object ¢ having three ports p,, po, p3 of type @QP,
and two ports q;, ¢ of type @Q from class X.

Configure Object collaboration is specified by defining links between compatible
ports of instantiated objects and objects in the included subsystem. The syntax
for defining a communication link between the port p, (type P) of object ¢ and
the port s; (type S) of object ¢ is c.@p:@P < — > ¢.@s5,:@S.

A formal operational semantics for system configurations is given in [Mut00].

The semantics is based on system traces, sequences of computational paths in the

16

synchronous product of the state machines associated with the objects in the system
configuration. Our test algorithms generate test cases that are valid partial traces,
inject them in an implementation and check whether the state information and time

constrained reactions are timely, as specified.

2.3 Case Study

In this section, we introduce the railroad crossing problem, and will use it as a running
example throughout this thesis to illustrate our testing methodology.

The railroad crossing problem has been considered as a bench mark example by
researchers in real-time systems community [HM96]. A generalized version of this
problem has been considered by Muthiayen and Alagar [MA99] to formally prove
safety properties in their design. We take their verified design and generate test cases
to test the correctness of code generated by Zhang [{Zha00].

According to their design, several trains cross a gate independently and simulta-
neously using non-overlapping tracks. A train chooses the gate it intends to cross;
there is a unique controller monitoring the operations of each gate. When a train
approaches a gate, it sends a message to the corresponding controller, which then
commands the gate to close. When the last train crossing a gate leaves the cross-
ing, the controller commands the gate to open. The safe operation of the controller
depends on the satisfaction of certain timing constraints, so that the gate is closed

before a train enters the crossing, and the gate is opened after the last train leaves
the crossing.

A train enters the crossing within an interval of 2 to 4 time units after
having indicated its presence to the controller. The train informs the
controller that it is leaving the crossing within 6 time units of sending the
approaching message. The controller instructs the gate to close within 1
time unit of receiving an approaching message from the first train entering
the crossing, and starts monitoring the gate. The controller continues to
monitor the closed gate if it receives an approaching message from another
train. The controller instructs the gate to open within 1 time unit of
receiving a message from the last train to leave the crossing. The gate

must close within 1 time unit of receiving instructions from the controller.

17

The gate must open within an interval of 1 to 2 time units of receiving

instructions from the controller.

<<GRC>> <<PontType>>
Train o> @c
<<PortType>> ¢t : @C :avents : Set = {Near! Exitf}
<<GRC>
<<PornType>> CZ?IVO“J . <<PornType>>
; @G % —DaaTypess nsSet: Sa@P Fsel & eP
:events : Set = {Lower!,Raise!} events : Set = {Near?,Exit?}

<<PortType>> <<GRC>>
@S . Gate
events : Set = {Lower?,Raise?)

Figure 9: Class Diagram for Train, Gate, and Controller Entities

Figure 9 shows the class specification for the Train-Gate-Controller system. An
input event is decorated with the suffix ? and an output event is decorated with the
suffix !. The port types for reactive classes and the events associated with the port
types are shown. The associations between the Port Type classes indicate communi-
cation channels between instances of the GRC classes.

Figures 11, 13, 15 show the statechart diagrams for the controller, train and gate.
Together, they specify the behavior of a Train-Gate-Controller system. When there is
no train in the system, the train is in the idle state, the controller is in the idle state,
and the gate is in the opened state. When a train wants to pass through a crossing,
it sends the message to the controller, the train and controller change their states
simultaneously. In the state activate, the controller may receive “Near” messages
from other trains or it sends the message “lower” to the gate. In the latter case,
the controller and gate change their states simultaneously. In the state monitor, the
controller continues to receive “Near” messages from other trains or monitor the gate.
The train which is in the crossing may send an “Exit” message to the controller before
exiting the gate. Both the controller and the train synchronize on the event “Exit”.

The train leaves the gate within 6 unit of time from the instant originally sends the

18

Class Controller [GP, @Y]
Events: Lower!@Y, Near?@P, Raise!l@Y, Exit?@P
States: *idle, activate, deactivate, monitor

Attributes: inSet:PSet Naar ‘(memom(pxinSat) 14 rue |
Traits: Set[GP,PSet] ® ey
Attribute-Function: \ it
activate = {inSet}; deactivate — {inSet}; oM Newr I nSeTarmeripdnSen U S .
monitor — {inSet}; idle —» {}: i a1l AT o e)
Transition—Specifications: i = }
: <Lactivat ; W H A :
Rl e = e O Lower(true) Rasel Tue 44 rue &4 L e 0t
R2: <activate,activate>; Near(NOT(member(pid,inSet))); 'oe&potTone=!!
true => inSet’ = insert(pid,inSet); t
R3: <deactivate,idle>; Raise(true); i
true => true; |
R4: <monitor,deactivate>; Exit(member(pid.inSet)); ot Bt gt R Y
R size(inSet) = 1 => inSEe:r.' Tdele;e(?id(,iinxslgc);)) i FiN
5: <monitor,monitor>; Exit(member(pid.inSet)); ; . HRVA
size(inSet) > 1 => inSet’ = delete(pid,inSet); g e A
R6: <monitor,monitor>; Near(!(member(pid,inSet))); i i Eq memosrpeinSen 84 : i
true => inSet’ = insert(pid,inSet); o 1 T3 o0 -3
R7: <idle,activate>; Near(true); :
true => inSet’ = insert(pid,inSet); e
Time-Constraints: eeie(pat.inSeq
%8\'&:1: R7, Lower, [0, 1], g},
2: ‘2, i e, ' ' v : :
end var2: Rd, Raise, (0, 1], { Figure 11: Statechart Diagram for Con-

troller

Figure 10: Formal Specification for GRC
Controller

message “Near” to the controiler. Tue controller changes from monitor state only when
all the train have exited from the gate. At that instant, it sends the message to the
gate and returns to the idle state. The events “Down” and “Up” are time constrained
internal events for the gate. The evaluation for the local clocks for the controller
are the variables “TCvarl” and “TCvar2”. Similarly, the timed constrained events
for the controller and train are governed by their local clocks shown in the extended
statechart diagrams. Figures 10, 12, 14 show the textual specifications corresponding
to their extended statechart diagrams.

Figure 17 shows the collaboration diagram for a system with 5 Trains, 2 Con-
trollers, and 2 Gates. In this configuration, the object train3 is allowed to interact
with both controllers, while the other train objects can only interact with one of the
controllers. Hence the object train8 has two ports, one for each controller with which
it will communicate. Each of the other trains have only one port. Each gate commu-
nicates with its associated controller through one port. Figure 16 shows the textual

specification of the Train-Gate-Controller system shown in Figure 17.

19

Class Train [@Rl
Eveats: Near/@R, Out, Exit!@R, In
States: *idle, cross, leave, toCross
Attributes: cr:@C
Traits:
Attribute-Function:
idle - {}; cross =+ {};
leave — {}; toCross & {cr};
Transition-Specifications:
R!: <idle,toCross>; Near(true); true=>cr’ =pid;
R2: <cross,leave>; Out(true); true => true;
R3: <leave,idle>; Exit(pid = cz); true => true;
R4: <toCross,cross>; In(true); true => true;
Time-Constraints:
TCvar2: Rl, Exit, [0, 6% {3
TCvarl: R1, In, {2, 4],

1

end

Figure 12: Formal Specification for GRC
Train

Class Gate [8S]
Events: Lower?@S, Down, Up, Raise?@S
States: *opened, toClose, toOpen, closed
Attributes:

Traits:
Attribute-Function:
opened — ; toClose = {};
toOpen — ; closed —
Transition-Specifications:

R1: <opened,toClose>; Lower(true); true => true;

R2: <toClose,closed>; Down(true); true => true;

R3: <toOpen,opened>; Up(true); true => true;

R4: <closed,toOpen>; Raise(true); true => true;

Time—Constraints:

TCvarl: R1, Down, [0, IE. {}:

TCvar2: R4, Up, (1, 2], {};

end

Figure 14: Formal Specification for GRC
Gate

20

A

,JL—.' Near/creod 88 TOms1e0 4 —_—
: e : TCar2=0 o wCioss
H 1
— 1
!
Exf pdecr 88 Tue 88
TOwmr2<at |
t inf sue 44 tue AL TOVvwsto>w2 &
! TCvaricad |
i
O T —
. leave . Out closs :
: < ;

i
3
t

Figure 13: Statechart Diagram for Train

[y
.

cpenes . Lower ! true 88 TCvart =0 J Ciose
N emaeaige eererane .; \......._..,..........1
A H
Upitrue 88 tue SR TCVAZ >w1 &
TCwar2<s 2] H
Oown| Fue 44 rue 84 TOvart>w0
; ATCwmrt<al |}
S S -
' 100pen PR Rase/ true 88 TCvar2=0 ‘ Sosed :
; < | :
—

Figure 15: Statechart Diagram for Gate

SCS TrainGateController

Include:

Instantiate:
gatel::Gate[@S:1];
gate2::Gate[@S:1|; e T e e o
trainl::Train[@C:1}; i P —
train2::Train|@C:1}; L TEEE aw EvER REE R
train3::Train(@C:2]; | ! : 7 e
traind::Train|@C:1]); 4 i H Db
train5:Train{@C:1|; w2 Az Iode amar Iman ,E}E‘—_’ﬂi
controllerl::Controller{@P:3, @G:1]; e sty

Ccogtrolle& Comroller[@? 3, @G:l]; M‘m'j
on Ry
controllerl €G1:@G <-> gatel.@S1:@S; = -—v—"ﬁ‘”
controller2.@G2:@G <-> gate2.@82:@5;, L -
controllerl.@P1:@P <-> train1.@C1:QC; -1

controller1 .@P2:@QP <-> tram".GC2:@C; R TC

controller1.@P3:@P <-> train3.8@C3:@C; ;

controller2.%P4:'gP <-> train3.8Cd: ng

controller2.@P5:@P <-> train4.&C5:@ : - : : =

controller2.@P6:@P <-> train5. QCG:@C; Fl@re 17: Collaboration Diagram for 5
end Train - 2 Gate - 2 Controller

Figure 16: Formal Specification for Train-
Gate-Controller Subsystem

21

Chapter 3

Formal Basis of Testing UML
Models of Real-Time Reactive

Systems

3.1 Introduction

UML is widely used in industries to model untimed object-oriented systems. Selic [Sel99]
has pointed out that UML has sufficient expressive power to model real-time systems,
without requiring additional language constraints. Douglass [Dou98| has given a naive
introduction to real-time modeling in UML. However, it is stated by Selic [Sel99] that
Time, although defined in UML standards, is not given any semantics. Without se-
mantics, time-constrained actions cannot be specified precisely. Given the general
purpose modeling features of UML and the lack of formal semantics, it is possible
to have several interpretations of one UML model even for untimed systems, thus
giving rise to different implementations with different behaviors. Consequently, it
is impossible to claim a conformance relation between a given UML model and its
implementation. The goal of this chapter is to review RTUML, the language intro-
duced by Muthiayen [Mut00] which has a formal syntax within UML language and
formal semantics based on TROM formalism, and claim that our testing methodology
is applicable to real-time UML models having TROM semantics.

22

3.2 RTUML Types and Domains

The basic types are GRCTypes, DataTypes, and PortTypes.
- GRC is the universal set of GRCTypes.
- D is the universal set of DataTypes.
- P is the universal set of PortTypes.

- Py is the null PortType. P includes the null PortType Py, P, € P. Py is a
singleton set, containing the null port pg, Po = {po}-

The Event Domain formally defines the event set. Let £ be the universal set of
events, &inema be the universal set of internal events, €1 be the universal set of
external events, E;npye be the universal set of input events, and Eoyepue be the universal
set of output events. An input event corresponds to an ezternal event suffixed with

the symbol “?”. We use “e?” to denote the input event obtained by suffixing the
ezternal event “e”.

ginput = {67 | e€ gcztcmal}

An output event corresponds to an ezternal event suffixed with the symbol “!”. We

use “e!” to denote the output event obtained by suffixing the ezternal event “e”.
8output = {e' I ee gc:tcrnal}
The following properties apply to the universal sets of events.

1. The universal sets of internal and ezternal events are disjoint.
Einternat N Eezternat =0
2. The universal sets of internal and input events are disjoint.
Einternat N Einpue =0
3. The universal sets of internal and output events are disjoint.

Einternat N goutput =0

23

4. The universal sets of input and output events are disjoint.

ginput N goutput =0

5. The universal set of events £ corresponds to the union of the universal sets of

internal, input and output events.
€ = Einternat U Sinput U goutput

The following functions are defined on the Event domain.

e The bijective function o, converts a set of input events into a set of erternal
events, by removing the suffix “?” from each input event.

Cin - P(ginput) - P(gaternal)
The function oy, is defined as follows:

V Ein € P(ginput) .Uin(Ein) = {e ! e? € Ex’n}

e The bijective function o, converts a set of output events into a set of external
events, by removing the suffix “!" from each output event.

Cout - P(gautput) ~ P(gmemal)
The function &,y is defined as follows:

V Eout € IF(gautput) .Uout(Eout) = {e I 8! € Eoua}

The State Domain defines the set of states and their properties. Let S be the
universal set of states, Sympte be the universal set of simple states, and Scompier be the

universal set of compler states. The following properties apply to the universal sets
of states.

1. The universal sets of simple and complez states are disjoint.

Ssimple N Swmpla =0

24

2. the universal set of states S corresponds to the union of the universal sets of

simple and complez states.
S = Ssimple U Scomple::

The following functions are defined on the State domain.

* A complez state contains a set of substates that are either simple or complex.

The function substates returns the set of substates of a state.
substates : S — P(S)
1. The function substates returns an empty set when applied to a simplestate.
V s € Ssimple ® substates(s) =0
2. The set of substates of a complez state is nonempty.
V S € Scompler ® substates(s) # 0

* A complex state has a unique initial state, which is a simple state. The total
function in:tial identifies the initial state of a complex state.

1. The initial state of a complex state is a member of the substates of the
complez state.

Y 5 € Seomplez ® initial(s) € substates(s)
2. The set of substates of a complex state contains at least 2 elements.
V 5 € Scompiez ® substates(s) \ {initial(s)} #0
* The hierarchy function H returns the set of all states in the hierarchy of a state.
H:S = PB(S)
1. The hierarchy function H is recursively defined as follows.

His)={s}u U #H(s)

s€substates(s)

3.2.1 Time Semantics

Time is defined as the set of nonnegative real numbers.
Time = {t | t € R2%}

TimeConstant is defined as the set of nonnegative rationals.

TimeConstant = {m | m € Q&°}

Clock Valuation

Time is fully encapsulated in a class. Clocks are locally defined and clock variables
assume time values as measuring clock times.

o Clock Valuation v for a set C of clocks is a map that at any instant assigns a
nonnegative real value to each clock.

v: C = (R*® - R2Y9)

That is: v(C) : R2® —» R2%, v(c)(z) is the valuation for a clock ¢, ¢ € C at
instance z, r € R2°

e For each z € R2%, and k € Z, we define k + z to be a k-shift of z.

e For any valuation v and for all clocks ¢ € C, the clock valuation has the
following properties:

— v(e)(0) =0

- v(e)(z) > v(c)(y), f 2>y, 7,y e RZ®

- v(c)(k+1z) =k +uv(c)(z).
A time constraint is a predicate, involving clock valuation. If m is a time constant,
m € Q2°, then v(c)(z) < m, v(c)(z) > m are time constraints, where c € C, z €
R2%9. A time constraint may also involve conjunction, disjunction and negation. For

instance, if m;, m, are time constants, then v(c)(z) > my A v(c)(z) < my is a time
constraint.

26

3.2.2 Reactive Object Model in RTUML

The reactive object model is one of GRCTypes, consisting of a generic reactive class
with an associated statechart extended to capture timing constraints on transitions.

This definition captures our notion of what a reactive object is.

Definition for GRCClass
A GRCClass is a 3-tuple < P, X, Q2 >, with the following definition:

e P is a set of PortTypes
P:P(P)

e X isaset of attributes, where each attributes is either an instance of a Port Type
from the set P, or an instance of a DataType from the universal set D.

X={z|z:P}u{e]|a:D}

e 2 is a mapping from the set of PortTypes P to the power set of the universal
set of events £, defining the set of ellowed input and output events at instances
of the PortType.

Q:P —PE)
The following properties apply to a GRC class < P, X, Q >.

1. The sets of input and output events associated with a PortType, other than the
null PortType Py, correspond to disjoint sets of ezternal events.

VP, €P o P, # Py —

Q(Ps) =Eing U Eout.- AN Ein‘ - ginput A Eoutg g goutput A

Gin(Ein,) N Oou(Eou,) =0
2. The sets of events associated with two PortTypes of a GRC class are disjoint.
V P,Pe PeP;# P; = Q(P;)NQ(P;) =0
3. The events associated with the null PortType P, are internal events.
V P;€ Pe P, =Py = QP;) C Einternat

27

4. The set of internal events Eiterma of @ GRC class corresponds to the set of
events associated with the null PortType P,.

Py € P = Einternat = QUPo) APy & P = Einternat =0

5. The events associated with a PortType P; of a GRC class, excluding the null
PortType Py, are input and output events.

v P;‘ GPCP;' ?L- Po - Q(P;) g (8input Ugoutput)

6. The set of input and output events E;, of a GRCClass corresponds to the dis-
tributed union of the sets of events associated with the PortTypes of the GR-
CClass, excluding the null PortType Pg.

E.= |J @)
P.€PAP,ZPy

Compatibility of PortTypes

Given two GRCClasses G, and Gj, such that

G, =< P,, X,,Q, >, and

Gy =< Py, X, Q >,

PortType P, from the set P, and PortType P, from the set P, are compatible
iff the set of input events associated with PortType P, is equal to the set of output
events associated with PortType P;, and the set of output events associated with
PortType P,, is equal to the set of input events associated with PortType P, . The
comparison for equality events to the erternel events corresponding to the respective
input and output events.

e The predicate compatible defines the compatibility of two PortTypes.
compatible : P x P — Bool

1. The predicate compatible has the following definition.
V P, € P,, Py, € Py ® compatible(P,,, Py) <>
Q.(P,,) = Ein, U Egue, A Ein, © Einput N Eouta C Equtpue A
Qp(Ps,) = Ein, U Eouey, A Einy C Einpur N Eousy, C Eoutpue A
Oin(Ein,) = Oout(EBouty) N Oin(Ein,) = Oout(Eout,)

28

Definition for Extended StateChart

An EztendedStatechart is a 8-tuple < S,C, R, Y, ¥, T',= >, with the following defini-
tion.

e S is a set of states.
S :P(S)

1. The set S consists of simple and complez states. The set S, denotes the
subset of all simple states from the set S, and the set S, denote the subset
of all complex states from the set S.

S = S,] Sc A Ss Q Ssimple AN Sc g Scompla:

2. The distinguished simple state s from the set S is the initial state of the
statechart.

80653

3. The initial state of a compler state from the set S, is a simple state from
the set S,.
YV s. € S e initial(s.) € S,

4. The set of substates of a complex state from the set S. is a subset of the
set S.

Vs. € S. @ substates(s.) C §

5. The sets of substates of two complex states from the set S, are disjoint.
V si, 5j € Sc @ 5; # 5; — substates(s;) N substates(s;) =0

e (C is a set of logical clocks for defining time constraints on reactions to transi-
tions.

e R is a set of transitions, where each transition is a 5-tuple < s,d, e, g,a >, such
that

- s is the source state; s is a member of the set S.
seSs

29

d is the destination state; d is a member of the set S.

des

e is the trigger event; e is a member of the universal set of events £

e€f

¢ is a predicate representing the guard condition for the transition.

a is a predicate representing the action resulting from the transition.

1. A valid transition satisfies one of the following four conditions.

* The destination state d is a state which is not a substate of another
state.

de S\ U substates(s)

S.€Sc
* The destination state d is the initial state of a complex state which is
not a substate of another state.

dd. € S:\ U substates(s.) ® d = initial(d.)
5.€S-

* There exists a complex state s, such that the source state s is in the

hierarchy of the state s. and the destination state d is a substate of
the state s..

ds. € S.es € H(s.) A d € substates(s.)

* There exists a complex state s. such that the source state s is in the
hierarchy of the state s. and the destination state d is the initial state
of a complex substate of the state s..

ds.,d. € S.es € H(s:) A\ d. € substates(s.) A d = initial(d.)

2. If the source state s is a complex state, then the transition corresponds to
a set of transition R, such that the source state s, of each transition in
the set R,, is in the hierarchy of the state s.

s€8S.—~>{<spdeg,a>sp€eH(s)}CR

30

3. If the destination state d is a complex state, then the transition corresponds

to a transition whose destination state d. is the initial state of the state d.
d€S.— {<s,d. e, g,a>|d. € initial(d)} C R

e T is a total function that maps a clock from the set C to a transition from the
set R, such that the clock is initialized to 0 when the transition occurs.

Y: C—>R
If T(c) = r, then v(c)(0) =0 for the transition r.

e & is a function that maps a transition from the set R to a set of clocks from the

set C, such that the timing constraint on the transition is specified in terms of
the values of these clocks.

&: R—P(C)

1. If the trigger event e of the transition r =< s, d, e, g, a > is an input event,

then the transition r is not time-constrained.
VreRer=<s,de,g,a>Ae€Equnpe— P(r)=0

2. If the transition r =< s,d, e,g,a > is time-constrained, then the trigger

event e is either an internal or an oufput event.
VreRer=<s,d,e,g,a> AB(r)#0 > e € (Einterna U Eoutput)

3. If the transition r =< s, d, e, g, a > is time-constrained, then the trigger
event e corresponds to a reaction to transitions other than r from the
set R, such that the corresponding clocks are initialized to 0 when those
transition occur.

V7re€ReD(r) 0 >VceP(r)edr, € ReT(c)=rnAra#rAuv(c)(0)=0

e VU is a partial function that gives the value of a clock from the set C when a
transition from the set R occurs.

¥: Cx R— Time

31

* The function ¥ is defined on the clock ¢ and the transition r iff

* the clock c is initialized to O when the transition r occurs, or

the transition r corresponds to a time-constrained reaction, such that

the timing constraint is defined in terms of the clock ¢, or

* the destination state of the transition r is a disebling state for a time-
constrained reaction, such that the timing constraint is defined in
terms of the clock c.

0, if Y(¢)=r,
U(c,m) =< v(c)(z), where 0 < v(c)(z) < o<, if c € &(r), £ € RO
o0, ifr=<s,d,e,g,a>AdeZ(c)

e I' is a partial function that gives the lower and upper bounds for the value of
a clock from the set C, relative to the activation time of the time-constrained

reaction, within which the corresponding transition from the set R can occur.
I': C x R — TimeConstant x TimeConstant

* The function W is defined on the clock ¢ and the transition r iff the tran-
sition r corresponds to a time-constrained reaction, such that the timing
constraint is defined in terms of the clock c.

[{c,r)=<liu> if ced(r) Al <L v(c)(z) < u)
where z € R2°

e = is a function that maps a clock ¢ from the set C to the set of disabling states
for the time-constrained reaction defined in terms of the clock c.

=: C—>PB(s)
Definition for GRCType

A GRCTypeis a 2-tuple < G, B >, with the following definition.

e G isa GRCClass.
G=<P,X,Q2>,

32

e B is an Ertended Statechart.

B=<S,C,R,1T,8,¥,T,=>

e A transition r from the set R, such that r =< s,d,e, g,a >, satisfies the
following properties.

* The trigger event e is associated with a PortType from the set of PortTypes
P.

3P, e PeecQP;)

* The guard condition g is a conjunction of three predicates gport_cond:Jenablin
g] gp Gena 9—cond

and Qtime_constraint -
9 = Gport_cond N Jenabling_cond /\ Jtime_constraint

The port condition genasiing_cona is 2 logical assertion on the values of at-
tributes from the set X and an instance p; of a PortType P; from the
set P. The PortTvpe P; corresponds to the PortType with which event
e is associated; the null PortType Pg for internal events. The instance
p; of PortType P; corresponds to the port through which the message is
channeled; the null port py for internal events.

Gport_.cond - P(X) X Pi - Bool

where
P, e PAeeQP;)

1. If the trigger event e an internal event, the port condition is true.
. a
if e € Einternat, then Jport_cond = true

- The enabling condition genabiing_cond iS a logical assertion on the
values of attributes from the set X.

Genabling_cond * IP(X) — Bool

33

- The time constraint condition Guyme_constraine 1S @ logical assertion
on the values of clocks from the set C, that are used in specifying
the timing constraint on transition r.

Gtime_constraint * P(C) ~» Bool

For instance, ifre 6, gtime_constmint(z) = lrue ‘ false

2. If there is no timing constraint r, the time constraint condition is true.
if ®(r) =0 then gime_constraint £ true

3. If the trigger event e is an input event, the time constraint is true.
If € € Einput then Guime_constraine = true

* The action a is a conjunction of two predicates @post_cond and Geiock:

L
@ = Qpost_cond /\ Cclock_init

- The post condition apos: is a logical assertion on the values of at-

cond

tributes from the set X after transition r is taken.
Gpost_cond : P(X) — Bool

- The clock initialization erpression Qcoer_snie initializes the value of a
clock to O for each time-constrained reaction associated with transition
Tr.
Cctock_init = N\ ¥er)=0
cECAY(c)=r

e For each state s from the set S, the disabling state expression egisasling_state de-
fines the time-constrained reactions that are disabled when a transition leading
to the state s occurs. The disabling state expression egisabiing_state is defined as
a predicate on clocks from the set C that are used for specifying the timing

constraints on the reactions.

Edisabling_state © E(C) — Bool

* The disabling state eTpression egisasling_state Sets the values of the clocks
defining timing constraints on reactions that are disabled in state s to
infinity(o0).

AN
€disabling__state = /\ ¥(c,r) =2
c€ECAdES(c)ArERAr=<3s,d,e.9,0>

34

Operational Semantics

The status of a TROM at any time ¢, is the tuple (s; @; R), where the current state
0 is a simple state of the TROM, @ is the assignment vector, and R is the vector of
outstanding reactions. A computational step of a TROM occurs when the object with
status (s; @; R), receives a signal (e, p;, t) from its environment and there exists a
transition specification that can change the status of the TROM. A computation T of
a TROM object A is a sequence, possibly infinite, of alternating statuses and signals,
08, B og, ran

A computation of an extended statechart B =< S,C,R,T,¥,I',= > can be
written in terms of ertended states, where an extended state is a pair < s,v >,
s € §, and v is a clock valuation at that state. For instance, let OS; = (s;; d;; R;),
OS;ivi = (Siv1; @i11: Riv1) are two successive statues of a TROM. The states change
due to the occurrence of the signal < ¢;, p;, t; > at the state s;. If this TROM receive
its next signal < e€;4, Pi+1, ti+1 > in the state s;4;, then vy = vy + 4i41 — ¢;. That
is, the local clocks run at the same rate as the global clock. Hence, one step of

<e

- . Pib>
computation can be written as < s;, v; > Bhr < Sitl Vitl >

3.2.3 Reactive System Model

The reactive system model consists of generic reactive classes each with an associated
extended statechart, configurations of instances of reactive object models and scenar-

ios of interaction among the reactive objects. This definition captures our notion of
what a reactive system is.

Definition for Configuration
A configuration is a 4-tuple < V', I, W, L >, with the following definition.

e V is a set of reactive objects.
1. A reactive object from the set V is an instance of a GRCType.

VveVedGeGRCov:G

e [is a set of port objects.

1. A port object from the set [is an instance of a PortType.
VpeledP;cPep:P

e W is a function that defines a set of port ownership associations, identifying

port objects from the set I that are owned by a reactive object from the set V.
W:V > P

1. A port object from the set I is owned by a unique reactive object from the
set V. The sets of port objects associated with two reactive objects are
disjoint.

VrwreVerg#r— W(r)nW(n) =0

e L is a partial injective function that defines a set of communication channels
between port objects from the set I.

L:I—=1

1. A port object from the set [is linked to at most one port object from
the set I. The port objects associated with two port objects p; and p; are
distinct port objects.

V pi,p; € I e pi # p; — L(pi) # L(p;)

2. A communication channel associates two port objects only if they are in-
stances of compatible PortTypes.

V p € I ep € P; A L(p) € P; = compatible(P;, P;)
Definition for Scenario
A scenario is a 2-tuple < V, M >, with the following definition.
e V is a set of reactive objects.
1. A reactive object from the set V is an instance of a GRCType.

VveVe3dGeGRCev: G

36

e M is a sequence of messages. A message is a 4-tuple < v,, v, e,¢ >, such that
1. the sender object v, is a number of the set V

v, €V

2. the receiver object v, is a member of the set V.

v eV

3. the event e is a member of the universal set of events £

e

4. the time ¢t corresponds to the global time at which the event occurs.
t € Time
Definition for Reactive System Model
A Reactive System Model is a 3-tuple < Y, F, N >, with the following definition.
e Y is a set of GRCTypes.
e F is set of configurations.
e N is a set of scenarios.
The following properties apply to a Reactive System Model.

1. In a configuration f =< V, I, W, L > from the set F, a reactive object v from
the set V is an instance of a GRCType G from the set Y.

V<V,IW,L>FeVuveVIGeYeov:G

2. In a configuration f =< V,I, W,L > from the set F, a port object p from
the set I is an instance of a PortType P such that PortType P is owned by a
GRCType G from theset Y.

V<V, IW,L>xFeVpecled<P, X Q> Yep:P

37

3. In a scenario n =< V, M > from the set N, a reactive object v from the set V'

is an instance of a GRCType G from the set Y.

V<V M>NeVveVedGeYev: G

4. Inascenarion =< V, M > from theset N, for every message m =< v,, vy, €,t >
from the set M, there exists a configuration f from the set F, such that port
object p; and p; are in the configuration, and there exists GRCTypes G; and G;
from the set Y, such that PortType P; is owned by GRCType G;, PortType P;
is owned by GRCType G;j, port object p; is an instance of PortType P;, port
object p; is an instance of PortType P, event e is allowed at PortTypes P; and
Pj, and PortTypes P; and P, are compatible.

V < V,M>NeV <uv,,v,e,t>E Me

I <V, [,W,L>F,pi.p,cl e

3 <P, Xy >,<Ps, Xy, QU >EY,Pi€Py,P;€EPy @
3 ein € Qu(Pi), €oue € Q(P,) @

pi: Pinp: P;Ae €ci({en}) Ae€ oou({€ou}) N compatible(P;, P;)

3.3 Automated Testing of RTUML Models

Muthiayen [Mut00] gives a rigorous semantics for RTUML models, relating it to
TROM semantics. Our testing methodology is founded on TROM semantic models,
and hence is valid for RTUML models. Figure 18 shows how RTUML models are
linked to testing process. Based on the RTUML models in analysis and design stages,
test case generation can be developed in parallel with the implementation. Test
execution will apply generated test cases to implementation and evaluate the test
results. When a RTUML model changes, test cases must be altered to match the

change. That is, we automatically regenerate test cases that would match the current
RTUML model.

38

.............................

Testing

Requirement
Analysis

Design

Test Case
Generation

Figure 18: RTUML and Automated Testing

Implementation

Test Excution

39

Development Time

Chapter 4

Related Work

4.1 Introduction

In recent years concerted efforts have been made to elevate software testing from
an intuitive ad-hoc collection of methods into a unified discipline of formalized and
systematized techniques. Real-time reactive systems have been widely and increasing
used throughout society, but testing methods to such systems have not been deeply
studied. There is a need for a rigorous testing method, as well as automated testing
method which promises to save a great deal of human effort so that testing is effective
and repeatable. This especially applies to real-time reactive systems which have
complex behaviors over time and require long test sequences.

There are a number of methods related to software testing, in particular to object-
oriented testing. We will focus on those testing methodologies that are specific to real-
time reactive systems, and those test suits generation based on formal specifications.

This chapter describes works related to specification-based testing.

4.2 TUntimed System

Several rigorous methods exist [CTCC98, CRS96, Don97] for testing untimed systems
in a black-box fashion. These methods differ in the choice of formalism used to specify
the requirements, and the techniques used to generate test cases from the formal
specification. Weyuker’s test generation method [WGS94] uses boolean propositions
to specify the requirements. Donat [Don97] has extended Weyuker’s method by using

40

predicate logic to state the requirements. Kirani [Kir94] has used BNF notation for
the same purpose. These three notations lack the expressive power needed to formally
specify the different states of abstract data types and formulate test cases based on
them. Consequently, they are not suitable for testing large-scale software systems.

Algebraic specification methods are well suited for interface specification in object-
oriented systems. However, a pure algebraic style does not support the specification
of state information. Due to this limitation, a model based language, which can
specify state changes, is often used as specification language for black-box testing.
Rigorous methods exist to generate test cases from Z specification [SC96], VDM
specification [DF93] and Larch specification [AC95] languages.

P. Stocks and D. Carrington [SC96] derive test templates from Z specifications and
provide a test template framework for specification-based testing. The framework can
be defined using any model-based specification notation and used to derive tests from
model-based specifications. The framework formally defines test data sets and their
relation to the operations in a specification and to other test data sets, providing
structure to the testing process. In essence, an operation or functional unit under
test is a relation. It represents some transformation of input values to output values.
A test template is the basic unit for defining data and can be expressed by constraints
over the input variables defined in the specification. The authors use a structured
approach to build a hierarchy of test templates. Coarser templates are iteratively
divided into smaller templates using test strategies. The valid input space is the
starting point of a hierarchy. Once the valid input space of the functional unit is
determined, the next step is to subdivide the valid input space into the desired subsets,
or partitions, called domains. The terminal nodes in a hierarchy represent the final
test classes as determined by the human tester. Choice of domains is not determined
by the test templates framework. Rather, testing strategies and heuristics are used to
subdivide the valid input space. Domains must be chosen so that each element of a
domain has the same error-detecting ability, and so the result of testing one element
of the domain applies to all elements of the domain. After applying all the desired
strategies to derive test templates, the templates hierarchy is considered complete.
Instances of the templates in the hierarchy represent test data. The methodology of
Stocks and Carrington provides a general framework for specification-based testing,
however applies only to untimed systems.

41

4.3 Timed System

Periyasamy and Alagar [PAQQ] extend Stocks and Carrington’s method [SC96] to gen-
erate test cases from the composite operations in Object-Z for testing the conformance
of an object-oriented program implementing the specified system. Timed extensions
of Z [MH92] and Object-Z [MD98, PA01] specification languages have recently been
introduced, but no method has yvet been formulated to use them to generate test cases
for timed systems.

In general, not much work has been done for rigorously testing timed systems.
This is perhaps due to the lack of appropriate formal models that lend themselves to
black-box testing. Recently, Springintveld, Vaandrager, and D’Argenio [SVD97] have
proposed a black-box testing method for dense real-time systems. This approach is
based on Timed Input/Output Automata(TIOA), which is an extension of the Timed
Automata(TA). It discretizes the infinite state space to obtain a finite set of tests.
The dependence between the length of the test sequence and the granularity of the
grid automata is that the longer the sequence the finer the grid automata. The testing
algorithm assumes the behavior of the timed system is accurately modeled by a TIOA
Impl, an automaton that implements the TIOA specification, and the conformance
testing is that the timed system conforms to the specification Spec if Impl is bisimilar
to Spec. It is the first algorithm that yields a finite and complete set of tests for
dense real-time systems. However, the complexity of the algorithm itself is highly
exponential and cannot be claimed to be useful in practice. The testing method is
not object-oriented, and modeling a timed system as a TIOA is restricted by the
system’s complexity and scalability.

The testing algorithm [SVD97] for TIOA provides the basic inspiration for the
testing work on TROM, however there are significant differences in the semantics of
the formalism TA, TIOA, and TROM. The testing methodology presented in this
thesis is theoretically sound as well as practical. The complexity barrier is broken
by modular testing of reactive units and reusing the test cases for system testing.
Moreover, test cases for inherited classes are generated incrementally from the test
cases of the parent class.

Timed (finite) Automata [AD94] model the behavior of real-time systems by anno-
tating state-transition graphs with timing constraints using finite real-valued clocks.

Timed automata provide a natural way of expressing timing delays of a real-time

42

system. The entire system is specified as an automaton, the synchronous product
composition of all the individual automaton within the system. The timed automa-
ton for the system will invariably be huge and complex. It is impossible to construct
such an automaton in practice. TA approach is not object oriented, and therefore,
instances of one model cannot be instantiated within the formalism. For instance, in
the railroad crossing problem [HM96], a bench mark case study in real-time system
community, TA approach can model only a simple system with one train, one gate
and one controller. That is, a generalized Train-Gate-Controller system in which an
arbitrary number (finite) of trains are monitored by a controller cannot be modeled
by TA formalism.

In TA, the time domain is non-negative real numbers. It is a natural model for
physical processes operating over continuous time. Time constant, which is used in a
time constraint for comparing a clock value, is the set of nonnegative rationals. The
semantics of the transition specification (qi, ¢o, €, ¢,d), where g, is the source state,

g» is the destination state, e is the labeling event, c is a clock, and § is the time
constraint is:

the clock valuation w of the clock ¢ in state ¢» and the clock valuation
v, of the clock c in state ¢; satisfy the relation v, = v; + € and § is true
when the clock variable c is replaced by its evaluation v,.

Here € is the time taken for the transition from state g; to state g,.

Timed [/O Automata (TIOA) are an extension of Timed Automata in which
the events are partitioned into inputs and outputs. Each state has either (a) a single
outgoing transition labeled with an output action or (b) both outgoing delay transition
and outgoing input transitions (one for each input action), but no outgoing output
transitions. In TIOA, time constant is a non-negative integer. For every admissible
clock valuation, each state can be assigned an invariant, a predicate involving clock
variables and integer constants. If the predicate § constrains the transition between
the states ¢; and ¢, only when the inv(q,) A ¢ is true the transition can occur. After
the state change, inv(q.) becomes true.

A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi [EDKE98] address the
issue of generating timed test cases from a timed system specification based on TIOA
for real-time reactive systems. A state of a TIOA A is a pair (!, v) consisting of
a location [€ Ly and a clock valuation v € V{(C,). A clock valuation over a set

43

of clocks C is a map v that assigns to each clock z € C4 a value in R¥<. The
semantic model of a TIOA A is given by a timed labeled transition system S.(A) that
consists of the state set S4, the label set R2°U X, both input/output actions and
time increments, and the transition relation =, for a € R2°UXT,. Since the timed
labeled transition system S,(A) is infinite, because of the infinite delay transitions, it
cannot be used for test generation. The solution is therefore to reduce the number of
states in the system. An equivalence relation on the set of clock valuations V(Cj)
is used to cluster equivalent states of S;(A) into equivalent classes. A partition of
the uncountable state of the timed automaton produces a finite number of clock
regions(a set of equivalent states in other words), called a region automaton. In
order to generate test cases, a subautomaton of the region automaton, called the
Grid Automaton, is derived from the region automaton. Since the region automaton
is formed with locations of TIOA and clock regions, a set of clock valuations has
the same behavior. The idea behind the construction of the grid automaton is to
represent each clock region with a finite set of clock valuations, referred to as the
representatives of the clock region. For this reason, they define the grid points with
granularity 1/k, where k is the number of clocks. In fact, the granularity of grid
points constitutes the steps by which the clocks are authorized to pass from one clock
region to another one, allowing thereby the automaton to make transitions from one
location to another.

The TIOA models a reactive system is not object-oriented. So, the size of systems
that can be modeled will be restricted and the complexity of the test case generation
is quite high. Also no theoretical foundation for the construction of region automaton
has been given.

A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaidi [CLRZ99] present a new algo-
rithm, Hit-or-Jump, for embedded testing of components of communication system
that can be modeled by communicating extended finite state machine. The new
algorithm avoids the construction of a complete system reachability that would be
exposed to the well-know state space explosion. Instead, it conducts a local search
from the current state in a neighborhood of the reachability graph. If an untested
part is found(a Hit), they test that part and continue the process from there. Other-
wise, they move randomly to the frontier of the neighborhood searched(Jump), and

continue the process from there. It is a new technique for system state search and

44

constructs test sequences efficiently with a high fault coverage. Recently, A. Cavalli,
C. Gervy and S. Prokopenko [CGP01] present two new approaches for passive test-
ing using an Extended Finite State Machine(EFSM). The first approach extracts the
invariants describing characteristic behaviors from specification EFSM, then studies
the trace resulting from the implementation to determine if it conforms with those
behaviors. The second approach expresses properties from specification EFSM in con-
straints, the trace from the implementation in automaton, then check if the states in
the automaton satisfy the constraints. The new algorithm and approaches are more
suitable for the communication networks where EFSM models both control flow and

data flow of the systems.

4.4 Comparison With Our Work

TROM is an Object Oriented formalism introduced in [AAM98| for modeling real-
time reactive systems. We discuss the test case generation method for this formalism.
Although TROM semantics is based on timed labeled transition svstems, there are
significant differences between TROM and TA, and between TROM and TIOA.

In TROM formalism, a reactive entity, such as controller or arbiter, is formalized as
a generic reactive class encapsulating the structure and time-dependent functionality
of objects of the class. All objects of a reactive class have the same behavior, as given
by the computational sequences of the extended statechart diagram associated with
the class. The pair (class, state machine) defines a TROM type.

A reactive class can include attributes of basic types or abstract data types. For
instance, a controller class may include a data type queue to receive and service
objects from its environments. Several objects may be instantiated from a reactive

class. They all have the same state machine for their behavior. There are other
significant differences as well:

e A class is parameterized with port types. An object instantiated from this class
can have finite number of ports of any port type. That is, objects having the
same behavior may interact in different contexts.

e A state can be simple or complex. A complex state is the root of a hierarchy
of substates. This feature provides a means of refining the behavior of reactive
classes.

e An event may trigger a time-constrained event. If an event e triggers an event f
and P(t) is a time-constrained predicate associated with f, then the semantics
requires the event f to occur during the interval of time in which P(t) is true.
If the event f does not occur during the interval of time in which P(¢) is true,
the object enters into a disabled state and the event f is disabled.

e Two objects in the system communicate by exchanging a message through their
compatible ports. The result of this communication is a synchronized transition,
as in TA, for the objects. At any instant, some of the objects in the system may
interact, and the rest of the objects may be engaged in some internal activity.
Consequently, there is parallelism in the system composed of TROM objects.

e The events are partitioned into input (?), output (!) and internal events. Sys-
tems continuously receive input from and react to their environment. An inter-
nal event is initiated and controlled by an object and does not have any effect
on other objects in the system. Hence, the internal behavior of an object is
described more explicitly in TROM formalism than in TA or TIOA formalism.
Although in TROM model, communication mechanism between TROMs is based
on synchronous message passing, also known as rendezvous it can also model
systems in which the objects operate asynchronously since events are classified
into different categories.

e Input events to an object come either from the environment or from other
objects in the system with which it interacts. Consequently, an input event is
not time-constrained. An input or output or an internal event can occur at

a state, cause state change, and may trigger time-constrained future events to
happen in the object.

e In TROM model, there is a very clear distinction between those events whose
performance is under the control of TROM object, and those events whose
performance is under the control of its environment. A TROM object generates
output and internal events autonomously, and transmits output instantaneously
to its environment. In contrast, the input event is generated by the environment
and transmitted instantaneously to the TROM object. Our distinction between
the input and other events is fundamental, and based on who determines when

the event is performed: a TROM object can have restrictions on when it will

46

perform an output or internal event, but it is unable to block the performance

of an input event.

Chapter 5

Unit Testing

5.1 Introduction

There are three stages in testing a real-time reactive system developed in TROM-
LAB framework. Each stage focuses on testing the artifacts developed in one tier of
TROM architecture. During the first stage abstract data type implementations are
tested [AC95, Pro96]. The second stage has two parts: the generic reactive class
implementations are tested in the first part of testing, and implementations of inher-
ited classes are tested in the second part. During the third stage a reactive system
composed of classes is tested. In this chapter we discuss 2 method for testing reactive
classes. Using the Object Oriented terminology, we refer to testing a reactive class
implementation as unit testing.

We propose two test adequacy criteria, called state cover and transition cover
criteria and use them to generate test cases that form a minimal as well as an ex-
haustively test set for an implementation. Minimality implies that all test cases in
the set are necessary to check conformity. Exhaustivity implies that the test cases in
the generated set are sufficient.

We provide a method to discretize the timed statechart of a TROM class and
construct a grid automaton with finite number of states, having no clocks, and only
having untimed transitions. Each state of the grid automaton represents a durational
TROM behavior, where the duration, called grid size, would be chosen based on the
number of clocks in TROM specification. We give an algorithm to construct the grid

automaton, state and prove a Homomorphism Theorem relating the behavior of the

48

grid automaton to the behavior of its corresponding TROM. This theorem is to justify
that testing the grid automaton implementation is equivalent to testing the TROM
implementation. Finally we present the algorithms for deriving test cases from grid
automaton satisfying the two test adequacy criteria. Homomorphism Theorem is the
theoretical basis to justify the correctness of our testing strategy, the testing method
is also practical.

5.2 Test Adequacy Criteria

An erhaustive test suit requires that every possible value and sequence of inputs be
applied in every possible state of the system under test, thereby exercising every
possible execution path. This approach results in an astronomical number of test
cases, even with small programs. Exhaustive testing is a practical impossibility.
Software testing is therefore concerned with small subsets of the exhaustive test suite.

The completeness of a test suite with respect to a particular test case design
method is measured by coverage. Coverage is the percentage of elements required by
a test strategy that have been exercised by a given test suite.

We consider state coverage and transition coverage as the two test adequacy cri-
teria in our testing method.

e State Cover SC: A state coveris a set of test cases required to identify each state
in the design to some states in the implementation. Each test case is a sequence
of events eg.e;.---.e;, such that the transitions triggered by the sequence of
events form a path from the initial state to the test state. We are interested in

a state cover SC of minimum size.

e Transition Cover TC: A transttion cover is a set of test cases required to iden-
tify each transition in the design to some actions in the implementation. The
transition s; = s; can be tested by the test case t.e, where ¢ is a test case in
the state cover set SC covering the state s; and t.e ¢ SC. We are interested in
a transition cover TC of minimum size.

The test suite for testing a TROM is defined by T = SC U TC. It forms a minimal

set and can exhaustively test an implementation. Minimum implies that all test cases

in the set are necessary. Exhaustivity implies that the test cases in the generated set
are sufficient.

5.3 Homomorphism

In this section we define the grid automaton corresponding to a TROM and give the
Homomorphism Theorem to relate them.

5.3.1 Clock Regions

Informally, a clock region characterizes a set of clock valuations and is used to define
a grid automaton state.

A term over C is an expression generated by the grammare:=c | n | e+n,
where C is a finite set of clocks, c is a clock in C, and n is a nonnegative integer,
n € Z2° In the obvious way, a clock valuation v is lifted to a function 7 that takes

a term and returns a value. That is,
T(ey + o+ k) =v(e) +v(e) +£.
A clock valuation is a high-order function: v: C — (R2? — R=2%)
e v(c)(0)=0
e v(c)(z) > v(c)(y), if >y, z,y R
e Forz e R2% and k€ Z, v(c)(k +z) =k + v(c)(z).

A time constraint is a predicate, if m, m;, m, is a time constant, m, m;, m, € Q2°,
then v(c)(z) < m, v(c)(z) > m, v(c)(z) > my A v(c)(z) < m, are time constraints.

A clock valuation v satisfies a time constraint §, v = §, iff § evaluates to true
using the values given by v.

The integral parts of clock values can become arbitrarily large. But if a clock c is
never compared with a time constant greater than m, then its actual value, once it
exceeds m, is of no consequence in deciding the allowed paths. We define the intv of

a clock ¢ € C to be an interval over R2° with infimum and supremum in Q2.
intv(c) = domain(c) — {0}

50

where the time domain of a clock, domain(c), is the set of nonnegative real numbers.
If d € R2%, £ € R29, then v @ d is the clock valuation defined by

v(c)(z) +d if vu(c)(z) + d € intv(c)
oc otherwise

(v d)(c)(z) é{

For all clock valuations of C, the equivalence relation = is defined as follows:
v iff, forall ¢, ¢, € C, £ € R2Y,

1. v(c))(z) = oc iff v'(c)(z) = o0
2. if v(c1)(z) # oc then

Llv(e)(z)] = Lv'(a)(z)] and (fract(v(c)(z)) =0 iff fract(v'(ei)(z)) =0),
3. if v(c)(z) # oo # v(es)(z) then

fract(v(c1)(z)) < fract(v(ex)(z)) iff fract(v'(ci)(z)) < fract(v'(e:)(z)).

A clock region is an equivalence class of clock valuations induced by equivalence
relation =. We say that a clock region « satisfies a clock constraint ¢ iff every
v € a satisfies §. Each region can be uniquely characterized by a (finite) set of clock

constraints it satisfies. Each region can be represented by specifying

(1) for every clock c, one clock constraint from the set {v(c)(z) = m | m =
0,1,....mtu{m~-1<v(c)z) <m|m=1,...,m}u{e(c)(z) > mc},
where m, is the upper bound of the time constant, z € R2°

(2) for every pair of clocks ¢; and ¢, such that m; — 1 < v(¢)(z) < m; and
mp — 1 < v(c)(z) < my appear in (1) for some m,,my, whether fract(v(c,)(z))
is less than, equal to, or greater than fract(v(c2)(y))-

For instance, if m; = 4, my, = 6, there exists 59 clock regions, as shown in Figure
19. Each region is interpreted by the clock values according to the equivalence relation
definition. For instance, open regions al and a16 are defined by the inequalities:

al: 0<v(a)(z) <1,0 <v(c)(y) < v(a)(z)

al6: 3<v(c)(z) <4,v(cl)(z) -2 < v(c)(y) <2

v(e2
©DPN 9] as0| asi| o52| as3
6
a4’ as4
5
ass
4
asé
3
as7
al7l
2
ald . . als,
ass
. a9 . . als
al ad ab a8
al sl as|/ a1l 9
1 2 3 4 el XR)

Figure 19: Clock Regions

A clock region o is a time-successor of a clock region « iff for each v € «, there
exists a positive ¢ € R such that v+t € o’. The time-successors of a clock region « are
all the clock regions that will be visited by a clock valuation v € o as time progresses.
The time-successors of a region @ can be derived by moving along a line drawn from
some point in « in the diagonally upwards direction(parallel to the line £ = y). The
concepts of time-successor describes the relation over the clock regions, jumping from
one region to the other region. For instance, in Figure 19, the successors of region a1
are : ad, all, ald, o?2l, a24, a3l, ad3, add, a3, adb.

The following Lemma states if two clock valuations are equivalent, then they
produce the same value on any predicate.

Lemma 1

fv=v thenvEd<vES

Proof.

The proof follows from the definition.

Based on the above discussion about time region, we know at every point in time
the future behavior of a TROM object is determined by its states and the values of

52

its clocks. This motivates the definition of extended state: For a TROM, an eztended
state is a pair < s,v >, where s € S and v is a clock valuation for C.

5.3.2 Definition of Grid Automaton

We have discussed two test adequacy criteria in previous section for specification-
based testing: state cover and transition cover. The test case generation method that
enforces these criteria will ensure minimality and ezhaustivity of test cases generated.
However, due to the possible occurrence of real numbers in continuous notion of time
in TROM model, the state space of a TROM object is infinite: it is impossible in
practice to generate an infinite number of test coverage sequences. Therefore, we
construct a finite automaton using the fundamental concept of region. The key idea
behind the definition of a region is that, even though the number of states is infinite,
not all of these states are distinguishable via a constraint. The distinguishable states
are those that correspond to the clock regions. When time constraints involve only
bounded intervals, the number of clock regions of interest is only finite. Hence, the
number of distinguishable states is also finite and are the states of the grid automaton
associated with the TROM state machine.

For each TROM object A, the grid size, called granularity is d = £, where £ > 1
is the number of clocks in A. If £ =1, we choose d = 1. The grid automaton G4(A),

corresponding to the TROM state machine A is the automaton (©, 6o, L, T') defined
as follows:

States © = {< s5,v' >|< s,v > is an extended state of A and v' = v +kd, V' <
oo, k>01}

Initial State 6; =< sq, vy >, the extended initial state in A
Transition Labels L = £ U {d}
Transition Function T : © x L — O defined by

T(< s;,vf >, €) =< si41, v >if e€&
T(< 3,0 >, d) =< s;, v +d >

subject to the following conditions:

e The transition
< S; U > < Sigy, Ui >

in A, where e is not a time constraint event, with or without a clock

initialization, corresponds to the transition
’ ¢ ’
< Sy U > > < Sigr, Ui >

of Ga(4).

e If the transition
[
< 8§, Ui >—=< Sit1, Vigt >

in A, where e is the event constrained to occur within the time shift [/, u],
then v;+! < v;4; < v; +u holds. The states and transitions corresponding
to this are determined by the time at which the state s; is reached:

Assume 7 is minimal time required to reach s; from so.

Casel: [<n

b.l <s;,7n >4< si,n+d >4 S« s, n+u>

b.2 < i, U] >3< 5541, Uiy, >
where v = v, v, v, €{mn+d,....,n+u}

Case2. [>n

b.l < s;, 1 >4« si,n+d >4 . 5¢ si,n+ 1 >34 . 5¢<
Si,n+u>

b.2 < s, v] >< Si41,vl,, > where v} = vl, v,vl,, € {n+

Ln+l+d,...,n+u}

The enabling condition, port condition and post condition for the transition < s;, v; >
to < Sip1, Y4y > in G4(A), are the same as those in A for the transition from s; to
Si+1, €xcept that in the grid automaton, there is no time constraint and no clock.

For a grid automaton, the following lemmas can be proved:

Lemma 2
I£6,,0,,0; €0, 6, 565 and 6, 563, then 6, =6,
Lemma 2 states that no state in the grid automaton can have more than one

incoming transition labeled by d.

Lemma 3

For a grid automaton, there exists a state that it can have both outgoing transition
labeled by e € £ and outgoing transition labeled by d.

Lemma 4

In a grid automaton, if there exists two transitions: < s;, v} >5< 55, vJ' > and

< Sk, Uj >4< s;,v; >, where e, f € £, then at any time instant, either v; = v or

v = vj but not both are true.

5.3.3 Homomorphism

A homomorphism between two sets is a mapping of the elements of one set to the

other such that their respective binary operations are preserved:

H:(X,0) = (Y,*)
such that H(z) is an element of y and for any pair z;,z, € X

H(z) 0 z5) = H(z) *» H(z).
In defining a grid automaton we carry over the transition specifications, ports, and
attributes from its corresponding TROM machine. However, the transition specifi-
cation for a transition in the TROM specification may be copied to more than one

transition in the grid automaton. So, it is sufficient to define a mapping that maps

the state of G4(A) to the state of A preserving the transition relations:
H:G4(A) = A
has the following properties:

e a state € of G4(A) is mapped to a state s of A, and

e a transition between two states 6, and 6, of G4(A) is mapped either to a silent

transition within the state s; or to a transition between the states s, and sy of
A.

That is, H is defined as follows:

e For each state < s,v’ > € ©, there exists a unique extended state < s,v > in

A. The initial state < s, vg > of the grid automaton is mapped onto the initial
state of A.

e [=& U {d} is mapped onto £, and 3 is the number of clocks in A.
e Transition Preservation (extended TROM states are shown):

— H(< 8,0} >5< si41, Uy >) =< 8,0 >H< i1, Ui >
- H(< Si, U‘{ >5< Si+l, Uf-n >) =< 8§, Y >—5>< Si+1s Ui+l >,

where v} = vl,,, v}, v}y, € {mn+d,...,n+u} or {n+l,n+l+d,...,n+u},
[fy=v4 <0

d ; .. .
- H(< s;, v >< 85,0l +d >) =< 53,4 >23< s, U; >, where i is a silent
transition

- H(< s, 0! >< 55,00 >) =< 83,4 >3< s, v >

5.3.4 Homomorphism Theorem

A computational path in a grid automaton is a sequence of transitions starting from the
initial state of the automaton. The sequence need not be finite. The homomorphical
mapping H can be extended in a natural manner to map a computational path of
G4(A) to a computational path in A. That is, H can be extended to a map

H*® : Comp(G4(A)) = Comp(A).

If o’ is a computational path in the grid automaton Gy(A), then H*(o') can be
inductively defined as follows:

o = (< s, 05 >3 < 5,0 >). o
where o} is the path following the transition caused by eo.

H*(¢') = H*((< s0, v >3< 51,0 >).01)

= H(< so, v} >3< 51, v} >).H*(0})

The map H~ is defined over all computational paths in the grid automaton. Hence,

the behavior of the grid automata G4(A) is homomorphicto the behavior of A. We
summarize these results as a theorem.

Homomorphism Theorem

A computational path in a grid automaton G4(A) is homomorphic to a compu-
tational path in its corresponding TROM A. The behavior of A is a homomorphic
image of the behavior of its grid automaton G4(A).

Based on the homomorphism result, we can define a notion of simulation of TROM
behavior by its grid automaton. Since the states of the grid automaton G4(A) are
clock regions, the equivalence classes of clock valuations, the behavior of the grid
automaton is equivalent to the timed behavior of A. That is, the timed behavior of

A is simulated by the grid automaton with clock valuations as observations.

5.4 Unit Testing

If P is the program under test for conformance to the specification A, according to the
Homomorphism Theorem, it is sufficient to test the program P for conformance to the
specification G4(A). We provide a method for constructing the grid automaton G4(A)
for a given A and an algorithm for generating test cases from the grid automaton,
meeting the coverage criteria.

Assume that we are given a program that implements a reactive class. The pro-
gram is tested by generating test cases from the grid automaton corresponding to the
state machine of the reactive class. A test case is a generic template, which when
instantiated with specific values (time, attribute values) gives a collection of tests
to be administered to the program. For each test, the output from the program is
filtered to contain only global variables, such as external events and attribute values.
These are matched against the post-condition for the test case.

5.4.1 Algorithm GA: Grid Automaton Construction

The algorithm accepts a TROM class specification, and outputs a grid automaton
specification. The algorithm chooses the granularity d of the TROM with £ > 1
clocks to be d = }; However, if the TROM class has only one clock, the granularity
is chosen as % Since each region is defined by & constraints, one constraint for each
clock, it is sufficient to choose k£ samples from each region. Hence, we justify the
quantization d = ;. For each time-constraint TC; = {R;, ¢,[t;, ;], {}} in a TROM

44}
=~}

class specification, the following steps are done:

Step 0. Initialize: ES: events of TROM; SS: states of TROM; TS: transition
specifications of TROM.

Step 1. Find the transition specification of TROM constrained by TC;

R; :< s;, 5; >; e(port condition); enabling condition => post condition

Step 2. Compute the grid points: < s;,v'+0 >, < 85, v/ +d >, < 5;, 0 +2d >,..., <
si, v' + md >, where m is the largest positive integer for which md = ¢;;

Step 3. Add the internal event d to ES; remove s; from SS, and add the grid points

computed in Step 2 to SS. Attribute-function section (active attributes) are not
changed.

Step 4. Do the following changes to TS:

Step 4.1. Forn, 0 < n < t; —d, increased by d each time, add transitions(time
increment) to TS:

<< 5,V +n>,<s;,v +n+d>>; d(true); true => true;
Step 4.2. Remove the transition from TS:
R; :< s, 5; >: e (port condition); enabling condition => post condition
Step 4.3. For n, t; < n < t;, increased by d each time, add the transitions(time
constraint) to TS:

<< s,v" +n >,< s;,v"+ n >>; e (port condition); enabling condition
=> post condition;

The correctness of the algorithm can be proved to establish that the grid automa-
ton constructed by the algorithm is homomorphic to the given TROM object.

5.4.2 The complexity of the algorithm GA

We measure the complexity of the algorithm in terms of the number of new states and
number of new transitions introduced in the construction. Only a time constrained
transition in the object A introduces new states and transitions in G4(A). Consider

a transition for which [/, u] is the time constraint. The new states introduced are

58

Figure 20: Grid Automaton for a Time Constrained Transition

< §,d>,<5,2d>,..., <5, > <s,l+d>,...,<s;,u > Thatis, 3 new states
are introduced in the construction. See Figure 20. In between a pair of new states,
there is a new transition, and from each state in the sequence < s;,{ >, < s;,{+d >
,..., < S;,u >, there is a transition to the state < s;4;,v >. Hence, the number
of new transitions (including time increase) is & + (% — 1) = (2) - 1. If lmia,

Umaez denote the minimal of the lower bounds and maximal of upper bounds of all
the time constraints, and & is the number of clocks, k& = %, then the number of new
states is bounded by k=== = k2Upmqz, the number of new transitions is bounded by
k?(2Umaz — lmin) — k. The complexity of the algorithm GA is O(k*umaz + £*(2Umaz —
lnin) — k) = O(k®umez) = O(umaz). Hence, the size of the grid automaton increases

linearly with the size of the maximum time constraint, assuming the number of clocks
is fixed.

5.4.3 Example

The derived grid automata for train object, controller object and gate object are
shown in Figures 21, 22, and 23 respectively, where the state machine is augmented
with the label of time increment . and the corresponding grid points to represent

time increments. The state < toCross,1/2 > in Figure 21 is in the open region al in
Figure 19.

5.4.4 Algorithm TC: Generating Test Cases from a Grid Au-
tomaton

The algorithm is in two parts: first, a set of test sequences based on state coverage

are generated; next, test sequences based on transition coverage are generated, and

59

Near /cr’=pid

Rxit{pid=cr]

Exit[pid=cr]

Figure 21: Grid Automaton for Train

are added to the state cover. The resulting set of test cases has the minimality and
exhaustivity properties.

e STC: State Coverage Algorithm

For every state 6;, the algorithm generates a set of sequences of events that brings
the grid automaton from its initial state 6, to 6;.

Step 1. initially, ©: set of States; ©q: initial states

© = {6o,60:,---,}, ©0 = {6}, i =0, C;: set of event sequences covering 6;,
Co = {e}

Step 2. remove 6; from ©, if © become empty, stop, SC = C, C = Ji_q Ck
Step 8. i=1+1

Ci = {c = p.g| p € Ci_1,p is the test sequence for covering 6;—; and g is
labeling the transition 6;_, — 6;}

Step 4. go to Step 2.

e TRC: Transition Coverage Algorithm

60

Near{ {{member(pid.inSet)) Near{ !(member(pid.inSet)) Near{ !(membes(pid.inSet))

&&uue]/ inSet’s &L&true)/ inSet’= L&uue |/ inSet’s

et P g e inget inser(pid inen)

o Near/ inSet=inseri(pid.inSet) 12 @
Lower

Exit{ (member(pid.inSet)
&&size(inSet}=1]/ inSet'= /_ Near{ !(member(pid.inSet))
delete(pid.inSet) monitor &&:rue l{ inSet'=
insert(pid.inSet)

Exit{ (member(pid.inSet)
&&size(inSet)>1]/ inSet’= delete(pid.inSet)

Figure 22: Grid Automaton for Controller

ower v2 2
opened * toClose, 0
P

U
Down Down
U

£
12 12 Raise
toOpen, 3/2 toOpen. 22 toOpen. 1/2 toOpen, 0 -

Figure 23: Grid Automaton for Gate

[

For every transition, 8; — 6;, the algorithm generates a set of sequences of events
T, y = r.e such that z brings the grid automaton from its initial state 8, to 6;. The

event sequences will completely cover all the transitions except those that are already
covered in the state coverage SC.

Step 1. initially, T: set of transitions; i=0,

for every transition R; : 6; S5 6; D; is the set of event sequences covering the
transition R;: D; = {t.e|t € C;,t.e ¢ SC}

Step 2. remove transition R; from T, if T become empty, stop, TC = D, D =
Uik=0 Dy
Step 3. i=1i+1

Step 4. go to Step 2.

61

The properties of state and transition cover sequences can be characterized as
follows:

e SC(A): set of state covers for G4(A)

e TC(A): set of transition covers for G4(A)

o Ty(A) =SC(A)U TC(A)

e For each state 8 € G4(A), there exists a state cover of 8: sc() € SC(A)

o If9; > 6; is a transition in G4(A), there exists a transition cover tc(6; > 8;) €
TC(A) such that tc(8; = 8;) = sc(6,).e

Our method implicitly generates sequential and concurrent test sequences; how-
ever our method does not differentiate between them:.

Chapter 6

Testing Derived Classes

6.1 Introduction

Test cases for derived classes must be generated incrementally from the test cases of
the base class, otherwise the complexity of the testing process increases. In TROM
methodology, there are strict rules for refining a base class [Ach95]. The test methods
discussed in this chapter are based on these rules.

Inheritance is one of the most essential tools through which we organize the hier-
archical structure of a complex system. According to Booch [Boo91]:

inheritance defines a relationship among classes, wherein one class shares

the structure or behavior defined in one or more classes.

There are two ways of looking at the inheritance relationship in a system: essential
inheritance, which implies inheritance of specifications, and incidental inheritance,
which implies inheritance of implementation. The inheritance of specification provides
specialization-generalization hierarchies in the system, whereas the inheritance of
implementation is primarily a code-reuse mechanism. Here, we look at the impact of
inheritance of specification on the testing of real-time reactive systems. The testing
strategy must consider the possibility of substitution of a base class where a derived
class has been used and so on.

In this chapter, we first discuss the three types of inheritance in TROM, and next
we explain the test case generation for every type of inheritance. The test cases

generated from the base class are used for test case generation of the derived class.

63

6.2 Concept of Inheritance in TROM

Inheritance in TROM is based on subtyping principles. They are used in two basic
forms:

e as a means of modeling conceptual generalization/specialization relationship,
and

e as a means of reusing existing class specifications in the definition of new classes.

In order to accommodate these needs, three kinds of subtype relations have been
introduced in [Ach95]. These are called behavioral subtyping, ertensional subtyping,
and polymorphic subtyping. A class A that is a behavioral subtype of another class Ap
ensures both substitutability and behavior preservation. That is, an object A of class
A has the same behavior as an object Ag of class Ag and A can be substituted in any
configuration where Ap is expected to participate. A class A that is an extensional
subtype of another class Az ensures context-independent preservation of behavior.
That is, A preserves the behavior of Ag, but it cannot be substituted where Ag is
expected to participate. A class A that is a polymorphic subtype of another class
Ap ensures context-dependent preservation of behavior and substitutability. That is,
A preserves the behavior of Ap only in the context of Ap, and it can be substituted
where Ap is expected to participate. Inheritance mechanisms that achieve these
effects in class refinements are respectively called behavior inheritance(BI), extensional
inheritance(El) and polymorphic inheritance(PI).

Extensional inheritance and polymorphic inheritance allow the addition of new
transitions. The added transition may involve a new event, new states, new time-
constraints, and new attributes. In addition, enabling condition, port-condition and
post-condition may be introduced in the added transition. The difference between
extensional inheritance and polymorphic inheritance is that extensional inheritance
adds new items only related to make an existing simple state as a compound state
while polymorphic inheritance may add new items without relating to a compound
state. The addition of new time constraints to the new transitions must be consistent
with the time constraints in the base class.

Assuming that the base class has been tested, the goal of testing derived classes is
to avoid constructing the grid automaton for the inherited classes, but derive test cases

of the derived classes from the test cases of the base class. Otherwise, complexity

64

of testing process increases. For instance, by adding a new time constraint, the
granularity d = %, where k£ is the number of clocks, for the grid automaton, it
is increased, thus forcing more grid points in the grid automaton of the derived
class. That is, the size of the grid automaton increases, thus requiring more work
in generating test sequences for state and transition covers. More importantly, in
evolving systems where new derived classes are created, it is important to test them
as optimally as possible.

The testing methods discussed in this chapter are based on the following observa-
tions:

e the state machine description of a class that describes the behavior of objects
of the class contains sufficient information for test case generation;

e an object derived by behavioral inheritance from a base object should be tested
for behavior preservation and substitutability; that is, every test case of the base
object, when applied to the inherited object, must produce the same result as
it would on the base object;

e test cases of an object obtained by extensional inheritance of a base object
should include the test cases of the base object, and when a common test case

is applied to the derived object, it should produce the same result as the base
object;

e test cases of an object obtained by polymorphic inheritance of a base object
should produce the test cases of the base object when projected on the elements
of the base class.

In testing derived classes, the following principles play a crucial role. Let A be the
base object and A; be an inherited object (any one of the three kinds). Let G4(A)
and G4(A;) be respectively their grid automaton.

1 By the Homomorphism Theorem, for every computation 74 of G4(A), there
exists a computation 7 of A such that H(r4) = 7, and for every computation
1, of G4(Ar), there exists a computation 7/ of A, such that H;(r;,) = 7.

2 If MI is the inheritance mapping (any one of the three kinds) then MI(r;) =7

3 From 1 & 2, we have MI(H;(r;,) = H(r4). This means that there exists a
mapping @ : G4(Ar) = Ga(A) such that H(w(ry,)) = MI(H(71,)). That is,
T4 = w(7,). See Figure 24.

A < MI A,
o~
N
H H H;
Il
Mr
Gi(A) === ———~— Ga(Ar)
! !
! !
! !
! MI |
T4(A) &———-—-—— Ti(Ar) = Tu(Af)

Figure 24: The Principle of Inheritance

4 The Homomorphism Theorem can be applied to map the sets of test sequences,
since a test sequence is either a state cover or a transition cover, which in turn
is a partial computational path.

The following notations are used: Ty4(A) denotes the set of test sequences gener-
ated from G4(A), it will be used to test object A; Ty(A) = SC(A)U TC(A), where
SC(A) is the set of state cover sequences, and TC(A) is the set of transition cover
sequences; Ty(A) is derived from G4(A) using the test case generation algorithm. BI,
EI, and PI denote respectively the mappings defining the behavioral, extensional,
and polymorphic inheritances. Ty(Ag), T4(Ag), Te(Ap) denote respectively the set
of test sequences that will be generated by the unit testing algorithm from the grid
automatons G4(Ag), Ga(Ag), Ga(Ap). Ty3(Asg), T3(Ag), T3(Ap) denote respectively
the set of test sequences derived from Ty(A) by the construction discussed in the
sections below.

In the light of the observations and principles enunciated above, the following
equivalences can be shown :

Ta(Ag) = T4(As)

Ts(Ag) = T4(Ag)

66

Ta(Ap) = T4(Ap)

6.3 Behavioral Inheritance

The mechanism for deriving behavioral inheritance TROM objects is defined in [Ach93]
as follows:

o Attribute redefinition: A port type may be renamed; The data model of an
attribute may be redefined, provided there exist coercion functions for each

attribute from the redefined trait to the original trait.

e Transition redefinition: Redefinition of an inherited transition specification may
be done such that:

— The post condition may be strengthened.

!
apoat_wnd = apost_.cond

~ The port condition of a transition may be strengthened.

’
gport_cond = Gport_cond

— The enabling condition of a transition may be strengthened.

’
9enabling_cond = YJenabling_cond

o Time-constraint redefinition: The minimal time delay may be increased or max-
imal time delay may be decreased.

No new clock is defined in the inherited object. Hence, the grid size for G4(A) and
Gi(Ap) are the same. However, due to the strengthening of some time constraints,
G4(Ap) will not have some of the states and transitions of G4(A). Based on this
observation a method is outlined to construct test sequences of the derived object
from the test sequences of the base object. We consider test case generation for each

one of the rules defined above. Our hypothesis is that object A has been tested, and
T4(A) is available.

67

6.3.1 Attribute Redefinition

Renaming a port type will have no effect on the set of test cases. Although abstract
data type redefinition will not affect the set of test cases, it will have an impact on
the evaluation of the test results. For simplicity, assume that only one attribute has
been refined. Let a € X, o’ € X', x(f'(a’)) = f(e), where ¥ is the coercion function
for the attribute a’: o' 5 a, X is the set of attributes in TROM A, X' is the set
of attributes in TROM Apg, f' and f are the operations in X’ and X, respectively.
Since the attribute is redefined, we will have to look at whether it has affect on the
transition in terms of enabling condition, port condition and post condition. Since only
attribute trait is redefined, the test cases generated for the base object are sufficient to
test the behavior of the inherited object. The only check we have to make is that the
transitions for which the enabling condition, port condition and post condition involve
the refined attribute retain the same behavior of the corresponding transition in the
base class. This check does not require any new test case. It requires that the result
of an existing test case satisfies the refined post condition. Assume that the transition
r: g = a of TROM A becomes the transition r’ : ¢’ = o’ of TROM Az. Both g
and ¢’ can be expressed in the form g = Genasting_cond A Gport_cond A Gtime_constraine, and
@ == Qpost_cond N Gclock_inie- FoOUr Situations arise:

Case 1: g = ¢’, a = a’: We don’t have to test r'.

Case 2: g # ¢', a = a’: If ¢’ = g, then the test case used to test the transition
r : g = a can be used to test the transition r': ¢’ = a'.

Proof
(1): ¢’ = g (hypothesis)
(2): g = a (base object assertion)
(3): from (1) and (2) infer: ¢’ = a
(4): @’ = a(hypothesis)
(5): from (3) and (4) infer: ¢’ = o’

Case 3: g =¢', a # a’: If @’ = q, then the test case ¢’ used to test the transition
r’ : ¢’ = a’ can be mapped to c that tests the transition r: g = a.

Proof
(1): c tests r : ¢ = a (hypothesis)
(2): ¢ tests ' : ¢ = a' (hypothesis)

68

(3): @' = a(hypothesis)
(4): from (2) and (3) infer: ¢ tests ¢’ => a
(5): g = ¢’(hypothesis)

(6): from (4) and (5) infer: ¢ tests g = a
therefore, the coericion function maps ¢’ to c.

Cased4: g# g, a# a': If ¢ = g A a=>d, then the test case c used to test the
transition r : ¢ = a can be used to test the the transition ' : ¢’ = a’.

Proof
(1): g = a (base object assertion)
(2): e¢ = o’(hypothesis)
(3): from (1) and (2) infer: g = o’
(4): ¢’ = g (hypothesis)
(3): from (3) and (4) infer: ¢’ = o’

Hence we conclude that T4(Ag) = Ty4(A) with the provision that they are applied
and result evaluated according to the four situations discussed above.

6.3.2 Transition Redefinition

The redefinition of a transition involves strengthening one or more of the three pred-
icate expressions: enabling condition, port condition, post condition. Using proofs

similar to the proofs in the previous section, we can show that test set is not changed.

6.3.3 . Time-constraint Redefinition

A time constraint can be redefined by increasing the minimal time delay or by de-
creasing the maximal time delay.

The minimal time delay is increased

Let e, where s; = s;4{, be the event constrained by the minimum and maximum time
delays given by [[,u]. If the lower bound is increased to !’, the time constraint for
event e is changed to [I, u], where [, ', u € Q2%. Let n be the minimal time required

69

to reach the source state s; from the original state so, d is the unit of time increment.
If n > I', then T4(Ag) = T4(A); otherwise, T4(Ag) is computed as follows.

Casel [<np<!

The test suite Ty(Ag) for object Ag is constructed in three steps.

1. Let X = {< s;,n>,<s;,n+d>...,< s, —d >} We delete from
TC(A) all the test sequences for covering transitions whose source states
are in X and labeling events are e :

Ts(Ag): = Ta(A)\ {tc(e) € T4(A) | tc(e) =sc(f).enf e X}

2. If there exists a state § € G4(A) and the state cover sc(f) € Tq(A) is of
the form sc(8) = sc(< si41, v}y, >).p, where vj,, € {n,n+d,...,!I' - d},
p is a path from state < s;41, v/, > to state 8, then replace it by the new
state cover of 4, sc(8) = sc(< s;, ' >).e.p :

Ta(Ag)2 = (Ta(A) \ {5¢(< Sit1, Vlyy >)-P}) U {sc(< i, I >).e.p}

3. If there exists a state § with an outgoing transition e’ such that tc(e’) €
TC(A), tc(e') = sc(8).¢’, sc(8) = sc(< Sis1, Vi, >).p, where v{,; €
{n,n+d,...,lI'—d}, pisapath from state < s;41, vj, > to state 6, then
replace it by the new transition cover of €, tc(e’) = sc(< s;, 0 >).e.p.€’ :

Ti(Ag) = (Ta(AB)2 \ {5¢(< Siv1, vy, >).p-€'}) U {sc(< 5,1’ >).e.p.€'}

Case2 [>n

The test suite T4(Ag) for object Ag is constructed in three steps.

l. Let X = {<si,l > <si,l+d>...,< s, —d >}. We delete from
TC(A) all the test sequences for covering transitions whose source states
are in X and labeling events are e :

Ti(Ag)1 = T4(A) \ {tc(e) € Ts(A) | tc(e) =sc(f).end e X}

2. If there exists a state § € G4(A) and the state cover sc(f) € T4(A) is of
the form sc(8) = sc(< si41, Vi >).p, Where vj,, € {[,{+d,...,lI' - d},

70

p is a path from state < s;41, v}, > to state 8, then replace it by the new
state cover of 6, sc(8) = sc(< s;, ' >).e.p :

Ta(Ag)2 = (Ta(As) \ {5¢(< Sit1, %4y >).p}) U {s¢(< 5i, 1" >).e.p}

3. If there exists a state 6 with an outgoing transition e’ such that tc(e’) €
TC(A), tc(e') = sc(8).¢/, sc(f) = sc(< si41,v4; >).p, where v],, €
{l,t+d,...,I'—d}, pisa path from state < s;4+1, v{,, > to state 6, then
replace it by the new transition cover of €', tc(e’) = sc(< s;, ' >).e.p.€’ :

Ta(Ag) = (Ta(Ag)2 \ {sc(< sit1, vy, >)-p-€'}) U {sc(< s, ' >).e.p.e’}

The maximal time delay is decreased

Let e, where s; = s;;1, be the event constrained by the minimum and maximum time
delays given by [[, u]. If the upper bound is decreased to u’, the time constraint for
event e is changed to [/, u'], where [, u', u € Q2°. Let n be the minimal time required
to reach the source state s; from the original state sq, d is the unit of time increment.
T4(Ag) is computed as follows.

The test suite Ty(Ap) for object Ag is constructed in four steps.

1. Let X = {< ;v +d >, < s, +d+d>...,<s;,u >} We delete from
TC(A) all the test sequences for covering transitions whose source states or
destination states are in X :

Ts(Ag)y = Ta(A) \ {tc(r) € TC(A) | source(r) € X V destin(r) € X}

2. We delete from SC(A) all the test sequences for covering any state &, where
0 (S ..'Y .

T4(AB)2 = Ta(Ash \ {sc(f) € SC(A) | 6 € X}

3. If there exists a state 8 € G4(A) and the state cover sc(f) € T4(A) is of the
form sc(0) = sc(< Si41, Vi >).p, where vi,, € {v' +d, v’ +d +d,...,u}, p
is a path from state < s;41,v{;; > to state 6, then replace it by the new state
cover of 8, sc(f) = sc(< s;, v’ >).ep :

Ta(Ag)s = (Ta(AB)2 \ {s¢(< sit1, vy, >)-p}) U {sc(< s;, u' >).e.p}

71

4. If there exists a state with an outgoing transition e’ such that tc(e’) € TC(A),
tc(e’) = sc(f).€’, sc(6) = sc(< Sis1, V{4 >).p, where vf,, € {v' +d,v' +d +
d,...,u}, pis a path from state < si4+1,v{,; > to state 6, then replace it by
the new transition cover of €', tc(e') = sc(< s;, ¢’ >).e.p.e’ :

Ti(Ag) = (Ta(Ap)s \ {s¢(< Sis1, vl >)-p-€'}) U {sc(< si,u' >).e.p.e'}

6.3.4 Example

We illustrate the test case generation for OrdChannel object which is a behavioral
inheritance of Channel object.

Class Channel [@P,QQ)]
Events: SendA?P, SendB?P, DelvA!Q, Delv!Q
States: *idle, active
Attributes: inChn: MBag, z: msg

Attribute-function:
idle — {inChn}; active — {inChn,nezt}; [et | @P.@Q)
Transition-Specifications:
R, : (idle, active), {active, active); @
SendA?(true); true => inChn' = insert(A,inChn)
AT = A4;
Ro : (idle, active), (active, active); ” "
SendB?(true); true => inChn' = insert(B,inChn) Detva:/ DelvB: Sepaa? Send?
AN =B,
R : (active, active); DelvA!(size(inChn) > I A z = 4);
true = inChn’ = delete(A,inChn); @
Ry : (active, active); DelvB!(size(inChn) > I A T = B); (/ ‘
true = inChn' = delete(B,inChn);
Rs : (active, idle); DelvA!(size(inChn) = I Az =A) | DelvA/ DelvB! SendA?/ SencB? |

true => inChn' = {};
Rs : (active, idle); DelvA!(size(inChn) =1 A z = B);
true => inChn’ = {};
end

Figure 25: Class Specification of Channel

Figure 25 shows TROM class specification for a communication channel. The chan-
nel receives and delivers two types of message, A-message and B-message. Sending an
A-message (B-message) is represented by the input event SendA(SendB). Similarly,
the delivery of an A-message(B-message) to the receiver is represented by the output
event DelvA(DeluB). The channel can be either idle or active. The attribute inChn is

72

of sort Bag and keeps the message that are currently in the channel. In order to de-
liver a message, an arbitrary message from the bag is picked and delivered. Thus the
channel does not preserve the order of message sent. Figure 26 shows the definition of
the class OrdChannel derived from the class Channel in behavioral inheritance. The
sort for the attribute inChn is redefined from Bag to a Queue. Accordingly, the post
condition and the enabling condition of the transitions are modified. The communica-
tion channel modeled by the TROM class OrdChannel delivers messages in the order
in which they are received. Every TROM object instantiated from the TROM class
OrdChannel inherits the behavior of a TROM object instantiated from the TROM
class Channel. There exists a coercion function that maps the trait Queue to the
trait Bag, and a proof that an OrdChannel object is a behavior subtype of a Channel
object are given in [Ach95]. We remark that a TROM object of the class OrdChannel
can be substituted for a TROM object of the class Channel in every context.

Class OrdChannel [@P,QQ)]
Inherits: Channel
Attributes: inChn: MQue
Traits: Queue/msg, MQue/
Transition-Specifications:
R; : (idle, active), (active, active);
SendA?(true); true => inChn' = insert(A,inChn) A2 = A ;
R, : (idle, active), (active, active);
SendB?(true); true = inChn' = insert(B,inChn) AN =B ;
R; : (active, active); DelvA!(len(inChn) > 1 ANz = A);
true => inChn' = tail(inChn) A = front(inChr'),
Ry : (active, active); DeluB!(len(inChn) > 1 A z = B) ;
true = inChn' = tail(inChn) A £ = front(inChn'),
Rs : (active, idle); DelvA!(len(inChn) = I ANz = A);
true => isempty(inChn');
Rs : (active, idle); DelvA!(len(inChn) = 1 A z = B) ;
true => isempty(inChn');
end

Figure 26: Class Specification of OrdChannel

From Channel to OrdChannel, the only data model of the attribute is changed.
The test suite does not change. Now we check if it has the same effect on the

73

transitions’ enabling condition, port condition and post condition.
e For transition R;: ¢’ = g, ¢’ = a, no test needed.
e For transition R,: ¢’ = g, ¢’ = a, no test needed.

e For transition R;: ¢’ = g, ¢’ # a, but we have

a’ = (inChn! = tail(inChn) A 2 = front(inChn')) = a = (inChn' = tail(inChn))
e For transition Ry: ¢’ = g, ¢’ # a, but we have

a' = (inChn' = tail(inChn) A £ = front(inChr')) = a = (inChn' = tail(inChn))
e For transition Rs: ¢' = g, ¢’ = a, no test needed.

e For transition Rs: ¢' = g, ¢’ = a, no test needed.

The set of test cases for object Channel can be used to test object OrdChannel.

6.4 Extensional Inheritance

The goal of extensional inheritance is to provide design refinements that preserve
behavior. The TROM object Ag obtained by refining a TROM object A satisfying
the following constraints is an extensional inheritance of A.

e Possible Redefinition

— Any redefinition as permitted in behavioral inheritance

— The source state s of a transition may be redefined to any substate of s.

e Possible Addition

— FEvent addition: New events many be added, enriching inherited port-types.

— State addition: A new state may be added only to make an existing simple
state as a compound state.

— Attribute addition: New attributes and traits may be added.

— Transition addition: An added transition can have only new events and
new states. The superstate of the source state and the destination state
should be the same.

— Time-constraint addition: An added time-constraint can only constrain a

new event.

6.4.1 State Redefinition

The source state s of a transition is redefined. That is < s, v > becomes a complex

state, < Sg,v >€ substates(< s,v >), < s, U >= initial(< s,v >). The test
suite for Ag is computed as follows.

1.

o

The state cover of < s, v > computed as part of Ty(A) becomes the state cover
of < s, 9 > in Td(Ag):

sc(< s, v >) = sc(< sg, 19 >)

If there exists a state 8 € G4(A) and the state cover sc(8) € Tq(A) is of the
form sc(8) = sc(< s,v >).p, where p is a path from state < s, v > to state 6,
then replace it by the new state cover of 8, sc(8) = sc(< sq, g >).p :

SC(Ag)1 = (SC(A)\ {sc(< s,v >).p}) U {s¢(< 50,10 >).p}

If there exists a state § with an outgoing transition e’ such that tc(e’) € TC(4),
tc(e’) = sc(8).¢’, sc(@) = sc(< s,v >).p, where p is a path from state
< s,v > to state 8, then replace it by the new transition cover of €', tc(e’) =
sc(< sg, vg >).p.€ :

TC(Ag)1 = (TC(A)\ {sc(< s,v >).p.€'}) U {sc(< sq, 10 >).p.€'}

For any state s;, where < s;,v; >€ substates(< s,v >)A < s;,v >F<
Sg, Ugp >, the state cover of < s;, v; > is sc(< s;, v; >) = sc(< s,v >).p, where p
is a path from < sp, v9 > to < s;, v > ¢

SC(Ag)2 = SC(A) U {sc(< si, v >)}

. For any new added transition, < s;,v; >>< s;,v; >, where < s;,v; >,<

sj, vj > € substates(< s,v >), if sc(< s;, v; >).e € SC(AEg)2, add it to TC(A)

TC(Ag)2 = TC(Ag) U {sc(< s, v; >).e}

7

6. Test suite of Ag is the union of state cover and transition cover :

T4(Ag) = SC(Ag)2 U TC(AEg)

The above method can be applied independently for each state refinement in A.
Moreover, if a state of a refined state is refined again, the above method is repeated
taking Ag as the base object.

6.4.2 Attribute Addition

There is no change for test suite, however it may involve a recalculation of the enabling

condition, port condition and post condition of certain transitions.

6.4.3 Event Addition, State Addition and Transition Addi-

tion

An added transition can have only new events and only be between a pair of new
states. These additions occur because a state < s, v > is redefined to be a complex
state, which has been discussed in section 6.4.1.

6.4.4 Time-constraint Addition

An added time-constraint can only constrain a new event. For < s;, v; >5< 5,0 >,
e is the new added event which is constrained to occur within the time shift [/, u],
where < s;, v >,< s;,v; > € substates(< s,v >) and < s,v > is the state to be
redefined.

New time constraint can be added only to the new transitions in a state refinement.
For simplicity of discussion, let us assume that only one state § =< s, v > is refined to
get Ag. We consider the state hierarchy at 6 as a new automaton with encapsulation
of time constraints. This is justified because new time constraints should not violate
the existing time constraints in A.

We construct Gy, (6), the grid automaton for the #-machine where d; is the quan-
tization determined by the number of new clocks introduced in the refinement. We
compute SC(8), the set of state covers and TC(8), the set of transition covers for the
#-machine. We construct T4(Ag) as described below:

76

1. The state cover of § =< s, v > computed as part of T;(A) becomes the state

cover of < sg,vg > in T4(Ag):

sc(0) = sc(< so, vg >)

2. If there exists a state 8; € G4(A) and the state cover sc(6,) € T4(A) is of the
form sc(6,) = sc(6).p, where p is a path from state 6 to state 6,, then replace
it by the new state cover of 6, sc(6;) = sc(< sg, 19 >).D :

SC(Ag) = (SC(A)\ {sc(8).p}) U {sc(< 50, %0 >).p}

3. Ifthere exists a state §; with an outgoing transition e’ such that tc(e') € TC(4),
tc(e') = sc(8,).€', sc(f;) = sc(f).p, where p is a path from state 6 to state 6,
then replace it by the new transition cover of €', tc(e') = sc(< s, %0 >).p.€ :

TC(Ag), = (TC(A)\ {sc(8).p.€'}) U {sc(< so, v0 >).p.€'}

4. For any state < s;,v; >, where < s;,v; > € substates(d) A (< s, >F<
se, U0 >), the state cover of < s;, v; > is se(< si, v >) = sc(8).p, where p €
SC(6) and p is the state cover of < s;, v; > in §-machine :

SC(AE)Q = SC(A); U {SC((Si, Ui >)}

5. For any new transition, < s;, v; >S< 5,y >, where < s, v >, < 55,y >
€ substates(d), the transition cover of e, tc(e) = sc(< sg, tg >).p, where p €
TC(0) and p is the transition cover of e in #-machine : if tc(e) € SC(Ag)2,
add it to TC(A) :

TC(Ag)2 = TC(A) U {tc(e)}

6. Test suite of Ag is the union of state cover and transition cover :

Td(AE;) = SC(AE)z U TC(AE)2

6.4.5 Example

Figure 27 shows the class specification of a basic telephone. The events OnHook and
OffHook are initiated by the user of the telephone. They occur at a port of type @P.

-

(f

The events Ring and Stop can occur at a port of type @@, to initiate interactions
with a telecommunication switch. The activity related to initiation of a call goes on
in the state initCall, while the activity related to receiving a call goes on in the state
rcvCall. Figure 28 shows the specification of the class Answer-Phone obtained by
decomposing the state ringing of the TROM class Basic-Phone into two states wait
and answer, and adding the transition Start between these two new states. Once in
the state ringing, an answer-phone waits for 2 time units and then starts giving the
message before 4 units of time. The internal event can be disabled if the phone stops
ringing (idel state is entered) or the call is received (rcvCallstate is entered). A TROM
object of the class Answer-Phone is an extensional inheritance of a TROM object of
the class Basic-Phone. The behavior of Basic-Phone objects are preserved by the
objects of the class Answer-Phone. However, an object of the class Answer-Phone

cannot be substituted for an object of Basic-Phone in the context of its usage.

Class Basic-Phone [@P,8Q]

Events: OnHook?P, Off Hook?P, Ring?Q, Stop?Q
States: *idle, ringing, rcvCall, initCall
Transition-Specifications:

R, : (idle, initCall), (ringing, rcvCally;

OffHook?(true); true => true;
R : (initCall, idle), (rcvCall, idle); OnHook?
OnHook?(true); true = true;
Rj3 : (idle, ringing); Ring?(true); true = true;
R, : (ringing, idle); Stop?(true); true = true; OffHook?
end

(Basic-Phone | @P.@Q

OnHook?

Stop?
OtfHook?

J

Figure 27: Class Specification of Basic-Phone

There is no time constraint event in the class specification of Basic-Phone. Hence,
the grid automaton and TROM are identical. The set of test cases for the object from

the class Basic-Phone T4(Basic-Phone) includes the state cover and transition cover:

state cover SC: { O0ffHook?,
Ring?,
Ring?.0ffHook? }

transition cover TC: { OffHook?.0OnHook?,
Ring?.Stop?

78

—
Answer-Phone | Inherit Basic-Phone

Class Answer-Phone [@P,2Q)] ~

Inherits: Basic-Phone .
Events: Start Vo T Sop? >, OftHook?
States: ringing(*wait,answer) : K
Transition-Specifications: 3
Rs : (wait, answer); *~«.af ringing h

Start(true); true => true; @

Time-constraints:
(Ra, Start, [2,4], {rcvCall,idle})
end

L

Figure 28: Class Specification of Answer-Phone: Enhancement

Ring? .0ffHook? .OnHook? }

Figure 28 shows the refinement of the derived object Answer-Phone by refining the
state ringing. The state ringing becomes a complex state, including two substates:
waiting and answering; the new transition added between these two states is labeled
by the time constrained event Start, enforcing that it has to occur within 2 to 4 time
unit.

Figure 29 is the grid automaton of ringing-machine. State ringing becomes a
complex state, including substates wait and answer. All the original transitions whose
destination state is ringing will be changed to the transitions whose destination state
is < wait,0 >, the initial state of ringing. All the original transition whose source
state is ringing will be changed to the transitions whose source states are < wait, v >,
where v € {0,1/2,2/2,3/2,4/2,5/2,6/2,7/2,8/2}.

COE DD
— Lo —
Stag

Start

Figure 29: Grid Automaton of rnging-machine

The test cases for the ringing-machine are the following:

state cover SC(ringing):

1/2,

1/2.1/2,

1/2.1/2.1/2,

1/2.1/2.1/2.1/2,
1/2.1/2.1/2.1/2.1/2,
1/2.1/2.1/2.1/2.1/2.1/2,
1/2.1/2.1/2.1/2.1/2.1/2.1/2,
1/2.1/2.1/2.1/2.1/2.1/2.1/2.1/2,
1/2.1/2.1/2.1/2.Start b

transition cover TC(ringing):

{
1/2.1/2.1/2.1/2.1/2 . .Start
1/2.1/2.1/2.1/2.1/2.1/2.Start
1/2.1/2.1/2.1/2.1/2.1/2.1/2.Start
1/2.1/2.1/2.1/2.1/2.1/2.1/2.1/2.8tart
}

The initial state of the grid automaton ringing is < wait,0 >, and its state cover
is the state cover of ringing. The state cover of any other new added state is the state

cover of < wait,0 >, concatenated with the state cover of this state. For instance,
sc(< wait,2/2 >) = sc(< wait, 0 >).5Cringing(< wait,2/2 >)
where sc(< wait,0 >) = Ring?, SCringing(< wait,2/2 >) = 1/2.1/2, therefore,
sc(< wait,2/2 >) = Ring?.1/2.1/2

The transition cover of any new added transition is the state cover of < wait,0 >,
concatenated with the transition cover of this transition. For instance,
te(< wait,4/2 >t . answer,v' >) =
sc(< wait, 0 >).teringing (< wait,4/2 >t . answer, v >)
= Ring?.1/2.1/2.1/2.1/2.Start
where v' € {4/2,5/2,6/2,7/2,8/2}.

80

6.5 Polymorphic Inheritance

The TROM object Ap obtained by refining a TROM object A satisfying the following
constraints is a polymorphic inheritance of A.

e Possible Redefinition

— Any redefinition as permitted in Behavioral inheritance.

e Possible Additions
— Port Addition: New port-types may be added. This necessary introduces
new events.

— State addition: New states may be added without decomposing any atomic
state.

— Attribute addition: New attributes and traits may be added.
~ Transition addition:

% An added transition can be labeled either by a new event or old event.
However any new internal event should be strictly between new states.
» An added internal transition can only have newly added states for

both source and destination states.

— Time-constraint addition: An added time-constraint can only constrain a
new event and can only be triggered by a new transition.
6.5.1 Attribute Addition

There is no change in the set of test suites, however a recalculation of the enabling

condition, port condition and post condition of certain transitions may be necessary.

6.5.2 Other Additions

Let Ap be a polymorphic inherited object of A. We consider the part of the machine
Ap consisting of the newly introduced states, the new transitions (may be labeled
by either new or old events) and those states in A that can be a source or destina-

tion of new transitions, call this machine Remp. We construct the grid automaton

81

G4, (Remp) and compute the set SC(Remp), the set of state covers for Remp, and
the set TC(Remp), the set of transition covers for Remp. We justify the construc-
tion of new grid automaton Gy, (Remp) based on the facts that new time constraints
introduce new clocks, and should not interfere with the existing time constraints in
A. We construct the set T4(Ap) as follows:

1. The initial state of the new grid automaton G4 (Remp) should be the state in
A that can be a source state of the new transitions. If there is more than one

such state, we arbitrarily choose one of them as the source state.

2. Construct the grid automaton G4 (Remp) and compute the set SC(Remp), the
set of state covers for Remp, and the set TC(Remp), the set of transition covers
for Remp.

3. For any new added state 6, the state cover of 8 is the state cover of 6y, concate-
nated with the state cover of 6 in machine Remp, where 6, is a state in 4, and
the initial state of grid automaton G4 (Remp) :

SC(Ap) = SC(Ap) U {sc(8) = sc(6o).scremp (6) }

4. For any new added transition r, if tcgem,(r) € TC(Remp), then the transition
cover of r is the state cover of g, concatenated with the transition cover of r in

machine Remp , where 6 is a state in A, and the initial state of grid automaton
gdl (RemP) :

TC(Ap), = TC(Ap) U {tc(r) = 5¢(6p)-tcremp (T) | tCRemp(r) € TC(Remp)}

5. The test suite for Ap is the union of the set of state covers and the set of
transition covers :

Ts(Ap) = SC(Ap)1 U TC(Ap)

6.5.3 Example

As an example of this kind of inheritance consider the arbiter class Arbiter shown
in Figure 7. Objects of Arbiter class do not communicate among themselves. The
class obtained from Arbiter class, respecting polymorphic refinements, is the class

ComArbiter shown in Figure 30. Arbiter objects of the refined class communicate

82

(ComArbiter Inherits Arbiter @Q

_ i _J

Class ComArbiter [(QQ]
Inherits: Arbiter
Events: SndGrant'Q, RcvRet?Q, SndReq!Q, RcuReq? Q
States: idlel, waitl
Attributes: rgQueue, rgd Queue : UQueue, atPrt : @Q
Attribute-function:
idlel, wait1 = {rqQueue, rgd Queue, atPrt}; allot, wait — {atPrt};
Transition-Specifications:
R3 :< allot, allot >, < wait, wait >, < idlel, idlel >,
< waitl, waitl >; Req?(” (pid € rgQueue));
true —=> rqQueue’ = insert(pid, rqQueune) A equal(rgAQueue’, rgd Queue):
Rg :< allot, idlel >; SndGrant!(pid € rgiAQueue);
true = atPrt’ = pid A equal(rqgQueue’, qQueue) A equal(rqgAQueue’, tail(rgAQueue));
R; :< waitl, allot >; RcvRet?(pid = atPrt);
true => equal(rgQueue’, rqQueuve) A equal(rgA Queue’, rqd Queue);
Rg :< idlel, waitl >; SndReq!(pid = atPrt);
true => equal(rgQueue’, rgQueue) A equal(rgA Queue’, rgA Queue);
Ry :< idle, allot >, < allot, allot >, < wait, wait >, < idlel, idlel >, < waitl, waitl >;
RcvReq?(" (pid € rqgAQueue));
true => equal(rqQueue’, rgQueune) A rgAQuene’ = insert(pid, rgAQueue);
Time-Constraints:
TCs : (R7, Grant, [0, 2], {waitl})
TCj; : (R, SndGrant, [0, 2], { wait})

end

Figure 30: Class Specifications of the Communicating Arbiter

83

through the events SndGrant!, SndReq!, RcuReq?, and RcuRel? at the ports of the
new port type @Q to request and return resource owned by them. Whenever a
resource requested by a client of arbiter a is not available with a but is available
and not in use with some client of arbiter b, arbiter ¢ can request for the resource
and get it from arbiter 6. In order to specify this requirement, the class specification
of ComArbiter includes the new transitions Rgs, Rr, Rs, Rs, and a modification of
the Arbiter transition R3;. The new states idlel and waitl, and two new timing
constraints are associated with the new transitions. The new attribute rgAQueue is
the list of port identifiers at which requests from other arbiters are received. The
attribute atPrt denotes the port at which the resource was last granted through the
communication channel. In state allot an arbiter can allocate a resource to one of
it clients or can grant access to the resource requested by another arbiter. In state
idlel, an arbiter object does not hold the resource nor does any of the users associated
with it hold a resource. If it needs the request, it sends the message SndReg to an
arbiter and waits in state waitl. As soon as receiving the message RcvRet signaling
that the resource has been returned by another arbiter, it changes its state to allot,
making the enabling condition for the transition Grant to true, thereby allocating the
resource for one of its clients. An object from ComArbiter class can be substituted
for an object from Arbiter class in the latter’s context. In such use, no port of type
@Q will be linked, blocking the newly introduced events from occurring.

We construct the grid automaton for the machine Remp(Comdrbiter) as in Figure
31. The state < allot,0 > is the initial state of grid automaton G4 (Remp). The test
cases for the TROM Remp(ComArbiter) are the following:

state cover SC:

{
1/2,
1/2.1/2,
1/2.1/2.1/2,
1/2.1/2.1/2.1/2,
SndGrant!,
SndGrant!.SndReq! }

transition cover TC:

34

RcvReq?

-——-

' allot,0_

- -

l/Zl

allot, 1/

~

RcvRet?

SndGrant! A

SndReq!

3 RcvReq?

- -

l\aLIIPt’ _212\%
]

SndGrant!

‘allot, 3/2
17" SndGrant!
1/2

-

Req?

\ allot,4/2,’

Figure 31: Grid Automaton of Remp

1/2.SndGrant!,
1/2.1/2.SndGrant!,
1/2.1/2.1/2.SndGrant!,
1/2.1/2.1/2.1/2.SndGrant!
SndGrant!.Req?,
SndGrant!.RcvReq?,
SndGrant!.SndReq! .Req?,
SndGrant!.SndReq! .RcvReq?
SndGrant!.SndReq! .RcvRet? }

The state cover of < allot,0 > is the state cover of state allot; the state cover of
any new added state 6 is the state cover of state < allot,0 >, concatenated with the

state cover @ in the grid automaton of Remp. For instance:

sc(< idlel, v >) = se(< allot,0 >).5cremp (< idlel, v >)
where v € {0,1/2,2/2,3/2,4/2}.
If there exists a new added transition 7, tcgem,(r) € TC(Remp), then the transi-
tion cover of r is the state cover of state < allot,0 >, concatenated with the transition
cover of r in the grid automaton of Remp. For instance:

te(< idlel, v > 5ndfea waitl, v >) = sc(< allot,0 >).tcgem, (< idlel, v > SndBea waitl, v >)

where v € {0,1/2,2/2,3/2,4/2}.

6.6 Parameterized Events and General Inheritance

In this section we discuss two extensions: one deals with parameterized events, and
the other delas with general inheritance.

6.6.1 Parameterized Events

A recent extension of TROM is PTROM [Hay01], where in events with typed pa-
rameters are allowed to occur in a reactive unit. PTROM allows constant as well as
variable parameters. The test case generation approach remains the same for such
instances. The main difference is that the set T4(A) will contain test cases as well
as test templates. A test template will include one or more parameterized events.
For instance, if the event Near(uid) is part of a test template, and uid is a constant
parameter, different test cases are obtained by instantiating the parameter uid with
values from the domain associated with its type. If the type of uid is Net, and the
domain is {100, 200,300}, then different test cases involving Near(100), Near(200),
Near(300) will be generated from the test template involving Near(uid). However,
if uid is a variable parameter whose values are determined by the postconditions in
transition specifications, the test template can only be injected as is or with an initial
value for uid as provided by the specification. More general situations will arise when
a template includes events with several parameters as well as several parameterized
events. The key features of a test template are that it is

e generic, i.e., it represents a family of input,

86

e abstract, i.e., it is extracted from the specification and can be tailored to any
particular implementation, and

e instantiable, i.e., there is some representation for the defined class of input values
to the parameters,

Test templates can be arranged in a hierarchy and partitioned to meet the goals of
testing. Since all tests must be derived from the valid input space of the parameters,
the valid input space can serve as the starting point of a hierarchy. Once the test
strategy determines the valid input space, it can then partition the valid input space
into domains of interest. Choice of domains is not determined by the test case gen-
eration algorithms. Rather, testing strategies and some heuristics must be used to
determine the domains. To meet the objective of testing, one must derive domains
which are equivalence classes of error-detecting ability for the program under test,
and which cover the valid input space. So, domains must be chosen so that each
element of the domain has the same error-detecting capability, and hence the result
of using one element in testing applies equally to all elements in the domain. Our
observation on domain partitioning for parameter space, is equally valid for events
from the environment that are stimuli to the reactive system. These remarks are

given here to motivate an implementor of our methods in a practical setting.

6.6.2 General Inheritance

We can incrementally combine the three methods discussed in the previous sections
to generate test cases for an object which is derived by combining the three kinds of
inheritance. If A is a base object from which Ag, an extensional inheritance of A is
derived first and then (Ag)p, a polymorphic inheritance is derived next, then the test
set T4((Ag)p) is obtained incrementally, generating Ty4(Ag) from T4(A) and then
T4((Ag)p) from T4(Ag). In general, if there is a sequence of refinements of A to get
an object A;, where each step in the sequence is one of three basic inheritance, then
there exists a sequence of test sets T4(A),..., T¢(Ar), such that each member in the
sequence is derived from previous member by applying a method appropriate to the
inheritance. Below we illustrate this approach to derive the test cases of a generalized
Arbiter.

A simple version of Arbiter example has been discussed earlier. Now we discuss a

87

version of the Arbiter model in which events have parameters. An Arbiter allocatesa
resource to processes requesting them. Upon sending a request, a User is granted the
resource which it has to return within 20 time units. A user cannot hold more than
one resource, and it can send a request to the Arbiter one at a time. The Arbiter class
has one port type @U through which it receives the messages Req? and Ret?, and
outputs the message Grant!. It has one data type p of type integer, two parameters
uid and rid of type integer, and three abstract data types: Queue, Set, and Pair
necessary for its functioning.

The statechart diagram of the simple Arbiter system is presented in Figure 32.
The formal specifications of the Arbiter is shown in Figure 33.

Req(ud)/ —
qQueue’sEnqueus(uid,rqQuevs) '
{ Y GalPair{ true &5
H 5 lisEmpty(rqCueue) | /
------ ey et diene, | pratreniirgQueus) 84 TCVart <0
[y— S Req(ud)/ S Al Rt
1 i J rqCueue’sEngueues(ud.qQueus) P H :
. /'/," D eemeecaeiaanend
-
Ret(ud) true && /,/"
1sEmpty(raCueue) | Ret(uid){ true &4 isEmpty(rqQueus) |
g
’,r’
’,/
"/ :
—_ -~ Grant(uidep){ rue 84 rue &4 TCVart<2]
i wat o 1 reCGueue’=Dequeua{raCueu) H
‘Aea(ud)/
rqQueue’sEnqueue(uid sqCueus)

Figure 32: Arbiter State Diagram

The design of a generic Arbiter is based on the following considerations. An
Arbiter allocates multi-type resources to processes requesting them. At any instant,
a process can simultaneously hold and request more than one resource. To request a
resource, the process (User) sends the message Reg to the Arbiter. The Arbiter can
receive requests from different users. In order to remember the User to whom the next
resource must be granted, the Arbiter maintains a queue in which the pair of User
ID and request ID is stored. The users are serviced or a first—in—first—out basis.
Also, the Arbiter has a set where the Ids of available requests are stored. Whenever a
request is granted to a User, the request ID is deleted from the Set. If the request ID
is not in the Set, the Arbiter sends the message NotAvailable to the User requesting
it. To keep track of the granted requests and the users holding them, the Arbiter

maintains another set where the pairs of granted User IDs and request IDs are stored.

88

Class Arbiter [@U]
Events: Req?@U, Ret?@U, GetPair, Grant!@U
States: *Idle, Wait, Allot
Attributes: rqQueue:UQueue; uid:Integer; p:Integer
Traits: Queue{Integer, UQueue]
Attribute-Function: Idle — {uid};Wait — {rqQueue, uid}:Allot = {rqQueue, p, uid};
Parameter-Specifications:
Grant: uid;
Req: uid;
Ret: uid;
Transition-Specifications:
R1: <Idle,Allot>; Req[uid](true); true => rqQueue’=Enqueue(uid,rqQueue);
R2: <Wait,Idle>; Ret{uid](true); isEmpty(rqQueue) = true;
R3: <Wait,Wait>; Req[uid](true); true = rqQueue’=Enqueue(uid,rqQueue);
R4: <Wait,Allot>; Ret[uid](true); lisEmpty(rqQueue) = true;
R35: <Allot,Allot>; Req[uid](true); true = rqQueue’=Enqueue(uid,rqQueue);
R6: <Allot,Allot>; GetPair[J(true); !isEmpty(rqQueue) => p’=front(rqQueue);
R7: <Allot,Wait>; Grant[uid=p](true); true = rqQueue’=Dequeue(rqQueue);
Time-Constraints:
TCvarl: R6, Grant, [0, 2), {};
end

Figure 33: Formal Specification for GRC Arbiter-Simple

The User returns a resource by sending the message Ret to the Arbiter. Then, the
resource ID is inserted back into the set of available resource Ids and the pair of
granted User ID and resource ID is deleted from the set of granted resources. To
guaranty that all the users are served, a time condition constrains the granting event
of the Arbiter. The Grant message should be sent within 2 time units after retrieving
the request from the queue.

The Arbiter has one port type @U through which it receives the messages Reg? and
Ret?, and outputs the messages Grant! and NotAvailable!. Tt includes one data type p
of type pair, two parameters uid and rid of type integer, and three abstract data types:
Queue, Set, and Pair necessary for its functioning. The state machine associated with
the Arbiter is shown in Figure 34. The state of the Arbiter is determined by the values
of 2 invariants. The first is rqQueue, a queue where the pairs of requesting user Ids
and request Ids are stored. The second is grSet, a set where the pair of granted
User Ids and request Ids are stored. The possible combinations of the values of these

89

attributes are represented in Table 1. For instance, if the Arbiter is in state S1, then
rqQueue and grSet are empty. It means that the Arbiter is in an idle state where it
does not have any request to grant, and all the resources are available and returned by
users if any were granted. If the Arbiter is in S2, then rgQueue not empty and grSet
is empty. This is interpreted as the Arbiter is in a state where it has outstanding

requests in the queue to be granted but still none is served. The formal specifications
of the Arbiter is shown in Figure 36.

EMPTY NON-EMPTY
S1 rqQueue, grSet
S2 grSet rqQueue
S3 grSet, rqQueue
S4 rqQueue grSet

Table 1: Possible States of the Arbiter Class

The generic Arbiter is obtained incrementally from simple Arbiter. First, by
polymorphic inheritance, we add the new event NotAvailable! between the old states
in the simple Arbiter. Second, by extensional inheritance, we refine the state Wa:it
to include two substates: S;, and S;. Within the refined state Wait new transition
NotAvailable! is added between the new states, and a new time constraint is added.
Third, by behavioral inheritance, the data model and some old transitions are refined.
Therefore, the generic Arbiter object is obtained by ((Ap)g)s. The test set of generic
Arbiter is correspondingly obtained by incrementally combining the methods for the
three steps of inheritance.

1. Compute T4(A): Construct the grid automaton for the state machine A and
compute T4(A), the set of test cases for the simple arbiter A.

2. Polymorphic Inheritance: Construct the grid automaton for the newly added
part to the state machine A. Let Ap denote the new state machine. Following

the method discussed in Section 6.5 modify the set T4(A) to recalculate the
test set Tq(Ap).

3. Extensional Inheritance: Construct the grid automaton for Wait-machine. Let
Ap_ denote the new machine obtained by the state refinement from Ap. Fol-
lowing the discussion in Section 6.4, incrementally modify the set of test cases
Ta(Ap) to get the set Ty(Ap,).

90

4. Behavioral Inheritance: Denote by Ap._ the new machine obtained by behav-
ioral inheritance of the machine Ap.. Following the discussion in Section 6.3

recalculate the set of test cases Ty(Ap,,).

The set Td(APEB) will include test templates involving the parameterized events
in the arbiter specification. The justification for the order in which we carried out the

refinement is that new time constraints should not violate the old time constraints.

91

{enanpby'{pri‘pinjlenenbug=,enench)
1{pupin .Wun,

/,. .
// , ,.
linsbrpuiosui=jogbs f « Y5y
g (19516' {prrpin)iereie =056, \

1

1

! 1
11 1<lieg B)ver 3y ons I(pu'pin oy / \
AT . \ _—

N

/ o.ke,o— $0-CTADL
3% \3:05:8._-.._ 1 negie

(tagbr'puejopq=iosbs
¥ (10516 {prr'pin}iiesu)= 10510
.......................... 2.(enenpbyjananbeg=enenpbi /(..
2>pmAD| 1% 1=(onenpbijuel g (1egbrpu)iequew
9% onn | (d)ipuodses=pir(dlisiy=pin jivein

(onangb* {prrpm)iidnbug=enangb

. ~ N g
{enengbenenbeg=enenpbs {1, —— ,..h,..v»rnwx\ll.... e T 1{ prrpin Jboy [T
11 1<lonengbijue) / T e gt A bbb
R I e
K (Ghpuocos-pirtdisi=pn Jormienvics ‘ AN 99 on J((d)puodes-py'(dhsy=pin Jeme|eAyioN
/ \ (1ogbrpujeiepQ=iogbs L’
- 4.7 g (19518 (pir pinfliresu)«,jeg 10 s \
i g (enenpbijenenbeg=onengbi e
: Il >ereAD 1 99 1<(enonobriusy -~
: g {legbs'pus) eqwew gy ens) .
1((d)puoses=pii'{d)isiy=pin Jivero e
w .._omwﬁ.ﬂswwg...ams 5 s
y - ¥ (19518 (pupin))pesui=jes) -~
{1legbs n:r:mws logbi “ a_?ao:cgo.f:eo.on.oaehn.vu. a._om.wmw.?.e.%o-..omc. .
; - i 11 2>2ean) ¥y t<(enonpbijve) 9 (1o \rpin)jpesul= jegs
SObnloongries® | ! Toc ubaaimu g om 3 [prarobieronbog~onnob
ygonni(pupmiey | | (Ipvoses=ppiidisiympin livern 412>172A01 93 1=(enerObijue)
; { i L+ g liesbrpu)equou gy eni){
: m P4 {d)puoses=pis ‘(dhisnj=pin huesn
N i Rl (losbrpujuesu|=tegb)
AN e ¥ (los16'{pr'pin}leeQ=1eG1B /
N e { 1=(i0g:8)ve) 33 oy |(piFpin ey
/A/ < . \\\
FAATEN !.im\.» S N
~Z/eA)) ¥ 0=t = t . N -

1] whﬂ&w._._us._.h R&_ao\m\. et s _v S .-w.eédc_é_. pinfjanenbuz=enenobif { pi ‘pin ibey
e L / Ly T e
*{pts'pin)jenenbug=eneny) . . -

1 (p'pin Jboy i fonshgbilenanbog=.enanpbs {enongybijenenbeg=enenpbs

11 1<lenengbi)ue) g {iegbi’pu)requewy

9y enii }{ (d)puoses=pu'(d)isiy=pin Jeqe|eayioN

11 1={enengbi)ue; g (logbi'pi)equow,
9% o1)((d)puoses=pir{d)isiy=pin jee|reayioN

/

(tagbspuipesui=jegb)

¥ (te516'(pu'pin)iete@q=tes:B
11 1<{jegiB)ue)

99 oni }{ pii'pin Jiey

iagram

Arbiter StateChart Di

Figure 34

92

Class Arbiter [@U]
Events: Req?@U, Ret?@U, Grant!@QU, NotAvailable!l@U, GetPair
States: *S1, S2, S3, S4
Attributes: rqQueue: UQueue; rqSet:USet; grSet:GSet; p:pPair;
uid:Integer; rid:Integer
Traits: Queue[pPair, UQueue],Set[Integer, USet],Set[Integer,GSet],
Pair{Integer, Integer, pPair]
Attribute-Function: S1 — {grSet, rqSet, uid, rid}:S2 — {rqQueue, grSet, rqSet, p, uid, rid};
S3 — {rqQueue, grSet, rqSet, p, uid, rid}:S4 — {rqQueue, uid, rid, grSet, rqSet};
Parameter-Specifications:
Grant: uid, rid;
NotAvailable: uid, rid;
Req: uid, rid;
Ret: uid, rid;
Transition-Specifications:
Rl: <S1,52>; Req[uid,rid](true); true =
rqQueue’'=Enqueue(uid,rid,rqQueue);
R2: <S4,S1>; Retfuid,rid](true); len(grSet)=1 =
grSet’=Delete(uid,rid,grSet) & rqSet’=Insert(rid,rqSet);
R3: <S4,S3>; Req[uid,rid](true); true =
rqQueue’=Enqueue(uid,rid,rqQueue);
R4: <S4,S4>; Retfuid,rid](true); len(grSet)>1 =
grSet’=Delete(uid,rid,grSet)& rqSet’=Insert(rid,rqSet):
R5: <S2,54>; Grant[uid=first(p),rid=second(p)}(true);
memeber(rid,rqSet) & len(rqQueue)=1 =
rqQueue’=Dequeue(rqQueue) & grSet’=Insert({uid,rid},grSet) & rqSet’=Delete(rid,rqSet):
R6: <S2,S83>; Grantuid=first(p),rid=second(p)](true);
member(rid,rqSet) & len(rqQueue)>1 —>
rqQueue’=Dequeue(rqQueue) & grSet'=Insert({uid,rid},grSet) & rqSet’=Delete(rid,rqSet):
R7: <S2,S1>; NotAvailable[uid=first(p),rid=second(p)](true);
!member(rid,rqSet) & len(rqQueue)=1 ==> rqQueue’=Dequeue(rqQueue);
R8: <S2,52>; NotAvailable[uid=first(p),rid=second(p)](true);
!member(rid,rqSet) & len(rqQueue)>1 =—> rqQueue’=Dequeue(rqQueue);
R9: <S2,S2>; Req[uid,rid](true); true =
rqQueue’=Enqueue(uid,rid,rqQueue);
R10: <S2,52>; GetPair{](true); true =
p’=front(rqQueue);
R11: <S3,S4>; NotAvailable[uid=first(p),rid=second(p)](true);
!member(rid,rqSet) & len(rqQueue)=1 =—> rqQueue’=Dequeue(rqQueue);

Figure 35: Formal Specification for GRC Arbiter

93

R18:

: <S83,S2>; Ret[uid,rid](true); len(grSet)=1 =

grSet’=Delete({uid,rid},grSet) & rqSet’=Insert(rid,rqSet);

: <S3,S3>; NotAvailable[uid=front(p),rid=second(p)](true);

!member(rid,rqSet) & len(rqQueue)>1 = rqQueue’=Dequeue(rqQueue):

: <S3,S3>; Ret[uid,rid](true); len(grSet)>1 =

grSet’=Delete({uid,rid},grSet) & rqSet’=Insert(rid,rqSet);

: <83,S3>; Req(uid,rid](true); true =

rqQueue’=Enqueue(uid,rid,rqQueue);

: <S3,S3>; GetPair[](true); true =

p’=Dequeue(rqQueue);

: <83,53>; Grant[uid=first(p),rid=second(p)|(true);

member(rid,rqSet) & len(rqSet);1 =

grSet’=Insert({uid,rid},grSet) & rqSet’=Delete(rid,rqSet) & rqQueue’=Dequeue(rqQueue);
<S3,S4>; Grant{uid=first(p),rid=second(p)](true);

member(rid,rqSet) & len(rqSet)=1 =

grSet’=Insert({uid,rid},grSet) & rqSet’=Delete(rid,rqSet) & rqQueue’=Dequeue(rqQueue);

Time-Constraints:
TCvarl: R10, Grant, [0, 2), {};
TCvar2: R10, Grant, [0, 2), {};
TCvar3: R16, Grant, [0, 2), {};
TCvar4: R16, Grant, [0, 2), {};

end

Figure 36: Formal specification for GRC Arbiter-Continued

94

Chapter 7

System Testing - I

7.1 Introduction

This chapter discusses the testing of a simple system where only a pair of objects
interact. We construct the synchronous product machine of the two interacting ob-
jects. We use the algorithms described in Chapter 5 to derive a grid automaton and
generate test cases from the grid automaton.

7.2 Pair Testing: Testing a pair of Objects

In TROM formalism, there is no communication among the objects from the same
class. Therefore, pairs of interacting objects are from different classes. We can com-
pose the synchronous product machine of the two interacting objects, use Algorithm
GA to derive the grid automaton for the synchronous product machine, and use
Algorithm TC to generate the test cases from the grid automaton.

The set of clocks in the synchronous product machine is the union of the set of
clocks of the individual machines. Consequently, if &£; and k» are the number of clocks
of the individual machines, the quantization of the grid automata corresponding to
the synchronous machine is ﬁ Notice that the number of clock regions increases
for large values of k; and k,, thus forcing the grid automata size (vertices and edges)
to increase. Such an increase is acceptable because it only increases the effectiveness
of test covers to test the behavior in a finer level of timeliness.

7.2.1 Algorithm for Constructing the Synchronous Product
Machine

The algorithm, starting from the initial state of the product machine, will compute
only those states that are reachable due to either internal transitions or synchronous
transitions. The algorithm terminates when no new state is added to the set of states

in the product machine, and timing conflicts are removed.

Timing Analysis

Before we introduce the Algorithm SP for constructing the synchronous product ma-
chine, we present the definitions of the temporal predicates for time intervals used in
TROM. It is the basis to do timing analysis in the algorithm SP.

We introduce a domain for time intervals in TROM, and define the temporal
predicates shown in Figure 37 to express relations on time intervals. The equality
predicate Equal is symmetric; the predicates Before, Meet, Overlaps, During, Starts,
and Finishes are asymmetric. Thus, for a pair of time intervals, there are thirteen
relations expressible by these predicates and their inverses. More complex temporal
relations on time intervals can be expressed in terms of these predicates. Table 2
gives the definitions of the temporal predicates on time intervals. The variables
T, and T, range over the domain of time intervals; T\ = [u;, 1], i > u;, and

T, = [up, 1], o > uy, where uy, ug, vy, o are non-negative rationals.

Before(Ty, T>)
Meet(Ty, Ts)
Overlaps(Ty, Ts)
Equal(Ty, Ts)
During(Ty, Ts)
Starts(Ty, T2)
Finishes(Ty, T3)

n<u
h =%
<<y <ty
w=wmAn =1
U <uyAv <ty
U =uwAun <t

e e e e e e ne

U <wAy =1

Table 2: Definitions of the Temporal Predicates

96

T T
Before (T1, T2) l—ll l—z—l

T T2 |
Meet(T1, T2) r T 1
Tt
I I T2
Overlaps (T1,T2) —1
T1
Equal(T1,T2) l T2 I
P
T1
During (T1,T2) T2 /|
] 1
T1
— o,
Starts (T1,T2) b i
Tt

Finishes (T 1, T 2) . T2 l l

| 1

Figure 37: Temporal Predicates

Algorithm SP

Input: Finite state machines M; = (S,, E;, T1) and My = (Ss, Es, Tb), E; N E, = set
of shared events.

Output: Synchronous Product Machine M = M; & Mo, where M = (S,E, T),
S C{(si,s) | si € 81,5l € S}, E=E UE,. VY(s;,s!) € S. It has at least one
incoming or outgoing transition.

Step 1 Initialization
Step 1.1 NU: set of states which are still to be explored:
NU = {(s0,s§) | s0 € S1, 5§ € S2}

Step 1.2 S: set of states in the product machine. These are the states that have
been reached by transitions.

S=0

Step 1.3 T: set of transitions.
T=0
Step 2 While (NU # 0) do the following steps

Step 2.1 Pick an element (s;,s!) from NU, compute NU = NU — {(s;,s!)} and
S=SuU{(si,sh)}
Rename clock variables if necessary so that all the names are distinct.

Step 2.2 For each shared event e that occurs at s; and s; do:
if (5; = 5;) and (s} S), then NU = NUU{(s;,s})}, T = TU{(si,s}) >
(sj»s;)}- The guard of the transition (s, s{) 5 (s, s;), is the conjunction of
the guard of 5; = 5; and the guard of s{ = s]. The action of the transition
(si,s}) 5 (s;,8]), is the union of the action of s; 5 s; and the action of
FHES 5, -

Step 2.3 For each internal event e occurring at s; do:
if (si = 5;), then NU = NUU{(s;,sD)}, T = TU{(si,}) = (s,,5!)}. The
guard and action of transition (s;, s{) > (s;, 5}), is the guard and action of
Si s,

Step 2.4 For each internal event e occurring at s; do:
if (st > s;), then NU = NUU{(s‘,sJ')}, T = Tu{(s:,s}) 5 (s,-,sJ’)}. The
guard and action of transition (s;, s!) = (si, s;), is the guard and action of

LN
Si—)sj.

End of While loop

Step 8 Conduct a static analysis of time constraints and remove transitions that are

in conflict. For each state s in the product machine do the following steps:

Step 3.1 If the outgoing transitions in state s are not time-constrained do nothing.

Step 3.2 If the outgoing transitions in state s are constrained by different clock
variables that are not initialized at the same instant, then do nothing.

Step 3.3 If there exists k > 1 outgoing transitions in state s that are constrained by
the same clock variable or by different clock variables that are initialized
at the same instant (in the action part of a transition specification), then
resolve the conflict as follows:

98

Let [ai, bi],[as, -ba), - - -, [ak, bx] De the time intervals for the time
constraints on the k transitions. Determine r for 1 < r < &k
for which the predicate before({a., b/}, [q;, b;]) holds for all j =
1,...,k, 7 # r. Retain the transition at s which is constrained
by the clock variable in the interval [a,, b,], and remove the rest

of the transitions at s.

Step 4 Remove states(except the initial state) in the product machine that have no

incoming transition. These states are unreachable in any execution.

End of Algorithm

7.3 Example

Based on the algorithm, we construct the synchronous product machine of train
object and controller object, and the synchronous product of controller object and
gate object. These are shown in Figure 38 and Figure 39. We have constructed the
grid automaton for these machines. Then we use the Algorithm TC to generate test
cases for the interacting behaviors of train and controller objects as well as controller
and gate objects.

99

Near/ cr'=pid &&
TCvarl=0&TCvar2=0 Lowerf{true &&
&inSet’=insern (pid,inSet) true && TCvar3

&&TCvar3=0 >=0 & TCvar3 <=
»(toCrossT, activateC toCrossT, monitorC

In[true && TCvarl >=2

idleT. idleC

. & TCvarl <=4]
Raiseftrue && true &&
TCvard>=0 & TCVard<= 1}
y
Out

Exit[pid=cr&&true&&
TCvar2<=6&member(pid.inSet)

&&size(inSet)=1]/
inSet'=delete(pid.inSet)

o

leaveT, monitorC

Figure 38: Synchronous Product of Train and Controller

Near{!(member(pid.inSet)) &&ktrue] Near{!(member(pidinSet)) &K rue] Near(!(member pd.inSet)) Lsetrue]

‘ in&t'-iﬁﬂsimn + inSet’=insert{pid.inSet) ! u&:'-?em_%u&t)
Near/ inSet’wirsertf idunSet Lower{true &Strue &k TCv Down{true& &xue i &

D
. && TCvarl »9 i & TCvaricml]) . JCvari>ad) & .
idleC, openedG activateC, openedG reoniorC, wCloseG rC. closedG
_ _,// true && TCvar3 = 0 TCras3<=1]
Up{ tue &% true \3
TCrardom] &

TCvarden] Exit{membenpidiinSer) &&

size(inSet)> 1)/ inSet”
d:lc(!:(pld.xrge() -
Raise{true& S rue & s
idleC, G Q2= X { deacti 5edG
idleC, wOpe TOvar2<mil/

wye& &TCvariad \

Exit{member(pid.inSen & &
size(inSet)s1 F:JSu’

= defeted(pid.inSet)
&&TCvar2=0

Figure 39: Synchronous Product of Controller and Gate

100

Chapter 8

System Testing - 11

8.1 Introduction

A system is a collection of interacting objects. An object-oriented software system
can be considered as a single object. This object, call it system object, has a state
associated with it. The behavior of a system object is contingent upon its initial
state. The state of a system object is the aggregate state of its inherent constituents.

System testing is a broad term. It is a type of testing exercised during system
configuration of software development. The objective of system testing is to determine
whether the configured software system is ready for its intended users by observing
its behavior.

In this chapter we discuss a method to test a system with more than two inter-
acting objects. In general, system testing is inherently complex. It is impossible to
construct a synchronous product machine for a large system. Also we would like to
reuse the test cases from unit testing and pair testing for system testing. Instead of
generating test cases for the system from scratch, we use the test cases generated for
unit testing, and test cases used for testing included subsystems to construct the test
cases for the whole system.

The reactive objects instantiated from the same class and included in a system
configuration do not communicate. Consequently, the graph abstraction of a system
configuration is a connected bipartite graph, which can be partitioned into subgraphs

where each subgraph is maximal bipartite graph: one vertex is connected to every

101

other vertex in the graph. We call such maximal subgraph a component. For in-
stance, Figure 40 shows a system configured with four objects from GRC; and three
objects from GRC,. The components are {0y, 03, Os}, {0f, 0=}, and {03, O3}. The
proposed testing method obtains such components. Two components are either in-
dependent or interact through messages exchanged by a common object of the com-
ponents. We discuss a test method that computes the test cases for a component by

using the test cases generated for pairs of interacting objects in the component.

: Objects from GRC1

Figure 40: An Example of System Configuration

8.2 Synchronous Product for a System

In Chapter 7 we discussed an algorithm for the construction of a synchronous prod-
uct machine of two finite state machines communicating with shared events. Since
shared events can only happen between two machines, in order to construct the syn-
chronous product machine of more than two finite state machines, we must construct
the synchronous product transitively. For instance, if M, Mo, M3 are three finite state
machines, M; and M, communicate with shared events, and M and M; communicate
with shared events, then we can construct the synchronous product machine of M,
My and M; in three ways:

1. (M, ® M,) @ Ms;
2. M; ®@ (M, ® Ms);

3. (M1 & Mz) @ (A/[;)_ & 1‘/[3)

102

Synchronous Product Theorem:

If M,, M>, M3 are three finite state machines, where M; and M> communicate with
shared events, M, and M5 communicate with shared events, then (M; @ M) @ Mz =
M@ (M@ M3) = (M, @ Ms) & (M, @ M3).

Proof:

The proof follows from the algorithm for constructing the synchronous product
machine.

Figure 41 shows the machine TCG = ((train ® controller) ® gate). We also
generated (train ® (controller @gate)), as well as ((train & controller) @ (controller
® gate)) and verified that they are identical to the machine shown in Figure 41.

Near/ ct'=pid& & Lower{true& &true
TCvarl=Q&TCvar2=0& TCvarI>=0&TCvarl<=1 |

inSet'sinseri(pid.inSet)
& &TCvar3=0 true&&TCvarS=0
idleT, idleC, openedG = wCrossT. activateC, openedG wCrossT, monitorC, wCloseG

Down(truek &Ltrue& &
TCvari>=Q&TCvarscml]
Uplruek L ruek &
TCvar6>e| ZTCvart<=2]

In(true & & TCvarl
2&TCvarlc=d .
crossT, monitorC, closedG 4—".1. wCrossT. monitorC, closedG
Qut
@rﬁmﬁ closedG

Exit{pidecr& & tueTCvarl<es
&member(pid.inSet) &&size(inSct)ml]/
inSet'=delete(pid.inSet) &&ETCvard=s)

Raise[true& &rue k&)

TCrardo=0&TCvard<m1]
7 true& &TCvarGel
idleT. idleC, 10OpenG idleT, deactivateC, closedG

Figure 41: (Train ® Controller) @ Gate

The states of the machine TCG are the global states in the system where the
controller monitors one train and allows it to cross the gate controlled by it. Every
transition in the machine TCG is labeled by an event belonging to one of the machines

103

or shared by two machines. If there are two trains in the system, then we construct the
synchronous product machine of T;CG and T>,CG, where T;CG is the synchronous
product machine for the train;, controller and gate. We can generalize to any number
of trains: if there are n trains in the system, then we construct the synchronous
product machine '/CG ® ToCG & ...® T;CG ... 8 T,CG, where i = 1,2,...,n,
T;CG is the synchronous product machine for the train;, controller and gate.

A naive approach to system testing is to construct the synchronous product of the
system, derive its grid automaton and then generate the state covers and transition
covers for the grid automaton. This approach has three drawbacks:

e the grid automaton of the synchronous product machine (involving 3 or - ma-
chines) will be huge, especially when the number of clocks in the system modeled
by the product machine is high; and

e there is a potential for exponential growth in the generation of the test case

sequencing, making it impractical to test the system satisfactorily.

e the test case generated during the unit testing phase can not be used for system
testing.

In order to reduce the complexity in testing phase, we want to make use of the test
cases generated for each object in the system and incrementally generate test cases
for the system under test. Towards this goal, we partition the system architecture,

such that the test cases for the whole system can be generated from the test cases of
the individual components in the partition.

8.3 Partition Algorithm

The architecture of the system under test consists of objects and communication links
between objects that interact in the system. In general, the graph abstracted from
a given architecture is a connected graph. A werter cover of a graph is a subset of
the vertices of the graph so that every vertex of the graph is adjacent to at least one
vertex in the vertex cover. The minimal vertex cover is a vertex cover not contained
in any other vertex cover. If we can determine a minimal vertex cover C for the graph

G =< V, E > abstracted from the reactive system architecture, then C satisfies the
following properties:

104

.VO,‘,OjEC.(O;,Oj >¢E
eVoeC, M,={0"|d € VA<o,0 > E}U{o}

Since every edge in E is a portlink, a communication channel, the collection [T =
{T1, | o € C} gives a partition of the system architecture with respect to C: all
objects in TI, — {0} communicate with o and hence form a connected interaction
component. Hence, testing each II, in isolation, and putting them together to test
the full system is justified.

The vertex cover problem is to find a vertex cover of minimal size in G. In general,
finding the minimal vertex cover is NP-hard. However, an efficient greedy algorithm
can find a vertex cover that is close to optimum. In fact, for many of the architectures
that we have come across the following algorithm works very well. The complexity of
the greedy algorithm is ©(n).

Greedy Algorithm
Input: an undirected graph G = (V, E)
Output: a vertex cover set C
While (E # 0) {

1. Vv € V, Calculate d(v), the degree of vertez v.

2. choose a vertex w of mazimum degree.

e C « Cu{w}

o VeV-{w}

e E—FE—{(w,z)|(z € V)A((w,z) € E)}
}

Return C

For instance, for the graph in Figure 42, the greedy algorithm produces the vertex
cover C = {1,4,5}. The partition with respect to C is Iy, 14, IT5, where IT; = {1, 3},
I = {2,3,4,6}, and TI5 = {2, 5,6}.

For example, consider the railroad crossing problem in Figure 17. It is the archi-
tecture for a Train-Gate-Controller system with 5 trains, 2 controllers, and 2 gates.

Three trains intending to cross one gate communicate with the controller associated

105

N

Figure 42: A General Architecture

T1 T2 T3 T4 TS
Cl Q
Gl G2

Figure 43: The Architecture of Train-Gate-Controller System

to that gate. We can transform the architecture into a graph whose vertices are ob-
jects (ports) and edges correspond to portlinks. The graph corresponding the system
in Figure 17 is shown in Figure 43.

From Figure 43, the greedy algorithm produces the vertex coverset C = {C1, C2},
which is optimal. The derived components are : II; = {T1, T2, T3, C1, G1} and
I, = {T3, T4, T5, C2, G2}. However, T1, T2, and T3 in II; are the objects from
the same class, hence, the component II; need to be further partitioned into II;; =
{T1,C1,G1}, 12 = {T2,C1, G1}, 13 = {T3, C1, G1}. Similarly, the component
I, need to be further partitioned into I, = {T3,C2, G2}, Mlx = {T4,C2, G2},
My = {T5,C2, G2}.

106

8.4 Test Cases for Components in a Partition

All the objects in one component are from different classes. They have a strong
interaction, in the sense that every object in the component interacts with the core
object in the vertex cover. For instance, if I1 = {oy,00,...,0} is 2 component, and
0, is in the vertex cover, then every object 0;, ¢ # 1 interacts with o;. To test the
component TI, we claim it is sufficient to generate the test set for all pairs of objects
(0;, 0,) and put the tests together using a grid-synchronous product to get test cases
for the component II.

8.4.1 Grid-synchronous Product

In this section, we define the grid-synchronous product, gsg, for the test cases gener-
ated from two grid automata G4(A) and G4(B), where A and B are the synchronous
product machines. Since T4(A) C G4(A), the grid-synchronous product notion applies
to grid automata as well.

Let us assume that the test sets Ty4(A) and Ty(B) have already been generated
from the grid automata G4(A) and G4(B). Each test case in T4(A4) or in T4(B) is
either a state cover or a transition cover in their respective synchronous product ma-
chines’ grid automata and their homomorphic liftings are state or transition covers for
the corresponding synchronous product machines. It is our goal to construct the test
set T4(A® B), the set of test cases for testing the components composed by interact-
ing pair of synchronous product machines A and B, without explicitly constructing
G4(A ® B). The construction is motivated by the following considerations.

In Figure 44, H, denotes the homomorphism between G4(A) and A, Hg denotes
the homomorphism between G4(B) and B, and H,p denotes the homomorphism
between G4(A ® B) and A ®@ B. If 74 € T4(A) is a state cover for the state §, €
G4(A), then Hy(tra) = oa, where 04 € Comp(A) covers the state sy of A, and
Ha(84) = sa. Similarly, if 75 € T4(B) is a state cover for the state g € G4(B), then
Hg(tg) = op, where o € Comp(B) covers the state sg of B, and Hg(fs) = s3.
The grid-synchronous product T4 = T4 gsg 7 of T4 and 7 defines a state cover for
the state 6,5 € Ga(A & B) only if

o Hug(048) = (sa,ss) is a state of the synchronous product machine A® B, and

e Hap(tag) € Ha(ta) ® Hp(TB)

107

AQB

7R
/™ ¥ D
N
; 4(A) g d(;\f® B) g dl(B)

e mmmee 0y

Tu(A) Tu(B)

T«AXB)

Figure 44: Principle of Grid-Synchronous Product

Note that the grid-synchronous product definition is given implicitly. A similar defi-
nition for transition cover can be given.

Theorem GS

If 74 € T4(A) covers the state 0, € G4(A), and 7 € Ty(B) covers the state
8p € G4(B), then 7,4 gsg 75 is a state cover for some state in G4(A ® B).

Proof:

Let T = T4 ¢sg 7. By the construction of G4(A ® B) and the Homomorphism
Theorem, for every state § = (sa,55) € A® B, where Hy(64) = sa, and Hp(0) =
sg, there exists a state 8 € G4(A ® B) such that Hag(6') = 6. Moreover, Ha(r4) =
o 4 covers the state s, of A and Hg(rg) = op covers the state sg of B. Hence the state
645 defined by the first part of the grid-synchronous product definition is §'. In the
synchronous product machine o4 ® o there exists at least one path from its initial
state to the state §. The second part of the grid-synchronous product definition maps

7 to one of them. That is, H45(7) is a state cover for the state §, the homomorphic

108

map of the state 8. By Homomorphism Theorem it follows that 7 is a state cover for
the state 6'.

8.4.2 Constructing Grid-synchronous Product

In this section we give an algorithm to construct a gsg product of test cases. Let
T4 € T4(A) and 75 € Ty4(B) be test cases for which we want to compute 145 =
Ta gSg Tg. We assume that both A and B are synchronous product machines, and
they can synchronize on some shared events.

Let 74 cover the state < (s;, 5;,), 1 > of G4(A) and 75 cover the state < (s}, s7,), vy >
of G4(B) respectively. Let the homomorphic image of < (s;,si,), 1 > be the state
< 6,68, > of the machine A and the homomorphic image of < (s}, s},), v > be the
state < 87,6, > of the machine B. If §, = 61, then there exists the state < 6,,6,,6; >
in the synchronous product machine A® B. Under this condition, there exists a path
in A ® B that covers the state < 8,,6,,6, >. Consequently, by Homomorphism The-
orem there must exist a state cover for the state < (s;, si,, sJ’:), v > in G4(A ® B),
where Hag(< (5i;, Sis 55,), v >) =< 61,60,,6, >. One such state cover is computed
by the following algorithm.

Algorithm GSP

Input: 74 and 75, where 74 € T4(A) and 75 € Ty4(B) satisfving the above conditions.
Both A and B are synchronous product machines. 74 is a test sequence starting
from the initial state 6y of G4(A), and ending at state 6x; g =< (sq,, So0.), to >,
0r =< (Sk;» Sk2), Ux >. Tp IS 2 test sequence starting from the initial state of 6

of G4(B), and ending at state 8}; 8 =< (sg,,5g,), v >, 0, =< (s;,,5,,), v >.

Output: Grid-synchronous product 7,4 gsg 7 that is a test cover for the state <

Ski s Sk.y 5.), Ut > in Gt A @ B), for some v, to be determined.
1 23 Ypa k (k

Assumption: s, = 5g,; 5k, = Sp, . The quantization of A is equal to the quantization
of B. vy = vg.

Step 1: Initialization
e NU: set of states which are still to be explored:

NU = {< (so0,, S02» 56,)» to > | < (S0, 0.): Yo >€ O, < (S0,,57,), % >€ Op}

109

e O: set of states in the grid-synchronous product machine.
©0=0

e T: set of transitions.
T=90

e found: a boolean flag which becomes true only if the test cover for the

state < (Sk,, Sky» Sp,)s Uk > is found.
found = false
Step 2: while (NU # 0 A !found) do the following steps

e Pick an element < (s;,, s, 3.{,), v; > from NU
® NU NU {< (stnsh’ h 'U; >}
e ©=0U{< (5,5, 5,), v >}

e For each shared event e that occurs at < (s;, 5i,), v; > and < (s, s},), v; >
do:

if (< (84,5 5ia), Ui >33 < (55,800)and(< (Sias 55,), Ui >5< (Sper s _) v
), then NU = NU u{< (s,‘,s,,, 0 >} T = TU{< (s, S, 85,), 4 >
S < (55,5 S22 55,)s Ui >}. The guard of the transition < (s;,, si,, 55,), Ui > N
< (85 S5 Sp,) v; >, is the conjunction of the guard of < (s;, 8i), v; > —
< (s;,, $p), v; > and the guard of < (si,, s;,), i >S5 < (s, 5. 5)s Ui >. The
action of the transition < (si, Si,, S5,), Ui >S< (Siys Sias $5L), Ui >, is the
union of the action of < (s;,, si,), ¥i > — < (8;;, Sja), v > and the action of
< (51, 55,), U >3 < (sp,8h), v > I (55, = si) A(sp = sk) A (s, =
sm) A (v = w), then found = true, return the test sequence start-
ing from the initial state < (so,, So.,Sg,)> Yo >, and ending at the state
< (85150055), Ui >.
e For d that occurs at both < (s;;, si,), vi > and < (s, 5;,), v > do:

NU = NU U {< (s,l,s.,,, L), v >}, where v, = v +d, T = Tu({<
(Siy s Siz» S5,)5 Ui >34 < (Siy» Sizs Siy)s Uj >} If (s, = si) A (s, = s,) A
(si, = s;,) A(y; = %), then found = true, return the test sequence
starting from the initial state < (So,, So., 5g,): Yo >, and ending at the state

< (Siys Sias S3,) U >

110

e For each internal event e occurring at < (s;, i,), v; > do:

if (< (54, 8), i > = < (85, Spn)» Ui >, then NU = NUU{< (s}, 55, 8},), vi >
b T = TU{< (s, 5,),vi > =< (8,8, 5,), % >}. The guard and
action of transition < (s;, 5i., S3,), Ui > S< ()15 Six» S5,), Ui >, is the guard
and action of < (si,8:), % >—< (55,,85), % >. If (5, = sg) A(sp =
Sk,) A (s}, = s;,) A (v = v), then found = true, return the test sequence
starting from the initial state < (so,, So., 50,)> Yo >, and ending at the state
< (851, 8p5 51,)s Ui >

e For d occurring at < (s;, s;,), v; > do:
NU = NU U {< (si,8i,8},),v; >}, where v = vy +d, T = Tu{<
(Siy» Sins Siy)s Vs >4 < (85, Siar S,)s 05 >} I (s = s) Asiy = s1,) A
(s, = s;,) A(y, = w), then found = true, return the test sequence
starting from the initial state < (so,, So,, Sg.), Yo >, and ending at the state
< (8iyy Sias 55,), Uy >

e For each internal event e occurring at < (si,, sy), vi > do:
if (< (sip08,), v > 5 < (s, 5t): Ui >), then NU = NUU{< (i1, Sps Sp,), v5 >
b T = Tu{< (sy,55,5,), % >S5 < (Siy1 55085) Ui >}. The guard and
action of transition < (s;, si,, s7,), v > S< (Sir» Sja» S},), Ui >, is the guard
and action of < (si,, s;,), v > < (S5, sp)ti > I (s, = s) A (s, =
Skp) A (sy, = sp,) A (v = vg), then found = true, return the test sequence
starting from the initial state < (s, , So., s(',2), tg >, and ending at the state
< (80255, 55), Ui >

e For d occurring at < (s;,, s,-,r,), v; > do:
NU = NU U {< (s.,,s,,,),vj >}, where v; = vy +d, T = TU{<
(i1 Sia0 S5,) Ui >4 < (s,l,s,.,s Dy >h I (s = sk) A (s = sk) A
(si, = sp,) A(v; = u), then found = true, return the test sequence
starting from the initial state < (so,, So., Sg,)» Yo >, and ending at the state
< (Sir Sins S5,), U >

End of While loop
End of Algorithm

The algorithm terminates as soon as a cover to the state < (Sky s Skas s;n) v > is
found.

111

If the quantization of A is not equal to the quantization of B, we can always
stretch them to be equal. If 4, = —‘- and d, = —‘: are different quantizations for
automata A and B, then we choose d = k, k = lem(k,, k;), as the quantization for
grid-synchronous product of G4(A) and G4(B). This is justified because lem(k,, k,)
is the maximal number of clocks in grid-synchronous product machine. Hence, the
generated test case based on such a value of k£ will ensure accuracy of testing for all
possible clock values in the product machine.

We use railroad crossing example to show the construction of the grid-synchronous
product of two linear automata shown in Figure 43. One test case is taken from
G4(T ® C): Near.Lower.1/4.1/4.1/4.1/4.1/4.1/4.1/4.1/4.In with the granularity of
G4(T ® C) is . The other test case is taken from G4(C @ G): Near.Lower.Down
with the granularity of G4(C ® G) is 3

Near/ et pid &

inSet"sinsert(pid.inSet) Lo
wer
oCrossT, activateC, 0 — toCrossT. monitorC, O
@—_ toCross T, moaitorC, /4 tnCrossT momntorC, 24 toCrossT. momtorC, 1/4
wCrossT. momtorC, 5/4 woCrossT. monitorC, 6/4 —-@ wCrossT momtorC, 84

(3) Linear automatore Nearlower VA UVA U LA /A UL 3In

Near/ inSet’ »
. insert(pid.inSet) Lower Down
idleC, openedG i activaeC, openedG. 0 meniorC, toCloseG., 0

{5 Linear automatore Near.Lower.Down

mornitorC, closedG, O

Figure 45: Two Linear Automata

We stretch the two quantizations to be equal to 1—‘2- Based on the algorithm, the

112

grid synchronous product of these two linear automata is:
Near.Lower.Down.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.

1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.1/12.In

8.4.3 Grid-synchronous Product Theorems

We define the set T4(A) gsg Te(B) as
{T,; gsa T I Ta € Td(A),TB € Td(B)}}

Since the test set can be viewed as a subautomaton of the grid automaton G4(4),
we can define the product machine (G4(A) gsg Ga(B)) by extending the above defini-
tion to all paths in the grid automata. It is easy to see that every state of the grid
automaton G4(A® B) is a state in G4(A) gse G4(B), and every transition in G4(A® B)
is a transition in G4(A) gsg Ga(B). We summarize this result below as theorem.

Theorem GSP1

T4(A) gse Te(B) C Ga(A® B) C Gu(A) gss Ga(B)

Algorithm GSP computes the test cases for G4(A ® B) without computing the
grid automaton. It is necessary to show that this set consists of all state covers and

transition covers that are both necessary and sufficient to test the grid automaton.

Theorem GSP2

The test cases computed by Algorithm GSP form a necessary and sufficient set of
test cases for G4(A ® B).

Proof:

From Theorem GSP1 the necessary condition follows. We prove sufficiency by
assuming the contrary and arriving at a contradiction. Suppose there is a state
(64,05) € Ga(A® B) for which no cover exists in the set T4(A) gsg Ta(B). Because
Algorithm GSP examines all events in a states to construct a path, this implies that
either the state 8, of the grid automaton G4(A) had no state cover in the set T4(A)
or the state @ of the grid automaton G4(B) had no state cover in the set Ty(B). In

either case we have a contradiction, since both Tq¢(A) as well as Tq(B) have sufficient

113

number of test cases covering all the states in the respective grid automata G.{A)
and G4(B).

The algorithm TC that generates state and transition covers is non-deterministic.
It may not choose the same set of covers for a given input on two different russ.
However, all the test sets output by the algorithm for different run are equivalent.
Two test sets Ty(A) and T)(A) are equivalent if the following properties hold for the
test sets:

e they have the same number of test cases,

e corresponding to each state § € G4(A) there exists exactiy cne cover in Ty(4)
and exactly one cover in Tj(A), and

e corresponding to each transition ¢t € Gy{A) there exists exactly one cover in

Ts(A) and exactly one cover in Tg(A4).

By replacing a state (transition) cover in one test set by a different state (transition)

cover of the same state (transition), we get an equivalent test set.

Lemma E

Let T;(A) be a test set generated by Algorithm TC. If X C T, 2(4), and X is
equivalent to the set Y of test cases, then the set Ty(A) = (Ty4(4) \ X)U Y is
equivalent to Ty(A).

Theorem GSP3

Let T(A ® B) denote the set of test cases computed by applying gsg to the
test sets Ty(A) and Ty(B). Let T4(A ® B) be the set of test cases generated by
applying Algorithm TC on the synchronous product machine G¢(A ® B). Then the
sets T;(A ® B) and T4(A ® B) are equivalent.

Proof: From Theorem GSP2, every 743 € Ty(A ® B) is necessary as well as
sufficient to test a state or a transition of G4(A ® B). Algorithm GSP computes only
one cover for each state in G4(A® B), and only one transition cover for each transition
in G4(A ® B). Hence, either T;(A® B) = T4(A® B) or T3(A® B) is equivalent to
Ti«(A® B).

114

8.4.4 Test Case Generation for a Component

For simplicity, we assume the quantization is the same for all grid automata.
Algorithm TCC

Input: A component [T = {4, = A,, A3 = A,,...,Ax = A,}, has k£ + 1 objects,
where A, is the core object in the vertex cover that has direct interaction with
all the other objects in the component. A; — A, means that A; and A, interact,
i=1,2,...,k. Testsets T4(A; ® A,), Tes(A2® A,), ..., Tu(Ar @ 4,).

Output: Ty(IT)

Step I: Initialization
Td(H) — Td(A1 2] Ao)

Step 2: for j =2 to k do
Td(n) €« Td(n) g5a Td(A]' [oZ¢) Ao).

where (4, ® 4,) must interact with current II

End of Algorithm

8.5 Test Case Generation for System

Two components T, and TI, of a partition IT are called independent if there is no
communication between them. That is, no object in II; communicate with any object
in Tl,. However, I1; and II, may have a common object which communicates at any
time exclusively either with objects in TI, or objects in I1,. If the components II; of
a partition I are independent, the test cases for the system II, will be the union of
the test cases for II;s. In more general situations, the components of a partition may
not be independent.

For instance, for the architecture shown in Figure 42, the components of IIs are
not independent in the sense that a message communicated from 1 to 3 in component
1, may trigger a communication from 3 to 6 in component II;. A typical interaction
scenario for the system, such as the one below,

1-3—-24—-6—-2>5—-2—24—-3—->1

can be broken up into the subsequences
1—=3(M,),3=24—-6(T), 6>5—=2(15), 2—>4—3(Iy), 3—1(IT,)

where each subsequence is an interaction of objects in a component of the partition.
To test whether a scenario is valid in a system, it is now sufficient to test the validity
of each subsequence within a component, which is a smaller system. Moreover, each
subsequence can be split pairwise, and the validity test can be conducted on every
pair of objects.

We generate the test cases for the system IT = {II;,Ils,..., I} depending upon
whether or not the components are independent.

Algorithm TCS

Case 1 All the components are independent: Ty(I1) = Ty(I1) U T4(I12) ..., Te(11,),
where each T4(I1;) is calculated by using the Algorithm TCC.

Case 2 The components are not independent as explained earlier. An interaction sce-
nario for the system can be broken up into subsequences where each subse-
quences is an interaction of objects in the component. Consequently, Ty(II) is
calculated by using the algorithm below.

Input: A system IT = {II; — II, — ... — [}, has & component(s), where TI;
is a component, IT; — II, means that II; and II, interact, 7,7 =1,2,...,k,
t < j. Test sets Td(l'Il), Td(ng), ceey Td(TIk_l), Td(I'I;.)
Output: T4(T)
Step 1: Initialization
Ta(IT) « T4(I1)
Step 2: for j =2 to k do
Ta(T1) = Ta(TI) gse Tu(I1;)
End of Algorithm
We apply Algorithm TCS to the railroad crossing problem architecture shown in
Figure 43. The components I1; and I, are independent. Hence, the test set for the

whole system is the union of the test sets of the components. That is, T¢(II) =
Tq(T1,) U T4(I12). We show below how Ty(II) is calculated:

116

The component IT; can be split into smaller components II;; = {7\, C, G},
M, = {Ty, Ci, Gi }, 13 = {Ts, C1, G1 }, because we would like to keep the objects in
a component are from different classes. In TROM, there is no communication between
the objects from same class. The interaction of the objects in II;; is of the type
T, = C, = G,. So, consider pairwise interacting objects: T, C| and C;, G;. From
the test templates generated from the grid automaton of the synchronous product
machine Train ® Controller, we generate the set of test cases Ty¢(T1 ® C1) for the
pair Ty, C;. Similarly, from the test templates generated from the grid automaton
of the synchronous product machine Controller & Gate, we generate the set of test
cases Ty (C1® G1) for the pair Cy, G;. The test case for I1;; will be composed from
T4(T1® C1) and T4(C1® G1): Ty(l;) = Te(T1 ® C1) gsg T4(C1 @ G1).

Similarly, we compute the following test sets:

T4(T12) = Ta(T2Q C1) gsg Ta(C1 @ G1)
T4(Tl13) = Ty(T3® C1) gsg T4(C1 @ G1)
T4(I1y,) = T4(T3 & C2) gsg T4(C2 & G2)
Ti(Tlao) = Tg(T4 @ C2) gse Te(C2® G2)
T4(Tla3) = Te(T5® C2) gse Ta(C2 R G2)

Ta(Tly) = T4(Tyy) gsz Ta(Thi2) gse Ta(Tl1a)

Ty(T2) = Tu(Ma1) gss Tu(Tl22) gsg Ta(Tlas)
Finally,
Tu(TT) = T4(Iy) U Ty(I1y)

Chapter 9
Conclusion

The goal of testing is to uncover errors. It can be viewed as a search problem.
We are looking for those few input and state combinations that will reach, trigger,
and propagate bugs out of several millions of behaviors. Hence, testing must be
systematic, focused, and automated. It must be systematic if we are to ensure that
every targeted combination is tried. It must be focused if we are to take advantage of
available information about where bugs are likely to be found. It must be automated
if we are to produce and run the greatest number of consistent and repeatable tests.
In this thesis we have restricted to a study of test methods and test case generation
that can be automated and systematically applied in a black-box fashion.

9.1 Test Case Generation and Systematic Testing

We have implemented the following algorithms:
e grid automaton construction,
e test case generation from a grid automaton, and
e test case generation for derived classes.

Whereas the construction of grid automaton and test case generation from it are fully
automatic, test case generation from derived classes requires user interaction, in guid-
ing the test generator the type of inheritance and the modifications made in the base
class. In general, given two reactive objects, it is computationally hard to determine

whether or not one object is inherited by the other object. Consequently, a complete

118

mechanization of the algorithm for testing derived classes is not possible, unless its
test cases are generated by constructing its grid automaton and then generating test
cases from it. We have not implemented test case generation algorithms for testing a
reactive system. Their implementation and test executions are non-trivial issues and
are left for future research. Once their implementations are available, they work in
TROMLAB environment in the following manner:

From a RTUML model, a conformance relation between the model and its imple-
mentation can be defined, and used by the black-box testing to link an implementation
with its model. A translator implemented by Popistas [Pop99] is a tool to translate
the graphically designed models such as statecharts, collaboration and sequence dia-
grams into TROM formal specifications. The input for the test case generator is the
formal specification produced by the translator. The output of the test case generator
are test suits for class testing, and system testing.

It is very important to organize the test information from the algorithms in a
useful way. Test cases include test templates. As we remarked in Chapter 6, test
templates must be organized after a careful examination of the goals of testing, and
domain partitioning. It is very useful to define methods that manipulate and exercise
test suites. Such methods are necessary for any realistic application of the methods
provided in this thesis. To guide the testing process, in particular to provide a
stopping rule for testing, we have developed a sufficiency criteria [Orm02]. This
criteria is embedded in the Test Selection Algorithm that selects a sufficient number
of tests from a given collection of test cases.

Let V denote the set of binary strings representing the original set of test cases TC,
¢ denote the initial target distance, and €n;, denote some comprehensive minimum
value of distance such that any approximation on distance smaller than ey, would
not give more meaningful approximations. Let C denote some given threshold cost,
and Cost denote the function representing the resources required to execute the (set
of) test case(s). The Test Selection Algorithm selects the optimal set of test cases
A from the set V. The algorithm stops when the cost limit is reached, the distance
€min iS reached, or there are no more test cases left. We define the distance of a point
t € V from the set A, A C V by the formula td(¢t, A) = inf{td(¢t,y) |y € A}.

Test Selection Algorithm

Precondition: {V =V #0 A €uin>0 A C=C A A=0}

119

Step 1. Initialization(A, V,e€)

Step 2. Create — Optimal — Test — Set(A, V,€)

Postcondition: {A#0 A (Cost(A)>C V € <€min V V =0)}

Algorithm for
Create — Optimal — Test — Set(A, V, €, €min)
Precondition: {A#0A € >0}
WHILE
'(Cost(A) > C V €< é€min V V =0)
IF (3 test caset : td(t,A) >=¢€)
THEN Add(A,t); Remove(V,t);

Algorithm for Initialization(A, V,€)
Precondition: {V =V A A =0}
Step 1. t = Longest — test — case(V)
Step 2. Add(A,t);
Step 3. Remove(V,t);
Step 4. € = Length(t) —1;
Step 5. IF ¢ <=0 THEN

ENDIF;
€ = €min:
. e=¢ — 1;
ENDIF;
o ENDWHILE;
Postcondition: {A #0 A €> 0} ..
Postcondition:

{A#0 A (Cost(A) 2 C V e<emnV V =0)

The test selection algorithm has to be applied in order to select an optimal set
of test cases. This optimization would reduce the cost of the testing process while
maintaining the same level of efficiency.

Implementation Actual Result
Under Test
Test Case Test Case
] Pass / No Pass
Generator Ornacle
A
Simulator Expectcd Result

Figure 46: The Role of an Oracle

Figure 46 shows test harness template — the whole system used in the process of
test execution and communicating with the implementation under test (IUT). The
post-conditions in transition specifications can serve as the oracle. In TROMLAB
we have a simulator [Hai99], which takes the system specification and simulates its

120

behavior according to the operational semantics of the system. The expected behavior
of the system for a given input (test case) is the system status reached by the simulator
when started from the initial status of the system. The actual behavior for a given
input (test case) is the output from IUT. The oracle’s role is to examine whether the
expected result matches the actual result. That is,

e the states match;
e for each active attribute in the states, the values in the states are equal;
e the time at which the states are reached are equal;

e the outstanding reactions are equal.

9.2 Summary of Contributions and Future Work
The major contributions of this thesis are:

e State cover and transition cover criteria are developed and applied in test case
generation method. The generated test cases form a minimal set and can ex-
haustively test an implementation. Minimum implies that all test cases in the
set are necessary. Exhaustivity implies that the test cases in the generated set
are sufficient.

e Real-time models are compact representations of continuous varying in behav-
iors of reactive objects. In principle, the state machine of reactive objects has
infinite number of states; however, due to the duration of the time constants, the
continuous behaviors is modeled as part of the states and the transitions models
discrete behaviors. The proposed testing method uses grid automaton to dis-
cretize the continuous time into discrete time model to avoid state exploration.

The grid automaton has the same behaviors as original state machine.

e An algorithm of constructing a grid automaton from a TROM is given, and
homomorphism theorem is introduced to justify the construction algorithm.

e Algorithms to generate test cases from the grid automaton are given. Since each

class is associated with a grid automaton, test cases generated from the grid

121

automaton are used for testing the class. The test case generation algorithm
produces a minimal set that can exhaustively test the implementation of a class
for all specified properties.

e Test templates for inheritance testing are given. Test cases for a derived class
are generated from the test cases for its base class.

e Algorithms are given to generate the synchronous product machine correspond-
ing to a pair of interacting reactive objects and generate test case for the
synchronous product machine. The test case generation algorithm produces
a minimal set that can exhaustively test the implementation for all specified
interacting properties.

e To reduce the complexity in generating test cases for a system, which is a col-
lection of interacting reactive objects, an algorithm for partitioning the system
architecture is developed. For each component in the partition, test cases are
developed. To minimize the complexity in generating test cases for each com-
ponent, it is proved that the test cases for unit testing and test cases for every
pair of objects are sufficient.

e A method is given to compose the test cases of the whole systems from the test
cases of components in the partition.

The research work on testing reactive systems developed in TROMLAB was re-

cently studied. Issues that are currently being investigated include:

e The test case generation methods are valid for UML models that conform to
the RTUML [Mut00] semantics. However, for general real-time UML models
discussed in [Dou98], only Algorithm TC for unit testing is valid. Testing system
configurations modeled in UML [Dou98] is an important research direction.

e Test Template Organization.

e Developing test drivers, test script driver for Java programs, test execution, and
test result analysis.

e Management of the complexity of the test case generation for system testing.

122

e Integrating the testing module with other modules of TROMLAB framework:
the Java code generation module [Zha00], and the measurement tool that col-
lects and validates the testing quality measurement {Orm02], and the simu-
lator [Hai99]. With the completion of this work, we can make the tools in
TROMLAB framework available for real-time software engineering practice.

123

Bibliography

[AAMOS]

[AC93]

[Ach93)

[AD94]

[AHOZ02]

[AHOZ01]

[AOZ00a]

V.S. Alagar, R. Achuthan, D. Muthiayen. TROMLAB: A Software
Development Environment for Real-Time Reactive Systems. (first

version 1996, revised 2001), Submitted for Publication.

V.S. Alagar and A. Celer. Automating the Generation and Sequenc-
ing of Test Cases from Larch Specification. Technical Report, Con-
cordia University, Montreal, Canada, June 1995.

R. Achuthan. A Formal Model for Object-Oriented Development of
Real-Time Reactive Systems. Ph.D. thesis, Concordia University,
Montreal, Canada, October 1995.

R. Alur and D. Dill. A Theory of Timed Automata. Theoretical
Comput. Sci., 126:183-235, 1994.

V.S. Alagar, May Haydar, O. Ormandjieva, M. Zheng. A Rigorous
Approach for Constructing Self-Evolving Real-Time Reactive Sys-
tems. Submitted for Journal Publication, January 2002.

V.S. Alagar, May Haydar, O. Ormandjieva, M. Zheng. A Rigorous
Approach for Constructing Reusable, Self-Evolving Real-Time Reac-
tive Systems. In Proceedings of Concordia Prestigious Workshop
Communication Software Engineering, CPWCSE2001, pp:139 - 154,
Montreal, Canada, September, 2001.

V.S. Alagar, O. Ormandjieva, M. Zheng. Specification-Based Test-
ing for Real-Time Reactive Systems. In Proceedings of 34th Inter-
national Conference on Technology of Object-Oriented Languages

124

[AOZ0ob]

[AZO01]

[BG93]

[Boo91]

[CGPO1]

[CLRZ99]

and Systems, TOOLS34, pp:25 - 36, IEEE Computer Society, Santa
Barbara, California, USA July-August, 2000.

V.S. Alagar, O. Ormandjieva, M. Zheng. Managing Complezity in
Real-Time Reactive Systems. In Proceedings of Sixth IEEE Inter-
national Conference on Engineering of Complex Computer Systems,
ICECCS2000, pp:12 - 24, [EEE Computer Society, Tokyo, Japan,
September, 2000.

V.S. Alagar, M. Zheng. A Rigorous Method for Testing Real-Time
Reactive Systems. In Proceedings of Eighth Asia-Pacific Software En-
gineering Conference, APSEC2001, pp: 213 - 220, IEEE Computer
Society, Macau, China, December 2001.

I. Bashir and A.L. Goel. Object-Oriented Metrics and Testing. In
Proceedings of Fifteenth Minnowbrook Workshop on Software En-
gineering, pages 1-9, Syracuse, New York, Jul. 1993. The Center
for Advanced Technology in Computer Applications and Software
Engineering(CASE), Syracuse University.

G. Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings, 1991.

A. Cavalli, C. Gervy and S. Prokopenko. New Approaches for
Passive Testing using an Eztended Finite State Machine Specifica-
tion. In Proceedings of Concordia Prestigious Workshop Communi-
cation Software Engineering, CPWCSE2001, pp:225 - 250, Montreal,
Canada, September, 2001.

A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaidi. Hit- or- Jump
an algorithm for Embedded Testing with applications to In services.
In Proceeding of IFIP International conference FORTE/PSTV’99,
Beijing, China, 5-8, October 1999.

[CTCCI8]

[CRS96]

(DF93]

[Don97]

[Douds]

[EDKE9S]

[GHO3]

[Hai99]

NY Chen, TH Tse, FT Chan, TY Chen. In Black and White: an
Integrated Approach to Class-level Testing of Object-Oriented Pro-
grams. ACM Transactions on Software Engineering and Methodol-
ogy, 1998; 7(3):250-295.

J Chang, DJ Richardson, S Sankar. Automated Test Generation from
ADL Specifications. Proceedings of the Third International Sym-
posium on Software Testing and Analysis. San Diego, ACM Press,
1996;62-70.

J. Dick and A. Faivre. Automating the Generation and Sequencing
of Test Case Generation from Model-Based Specifications. FME'93-
Industrial Strength Formal Methods: First International Symposium
of Formal Methods Europe, Odense, April 1993 (Lecture Notes in
Computer Science, vol. 670), Springer-Verlag, 1993.

MR Donat. Automating formal specification-based testing. TAP-
SOFT’97: Theory and Practice of Software Development, Lecture
Notes in Computer Science Series vol.1214, Spring-Verlag, 1997:833-
847.

B. P. Douglass. Real-Time UML - Developing Efficient Objects for
Embedded Systems. Addison-Wesley, Reading, MA, 1998.

A. En-Nouaary, R. Dssouli, F. Khendek, A.Elqortobi. Timed Test
Case generation Based on State Characterization Technique. QA
76.54 R43, IEEE Real-Time System Symposium, New York, N.Y.
1998.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for
Formal Specifications. Springer Verlag, 1993.

G. Haidar. Reasoning System for Real-Time Reactive Systems. Mas-
ter’s thesis, Department of Computer Science, Concordia University,
Montreal, Canada, December 1999.

126

[Hay01]

[Heg89]

[HM96)

[HP83]

(IEES3)

[Kir94]

[MA99)

[MD98]

[MH92]

[Mut96]

M. Haydar. Parameterized Events for Designing Real- Time Reactive
Systems. Master’s thesis, Department of Computer Science, Concor-
dia University, Montreal, Canada, February 2001.

W.A. Hegazy. The Requirements of Testing a Class of Reusable Soft-
ware Modules. Ph.D thesis, Ohio State University, 1989.

C.Heitmeyer, D.Mandrioli Formal Methods for Real-Time Comput-
tng. John Wiley & Sons, 1996.

D. Harel, A. Pnueli. On the Development of Reactive Systems. In
Logic and Models of Concurrent Systems, NATO, Advanced Study
Institute on Logics and Models for Verification and Specification of
Concurrent Systems. Springer Verlag, 1985.

ANSI IEEE. An American Nationel Standard IEEE Glossary of
Software Engineering Terminology. IEEE, 1983.

S. Kirani. Specification and Verification of Object-Oriented Pro-
grams. Ph.D thesis, Department of Computer Science, University
of Minnesota, Minneapolis, MN, November 1994.

D. Muthiaven, V.S. Alagar. Mechanized Verification of Real-time Re-
active Systems in an QObject-Oriented Framework. Technical Report,
Concordia University, Montreal, Canada, 1999, (revised version 2001
submitted for publication).

B.P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An
Introduction to TCOZ. Proceedings of the International Conference
on Software Engineering (ICSE’98), Kyoto, Japan, April 1998, pp.93-
104.

B.P. Mahony and 1.J. Hayes. A Case Study in Timed Refinement:
A Mine Pump. IEEE Transactions on Software Engineering, vol.18,
no.9, 1992, pp. 817-826.

D. Muthiayen Animation and Formal Verification of Real-Time Re-

active Systems in en Object-Oriented Environment. Master’s thesis,

127

[Mut00]

[Nag99)]

[Orm02]

(PAOO]

[PAO1]

[Pop99]

[Pro96]

Department of Computer Science, Concordia University, Montreal,
Canada, October 1996.

D. Muthiayen Real-Time Reactive System Development - A For-
mal Approach based on UML and PVS. Ph.D thesis, Department
of Computer Science, Concordia University, Montreal, Canada, Jan-
uary 2000.

R. Nagarajan. Vista - a Visual Interface for Software Reuse in
TROMLAB Environment. Master’s thesis, Department of Computer
Science, Concordia University, Montreal, Canada, April 1999.

O. Ormandjieva. Queality Measurement for Real-Time Reactive Sys-
tems Ph.D Thesis (in preparation), Department of Computer Sci-
ence, Concordia University, Montreal, Canada, 2002.

K. Perivasamy, V.S. Alagar. A Rigorous Method for Test Templates
Generation from Object-Oriented Specifications. Software Testing,
Verification and Reliability, vol.10, 2000.

K. Periyasamy and V.S. Alagar. RTOZ: An Object-oriented Lan-

guage for the Specification of Real-Time Systems. Submitted for
Publication, March 2001.

Paige, M.R. Program Graphs, an Algebra, and their Implications for
Programming. IEEE Trans. Softw. Eng. SE-1, 3(Sept. 1975).

F. Pompeo. A Formal Verification Assistant for TROMLAB Enuvi-
ronment. Master’s thesis, Department of Computer Science, Concor-
dia University, Montreal, Canala, November 1999.

O. Popistas. Rose-GRC Translator: Mapping UML Visual Models
onto Formal Specifications. Master’s thesis, Department of Computer
Science, Concordia University, Montreal, Canada, April 1999.

A. Protopsaltou. Constructing Black-boz Test Suits for Systems Spec-
ified in Larch/C++. Master’s thesis, Department of Computer Sci-
ence, Concordia University, Montreal, Canada, June 1996.

128

[RP95]

[SC96]

[Sel99]

[Srigg]

[SVD97]

[T2096]

[WGS94]

[Zha00]

J. Rushby, M. Park. Formal Methods and their Role in the Certifi-

cation of Critical Systems. SRI technical report, CSL-95-1, March
1995.

P. Stocks, D. Carrington. A Framework for Specification-Based Test-
ing. IEEE Transactions on Software Engineering, vol. 22. pp:777-793
No.11 November 1996.

B. Selic. Turning Clockwise: Using UML in the Real-Time Domain.
Commun. ACM 42,10 October 1999, pp. 38-34.

V .Srinivasan. Graphical User Interface for TROMLAB Environment.
Master’s thesis, Department of Computer Science, Concordia Univer-
sity, Montreal, Canada, December 1999.

J. Springintveld, F. Vaandrager, P. Dargenio. Testing Timed Au-
tomata. Technical Report CTIT97-17, University of Twente, Ams-
terdam, The Netherlands, 1997.

H. Tao. Static Analyzer: A Design Tool for TROM. Master’s thesis,
Department of Computer Science, Concordia University, Montreal,
Canada, August 1996.

E Weyuker, T Goradia, A Singh. Automatically generating test data
from a boolean specification. IEEE Transactions on Software Engi-
neering 1994; 20(5):353-363

L. Zhang. Implementing Real-Time Reactive Systems from Object-
Oriented Design Specifications Master Thesis, Department of Com-
puter Science, Concordia University, Montreal, Canada, 2000.

129

