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Abstract

Robust Regression Methods for
Insurance Risk Classification

Esteban Flores, Ph.D.
Concordia University, 2002

Risk classification is an important actuarial process for Insurance companies. It
allows for the underwriting of the best risks, through an appropriate choice of

classification variables, and helps set fair premiums in rate-making.

Currently, insurance companies mainly use ad-hoc methods for risk classification,
more often based on the type of expenses covered than on the distribution of the
corresponding losses. The selection of classification variables is also, in general,
based on rate-making variables rather than on an optimal choice criteria based on

statistical methods.

It is known that logistic regression is among the many sophisticated statistical
methods used by the banking industry in order to select credit rating variables.

Extending the method to insurance risks seems only natural.
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Insurance risks are not usually classified in only two categories, good and bad,
as can be the case in credit rating, but in a larger number of classes. Here we
consider the generalization of the model to extend the use of logistic regression to

insurance risk classification.

Since insurance data presents catastrophic losses and heavy tailed claim distri-
butions, a robust estimation analysis is very important. It is carefully studied

here.
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Introduction

A minimum distance method based on a quadratic distance was introduced by
Luong and Thompson (1987). Following the same idea a minimum quadratic
distance estimator (QDE) was defined by Luong (1991) for the simple linear re-
gression model. An extension to multiple linear regression was studied by Luong
and Garrido (1992), where the asymptotic properties of this QDE were derived.
They show that the QDE is fully efficient, for special choices of odd functions h;

in the distance definition, and robust for other appropriate choices of h;.

Chapter 1 reviews the main concepts of logistic regression and its application to

binary classification, when risks are either “good” or “bad”.

Chapter 2 extends the review to logistic regression when the response is multino-

mial.

Chapter 3 discusses the main robust regression estimators encoutered in the Sta-

tistics literature and introduces to robust logistic regression.

Chapter 4 defines the minimum quadratic distance estimator for the multinomial
logistic regression model (QDM). The asymptotic properties of this QDM are

derived, where consistency, asymptotic normality and robustness properties are

established.



Finally, Chapter 5 illustrates the proposed method with an application to the

classification of a Householder data set.



Chapter 1

Models for Binary Responses

Regression methods have become an integral component of any data analysis des-
cribing the relationship between a response variable and one or more explanatory
variables. It is often the case that the outcome variable is discrete, taking on two
or more possible values. This chapter focuses on binary responses, that is response

variables having only two categories.

The first section of the chapter introduces a family of generalized linear models.
This family contains important models for categorical data as well as standard

regression.

Section 1.2 introduces generalized linear models for binary response variables. The
most important model of this type is the logistic regression model, based on the

logit transformation of a proportion.



1.1 Generalized Linear Models

We will use the theory of generalized linear models (GLMs) introduced by Nelder
and Wedderburn (1972) and detailed in McCullagh and Nelder (1989). GLMs
are an extension of classical linear models. GLMs are specified by three compo-
nents: a random component, which identifies the probability distribution of the
response variable; a systematic component, which specifies a linear function of the
explanatory variables that is used as a predictor; and a link describing the func-
tional relationship between the systematic component and the expected value of

the random component.

1.1.1 Components of a Generalized Linear Model

The first component of a GLM, the random component, refers to the response
variable, Y. Suppose the N observations on Y are independent, and denote their
values by (y1,...,yn). We assume that each component y; has a distribution in
the exponential family. That is, the probability density function or mass function
for y; has the form

[y 0; — v(6:)]
k()

The parameter 6; is called the natural parameter. The function k(¢) often has the

f(y;0i,0) = exp{ +cly,9)} , yeR . (L.1)

form k(¢) = w% for known weight w;, and ¢ is called the dispersion parameter.
When ¢ is a known constant, (1.1) can be written in the following form
fly;:0:) = exp{yQ(8:) —alf:) +b(y)} . yeR . (1.2)

We identify Q(6;) in (1.2) with k?;) in (1.1), a(6;) with % and b(y) with c(y, ¢).




Formula (1.1) is useful for two-parameter families such as the normal or gamma,
for which ¢ is a nuisance parameter. It is not needed for one-parameter families

such as the binomial and Poisson.

General expressions for the first two moments of ¥; use terms in (1.2). Let

1(0;;y) = In f(y; 0;) denote the natural logarithm of the likelihood function, then

Wb y) = [y Q(0:) — a(6:) + b(y)]
and
2
S0 - d ), gr=yQ0) -0

where )'(6;) and Q”(6;) denote the first two derivatives of ) evaluated at 0;.

We apply the likelihood results for § = 6;

ol 0% ol \?
which hold under regularity conditions satisfied by the exponential family.

From the first formula

The second formula implies

vty ~ oy [5]

Let z;1,... ,z,, denote values of p explanatory variables for the ith observation.
The systematic component, the second component of a GLM, relates parameters

{n;} to the explanatory variables using a linear predictor
P
7’]7ZZﬁJfEU y 221,,N
j=1
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In matrix form

n = X8 ,

where n= (n1,...,0x)%, B= (B1,...,0)" are model parameters, and X is the

N x p model matrix (sometimes called design matrix).

The link function, the third component of a GLM, connects the expectation of Y;
to the linear predictor by

ni=g(w) , i=1...,N ,

where ¢ is a monotone, differentiable function. Thus, a GLM links the expected

value of the response to the explanatory variables through the equation
P
glw) = D By . i=1---,N
j=1

Observe that the function g(u) = p gives the identity link n; = p;, specifying a

linear model for the mean response.

The function ¢ for which g(p) = Q() in (1.2) is called the canonical link. For it,

there is the direct relationship
P
Q(Q)ZZ,BJQQJ ) ’Lzl,,N y
j=1

between the natural parameter and the linear predictor.

In summary, a GLM is a linear model for a transformed mean of a variable having
a distribution in the natural exponential family. To illustrate the three compo-
nents of a GLM, we now introduce some important GLMs for categorical response

variables.



1.1.2 Logit Models

Frequently the categorical response variables have only two categories [see Cox and
Snell (1989)]. In this case, the observation for each subject might be classified as
a “success” or a “failure” and regularly these possible outcomes are represented
by 1 and 0. The Bernoulli distribution for binary random variables specifies
probabilities P(Y = 1) = 7 and P(Y = 0) = 1 —« for the two outcomes, for which
EY)=n 0<nm<L

If Y; has a Bernoulli distribution with parameter ;, the probability mass function

is

frm) = ey (T ) +-m)] L y=01 L 03
where In is the natural logarithm. Observe that (1.3) is in the exponential family
form given by (1.2). The natural parameter Q(w) = In (&), the In odds of

response 1, is called the logit of 7, i.e., logit(7) =In(7%), 0<7w <1

Using the component defined in (1.2) it is easy to verify that the mean and variance

for Y are given by

a'(m)

EY)=[Q (™) d(r) =7 and Var(Y)=I[Q'(n)]™* I:Q’(Tl’):l =7n(l—m).

GLMs that use the logit link g(7) = logit() = In (%) are called logit models.



1.2 Logistic Regression

1.2.1 Introduction

There are many important research topics for which the dependent variable is
qualitative. Researchers often want to analyze whether some event occurred or
not, such as voting, participation in a public program, business success or failure,

granting a credit card, the occurrence of mortality or of a hurricane.

The qualitative data with which we are dealing, the binary response variable, can
always be coded as having two values, 0 and 1. Before predicting response values

we model the probabilities that the response takes one of these two values.

Firstly, we consider the standard linear regression model with only one predictor
to model this probability [see Hosmer and Lemeshow (2000)]. Let m(z) denote
the probability that Y = 1 when X =z, i.e, 7(z) = P(Y = 1|X = ), then

() =PY =1X=z)=0+fz+e , (1.4)

where X is the predictor variable, 3y and (; are the unknown parameters and e

the error, assumed normally distributed with mean zero and finite variance o2.

Now, since 7(z) is a probability it must lie between 0 and 1. The linear func-
tion given in (1.4) is unbounded, and cannot be used to model probabilities.
There is another reason why ordinary least squares method is unsuitable. The
response variable Y is a binomial random variable, consequently its variance will
be a function of 7(z) and depends on X. The assumption of equal variance (ho-
moscedasticity) does not hold. Hence, the model given by (1.4) does not apply to

binary dependent variables.
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Figure 1.1: Logistic response function

The relationship between the probability 7(z) and X can often be represented
by a logistic response function. It has an S-shape curve, sketched in Figure 1.1,

obtained by modeling the probabilities as follows

- _ N exp(fo + Grz)
o) = B = X =) = o + Bu)

(1.5)
The logistic model can be generalized directly to the situation where we have
several predictor variables. For instance, suppose that we have p predictor or
explanatory variables. Thus, the probability 7(z) is denoted 7 for convenience

and modeled as

P =P =1|X = g) = Rt bt Fey) (1.6)
1+ exp(Bo + Brzy + ... + Bpzp)

The equation in (1.6) is called the logistic regression function. It is nonlinear

in the parameters Sy, f1,... ,3,. However, it can be linearized by the logit link.

That is, instead of working directly with © we work with a transformed value of

m. If w is the probability of an event happening, the ratio ;= is called the odds

9



ratio for the event. Therefore, applying the logit link discussed in the previous

section, we obtain that

g(m) = 111( )zﬂo+ﬂlx1+...+ﬁpxp . (1.7)

l—m
Note that, the logit link produces a linear function of the parameters Gy, 81, ... , Bp,
and also that while the range of values of 7 in (1.4) is between 0 and 1, the range
of values of In (le?) in (1.7) is between —oo and +oco, which makes the logit more

appropriate for linear regression fitting.

1.2.2 Estimation of Parameters

In linear regression models the method used most often for estimating unknown
parameters is least squares. Under the usual assumptions for linear regression the
method of least squares yields estimators with a number of desirable statistical
properties. Unfortunately, when the method of least squares is applied to a model
with a binary outcome the estimators no longer have these properties. The most

commonly used method for parameter estimation of a logistic regression model is

the method of maximum likelihood (MLE).

[i] The General Case

Following the general ideas developed by Pregibon (1981), we consider a single
binomial response Y ~ B(n, ). If we let § = logit(w) = In ({Z-), the probability

mass function of Y can be written as
f(y;0) = exp{yd —a(0) +0(y)} , y=0,1,...,n

with a(f) =nln(l +exp(d)), bly)=1In (Z)

10



The score and information functions for a single observation are given by
0
$(0;9) = 2ol(6:) =y — a'(6) =y — v (1)

and
a 14
v(0;y) = -555(9; y) = a"(0) =nw(l —7)

Standard results yield E[s(6;y)] = 0 (or equivalently E(Y) = nm = d/(6)) and
Var(Y) = nn(1 — 7)) = a’(#). Also, since s(6;y) = 0 at the maximum likelihood
estimate (MLE) 6, we have § = o/ *(y) = logit (%) as the MLE of ¢ based on a

single binomial observation 0 < y < n.
Observe that logit(%) = In(£) is not defined when y = 0 or n. The adjusted

+ 1
° ()
n-—Y-+s3

called an empirical logit, is a less biased estimator of the true logit [see Cox and

Snell (1989)].

value

Given a sample of IV independent binomial responses ¥; ~ B(n;, m;), the log likeli-

hood function for the sample is the sum of individual log likelihood contributions

(B;y) = Y U(fsy) = Z{yﬁ—a ) +b(y)} (1.9)

i=1
[ii] The Logistic Regression Model

The likelihood function I(8;y) given in (1.9) is over-specified, since there are as

many parameters as observations.

Given a set of p explanatory variables Xi,... ,X,, X = (Xy,... ,Xy)  the N xp

model matrix, and 8= (01, ... ,3,)" unknown parameters, the logistic regression

11



model utilizes the relationship

0 =Xg3
as the description of the systematic component of the response Y.

In terms of the p-dimensional parameter 3, we have the log likelihood function

N N
(XBy) = Y UalBiy) =Y {walB—alelB)+bu)} . (110)
=1 i=1 .

The MLE (3 maximizes (1.10) and is solution to %Z(X,B; y) =

In particular, 3 satisfies the system of equations

N
Y mipi—d (@ B) =0 , j=1,..,p . (1.11)
=1

Using this equation we get

a'(a:i g =~ — T, 3 1= 17 7N ’
1+ exp(z] B)
and Eq. (1.8) becomes
s=y—d(XB)=y—n#&, wheren# = (nifs, ... i)t

Therefore, the matrix formulation of the likelihood equations (1.11) is
XTs = Xy — n#¥) = XT(y — §) = 0

These equations, although very similar to their normal theory counterparts, are

nonlinear in B , and iterative methods are required to solve them.

Generally the Newton-Raphson method is employed. This involves first determi-

ning ———XTS which is equivalent to computing —%5X"d/(z] 8).

12



But —%XTCL’(:B?,B) = —[%a’(az?ﬁ)]x and b%a’(mf,@) = XTV where V is a

diagonal matrix with elements a”(z7 3), usually denoted by V = diag{a"(z] 8)}.
Thus, —%XTS = XTVX.

This leads to the iterative scheme
gt = B+ XP'Vv)'xX's |, t=0,1,... (1.12)

where both V and s are evaluated at 3. The value of convergence of this process
is denoted by 3, and the fitted values n;7; by §;. The estimated variance of y; is

then vy = n;w (1 — 7;).

A most useful way to view the iterative process described above is by the method

of iteratively reweighted least-squares.
The value 3" obtained in equation (1.12) can also be expressed as
g = XITVX)'XITV(XBi+VTls) |, t=0,1,... . (1.13)
Defining the pseudo observation vector z* = X 3"+ Vs equation (1.13) becomes
gt = (XITv)IxXTvz | t=0,1,...

At convergence, we have z = X3 + V~1s. Thus, we can write the MLE of 3
as B = (XTVX)'X"Vz. This form of the estimate provides the basis for the

extension of the general theory of standard linear models.

Remark 1.

In general we will assume that each explanatory variable is at least interval scaled.
If some of the explanatory variables are discrete, nominal scaled variables such
as race, sex, treatment group, and so forth, then it is inappropriate to include

them in the model as if they were interval scaled. This is because the numbers

13



used to represent the various levels are merely identifiers, and have no numerical
significance. In this situation the method of choice is to use a collection of dummy

variables defined as follows.

A categorical explanatory variable X with k possible categories 1,... , k& will ge-
nerally be coded by a dummy vector with ¢ = k& — 1 component X),... , X(g. If
0-1 dummies are used, which is shortly referred to as dummy coding, then X;) is

defined by

| 1, if category j is observed .
X = { 0, otherwise » J=Lld

If the k-th category, the reference category, is observed, then X is the zero vector.

An alternative coding scheme, which is referred to as effect coding, is defined by

1, if category j is observed
Xy =14 —1, if category k is observed , j=1,...,q
0, otherwise

In the case of effect coding, the reference category k is given by the vector

(—1,...,—1) instead of the zero vector.

[iii] Other Methods of Estimation

The method of maximum likelihood described above is the estimation method
used in the logistic regression routines of most software packages. However, two
other methods have been and may still be used for estimating the coefficients.

These methods are: (1) noniterative weighted least squares, and (2) discriminant

function analysis.

A linear model approach to the analysis of categorical data was proposed by
Grizzle, Starmer, and Koch (1969), which uses estimators based on noniterative

weighted least squares. They have proved that the logistic regression model is

14



an example of a very general class of models that can be handled with their
methods. We have shown above that the maximum likelihood estimators are
usually calculated using an iterative reweighted least squares algorithm, and thus

are also least squares estimators.

The main limitation of this method is that we must have an estimate of
7 = P(Y = 1|X = z) which is not zero or 1 for most values of z in the data
set. With many explanatory variables, or even a few continuous variables this is

not likely to be true.

The discriminant function approach to estimation of the logistic coefficients is
based on the assumption that the distribution of the explanatory variables, given

the value of the outcome variable, is normal.

Two points should be kept in mind: (1) the assumption of normality will rarely, if
ever, be satisfied because of the frequent occurrence of binary explanatory varia-
bles, and (2) the discriminant function estimators of the coefficients for nonnor-
mally distributed explanatory variables, especially binary variables, will be biased
away from zero when the true coeflicient is nonzero. For these reasons its use is
not recommend. However, these estimators are of some historical importance as
they were used in a number of classical papers in the applied literature, such as
Cornfield (1962). These estimators are easily computed and should be adequate

for a preliminary examination of our data.

1.2.3 Logistic Regression Diagnostics

Once the logistic regression model has been fitted, that is, we have the MLE S,
certain diagnostic measures can be examined for the detection of outliers, high

leverage points, influential observations, and other model deficiencies.

15



We want useful and informative diagnostic measures. These measures should
readily identify observations that are not well explained by the model, as well as
those dominating some important aspect of the fit. In some cases, this analysis
may reveal systematic departures of the data from the model, though, in general

this is not expected.

The notion of outlying, leverage and influential points, originally proposed in
classical linear regression has been extended to the logistic regression. Loosely, an
outlying case in logistic regression refers to a badly predicted observation, whereas
a leverage point represents an ‘extreme’ value in the X space. An influential

observation is by definition one having a great impact on the fitted model.

For the logistic regression model, the basic fundamental element for the identi-
fication of outlying and influential points are a residual vector and a projection

matrix.

Before explainning residuals and projection matrices we define the important con-

cept of Deviance.
Definition 1.2.1. [Deviance]

In logistic regression, comparisons of observed to predicted values are based on the
log likelihood function defined in (1.10). To better understand this comparison, it
is helpful conceptually if we think of an observed value of the response variable as
also being a predicted value resulting from a saturated model. A saturated model

is one that contains as many parameters as there are data points.

The comparison of observed to predicted values using the likelihood function is

based on the following expression

(likelihood of the current model)
(likelihood of the saturated model)

D = —2h (1.14)

16



The quantity inside the large brackets in the expression above is called the like-
lihood ratio. The reason for using minus twice its In is mathematical and is
necessary to obtain a quantity whose distribution is known and thus can be used
for hypothesis testing purposes. Such a test is called the likelihood ratio test.
Using (1.10), (1.14) becomes

D = —2{(XB;y) - 1(d;y)}

_ éz{yiln(m:("%))+(m—yz~)1n(n—i(%)} . (1.15)

where 1(8; y) refers to the maximum of the log likelihood function based on fitting

each point exactly, i.e., §; = logit (%), for 0 < y; < n,.

The statistic D in (1.15) is called as the deviance. The deviance for logistic
regression plays the same role that the residual sum of squares plays in linear

regression.

It is often claimed that D is asymptotically or approximately distributed as a
chi-square with N — p degrees of freedom. But such a comparison is based on
the assumption that n; — oo for each i. That is, each n; needs to be sufficiently
large before D can be assumed to have approximately a chi-square distribution.
Obviously D should not be used in this manner when, in particular, there are
no repeated observations with the same combinations of explanatory values. A
discussion more detailed can be found in Hosmer and Lemeshow (2000), and

McCullagh and Nelder (1989).

[i] Residuals

Residuals measures the departure of fitted values from observed values of the
response variable. They can be used to detect model misspecification; to detect

outliers, or observations with poor fit. Residual analysis, particularly visual analy-

17



sis, can potentially indicate the nature of misspecification and ways in which it
may be corrected, as well as provide a feel for the magnitude of the effect of the
misspecification.

N
The deviance residuals are defined as the components of the deviance D = de

i=1

given by (1.15), that is

( l2{wn () + (n ) (55t )Y

[SIE

for O0<y <ny )

Bafi

d:=Q —{2nf- (L - A(z:)]} for 3 =0 ,

| (20— In(R(z))]}2 for y;=mny
So, d; measures the disagreement between the ith component of the log likelihood

of the fitted model and the corresponding component of the log likelihood that

would result if each point were fitted exactly.

The Pearson residual is defined as

Each residual divides the difference between an observed and fitted value by the

ry =

(1.16)

estimated standard deviation of the observed count y;. When the index n; is large,
the Pearson residual r; has an approximate normal distribution [see Pierce and
Schafer (1986)]. If the number of parameters is small compared to the number of
sample logits, Pearson residuals are treated like standard normal deviates, with

absolute values larger than 2 indicating possible lack of fit.

MecCullagh and Nelder (1989) express a preference for the deviance residuals be-
cause they are closer to being normally distributed than the Pearson residuals.
A more compelling argument was given by Pregibon (1981), who noted that the

Pearson residuals are unstable when 7 (z;) is close to either 0 or 1.
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Although Pregibon (1981) and McCullagh and Nelder (1989) prefer the deviance
residual over the Pearson residual, Hosmer and Lemeshow (2000) advocate plot-
ting a function of the square of each against 7(z;). Especially, the latter authors
recommend plotting 7% against #(z;), where 7y = i is called the standard-
ized Pearson residual, r; is the Pearson residual given in (1.16) and h;; is the ith
leverage value. The motivation for this plot is that l—li—— is the approximate change
in the Pearson chi-square statistic that would result from deleting z,. In the same

2

manner, 15;'% estimates the change in the deviance that would result from the

deletion of z;, then the value of this statistic would also be plotted against 7(z;).
Despite the fact that Pregibon (1981) noted that these estimates are not very

precise, they may be adequate for detecting outliers.

[ii] Projection Matrix

For the linear regression model the well known measure of leverage is given by the

diagonal elements of the projection matrix
M=I-H=I-XX'X)"'x" |

where I is the N x N identity matrix and the N x N idempotent, symmetric
matrix H, with trace equal to its rank p (the number of explanatory variables), is

known as the hat matrix. The ith element of M is given by

Influential points will tend to have small values of m,;, much smaller than the
average value 1 — £. Hoaglin and Welsch (1978) suggest using m;; < 1 — g]\? as a

rough guide for determining whether a point is influential or not.
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The analogue of the projection matrix for the logistic regression model will also

be denoted by M, which in its general form is given as
M=I-H=I-ViX(X"VX)'XTV: |
with V diagonal matrix defined as V = diag{a"(zI 8)}.

The usefulness of M appears as a consequence of the iteratively reweighted least
squares formulation described earlier. In particular, as 8 = (XTVX)~1X7 Vg,

the vector of pseudo residuals obtained in (1.13) is given by
z—XB={I-XXI'VX)"'X"V}z =V iIMViz

Using the fact that z = X3 + Vs, this can be written as V~ls = V-sMV-3s.
Premultiplication by the diagonal matrix V3 yields r, = Mr,, where r, = V- is.
Thus, as in the linear model case, M is symmetric, idempotent and spans the
residual (r,) space. This suggests that small m; should be useful in detecting

extreme points.

In most cases, the examination of 7, d; andm,; will call attention to outlying
and influential points. For displaying these quantities, index plots are generally
suggested: that is, plots of r;, against i, d; against ¢ and m,; against ¢. In particular

cases, plots of these measures against the fitted values could prove useful.

1.2.4 Determination of Variables to Retain

In the logistic regression model, the usual method for selecting the explanatory
variables that better explain the relation between the binary response variable is

based on the log likelihood function.

This is analogous to the problem of variable selection in linear models. Instead

of looking at the reduction in the error sum of squares we will look at the change

20



in the log likelihood for two fitted models. The main reason for this is that in
the logistic regression model, the fitting criterion is the log likelihood, whereas in

least squares it is the sum of squares.

Let I(p) denote the logarithm of the likelihood when we have a model with p
explanatory variables. Similarly, let [(p+ ¢) be the logarithm of the likelihood for

a model in which we have p 4+ g explanatory variables.

To see whether the ¢ additional explanatory variables contribute significantly we
look at 2[i(p + q) — I(p)]. This quantity is twice the difference between the log
likelihood for the two models. This difference is distributed as a chi-square variable

with ¢ degrees of freedom.

The size of this difference determines the significance of the test. A small chi-
square value would lead to the conclusion that the ¢ explanatory variables do not.
significantly improve the prediction of the logits, and is therefore not necessary in
the model. A large chi-square value would call for the retention of the ¢ explana-
tory variables in the model. The critical value is determined by the significance
level of the test. This test procedure is valid when IV, the number of observations

available for fitting the model, is large.

The procedure described above enables to test any nested model. A set of models
is said to be nested if these can be obtained as special cases of a larger model.
The methodology is similar to that used in analyzing nested models in linear
regression. The only difference is that here the test statistic is based on the log

likelihood instead of the sum of squares.
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1.2.5 Assessing the Fit of a Logistic Regression

In logistic regression there does not exist any satisfactory measure to judge the

fitted model.

Some ad hoc measures have been proposed which are based on likelihood ratios
[see Hosmer and Lemeshow (2000)]. Most of these are functions of the ratio
of the likelihood for the model and the likelihood of the data under a binomial
distribution. These measures are not particularly informative and we will consider

a different procedure.

Logistic regression tries to model probabilities for the two values of ¥ (Qorl).
To judge how well the model fits we determine the number of observations in the
sample that the model is classifying correctly. This procedure requires fitting the

logistic regression model to the data, and calculate the fitted logits, i.e., logit(7) =
In(%)-

From the fitted logits we check if this quantity is positive, negative or zero.
If the quantity is positive or zero, i.e., P(Y; = 1|X; = z;) > 0.5, for some
i =1,...,N, we classify it in group 1, whereas if the quantity is negative, i.e.,
P(Y; = 1|X; = z;) < 0.5, for some 1 = 1,..., N, we classify it in group 0. We then

determine what proportion of the data is classified correctly.

A high proportion of correct classifications indicates that the logistic regression
model works well. A low proportion of correct classifications indicates poor per-

formance.

The observed correct classification rate should be treated with caution. In prac-
tice, if the fitted logistic regression model were applied to a new set of observations

from the same population, it would likely produce a lower classification rate. The
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classification probability has an upward bias. The bias arises due to the fact that
the same data used to fit the model, is also used to judge the performance of
the model. To avoid this problem, we will simulate a large number of sample
data with the same law as the original data. For each sample data generated, we
calculate the correct classification rate to estimate the true correct classification

rate.

The classical approach to estimate the bias of the correct classification rate is

using resampling methods, such as jackknife or bootstrap.
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Chapter 2

Multinomial Logistic Regression

Logistic regression is most frequently used to model the relationship between a
dichotomous response variable and a set of explanatory variables. More generally,
the response variable may take more than two values. Logistic regression can still

be employed, by means of a multinormial logistic regression model.

Data with multinomial response variables are frequently encountered in social,

biomedical and actuarial sciences.

The multinomial logistic regression model is an extension of the logistic analysis

discussed in Section 1.2 where the response variable has two possible outcomes.

Various complexities arise from the extension, but the basic modeling ideas and

diagnostics discussed so far carry over.
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2.1 Introduction to the Model and Estimation
of the Parameters

We consider the problem of estimating the probability P(Y = j|x) that an indi-
vidual characterized by a vector x” = (z3,...,1,), with p explanatory variables,

belongs to one of g groups Gy, ... ,G,.

We say that an observation x satisfies the logistic assumption if

Py =jlx)| _ _ _
In {:m] = XT,ﬂj , 1= 1, ey g 1 , (21)

or equivalently

, exp(x’3; :
mi(x) =P =jjx) = o ) ., Ji=1...,9 , (22)
1+ ) exp(x’3)
1=1
with ﬁ]T = (B1j, ..., 0p) & vector of unknown parameters and 3, = 0 for conve-
nience.
Let B8 = (B],...,8] ;)" represent the p(g — 1) dimensional column vector of

unknown parameters.

The multinomial logistic model can be viewed as a multivariate generalized linear
model under a multinomial random component with m trials and cell probabilities

m(x),. .., Te(x).

Thus, the joint probability mass function is given as
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)] R 1n[7:’;;zx) } + mInfr,(x)] +

flylx; 0) = exp{yl I [m (x)

me(x
m!
()|
1 m!
:exp{ylﬁl + .4 Ygo10,-1 —mInfl + Zexp((?l)] + 1n(-———'—————')}
—1 Y Yg:
=exp{y’0 - a(6) +b(y)} |

where
. g—1
vi= (Y1), 05 =(01,...,0,1), m(x)=1- Zﬂ'j(x),
j=1

g—1
0; = m{wj(x)} yforj=1,...,9—1, a(@)=mln[l+ Zexp(@l)],
i =1

! 91
and b(y)=In (——gln——') , with y,=m — Zyj

=195 j=1
The multinomial logistic model link function is

g )] = g[m(x), ... ,m,(x)] = (m{“l(x)},...,1nr9—1(x)DT . (2.3)

7o(x) ()

Assumption (2.1) is then translated into
P
glm(x)) =6 , where 6; :Z,szazz , j=1,...,9~1
z=1

Thus §; = x¥3; expresses the systematic component of the generalized linear

model.

Consider now a random sample from populations Gy,...,G, and denote by N

the number of distinct vectors x;. Let n; be the number of observations at x;, for

i=1,... N.
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To estimate 3,5, forz = 1,... ,p; j=1,...,g—1, wemaximize the log likelihood
function

108) = S5 nfmy ()] (2.4

i=1 k=1

where j(k) indicates the group of the kth individual with vector x;.

Let B be the MLE estimate of 3 obtained by a Newton-Raphson iterative proce-

dure.

In the following, ¢' represents the current estimate of a particular component ¢ of
the model at iteration ¢, § the corresponding MLE solution and ¢; = ¢(x;), with
i=1,...,N.

Therefore, let r” = (r7,... ,r%) be the residual vector of observations with com-
ponents r] = (ry,...,r4-1;) where ry; = y;; — nym;(x;), for j = 1,... g, with y;;

o . . g ..
is the number of G; observations at z; and n; = =1 Ysi-

The Newton-Raphson scheme can then be expressed as

Bt = 3t+(XTVfX)'1XTrt , t=0,1,... (2.5)
where
xI' of ... of
XT= (X7, XE)  and  xF= [0 O
of of ... xT

isa (g —1) x (g — 1)p matrix and the diagonal matrix V = diag(Vy,...,Vy),
where V; = n[m;(x:)(8;¢ — m:(x4))]5¢ s a (9 — 1) x (g — 1) square matrix, with &

being Kronecker’s delta.

The usual inverse of matrix (XTV!X) may not always exist here. A generalization
of the usual inverse to singular or rectangular matrices, called generalized inverse

or G-inverse [see Rao and Mitra (1971), Albert (1972) and Searle (1982)], is used.
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Provided that the cell probabilities m;(x;) are positive, the simplest generalized

mverse of V; is

Vo o= diag{»l—} . | (2.6)

n;m b (Xz)
This is not the Moore-Penrose inverse [see Albert (1972)], but for most statistical

calculations the choice of generalized inverse is unimportant and V; (and hence

V™) given by (2.6) is perhaps the simplest such inverse.

Equation (2.5) can be viewed as an iterative reweighted least squares method,

where
Bt = (XTVEX)TIXTViE ) t=0,1,... (2.7)
with working vector
z = X@+ (VO

Iterative schemes (2.5) and (2.7) are identical with those obtained in univariate

generalized linear models.

2.2 Multinomial Logistic Regression Diagnostics

In this section we review some multinomial logistic regression diagnostics from
Lesaffre and Albert (1989a) and Williams (1987) by extending the concepts re-
viewed in Section 1.2.3 for more than two groups. The results are given for the

general case where n; > 1 at x;.

The principal ideas are the notion of outlying, leverage and influential points when

considering several groups simultaneously.
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2.2.1 Goodness of Fit Measures

The fact that there is a multinomial distribution at each x; yields a first diagnostic

for outlying cases, namely the criterion

2
Xi z

#7% Xg: Yii — ?’l@ﬂ'? X%)]

which measures the agreement between the observed and estimated frequencies at

x;. A large value suggests a poor fit at x;.

Moreover, since a multinomial logistic model is constituted of N independent

multinomial vectors, the first goodness of fit statistic x* will be defined as

N N
2 o= iV VAR =Y =) xdnu=x"x ,
=1 i=1 i=1

where x = V~if is the standardized residual vector.

A second goodness of fit statistic, the deviance

D = —2{IXB;y) - Ub;y)}
N & Yii
= 220 wh(ia) 9

compares the log likelihood of the fitted model [ (XB; y) against that of the com-
plete model [ (é; y) matching the data perfectly.

D is the sum of N components, D = S~ d2, where each d? measures the agree-

=1 "1

ment between the observed and fitted log likelihood at x; and can therefore be
used for diagnosing outlying cases. When y;; = n;, d? = 2In(1 + x?), as for the
binomial model [see Pregibon (1981)].

The multinomial logistic regression model hat matriz is given by
H = ViX(X'VX)XTV32

29



The square matrices H and M = I — H are N(g — 1) projection block matrices,
where each block H;, or M, for i,s = 1,... ,N is (¢ — 1) dimensional. Further-
more, x = Mx.

In particular, for the logistic model with ¢ = 2 groups, the diagonal elements
M;,; can be used to define the concept of leverage points. When g = 2, my; is a
function of the explanatory variables and the fitted probabilities. Thus m,; does
not, as in linear regression, measure how extreme x; is, in the Euclidean sense.
However, in linear regression, a leverage point is also characterized by the fact
that it greatly increases the variability of the estimates when omitted from the
sample. This property can be exploited to define the concept of a leverage point

in an multinomial logistic regression model.

The variability of 3 is given by the volume of the asymptotic confidence ellipsoid
for 3 which, up to a constant factor equal ‘(XT\A/_X)”{%. If x; is deleted, then
the volume becomes ](XZ)V@)X@)‘I | %, where the subscript (i) indicates that the
x; contribution to the corresponding matrix has been removed.
A small value of )
XHVaXa
IXTVX|

indicates that the deletion of x; substantially increases the volume.

%le <1

Thus, a point with a value of ll\/I“

close to zero has a stabilizing effect on the
estimated coeflicients and will therefore be considered as a leverage point for the

multinomial logistic regression model.
Additionally, ]Mui =my if g=2 and |Mul satisfy several similar properties
(a) 0< ]Mml < 1, a value close to zero (unity) indicates a possible large (small)
impact of z; on the MLE,
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(b) if each replicate at x; is considered separately, then [M“! > (1— ;11:)9_1,

(c) N—(g—1)p< ‘MM < N — p with equality if and only if g = 2.

N

Numerical results performed by Lesaffre and Albert (1989b) suggest that Z[Mm'
i=1

is always close to N — p(g — 1). Once more, following the same idea of Hoaglin

and Welsch (1978) we obtain the following practical rule to fix or determine with

accuracy leverage points:

2p(g — 1)

tMii N

<1-

2.2.2 Influence Diagnostics

An indicator for the influence of the ith observation x; on the vector ﬁ can be
calculated by the difference 8- B(i), where ﬁ(i) is the MLE obtained from the

sample without observation x; and B is the MLE from all observations.

It ﬁ(i) is substantially different from B, observation x; may be considered influen-
tial. Measures of this type have been given by Cook (1977) for linear regression
models. Since the estimation of unknown parameters requires an iterative proce-
dure, it is computationally expensive to subsequently delete each observation and

fit again the model.

Pregibon (1981) suggested the use of an approximate value B%Z.), called the one-
step estimate. A one-step approximation of B(i) is obtained from equation (2.5)
by leaving out x;, using é?z.) =fasa starting point and terminating after one

step. Proceeding as in Pregibon (1981), a form of B%Z) is given by
n . - ek ”ol
By = B-X'VX)'XTVEM;'V %8
where M; is the ith block diagonal of the projection matrix evaluated at 3.

31



The difference between the one-step estimate B%Z.) and the original estimate B
may be used as an indicator for the impact of observation x; on the estimated

parameter.

To determine the influence of observations on the estimate B one has to consider
all the components of B Therefore it is often useful to have an overall measure,
as considered by Cook (1977). An asymptotic confidence region for 3 is given by
the log likelihood distance

—2{U(B) - UB)}=c ,

and is based on its asymptotic chi-square distribution with p degrees of freedom,
X?;- Approximating I(3) by a second order Taylor expansion yields an approximate

confidence region given by
(B—=B)"Cov(B] B ~B) ~c
If 3 is replaced by the one-step estimate B%Z) one gets
Gy = FV M VAT X(XTVR) XV MY

T 7

= xi M;"H;M;'x: (2.9)
Clearly, a leverage point which is outlying will be an influential case.

Note that ¢!(i) is composed from previously defined diagnostic elements. The
generalized hat matrix H; for the ith observation plays an important role. Large

values in H;; will produce large values c!(i). The same holds for the residuals
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2.3 Estimation and Graphical Diagnostics

The multinomial regression diagnostics can be determined by appropriate matrix

manipulations, once the quantities 83, ,3%2.), Xi, Hij and M; are available.

Alternatively, the log likelihood [(3), given by (2.4), can be expressed as

N g
= > % yulnfm(x)] (2.10)

=1 j=1

The covariance matrix of Y7 = (y7,... | y%) with y7 = (41, ... ,¥gi) IS given by

3 = diag(Xy, ... ,Xy), where X; = ngm;(x:)(6;: — me(x:))];0 with j,t =1,... 9.

Take ¥, any generalized inverse of X, e.g.

5 _ diag( 1 1 1 1 )

nmi(z1) T mwg(x) T Tanmi(zy) T nvm(zy)

Then, an alternative expression for the Newton-Raphson scheme in (2.5) is given

by
,8t+1 — I@t + ({Ht]Tith)ﬁl[Ht}thrt , t = 07 1, o ) (2_11)

v

where IT! is the matrix of derivatives %ﬁi evaluated at 3* and r* = y — 7’

Therefore, the diagnostics of Section 2.2 can be redefined according to (2.11) and

the redefined vectors Y, andr.
Suppose that the residual vector x! is given by f}z% then [x97x? = xTx;.
The hat matrix becomes

H = (I 891) 7S = S:QX(XTVX)IXIQTE:

with Q = diag(Qy, ..., Qn) and Q; = ni[m; (%) (65 — me(x:))]e with j = 1,.. ., g,
t=1,...,g—1.
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The projection matrix denoted by M? is defined as I — H® and it can be proved
that |MY| = | M|, with

N ~ ~ o= L
MS =1 - £2Q.X,(XTVX) XTI QI 52
Furthermore,
Bl = B— (XTUX)TIXTQIEE MY X!

Using a matrix identity [Rao (1965), p. 24], it is possible to see that these diag-
nostics and those of Section 2.2 are identical. The diagnostics can therefore be

calculated more easily using the alternative expression given here.

Graphical plots are particularly interesting to highlight peculiar observations. In-
dex plots have proved to be useful in the two group logistic model [Pregibon

(1981))].

2.4 Assessing the Fit of a Multinomial Logistic
Regression

A multinomial logistic regression model explains the probability that an individual
characterized by a vector x belongs to one of g groups, with g > 2. To judge how
well the model fits we determine the number of observations in the sample that

the model is classifying correctly.

Using the procedures reviewed in previous sections we estimate the multinomial

logistic model from the data and calculate the fitted multinomial logits, that is

g(f) = g(7r1,... ,7y) = (ln(i),... ,ln(ﬁg—l))T

Tg g
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The simplest classification rule is to assign an individual characterized by a vector

x to group G;, j =1,...,9 — 1 if and only if
XT,éj>0 and XT(BJ-~—BI,)>O , Il=1,...,9g—1
In any other case we classify the individual in group Gj.

Following the ideas of Section 1.2.5 we generate a large number of sample data.
For each sample data generated, we calculate the correct classification rate to

estimate the true correct classification rate.
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Chapter 3

Robust Regression

The linear regression model is one the most used tools in statistical analysis and
the least squares method is a very popular estimation technique for this model.
Unfortunately, outliers and other aberrations which appear to conflict with the
model can arise and weaken the levels for confidence intervals and tests. Thus it
is desirable to have robust methods which are still highly efficient in the presence

of these aberrations.

Robust regression is an alternative to ordinary least squares that can be appro-
priately used when there is evidence that the distribution of the error term is

non-normal, and/or there are outliers that affect the model.

Section 3.3 gives a brief review of the development of M-estimators or Huber
estimators for linear regression and their influence function. By means of the
basic concepts of influence function, we show that more refined estimators are

required. General M-estimators and their influence function are also presented.
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Section 3.4 presents many of the robust regression estimators that have been
discussed extensively in the literature; the least trimmed squares regression, the

least median squares regression and S-estimators.

Finally, Section 3.5 briefly introduces the robust logistic regression model.

3.1 Classical Least Squares Estimation

Consider the following linear model: let {(x;,3;) : ¢ =1,2,... , N} be a sequence

of independent identically distributed random variables such that
— T -
vi = X, B8+ , 1=1,...,N ,

where

y; € R is the ith observation,

x; € RP is the ith row of the random design matrix Xy xp,
B € B C R? is a p-vector of unknown parameters (p > 1),
g; € R is the ith error.

Suppose that B is open and convex and that g; is independent of x; and has

a symmetric distribution U, such that P(e; < £) = U(Z), where ¢ > 0 is a
scale parameter. Denote the corresponding density by w, defined with respect to

Lebesgue’s measure.

Let K be the distribution function of x;, with the density k& with respect to
Lebesgue’s measure. We denote by fg(x,y) the joint density of (x;,y;), that is,

y—x'3
o2

falx,y) = a“lu( )k(x) , XeRP, yeR |

and Fg(x,y) the corresponding distribution function value.
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Classical estimation and test procedures in linear models are based on the well

known method of least squares. Consider for a moment o as fixed.

A least squares (LS) estimate T4 of 3 is any statistic that minimizes the Euclidean
norm of the residuals
N T 2
yi—x B
-3 (122) s

k2

that is, T%® is defined by
T%® = argmin{['(8)|8 € B}.
Theorem 3.1.1. [Gauss-Markov]

Under the assumptions

@) B(e) =0, i=1,...,N,

(ii) Cov(ey,...,en) = oI, where I is the identity matrix,

every estimable function b”3 has a unique linear estimator which has minimum
variance in the class of all unbiased linear estimator. It is given by b? T%? where
T4% is any least squares estimator. If in addition the errors are normally distri-

buted, then this estimator has minimum variance among all unbiased estimators.

Remark 1.

The LS estimator is optimal in the class of all unbiased estimators, only if the
errors are normally distributed. Hence, the restriction to linear estimators can
be justified only by normality. But many maximum likelihood estimators (MLE)
e.g., under the logistic model or for all student’s ¢-distributions of errors, including

the Cauchy] are not linear.
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Remark 2.

The normal model is never exactly true and in the presence of small departures
from the normality assumption on the errors, the least squares procedure loses
efficiency drastically. Thus, one would prefer procedures which are only closely
optimal at the normal model but which behave well under certain neighboring

distributions.

3.2 Goals of Robust Regression

In regression analysis we may want to test an hypothesis regarding the unknown
vector of coefficients 3, which requires estimates and their standard errors. A
nmumber of model assumptions may be violated: the distributional assumption that
each error &; ~ N(0,0?%); the independence of the errors; the linear dependence
on the explanatory variables. It is known that a small violation in one or more
of these assumptions can lead to a large change in the least squares estimator J&;
or the estimates of standard errors based on the assumed covariance structure.

Robust estimators of 3 ideally should satisfy the following goals:
1. Consistency, asymptotic normality and high efficiency of the estimators, if
there are no model violations.

2. Methods for forming confidence intervals for the unknown parameters and

for testing hypothesis about them.

3. Relative insensitivity of the properties in 1. and results in 2. to slight

violations of the model.

4. Simplicity of the theory and ease of computation.
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3.3 M-Estimators

In this section we assume the model of Section 3.1 with normal errors (U = @).

The class of M-estimators was defined by Huber (1964, 1968) for the location
model and extended by him to the regression model in 1973. A detailed investiga-

tion of M-estimators can be found in Huber (1981) and in Hampel et al. (1986).

Fundamentally, Huber (1973) proposed to compute weighted LS estimates with
weights of the form

wi = min{l,;&} , i=1,..,N , (3.1)

where r; = y; — X;FB is the ith residual and c is a positive constant. The weights
thus are not fixed, but depend on the estimate. More generally, Huber proposed

M-estimators T defined by

Ty = argmin{I'(3)|8 € B} ,

where

rE) - 3 o(LXE) (32)

- o
=1

and p is a convex function. When p is differentiable, the minimum of (3.2) can

often be found by setting the partial derivatives of p to zero and solving for 3, i.e.

N T
[ 1T
Syt o =

i=1
with ¢ = p’ and for a fixed 0. Solutions Ty of (3.3) are called classical M-

estimators or Huber estimators because they were the first extensions of the lo-

cation M-estimators to the regression case.
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Remark 1.

The least squares estimator can be defined by the function p(r) = T;— and the least
absolute deviations (LAD) by p(r) = |r|. The main advantage of LAD estimates
over LS estimates is that they are not so sensitive to outliers. When there are no

outliers, however, LS estimates may be more accurate.

Huber’s estimator, TH defined by the weights in (3.1) may be obtained by setting
p(r) = pe(r) in (3.2), where p'(r) = 9(r) = tpo(r) = r - min{1, £}, for ¢ > 0 [sce
Figure 3.1]. It reproduces the MLE when the errors are distributed according to
the distribution with density proportional to exp[—p.(r)].

%

Figure 3.1: 1. function defining Huber’s estimator
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Remark 2.

We have assumed that the scale parameter ¢ > 0 is fixed, but in practice this

parameter could be estimated.

A possible way to do this is, for a given 7, to minimize

f: {p (y—i;——T—g) + T} v (3.4)

=1

with respect to 3 and o.

Setting the derivatives of (3.4) to zero and solving for B and o, we obtain the

following equations

N
S (B2 )k < 0 (35)

=1
N T
i —X; T
ZX {y :;z N} = 0 , (3.6)

t=1

Ys —xIr,

where (r) = p'(r) and x(r) =ry(r) —p(r) —7 with r===-=

Several choices of ¢ and x have been proposed, among of these ¥ (r) = 1.(r) and
x(r) = [¢e(r)]? — 7 corresponds to the proposal of Huber (1981).

Definition 3.3.1. [Influence Function]
The influence function (IF) of a functional T at z € R under a true distribution
F, is

F(2;T,F) = lim L= O Fet 6] = T(F)

e—0 €

when the limit exists. 6% is the “degenerate” probability function that assigns all

its probability to z, that is, 6*(z) = 1 and §*(y) = 0 for any y # =.
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Theorem 3.3.1.

Let T be an M-estimator and I F(z; T, Fy;) the influence function of T at F; then

IF(z;T,F,) = W , T€R |

where the p X p matrix M is given by

MR = - [ |G|

[For proof, see Birkes and Dodge (1993)].

In order to study the robustness properties of Huber’s estimator T#, it is necessary

to compute its influence function at the model distribution Fj with density

fo(x,y) = ¢y — x"B)k(x)
where the scale factor is ignored.

Using Theorem 3.3.1 with F, = Fg and ¢.(y — x*3), the expression for the

influence function I F(x,y; T#, Fg) is obtained as

1/)0(1/ - XTIB)X
IF(x,y; TH Fy) = LW XX L cRe yeR
( ) = M. B

}

where

M. 1) = @) = ([ i) ( [odare).
Note that this influence function depends on y only through r := y — x7 3.

Following Hampel (1973) it is possible to rewrite I I as a product of two factors,
namely the (scalar) influence of the residual (I R) and the (vector valued) influence

of position in factor space (I P):
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IF(x,xT8+r;TH F5) = IR(r; TH @) - IP(x; T" K) , (3.7)

where

IR(r; TH @) = Z/I’Eg)) :

IP(x; TH K) = (Bxx")'x

The factorization (3.7) is unique if IR is defined as the influence function of the

corresponding M-estimator of location.

The influence of the residual IR(r; T#, ®) is bounded. This is an improvement
over LS estimators from the robustness point of view. But still, the influence of

position I P(x; T#, K) in factor space is unbounded.

Thus, for a judicious choice of the function 1, the M-estimator of 8 may attain
high efficiency, relative to the LS estimator, and also be robust against large
residuals. However, M-estimators are not robust to outliers in the design space.
This is not a problem if the x matrices are in fact chosen by design to have
equileverage, or at least a large proportion of points with the maximum leverage.
But if the x matrices themselves are random or otherwise subject to errors, then
the classical M-estimators may be unreliable, for the equations in (3.3) are directly
affected by x. Thus several statisticians have proposed alternatives to (3.3) of the

form

N
Zn(xi,y#T—N)xi =0 . (3.8)

=1
In other words the domain of the function 1 has been enlarged to include the
design points, as well as the residuals. Solutions to (3.8) are also called generalized

M-estimators. See Hampel, et al. (1986) for further references.
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The form (3.8) restricts the M-estimators, as compared with the general formula
N

Z¢(Xi7 yi; Tiv) = 0 in two ways: 1h(x;, y;; B) must have the same direction as x
=1

and the scalar 7(x,r) depends on B only through r =y — x''g.

In order to study the robustness of the estimator Ty, investigate the functional

T(F) corresponding to the M-estimator obtained from (3.8) is the solution of

/ n(x,y — x"T(F) xdF(x,y) = 0
Define
My, F) i= [ o/(x,y = xIT(F)) " dF ()
where 7/ := %n(x, 7).
Then the influence function of T" at a distribution F is given by

IF(x,y;T,F) = n(z,y—x"T(F)M ™ (n, F)x

Maronna and Yohai (1981) prove that these estimators are consistent and asymp-

totically normal.

3.4 Other Robust Estimators

Definition 3.4.1. [The Breakdown Point]

Consider any sample of N data points Z = {(x,4;),... , (x%,yn)} and let T be
a regression estimator such that T'(Z) = 3.

Now consider all possible corrupted samples Z* that are obtained by replacing

any m of the original data points by arbitrary values. Denote by bias(m;T, Z)
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the maximum bias that can be caused by such a contamination:
bias(m; T, Z) = sup||T(Z2*) - T(Z)| ,
Z*

where the supremum is over all possible Z*. Clearly, the function bias is non-
decreasing in m. If bias(m; T, Z) is infinite, this means that m outliers can have
an arbitrarily large effect on T. Therefore, the (finite-sample) breakdown point of

the estimator T at the sample Z is defined as

ey(T, Z) = min{%; bias (m; T, Z) is infinite }

3.4.1 Least Trimmed Squares Regression

Least trimmed squares regression (LTS), introduce by Rousseeuw (1984), is a
highly robust method for fitting a linear regression model. The LTS estimator
BLrs minimizes the sum of the ¢ smallest squared residuals, that is,
q
BLTS = arg mBin z; 7"(2@) )

where 7"(21), Té), cee T?N) are the ordered squared residuals, from smallest to largest,
and g must be determined. The value of ¢ is often set to be slightly larger than
half of N. Rousseeuw and Leroy (1987) suggest that ¢ may be selected as ¢ =
[N(1 - «)] + 1, with @ being a proportion.

The LTS estimator has the highly attractive robustness property that its break-
down point is approximately % (if ¢ is the right fraction of N). The breakdown
point of a regression estimator is the largest fraction of data which may be re-
placed by arbitrarily large values without making the Euclidean norm ||3]| of the

resulting estimate tend to oo, where
~ p -~
181° = _ 8t
i=1
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Any estimator with breakdown point approximately % is called a high breakdoun
point estimator. Thus, the LTS estimator is a high breakdown point regression

estimator.

The high breakdown point of the LTS estimator means that the values xfﬁ LTS,
i = 1,...,N, fit the bulk of the data well, even when the bulk of the data
may consist of only somewhat more than 50% of the data. Correspondingly, the

residuals r; = y; — xZTB s will reveal the outliers quite clearly.

On the other hand, this high breakdown point estimator is highly inefficient for
regression models with normal errors, but provides very robust starting values to

be followed by more efficient re-weighted procedures.

3.4.2 Least Median Squares Regression

An idea quite similar to LTS regression is least median squares (LMS). Rather
than minimizing the sum of the squared residuals, as in least squares regression,
least median squares [Rousseeuw (1984)] minimizes the median of the squared

residuals.

Least median of squares regression has a very high breakdown point of almost 50%.
That is, almost half of the data can be corrupted in an arbitrary fashion and the
LMS estimator continue to explain the majority of the data. At the present time
this property is virtually unique among the robust regression methods available.

However, least median of squares is statistically very inefficient.
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3.4.3 S-Estimators

Both the LTS and the LMS are defined by minimizing a robust measure of the
scatter of the residuals. Generalizing this Rousseeuw and Yohai (1984) introduced
another class of high breakdown point estimators based on the minimization of
the dispersion of the residuals, so called S-estimators, corresponding to

Miniﬁmize sfri(B),...,rn(B)]

where 71 (8), ... ,7n5(3) denote the N residuals for a given parameter 3.

The dispersion s[ri(3),...,rn(8)] is defined implicitely, for a given K, as the

solution of

1 N
sz(%)=K :
=1

where the function p must satisfy the following conditions:

1. p is symmetric and continuously differentiable, and p(0) = 0.

2. There exists ¢ > 0 such that p is strictly increasing on [0, ¢| and constant on

[c, 00).

A function p must be selected; Rousseeuw and Yohai (1984) suggest

%2 = % + % for |z| <c
p(z) = 2 : (3.9)
5 for |z| >c

(o)

The selection of ¢, which determines K, involves a tradeoff between breakdown

point and efficiency.
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Table 19 of Rousseeuw and Leroy (1987, p. 142) gives the asymptotic efficiency
of the S-estimators corresponding to the function p defined in (3.9) for different

values of the breakdown point.

A detailed study of the properties of LTS, LMS and S-estimators briefly reviewed
in this Chapter can be founded in Rousseeuw and Leroy (1987).

3.5 Introduction to Robust Logistic Regression

Consider a generalized linear model with a Bernoulli independent variable Y,

(ie., Y takes values 0 and 1), p explanatory variables Xi, ..., X,, which may be

discrete or continuous and a link function G. Then, if X = (X,... ,Xy)? is the
N x p design matrix, for any x” = (zy,... ,z,) € R, we have
PY=1X=x) = Gx'B) , (3.10)

for some 3 € RP. We will suppose that G is a continuous and strictly increasing

distribution function. An example of G may be the logistic distribution

G = exp(t)

_— R .
T+ exp(l) te , (3.11)

or the probit function ® corresponding to the standard normal distribution func-

tion.
Consider a sample z; = (x{,11),... ,2y = (xk,yn~) of N independent obser-
vations, where x! = (z;1,...,24) for i = 1,... ,N. The x,’s may be fixed or

random. The maximum likelihood estimate (MLE) which is obtained by maxi-

mizing
Z{yz- In[G(x; B)] + (1 — y) [l = G(x[B)]} (3.12)
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gives an asymptotically efficient procedure for estimating 3. The usual procedure
to estimate (3 is an iterative process, such as Newton-Raphson, as used in Section

1.2.

Considering the deviances

Dy(B) = y:{~ (G B)]} + (1~ y){~ Wl =GB},

the MLE may be defined, alternatively, by the minimizing

Z Di(B) . (3.13)

However, the MLE is extremely sensitive to the presence of anomalous data in the
sample. Pregibon (1981, 1982) has exemplified this sensitivity. Pregibon (1981),
Cook and Weisberg (1982), Johnson (1985), Hosmer and Lemeshow (2000) and
McCullagh and Nelder (1989), have proposed procedures to identify observations

which are influential for estimating 3.

Pregibon (1982) defined robust estimates by modifying the MLE goal function

given in (3.13). He proposed to minimize

Z p(Di(B)) (3.14)

where p is a suitable monotone loss function with a slower increase than the

identity. He suggested to use for p a Huber type function in the family given by

t ift<e
plt) = {2(tc)%—c ift>c . (3.15)

However, the estimators defined by the minimization of (3.14) are not consistent.

Actually, they are asymptotically biased when the model (3.10) holds.

Copas (1988) found an approximate expression for the bias of these estimates, and

he showed that it may be non-negligible. Moreover, if the p function is chosen in
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the family (3.15), the resulting estimate is not robust against outliers with high

leverage explanatory variables.

Stefanski, Carroll and Ruppert (1986) proposed a class of robust estimates for
generalized linear models. They obtained Hampel’s optimal bounded influence
estimators: these minimize some functional of the asymptotic covariance matrix,
subject to a bound of some norm of the influence curve. Kiinsch, Stefanski and
Carroll (1989) found similar optimal estimators but with the additional cons-
traint of conditional unbiasness. These two classes of bounded influence estimates
require the estimation of a robust covariance matrix of X. Carroll and Peder-
son (1993) studied the bias of these estimators for small uncontaminated samples.
They found that there are estimates in the Mallows subclass [Hampel et al. (1986),
Section 6.3] which have a bias comparable with the MLE.

Copas (1988) proposed a robust estimation procedure which is based on a lo-
gistic regression model which contains the outlier generation mechanism. The

estimation procedure is maximum likelihood applied to this model.

Bianco and Yohai (1996) have proposed a class of M-estimators which can be
thought as a Fisher consistent version of the estimators given by (3.14). These

estimators are defined by the minimization of

N
> AeDi(B)] + TG B+ T[L - GB)]} (3.16)
i=1

where p is a bounded, differentiable and nondecreasing function and

J(t) = Aw(—lnu)du , (3.17)

where ¢(t) = p'(t). Bianco and Yohai (1996) have shown that this choice of J

makes the M-estimator Fisher consistent.

The fact that p is bounded makes these estimators qualitatively robust in Hampel’s
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sense; that is, a small fraction of arbitrary outliers in the sample has a small effect
on the estimate. An advantage of these estimators is that they do not need
a robust estimate of the scatter matrix of the X’s. The estimates defined by
the minimization of (3.16) are a natural generalization of the M-estimates with
bounded p function used for regression. Since these M-estimates for regression

have good robustness properties |e.g., a high breakdown point, see Yohai (1987)].

In particular, the family of p functions studied by Bianco and Yohai (1996) is
given by

t— 2 ift<e
—_ 2¢c -

where ¢ is a positive number.

The p function corresponding to the MLE is just the identity, which is an un-
bounded function. The identity function could be robustified by truncating it for
values larger than a constant ¢ . The correction term g—i in (3.18) makes the trun-
cation process smoother. It is clear that when ¢ tends to infinity the corresponding
p. function converges to the identity and therefore the corresponding M-estimate
approaches the MLE. This family is mainly used because of the simplicity of the
corresponding J functions. However, similar results could be obtained with other

p functions using different truncation schemes.
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Chapter 4

Robust Logistic Regression
Model

The principal result in this chapter is the proposal of a new robust regression
estimator for the logistic regression model, both in the binary and multinomial

response cases. Its asymptotic properties are also studied.

This chapter is composed of two sections. Section 4.1 extends the quadratic
distance estimators (QDE) for the multiple linear regression, suggested by Luong
and Garrido (1992), to the logistic regression model, where the response variable
is binary. The asymptotic properties and the influence function have also been

derived for this particular model.

An extension of the QDE to the multinomial logistic regression model is presented

in the last section.
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4.1 Robust Quadratic Distance Estimators for
Logistic Regression

A minimum distance method based on the quadratic distance (QD) for transforms
was introduced by Luong and Thompson (1987). Following the same idea the
minimum distance estimator based on the QD was introduced in the simple linear
regression model by Luong (1991). An extension to multiple linear regression was
studied by Luong and Garrido (1992), where the asymptotic properties of this QD
estimator were derived. The QD estimator was shown to be efficient for a specific

choice of odd function h and also shown to be robust for appropriate choices of h.

In this section, minimum distance estimators based on the QD will be introduced

for the logistic regression model.

Let xI = (z41,... ,25) € RP be a vector of p explanatory variables which may be
discrete or continuous and X = (X¥,...  X%)T be a N x p design matrix with
rank p < N, where x; # 0, for i = 1,..., N. Denote by n* = |£ ] + |2}, where

| z] stands for the largest integer less than or equal to z € R.

We consider the logistic regression model for binary responses and N independent
random variables Y;, which have a binomial distribution with index n; and proba-

bility 7w(x;). These are denoted by Y; ~ Binomial(n;, 7(x;)), where n; is a known

exp(x] 8)

positive integer, m(x;) = 5 o TE)

and (3 is a vector of p unknown parameters.

From Christmann (1994) we can define relative frequencies P; as follows.
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Definition 4.1.1.

Let y; be observations from not necessarily independent random variables Y5,

where Y; have a binomial distribution with index n; and probability m(x;), then

the relative frequencies P, for i = 1,... , N, are defined as
23;1_ if ;=0 ,
P, = L if 1<Y;<mn;—-1, (4.1)
1 _
1— 5 if Y,=mn,;
Assumptions:
Under the above definition it is assumed that
(a) there exist m(x;) € (0,1), for 1 <¢ < N, such that if 1r<m<r}vnl — 00
(Py,...,Py) — (w(x%1),...,m(xy)), almost surely, (4.2)

(b) there exists exactly one vector 3* € RP such that, for all 3 # 3%,

, e . exi P
15 W(Xi> = m Z;W(Xé) = m . (43)

It is obvious for the logistic regression model that the strong law of large num-

bers guarantees the validity of (4.2). Then (4.3) holds by definition of 7(x;) =

exp(x} 8*
-1:——615)(_(})—(1?—_-?,6)*) and rank (X) = p.

>n* >
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Observe that (4.2) guarantees the convergence of the relative frequencies F; to
some constant 7(x;), for ¢ = 1,..., N, which can be interpreted as true success
probabilities. The inequality (4.3) assures that at least n* > % of the quantities
7(x;) can be modeled according to a logistic regression model and that its para-
meter vector 3* is identifiable. However, the distribution of the corresponding n*

random variables Y; need not to be binomial, whether (4.2) is valid or not.

In what follows it is assumed that all values of n; are reasonably large, in the sense
that the results are asymptotic for n. = 3~ n; — oo such that 2 — ¢; € (0,1),
but N and p remain fixed.

Theorem 4.1.1. [Normality of Empirical Logit Transform)]

If the logistic model holds true and n; is large, then the empirical logit trans-

form 111(1{%) is approximately normally distributed with mean x7 3 and variance

{nim(x;)(1 — 7(x;))} 7% Thatis, fori=1,...,N,

111(1 _]?R) ~ N(x; B, {nim(x:) (1 —7(x))} )

Proof.

Consider the logit transform

ln(J—gz(—i)——)) = x'8 . (4.4)

1—7(xy
Under the condition that neither the number of successes nor the number of

failures is too small, expression (4.4) is reasonably estimated by

ln<ni}fn> = m(%) ,

which we call the empirical logit transform.
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More generally, if the parametric function of interest is L{m(x;)], then we consider

L(%) Now provided that the variation in X is relatively small we can write

g

L(—Yi) ~ Lw(x;)] + (Xﬁ - W(Xi)> Lr(x:)]

n; mn;

from which it follows that L (%:—;) is approximately normally distributed with mean

L|m(x;)] and variance

D) PVar(2) = (1 e L0

n; n;

Now consider L(t) = In(1%) and L'(t) = [t(1 — t)]™*, then for i = 1,... , N,

111(1 i—tﬁ) ~ N(xi B, {nm(x)[1 — w(x:)]} )

Definition 4.1.2.

(a) Let X = (XT,...,X%)7 be the N x p matrix of explanatory variables
Xi,...,X,, which may be discrete or continuous, with x! = (2, ... , i),

fori=1,... N.

(b) Let Y = (¥3,. .. ,Y2)7 be the N x 1 vector of the empirical logit transform,

where Y; =1n<1f"},i>, fori=1,...,N.

(c) By means of (a) and (b) for any 3 € RY we can define the “residual” as
Fi=g—x. 08, fori=1,... N . (4.5)
Under the definition of residuals in (4.5), the logistic regression model can be

considered as a particular case of the multiple linear model studied by Luong and

Garrido (1992) in the context of quadratic distance estimation.
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In what follows assume that the random errors
Fi=1;—x By, fori=1,...,N ,

where By = (Bo1,--- ,00p)" is the vector of unknown parameters, are independent
and identically distributed. Their common distribution function, Fp, is unknown
(non-parametric model) but assumed to be absolutely continuous with density
function fy, symmetric around zero. In fact, using Theorem 4.1.1 it is simple to
show that the expected value and the index of skewness of the random errors are

both equal to zero.

Define, for any @ € R?P

N
g=1

where I denotes the indicator function and w;; are known weights. Similarly,

define
N
‘Fjo(y) = ZwijFO(y)) fOI‘j =1...,p . (47)
i=1

Note that ﬁ’f are empirical processes based on the residuals in (4.5) and the known

weights wy;, ..., wy;, while FjQ are the corresponding theoretical distributions.

Also define for j =1,...,p

Z; = /_OO by (z)dF (z), ... ’/_oo hk(x)dﬁf(m)r

L 8] o0

- N N T
= Z’wz‘jhl(ﬂi - XiT/BL cen 7sz‘jhk(gi - X?ﬁ)] )
| i=1 i=1

~00 —00

and 70 = Uoo ha(2)dFo(z), .. ,/w hk(m)dFﬁ(m)r ,

where hy, ..., h is a fixed choice of odd functions, ie. hi(z) = —hi(—xz),

for z % 0 and h(0) = 0.
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The QD estimator is the vector ﬁ which minimizes the following sum of quadratic

forms
dB) = (28 -2)7Q(Z} -20) + - + (28 -2))"Q(Z) - Z;) , (48)
where QQ denotes a k X k constant symmetric positive-definite matrix.

Furthermore, since Z = 0 for j = 1,... ,p, when h is odd, minimizing (4.8) with

respect to (3, is reduced to minimizing
dB) = (271"QZi +---+[25)7QzZs . (4.9)

Using Kronecker’s product notation [see, Graham (1981) for a brief introduction
to this theory] and calling Z8 = ([Z°]”, ..., [ZB]")T, then (4.9) can be expressed

more concisely as
dB) = [Z°I"LeQZ° | (4.10)
where I, denotes the identity matrix of order p.

The QD estimator B is the vector which minimizes (4.10) with respect to 3.

4.1.1 Asymptotic Properties of the QD Estimator

In this section we derive the asymptotic properties of the QD estimators such as

consistency and asymptotic normality.

The derivation is based on the results of Luong and Garrido (1992) for multiple
linear regression, adapted here to logistic regression. We need to impose the

following regulatory conditions.
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Definition 4.1.3.

Let W = (w?,... ,wLh)T be the N X p matrix of weights used in (4.6), where

T o
W —(wﬂ,...,w,-p),forz-l,... ,N.

Assumptions for Asymptotic Properties

(al) limy_,o Zf\;l wy =0, foreach j=1,...,p,
(a2) limy_,o WTX exists and is invertible,
(a3) limy_ oo Y0, w2a? =0, foreachj=1,...,p;1=1,...,p,

if

(a4) limy_e SN,

wz‘qul exists foreach 7 =1,... ,p;l=1,...,p,
(a5) hi(z) = Zh;(z) is uniformily continuous and Var[h(7)] < oo,
(aB) the x;; values belong to a compact set,
(a7) max {w;Ew!} is bounded for all N,

1<i<N

(a8) A(WTW @ ¥) — oo if N — oo, where A(M) represents the smallest

eigenvalue of matrix M and ¥ is the variance covariance matrix of

h(F) = [h(7), ..., ha(F)]F

Theorem 4.1.2. [Consistency]

Consider the N x p matrix of weights W defined above. Let X be the N x p
matrix given in Definition 4.1.2 (a). Matrices W and X are assumed to have rank
p. If the weights matrix W satisfies assumption (al), then the QD estimator ,@,

obtained minimizing the function d(8), is consistent.
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Proof.

Using Chebyshev’s inequality and assumption (al), we have that ZP° 0
provided that the density function of the random errors, fo, is symmetric. This

implies that both
d(By) 2> 0 and d(B) =>0, as N — oo

Therefore, the consistency of 3 is guaranteed as long as E(ZP) = 0 at, and only

at, B = By when the parametric space is compact. |

Theorem 4.1.3. [Asymptotic Normality]

Under assumptions (a2) to (a8), the central limit property of the QD estimator
B gives

(WIW)"3(3 - By) —— N(0,%y) , (4.11)

where 3, = [(WTX) " 1(XTW)~1](STQS,) 2(STQEQS,).

Proof.

The proof follows from the derivation of the asymptotic variance-covariance matrix

of [3 and the use of the multivariate central limit theorem.

Let S8 = [B(hi(7)),... ,B(hs(7))], where hy(z) = £ hi(z) and assume that the
function d, given by (4.10), is differentiable. Then B satisfies the following p-

system of equations

%[zﬁ]T(Ipe;Q)zﬂ” =0 . (4.12)

61



Under assumptions (a3) to (a6) and using the properties of Kronecker’s product,

we obtain that

o 4 0

—gB _ _Z_ 7B 1 4.13
aﬁZ 8,3Z +0p() ) ( )
_a%zﬂo — —WTX®S)+0,(1) (4.14)

a 01T 0 0 T T T 0
55[2"] (I®Q)55Zﬁ = XTW)W'X)® (S;QSo) + 0p(1)
= (XTW)(W'X)(8Q80) +0,(1) , (4.15)

where o,(1) stands for a random infinitesimal term converging in probability.

Substituting (4.14) and (4.15) in (4.12) and using a Taylor’s series expansion, we

have
(STQSe)(XTW)(W'X)(8 — Bo) = ~(X"'W R S])(I® Q)Z% + 0,(1) . (4.16)

Since Z®0 is a vector of sums of independent variables, then under assumptions

(a7), (a8) and the multivariate central limit theorem, we obtain that
(WIW @ x)2Zf 1 N(0,I) . (4.17)
Using (4.17) and (4.16), we have that
Var[-(X"W @ ST (I ® Q)Z°°] = (XTW @ ST)(WTW 2 QEQ)(WTX ¢ S,) .

Then (3 — B,) is asymptotically normal with asymptotic variance-covariance ma-

trix given by
T =AW'WeQEQ)AT |
where A = [(STQSo)(XTW)(WTX)]1XTW @ St
Finally, 33; can be expressed as
T = (WIX) " (WIW)(XTW)~H(S7QS0) (S5 QEQS,) ,  (4.18)
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or equivalently,
(WIW)"2(8~B) — N(0,%) ,
where &y = (WTX)1(XTW)~1(STQSo) *(SIQEQSy). a
Corollary 4.1.1.
The minimum asymptotic variance of the QD estimator B, 221, is reached when

the weights matrix W = X(XTX)™! and the k x k matrix Q = ¥~*. That is,
Var(8) = (XTX)~1(STZ7S,) .

Proof.

The “optimal weights” can be chosen to minimize (4.18). Using a generalized
Cauchy-Schwartz inequality it is easy to verify that W = X(XTX)~1. Also, if
3} is invertible, the optimal choice of Q, in the sense of minimizing the variance-

covariance matrix 3, is Q = X1, @

4.1.2 Influence Function of the QD Estimator

Let G; be the degenerate distribution at §; and define G:(%:) = Fo(g; — xZBo).
Then the QD estimator, B, can be considered as the statistical functional
B =p8(G,... ,Gn), where B(Gy,. .. ,Gn) is defined implicitly as a solution of

the p-system of equations

0
5—5[2‘3]”“(11) ®Q)Z° =0 |,

with ZP = ([Z{)7,... ,[Z8]")", and
N e N o poo g
i—q Y —00 =1 7%

forj=1,...,p.
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Proposition 4.1.1.

Let Gy = (1 — A\)G; + A6™, where 6™ denotes the usual degenerate distribution
at m;; and A € (0,1). Let H(B,\) = %[Zﬁ]T(Ip@) Q)ZA, if G, in ZP is replaced by

G, » then the influence function of an observation 7; at zl is given by

OH1 '[6H
IF(??l,xf):“[%} {ﬁ} ;

evaluated at 3 = B¢ and A = 0.

Proof.

Under the assumption that G; = (1 — A)G; + A6™, the influence function of an

observation n; at z{ can be written as

08(Gy,...,Gix,-..,GN)
oA A=0

Now, if G; in ZP is replaced by G, we have that

IF(T]ly m’l1—17 137 Gl,)\) =

H(B(Gh, - ,Gipnr- ., G)) = 0

Thus
6__][{ . X@,@(Gl,... ,Gl,)\,...,GN)l +8H —0
98| 8= PGt G ) o Ny
Hence
OH1 'T6H
wonsh) = 55] |3,

Corollary 4.1.2.

If the conditions of Proposition 4.1.1 hold, then the vector of influence functions

of 3 can be expressed as

IF(m, zi) = (85 QSo) " (W' X)(X"W)] 7 [WTX @ S7Q][w, @ h(n — xi Bo)] .
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4.2 Robust Quadratic Distance Estimators for
Multinomial Logistic Regression

In this section we propose an extension of QD estimation to the multinomial
logistic regression model. We use ideas similar to those developed in Section 4.1

for the case of binary responses.

Consider again an individual characterized by a vector x! = (zq,... ,Tp) € RP,
with p explanatory variables, which may be discrete or continuous. Let Gy, ... ,G,
be all the possible groups in which this individual can be classified. We are
interested in estimating the probability P(Y; = j|x;) that the individual x; belongs
to one of the g groups G1,... ,G,.

Assume a random sample from populations Gi,...,G, and denote by N the
number of different vectors x;. Then let n; be the number of observations at x; for

i=1,...,N and y;; the number of G; observations at x;, with n; = 37_, y;..

Fixing the last classification group G, and comparing to it the inclusion proba-
bilities of every other class, we say that an observation x; satisfies the logistic
assumptions if

]P’(Yz-:j]xi)} T .
In|———2 = xIg. | j=1,...,9—1 ,
[Pm:glxi) o g

or correspondingly,

T
, exp (x; 3; _
WJ(Xl):P(YZ:]IXz) = g~1( ]) H j:177g 3
1+ Z exp (x! 3;)
I=1
where 87 = (B, .. ,0p;) is a vector of unknown parameters, with 3, = 0, and
the corresponding 8 = (87, ..., BL_;)" be the p(g—1) dimensional column vector

of unknown parameters.
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Note that the random variables (V... ,Yy) have a multinomial distribution
with n; trials and cell probabilities 7 (x;), ... ,74(x;). The joint probability mass

function of (Yi;,...,Yy) is
_—ni!____ 7'(-1 (X’L‘)yli PR Wq(xi)ygi
gl vy |

with n; = >°7 )y, fori=1,...,N.

f(yu’--- 7ygi) =

Observe that the marginal random variables Y}; for j = 1,... , g, obtained from
the multinomial distribution have a binomial distribution with index n; and pro-

bability m;(x;), that is

Yj; ~ Binomial (n;, 7;(x:)), j=1,...,9 ; t=1,...,N

An extension of Definition 4.1.1 to the multinomial case can be given as follows.

Definition 4.2.1.

For ¢ = 1,...,N fixed, let (yy,...,vs) be observations from (Y3;,...,Y5) ~
Multinomial{n;, (71(x;), . .. , m4(x;))]. Then the relative frequencies Pj; are defined,

foreach j=1,...,9, as

o if V=0
P = 37’5 if 1<Y;<nm;—-1 , i=1,...,N . (4.19)

Assumptions:

Under the above definitions it is assumed that

(a) there exist m;(x;) € (0,1),for j = 1,...,9 ;4 = 1,...,N, such that if

1I£1SI1N(ni) — oo, then

(Pua,..., Pyy) — (mi(x1), ... ,my(xy)), almost surely , (4.20)
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(b) there exists exactly one vector 3} € R?, foreach j =1,... 9, such that, for
all B; # 05

X! 8 _ ex: Ps
i;ﬂj(Xi) = 5 Z n;‘ > 7,;7Tj(X7;) =g s (421)
T a* T
=1 =1

where n = | X ] + |5, with 2] being the largest integer less than or equal

to z.

The argument generalizes that given in Theorem 4.1.1 for a multinomial logistic
regression model. Again assume that all values of n; are reasonably large, such
that the results are asymptotic for n. = Zf\il n; — 00, where % — ¢; € (0,1),

with NV and p remaining fixed.

Theorem 4.2.1. [Normality of Multinomial Logit Transform)]

Consider the above multinomial logistic model and suppose that n; is large. Then

the multinomial logit transform [In(£4), ... ,ln(l—jﬁ-j;‘%ﬁ)]T is approximately multi-
gi gi
normally distributed, with vector of mean [x!Bi,...,%; 8,-1]7 and variance-

covariance matrix given by

1 1 . 1
m(x;) | wg(x) o)
n'%y = n;t : : : (4.22)
1 . 1 1
g (%) mg—103) g ()

Proof. Consider the multinomial logistic model link function given by

lmw(x;)) = {In<wl(xi)),...,ln<%—‘l(—§ﬂ)}T , (4.23)

WQ(Xi) ﬂ-g(xz’)
= [X;‘[ﬁlv -e ’X?IBQ‘:‘JT ;

where 7w(x;) = (m1(x;),...,my(x;)), fori=1,...,N.
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Suppose that 7;(x;) and 7,(x;) are never “too small”. We can estimate (4.23)

T
reasonably by l(%—i, e l—;i) = {hl(%l%)? . ,ln(l’%—,:_i)i)} , which we call the em-
i O gt gt
pirical logit transform. In general if the function of interest is [ (x;)], then we
consider [(%, .., %ﬁ)

Define

Ii[m(x)] = Gizj (71, -, 2)

21=m1 (X4 )y, 2g=Tg (X4)

The first-order Taylor series expansion of | about 7 (x;) is

Yy Y 9. . Y,
(232 ~ e+ bl (2~ )
. ..
ﬁi‘ .”_r_l.gch_)_) (%-Wj(xi)) . (—;i—l—ﬂg(xi))
In ( Yo ) In ( mg(%i) 1 (%0) e

: ~ : + : . (4.24)

h](&:—lﬁ) 1n<ﬁ%) (ﬁ%i-—lﬁ—“j(xi)) (%~7rg(xz'))
gi Tg{Xg ﬂg—l(xi) — Wg(Xi)

Now, take expectations on both sides of (4.24) to get

Y
ln(_f:;) x; B
E : R~ :
In (Y22 X1 B, 1
Define
Yy, Yi Ygg— 7 Yi
R — (“ﬁh - Wj(xi)) _ ("ng" —me(x)) n,;l) — 7j(x)) _ (%L - Wg(xi))
1 (%) g (%) Y Tg—1(x:) g(x:)
T
We can now approximate the variance of [ln(?f), . ,ln(yg,fl ’)] as
gt g1
In (ﬁl) I N B 1
Ygi e T mg(xi) mg(Xi)
Var : ~ ERR" =n;’ : :
Yioo1yi _1 1 1
111( (ifgil) ) mg (%) a0y g (xi)
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Definition 4.2.2.

(a) Let X = (XI,...,X2)T be the N(g — 1) x p(g — 1) matrix of (discrete or

continuous) explanatory variables X7, ... , X,, where
X_qT = (Kﬁ;l{gﬂ <o 7§%;—1)i)T = : XZ .- : ’
o o ... x;fr
with X;TF = (371‘1;---7371‘;7), fori= 1,/N

(b) Let Y = (Y7,...,Y%)7 be the N(g — 1) x 1 vector of multinomial logit
transforms, where Y! = (Y,,,... Y1), with Y, = 111(%), for
.7:1779—1 ; 221,,N

(c) By means of (a) and (b) we define the “residual” as

fji:y_ﬂ’_l‘-?z"& forj:l,...,g—]. ; 'ZZ].,,N . (425)

In the multinomial logistic model the radom errors are defined by

T

r =gﬂ~zﬁﬁ?§, for j=1,...,9—1 ; 1=1,...,N

—j1 )

where 35 = (8%,,..., ﬁg( g—1)) 18 the p(g — 1) dimensional column vector of un-
known parameters. Their common multivariate distribution function, F{, is un-
known but assumed to be absolutely continuous, with a density function f§ sym-
metric around zero. Applying Theorem 4.2.1 one easily checks that the expected

value and the index of skewness of these random errors are both equal to zero.
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Define

g—1

N
= z iji[t]l(_y_ ~xB<y), fort=1,...,p(g—1) ,  (4.26)
i=1

where I denotes an indicator function and wy are known weights. Similarly,

define

N g-—-1
= SN w Ry, fort=1,...,p(¢g-1) , (427
i=1 j=1

where Fy, is the marginal distribution of Fg = [F5,... , F§ g_l)].

Observe that the functions ﬁ’f are empirical processes based on the residuals and

weights wjyg, . .. , Winyg, While F? are the corresponding theoretical distributions.

Now we define for t =1,... ,p(g — 1)

ZP = _ /:;hl(m)dﬁf(x),..., /_Zh,c(a;)dﬁf(x)r ,

TN g-1 N g-1 r
S SRR o SR oy

Li=1 j=1 g=1 j=1

while Z0 = _ / B hi(z)dF(z),. .. , / B hk(:c)dFtO(:c)r :

where hy, hy, ..., h; is a fixed choice of odd functions, that is h(z) = —h(—x),
for = # 0, and h;(0) = 0.

The QD estimator for the multinomial logistic model (QDM) is the vector B

which minimizes the following sum of quadratic forms

du(B) = (27 —Z)"Q(Z ~Z}) + -+

B 0 T <)
(Zp(9~1) - Zp(g—l)) Q.(Zp(g—l) Zp(g 1)) ) (4'28)
where Q denotes a k x k constant, symmetric, positive-definite matrix.
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Furthermore, since Z? = 0 for ¢ = 1,... ,p(¢g — 1), when h is odd, minimizing

(4.28), with respect to 3, is reduced to minimizing

du(B) = [Z0)QZE + -+ 2], I"QZ, ) (4.29)
Using Kronecker’s product notation and calling Z° = ([Z7],... ,[Zg(g_l)}T)T,
then (4.29) can be expressed more concisely as
W(B) = 297y ® Q7 | (430
where I,,.1) denotes the identity matrix of order p(g — 1).

The QDM estimator B is the vector which minimizes (4.30) with respect to 8.

4.2.1 Asymptotic Properties of the QDM Estimator

In this section we derive the asymptotic properties of the QDM estimators, such

as consistency and asymptotic normality.

The derivation is obtained on the results of Section 4.1.1 which we have adapted

to multinomial logistic regression.

Definition 4.2.3.

Let W = (W7,...,W2)T be the N(g — 1) x p(g — 1) matrix of weights used in
(4.26), where

0 0 W2+ Wg=D)ilp(g—1))
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In order to prove this asymptotic properties we need to consider the following

regulatory conditions.

Assumptions for Asymptotic Properties

(b1) limy_eo Zf\il g‘i w?, Y =0, foreach t =1,. L,plg—1),

(b2) Hmpy_oo(XTW)(WTX) exists and is invertible,

(b3) limy_oo S 12 lfw g =0, foreach t =1,...,p(g — 1),
(b4) limy_,e0 Zf__l ?;;lwﬁ[t}xmt exists for each t = 1,... ,p(g — 1),
(b5) hi(z) = Zhs(x) is uniformily continuous and Var[A(r)] < oo,
(b6) the z;; values belong to a compact set,

(b7) max {W,E* T is bounded for all N,

1<i<

(b8) AWTW ® ¥*) — oo if N — oo, where \(M) represents the smallest
eigenvalue of matrix M and ¥* = n;' 3% is the variance-covariance matrix

of the function

hr) = [hi(r),...,;(0)]"

where 3 is a function of (4.22) and r are asymptotically normal distributed

with variance-covariance matrix given in Theorem 4.2.1.

Theorem 4.2.2. [Consistency]

Consider the matrix of weights W defined above and the N(g — 1) x p(g — 1)
matrix X given in Definition 4.2.2. Matrices W and X are assumed to have rank
p(g — 1), respectively. Suppose that the weights matrix W satisfies assumption
(b1), then the QDM estimator 3,, obtained minimizing the function d u(B), is

consistent.
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Proof.

Using Chebyshev’s inequality and assumption (b1), we have that ZP Z0
provided that the density function of the random errors, f3, is symmetric. This

implies that both
du(67) L50 and dy(Buy) L,0, as N— 0

Therefore, the consistency of B is guaranteed as long as B(ZP) = 0 at, and only

at 3 = 3}, when the parametric space is compact. |

Theorem 4.2.3. [Asymptotic Normality]

Under assumptions (b2) to (b8), the asymptotic distribution of the QDM esti-

mator By is given by
with variance-covariance matrix X3 = Az(WTW)AZT (_S_gg_ESQ__S_@, where

Az = (87QS)(XTW)(WTX)] (X" W).

Proof.

The proof is based on the derivation of the asymptotic variance-covariance matrix

of ,C:l m and the use of the multivariate central limit theorem.

Consider 87" = [B(hy(r)), ... ,E(hx(r))], where h;(z) = L2 hy(z) and assume that
the function dyy, given by (4.30), is differentiable. Then B3, satisfies the following
p(g — 1)-system of equations

a N ~
%[ZBM]T(IP(Q—U@Q)Z'BM =0 . (4.32)
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Under assumptions (53) to (b6) and using the properties of Kronecker’s product,

we obtain that

O 5 O _a

Bam B85 1 4.33
O 4
5L =-WXaS +ol) | (4.34)

% 2P} (Tpe-1) @ Q) 5% 2P = (X"W ® 87) (Ip(e-1) ® QW' X @ 8g) + 0,(1)

= (X"W)(W'X)(S;QS,) + op(1) (4.35)

where 0,(1) stands for a random infinitesimal term converging in probability.

Substituting (4.34) and (4.35) in (4.32) and using a Taylor’s series expansion, we

have

(STQS,) (X"W) (W' X)(By — B;) = —/mi (XTW @ 87 Q)Z7 + 0,(1) . (4.36)

Since ZP0 represents a vector of sums of independent variables, then under as-
sumptions (b7), (b8) and using the multivariate central limit theorem, we obtain

that
V2P L NO,W'W®EE) . (4.37)
From (4.37) and (4.36), we then obtain that
Var[/ni (X" W ® 8§ Q)Z%] = (X"W @ S7)(W'W © QE;Q)(W X @ 8%).
Thus
Var(By) = A, (W'W @ QEiQ)AT |

where Ay = (S{QS,) (X' W)(W'X)]H(X"W @ S7).
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Finally,
3y = As(W'W)AT(S;Q%2QS,)

where Ag = (§0Tg§0)_1[(_XT_W_) WTX)1(XTW).

Therefore (84— 3}) is asymptotically normal with asymptotic variance-covariance

matrix 3. i

Corollary 4.2.1.

~

The minimum asymptotic variance 33 of the QDM estimator 3, is reached when
the weights matrix W = X(X"X)™* and the k x k matrix Q = [Z}]™". In that
case, Var(Bar) = (X"X) (85 [Zp]7'So) .

Proof.

An argument similar to that given for Corollary 4.1.1, but applied to the variance-

covariance matrix 23 completes the proof. e
Examples
1. Let 3 be the MLE estimate of 8 = (87,... , T_)". Consider the variance-

covariance matrix of the vector B given by Amemiya (1985) and the odd

function A(r) = r, where r is approximately multinornal distributed.

Using the Corollary 4.2.1 is simple to see that the multinomial quadratic

estimator, 3 M, 1s as efficient as the maximum likelihood estimator, B
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2. Consider the odd function

ha(z) = x if |zl <M
2= sign(z)M if |z > M

where r is approximately multinormal distributed and M a constant.

The efficiency of B now depend also the value of truncation, M. Note that

if M — oo, the By again is as efficient as the B

76



Chapter 5

Applications

5.1 Logistic Regression - Householder Data

Consider here a logistic regression example with real data. We illustrate the
robustness of the QDE when the data is contaminated with aberrant observations.

Also, we show that a more reasonable classification is obtained with the QDE.

5.1.1 Description of Data and Estimation of Parameters

We calculated the QDE for the data set given in Table 5.1. This householder
data set is a sample of 15,521 house values extracted from the 1990 Census of
California. House value is an important measure of the “amount at risk” in
Homeowner’s Insurance and, as such, can be used as a classification variable for

these insurance portfolios.

The original data reports 8 explanatory variables for each house value. We have
chosen the 2 best predictive variables, which are also the most relevant in our

study. For each house value, the householder’s income (in 10-thousand US$ units)
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and the house age (in years) compose the explanatory vector x; (including a first

dummy for the intercept term).

7 :Ef Yi i 1 96{ Yi 74
111 1 0 1.021] 0 |[168131}1 1 0 3.566 | 22 | 243
211 0 1 1.0214} 0 {371{432]1 0 1 3566 |229] 254
311 0 0 1021} 0 [238(33|1 0 0 3.566 | 199 | 236
411 1 0 1678] 0 [ 201341 1 0 3820 | 38 |258
511 0 1 1678 0 31343511 0 1 3.820 | 308 | 341
6 11 0 0 1678 0 [260} 361 0 0 3.820 | 248|281
711 1 0 19341 0 (181|371 1 0 4.070 | 43 | 220
8 |1 0 1 1934} 11 {35038 |1 0 1 4.070 | 254 274
911 0 0 1934, 0 12601391 0 0 4.070 | 183207
1011 1 0 2149 0 | 187114011 1 0O 4.308 } 156 | 198
1111 0 1 2149 12 [ 30514111 O 1 4308 | 308 317
1211 0 0 21491 10 1307|1421 0 0 4.308 | 221 | 245
1311 1 0 2350 0 | 231431 1 0 4.608 | 206 | 239
1411 0 1 2350) 21 | 31344411 0 1 4.608 {272 277
1511 0 0 2350 15 [ 2694511 0 0 4.608 | 294 | 307
161 1 0 2553 0 21914611 1 0 4.953 {214 | 235
1711 0 1 2553 25 | 29514711 0 1 4.953 | 280 | 280
1811 0 0 2553 25 {312 4811 0 0O 4.953 | 286 | 287
191 1 0 2762 0 23311491 1 0 5.334 |273 ]| 287
2001 0 1 2762 24 26045011 0 1 5.334 |225] 225
2141 0 0 2762 31 {3214 511 0 0 5.334 {2801 280
2211 1 0 2983 13 (270456211 1 0 5.800 | 306 309
2311 0 1 2983} 37 [281 531 0 1 5800|1931 193
2411 0 0 2983 25 | 267541 0 0O 5.800 |276| 276
2511 1 0 3177 18 {23555 |1 1 0 6.429 | 355 | 355
2611 0 1 3177 (10412294561 0 1 6.429 | 137 137
2741 0 0 31774{ 31 12354571 0 0 6.429 | 287 | 287
2871 1 0 33631 9 [18 581 1 0 10.897 | 402 {402
29911 0 1 3363118412221 59]1 0 1 10.897 | 1161 116
3011 0 0 3363 60 119536011 0 0O 10.897 257 | 257

Table 5.1: Householder data set

House age is grouped in three categories through two additional dummy variables
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as follows:

0 < House Age <21 «— 1 0
21 < House Age <35 «— 0 0 (5.1)
35 < House Age < 53 +— 0 1

Different x; values define different classes, ¢ = 1,...,60. The corresponding
number of house values in class ¢ is denoted n;. Then the portfolio is divided in
two groups, class by class; out of the n; houses in class 4, all those with a value less
than the portfolio median value, 173,600 US$, belong to the first group (“small

houses” ), the total number of which is denoted y;.

Using a multiple logistic regression model we estimate the parameters by two
methods: maximum likelihood (MLE) and our QDE (see Table 5.2). No outliers
were detected in this data set using the pre-programmed function Imsreg (least

median of squares robust regression) in S-Plus.

MLE QDE
Bo(Constant) | -11.8601971 | -9.8922812
Bi(Age 1) -2.6710579 | -2.1039454
Ba(Age 2) 0.7977853 | 0.7871895
f3s(Income) 3.4529568 | 2.9682419

Table 5.2: MLE and QDE parameters estimates

The QDE was obtained using the optimal weight matrix W = X(X7X)~1. Since
Q = X! depends on the beta parameter values, we used the MLE as initial value

to obtain Q iteratively.

Here the minimization of d(8) in (4.10), was done with the following choice of
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functions

1 if >0 .
T if |z| <M
1 if z<0 sign(z)M if |z]

Using the %-differences given in Table 5.3 as a measure of comparison between
parameter estimates, we conclude that the estimators in Table 5.2 are essentially

the same under the two methods when outliers are not present.

MLE vs QDE
Bo (Constant) 16.5 %
B (Age 1) 21.2 %
B (Age 2) 1.3 %
Fs (Income) 14.0 %

Table 5.3: %-Differences between MLE and QDE estimators

5.1.2 Robustness of the QDE

Now we contaminate the data set in Table 5.1 by adding a single outlying class,
here the observation xJ; = (1,0,1,10897), ys, = 10, with a count of ng; = 500.
This observation is an outlier in both y and z, under the assumptions of a logistic

regression model.

The re-calculated parameter estimates for the contaminated logistic regression are

given for the two methods in Table 5.4.

MLE QDE
Bo(Constant) | -1.6614898 | -10.8703211
Bri(Age 1) -0.7539516 | -1.9931438
'B (Age 2) -0.2245816 |  0.6984448
Bs(Income) | 0.7415504 | 3.0060373

Table 5.4: MLE and QDE parameter estimates with outlier
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From Tables 5.2 and 5.4 we see that the MLE’s are greatly affected by the presence
of a single outlying class, while the QDE remains relatively stable. We use here

the %-difference as a measure of comparison between parameters estimates.

Table 5.5 clearly illustrates how the QDE is more robust to presence of outliers

than the MLE.

MLE vs MLEougier | QDM vs QDMoustier
fo (Constant) 86.0 % 9.9 %
By (Age 1) 71.8 % 5.3 %
By (Age 2) 128.2 % 11.3 %
B (Income) 78.5 % 1.3 %

Table 5.5: %-Differences between MLE and QDE estimators due to outlier

5.1.3 Binary Classification

In this section we consider a measure to judge the accuracy of the classification
under the fitted model. It is based on the number of observations in the sample

that the model classifies correctly.

We simulate a large number of sample data with the same law as the original
data. For each re-sampled data, we calculate the correct classification rate (CCR)

as an estimate the true CCR.

Consider the original data composed of 15,521 house values. The data base was
partitioned in two groups: those with a value less than 173, 600 US$ belong to the
group of small houses (coded group “0”), while those with a value greater than

173,600 belong to group “1”.

The distribution function of the variables house age and income was obtained for

both groups as follows.
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Analysis of group 1

To find the distribution function of house age and income variables we fitted
Weibull, normal and gamma distributions. Using MATLAB we estimated the
parameters in each case. Figure 5.1 presents the Quantile-quantile plots (QQ-
plot) of the house age variable for a Weibull, normal and gamma distribution

function, as well as the normal probability plot.

Weibull Normal
80
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50 . .
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Figure 5.1: QQ-Plots of house age variable
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Departures from linearity show how the sample data differs from the considered
distributions. A more formal test to determine the best fitting distribution func-
tion was also used. Based on Kolmogorov-Smirnov’s test we decided that the
house age variable can be modeled by a normal distribution with y = 29.1722 and

o = 12.6238.

Normal
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Gamma .
Histogram for Income variable
20 : : : 3000 : . .
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I L O i
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Income

Figure 5.2: QQ-Plots of income variable

A similar procedure was used for the income variable (see Figure 5.2). We conclude
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that a gamma distribution with o = 14.1217 and 3 = 0.3565 provides a good fit

for this variable.

We now simulate 1,000 samples of size 1,000 from a normal(y = 29.1722,0 =
12.6238) and a gamma(a = 14.1217, f = 0.3565) distributions, for the house age

and income variables, respectively.

Using the MLE and QDE given in Table 5.2 we classify each sample generated
using the logistic regression model given in (1.6). Then we calculate the correct
classification rate (CCR) as the ratio of the number of 7(x;) > 0.5 to the total

number observations. Figure 5.3 shows the result of this simulation.

Simulation with MLE Simulation with QDE
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Q00
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Figure 5.3: Simulation of 1000 samples without outliers

Table 5.6 reports the mean CCR values obtained for over the 1,000 simulated
samples. These results confirm our prior evaluation that the MLE and QDE
estimators in Table 5.2 produce essentially the same classification when outliers

are not present.
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Classification Rate
MLE QDE
88.42 % | 85.98 %

Table 5.6: Estimated CCR’s without outlier

By contrast, when outliers are present in the simulated samples, then the resulting
classifications differ. Using the MLE an QDE given in Table 5.4 we repeat the
above classification of simulated samples. We can see in Figure 5.4 that under
presence of outliers, the correct classification rate remains stable for the QDE but

changes drastically for the MLE, as we expected.

Simutation with MLE Simulation with QDE
770 T T v T 875 T T T T
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865
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855
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Figure 5.4: Simulation of 1000 samples with outliers

Table 5.7 reports the comparison between the CCR obtained under the presence

of outliers and the CCR without outliers.
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Group 1
MIE | QDE
Without outliers | 88.42 % | 85.98 %
With outliers 73.21 % | 85.73 %

Table 5.7: CCR comparison for group 1

Analysis of group 0

A similar analysis to that in the previous section was carried out for group 0.
First, we found the distribution functions of the house age and income variables.
In both cases the best fit was provided by a Weibull. For the house age variable
the parameters are o = 0.0002 and 6 = 2.4101, while for the income variable the

parameters are o = 0.0282 and 6 = 3.4625.
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Figure 5.5: Simulation of 1000 samples without outliers

The conclusions are same as for group 1. When the simulated samples are not con-

taminated by outliers, the correct classification rate is similar for both estimators,
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the MLE and QDE. Plots in Figure 5.5 confirm this conclusion.

However, the presence of outliers in the generated samples greatly affects the CCR

under the MLE, while the CCR under the QDE remains relatively stable.

Graphical and numerical results are shown in Figure 5.6 and Table 5.8.
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T T T 1

210

580

560

890 [

520

i
870

500 |
! 860

480 - ;
[ 850

460

' i L . L " . L
o] 200 400 600 800 1000 o} 200 400 600 800 1000
iterations iterations

Figure 5.6: Simulation of 1000 samples with outliers

Group 0
MLE | QDE
Without | 87.33 % | 84.11 %
With 51.95 % | 88.29 %

Table 5.8: CCR comparison for group 0
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5.2 Multinomial Logistic Regression Example

This section gives an illustration of the classification method with a multinomial
logistic regression model. The method works for any number g > 2 of groups,
but to simplify the notation, consider three categories in finding the multinomial

MLE and QDM estimators.

The QDM estimator shows to be a robust estimator under the presence of outliers.
The classification obtained using the QDM estimator is also more accurate than
with the MLE when the data are contaminated. This suggests that the QDM will

become an important alternative to the MLE for classification purposes.

5.2.1 Data and Estimation of Parameters

Consider the data used in Section 5.1 and define three categories for the variable

house value, as follows:

14,999 < House Value < 127,100 «— 0
127,100 < House Value < 225,400 «— 1
225,400 < House Value < 499,101 «— 2

The above boundary points correspond to the 33% and 67% sample percentiles,

respectively.

For each house value, the variables house age and householder’s income (in 10-
thousand US$ units) are again used in the explanatory vector x; (including a first
dummy for the intercept term). The variable house age is used in categorical
form, as given in (5.1) of the previous section. Different x; values define different

classes, i = 1,...,180. As before, the number of house values in class 7 is denoted
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n;, while the total number out of these in a group is denoted y;. The data is

reported in full detail in Table 5.13 at end the section.

Using multinomial logistic regression with these three categories, we again es-
timate the parameters by two methods: MLE and our QDM. The estimated
parameters are reported in Table 5.9. No outliers were detected using the pre-

programmed function Imsreg (least median of squares robust regression) in S-Plus.

Here the QDM was obtained using the optimal weight matrix W = _X(XTK)“l.
Since Q = [Z*]™* depends on the beta parameters values, again we used the MLE

as an initial value to obtain Q iteratively.

Finally, the minimization of d/(3) in (4.30) was done with the choice of functions

given in (5.2).

MLE QDM
Boo | 9.0023521 | 9.2730634
Bro | 1.2299739 | 1.2965800
oo | -0.8731412 | -0.7370614
B30 | -2.5493312 | -2.5350713
Bor | 5.0019578 | 5.1912438
Bin | 0.7963158 | 0.8490555
Boy | -0.5658412 | -0.4702797
Bs1 | -1.1578578 | -1.1828727

Table 5.9:

MLE and QDM parameters estimates

Based on the %-differences given in Table 5.10 as a measure of comparison between
parameter estimates, we conclude that here also, the estimators in Table 5.9 are

essentially the same under the two methods when outliers are not present.
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MLE vs QDM
Boo 3.01 %
B1o 5.42 %
Boo | 15.59 %
B 0.56 %
Bot 3.78 %
b1 6.62 %
Bo1 16.89 %
Ba1 2.16 %

Table 5.10: %-Differences between MLE and QDM estimators

5.2.2 Robustness of the QDM

We introduce an outlier in each group of the multinomial classification given in

Table 5.13. These outliers are given by

Age 1| Age 2 | Income | y; | ny
Group 0 1 0 15.5 | 300 | 410
Group 1 1 0 15.5 10 | 410
Group 2 1 0 15.5 | 100 | 410

The re-calculated parameter estimates for the contaminated multinomial logistic

regression are given, for each of the two methods, in Table 5.11.

MLE QDM
Boo | 3.0556782 | 7.8330769
Bio | 1.0331448 | 0.9001147
Bao | -0.3373748 | -0.5296588
Bao | -0.8565958 | -2.2446234
Bor | 1.1709443 | 5.1914493
B | 0.8080413 | 0.8383701
Bor | -0.2007203 | -0.4498738
a1 | -0.3049192 | -1.1819892

Table 5.11: MLE and QDM parameters estimates with outliers
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From Tables 5.9 and 5.11 we see clearly that the MLE’s are extremely influenced
by the presence of outliers, while the QDM’s remain relatively stable. Table 5.12

reports the %-differences between parameter estimates.

MLE vs MLEougiier | QDM vs QDMoutier
Boo 66.06 % 15.53 %
Bio 16.00 % 30.58 %
B0 61.36 % 98.14 %
Bao 66.40 % 11.46 %
Bo1 76.59 % 0.004 %
B 1.47 % 1.26 %
B 64.53 % 4.34 %
Ba 73.67 % 0.07 %

Table 5.12: %-Differences between MLE and QDM estimators due to outliers

5.3 Summary and Conclusion

This chapter illustrates the robustness of the QDE and QDM against outliers.
Estimations using the Householder data set clearly show that even if MLE’s are
the standard estimators in the logistic regression literature, it can be useful to

have alternative estimators like the QDE and its multinomial version, the QDM.

MLE’s are simple to calculate since pre-programmed functions for it are available
with various statistical softwares. In addition, MLE’s satisfy desirable optimality

properties such as consistency, sufficiency and asymptotic normality.

By contrast, the QDM calculations require special algorithms, which are less direct
than for the MLE. Also, its properties are all asymptotic. However, if the data
presents outlying observations, the QDE definitely provides more stable results.
While using the QDM over the MLE implies a certain cost in optimality properties,

it offers a clear gain in robustness.
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In risk classification for Insurance portfolios, where outlying values are common,

the QDM should provide more reasonable groupings.
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111 1 0 1021130168361 0 0 2149| 4 | 307
211 1 0 1021|3838 |168137|1 1 0 2350|168 |231
311 1 0 1021 0 (168|381 1 0 2330 63 |231
411 0 1 1021132237139 |1 1 0 235 | 0 |231
511 0 1 1.021] 49 371|401 0 1 2350 188|313
6 /1 0 1 1021 0 [37141{1 0 1 2350|114 313
711 0 0 102112111238} 42{1 0 1 2350 11 | 313
8411 0 0 1021 27 |238143{1 0 0 2.350] 180 | 269
911 0 0 1.021| 0 [238}44|1 0 0 2350 8 | 269
1011 1 0 1678173201451 O 0 2350, 4 | 269
111 1 0 1678 28 |201]46|1 1 0 2553|141 219
1211 1 0 1678 0 |201}47|1 1 0 2553} 78 | 219
1311 0 1 1678|268 (313481 1 0 2553 0 |219
1411 0 1 1678 45 (3131491 O 1 2.553 | 166 | 295
151 0 1 16781 0 |313|50|1 0 1 2553|119 295
1611 0 0 167812191260 5111 0 1 2553 10 |295
17{1 0 0 1678 41 260521 0 0 2553|172 ] 312
1811 0 0 1678 0 260531 0 0 2553|132 312
1911 1 0 19341150 18154 |1 0 0 2553| 8 | 312
2001 1 O 1934 31 | 181551 1 0 2762162233
211 1 0 1934 0 |18 {561 1 0 2762 71 | 233
2211 0 1 1934253350571 1 0 2762 0 {233
2311 0 1 1934} 91 {350 581 0 1 2762} 103|250
2411 0 1 1934 6 (350591 0 1 2762 134|250
2511 0 0 1.934]203i{260(60}(1 0 1 2762| 13 | 250
2601 0 0 1934 57 (2606111 0 O 2762|175 321
2711 0 0 19347 0 (2606211 0 0 2.762|133] 321
2811 1 0 2149134187 163]1 0 0 2.762] 13 | 321
2011 1 0 2149 53 | 187|641 1 0O 2983|145 | 270
3001 1 0 2149 0 [ 187651 1 0 2983|122 270
3111 0 1 21491197 1305166]1 1 0 2983| 3 |270
3211 0 1 2149100130567 {1 0 1 2983|118 | 281
3311 0 1 2149} 8 (305681 0 1 2983|148 | 281
3411 0 0 214912251307 469{1 0 1 2983]| 15 | 281
3511 0 0 2149 78 307|701 0O 0O 2.983 135 267
Table 5.13: Householder multinomial data set
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7111 0 0 2983|121 (267110611 O O 3.820| 10 | 281
72 |1 0 0 2983 11 [ 267 (1071 0 0O 3.820)| 157 | 281
7311 1 0 317712912351 1081 0 0 3.820| 114 | 281
74 |11 0 331774 97 [ 235110911 1 0 4.070| 65 | 220
75 |1 1 0 31771 9 2351101 1 O 4.070 | 134 | 220
76 |1 0 1 3.177 | b5 1229 111 |1 1 O 4.070| 21 | 220
7711 0 1 31771181229 112 |1 0 1 4070 )| 7 {274
78 11 0 1 3177 56 | 2291131 0 1 4.0701{ 106 ;274
79 {1 0 0 317741112354 1141 O 1 4.070 | 161|274
80 {1 0 0 317711091{235 | 1151 O 0O 4.070 7 |207
8 11 0 0 3177 15 [ 235|116 |1 0O O 4.070| 92 | 207
82 |1 1 0 3363 99 (18 || 1171 0 O 4.070 108 | 207
83 {1 1 0 33631 77 (180 1181 1 0 4.308 1 10 | 198
8 |1 1 0 3363 4 (18011911 1 0 4.308 | 102 198
8 (1 0 1 3363 11 12221201 1 0 4.308| 8 | 198
8 |1 0 1 3363 98 | 2221211 O 1 4308 1 | 317
8 (1 0 1 33631131222 122 |1 0 1 4308|118 | 317
8 |1 0 0 33631 78 | 19511231 0 1 4.308 | 198 | 317
89 |1 0 0 3363 89 [ 195112411 O 0 4308| 5 | 245
90 |1 O 0 3363 28 [195 112511 O 0 4.308| 1331 245
91 11 1 0 3566 98 (243|126 {1 0O 0 4.308 | 107 | 245
92 11 1 0 356611331243 12711 1 0 4.608 | & | 239
93 11 1 0 356614 12 124312811 1 0 4.608 | 133} 239
94 11 0 1 3566} 10 | 264112911 1 0 4.608 | 98 | 239
95 |1 0 1 3566|114 {254 1301 O 1 4.608| 2 | 277
96 {1 0 1 3566|130 {2541 13111 0 1 4.608} 98 | 277
97 {1 0 0 3.566| 15 | 236132 |1 0 1 4.6081{ 177|277
98 |1 0 0 3566|126 {236 1331 0 0 46081 2 | 307
99 11 0 0 3566 95 [ 236113411 0 0 4.608 | 130 307
10011 1 0 3820 90 {2584 135|1 0 0 4.6081 175} 307
10171 1 0 382011521258 13611 1 0 4953 | 3 | 235
10241 1 0 38204 16 [ 258 || 13711 1 0 4.953 | 108 | 235
10311 0 1 3820 8 [34111138 |1 1 0 4953|124 235
10411 0 1 38201135341 || 13911 0 1 4.953| 0 | 280
105 (1 0 1 3820198341 1114011 0 1 49531 85 | 280

Table 5.13: Householder multinomial data set {...continued)
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14171 0 1 49531195280} 161|1 0 0O 5.800 41 | 276
14211 0 0 4953 0 | 2871621 0O 0 5.800 |235] 276
14311 0 0 493310612871 16311 1 0O 6.429 0 355
14411 0 O 4953|181 28716411 1 0 6.429 35 | 358
145¢1 1 0 5334 | 2 287 116511 1 0O 6.429 | 320 | 355
146 11 1 0 5334|126 1287|1661 0 1 6.429 0 137
14711 1 0 5334 159{287 (11671 0 1 6.429 4 137
148 11 0 1 5334 O 225 1168 |1 0 1 6.429 | 133 | 137
14911 0 1 53341 46 [ 225169 |1 O O 6.429 0 287
15011 0 1 53341179 (22541701 0 0O 6.429 18 | 287
15111 0 0 5334 | 0O 280117111 O O 6.429 | 269 | 287
15211 0 0 5334 | 82 | 2801 172{1 1 0 10.897¢{ 0O | 402
15311 0 0 5334|198 | 280117311 1 0 10.897{ 12 | 402
154 (1 1 0 5.800 1 309117411 1 O 10.897 | 390 | 402
15511 1 0 5800{ 8 [309¢4175(1 0 1 108971 O 116
15611 1 0 580012251309 1761 0O 1 10.897} 3 116
15711 0 1 580} 0 193417711 0 1 10.897 | 113 | 116
15811 0 1 580041 17 {193 17811 0 0 10.897| O 257
15911 0 1 58001761193 1791 0 0 10.897 | 4 | 257
160;1 0 0O 5800 0 276 18 (1 0 0 10.897 | 253 | 257

Table 5.13: Householder multinomial data set (...continued)
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Conclusion

Risk classification is an important part of the selection and underwriting process

in Insurance companies.

For the most part, companies currently use ad-hoc methods for risk classification,
more often based on the type of expenses covered than on the distribution of the
corresponding losses. The selection of classification variables is also, in general,
based on rate-making variables rather than on an optimal choice criteria based on

statistical methods.

This thesis reviews the use of statistical methods to classify risks. Two issues
arise, which make this actuarial classification problem different from applications

to other fields.

First, Insurance risks are not usually classified in only two categories, good and

bad, as can be the case in credit rating, but in a larger number of groups.

But most importantly, Insurance data presents catastrophic losses and heavy

tailed claim distributions, forcing the use of a robust estimation analysis.

The main result in this thesis is the generalization of logistic regression models to

multinomial groups in a robust estimation framework.

Chapters 3 and 4 review the main robust regression estimators encoutered in the
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Statistics literature and discuss robust logistic regression. We define the mini-
mum quadratic distance estimator for the multinomial logistic regression model
(QDM), deriving the asymptotic properties of our QDM, like consistency, asymp-

totic normality and robustness.

Finally, Chapter 5 illustrates the proposed method with an application to the
classification of the Householder data set. It clearly shows that even if MLE's
are a standard in the logistic regression literature, it is useful to have alternative

estimators like the QDM.

In risk classification for Insurance portfolios, where outlying values are common,

the QDM should provide more reasonable groupings.
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