INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submiited. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

The Combining of C++ and OpenGL

An Object-Oriented Framework for Graphics

Decai Deng

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University

Montreal, Quebec, Canada

October 2001
© Decai Deng, 2001

i+l

National Library
of Canada du Canada
Acquisitions and
Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

Acquisitions et

395, rue Wellington
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68462-8

Canada

Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your hie Volre rétdrence

Our filg Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

The Combining of C++ and OpenGL
An Object-Oriented Framework for Graphics

Decai Deng

Today. computer software systems are becoming fairly large and more and more
complex than ever before. As a result of this, the deveiopment environment of sy:iems
i» «usc changing. The cesigners and programmers have @ e ig~ling of arsnieo, aid
ivastraiion for Jeveinieay the maimairabie reusabie. and high e =iy bl

s_\,s"em.

This major report focuses on the design of the graphics framework for combining
abject-oriented development with OpenGL softwiwe sysicm .. the Microsoft

Windows platform.

OpenGL is a widely used standard for graphics programming. Although OpenGL
programs vary widely, they have a number of elements in common. "Frameworks' are
collections of abstract base classes that are intended to capture the common elements
of a domain of applications. An OpenGL Framework would incorporate the common
features of OpenGL programs, leaving the graphics programmer to fill in the details of
the particular application. In this report, two OpenGL animations will be developed.
They give an example of the OpenGL framework, which can be used to design the

maintainable and reusable applications.

iii

ACKNOWLEDGMENT

I would like to thank sincerely my supervisor Dr. Peter Grogono for his
encouragement, for his invaluable suggestions and comments, and for his generous
help and support on the subject of this major report. This work would not have been
possible without his consistent guidance. I wish to take this opportunity to say, “Thank

you, Dr. Grogono!”

[am grateful to my wite Jie Shi and my son Haiyu for their patience and moral

support.

And I wish to express my thanks to all those people who have helped me in the

production of this report.

v

Table of Contents

List Of Tablesooooiiiii e IX
LiSt Of FIgUIES ..o e X
Chapter 1: IntroduCtion..............ccooiiiiiiii e i
L1 Goals oo U 2
L2 S0P e 2
Chapter 2: Object-Oriented Development e 4
2.1 Software Development..............coooiiiiiiiiiiii 4
2.1.1 Software Qualities Attributes ...ttt 4

2.2 Object-Oriented Programming Models ... 6
2.2.1 Evaluation of Object-Oriented Programming .. 6
2.2.2 Requirements for OOP Language..........................cccoo i 7

2.3 Principal Features of OOP ... 8
2.3.1 Objects and ClasSes.............coooooii i 8

2 3.2 ModUlarity ..o 10
2.3.3 Abstraction and Encapsulation ... 11
2.3.4 INRhErItaNCe ... 11
2.3.5 Polymorphismand Binding ... 13
2.3.6 Association and Aggregation ... 14
Chapter 3: Frameworks in OOP 16
3.1 Definition of a Framework........................... 16
3.2 Characteristics of Framework Application 17
3.3 Developing an Application Framework... 18
3.4 Kinds of Framework Reuse........................ 20
3.4.1 Framework Maintainer. ... 21
3.4.2 Application Developer ... 21
3.4.3 Developer of Another Framework ...22
3.4.4 Vertfler ..o 22

3.5 MVC - an Example of Framework ... 22
3.5.1 Development of the MVC Framework ... 23
3.5.2 Benefits of the MVC Framework ... 25
Chapter 4: Introduction to OpenGL ... 26
4.1 What is OpenGL? ... 26
4.2 OpenGL-Related Libraries............................... . 27
4.3 OpenGL Command Syntax............o.cooooiiiiiiiiiii e 28
4.4 The Basic Structure of an OpenGL Application 30
4.4.1 Initializing and Creating a Window ... 30
4.4.2 Handling Window ..o 31
4.4.3 InpUtting @VENTSoooiiiiiiiiiii e 31
4.4.4 Drawing Objects ... e 32
4.4.5 Managing a Background Process.. 32
4.4.6 Running the Program ... TR 32

4.5 OpenGL and OO Framework. ... 33

Chapter 5: OO Programming Language C++ ... 34
S.EWhy select CH o 34
5.2 Modules of C++ Programming Languagecooooiiieni 34

5.2.1 Structure of a C++ Application35
5.22Data Types......ceoooiiiiiiiiiiieee e e 35
5.2.2.1 Basic Built-in Data TYPeS.........cccooovuuiiiiiiiiiiiiiiie i 35
5.2.2.2 User-defined Data Typeooooovmiiioiiiioiici e .37
5.2.3 Access Control in CH+ ... 37
S.3 00 Features in CH ..o 39
5.3.1 Data AbStraCtionooooiiiiiiiiiiiiiiii e 39
5.3.2 Inheritance and CompoOSItion......................oooiiii i 40
5.3.3 Polymorphism and Virtual Functions .. 41
5.3 4 TemMPIates . ..o 42
5.3.5 Exception Handling ... 43

Chapter 6: The OpenGL Frameworks......................cooooo 45
6.1 The Architecture of a Graphics System ..o 45
6.2 The Design of the Application Library... 46

6.2.1 The Abstract Classes Design ..., 46
6.2.1.1 The Abstract Object Classcooooiiiiii i 46
6.2.1.2 The Abstract KeyReaction Class..............................c.cccciiiiiiiiiiiiii 47

6.2.2 The Other Base Classes in Application Library 47

6.3 The Running Car Animation ... 48
6.3.1 Requirement Analysis ... 48
6.3.2Classes Design ... TP 49
6.4 The Planet and its Moon System ... 50

6.4.1 Requirement Analysis........................... 51

6.4.2Classes DeSI8Nooii i 51

Chapter 7: System Implementation...........................coocoo oo 53
7.1 The Basic Classes and header Files... 53

7.1.1 Some Needed Header Files ...53
T Ll types.ho 33
7112 specialkeys.h ... 53

T 1.2Basics Classes.........cccooouiiiiiii oo 54
T 121 Class VECTOToiiiiiii oo 54
7.1.22Class Point ... 55
T 123 Class Color. ..o 55
7.1.2.4 Class ObjJectooooiiiiii i 55
7.1.2.5 Class Cameraoooooiiiiiiiii oo 56
7.1.2.6 Class WINAOWoooiiiiiiiii oo 56
7.1.2.7 Class KeyReactionooooioiiiiiiii e 57

7.2 The Running Car Animation Implementation... 38

7.2.1 Class implementation......................coooiiiiii e 58
T2 1.1 Class DisK ..ooooeiii e 58
7.2.1.2 Class Cylinder..........c.ooooiiiiii i 58
T2 0.3 Class Car ..o 59

. 2. 1.4 Class HOUSE ..o e e e 60

7.2.1.5 Class MOUSEoooiiiiiiiii e 61

7.2.1.6 Class Keyboardo.oooooo L 61

7.2.2 Application Model Implementation.. 62

7.3 The Planet and its Moon Systemcooooio 66
7.3.1 Classes implementation........................ e SUTTUT 66

7.3. 1.1 Class SPhere.........ooooiiiiiiiii e 66
7.3.1.2 Class LightSourcecooooiiiiiiii 66

7.3.2 Application Model Implementation... 67
Chapter 8: Conclusion and Future Work...................oooooo 70
References............oo 71
GlOSSATY ... 73
Appendix A: User’s Guide ..o 76
A.1 System ReqUIremMEentS.ooiiiiiiii e 76
A.2 The Structure of the Application .. 76
A3 Operation GUIe ..o 77
A.3.1 The Running Car Animation i 77
A.3.2 The Planet and its Moon System ... 78
Appendix B: The Source Code ... 79
B.1 The Created Header Files... 79
Bl ltypes. ho 79
B.1.2 specialkeys.h ... 79

B.2 Base Classesoooooiiiiiiii 80
B.2.1 Class VECIOT ... 80
B.2.2 Class POINt ..o 82
B.2.3 Class Color........oooi 84
B.2.4 Class Object ..ot 85
B.2.5 Class Camerac.occoooiiiii i 88
B.2.5 Class Window ... 90
B.2.6 Class KeyReaction ... 93

B.3 The Running Car Animation PO UUURUU PRSPPI 93
B.3.1 Class DisK ... 93
B.3.2Class Cylinder ... 95
B.3.3 Class Car ..o 97
B.3.4 Class HOUSE.oooiii 101
B.3.5 Class MOUSEocoooiiiiiiiiiiiii e ST 104
B.3.6 Class Keyboardoooiii 105
B.3.7 Header File includefiles.h.. 106
B.3.8 File carmodel.cppoc.cooiiiii 107
B.3.9 File runningCar.Cpp...........ooocooiiiiiii o 119

B.4 The Planet and its Moon System ... 120
B.4.1 Class Sphere ..o 120
B.4.2 Class LightSource ... 122
B.4.3 Header File includefiles.h... 125
B.4.4 File planetmodel.cpp e 125

vii

B.4.5 File planet.cpp

viii

List of Tables

Table 2.1: The terms objects and classes present......................ccoooiiiiioiiii 9
Table 4.1: OpenGL command suffixes and argument data types............................. 29
Table 5.1: The relationship between OpenGL and C++ built-in data types............. .. 36

ix

List of Figures

Figure 2.1 Requirements for OO programming language...................................... 8
Figure 2.2: Message passing between an object and itsuser...................................... 10
Figure 2.3: Inheritance relationship ... 12
Figure 2.4: Multiple inheritance relationshipco o 13
Figure 2.5: Association relationship..................... P UNUSURRURURRURT 15
Figure 3.1: MVC framework ... 24

Figure 5.1: Access control in C++

.. 38
Figure 5.2: The struct typein Cand C++..............................i . 40
Figure 5.3: Virtual function in C++ 42
Figure 5.4: Template class in C++ 43
Figure 6.1: The architecture of a graphics system ... 46

Figure 6.2: The class diagram of the running car system 50

Figure 6.3: The class diagram of the planet and its moon system

.............................. 52
Figure 7.1: Anexample of disk................. 58
Figure 7.2: Anexampleof Car60
Figure 7.3: Anexample ot House 61
Figure 7.4: Viewing from a distant point 63
Figure 7.5: Viewing trom the driver e 63
Figure 7.6: Viewing from anothercar 04
Figure 7.7 Viewing beside the car.. 64
Figure 7.8: Viewing from a helicopter : R ¢ B
Figure 7.9: Fogetfect ... 03
Figure 7.10: A blue sphere in white light 67
Figure 7.11: The original sate of the planet system 03
Figure 7.12: The light effect of the Planet .. OO OTP PO 08
Figure 7.13: The n«vhtward viewpoint of the Planet .. 69
Figure A A.1: The structure of the application ... 77

Chapter 1: Introduction

Since the mid-eighties, graphics systems have become powerful tools for scientists
and engineers. With the development of computer science and the improvement of
level of people lives, the graphics systems, especially three-dimensional (3D), are
assuming more and more important roles. For portability reasons, all of the graphics
systems are based on one or more 3D graphics software including OpenGL, SGI, SUN
XGL, or HP Starbase. Some of these software packages provide a graphics
programming environment, while others provide APIs for graphics programming.
Because these graphics software were developed earlier, they were usually limited by
machine, data dependencies, and the approach of design and implementation. So they
were typically not tlexible or extensible. For example, OpenGL was developed in C
programming language plus itselt several libraries and statements. The programming
style of OpenGL is the procedure approach. Moreover, OpenGL uses callback
functions to handle windows and input events for graphics objects. There are always
many global variables in an application system. Today, the software industries are
becoming more and more complex and large. Programmers require they can develop
some software systems that are reliable, extensible, readable, reusable, and
maintainable. However, it is obviously difficult for OpenGL to meet these

requirements with old programming methods.

The art of programming has changed dramatically over the vears. Object-oriented
methodology was developed after the procedure programming. and it has become
more and more popular in the software industry. In fact, the object-oriented design and
development is a tool for helping the programmers in the development of sottware
systems. It provides an organizational method for developing the large and complex
computer systems. The framework in object-oriented design and programming is a
new technique for developing extensible systems. [t makes it easier to design reliable
and reusable application system. Frameworks can also improve the documentation and

maintenance of existing systems.

1.1 Goals

This Major Report will discuss the design and implement action of two simple three-
dimensional animations. They are developed in C++ programming language and
OpenGL graphics software system. [n another word, the animations are developed by
combining object-oriented programming with graphics. Through the design, three

following goals can be reached.

e Learn the idea of object-oriented frameworks. Through the development of
the application systems, master the basic idea frameworks in object-oriented
programming, know what is a framework and how to design and develop an
application software system using the framework technology.

e Become familiar with basic OpenGL programming. Through the design and
implementation of the simple animations, study and understand the basic
structure and the performance processes ot an OpenGL program.

¢ Know how to combine the OO framework design with OpenGL. Applying
the OO frameworks in OpenGL software, implement readable, reusable. and
maintainable programs. And reduce the number of global variables in an

application as more as possible, instead of using objects.
1.2 Scope

In this report, two simple animations will be designed and implemented in C++ and
OpenGL. That is a combination object-oriented frameworks and graphics

programming. Thus the importance of this report is OO frameworks and OpenGL.

Chapter two gives an overview of the object-oriented development. It defines the
meaning of the object-oriented paradigm, and describes the main features of the
object-oriented design and implementation such as objects. classes, inheritance,

polymorphism, and so on.

t2

Chapter three presents the frameworks in object-oriented programming. Here we state
the definition of frameworks, some characteristics of a framework, and how to apply

the frameworks. An example of frameworks, MVC, is introduced here, too.

Chapter four provides an overview for OpenGL sottware. It introduces the historv of
the OpenGL, the related libraries, the structure of an OpenGL application, and the

syntax of OpenGL commands and some statements. And the advantage of combining

the OO frameworks with OpenGL will be also stated in here.

Chapter five simply reviews the C++ programming language. It mainly introduced the
basic type and the five cornerstones of C++, which are also basic features of object-

oriented programming language.

Chapter six and chapter seven will illustrate the design and implementation of two

three-dimensional animations.

Chapter eight discusses the results, problems encountered and solutions found in

developing the framework tor graphics systems.

Appendix A gives out the requirements of system for this application and an operation

guide for the users. And appendix B lists all the source codes of the two systems.

LI

Chapter 2: Object-Oriented Development

This Chapter provides an overview of Object-Oriented software development. It starts
with a general discussion of software development and desirable qualities of software
products. Then it gives an introduction of the basic concepts, principal features and

techniques of the object-oriented design and development approach.
2.1 Software Development

The software industry was one of the most successtul industries during the 1980s and
1990s. Not only was its growth in market value exponential, but also it was able to
carry technologically advanced and renewed products at an unrelenting pace. Today:,
the computer software has become very popular in every aspect of our life. People in
the World are becoming more and more dependent on the computer sottware systems,
no matter from the very complex nuclear power plants to computerized trading
systems of stock markets, or to personal organizers on palm-top computers. It is
impossible to imagine the life of the cities without computer and computer software.
However, computer software is expensive. The cost of purchasing, developing,
maintaining, and upgrading software systems has become the largest single
expenditure for many associations. The Objected-Oriented software development
approach and framework can significantly improve current software development

practice, and the software industry has widely accepted it in recent years.
2.1.1 Software Qualities Attributes

Software systems are the products of software development. According to George

Wilkie [1], the most basic desirable qualities of software systems are stated as

following.

e Usefulness: Software systems should sufticiently address the requirements of
their intended users in solving the real problems and providing needed
services.

e Reliability: Any software systems should perform as expected by users in
terms of the correctness of the functions being performed, the availability of
services, and an acceptable level of failures.

e Timeliness: Software systems should be completed and shipped in a timely
manner. Otherwise, they may be less useful or even useless because of the
changes in users’ needs and operating environments.

e Maintainability: Software systems should be easily maintained, that is, making
corrections, adaptations, and extensions without undue costs.

e Reusability: Some components of software systems should not be designed as
ad hoc solutions to specific problems in specitic contexts; rather they should be
designed as general solutions to a class of problems in ditferent contexts. Such
general components can be adapted and reused many times.

e Efficiency: Software systems should not make wasteful use of system
resources, including processing time, memory, and disk space.

e User Friendliness: Software systems should provide user-friendly interfaces.
They should be appropriate for the capabilities and the background of the

intended users to facilitate easy use and access to the tull extent of the systems’

functions.

Not all of the above desirable qualities can be achieved at the same time, nor are they
of equal importance. Recent several decades, the technologies and approaches of
computer hardware and software have been greatly improved; the memory and disk
space are becoming less importance in software systems. But the software systems are
also becoming more and more complex and expensive. So the maintainability and
reusability of software systems have become more important features in software
development. The Object-Oriented software development approach and framework

that will be studied in this major report can improve these qualities.

2.2 Object-Oriented Programming Models

The Object-Oriented programming (OOP) model is a software development process
that provides an organizational framework for developing the large and complex
computer systems. And it is a tool designed to help the programmers in the
development of software systems. In contrast with the functional approach that
focuses on the algorithm, the Object-Oriented programming model uses a dura-
oriented approach for software development. In this approach, the data is encapsulated

into objects and can be manipulated through methods or operations.
2.2.1 Evaluation of Object-Oriented Programming

Object-Oriented models represent a balanced view of the data and computation aspects
of software systems. Object-Oriented models are composed of objects, which contain
data and make computations on that data. The decomposition of complex systems is
based on the structure of objects. classes, and the relationships among them. For
example, an automobile is an object that consists of objects such as cugine,
accelerator, gear, brake etc. and implements operations such as start car, depress

accelerator, shift gear, depress brake, and so on.

The Object-Oriented approach views the program as a madel of the system being
studied consisting of a set of interacting whjects. Thus the process of the system
development resembles almost exactly as real world situations. Today, the software
systems are becoming larger and more complex; and they are hoped gear towards
reusability, maintainability, and extendibility. However, the software system can be
easily modified, extended and maintained if it is produced according to the object-
oriented principles. Compare the traditional programming approach, the Object-

Oriented programming model otfers some advantages.

Object-Oriented programming provides a way of building programs through

incremental moditication.

In OOP, programs can often be extended by adding new code rather than altering

existing code.
The same identifier can be used in various contexts to name related functions.

Object-Oriented programming language support encapsulation, which separates the

interfaces from their implementation.

An important idea in OOP is that the call graph is created and modified during
execution of programs; however in the procedural languages, the call graph can be

statically inferred trom the program text.

It is these characters, making OOP become a popular tool for developing systems in
the software industry. For many people today, the word “programming” just means

“object-oriented programming’”.
2.2.2 Requirements for OOP Language

The origin of object-oriented software development dates back to 1960s. From the
issue of the first object-oriented programming language — Simula designed in the
Norwegian Computing Centre in 1962, to the wide application of the pure OOP
language — Java introduced by Sun Microsystems in 1998, there are already so many
object-oriented programming languages. Although there are many differences between
them, they must fulfill all or parts of the basic requirements. That is these OOP
languages must support for the creation and functionality of objects, the object
management by classes, and the management of classes through inheritance. And they
should provide the support for the modularity, concurrency, some of message passing
between modules, binding. and the polymorphism characteristics. Figure 2.1 illustrates

some of the basic requirements for object-oriented programming languages.

Data Abatraction

Inheritance

Delegation

Programming Binding

Model

Polymorphism

Persistance

Genericity

Figure 2.1 Requirements for OO programming language

2.3 Principal Features of OOP

This section will discuss the basic principles of object-oriented programming.
2.3.1 Objects and Classes

Objects and classes are two of the fundamental concepts in Object-Oriented
development. There are two different aspects about objects and classes. One is their
interpretation in the real world: and another one is the representation in the object-
oriented model. The representation of objects and classes dealt with in the object-
oriented model is only an approximation of the objects and classes in the real world.
Table 2.1 illustrates the terms which objects and classes are interpreted in the real

world and their representation in the model.

Interpretation Representation

in the real world in the model

Represents anything in the | Has a unique identity, a
. real world that can be | state, and methods.
Object

distinctly identified.

Be a set of objects with | Describes the structure of
similar characteristics and | states and methods that
Class methods. The objects are | can be shared by all its
called the instances of the | instances.

class.

Table 2.1: The terms objects and classes present

The state of an object is composed of a set of fields or attributes, and their current
values. The methods may access or manipulate the state. An object is denoted by a
specific name that provides a unique identity for the object and allows the user to
distinguish it from other objects. The features of an object refer to the combination of

the state and the methods of the object.

A class serves as a template for creating its instances. It is to define the features of the
classes to which the individual objects belong instead of defining the features of these
objects. The terms obhjecr and instance are often interchangeable. And merhods are

sometimes called operations.

Objects communicate with one another through message passing. A message
represents a command sent to an object — known as the receiver or the user of the
message — to perform a certain action by invoking one of the methods of the receiver.
Usually, the methods performed to pass message are called class interface. Figure 2.2

illustrates the message passing between an object and its user.

_) State
~ Pass messag\,_eé —_— ‘
» Interface - '
User T—— 4 Methods
Object

Figure 2.2: Message passing between an object and its user

The concepts of objects and classes are supported as two of the basic constructs in an
object-oriented programming language. The purpose of class creation in an OOP

environment is to reduce the complexity of a large system through the use of difterent

techniques.
2.3.2 Modularity

The principle of modularity is another of the fundamental principles of the object-
oriented approach. It is intended to control the complexity of large-scale systems
through the use of the divide-and-conquer technique. The modularity principle ensures
that a complex system should be decomposed into a set of highly cohesive but loosely

coupled modules.

Decomposition of complex software systems into modules is one of the most
intriguing tasks in software development. A system may be extremely complex in its
totality, but a modular decomposition of the system is to break it down into modules
so that each module is relatively small and simple, and the interactions among

modules are relatively simple.

10

Typically, modular decompositions are hierarchical. And in the object-oriented

approach, modules take the form of classes and packages.
2.3.3 Abstraction and Encapsulation

Abstraction and encapsulation are powerful tools for deriving modular decompositions
of systems. Abstraction means to separate the essential from the nonessential
characteristics of an entity. The result is a simpler but sufficiently accurate
approximation of the original entity, obtained by removing or ignoring the

nonessential characteristics.

Encapsulation is a closely related and complementary principle. It makes an
agreement that the clients need know nothing more than the service contract while
using the service. That is, the implementation of a module should be separated trom its
contractual interface and hidden from the clients of the module. Encapsulation is also
known as information hiding. It is intended to reduce coupling among modules. The
less the clients know about the implementation of the module, the looser the coupling
between the module and its clients can be. An important benefit of encapsulation is
that, if the clients know nothing beyond the contractual interface, implementation can
be modified without affecting the clients, so long as the contractual interface remains

the same.
2.3.4 Inheritance

Inheritance defines a relationship among classes. It is a key aspect ot object-oriented
programming, permitting the definition of new classes from previously detined ones.
A class that inherits from another has all the features - including attributes and
operations — defined in that class, plus its own. When class C2 inherits from class Cl,
class C2 is know as a subclass of class C1. And class C1 is known as a superclass of

C2. Figure 2.3 illustrates an example of the relationship.

11

is-a — is-a
Ellipse Polygon
o is-a - is-a
is-a e e EF—
. Isa . o
Circle Rectangle: Triangle Cylinder
is-a
Square

Figure 2.3 Inheritance relationship

Conceptually, inheritance models the is-a relationship in the real world; that is, if
Square is a subclass of Rectangle, then every instance of Square is an instance of

Rectangle, and everything that applies to the instances of Square also applies to

instances of Recrangle.

An important technique associated with inheritance is redefinition. When inheriting
from a class, it is necessary to provide new implementations of some features. In
another word, inheritance allows the implementation of a superclass to be shared or

reused by its subclasses.

There are two kinds of inheritance. One is known as single inheritance, in which each
class may inherit from only one superclass; the inheritance relationship in figure 2.3 is
just single inheritance. Another one referred to as multiple inheritances, which a class
can inherit from multiple super classes. Figure 2.4 shows a simple example of this

relationship. The class Sphere inherits from class Shape and Colour.

Shape j Colour

Sphere

Figure 2.4: Multiple inheritance relationship

2.3.5 Polymorphism and Binding

The concept of sending different messages to different types of objects in object-
oriented programming is referred to as polymorphism. In other words, polymorphism
is the ability by which a method can be executed in more than one way, depending on
the arguments and the return value. This means that the client class that sends a
message does not need to know the class of the receiving instance. The client class
provides only a request tor a specified event, while the receiver knows how to pertorm
this event. The polymorphism characteristic sometimes makes it uncertain at compile
time, to determine which class an instance belongs to and thus to decide which
operation to perform. Polymorphism allows a programmer to provide the same
interface to different objects. According to Rao [1993], there are three different kinds

of polymorphism.

¢ Parametric polymorphism: An implicit or explicit type parameter is used to
determine the actual type of argument required for each of the polymorphism
applications. So the same operation can be applied to different types of
argument(s).

¢ Inclusion polymorphism: An object can belong to many ditferent types that
need not be disjoint. The object type may include one or more related types. as

found in subtyping. In the class hierarchy, objects belonging to a class in the

hierarchy can be manipulated as belonging not only to that type, but also to its
super types. Thus, certain operations on objects can work not only on objects
of the subclasses but also on objects of the super classes.

¢ Ad hoc polymorphism: When a procedure works or appears to work on
several types, it is called ad hoc polymorphism. It is similar to overloading and

not considered to be a true polymorphism.

According to the processing time, polymorphism can be either static - resolved at

compile time, or dynamic - resolved at run time.

Another tundamental principle of the object-oriented programming is binding.
Binding refers to the time at which a decision is made concerning what function to

execute. There are two types ot binding: dvnamic and static

Dynamic binding or runtime binding is a way of implementing the polymorphism
characteristic. Dynamic binding may also be referred to as “late binding™ because the
method is not bound to specitic code until as late as the method is invoked at run-time.

This is dependent upon the class of the object itself.

Compare with the dynamic binding, in staric binding or early binding, the compiler
makes the decision that which tunction will be called; and this depends upon the scope

rules of the language.
2.3.6 Association and Aggregation

Associations represent general binary relationships among classes. If using graphical
notation to represent the association relationships, each association may have an
optional label that describes it. Figure 2.5 shows several associations among the
Student, Faculty, and Course classes. In this figure, 7each and Enrol are the labels of

the association between Faculty and Course. and between Stdent and Course.

respectively.

14

-+ Course

v \ 4
Q}\'\O\ Teach
' 1
‘ Student —; 1 Faculty
L
Advisee Adivisor

Figure 2.5: Association relationship

Aggregation is a special form of association. It represents the Aas-a relationship. A
stronger form of aggregation is called composition, which implies exclusive ownership

of the component class by the aggregate class.

Association and aggregation provide another way to reuse or share existed

implementation of classes.

15

Chapter 3: Frameworks in OOP

With the development of software industry, the application software system is
becoming bigger and more complex; designing object-oriented software is harder.
However, designing reusable object-oriented software is even harder still. The
designer must first find appropriate objects, then factor them into classes at the right
granularity, define class interfaces and inheritance hierarchies, and establish key
relationship among them. Any experienced object-oriented designers will agree that a

reusable and flexible design is difficult.

Frameworks can make it easier to design reusable application system. Frameworks
help choose design alternatives that make a system reusable and avoid alternatives that
compromise reusability. It can also improve the documentation and maintenance of
existing systems by furnishing an explicit specification of class and object interactions
and their underlying intent. In a word, frameworks help a designer get a design right

faster.

This chapter will make a argument for the framework, what the definition is., what
characteristics there are, and how to develop an application tramework An example

of framework is given here, too.
3.1 Definition of a Framework

A framework is a collection of concrete and abstract classes that defines a software
architecture intended to be reused for a specific purpose by different users and
applications. The design of the framework fixes certain roles and responsibilities
among the classes, as well as standard protocols for their collaboration. The
framework provides simple mechanisms to customize. Customizing is typically done
by inheritance an existed class of the framework and overriding a small number of

methods.

16

According to Peter Deutsch [15], the definition of framework is as following.

“a collection of abstract classes, and their associated algorithms, constitute a kind of
framework into which particular applications can insert their own specialized code by
constructing concrete subclasses that work together. The framework consists ot the
abstract classes, the operations they implement, and the expectations placed on the

concrete subclasses”

A framework supports the development of a family of applications. Typically a
framework is developed by expert designers who have a deep knowledge of the
application domain and rich experience of sottware design. On the other hand. a
typical application developer who reuses the tramework is less experienced and less

knowledgeable ot the domain.

3.2 Characteristics of Framework Application

The framework dictates the architecture of the application. It will define the extensive
structure, its partitioning into classes and objects, the key responsibilities, how the
classes and objects collaborate, and the thread of control. A tramework detines
beforehand these design parameters so that the application designer and/or
implementer can focus on the specifics of the application. And the framework captures

the design decisions that are common to its application domain.

A framework allows the user to reuse abstract designs, and pre-tabricated components
in order to develop a system in the domain. A user may also customize existing
components by subclassing. The design of the framework incorporates decisions about
the distribution of control and responsibility, the protocols tollowed by components
when communicating, and implementations for each of the major algorithms. Often
the implementations are template methods that embody the overall structure of a
computation and that call user’s classes to perform sub-steps of the algorithm. Default
implementations of each user class may be provided, and the user will subclass in

order to override or specialize the operation which implements the sub-steps.

17

Not only can the user of a framework build applications faster as a result, but also the
applications have similar structures. This makes them easier to maintain. And they are

more consistent to their users.

Furthermore, since applications are so dependent on the framework for their design,
they are particularly sensitive to changes in framework interfaces. As a framework
evolves, applications have to evolve with it. This makes loose coupling all the more

important. Otherwise even a minor change to the framework will lead to major

repercussions.

However, a framework is not an easy thing to understand when one first uses it. The
design is very abstract, to factor out commonality; the design is incomplete, requiring
additional subclasses to create an application; the design provides tlexibility tor
several hotspots. not all of which are needed in the application at hand; and the
collaborations and the resulting dependencies between classes can be indirect and
obscure. On the other hand, because many design decisions have been made tor them,

the users of a framework may lose some creative freedom.
3.3 Developing an Application Framework

An application framework is developed in response to teedback trom reusers. An
initial framework is usually based on past experience or by careful construction of one
or two applications, remembering the need for tlexibility, reusability and clarity of
concepts. Each consequent reuse points out shortfalls in these qualities in the existing
framework as one stretches the architecture to accommodate the new application. Bv
addressing the issues raised, the framework evolves coverage of domain concepts. and

clarity of the concepts and the dimensions along which they vary.

The design and implementation of an application framework depends heavilv on
abstract classes, polymorphism, and inheritance. The major steps in developing an

application framework can be summarized as follows.

18

Identify and analyze the application domain, find appropriate objects, and
identify the framework. Object-oriented programme are made up of objects.
The hard part about object-oriented design is decomposing an application
system into objects. In fact, many objects in a design come form the analysis
model. If the application domain is large, it should be decomposed into a set of
possible frameworks that can be used to build a solution. Existing software
solutions must be analyzed to identify their commonalities and the differences.
The frameworks help identify less-obvious abstractions and the objects.
Determine object granularity and identify the primary abstractions.
Objects of an application domain can vary tremendously in size and number.
They can represent everything down to the hardware or all the way up to entire
applications. Framework can address the issues: decide what should be an
object, clarify the role and responsibility of each abstraction, design the main
communication protocols between the primary abstractions, and document
them clearly and precisely.

Specify object interface and design how a user interacts with the
framework. An object’s interface characterizes the complete set of requests
that can be sent to the object. The requests may include the operation’s name,
the objects it takes as parameters, and the operation’s return value Object
interfaces are fundamental in object-oriented systems. Frameworks. here. help
define the interfaces by identifying their key elements and the kinds of data
that get sent across an interface. And frameworks also specify relationships
between these interfaces, provide concrete examples of the user interaction,
and provide a main program illustrating how the abstract classes are related to
each other and to the classes for user interaction.

Specify object implementations in the framework. An object’s class defines
how the object is implemented. The class specifies the object’s internal data
and representation, and defines the operations the object can pertorm. New
classes can be defined in terms of existing classes using class inheritance. And

an abstract class is one whose main purpose is to define a common intertace

19

for its subclasses. The developers of the framework commit to an interface
defined by an abstract class, and instantiate concrete classes somewhere in the
application systems.

Build reuse mechanisms in the framework. The challenge of frameworks is
to build flexible, reusable software design. There are several techniques for
reusing functionality in object-oriented development. They are: class
inheritance defines the implementation of one class in terms of another’s;
object composition obtains new functionality by assembling or composing
objects to get more complex functionality, parameterized types, which are also
known as generics and templates, let the developer can change the types that a
class can use. It is just these reuse techniques make the OO design and
framework more and more popular and important.

Maintain and reuse the framework. Each framework lets some aspect of
system structure vary independently of other aspects. So maintaining a
framework is comparatively simple. However, the maintainer of a framework

can reuse it in the same or even other application domains.

When analyzing existing applications to determine reusable components and

abstractions, one might restructure the classes in order to separate what is common

across applications from what is unique to one application.

3.4 Kinds of Framework Reuse

Frameworks emphasize design reuse over code reuse. But different users of a

framework usually focus on the different aspects of the framework. And they need the

different requirements document for the framework. Here are the different kinds of

people who reuse a tframework.

3.4.1 Framework Maintainer

A developer who responds for the maintenance and evolution of a framework must
understand the design of the framework. The developer should be both domain experts
and software experts. He must clearly know the internal framework design, the design

rationale, the application domain, and the required tlexibility of the framework.

There are many aspects of the framework that need to be understood, including the
application domain. the extensive architecture and its arguments, the reasoning behind
the selection of the hotspots, which design pattern provides tlexibility, and why each
design pattern was selected. Additionally, other aspects required to be grasped are the
responsibility of each class. their intertace contracts, and the shared collaboration of
classes. All information is needed ftor both a high level of abstraction, and tor a

concrete level of detail.

The documentation must be descriptive; it cannot be prescriptive, sine the original

designers can rarely predict how a framework might be extended through additional

tlexibility.
3.4.2 Application Developer

An application developer may be neither a domain expert. nor an experienced software
developer. But he should know how to customize the tramework to produce the
desired application. This is a very goal-directed activity. where the main priority is to
know how to do something, rather than to understand why it is done that wav. The
application developer needs to know which classes should be inherited. which
methods will be override. and whether combinations of classes and methods need to
be specialized to maintain a protocol of collaboration among the classes. So the need

for documentation is the prescriptive aspects that an application developer requires.

3.4.3 Developer of Another Framework

Framework developers often find good ideas from existing frameworks, even though
the frameworks are for another application domains. Their particular interests are the
design patterns, which provide flexibility. The developers require information
primarily at a high level of abstraction, though the kinds of information needed are

similar to that for the framework maintainers.
3.4.4 Verifier

Some application developers and framework developers may be concerned with the
hardness of their system. They may have a need to verify certain properties of the

system in order to satisty stringent customer requirements This requires tormal

methods of specification and verification.

Specification for reuse is generally more descriptive than prescriptive: the reuser is left
to figure out the implications of the specification in terms of the desired
customization. The main concerns are to clearly specify the obligations on a subclass
and its methods that a developer may write, to specify any protocols that the developer
can customize, and to specify the collaborations must be supported by the developers’

new subclasses.

3.5 MVC - an Example of Framework

The Model/View/Controller (MVC) is the "classic" framework because it was one of
the first to be introduced. The MVC framework was designed as a tool to help system
designers and programmers develop graphical user intertaces (GUI) through the reuse
of software components. It pays particular attention to the presentation and interaction
aspects of the application. In the framework, an important point is that the model,

view, and controller are independent.

[88}
[$8)

The developer of an application system can improve software productivity by reusing
user interfaces for different applications, providing support for multiple ways of
viewing, and interacting with the application model. For instance, for a given model,
some users may prefer to view their data in the form of tables, while others may prefer
to view them as diagrams. However, for a given application, the different views can be
mapped into one model. Thus, the development cost included in implementing the
model is met with only one time; and different models can be presented with similar

user interfaces.
3.5.1 Development of the MVC Framework

The principle of the Model-View-Controller framework allows the systematic
development of an interactive application. Any interface within this kind of

framework consists of the following three components.

Model: A collection of objects which represent the application domain of the user
interface. These objects form the main composition of the system and respond for

informing Views and Controllers of changes in their state.

View: A collection of objects that contribute to the user interface. It is a specification

of how different aspects of the model are presented to the user.

Controller: A collection of objects that control the flow of information between the
Model and the View. It specifies how the user can interact with the application

through requesting changes in the View and in the Model.

These three components establish the MVC framework. As illustrated in the figure
3.1, the Controller is responsible for handling the user input and communicating with

the Model and View through message passing.

8]
W

Input Event

L View

uptate

inspect

Display Screen

Figure 3.1: MVC framework

For example, via the keyboard or mouse, a user issues a command to change the state
of a 3-dimention graphics displayed on screen. The controller receives the user’s input
event and sends a message to the model requesting a change. The model executes the
appropriate methods and then notifies the view that it has changed. As a result, the
view inspects the current state of the model and updates the ettects of a change in a
new graphic state to the user on screen. The simple animations developed in this

Major Report are designed as this kind of MVC framework.

To develop a software application under the MVC framework, the software developers
concentrate upon the design and implementation of components with respect to the

model. After completion of the model, the developers build the appropriate user

24

interface components according to the user’s requirements. The components can be
selected from the existed reusable frameworks. Thus through changing the user

interface, different system models are quickly produced.
3.5.2 Benefits of the MVC Framework

Using the MVC framework offers the advantage of muitiple viewing, development

productivity, and quality for the development of an application system.

Multiple viewing: Since the Model and View are independent, a model can be
mapped into several interfaces. For example, an elevator control system model can

have different graphical user intertace such as analog, digital, graph etc.

Development productivity: When retaining the model, it is possible to create new
views and controllers through the refinement of existing one. Thus the reusability of
existing MVC framework components can significantly reduce the amount of

programming required in order to develop a system.

Quality: Through the reuse of existing components, the quality of these components

improves as they undergo a refinement process under different conditions and

environments.

Chapter 4: Introduction to OpenGL

This section provides a basic viewpoint for the graphics system OpenGL. Here will
state what OpenGL is, several libraries that OpenGL supports. Moreover, it also gives
out the basic structure of an OpenGL application program, and the syntax of some

OpenGL commands used in this Major Report.
4.1 What is OpenGL?

OpenGL is a widely used standard for graphics programming. OpenGL means “Open
Graphics Library.™ It is a software interface to graphics hardware. This interface
contains more than 150 different routines that allow production of interactive three-
dimensional graphics applications. Based on [RIS GL, SILICON GRAPHICS INC
(SGI) developed the source code of the library for graphics workstations. In 1992,
Microsoft and SGI decided to support this standard. It took four years to make the
dream come true: OpenGL now runs bug-free on several platforms, including on
Windows9X, Windows NT. Alpha-Stations (Digital workstations), and on all
SILICON GRAPHICS workstations.

Obviously, there are many advantages of such a standard library:

e First, the commands cover a large part of the typically used graphics
commands. This saves quite a lot of programming work; for instance. the
simple OpenGL command glEnable(GL DEPTH TIEST) allows the user to
work with a very efficient hidden surface algorithm called “depth-buffering” or
“z-buffering”. From the moment you have called this routine, any further
drawing is done considering depth values.

e Second, OpenGL is a hardware-independent intertace, and therefore an

excellent prerequisite for animated graphics via the Internet, e.g., Virtual

26

Reality Modeling Language (VRML) is based on OpenGL. With OpenGL,

users can design graphics programs on any computer and display the graphics

on any other computer.
More and more hardware manufactures support OpenGL. Thus, 3D graphics

can be done in real time, even on otherwise less powerful computers like PCs.

Of course, OpenGL also have some drawbacks:

In order to achieve hardware-independency, OpenGL does not offer commands
for performing windowing tasks or obtaining user input.

OpenGL doesn’t provide high-level commands tor describing models of 3D
objects; instead, it only supports the drawing of a small set of geometric

primitives like points, lines, and polygons. Users must build up their desired

model from this small set.

However, these drawbacks can be decreased - if not compensated for — by some

OpenGL-related libraries that allow high-level drawing, among them the OpenGL

Utility Library (GLU), the Auxiliary Library, and the OpenGL Utility Toolkit
(GLUT).

4.2 OpenGL-Related Libraries

In OpenGL, there are several libraries that contain a powertul and primitive set of

rendering commands. All higher-level drawing can be done in terms of these

commands. It allows the OpenGL programmers to simplity their programming tasks.

These libraries were organized as header files; they can be included in any OpenGL

applications, conveniently.

gl.-h — this module contains procedure declarations, constant definitions and
macros for the OpenGL component. g/ is the prefix of these procedure, for

example, glPushMlarrix().

e glu.h — it includes procedure declarations, constant detinitions and macros for
the OpenGL Utility Library. The OpenGL Ultility Library (GLU) includes
some routines that use lower-level OpenGL commands to perform such task as
setting up matrices for specific viewing orientations and projections,
performing polygon tessellation, and rendering surfaces. These commands all
use the prefix glu, such as, gluCylinder().

e glc.h — it defines procedure declarations, constant definitions and macros for
the OpenGL Extension Library for the X window System. For every window
systems, the OpenGL Extension Library extents the functionality of that
window system to support OpenGL rendering In this library, GLX routines
use the prefix glY, for instance, gLXCreateConexi().

e gluth - this header file is for the OpenGL Utility Toolkit (GLUT) Library.
GLUT s a window system-independent toolkit. It has become a popular
library for OpenGL programmers because it standardizes and simplifiers

window and event management.

First, the GLUT contains the commands for creating and opening windows and
reading events from the keyboard or mouse. These routines enable the
OpenGL programmers to simplify opening windows, detecting input, and so
on. In addition, GLUT includes some commands that create more complicated
three-dimensional objects, such as, a cube, a sphere, a cylinder, a torus, and so
on. Using them, the OpenGL programmers can more easily complete their
complex tasks. All GLUT commands start with the pretix glur such as

glutCreate Window(), glutKeyboardFunc(), glhuSolidSphere().
4.3 OpenGL Command Syntax

Generally, an OpenGL command is composed of the prefix g/, g/u, or glut related the
names of the OpenGL libraries, and initial capital letters tor each word making up the

command name, for example:

glClearColor();

gluCylinder();

glutDisplayFunc().
Additionally, some OpenGL commands can have different types or numbers of
arguments. Such as the command g/Color*(), it can be given three-float arguments, or
an array with four-float elements, respectively. These two-type commands can be

written as:

glColor3f(1.0, 1.0, 1.0);

GLfloat col_array[] = {0.0, 1.0, 0.5, 0.0};

glColor4fv(col_array).
Here the seemingly extraneous letters indicate the ditferent argument types of these
commands. The / part of suffix shows that the arguments are floating-point numbers.
Some OpenGL commands can accept as many as eight ditferent data types for their
arguments. The letters used as suffixes to specity these data types for 1SO C

implementations of OpenGL are illustrated in table 4.1.

Suffix Data Type OpenGL Type Detinition

b GLbyte

s GLshort

i GLint, GLsizei

t GLtloat, GLclampt

d GLdouble. GLclampd

ub GLubyte, GLboolean

us GLushort

ui GLuint, GLenum, GLbittield

Table 4.1: OpenGL command suffixes and argument data types

OpenGL is a state machine. Thus there are many state-value constants for managing
and controlling the different kinds of states. OpenGL defined them begin with GL,

GLU, or GLUT, use all capital letters, and use underscores to separate words. For

instance, the state values for defining the window display mode are named as
GLUT DOUBLE, GLUT RGB, and GLUT DEPTH.

4.4 The Basic Structure of an OpenGL Application

OpenGL is a powerful graphics programming system. The programmers can do so
many things with it, so an OpenGL program can be very complicated. However, the

basic structure of an application program may be simple.
4.4.1 Initializing and Creating a Window

Before an OpenGL programmer draws any objects in OpenGL graphics system, the
first step that should be done is to initialize and create a window for display the
objects. The programmer must specify the characteristics of the window, and where
the window should appear on the display screen. Usually. to complete this step,

following procedures should be performed.

e [nitialize the OpenGL library.

e Specify a display mode such as single-butfered or double buffered, or RGBA
or colour-index.

e Specify the screen location for the upper-left corner of the window.

e Specify the size, in pixels. of the window.

e Create the window.
For these procedures, the main OpenGL commands include:

void glutlnit();

void glutlnitDisplayMode(unsigned int mode);
void glutinitWindowSize(int width, int height);
void glutinitWindowPosition(int x, int y);

int glutCreate Window(char* name).

4.4.2 Handling Window

After the window is created, the programmer should register some callback functions
for handling the window. The roles of these callback functions mainly include

following two aspects.

e Redraw the window and objects in the window when the window is popped
and window damage is exposed, or when glutPostRedisplay() is explicitly

called.

e Redisplay the window and redefine the projection matrix when the window is

resized or moved.

And the related routines for handling window are as following (here func is the name

of the related callback function):

void glutDisplayFFunc(void (*func)(void));
void glutReshapeFunc(void (*func)(int width, int height));

4.4.3 Inputting events

To handle input events, OpenGL also call some callback functions. So the
programmer must register these callback functions and specity what events which will

input. These functions include:

e The function for handling the keys of keyboard.
e The function invoked when a mouse button is pressed or released.
e The function called when the mouse pointer moves within the window while

one or more buttons is pressed.

To perform these callback functions for handling input events, following statements

usually be used.

void glutKeyboardFunc(void (*func)(unsigned int key, int x, int y));
void glutSpecialFunc(void (*func)(unsigned int key, int x, int y));

31

void glutMouseFunc(void (*func)(int button, int state, int x, int y));
void GlutPostRedisplay(void);

4.4.4 Drawing Objects

OpenGL provides a set of geometric primitives, including points, lines, and polygons
such as cube, sphere, cylinder, and so on. Using these routines, a programmer can
build up any desired objects, either two-dimensional or three-dimensional. And the
programmer can use smooth shading to draw a single polygon with more than one
colour, or render illuminated objects by defining the desired light sources and lighting
model. And he can also blend colours to achieve such effects as making objects appear
translucent, smooth jagged edges of lines and polygons with antialiasing, or create

scenes with realistic atmospheric etfects.

One of the most exciting things in graphics field is draw pictures that move. Of course,
the programmer can also draw any movable pictures on computer display screen,
which is three-dimensional animation. OpenGL provides some routines for displaying
smoothly animated graphics. One of the goals of this Major Report is to achieve some

simple colour animation pictures on screen.
4.4.5 Managing a Background Process

There is another callback function in OpenGL library. It will be executed if no other
events are pending. This is particularly useful for continuous animation or other
background processing. For performing this callback function, call the OpenGL

routines: void glutldleFuncivoid (*func)(void)),.
4.4.6 Running the Program

After all the above setup is completed, the very last thing which must be done in an
application program is call the OpenGL function void glutMainLoop(void). And only

till now, all windows that have been created are shown, and rendering to those

98]
3]

windows is effective. And event processing begins, and the registered display callback

is triggered. Once this loop is entered, it is never to return.
4.5 OpenGL and OO Framework

OpenGL is one of the widely used graphics languages. It is same as most of these
graphics languages, simple use of OpenGL functions rends to lead to badly structured
programs with many global variables. [n another word, there are many global
variables in an OpenGL application program. As mentioned above, OpenGL uses
callback functions to handle windows and input events for objects. Since the
parameters and result type of a callback function are predefined by OpenGL itself. the
easiest way to provide communication between callback functions is to use global
variables. This makes it difficult to implement a new graphics program and maintain

an exist one.

However, with the appearance of the object-oriented programming language, and the
application of framework, it is becoming possible to combine an OOPL such as C~+
with OpenGL. And it is possible to eliminate most of the global variables and
construct programs which have better encapsulation and are easier to read. Of course.
since the characteristic ot OpenGL, it is difficult to let all global variables disappear
completely in an application. But the number of the global variables can at least be

kept as small as possible.

Based on the above idea, this Major Report will develop an object-criented
framework: two simple animation systems implemented with C++ in conjunction with
OpenGL. The goals of the framework are to reduce the use of global variables, which

will be replaced by global objects, and to reduce the use of OpenGL commands.

LI
|93}

Chapter 5: OO Programming Language C++

This section gives an overview of the object-oriented programming language C++.
C++ was invented at AT&T Bell Labs by Bjarne Stroustrup. Dr. Stroustrup was an
enthusiastic user of Simula, which is a simulation language that had many object-
oriented capabilities. When it became necessary for him to write projects in C, he
missed the abstract data type and other OOP features from Simula. So he created

with Classes that came to be known as C++.

C++ can be viewed just as C with classes. A class is the C++ term for an abstract data
type. Of course, C already has a way of aggregating data into a complex type: the

struct. A class is a struct with a tew more features.
5.1 Why select C++

Graphics programming can be done with many high-level computer languages. There

are, however, several reasons why choose C++:

e C++1is highly portable and efficient. It is almost a superset of C.

e (C++ compilers are available on any computer platform.

e OpenGL is written in C and C++, respectively. This makes it easy to include
OpenGL code.

e C++ is very suitable for geometric thinking. It allows overwriting operators;
e.g., the union of two geometric primitives can be overwritten by the plus-sign.
So, if p is a point and G is a straight line, and P is the plane that connects p and

G, this can be written very clearly by P=p + G.
5.2 Modules of C++ Programming Language

This section is a fairly intense tour through the main fundamental features of C++

language, some of which are inherited from and in common with C.

5.2.1 Structure of a C++ Application

A C++ program is a collection of variables, function definitions, and function calls. In
General, the source code of a large program package is split up into several files
filel.cpp, file2.cpp, file3.cpp, etc. Normally, one of these files contains the main()-
function. When the program starts, it executes initialization code and calls the special

function “main().” This concept, inherited from C, has been true for decades.
5.2.2 Data Types

Data types define the way using storage in the application programs. In C++, there are
two kinds of data types; they are built-in and abstract data type. A built-in data type is
one that the compiler inherently understands and is wired directly into the compiler
These built-in data types are almost exactly the same in C and C++. An abstract data

type. that is user-detined data type. is a class that a programmer creates.
5.2.2.1 Basic Built-in Data Types

In the standard C and C++, there are only four basic built-in data types. An inr stores
an integral number and uses a minimum of two bytes of storage. A char is for
character storage and uses a minimum of 8 bits of storage. A floar is for single-
precision floating point. And a dowuble is for double-precision floating point. The tloat

and double types are usually in IEEE tloating-point format.

In the standard C++, there is another built-in data type: bool. The hool type can have
two states expressed by the built-in constants true (which converts to an integral one)

and false (which converts to an integral zero).

There are four specifiers: short, long, signed, and unsigned. they can modify the
meanings of the basic built-in types and spread them out to a much larger set. The long
and short modify the maximum and minimum values that a data type hold. The signed

and unsigned specifies tell the compiler how to use the sign bit with integral types. For

instance, short int, long int, and long double, they expand the size of integral type and
floating point numbers, respectively. Moreover, an unsigned short int number does not
keep the track of the sign and thus has an extra bit available, so it can store positive
numbers twice as large as the positive numbers that can be stored in a signed short int

number.

OpenGL defines its own basic data types, essentially starting with capitalized GL,

followed by the intended types. The table 1 illustrates the relationships between the

C++ built-in data types and OpenGL data types.

OpenGL data type C++ built-in data type
GLenum unsigned int
GLboolean unsigned char
GLbitfield unsigned int
GLbyte signed char
GLshort short
GLint int
GLsizet int
GLubyte unsigned char
GLushort unsigned short
GLuint unsigned int
GLfloat tloat
GLclampf float
GLdouble double
GLclampd double
GLvoid void

Table 5.1: The relationship between OpenGL and C++ built-in data types

5.2.2.2 User-defined Data Type

The programming language C, and of course also C++, allows programmers to define

new data types by the means of syntax:

ypedef <predefined type> <new type> [<optional dimensions>].

For example, the statement

typedef Glfloar Real;

means a new data type Reu/ has been defined. It can be used same as any other built-in

data types.

Another type of user-detined data type in C and C++ is detined by the keyword srruct.
In fact, a struct is a way to collect a group of variables and even functions into a
structure. This is often called encapsulation, too. Once a swrucr is created. the

programmer can make many instances of this new type of variable.

The concept of abstract data types which also refers to as user-defined data types is a
basic concept in Object-Oriented programming. And it is one of the important features

of C++ program language. It allows programmers to create a new data type, that is

class.
S5.2.3 Access Control in C++

In a class of C++ application, any variables and methods can be modified by privare,
public, or protected. Their use and meanings are remarkably straightforward. They

change the limit for all the declarations that tollow them.

Public means all member declarations that follow are available to everyone. The
private keyword means that no one can access that member except the creator of the
type, inside function members of that type. Private is a brick wall between the creator

and the client programmer. If someone tries to access a private member, they will get

a compile-time error. The protected keyword acts just like private as far as this class
user is concerned, but available to anyone who inherits from this class. Figure 5.1

shows the relationships of the access control.

Super class

—_——

. public
~ L
. ____.members
. i
private — _— .

‘members-

L

i

-)

Class
Interface

b

s‘ [
- . e
. /

protected
members

)
e * A

User

protected

members
orivate / Interface
members - "
—— — public —

— R —

———._.members

Internal access

 ——

External access

~—

Subclass

Figure 5.1: Access control in C++

5.3 OO Features in C++

C++, based on the C programming language, is one of the most widely used object-
oriented programming languages. Although it does not belong to the purest OOPL,
there are many object-oriented characteristics developed in C++. They also construct
the cornerstones of C++ programming language. These features are known as abstract
data type, inheritance, polymorphism, templates, and exception handling. Here will

give an overview for these essential features.
5.3.1 Data Abstraction

Data Abstraction is one of the fundamental ot C++; and it is one of the basic concepts
in object-oriented design and development. In C++, the abstract data type was
developed from the type struct in C. The C++ programmers place tunctions inside
struct, thus package data and functions together. That builds up the new data type,
which is referred to as encapsulation in object-oriented development. Variables
created using the abstract data type are called objects, or instances, of that type. And
calling a member function for an object is called sending a message to that object.
While the primary action in object-oriented programming is sending messages to

objects.

In C++, access specifies (stated above) are part of the structure szrwcr and don't affect
the objects created from the structure. They establish what the client programmers can
and can’t use, and separate the interface from the implementation. Figure 5.2 shows an

example of the struct in C and C++.

struct Shap { struct Shap {
intxy,z private:
} intx, vy, z,
public:
int getPosition();
void move();
}
structin C struct in C++

Figure 5.2: The struct type in C and C++

In the original OOP language, Simula-67, the keyword class was used to describe a
new data type. This apparently inspired Stroustrup to choose the same keyword for
C++, to emphasize that this was focal point of the whole language: the creation of new
data types that are more than just C struct with functions. In fact, the keyword class in
C++ is identical to the struct keyword in absolutely every way except one: class
defaults to private, whereas struct defaults to public. However, it is just because of the
introduction of the data abstract, access specifiers, and class keyword, the C++

programming language becomes one of the object-oriented domains.
5.3.2 Inheritance and Composition

One of the most compelling features about C++ is code reuse. C++ programmers reuse
code through creating new classes, in detail using existing classes that someone else

has built and debugged.

There are two ways to use the classes without spoiling the existing code in C++. One
is class inheritance. Using it, a new class can be created as a type of an existing one. It

is is-a relationship between the subclass and the parent class. With inheritance, the

40

internals of parent classes are often visible to subclasses. This style of reuse is often

referred to as white-box reuse. Inheritance in C++ may be single or multiple.

The second approach for reusing code in C++ is object composition, which is an
alternative to class inheritance. Here, new class is obtained by assembling or
composing objects to get more complex functionality. In another, the programmers
reuse existing types as part of the underlying implementation of the new type. Object
composition requires that the objects being composed have well-defined interfaces. It
built the has-a relationship between the new type and the existing type. This kind of

reuse is known as black-box reuse, because no internal details of objects are visible.
5.3.3 Polymorphism and Virtual Functions

Polymorphism is the third fundamental teature of C++ after data abstraction and
inheritance. It provides another dimension of separation of interface from

implementation. Polymorphism allows improved code organization and readability as

well as the creation of extensible programs.

Polymorphism is implemented with virtual functions, which can cause late binding or
dynamic binding to occur for a particular function. Virtual function means “different
form™. It allows the application of the different versions of one interface. C++ requires
that the programmers use the virrual keyword when declaring the function in the
baseclass. An example is shown in Figure 5.3. Polymorphism and dvnamic binding
are all basic and important concepts in object-oriented programming. It can be said
that the C++ programmer doesn’t understand OOP yet if he cannot use virtual
functions well in his programs. It is just because of the application of virtual and pure

virtual functions in C++ programs, the frameworks can be applied more widely.

41

Shape

virtual char*getName()
virtual void move()

N\
PAREAN
Sphere Cylinder
char*getName() char*getName()
void move() void move()

Figure 5.3: Virtual function in C++

5.3.4 Templates

Inheritance and composition provide a way to reuse object code. While the C++
template feature provides a way to reuse source code. In C, in order to reuse source
code. the programmer copy the source code for a new program and make
modifications by hand. This can certainly introduce new errors in the process. To
solute this problem. Stroustrup developed a new technique in C++, that is template
classes. This kind of classes no longer holds a generic base class called object: but
instead it holds an unspecified parameter. When a programmer wants to use a template
class, the parameter is substituted by the compiler. For example. the template class
Point shown as Figure 5.4. Using it, the client user can create an integer-type Point
generally in 2-dimention graphic system; and he can make a floar-type Point usually in

3-dimention graphic system.

42

template<class T> Point Container
class Point {
Txy,z
public:
void translate(T a, Tb, Tc=0);
T& getPosition(); — —

Figure 5.4: Template class in C++

5.3.5 Exception Handling

Exception handling is one of the most concepts in object-oriented development. And it
is one of the five cornerstones of C++. In fact, error recovery is a tundamental concern
for every program, and it's especially important in C++ The goals for exception
handling in C++ are to simplify the creation of large. reliable programs using less code
than currently possible, with more confidence that the application doesn’t have an
unhandled error. This is accomplished with little or no performance penalty, and with

low impact on existing code.

The implementation of exception handling in C++ is using the 1y and carch block,
and throw statement. Here's a small example that shows a simple use of the features
for exception handling:

#include <exception>

#include <iostream>

#include <cstdlib>
#include <cstring>

class First {}:
class Second {}:

//void gli;

void f(int i) throw (First, Second) {
switch(i) {

43

case 1: throw First{();
case 2: throw Second();

}

//7g();
}
// void g() ({} // Version 1
// void g() { throw 47; } // Version 2
int main() {

for(int i = 1; i <=3; i++)

try |{
£(1);

} catch{First) ({
cout << "Class First caught" << endl;

} catch(Second) {
cout << "Class Second caught" << endl;

44

Chapter 6: The OpenGL Frameworks

Given an application software system, a framework can be constructed and then
object-oriented concepts applied to develop the system in an object-oriented
methodology. But do graphic systems have enough common features for a
framework? How can the graphic systems be developed in object-oriented framework?
To answer these questions, two simplified three-dimensional animations are designed
and implemented through combining C++ programming language with OpenGL
software system, the car running along a round track and the planet with a moon. They
provide the examples for combining the object-oriented development with a graphics

software system.

6.1 The Architecture of a Graphics System

An object-oriented framework is a collection of concrete and abstract classes. In the
graphics system combining C++ programming language with OpenGL, a framework
is designed and constructed from the C++ standard library and the OpenGL standard
library. It constructs the application library in this application domain. In order to
establish an application system, the programmer inherits the abstract classes and
concrete classes, or composes the concrete classes in the application library, and/or

uses classes in the C++ standard library and commands in the OpenGL libraries.

Figure 6.1 illustrates the architecture of the graphics domain combined C++ and

OpenGL software.

45

C++ OpenGL

Standard Standard
Library Library
System
Application
Library Framework
. e Application
Application Model

Figure 6.1: The architecture of a graphics system

6.2 The Design of the Application Library

6.2.1 The Abstract Classes Design
6.2.1.1 The Abstract Object Class

In any graphics systems, no matter how complex it is, they are all structured by the
basic graphics elements — such as points, lines, sphere, or cylinder, and so on - that is
a shape. Although we don’t know what a real shape is and how it can move, it can be
imagined that a shape has a name, has a place, may be colour, can be rotated or scaled,
and so on. Thus, we can design a shape class Objecr as an abstract class. It will be the

base class in our next two animation systems. Following is the structure of the abstract

class.

46

class Object:
protected attributes:

char* name /1 Object's name.
GLfloat x, vy, z // Object's position.
GLfloatr, g, b //RGB color of object

public methods:
Object(char* inam = "Object")
~Object()

virtual void draw() =0 /fpure virtual function

char* get _name()

virtual void setPosition(GLfloat xx, GLfloat yy, GLfloat zz)

virtual void setRGB(GLfloat rr, GLfloat gg, GLfloat bb)

virtual void setRGB(Color col)

virtual void translate()

virtual void rotate(GLfloat angle, GLfloat x0, GLloat y0, GLfloat z0)
virtual void scale(GLfloat x1, GLfloat yl, GLfloat z1)

6.2.1.2 The Abstract KeyReaction Class

In a graphics system, the users generally control the animation through the keyboard
and mouse. So we design another abstract class: KeyReacrion. This class has a pure
virtual method which will be inherited by the users for stating the functions of every

keys and mouse buttons. The members of the class are as following.

class KeyReaction:

attributes:

public methods:
KeyReaction()
~KeyReaction()

virtual void explain() =0
virtual void setKeys(unsigned char key)

virtual void setFunctionKeys(unsigned char key)
virtual void setMouseButton(unsigned char button)

6.2.2 The Other Base Classes in Application Library

The other base classes in application library include following classes.

47

e Vector: the basic class in this framework. It can create two-dimensional or
three-dimensional vectors for the graphics system.

e Point: the basic class of this domain. It states a point in two-dimensional or
three-dimensional graphics system:.

e Color: another basic class in the system. It defines the RGB color model for the
graphics system.

e Window: the basic class for this domain. It defines the needed features of a
window, such as position, color, size, and how to create a window using the
OpenGL statements.

e Camera: the basic class in this domain. It defines a simulation camera for a
graphics system. The user can change the position and target of the camera

through its interface methods.

6.3 The Running Car Animation

6.3.1 Requirement Analysis

This system is a three-dimensional animation about a car running along a round track.
It is based on an example provided by Dr. Peter Grogono. The car is simply made up
of quadric surfaces. It includes a car body, which is a tapered cylinder and disks, and
four wheels with two axles. This system also has a circular track for the car driving on

it, and grass ground inside the track. And several stimulated houses dot the landscape.

Through keyboard, the users of this animation can change the viewpoints which
includes from a static point far from the whole animation, from a static point inside the
car, from a static point outside the car, from the driver’s point, from a point driving
around while looking at a house, from the point looking backwards from another car,
from the point beside the car, from a balloon fixed over the scene, and from a
helicopter flying around the scene. And they can control the bumpiness and fog, and

their increase and decrease.

43

6.3.2 Classes Design

In an object-oriented framework, everything is an object. The objects with the same
attributes form a class. The methods are encapsulated in the class invocation of
methods by passing message to objects. From the requirement of the running car
system, we design the classes as following. They will inherit or compose the classes in

the application library and system libraries.

e Disk: one of the basic classes. It specifies the attributes and methods related
with drawing a disk.

e Cylinder: the basic class in this domain. It defines member data and functions
for drawing the object cylinder.

¢ House: an application class in this domain. Using it, a house of any size simply

constructed with walls, door, and roofs can be drawn.

e Car: another application class. It specifies how to draw a simple car using

some disks and cylinder.

* Keyboard: an application class. It specifies how to control the animation using

keys and function keys on keyboard.

¢ Mouse: an application class. It specifies how to control the animation using the

mouse buttons.

Figure 6.2 illustrates the class diagram for the running car animation system.

49

Obiject

— char® name; =
Color color;
© “Point position; - 3
‘virtual void draw() = O: ‘
House .void setRGB(); Cylinder
'GLfloat size; . double baseRadius,
Color wallColor, . topRadius;
roofColor; double height;
void draw(); -~ ‘void setParameters();
Dis .void draw();
double innerRadius, ;
outerRadius;
ivoid setParameters(); ’
void setColor(), ‘
void draw(); Car
- Eac»)»r_*— - Cylinder carBody;
.. Atnbute: L : —~~g§§rv;heelgolor' —
void setRGB(); Vector ody '
- - o ‘Gyfloat X, Y, 2, . vaa_d?aW o
void def(), e
_ Window e
int width, height; S .
intx, vy, Camera - Pomt_
Color winColor; Point eye, target, up, __ ___ Atribute:
VO|:d clear(), Camera(), Point(): S
voddraw(). void changePosition(); vod rotate();
—— - - ; T Keyboard -
T Mouse __ _KeyReaction R
- . _virtual void expiain()=0; . ____ void explain();
void explain(), virtual void setkeys(); void setKeys();
void setMouseButton(); virtual void setFunctionKeys(); void setFunctionKeys();
void move(); virtual void setMouseButton(); void setViewpoint();

Figure 6.2: The class diagram of the running car system

6.4 The Planet and its Moon System

50

6.4.1 Requirement Analysis

The planet system is made up of one planet and its only one moon. The planet and the

moon are represented using sphere.

The users can control the system rotate round the X, Y, and Z axis through the
keyboard. And they can also change the viewpoint between forward, upward, leftward,
and rightward. Using the mouse buttons, the user may switch the light effect like a

sun, and can let the sun rotate to up, down, left, or right. And zoom in and zoom out

are need for the window in this animation.
6.4.2 Classes Design

This system is designed by reusing the above object-oriented framework. Several
basic classes will be reused without any change in here. They are Vector, Point, Color,
Object, Camera, Window, KeyReaction, Mouse, and Keyboard. From the problem,

other needed classes are added as following.

e Sphere: the basic class in this system. It specities the attributes and methods

for drawing a color sphere.

e LightSouce: another basic class for graphics domain. The users can control the

light effect in a three-dimensional animation system using this class.

Figure 6.3 illustrates the class diagram for the planet and its moon animation system.

51

Camera
:Point eye, target, up;

Camera(),
void changePosition();

—_—

Vector

__ LightSource

'Pomt position;

void indiate();

Mqusé
v01d e;(plra'ir;k);i N
void setMous eButton();

Glfloatx, y, Z; -
; 0
void de ().' Coior
— Attribute:
Point void setRGB();
Attribute:
Point();
voidrotate(); .
Object
char® name;
Color color; Window
Point position; int width, height.
virtual void draw() = 0; intx,y,
void setRGB(); _Color winColor;
T void clear();
- void draw();
Sphere :
Qoubleradius o
void setParameters(),
void draw();
e 75@5&3@!&%} B 7 _ Keyboard

Mvmual vod é;pialn()¥0; 7

virtual void setKeys(),
virtual void setFunctionKeys();
virtual void setMouseButton(),

~ . __..void explain();
voud setViewpoint();
void setKeys();

void setFunctionKeys();

Figure 6.3: The class diagram of the planet and its moon system

Chapter 7: System Implementation

This chapter will state the main structures of the two animation systems, including the
detail members of the classes in the framework and the application models. The source

codes of them will be given in appendix B.

7.1 The Basic Classes and header Files

7.1.1 Some Needed Header Files

In order to reduce the use of the statements and type detinitions of OpenGL software,

we firstly specity several header ftiles for our application.

7.1.1.1 types.h

In this header file, some common types of OpenGL are redefined for the user to use

them conveniently. They are as tollows:

#define Real Glfloat
#define Double Gldouble
#define QuadricObj GLUquadricOb;

7.1.1.2 specialkeys.h

Same as the file types.h, here gives the redefines for the OpenGL tunction keys. Thus

we can reduce to use the original definition in the system libraries.

#define LEFTARROWKEY GLUT KEY LEFT

#define RIGHTARROWKEY GLUT_KEY_RIGHT
#define DOWNARROWKEY GLUT_KEY_DOWN
#define UPARROWKEY GLUT_KEY_UP

#define ENDKEY GLUT KEY_END

#define PAGEUPKEY GLUT _KEY_PAGE_UP
#define PAGEDOWNKEY GLUT _KEY_PAGE_DOWN

#define FIKEY
#define F2KEY
#define F3KEY
#define FAKEY
#define FSKEY
#define FOKEY
#define FTIKEY
#define FRKEY
#define FOKEY
#define FIOKEY
#define FI1KEY
#define F12KEY

#define LEFTBUTTON
#define MIDDLEBUTTON
#define RIGHTBUTTON

#define BUTTONDOWN

GLUT KEY_FI
GLUT KEY_F2
GLUT KEY_F3
GLUT KEY F4
GLUT_KEY_F5
GLUT KEY_F6
GLUT _KEY_F7
GLUT KEY_F8
GLUT_KEY_F9
GLUT_KEY_F10
GLUT KEY _Fl1
GLUT_KEY_F12

GLUT_LEFT BUTTON
GLUT _MIDDLE_BUTTON
GLUT RIGHT BUTTON

GLUT _DOWN

7.1.2 Basics Classes
7.1.2.1 Class Vector

This is basic class for a graphics domain. It defines and implements the related data
and operation members for setting a two-dimensional vector or a three-dimensional

vector.

Public attributes: Real x, vy, z;

Public operations: Vector();
Vector(Real x0. Real y0, Real z0 = 0.0);
~Vector();

Real getX();

Real getY();

Real getZ();

void setX(Real x0);

void setY(Real y0);,

void setZ(Real z0);

void operator() (Real x0, Real y0, Real z0);
void def(Real x0, Real y0, Real z0);

54

7.1.2.2 Class Point

This class inherits the class Vector. It can set the coordinate level for any point

instance in two-dimensional or three-dimensional graphics system.

Attributes:

Public operations: Point();
Point(Real x0, Real y0, Real 20 =0.0);
Point(Vector &v);
~Point();

void rotate(Real angle _in_deg, const Vector &axis);

void rotate(Real angle_in_deg, Real dx, Real dy, Real dz);
void translate(Real dx, Real dy, Real dz),

void translate(const Vector &v);

void scale(Real kx, Real ky, Real kz),

7.1.2.3 Class Color

This is a subclass inherited from the class Vector publicly. It defines the RGBA (red,
green, blue, and alpha) color-display model, which is very commonly used in a

graphics system.

Attributes:
Public operations: Color(),
Color(Real r, Real g, Real b, Real a = 0.0);

void def{) (Real r0, Real g0, Real b0, Real a0 = 0.0),
void setRGB();

7.1.2.4 Class Object

This an important abstract class in our framework. It defines a pure virtual operation

and some other virtual functions which can be inherited by the users of it.

Protected attributes: char* name;
GLfloat x, y, z,
GLfloatr, g, b;
Public operations: Object(char* inam = "Object")

55

~Object()

virtual void draw() = 0;

char* get_name();

virtual void setPosition(GLfloat xx, GLfloat yy, GLfloat zz),
virtual void setRGB(GLfloat rr, GLfloat gg, GLfloat bb);
virtual void setRGB(Color col);

virtual void translate();

virtual void rotate(GLfloat angle, GLfloat x0, GLfloat yO,
GLfloat z0);
virtual void scale(GLfloat x1, GLfloat yl, GLfloat z1);

7.1.2.5 Class Camera

This class simulates the camera in real world. Through the instance of this class, a user

can define the position of the camera and its target, and can change them at anytime.

Private attributes: Point eye, target, up;

Public operations: Camera();

Camera(Real ex, Real ey, Real ez, Real cx, Real cy, Real cz,
Real ux, Real uy, Real uz);
~Camera() {}

void changePosition(const Point &newEye),
void changePosition(Real eye_x, Real eye_y, Real eye z).
void changeTarget(const Point &newTarget);
void changeTarget(Real target_x, Real target_y,
Real target z);

void changeUpDirection(const Point &newUp);
void changeUpDirection(Real up_x. Real up y,
Realup_z);

void view();

7.1.2.6 Class Window

The Window class is a very common class in a graphics system, because any objects

must be display in a window in computer system. In this class, the related attributes

and operations are defined and implemented for setting a window. A use can

conveniently create a needed window for his application.

Private attributes: int width;
int height;
int x, y;
char* title;
Color winCol;
Real alpha;
Public operations: Window(int w = 600, int h = 400, int ix = 10,

int iy = 10, char* t ="");
Window(char* t);
~Window();

void setSize(int w, int h),

void setPosition(int xx, int yy);

void setBGColor(Real br, Real bg, Real bb, Real ba = 1.0);
void setBGColor(Color ¢);

void draw();

void clear(),

7.1.2.7 Class KeyReaction

Class KeyReaction is an abstract class in our framework. It sets the virtual operations
for controlling animation through keyboard or mouse. The programmer of a graphics
domain should inherit this class and establish himself subclasses and implement them

in his application model.

Attributes:

Public operations: KeyReaction(),
~KeyReaction();,

virtual void explain() = O;
virtual void setKeys(unsigned char key);

virtual void setFunctionKeys(unsigned char key);
virtual void setMouseButton(unsigned char button);

57

7.2 The Running Car Animation Implementation

7.2.1 Class implementation

7.2.1.1 Class Disk

Class Disk is a subclass of Object. Using it, the user can draw the basic color graphic
disk that has an inner radius and an outer radius. For example Figure 7.1 is a light

green disk, which the inner radius is 40.0 and the outer radius is 60.0.

Private attributes: QuadricObj *dobyj;
Double innerRadius, outerRadius;
int slices, rings,

Public operations: Disk().
Disk(char* dn);

void setParameters(QuadricObj *p, Double ir, Double or,
int sl, int rg),

void setColor{const Color &col),

void draw(),

Figure 7.1: An example of disk

7.2.1.2 Class Cylinder

This is another subclass of class Object. It is for drawing the basic color graphic

cylinder which basic elements include the base radius, top radius, and height.

Private attributes: QuadricObj *cobj;

Double baseRadius, topRadius, height;
int slices, stacks;

Public operations: Cylinder(char* dn);

7.2.1.3 Class Car

~Cylinder() {}

void setParameters(QuadricObj *p, Double br, Double tr.
Double h, int sl, int st);

void setColor(const Color &col);

void draw();

Class Car is also a subclass of the Object. It is simply made up of a cylinder as the car

body, two cylinders as the axles, and four disks as its wheels. Figure 7.2 gives an

example of this kind of car.

Private attributes: Cylinder carBody;

Disk bodyFront, bodyRear;

Cylinder frontAxle, rearAxle;

Disk frontLeftWheel, frontRightWheel,
Disk rearLeftWheel, rearRightWheel,
Color bodyColor, axleColor, wheelColor;
Real length;

Real frontRadius, rearRadius;

Real axleRadius;

Real wheelRadius;

QuadricObj *p;

Public operations: Car(char *nm);,

~Car() {}

void setBodyColor(Color c);

void setAxleColor(Color ¢);

void setWheelColor(Color ¢);,

void setStartPosition(Real x0, Real y0, Real z0);
void setStartPosition(Vector &pos),

void setBodyParam(Real I, Real fr, Real rr);
void setAxleRadius(Real ar);

void setWheelRadius(Real wr);

void setQuadricObj(QuadricObj *p1);,

void draw();

59

Figure 7.2: An example of Car

7.2.1.4 Class House

The class House inherits the members from the class Object. It draws the simply house

with four walls, one door, and two roofs. The user can define any size of this kind of

house. Figure 7.3 illustrates an example of it.

Private attributes: Real size;

Color wallColor, doorColor, rootColor;
Public operations: House(char* nm),

~House();

void setPosition(Real x0, Real yO, Real z0 =0.0);
void setPosition(Point &sp);

void setSize(Real sz);

void setWallColor(Color &wc);

void setDoorColor(Color &dc);

void setRoofColor(Color &rc);

void draw();

60

Figure 7.3: An example of House

7.2.1.5 Class Mouse

This class is a subclass of the KeyReaction. [t defines the operations for controlling
the mouse. Because in a graphics system the operations of an instance of the class
Mouse should relate many other objects in the system, most of them must be

implemented with the graphics application model.

Attributes:

Public operations: Mouse(),
~Mouse();

void explain();

void setMouseButton(unsigned char Button);
void move(int x, int y),

7.2.1.6 Class Keyboard

Class Keyboard is another subclass of class KeyReaction. It specifies the needed

operations for controlling an animation system through the keyboard, including keys

61

and function keys. Because of the same reasons as the class Mouse, most of operations

must also be implemented with the graphics application model.

Attributes:

Public operations: Keyboard();
~Keyboard();

void explain();

void setViewpoint();

void setKeys(unsigned char key);
void setFunctionKeys(unsigned char key);

b3

7.2.2 Application Model Implementation

In this application domain, we implement a three-dimensional animation which is a

car running along a round road. Inside the circle trace, there is a piece of grass dotted

with several houses. The user can set ten different viewpoints through the keyboard:

—

19

I

setting the viewpoint on a static distant point; and this is the default display;
setting the viewpoint inside the track, respectively; and the camera follows the
car,

setting the viewpoint outside the track, respectively; and the camera tollows
the car;

putting the viewpoint on the place of driver;

setting the effect same as the driver is staring at one house;

setting the viewpoint on another car driving before the car, and the man in that
car is observing backwards;

placing the viewpoint beside the car and is viewing the car;

setting the viewpoint on a balloon drifting over the area; moving the mouse can
change the height of the balloon;

setting the viewpoint on a helicopter flying in the sky; moving the mouse can

change the height of the helicopter.

10. setting a random viewpoint of one to nine above.

62

Figures from 7.4 to 7.8 illustrate some effects of these viewpoints.

Figure 7.4: Viewing from a distant point

Figure 7.5: Viewing from the driver

63

Figure 7.6: Viewing from another car

Figure 7.7 Viewing beside the car

64

Figure 7.8: Viewing from a helicopter

Except the viewpoint, a user can also control the effect of fog or let the car drive on
bumpy road, and can regulate the fog density or the bumpiness of surface through the

keys. Figure 7.9 shows an example of fog effect.

Figure 7.9: Fog effect

65

Moreover, user can change the height of viewpoint or zoom in or zoom out the

window by using the arrow keys.

7.3 The Planet and its Moon System

7.3.1 Classes implementation

7.3.1.1 Class Sphere

Class Sphere is a subclass of the abstract class Object. Using it, the user can draw the

color sphere with any radius.

Private attributes: Double radius;
int slices, stacks;
Public operations: Sphere(char* sp);
~Sphere() {}

void setParameters(Double ra, int sl, int st);

void setColor(const Color &col);
void setColor(Real r, Real g, Real b);
void draw();

7.3.1.2 Class LightSource

Light is an important part in OpenGL software. And it is one of the important items in
graphics system. Class LightSource defines the basic attributes and operations for a

light source in an animation system. Figure 7.10 shows a blue sphere in white light.

Private attributes: Real ambient[4];
Real diffuse[4];
Real specular{4];
Point position;
Real dull[1];

Public attributes: bool show;

Public operations: LightSource();
~LightSource();

66

void setLightAmbient(const Real* amb),
void setLightDiffuse(const Real* diff);
void setLightSpecular(const Real* spec);
void setLightShininess(const Real* d);
void setLightPosition(Real* pos);,

void setLightPosition(Point pos);

void indicate();

Figure 7.10: A blue sphere in white light

7.3.2 Application Model Implementation

This model is implemented mainly reusing the definition of the base classes. That is
two spheres simulating a planet and its one moon. Through the keyboard, the user can
set different viewpoints such as forward, upward, leftward, and rightward. He can also
control the moon’s rotation round the planet; or zoom in or zoom out the window. And
the user can set the light effect through the mouse buttons and let the light rotate
leftwards, rightwards, upwards, or downwards. Figures from 7.11 to 7.13 illustrate

some effects of this animation.

67

Figure 7.11: The original sate of the planet system

Figure 7.12: The light effect of the Planet

68

Figure 7.13: The rightward viewpoint of the Planet

69

Chapter 8: Conclusion and Future Work

As a result of this major report, it can be seen that the OpenGL framework used in the
simulation of the two simple animation control system, has enough common features

to constitute an object-oriented framework.

Here we only designed several classes, and developed two very simple animation
system. But many global variables have been avoided; and we can reduce the use of
OpenGL commands and constants. From the examples, we can also receive some
ideas for solving some problems in large and complex graphics system. For instance, it
is possible decomposing an entire graphic system into subsequent modules and
tackling each one separately, just like the running car animation was broken down into
many objects color, car, road, house, etc. each with their own attributes and methods.
And the MVC framework can be used to simulate graphics system. The MVC triple is
easier to understand and programmers can make necessary changes to an application
by concentrating on the respective category Model, View, or Controller. While the key
to reusability in software methodologies lies within the object-oriented paradigm and
MVC framework. So applying the framework design technology, combining the
object-oriented programming language such as C++ with the OpenGL software

system, we can develop maintainable and reusable graphics application software.

[n this version of the OpenGL framework, we have created more than ten classes for
the animation application. The implementation of the system design is just focused on
creating some basic component objects that represent basic structures for animation.
There are a number of elements of the initial design left to implement. Remedying
them can make the framework more practical. In the future, we will also further

reduce the use of global variables and OpenGL commands.

70

References

[1] George Wilkie, Object-Oriented Software Engineering: The Professional
developer's Guide, The institute of Software Engineering, Addison-Wesley
Publishing Company, 1994

(2] Dino Mandrioli and Bertrand Meyer, Advances in Object-Oriented Software
Engineering, Interactive Software Engineering, Santa Barbara and Societe des
Outils du Logiciel, Paris, 1992

(3] Adam Blum, Neural Networks in C--: An Object-Oriented [Framework for
Building Connectionist Systems, John Wiley & Sons, Inc., 1992

[4] Wolfgang Pree, Design Patterns for Object-Oriented Software Development,
Johannes Kepler University Linz, Addison-Wesley Publishing Company, 1995

[5] Erich Gamma, Richard Helm, Ralph, Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Objected-Oriented Software, Addison-Wesley
Publishing Company, 1995

[6] Peter Wisskirchen, Object-Oriented Graphics: from GKS and PHIGS 1o Object-
Oriented Systems, Springer-Verlag Berlin Heidelberg, New York, 1990

[7] Karon M. Gardner, Alexander Rush, Michael K. Crist, Robert Konitzer, and
Bobbin Teegarden, Cognitive Patterns: Problem-Solving Frameworks for Object
Technology. Cambridge University Press, 1998

[8] Mason Woo, Jackie Neider, and Tom Davis, OpenGL: Programming Guide,
Second Edition, The Official Guide 10 Learning OpenGL., Version 1.1, Addison-
Wesley Developers Press. 1996

[9] Bruce Eckel, Thinking in C~~, Volumel and Volume 2, 2™ Edition, MindView,
Inc., January 2000

[10] Youchen Lou, FDM C- ~: A Design And Implementation Framework, Concordia
University, February 1994

[11] Desmond Francis D’Souza and Alan Cameron Wills, Objects, Components, and
Frameworks with UML: The Catalysis™' Approach, Addison-Wesley. An imprint
of Addison Wesley Longman, Inc., 1998

71

[12] Grady Booch, James umbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, An imprint of Addison Esley Longman,
Inc., 1990

[13] Taligent, Inc., Building Object-Oriented Framework, A Taligent White Paper,
1994,

72

Glossary

abstract class
A class that contains at least one abstract method. Abstract classes cannot be

instantiated, and they must be extended by a class that implements the abstract

methods.

abstract data type

An entity that consists of data and routines and represents a type so that any number of
variables can be declared.

abstract method

A method that has no implementation. The implementation is deferred to subclasses.
abstraction

The principle of characterizing the behaviours, or functions, of a module in a succinct
and precise description known as the contractual interface.

aggregation

A special form of association in which one class is a part of or belongs to another
class. It represents the has-a or part-of relationship.

animation

Generating repeated rendering of a scene, with smoothly changing viewpoint and/or
object positions, quickly enough so that the illusion of motion is achieved. OpenGL
animation is almost done using double-buffering.

association

A general binary relationship among classes.

C

God’s programming language.

C++

The object-oriented programming language of a pagan deity.

class

An extensible abstract data type.

coordinate system

In n-dimensional space, a set of n linearly independent vectors anchored to a point
(called the ornigin). A group of coordinates specifies a point in space by indicating how
far to travel along each vector to reach the point.

design patterns

A means of capturing and communicating the design of object-oriented systems.
double-buffering

OpenGL contexts with both front and back colour buffers are double-buffered.
Smooth animation is accomplished by rendering into only the back buffer, then
causing the front and back buffers to be swapped.

dynamic binding

The binding of a method invocation to a specific implementation at run time instead of
at compile time.

encapsulation

The principle of separating the implementation of an object from its contractual
interface and hiding the implementation from its clients.

framework

A semifinished software architecture that can be adapted to specific needs by applying
object-oriented programming concepts; generic term for application framework and
small framework.

inheritance

The relationship among classes and interfaces that models the /s-a relationship in the
real world; the aspect of the is-a relationship that permits the reuse of class definitions.
interface

A special form of class that declares features but provides no implementation. An
interface declares only constants and abstract methods.

multiple inheritance

A form of inheritance that allows a class to have multiples superclasses.

object

An instance of a class.

74

oorp

Object-Oriented Programming.

OOPL

Object-Oriented Programming Language.

OpenGL

“Open Graphics Library.” It is a software interface to graphics hardware. Using the
interface, a programmer can build up any desired pictures.

polymorphism

The ability of dynamically interchanging modules without affecting clients.

RGBA

Red, Green, Blue, Alpha.

RGBA mode

An OpenGL context is in RGBA mode if its colour buffers store red, green, blue, and
alpha colour components, rather than colour indices.

single-buffering

OpenGL contexts that don’t have back colour buffers are single-buffered. You can use
these contexts for ammation, but take care to avoid visually disturbing flashes when
rendering.

single inheritance

A form of inheritance in which each class may inherit from only one superclass.

UML

Unified Modeling Language which is a graphical notation for describing object-
oriented analysis and design models.

viewpoint

The origin of either the eye- or the clip-coordinate system, depending on context. With
a typical projection matrix, the eye-coordinate and clip-coordinate origins are at the
same location.

window

A subregion of the frame buffer, usually rectangular, whose pixels all have the same

buffer configuration. An OpenGL context renders to a single window at a time.

75

Appendix A: User’s Guide

A.1 System Requirements

This application is completed using the Visual C++ system (version 6.0) and OpenGL
(using the GLUT library) software system in Microsoft Windows’98 or above system
platform. In order to apply the OpenGL software library, before compile the
application programs, the system LIB files g/u32.lib, glut32.lib, and opengl32.lib
should be added under the directory of vc98/ib. And the DLL files g/u32.dll,
glur32.dll, and opengl32.dll must located in the directory windows/system/. And also
the include files glh, glaux.h, glu.h, and glut.h should be put into vc98/include/gl/.

These files can be downloaded from Microsoft.

Moreover before compiling the source codes, the LIB files openg/32.1ib, glu32.1ib, and
glhu32.lib must be added in the term of projects settings link object-library modules

on the compile window.

A.2 The Structure of the Application

The whole application including documents and its implementation are organized
under one director named report. This is clearly illustrated by the figure A.A.1. The

user only need to decompresses the zip file on disk.

76

report

document application

base car planet

h cpp n cpp n cpp

Figure A A.1: The structure of the application

A.3 Operation Guide

A.3.1 The Running Car Animation

In order to controlling the animation, the system sets the following operations of

keyboard and mouse for its users.

F1 - Set distant viewpoint.

F2 — Set viewpoint inside the track; and camera follows the car.
F3 - Set viewpoint outside the track; and camera follows the car.
F4 — Set the driver's point of view.

F5 — Set viewpoint while looking at a house.

F6 — Set viewpoint looking backwards from another car.

F7 — Set viewpoint from beside the car.

F8 — Set viewpoint from a balloon.

F9 — Set viewpoint from a helicopter.

f10 — Set viewpoints changing at random intervals.

Left arrow — Zoom out the window.
e Right arrow — Zoom in the window.

77

Up arrow — Increase the height of viewpoint.
Down arrow — Decrease the height of viewpoint.

b (B) — Bumpiness control switch.
<(,) — More bumpiness.
> (.) — Less bumpiness.

f (F) — Fog control switch.
+ (=) - Increase fog density.
- () — Decrease fog density.

e End - Exit program.
ESC - Exit program.

A.3.2 The Planet and its Moon System

[n this system, the user can control the animation using the following keyboard and

mouse button detinitions.

F1 — Set the forward viewpoint.
F2 - Set the upward viewpoint.
F3 — Set the leftward viewpoint.
F4 - Set the rightward viewpoint.

Left button - Close the light effect.
Right button — Open the light effect.

Left arrow key — Rotate the light source to left.
Right arrow key — Rotate the light source to right.
Up arrow key — Rotate up the light source.

Down arrow key — Rotate down the light source.

x (X) — Rotate the system round x axis.
y (Y) — Rotate the system round y axis.
z (Z) - Rotate the system round z axis.
s (S) - Stop the rotating effect.

+ (=) — Zoom in the window.
- () - Zoom out the window.

e ESC - Exit the program.

78

Appendix B: The Source Code

B.1 The Created Header Files

B.1.1 types.h

/Itypes.h
//define some types and global veriables

#include <gl/glut. h>

#ifndef Int
#define Int unsigned char
#endif

#ifndef Real
#define Real GL{loat
#endif

#ifndef Double
#define Double GLdouble
#endif

//OpenGL types: Pointer for quadric objects
#ifndef QuadricOb;j

#define QuadricObj GLUquadricObj

#endif

B.1.2 specialkeys.h

/1 specialkeys.h
//define the special keys on keyboard and mouse

#ifndef SPECIALKEYS_H
#define SPECIALKEYS H

#define LEFTARROWKEY GLUT_KEY_LEFT

#define RIGHTARROWKEY GLUT_KEY_RIGHT
#define DOWNARROWKEY GLUT_KEY_DOWN
#define UPARROWKEY GLUT_KEY_UP

#define ENDKEY GLUT_KEY_END

#define PAGEUPKEY GLUT_KEY PAGE_UP
#define PAGEDOWNKEY GLUT_KEY_PAGE_DOWN

79

#define FIKEY

GLUT_KEY _Fl

#define F2KEY GLUT_KEY_F2
#define F3KEY GLUT_KEY_F3
#define FAKEY GLUT_KEY_F4
#define FSKEY GLUT_KEY F5
#define FGKEY GLUT_KEY _F6
#define FTKEY GLUT_KEY F7
#define FSKEY GLUT KEY F8
#define FOKEY GLUT_KEY _F9

#define FIOKEY
#define F11KEY
#define F12KEY

GLUT_KEY_F10
GLUT_KEY Fl11
GLUT_KEY F12

//mouse button

#define LEFTBUTTON
#define MIDDLEBUTTON
#define RIGHTBUTTON

GLUT_LEFT_BUTTON
GLUT_MIDDLE_BUTTON
GLUT_RIGHT_BUTTON

//the state DOWN of mouse button
#define BUTTONDOWN GLUT_DOWN
#define ESC 27

#endif /SPECIALKEYS H

B.2 Base Classes

B.2.1 Class Vector
1. vector.h

//vector.h
//class Vector

#ifndef VECTOR1_H
#define VECTOR!1_H

#include "types.h"
class Vector {
public:

Real x, v, z;
public:

80

Vector();
Vector(Real x0, Real y0, Real z0 = 0.0);
~Vector();

Real getX();
Real getY();
Real getZ(),
void setX(Real x0);
void setY(Real y0);
void setZ(Real z0);

void operator() (Real x0, Real y0, Real z0),
void def{Real x0, Real y0, Real z0);

-
f o

#endif /VECTOR_H
2. vector.cpp

/Ivector.cpp
//implementation for class Vector

#include "../h/vector.h"

Vector::Vector() {
X=y=z=0.0;,
}

Vector::Vector(Real x0, Real y0, Real z0) {
def{ x0. y0, 20),
}

Vector::~Vector() {

}

void Vector::operator() (Real x0, Real y0, Real z0) {
def(x0, y0, z0),
}

Real Vector::getX() {
return X,

}

Real Vector::getY() {
return y;

81

}

Real Vector::getZ() {
return z;

i

void Vector::setX(Real x0) {
x = x0;

}

void Vector::setY(Real y0) {
y =y0,
}

void Vector::setZ(Real z0) {
z=20;

i

void Vector::def(Real x0, Real yO, Real z0) {

x = x0;
y =yo0.
z = 20;

B.2.2 Class Point

1. point.h

// point.h
/I Describes a point (x, y, z) in 3-dimension.
/1 1If z=0, it is a point in 2-dimension.

#ifndef POINT_H
#define POINT _H

#include "../h/vector h"
class Point : public Vector {

public:
Point();

Point(Real x0, Real y0, Real z0 =0.0);

Point(Vector &v);
~Point();

void rotate(Real angle in_deg, const Vector &axis);

void rotate(Real angle_in_deg, Real dx, Real dy, Real dz),
void translate(Real dx, Real dy, Real dz),

void translate(const Vector &v);

void scale(Real kx, Real ky, Real kz),
P

#endif /POINT_H

2. point.cpp

// point.cpp.

// implementation for class Point

// Describes a point (X, y, z) in 3-dimension.
// If z=0, it is a point in 2-dimension.
#include <gl/glut.h>

#include ". ./h/types.h"

#include "../h/point.h"

#include "../h/vector.h"

Point::Point() {

x=0.0;
y=0.0;
z=0.0;

$

Point::Point(Vector &v) {
def{ v.x, vy, v.z),
{

Point::Point(Real x0, Real yO, Real z0) {
def{ x0, y0, 20);
}

Point::~Point() { }

void Point::rotate(Real angle _in_deg, const Vector &axis) {
glRotatef{angle_in_deg, axis.x, axis.y, axis.z);

83

}

void Point::rotate(Real angle_in_deg, Real dx, Real dy, Real dz) {
glRotatef{angle_in_deg, dx, dy, dz);,
}

void Point::translate(Real dx, Real dy, Real dz) {
x +=dx;
y +=dy;
z +=dz;

}

void Point::translate(const Vector &v) |
X += VX,

y t= vy,
Z+=Vv.Z,

)

void Point::scale(Real kx, Real ky, Real kz) {
X *=kx:

y *=ky.
z *=kz;

B.2.3 Class Color

1. color.h

//color.h
// define the RGB color of OpenGL software

#ifndef COLOR_H
#define COLOR_H

#include "vector.h"
#include "types.h"

class Color : public Vector {
public:
Color();
Color(Real r, Real g, Real b);

void operator() (Real r0, Real g0, Real b0),

84

void setRGB();
|5

#endif /COLORS_H

2. color.cpp

/[color.cpp
// implementation for class Color

#include <gl/glut.h>

#include "../h/color.h”
#include "../h/vector.h"

Color::Color() : Vector() }
}

Color::Color(Real r, Real g, Real b) : Vector(r, g, b) {
}

void Color::setRGB() {
glColor3fix. y, z);

b
'

void Color::operator() (Real rO, Real g0, Real b0)

{
def{ r0, ¢0. b0).
!

B.2.4 Class Object

1. object.h

// object.h
/I An abstract class for objects that can be drawn.

#ifndef OBJECT_H
#define OBJECT_H

#include "types.h"

#include "color.h"
#include "point.h"

85

class Object {

protected:
char* name; /I Object's name.
Point position; //the start coordinator of a project
Color color; /Ithe color of a project

public:

Object(char* inam = "Object");
~Object() {}

virtual void draw() = 0;

char* get_name() { return name; }

virtual void setPosition(Real xx, Real yy, Real zz),
virtual void setRGB(Real rr, Real gg, Real bb);

virtual void setRGB(Color col);

virtual void translate();

virtual void rotate(Real angle, Real x0, Real y0, Real z0);

virtual void scale(Real x1, Real y1, Real z1);
i-
IR}

#endif /OBJECT_H

2. object.cpp

// Drawable.cpp
// The implementation of class Drawable.

#include <gl\glut.h>
#include <ctype h>

#include "../h/object.h"
#include "../h/types.h"

// Constructor sets initial values.

Object::Object(char* iname) {
//the name of object
name = iname;

86

//set start position value of object
position.x = 0.0;

position.y = 0.0;

position.z = -10.0;

//set color value of object
color.x = 1.0;
colory = 1.0;
color.z=1.0;

}

void Object::setPosition(Real xx, Real yy, Real zz) {
position.X = Xx;
position.y = yy;
position.z = zz;

L

void Object::setRGB(Real rr, Real gg, Real bb) {
color.x = rr;
color.y = gg.
color.z = bb;

t
$

void Object::setRGB(Color col) |
color.x = col.x;
color.y = col.y;
color.z = col .z,

}

void Object::translate() {
// Move the object to its current position.
glTranslatef{ position.x, position.y, position.z),

}

void Object::rotate(Real angle, Real x0, Real yO, Real z0) {
//Rotate the object round (x0, y0, z0).
glRotatef{angle, x0, y0, z0),

}

void Object::scale(Real x1, Real yl, Real z1) {
/! Scale the object,
/I And every point in the object is multiplied
/l by the corresponding argument x1, y1, zI.
setPosition(position.x * x1, position.y * yl, position.z * z1);

87

glScalef{x1, y1, z1);

B.2.5 Class Camera

1. camera.h

//camera.h
/’header file for class Camera

#ifndef CAMERA _H
#define CAMERA_H

#include "types.h"
#include "point h"

class Camera |
private:
Point eye, target. up;
public:
Camera();
Camera(Real ex, Real ey, Real ez, Real cx, Real cy, Real cz,
Real ux, Real uy, Real uz);
~Camera() |}

// Change eye point:

void changePosition(const Point &newEye),

void changePosition(Real eye_x, Real eye vy, Real eve z).

// Change target point:

void changeTarget(const Point &newTarget),

void changeTarget(Real target_x, Real target_y, Real target z),
// Change up direction point:

void changeUpDirection(const Point &newUp);

void changeUpDirection(Real up_x, Real up_y, Realup_z);

void view();

b
#endif /CAMERA _H

2. camera.cpp

88

//camera.cpp
//implementation of class Camera

#include <gl/glut.h>
#include "../h/camera.h"

Camera::Camera() : eye(0.0, 0.0, 0.0), target(0.0, 0.0, -100.0),
up(0.0, 1.0, 0.0) {}

Camera::Camera(Real ex, Real ey, Real ez, Real cx, Real cy, Real cz,
Real ux, Real uy, Real uz): eye(ex, ey, ez), target(cx, cy, cz),
up(ux, uy, uz) { }

void Camera::changePosition(const Point &newEye) {
eye = newEye;

)

void Camera::changePosition(Real eye_x, Real eye y, Real eye 2) {
changePosition(Point(eye x, eye_y, eye z)).

!

void Camera::changeTarget(const Point &newTarget) {
target = newTarget,

}

void Camera::.changeTarget(Real target_x, Real target_y, Real target z) {
changeTarget(Point(target_x, target vy, target_z));
§

void Camera::changeUpDirection(const Point &newUp) {
up = newUp:

}

void Camera::changeUpDirection(Real up_x, Real up_y, Real up_z) {
changeUpDirection(Point(up_x, up_v, up_z));
}

void Camera::view() {
gluLookAt(eye x, eye.y, eye.z, target.x, target.y, target.z,
up.x, up.y. up.z).

89

B.2.5 Class Window

1. window.h

/MWindow.h
/MMake preparing for creating a window.

#iftndef WINDOW _H
#define WINDOW_H

#include "types.h"
#include "vector.h"

#include "color.h"

class Window |

private:
int width; //the size of the window (width, height)
int height:
int X, vy. //start position (X, y)
char* title; //display title on top of the window
Color winCol.
Real alpha;

public:

Window(int w = 600, int h = 400. int ix = 10, int iy = 10, char* t = "");
Window(char* t);
~Window(),

//set the original size ot the window.
void setSize(int w, int h);

//set the start position (x, y).
void setPosition(int xx, int yy),

//set the background color of the window.
void setBGColor(Real br, Real bg, Real bb, Real ba = 1.0);

void setBGColor(Color c¢);

void draw();

90

void clear();

%
#endif //WINDOW_H

2. window.cpp

// Window.cpp.
// implementation of the class Window

#include <gl/glut.h>

#include "../h/window.h"
#include ". /h/types.h"
#include "../h/vector.h"
#include ". /h/color.h"

Window::Window(int w, int h, int ix, int iy, char* t) {
width = w;
height = h;

X =IX;y =1y,
title = t;

//default background color is black.
winCol.x = 0.0;
winCol.y = 0.0;
winCol.z = 0.0;

alpha = 1.0;
}

Window::Window(char* t) : title(t) {
width = 600;
height = 400;
x =y =150,
winCol.x = 0.0;
winCol.y = 0.0;

winCol.z = 0.0;

alpha = 1.0;

91

Window::~Window() {
delete title;

}

void Window::setSize(int w, int h) {
width = w;
height = h;

}

void Window::setPosition(int xx, int yy) {
X = XX,
y=yy.

|

void Window::setBGColor(Real br, Real bg, Real bb, Real ba) !
winCol x = br;
winCol.y = bg;
winCol.z = bb;

alpha = ba;
}

void Window::setBGColor(Color ¢) {
winCol.x = c.x;
winColy = c.y;
winCol.z = ¢.z;

]

void Window::clear() {
glClearColor(winCol.x, winCol.y, winCol.z, alpha),
glColor4f(winCol x, winCol.y, winCol.z, alpha);

giClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
f

void Window::draw() |
glutlnitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);,
glutInitWindowSize(width, height),
glutInitWindowPosition(x, y);
glutCreateWindow(title);

clear();

—

B.2.6 Class KeyReaction

1. keyreact.h

//key_react.h
//An abstract class for keyboard and mouse

#ifndef KEY_REACT H
#define KEY_REACT_H

class KeyReaction {
public:
KeyReaction() { }
~KeyReaction() {}
virtual void explain() = 0.
virtual void setKeys(unsigned int key){ }
virtual void setFunctionKeys(unsigned int key){ }

virtual void setMouseButton(int button, int state)] !

b
#endif /KEY_REACT_H

2. keyreact.cpp

B.3 The Running Car Animation

B.3.1 Class Disk

1. disk.h

//disk.h
//head file for class Disk

#ifndef DISK_H
#define DISK_H

#include "./../base/h/object.h"”

#include "../. /base/h/types.h"

class Disk : public Object {
private:
QuadricObj *dobj;
Double innerRadius, outerRadius;
int slices, rings;
public:
Disk();
Disk(char* dn);

void setParameters(QuadricObj *p, Double ir, Double or, int sl, int rg);
void setColor(const Color &col);

void draw(),

N
#endif //DISK_H

2. disk.cpp

//disk.cpp
//implementation tor class Disk

#include <gl/glut. h>
#include "../h/disk.h"

Disk::Disk() : Object() {
}

Disk::Disk(char* dn) : Object(dn) {
dobj = 0;
innerRadius = 0.0;
outerRadius = 1.0;
slices = 25;
rings = §;

)

void Disk::setParameters(QuadricObj *p, Double ir, Double or, int sl, int rg) {
dobj = p;
innerRadius = ir;
outerRadius = or;
slices = sl;
rings = rg;

94

}

void Disk::setColor(const Color &col)
setRGB(col);
}

void Disk::draw() {
glPushMatrix();
glColor3f{color.x, color.y, color.z);
gluDisk(dobj, innerRadius, outerRadius, slices, rings);
glPopMatrix();

B.3.2 Class Cylinder

1. cylinder.h

/lcylinder.h
//head file for class Cylinder

#itndef CYLINDER_H
#define CYLINDER_H

#include "../../base/h/object.h”
#include "../. ./base/h/types.h"

//Draw a cylinder oriented along the z axis, with the base of the cylinder
//at z = 0 and the top at z = height. And it is subdivided around the z axis
//into a number of slices and alond the z axis into a number of stacks.
/fbaseRadius is the radius of the cylinder at z = 0.
class Cylinder : public Object {
private:

QuadricObj *coby;,

Double baseRadius, topRadius, height;

int slices, stacks;
public:

Cylinder(char* dn);

~Cylinder() {}

void setParameters(QuadricObj *p, Double br, Double tr. Double h,
int sl, int st);

void setColor(const Color &col);

95

N

void draw();

#endif /CYLINDER_H

2. cylinder.cpp

/fcylinder.cpp
/fimplementation for class Cylinder

#include <gl/glut.h>

#include "../h/cylinder.h"

Cylinder::Cylinder(char* dn) : Object(dn) {

}

cobj = 0;
baseRadius = 1.0;
topRadius = 1.0;
height = 1.0,
slices = 10;
stacks = 10;

void Cylinder::setParameters(QuadricObj *p. Double br, Double tr, Double h,

}

int sl, int st) {
cobj = p;
baseRadius = br;
topRadius = tr;

height = h;
slices = sl
stacks = st

void Cylinder::setColor(const Color &col) {

}

setRGB(col);

void Cylinder::draw() {

glPushMatrix();

glColor3f{color.x, color.y, color.z);

gluCylinder(cobj, baseRadius, topRadius, height, slices, stacks);
glPopMatrix();

96

B.3.3 Class Car

1. car.h

//car.h
//definition of class Car

#ifndef CAR_H
#define CAR_H

#include "../../base/h/object.h"
#include "../. /base/h/types.h"
#include "../. /base/h/color.h"

#include "disk.h"
#include "cylinder.h"

class Car : public Object {

private:
Cylinder carBody;,
Disk bodyFront, bodyRear;
Cylinder frontAxle, rearAxle;
Disk frontLeftWheel, frontRightWheel;
Disk rearLeftWheel, rearRightWheel;
Color bodyColor, axleColor, wheelColor;

Real length; //length of a car body

Real frontRadius, rearRadius; //the radius of two side ot a car body
Real axleRadius; //the axle radius of a car

Real wheelRadius; //wheel radius of a car

QuadricObj *p; //quadrics object
public:
Car(char *nm),

~Car() {}

void setBodyColor(Color ¢);
void setAxleColor(Color ¢);
void setWheelColor(Color ¢);

void setStartPosition(Real x0, Real y0, Real z0);
void setStartPosition(Vector &pos);,

void setBodyParam(Real I, Real fr, Real rr);
void setAxleRadius(Real ar);

void setWheelRadius(Real wr);

97

}

void setStartPosition(Real x0, Real y0, Real z0);

void setStartPosition(Vector &pos);

void setBodyParam(Real |, Real fr, Real rr);

void setAxleRadius(Real ar);
void setWheelRadius(Real wr);
void setQuadricObj(QuadricObj *pl);

void draw():

#endif //CAR_H

2. car.cpp

/[car.cpp
//implementation for class Car

#include <gl/glut.h>

#include "../h/car.h”

Car::Car(char* nm) : Object(nm), carBody("carBody"). bodyFront("bodyFront"),
bodyRear("bodyRear"), frontAxle("frontAxle"). rearAxle("rearAxle"),

frontLeftWheel("frontLeftWheel"),

rearLeftWheel("rLW"),

{

}

rearRightWheel("rRW")

bodyColor(0.4f, 0.0f, 0.6f);
axleColor(0.4f, 0.4f, 0.41);
wheelColor(1.0f, 0.0f, 0.0f);

position.x = 0.0f;
position.y = 0.0f;
position.z = 3.0f:

length = 12.0f;
frontRadius = 1.0f;
rearRadius = 2.0f:
axleRadius = 0.5f;
wheelRadius = 2.0f;
p=0;

void Car::setBodyColor(Color c) {

98

frontRightWheel("fRW"),

}

void Car::setWheelColor(Color ¢) {
wheelColor = c;

}

void Car::setStartPosition(Real x0, Real y0, Real z0) {
Object::setPosition(x0, y0, z0);
}

void Car::setStartPosition(Vector &pos) {
position.x = pos.x;
position.y = pos.y;
position.z = pos .z,

)

void Car::setBodyParam(Real |, Real rr, Real fr) |
length = I;
frontRadius = fr;
rearRadius = rr;

'

void Car::setAxleRadius(Real ar) |
axleRadius = ar;

}

void Car::setWheelRadius(Real wr) {

wheelRadius = wr;
v
1]

void Car::setQuadricObj(QuadricObj *pl) {
p=pl;
}

void Car::draw() {
// Draw the car: body first. The car is facing +X,
// and up is +Z. Save current transformation.
glPushMatrix();
glTranslatef{position.x, position.y, position.z),
glRotatef(95.0, 0.0, 1.0, 0.0);

carBody.setColor(bodyColor);

carBody.setParameters(p, rearRadius, frontRadius, length, 10, 12):
carBody.draw();

99

bodyRear.setColor(bodyColor);
bodyRear.setParameters(p, 0.0, rearRadius, 25, 5);
bodyRear.draw();

glTranslatef{0.0, 0.0, length);

bodyFront.setColor(bodyColor);
bodyFront.setParameters(p, 0.0, frontRadius, 20, 5);
bodyFront.draw();

glPopMatrix();

// Rear axle and wheels.
glPushMatrix();
glTranslatef{ position.x + length * 0.25f,
position.y - (rearRadius + 2.0f * axleRadius),
rearRadius);

glRotatef(90.0, -1.0, 0.0, 0.0);

rearAxle.setColor(axleColor);
rearAxle.setParameters(p, axleRadius, axleRadius,

2.0 * rearRadius+rearRadius, 10, 12);
rearAxle.draw();

rearLeft Wheel.setColor(wheelColor);

rearLeftWheel setParameters(p, 0.0, wheelRadius, 25, 5);
rearLeftWheel. draw();

glTranslatef(0.0, 0.0, 2.0*rearRadius+rearRadius);

rearRightWheel.setColor(wheelColor);
rearRightWheel setParameters(p, 0.0, wheelRadius, 235, 5),
rearRightWheel.draw();

glPopMatrix();

// Front axle and wheels.
glPushMatrix();
glTranslatef{position.x + length * 0.75f;
position.y - (frontRadius + 2.0f * axleRadius),
frontRadius);

glRotatef(90.0, -1.0, 0.0, 0.0);
frontAxle setColor(axleColor);

frontAxle.setParameters(p, axleRadius, axleRadius,

100

3.0 * frontRadius + frontRadius, 10, 12);
frontAxle.draw();

frontLeftWheel setColor(wheelColor);
frontLeftWheel. setParameters(p, 0.0, wheelRadius/2.0f, 25, 5);
frontLeftWheel.draw();

glTranslatef(0.0, 0.0, 3.0*frontRadius+frontRadius);

frontRightWheel setColor(wheelColor);
frontRightWheel.setParameters(p, 0.0, wheelRadius/2.0f, 25, 5);
frontRightWheel.draw();

glPopMatrix(),

B.3.4 Class House

1. house.h

//house.h
//the header file for class House

#ifndef HOUSE_H
#define HOUSE _H

#include <gl/glut.h>

#include "../../base/h/object.h"
#include "../../base/h/color.h"
#include "../../base/h/point.h"

class House : public Object {

Real size;

Color wallColor, roofColor, doorColor;
public:

House(char* nm);

~House() {}

void setPosition(Real x0, Real y0, Real 20 =0.0);
void setPosition(Point &sp);

void setSize(Real sz);

void setWallColor(Color &wc);

void setDoorColor(Color &dc);

void setRoofColor(Color &rc);

101

void draw();

b
#endif /HOUSE_H

2. house.cpp

//house.cpp
//implementation of class House

#include "../h/house. h"

House::House(char* nm) : Object(nm) {
position.x = 0.0;
position.y = 0.0;
position.z = 0.0;

wallColor(0.7f, 0.4f, 0.2f); //default color of wall
roofColor(0.8f, 0.0f, 0.2f); //default color of roof
size = 1.0;

}

void House::setPosition(Real x0, Real yO, Real z0) {
Object::setPosition(x0, y0, z0);
;

void House::setPosition(Point &sp) {
setPosition(sp.x. sp.y, sp.z),

]

void House: setSize(Real sz) {
size = sz,

)

void House::setWallColor(Color &wc) {
wallColor = wc;

}

void House::setDoorColor(Color &dc) {
doorColor = dc;

}

void House::setRoofColor(Color &rc) §{
roofColor = rc;

102

}

void House::draw() {
//Draw a house
glPushMatrix();

glTranslatef{ position.x, position.y, position.z),
glScalef{ size, size, size);

giBegin(GL_QUADS),
wallColor.setRGB();
glVertex3f{ 1.0, -1.0, 0.0); /fWall 1
giVertex3f{ 1.0, -1.0, 1.0),
glVertex3f{ -1.0,-1.0, 1.0);
giVertex3f{ -1.0, -1.0, 0.0);

glVertex3f(1.0, -1.0,0.0); // Wall 2
glVertex3f{ 1.0, 1.0, 0.0);
glVertex3t(1.0, 1.0, 1.0);
glVertex3f(1.0, -1.0, 1.0);

glVertex3f(-1.0, 1.0, 0.0), // Wall 3
glVertex3f{ -1.0, 1.0, 1.0),
glVertex3f(1.0. 1.0, 1.0);
glVertex3f(1.0, 1.0,0.0);

glVertex3f(-1.0,-1.0, 1.0); // Wall 4
glVertex3f{ -1.0, 1.0, 1.0),
glVertex3f(-1.0, 1.0,0.0);
glVertex3t(-1.0, -1.0,0.0);

doorColor.setRGB();
glVertex3f(1.0, 0.3f,0.0); // door
glVertex3f{ 1.0, 0.3f, 0.6f);
glVertex3f{ 1.0, -0.3f, 0.6f),
glVertex3f{ 1.0, -0.3f, 0.0);
glEnd();

glBegin(GL_TRIANGLES),
wallColor.setRGB();
glVertex3f{ -1.0, -1.0, 1.0); // Roof side 1
glVertex3f{ 0.0, -1.0, 1.5);
glVertex3f{ 1.0,-1.0, 1.0);

glVertex3f{ -1.0, 1.0, 1.0); // Roof side 2

103

glVertex3f(0.0, 1.0, 1.5);
glVertex3f(1.0, 1.0, 1.0);
glEnd();

giBegin(GL_QUADS),
roofColor.setRGB();

glVertex3f{ 1.05f, -1.05f, 0.95f); // Roof side 1
glVertex3f{ 0.0f, -1.05f, 1.5f);

glVertex3f{ 0.0f, 1.05f, 1.5F);

glVertex3f{ 1.05f, 1.05f, 0.95f);

glVertex3f{ -1.05f, -1.05f, 0.95f); // Roof side 2
glVertex3f(0.0f, -1.05f, 1.5f);
glVertex3f(0.0f, 1.05f, 1.5f);
glVertex3f{ -1.05f, 1.05f, 0.95f):
glEnd(),

glPopMatrix():

B.3.5 Class Mouse

1. mouse.h

//mouse.h
//definition of class Mouse

#ifndef MOUSE _H
#define MOUSE_H

#include "../../base/h/keyreact.h"

class Mouse : public KeyReaction {
public:
Mouse() : KeyReaction() {}
~Mouse() {}

void explain();
//following methods have to use some global objects,
//they should be implemented in the application model.

void setMouseButton(int Button, int state) {}
void move(int x, int y);,

104

¥
#endif /MOUSE_H

2. mouse.cpp

//mouse.cpp
/limplementation of the method in class Mouse

#include <stdio.h>
#include ". \h\mouse.h"

void Mouse::explain() {
printf("\a\nHere are the meanings for using mouse:\n");
printf{"Moving mouse can change the position of the picture display.\n");

B.3.6 Class Keyboard

1. keyboard.h

/fkeyboard.h
//definition of class Keyboard

#ifndef KEYBOARD _H
#define KEYBOARD H

#include "../../base/h/keyreact.h"

class Keyboard : public KeyReaction {
public:
Keyboard() : KeyReaction() {}
~Keyboard() {}

void explain();

//following methods have to use some global objects,
//they should be implemented in the application model.
void setViewpoint();

void setKeys(unsigned int key);

void setFunctionKeys(unsigned int key);

55
#endif /KEYBOARD H

105

2. keyboard.cpp

/lkeyboard.cpp
//implementation of method of class Keyboard

#include <stdio.h>
#include ". \h\keyboard.h"

void Keyboard::explain() {
printf{"\a\nHere are the keys you can use:\n");

printf("F1 ... Static viewpoint and stationary camera.\n");

printf("F2 ... Static viewpoint inside the track; camera follows car.\n");
printf("F3 ... Static viewpoint outside the track; camera follows car.\n");
printf("F4 ... Driver's point of view.\n");

printf("FS ... Drive around while looking at a house.\n");

printf("F6 ... View looking backwards from another car.\n");
printf("F7 ... View from beside the car.\n");

printf("F8 ... View from a balloon.\n");

printf("F9 ... View from a helicopter.\n");

printf("f10 ... views change at random intervals.\n");

printf("end ... Exit program\n\n");

printf("Left/right arrow ... Zoom out/in.\n");
printf{"Up/down arrow ... Change the height of viewpoint.\n\n");

printf("b (B) ... Bumpiness control switch.\n");
printf("< (,) ... More bumpiness.\n"),
printf("> () ... Less bumpiness.\n\n"),
printf("f (F) ... Fog control switch.\n");
printf("+ (=) ... Increase fog density.\n");
printf("- () ... Decrease fog density.\n\n"),
printf{"\nESC ... Exit program\n");,

B.3.7 Header File includefiles.h

/fincludes.h
//one header file including all application files

#ifndef INCLUDES H
#define INCLUDES _H

106

#include "../../base/h/specialkeys.h"
#include "../../base/h/types.h"

#include "../../base/h/window.h"
#include "../../base/h/object.h"
#include "../../base/h/vector.h"
#include "../../base/h/point.h"
#include "../../base/h/color.h"
#include "./../base/h/camera.h"

#include "disk.h"
#include "cylinder h"
#include "car.h"
#include "house.h"
#include "keyboard.h"
#include "mouse.h"

#endif /INCLUDES_H

B.3.8 File carmodel.cpp

//application.cpp
//define the needed constants, global variables, callback functions
//draw the three-dimensional animation

#include <gl/glut.h>

#include <iostream.h>
#include <math.h>
#include <stdlib h>

#include "Wincludefiles.h"

//some constant variables

const Real PI = 3.1415926f;

const Real TWO_PI = 2.0f * PI,

const Real RAD_TO_DEG = 180.0f/ PI,

const Real INNER_RADIUS = 90.0;

const Real TRACK_WIDTH = 20.0;

const Real TRACK_MIDDLE = INNER_RADIUS + 0.5 * TRACK_WIDTH;

enum { // Constants for different views
DISTANT, INSIDE, OUTSIDE, DRIVER, HOUSE,

107

OTHER, BESIDE, BALLOON, HELICOPTER, AUTO

} view = DISTANT;

const Color bg_col(0.5, 0.5, 0.5), /[color of background
const Color grass_color(0.0, 0.8f, 0.1f); //color of grass
const Color road_color(0.2f, 0.2f, 0.2f); //color of road

const Real fog[4] = { 0.7f, 0.7f, 0.7f, 1.0 };

// Global variables.

Real car_direction = 0.0;
Real car_x_pos = 100.0;
Real car_y_pos =0.0;
Real car_z_pos =0.0;

Real height =5.0;
Real zoom = 50.0;

Real mouse_x =0.0;
Real mouse_y =0.0;

int win_width = 600;
int win_height = 400,

bool movie_mode = false;
long clock = 0;

long next_switch_time = 0;

bool fog_enabled = false;
Real fog_density = 0.01f;
Real bumpiness = 0.0;

//some objects

Car car("car");
Disk grass("grass"),
Disk road("road");

QuadricObj *p;

// Variables for moving car.

/I Viewer's height

// Camera zoom setting

// Mouse coordinates

// Window dimensions

// Change viewpoint periodically.

/I Fog data.

/l Bumpy road.

// Pointer for quadric objects.

Camera camera(250.0, 0.0, 20.0 * height,

0.0, 0.0, 0.0,
0.0,0.0,1.0);

void drawCar() {

108

Camera camera(250.0, 0.0, 20.0 * height,
0.0, 0.0, 0.0,
0.0,0.0,1.0);

void drawCar() {
// Draw the car: The car is facing +X, and up is +Z.
car.setQuadricObj(p);
car.draw();

}

void drawHouse (char* nm. GLfloat x, GLfloat y, GLfloat size) {
// Draw a house.
House house(nm);
house.setSize(size);
house.setPosition(x, y);

house.draw();

}

/l Draw a patch of grass, a circular road, and some houses.
void drawScenery () {
grass.setColor(grass_color);
grass.setParameters(p, 0.0, INNER_RADIUS, 50. 5):
grass.draw():
road.setColor(road_color);
road.setParameters(p, INNER_RADIUS,
INNER_RADIUS + TRACK_WIDTH. 50. 5);
road.draw();

drawHouse("housel"”, -20.0, 50.0, 5.0);
drawHouse("house2”, 0.0, 70.0, 10.0);
drawHouse("house3", 20.0, -10.0, 8.0);
drawHouse("house4", 40.0, 120.0, 10.0);
drawHouse("house5™”, -30.0, -50.0, 7.0);
drawHouse("house6"”, 10.0, -60.0, 10.0);
drawHouse("house?7", -20.0, 75.0, 8.0);
drawHouse("house8", -40.0, 140.0, 10.0);
}

/l Reset the projection when zoom setting or window shape changes.
void setProjection () {
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(zoom, GLfloat(win_width) / GLfloat(win_height),
1.0, 500.0);

109

glFogf{GL_FOG_DENSITY, fog_density);
}

//the implementation of some member functions of class Keyboard
void Keyboard::setViewpoint () {

// Use the current viewpoint to display.

switch (view) {

case DISTANT:
// Static viewpoint and stationary camera.

camera.changePosition(250.0, 0.0, 20.0*height);
camera.changeTarget(0.0, 0.0, 0.0);
camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawScenery();
// Move to position of car.
glTranslatef{car_x_pos, car_y_pos, car_z_pos);

// Rotate so car stays parallel to track.
glRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, -1.0);

drawCar();
break;

case INSIDE:
// Static viewpoint inside the track; camera follows car.
camera.changePosition(85.0, 0.0, height);
camera.changeTarget(car_x_pos, car_y_pos, 0.0);
camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawScenery();

glTranslatef{car_x_pos, car_y_pos, car_z_pos);
glRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, -1.0);

drawCar();
break;

case OUTSIDE:

// Static viewpoint outside the track; camera follows car.
camera.changePosition(115.0, 0.0, height),
camera.changeTarget(car_x_pos, car_y pos, 0.0);

110

camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawScenery();

glTranslatef{car_x_pos, car_y_pos, car_z_pos);
glRotateflRAD_TO_DEG * car_direction, 0.0, 0.0, -1.0);

drawCar();
break;

case DRIVER:
// Driver's point of view. gluLookAt() is defined in "car space".
/1 After drawing the car, we use inverse transformations to show
/1 the scenery. The same idea is used for OTHER and BESIDE.
camera.changePosition(2.0, 0.0, height);
camera.changeTarget(12.0, 0.0, 2.0);
camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawCar();

glRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, 1.0);
glTranslatef(- car_x_pos, - car_y_pos, car_z_pos);

drawScenery(),
break;

case HOUSE:
// Drive around while looking at a house. The first rotation
/1 couteracts the rotation of the car. gluLookAt() looks from
// the driver's position to the house at (40,120).
glRotatef(RAD_TO_DEG * car_direction, 0.0, -1.0, 0.0);

camera.changePosition(2.0, 0.0, height);
camera.changeTarget(40.0-car_x_pos, 120.0-car_y_pos, car_z_pos);
camera.changeUpDirection(0.0, 0.0, 1.0);

camera.view();

drawCar();

glRotateflRAD_TO_DEG * car_direction, 0.0, 0.0, 1.0);
glTranslatef{- car_x_pos, - car_y_pos, car_z_pos);

drawScenery();,

111

break:

case OTHER:
// View looking backwards from another car.
camera.changePosition(25.0, 5.0, height);
camera.changeTarget(0.0, 0.0, 3.0+car_z_pos);
camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawCar();

glRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, 1.0);
glTranslatef{- car_x_pos, - car_y pos, 0.0);

drawScenery();
break;

case BESIDE:
/I ' View from beside the car.
camera.changePosition(5.0, 15.0, height);
camera.changeTarget(5.0, 0.0, 3.0+car_z_pos);
camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawCar();

glRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, 1.0);
glTranslatef{- car_x_pos, - car_y_pos, 0.0);

drawScenery();
break;

case BALLOON:
/I View from a balloon.
camera.changePosition(150.0, 75.0, 250.0);
camera.changeTarget(200.0*mouse_x, 200.0*mouse_y, 0.0);
camera.changeUpDirection(0.0, 0.0, 1.0);
camera.view();

drawScenery(),

glTranslatef{car_x_pos, car_y_pos, car_z_pos),
giRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, -1.0);

drawCar();

112

break;

case HELICOPTER:

!

// View from a helicopter.

camera.changePosition(200.0 * mouse_x, 200.0 * mouse_y, 200.0);
camera.changeTarget(0.0, 0.0, 0.0);
camera.changeUpDirection(0.0, 0.0, 1.0);

camera.view();,

drawScenery();

glTranslatef{car_x_pos, car_y_pos, car_z_pos);
glRotatef(RAD_TO_DEG * car_direction, 0.0, 0.0, -1.0);

drawCar();
break;

void Keyboard::setKeys(unsigned int key) {
switch (key) {

case 'b":

case 'B"

case '<'

case "

case ™'

case '

// Bumpiness control.
if (bumpiness == 0.0) {
cout << "Bumpy road! Use',' and >' to change bumpiness."
<< end]l,
bumpiness = 0.1f;
}
else {
cout << "Smooth road again!" << endl,
bumpiness = 0.0;
}
break;

// More bumpiness.

bumpiness /= 2.0;
break;

// Less bumpiness.

113

bumpiness *=2.0;

break;
case'f":
case 'F":
// Fog control.
if (fog_enabled) {
glDisable(GL_FOQG);
cout << "It's a clear day!" << endl,
fog_enabled = false;
}
else {
glEnable(GL_FOG);
cout << "[t's foggy: use +/- to change fog density." << endl,
setFogDensity(0.01f);
fog_enabled = true;
}
break;
case '+"
case '=":
/l Increase fog density.
setFogDensity(2.0 * fog_density);
break;
case '-":
case' "
// Decrease fog density.
setFogDensity(0.5f * fog_density);,
break;
case ESC:
exit(0);
break;
default:
break;

}

void Keyboard::setFunctionKeys(unsigned int key) {

// Set viewpoint from function keys.
switch (key) {

case LEFTARROWKEY::

114

zoom *= 1 .2f

setProjection();
break;

case RIGHTARROWKEY:
zoom /= 1.2f

setProjection();
break;

case UPARROWKEY:
height += 1.0;
break;

case DOWNARROWKEY:
height -= 1.0,
break;

case FIKEY:

movie_mode = false;
view = DISTANT,
break;

case F2KEY:
movie_mode = false;
view = [NSIDE;
break;

case F3KEY:
movie_mode = false;
view = QUTSIDE:
break;

case F4KEY:
movie_mode = false;
view = DRIVER;

height = 6.0;
zoom = 75.0;
setProjection();
break;

case FSKEY:
movie_mode = false;
view = HOUSE;

115

break;

case F6KEY:
movie_mode = false;
view = OTHER;
break;

case F7TKEY:
movie_mode = false;
view = BESIDE;
break;

case FRKEY:
movie_mode = false;
view = BALLOON;
break;

case FOKEY:
movie_mode = false;
view = HELICOPTER;
break;

case FIOKEY:
movie_mode = true;
clock = 0;
next_switch_time = 0,
break;

case ENDKEY:
exit(0);
}
}

//the implementation of the method of class Mouse

void Mouse::move (int x, int y) {
/1 Get mouse position and scale values to [-1, 1].
mouse_x = (2.0 * x) / win_width - 1.0;
mouse_y = (2.0 * y) / win_height - 1.0;

}

//an object of class Keyboard
Keyboard kb;

//an object of class Mouse
Mouse mouse;

116

//callback functions

void display (void) {
// The display callback function.
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
giMatrixMode(GL_MODELVIEW);,
glLoadldentity();

kb.setViewpoint();

glutSwapBuffers();
}

void reshape (GLint new_width, GLint new_height) {
// Window reshaping function.
win_width = new_width;
win_height = new_height;
glViewport(0, 0, win_width, win_height);

setProjection();

'

void drive () {
/1 1dle callback function moves the car. Since this function
// posts redisplay whenever there is nothing else to do,

// we do not need any other calls to glutPostRedisplay().
car_direction += 0.05f;

if (car_direction > TWQ_PI)
car_direction -= TWQ_PI,

car_x_pos = TRACK_MIDDLE * sin(car_direction);
car_y_pos = TRACK_MIDDLE * cos(car_direction),
car_z_pos = (bumpiness * rand()) / RAND_MAX;

if (movie_mode) {
clock++;

if (clock > next_switch_time) {
next_switch_time += 20 + rand() % 200,

switch (rand() % 7) {

case 0:
view = DISTANT;
break;

117

case |:
view = INSIDE;
break;

case 2:
view = OUTSIDE;
break;

case 3:
view = DRIVER;
break;

case 4:
view = HOUSE;
break;

case 5:
view = OTHER,
break;

case 6:
view = BESIDE;
break;

)

}
glutPostRedisplay();

}

//some callback function for controlling the animation
void mouseMove (int x, int y) {
mouse.move(x, v),

}

void keyboard(unsigned int key, int x, int y) {

kb.setKeys(key).
h

void functionKeys(int key, int x, int y) {

kb.setFunctionKeys(key),
H

void showGraphics() {
// Initialize and create a window.
Window theWindow("Major Report"),
theWindow .setSize(win_width, win_height);
theWindow.setBGColor(bg_col);
theWindow.draw();

118

// handling window and input events.
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutldleFunc(drive);
glutPassiveMotionFunc(mouseMove);
glutKeyboardFunc(keyboard);
glutSpecialFunc(functionKeys),

/I Select GL options.
glEnable(GL_DEPTH_TEST);

p = gluNewQuadric();

gluQuadricDrawStyle(p, GLU_FILL),

giFogi(GL_FOG_MODE, GL_EXP),
glFogfv(GL_FOG_COLOR, fog);

glFogf(GL_FOG_DENSITY, fog_density);

// Initialize projection.
setProjection();

// draw the window and projects.
glutMainLoop():

B.3.9 File runningcar.cpp

//main.cpp

#include <iostream_h>
/l#include <gl/glut. h>

//#include "h/globals.h"
/l#include "globals.h"

extern void showGraphics();

int main () {

// Instruct user.
cout <<"Change view point:"

119

<< end] <<

" Press keys FI, F2, ..., F9. Movie mode: F10." <<endl <<

"Bumpiness:" << endl <<
" Press 'b' to toggle bumpy road conditions." << endl <<
" Press '<' (">') to decrease (increase) bumpiness." << endl <<
"Fog:" <<endl <<
" Press 'f' to toggle fog effect." << endl <<
" Press'+' ('-') to increase (decrease) fog." << endl <<
"Quit:" << end] <<
" Press ESC to stop program." << endl <<
"Keep window small for fast action!” << endl,

//draw the running car system
showGraphics();

return O;

B.4 The Planet and its Moon System

This system use same basic classes and header files as the running car animation,
including the header files types.h, specialkeys.h, and the class Vector, Point, Color,
Object, Camera, Window, KeyReaction, Mouse, and Keyboard. The codes of other

files are listed as following.

B.4.1 Class Sphere

1. sphere.h

//sphere.h
//head file for class Sphere

#ifndef SPHERE H
#define SPHERE H

#include "object.h"”
#include "types.h"

//Using particular radius draw a color solid sphere.
//And its surface is subdivided into a number of slices

120

// and a number of stacks.
class Sphere : public Object {
private:
Double radius;
int slices, stacks;
public:
Sphere(char* sp),
~Sphere() {}
void setParameters(Double ra, int sl, int st);

void setColor(const Color &col);
void setColor(Real r, Real g, Real b),

void draw();

b
#endif /SPHERE_H
2. sphere.cpp

//sphere.cpp
//implementation for class Sphere

#include <gl/glut. h>
#include "../h/sphere.h"

Sphere::Sphere(char* sp) : Object(sp) {

radius = 1.0;
slices = 20;
stacks = 10;

}

void Sphere::setParameters(Double ra, int sl, int st) {

radius = ra;
slices = sl;
stacks = st;

}

void Sphere::setColor(const Color &col) {
setRGB(col);

121

}

void Sphere::setColor(Real r, Real g, Real b) {
setRGB(r, g, b);
}

void Sphere::draw() {
glPushMatrix();
glColor3f{color.x, color.y, color.z);

glutSolidSphere(radius, slices, stacks);
glPopMatrix();

-

B.4.2 Class LightSource

1. light.h

/Might.h
//the definition of class LightSource

#ifndef LIGHT H
#define LIGHT_H

#include ". /h/types.h"
#include "../h/point.h"

class LightSource {
private:
Real ambient[4];
Real diffuse[4];
Real specular[4];

Point position;

Real dull{ 1],
public:

bool show;
public:

LightSource();

~LightSource();

void setLightAmbient(const Real* amb);

122

* void setLightDiffuse(const Real* diff);
void setLightSpecular(const Real* spec);
void setLightShininess(const Real* d);

void setLightPosition(Real* pos),
void setLightPosition(Point pos);

void indicate();

b
#endif //LIGHT _H
2. light.cpp

/Night.cpp
//implementation of class LightSource

#include <glut.h>
#include <math.h>

#include ". ./h/light h"
LightSource::LightSource() {

show = false;
y

LightSource::~LightSource() {
'

void LightSource::setLight Ambient(const Real* amb) {
for (inti=0;i < 4, i++)
ambient[i] = amb[i],

}
void LightSource::setLightDiffuse(const Real* diff) {
for (inti=0;i < 4; i++)
diffuse[i] = diff[i];
b

void LightSource::setLightSpecular(const Real* spec) {
for (int i = 0; i < 4; i++)

ambient[i] = spec[i];
}

void LightSource::setLightPosition(Point pos) {
position.x = pos.x;
position.y = pos.y;
position.z = pos.z;

}
void LightSource::setLightPosition(Real* pos) {

position.x = pos[0];
position.y = pos[1];
position.z = pos[2];

}

void LightSource::setLightShininess(const Real* d) {
dull[0] = d[0];

3
)
void LightSource::indicate() {

Real lightPos{4] = {position.x, position.y, position.z, 0.0f};

if (show == true) {
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);,

glMaterialf/(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf/(GL_FRONT, GL_DIFFUSE, diffuse);

giMatenalfv(GL_FRONT, GL_SPECULAR, specular);
giMatenalfv(GL_FRONT, GL_SHININESS, dull),

glPushMatrix(). /1 position of the light
glLightfv(GL_LIGHTO, GL_POSITION, lightPos);,
glPopMatrix();

else
giDisable(GL_LIGHTO);,

B.4.3 Header File includefiles.h

/lincludefiles.h
/!

#ifndef INCLUDEFILES_H
#define INCLUDEFILES_H

#include "window.h"
#include "color.h"
#include "sphere.h"
#include "light.h"
#include "camera.h"
#include "specialkeys h"
#include "types.h"
#include "keyreact.h"
#include "keyboard.h"
#include "mouse.h"

#endif /INCLUDEFILES H

B.4.4 File planetmodel.cpp

//planet.cpp

//define needed constants, global variables, callback functions
//draw the planet and its moon

#include <GL/glut.h>
#include <math.h>

#include "h/includetiles. h"

//some constant variables

const Color bg_color(1.0, 1.0, 1.0); //background color
const int win_width = 600; //size of window

const int win_height = 500;

const Color earth_col(0.0, 0.0, 0.0);
const Color moon_col(0.0, 0.0, 0.0);

enum { X, Y, Z } axis=X;
enum {FORWORD, UPWORD, LEFT, RIGHT} viewpoint = FORWORD,;

125

const Real white[] = {1.0, 1.0, 1.0, 1.0}; // for lighting
const Real blue[] = {0.0, 0.0, 1.0, 1.0};
const Real dull[] = {100.0};

const Real rootTwo = sqrt(2.0);

/Isome needed global variables

Real vxpos = 7.0, vypos = 7.0, vzpos = 7.0;

Real alpha = 30.0;

Real w = 600, h = 500, //for zoom in/out

bool rot = false; //for rotate
Real x_angle = 0.0;
Real y_angle = 0.0;
Real z_angle =0.0;

Real pos[] ={1.0, 1.0, 1.0,0.0}; //default light position
Real la = 45.0; //original value for change light direction

//define objects
Sphere earth("earth"),
Sphere moon("moon"),

Camera camera(1.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 1.0,0.0);

LightSource light;

//some member functions of class Keyboard
void Keyboard::setViewpoint()
{
switch (viewpoint)
{
case FORWORD:
camera.changePosition(0.0, 0.0, vzpos);
camera.changeTarget(0.0, 0.0, 0.0);
camera.changeUpDirection(0.9, 1.0, 0.0);
camera.view();
break;

case UPWORD:
camera.changePosition(0.0, vypos, 0.0);
camera.changeTarget(0.0, 0.0, 0.0);

126

camera.changeUpDirection(0.0, 0.0, -1.0);
camera.view();
break;

case LEFT:
camera.changePosition(-vxpos, 0.0, 0.0);
camera.changeTarget(0.0, 0.0, 0.0),
camera.changeUpDirection(0.0, 1.0, 0.0);
camera.view();
break;

case RIGHT:
camera.changePosition(vxpos, 0.0, 0.0);,
camera.changeTarget(0.0, 0.0, 0.0),
camera.changeUpDirection(0.0, 1.0, 0.0);
camera.view();
break;

default:
break;
}

!
f

void Keyboard::setFunctionKeys(unsigned int key)

{
switch(key)
{
case FIKEY:
viewpoint = FORWORD,;
break;

case F2KEY:
viewpoint = UPWORD:;
break;

case F3KEY:
viewpoint = LEFT,
break;

case FAKEY:
viewpoint = RIGHT,;
break;

case LEFTARROWKEY:

if (light.show == true) {
la=la+0.1,
pos[0] = rootTwo * cos(la);
pos[2] = rootTwo * sin(la);

}

break;

case RIGHTARROWKEY:
if (light.show == true) {
la=la-0.1;
pos[0] = rootTwo * cos(la);
pos[2] = rootTwo * sin(la);
}

break;

case UPARROWKEY:
if (light.show == true) {
la=la-01;
pos[1] = rootTwo * cos(la);
pos{2] = rootTwo * sin(la);
;
break;

case DOWNARROWKEY:
if (light.show == true) {
la=la+01;
pos[1] = rootTwo * cos(la);
pos[2] = rootTwo * sin(la),
}

break;

default:
break;
}
}

void Keyboard::setKeys(unsigned int key)

{

switch(key)
{
case ESC:
exit(0);
break;
case '+ /! for zoom-in

128

case '="
alpha -=0.25;
if(alpha <= 0)
alpha = 0,
break;

case '-" / for zoom-out
case' "
alpha +=0.25;
if{alpha >= 180)
alpha = 180;
break;

case 'x":

case 'X"
rot = true;
axis = X;
break;

case'y"

case'Y"
rot = true;
axis = Y,
break;

case 'z"

case 'Z"
rot = true;
axis=Z7Z;
break:

case's"

case 'S"
rot = false;
break;

)

void Mouse::setMouseButton(int button, int state)

{
if{lbutton==LEFTBUTTON && state==BUTTONDOWN)
light.show = false;

else if(button==RIGHTBUTTON && state==BUTTONDOWN)
light.show = true;

129

//an object of class Keyboard
Keyboard kb;

//an object of class Mouse
Mouse mouse,

//draw the planet and its moon
void drawPlanet()

{

)

glPushMatrix();

earth.setColor(earth_col);
earth.setParameters(0.5, 200, 100);
earth.draw();

glRotatef(0.0, 0.0, 1.0, 0.0);
giTranslatef{1.8f. 0.0, 0.0);
glRotatef(0.0, 0.0, 1.0, 0.0);

moon.setColor(moon_col),
moon.setParameters(0.2, 200, 100),
moon.draw();

glutSwapBufters();
glPopMatrix();

void display ()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT):;

giMatrixMode(GL_PROJECTION | GL_MODELVIEW);,
gllLoadldentity();

gluPerspective(alpha,w/h, 1,20); //zoom in/out with changing alpha

//set viewpoint
kb.setViewpoint();,

if (rot) //rotate round X/Y/Z aix

{
glRotatef(x_angle, 1.0, 0.0, 0.0);

130

glRotatef(y_angle, 0.0, 1.0, 0.0);
glRotatef(z_angle, 0.0, 0.0, 1.0);
}

drawPlanet(); // draw the planet system

//set and display light
light.setLightAmbient(blue);
light.setLightDiffuse(blue);
light setLightSpecular(white),
light.setLightShininess(dull);
light.setLightPosition(pos);
light.indicate();,

glFlush();
glutSwapBuffers(),
}

void spin(void)
{
switch(axis)
{
case X:
x_angle = x_angle + 1.0;
break;

case Y:
y_angle =y _angle + 2.0;
break:

case Z:
z_angle = z_angle + 2.0;
break:

}

glutPostRedisplay();
}

//callback functions for controlling the animation
void special(int key, int x, int y)
{
kb.setFunctionKeys(key);
glutPostRedisplay();

void keyboard(unsigned char key, int x, int y)
{
kb.setKeys(key);
glutPostRedisplay();
}

void mousePress(int button, int state, int x, int y) {
mouse.setMouseButton(button, state);
glutPostRedisplay();

}

void reshape(int width, int height)
{

w=width;

h=height;

glViewport(0,0,width, height);
giMatrixMode(GL_PROJECTION),
glLoadldentity();
gluPerspective(30.0,(GLtloat)width/(GLfloat) height, 1, 20);
glutPostRedisplay();

}

void drawPlanetSystem()

{
//craete a window for display graphic
Window theWindow("Planet and its one moon");
theWindow setSize(win_width, win_height);
theWindow.setBGColor(bg_color),
theWindow.draw();

//callback functions
glutDisplayFunc(display);
glutldleFunc(spin),
glutSpecialFunc(special);
glutKeyboardFunc(keyboard);
glutMouseFunc(mousePress);
glutReshapeFunc(reshape);

glEnable(GL_DEPTH_TEST);

//draw the graphics system
glutMainLoop();

B.4.5 File planet.cpp

//main.cpp

#include <iostream. h>

extern void drawPlanetSystem();

int main () {

// Instruct user.
cout <<

"Change view point:"
" Press keys F1, F2, F3, F4."
"Light:"

"Press mouse left and right button to toggle light effect.”

"Change the direction of light source:"

" Press arrow keys to toggle light directions."
"Rotate:"

" Press X' (‘X") to rotate the system round x axis."
Press 'y’ ("Y') to rotate the system round y axis."
Press 'z’ ('Z') to rotate the system round z axis."
Press 's' ('S'") to stop rotating effect.”

"Zoom in/out”

" Press '+' ('=") to zoom in the window."
Press '-' ("_") to zoom out the window."

"Quit:"

" Press ESC to stop program.”

//draw the planet system
drawPlanetSystem();

return O;

<< endl <<
<< endl] <<
<< end] <<
<< end] <<
<< endl <<
<< endl <<
<< endl <<
<< end] <<
<< endl <<
<< endl <<
<< endl <<
<< endt<<
<< endl <<
<< endl <<
<< endl <<

<< endl:;

