INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Policy Capturing And Two Level Specifications Of

Policies For Human And Software Processing

Xin He

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal. Quebec. Canada

March 2002

©Xin He, 2002

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68467.9

Canada

Bibliothéque nationale

services bibliographiques

385, rue Waellington
Ottawa ON K1A ON4

Your Ale Votre rélerence

Our i@ Notre rélérance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

i

Abstract
Policy Capturing And Two Level Specifications Of Policies For Human And Software
Processing

Xin He

In recent few years, the use of “policies” in the management of the behavior of
large-scale, dynamic or distributed systems is gaining importance. In the policy research
area, how to capture policies is the first problem scientists need to solve. Policies can be
specified in three ways: a Policy Definition Language (PDL). a formal logic-based policy
representation language or an informal natural language. Generally, an editor and a policy
management tool are used to input these specifications. Because both the PDLs and the
formal logic-based policy representation languages are very complex and more suitable for
machine communication instead of human communication. their usages are limited to a
small group of professional people.

In this thesis. two levels of policy specifications are introduced. A Restricted Natural
Language (RNL). as the high-level policy specification. is used for human-computer interac-
tions. Compared to the PDLs and the formal logic-based policy representation languages.
the RNL is both easy to use and easy to learn. It enables a wider group of end users.
especially the novice users. to participate in stating the policies. A logic-based formal rep-
resentation. as the low-level policy specification. is then used for further machine-oriented
processing in policy-based systems.

A methodology of how to construct such a RNL is also presented and the methodology
is applied to two different cases. In the implementation part of the thesis. a RNL user
interface (RNLI) named the Virtual Thesis Office (VTO) System is also developed and

presented.

iv

Acknowledgements

I would like to take this opportunity to express my sincere thanks to my thesis
supervisor Dr. Thiruvengadam Radhakrishnan for providing guidance. advice. and
financial support throughout my studies.

[wish to thank Dr. Franz Kurfess for creating interest in me for graduate studies.

The financial support provided by Nortel Networks. Ottawa through a research grant
given to Dr. T. Radhakrishnan gratefully acknowledged.

I would also like to thank Angus Graham and Venkatachalam Kanthimathi-
nathan. who have unselfishly offered their comments and supported test cases on this

research.

Table of Contents

Chapter

1 Introduction 1

2 Policy Overview 5
2.1 Policy Definition and Policy Hierarchy 6
2.2 Policy Types o . . o e e e e 7
2.3 Policy-Based System Architecture L., 8
2.4 Policy Representation L 11

2.4.1 Analysis of Policy-Description Language Based Approaches 11
2.4.2 Analysis of Formal Logic-Based Approaches 12
243 CaseStudy e 13
2.5 Policy Capturing e 20

3 Natural Language Interface 22
3.1 ILmplementing a Natural Language Interface 22
3.2 A Model of Natural Language Processing (NLP) 23

3.2.1 Lexical Analysis 25
3.2.2 Syntactic Analysis L o 25
3.23 Semantic Analysis L L o 31

3.3 Habitability 33

4 A Restricted Natural Language for Policy Capturing

4.1 User-Centered Design for Policy Capturing

4.2 Level [- The Restricted Natural Language

4.3 Level II - A Formal Logic-based Language (FR)

1.4 A Methodology to Construct a Restricted Natural Language for Policy Cap-

turing

4.5 The Expandability of the RNL

5 Case Study

n
—

5.1.1
5.1.2
5.1.3

1

[S1]

-

1.5

(4]

1.6

(44

17

[$4}

w
]

5.2.7

5.3 Summary

Stepl:
Step2:
Step3:
Stepd:
Stepd:
Step6:

Step?:

Stepl:
Step2:
Step3:
Stepd:
Step5:
Step6:

Step?:

Virtual Thesis Office (VTO)

Define the Problem Domain
Create the Object-Oriented Model . . .
Construct a Vocabulary
Counstruct the Syntax

Manually Verify the RNL's Habitability

............

Develop a Formal Logic-based Policy Specification

Develop a Mapping from RNL to the FR

Virtual Call Center (VCC)

Define the Problem Domain
Create the Object-Oriented Model . . .
Construct a Vocabulary
Construct the Syntax

Manually Verify the RNL’s Habitability

Develop a Formal Logic-based Policy Specification

Develop a Mapping from RNL to the FR

6 VTO System Design and Implementation

vi

34

35

39

41

42

43

60

88

90

6.1 Implementation Environment
6.2 Software Architecture oL oL
6.3 Policy Management Tool
6.3.1 The Time Sequence of the Policies
6.4 RNL Processor e
6.4.1 Lexical Analyzer
6.4.2 Parser e
6.4.3 Semantic Analyzer,
6.4.4 Ambiguity Problem

6.5 The Verification of the Software

7 Conclusion And Future Work

7.1 Conclusions e e e

7.2 Future Work

Bibliography

Appendix

A The regualtions for the examinations of the master’s theses

B Class Definition

C A Complete List of Re-written Policies Using VTO System’s RNL

vii

106

106

108

110

114

116

viil

List of Tables

Table

2.1 Goal-oriented policy e 16
2.2 A Class of Objects/Agents 18
2.3 Class Misston e e e 19
3.1 An ExampleofaLexicon o .. 25
3.2 Fillmore's Case System e e 32
5.1 A List of Words with Fixed Unique Meanings 62
5.2 The Hidden Template for the policy “Each ezaminer must sign the evaluation

o 76
5.3 The Mapping Relationship between the HT and RNL's Syntax 78

6.1 AnExampleofa HT 102

Figure

o
el
c

3.2
3.3
3.4

3.5

List of Figures

Masullo and Calo’s Policy Hierarchy
A Policy-Based System Architecture oL L.
Authorization Policy Syntax 0 Lo,
An Example of Authorization Policies
Obligation Policy Syntax e
An Example of Obligation Policies

An Example of Operational Level Policies

A Model of an Natural Language Processing System
An Example of Context-Free Grammar
Parse Tree of the input *Gloria saw the man.”
An Example of Recursive Transition Network

Generating an LR Parser

The Use Case Map for the VIO system
The Use Case Map for the VTO system - Continue
Class Diagram for the VTO Model and its gencralization relationships . . .
ECmClass e
The Verbs Listed in the Vocabulary
Eight Grammar Rules for VTO System’s RNL

Some Examples for VTO System’s RNL Grammar

ix

=~

5.8

5.9

5.10

5.11

5.12

5.13

5.14

6.1

6.2

6.3

6.4

6.5

The Sementic Meaning of “before” in the Vocabulary
The Semantic Meaning of “request a postponement to” in the Vocabulary
The Semantic Meaning of *“request a postponement to” in the Vocabulary
The Use Case Map for the VCC systemm
Class Diagram for the VCC Model and the Verbs Listed in the Vocabulary
The Vocabulary for the VCC system

The Grammar Used in VCC system

The VTO system’s Architecture.
The VTO System'’s Policy Management Tool
The Time Scope of Policies
The Process of Lexical Analysis

A Parse Tree Generated from the Parser

80

81

82

Chapter 1

Introduction

The use of “policies™ in the management of the behavior of large-scale. dynamic or
distributed systems is gaining importance. Many researchers and organizations have pro-
posed generic architectures and frameworks for policy-based systems. For example. in {30].
Lupu and Sloman provide a role-based policy management framework to manage distributed
systems. [ETF (Internet Engineering Task Force) has also proposed several standards such
as Policy Core Information Model (CIM). Security Policy Specification Language (SPSL).
Quality of Service (QoS) policies. and Lightweight Directory Access Protocol (LDAP) re-
garding the policy-based system management [16].

In the policy research area. how to capture policies is the first problem scientists
need to solve. A policy can be viewed as a set of actions. which are triggered under certain
conditions and act on the target objects. Policies are communicated between humans in
a natural language form. This form can be very abstract. may contain ambiguities and
conflicts. and it is very difficult to be understood by the computers. To make them under-
standable by machines. we must first capture the policies and translate them into a formal
form. In a formal form the policies can be analyzed for the purposes of disambiguition.
couflict resolution or further refinement.

Currently. the typical way to capture the policies directly use formal languages. The
end users need to use a Policy Definition Language (PDL) or a formal logic-based policy
representation ({25}, [45]. [12]. {29] and [11]) to write down each policy by hand first. then

input them into the policy-based system using a policy management tool.

2

The PDL is used to represent policies at the “operational level”. [t may contain
complex syntax in order to achieve the coverage of different policies. People who want
to use it should first remember the syntax and terminology that represents the subjects,
objects or actions etc. in the problem domain. This requirement is too severe, for most
novice end users and seldom people have this skill without suitable training. Because of this.
the use of PDL for policy capturing is restricted to a small group of well-trained professional
policy engineers.

The formal logic-based policy representation approach. on the other hand. has the
ability to represent both the “operational level” policies and the “abstract level™ policies.
However, it has the same problem the PDL has. First. it involves some logical and math-
ematical symbols that look difficult to novice users. Secondly. people who want to use it
still need to remember lots of terminology representing the subjects. objects and actions
etc. inside the problem domain. These difficulties limit the use of the formal logic-based
approach into an even smaller group of professional people.

To overcome the disadvantages of the way people currently capture policies. we pro-
pose two levels of policy specifications and introduce a methodology to construct a Re-
stricted Natural Language and the corresponding interface (RNLI) for policy capturing in
this thesis.

The two levels of policy specifications include a Restricted Natural Language (RNL)
for end users’ input and a Formal Representation (FR) for the policy specification.

A policy stated in the RNL can be seen as a higher level of policy specification in the
policy hierarchy described in Section 2.1. A RNL is a subset of the natural language and
is restricted in the lexicon. the syntax and the semantics. Since a RNL is very much like a
natural language. using it to input policies into the policy-based system (policy capturing)
is much easier than using PDLs and other formal languages.

The FR is seen as a lower level of policy specification in the policy hierarchy (see

Section 2.1). The formal form we adopt for the FR in this thesis is a combination of

3
an object-oriented model and some logic operators. The FR is used to describe subjects.
objects. actions and the trigger conditions in the policies. Because of its preciseness. rep-
resenting policies in the FR is suitable for automatic processing such as automatic policy
refinement. static policy conflict analysis and policy enforcement.

A Restricted Natural Language Interface (RNLI) is an interface that allows users to
use the Restricted Natural Language (RNL) to input their policies and translate the policies
in RNL format to FR format. then store them into the policy-based systems. Compared
to the current policy capturing ways which use PDLs or formal logic-based languages. the
RNLI is obviously easier to use and easier to learn for most end users especially the novice
users. We hope such kind of interfaces will widen the group of people who participate in
policy capturing.

The RNLI is made up of five components:
(1) a concept dictionary or a lexicon for the specific domain.
(2) a simple grammar to construct the lexicon into policy sentences.
(3) an object-oriented model for representing the knowledge expressed in the lexicon.

(4) a formal form of the policy representation for the behavior of the specific domain.

and

(5) a parsing technique to map the RNL into the formal form of the policy representa-

tiomn.

The methodology for constructing a RNL and the corresponding RNLI for policy
capturing proposed in this thesis is a general method for constructing different RNLs and
RNLIs in different problem domains. The Virtual Thesis Office (VTO) and the Virtual Call
Center (VCC) presented in this thesis are two examples to demonstrate how to construct a
RNL and the corresponding RNLI for a specific problem domain using our methodology.

The contents of the thesis are organized as outlined below:

Chapter 2 examines the issues involved in the definition, representation and capturing
of the policies. Several approaches of how to represent policies as found in the literature
are described.

Chapter 3 introduces the main aspects of the development of a natural language
interface (NLI).

In Chapter 4. two levels of policy specifications - a Restricted Natural Language
(RNL) and a formal logic-based language (FR) are proposed to represent policies. A
methodology of how to construct such a RNL and the corresponding RNLI for policy cap-
turing are also introduced.

The Virtual Thesis Office (VTO) and the Virtual Call Center (VCC). as two examples
used for demonstrating the above methodology are described in Chapter 5. The detailed
systemn design and implementation of the VTO system is given in Chapter 6.

Finally in Chapter 7 the conclusions of this thesis are summarized and the scope for

further work is suggested.

Chapter 2

Policy Overview

The use of policies in automatic management has increased rapidly in distributed sys-
tem management. network management, security and privacy management, as well as in the
control and management of the specialized needs of the end users. Several researchers and
organizations have proposed generic architectures and frameworks for policy-based systems.
[n [30]. Lupu and Sloman provide a role-based policy management framework to manage
distributed systems. Policies can be specified by different groups of people such as adminis-
trators. or managers. end users. service providers etc. Policies in a system can be statically
specified at “compile time” or dynamically modified at “run time”. IETF (Internet Engi-
neering Task Force) has also proposed several standards such as Policy Core Information
Model (CIM). Security Policy Specification Language (SPSL). Quality of Service (QoS)
policies. and Lightweight Directory Access Protocol (LDAP) regarding the policy-based
system management [16].

The reason policy-based systems are so attractive is because of their significant fea-
tures. Instead of being coded into the software components. policies can be stored into their
own policy repository and can be interpreted. triggered and changed dynamically. Such a
feature increases the software components’ flexibility and re-usability. Furthermore. when
using policy-based systems. human managers can keep focus more on the business model
than the technical aspects of the systems because policies can be specified in an abstract

level. which is much closer to the system’s business models.

2.1 Policy Definition and Policy Hierarchy

In Merriam-Webster dictionary, the word policy is defined as “a definite course or
method of action selected from among alternatives and in light of given conditions to guide
and determine present and future decisions” or “a high-level overall plan embracing the
general goals and acceptable procedures especially of a governmental body™. Depending on
the situation. the meaning of policies may be difficult. In an organization, policies could be
the plans to achieve its objectives [34]. Here the organization’s leaders define the policies.
These policies are usually written in a natural language and are seen as the directions to
be followed in achieving the goals or to derive low level policies to achieve these goals. The
policies are abstract and cannot be executed directly without detailing the contents into
operational actions. On the contrary. a policy in a specific network management system
could be clearly defined as an action which takes effect on the specific object in the system
and is triggered by a specific condition. The definer of this kind of policies could be the
system administrator who is directly working on the system. The executor of the policies is
the machine itself. The results of the execution of this kind of policies are easy to measure
- they cause the system’s state transferred from one to another. Policies can be specified
at different levels of abstraction. Policy Hierarchy explains the relationship among these
different levels™ of policies.

Policies may range from high level abstract non-technical policies to low level technical
policies. As shown in Table 2.1. Masullo and Calo [33] group policies into six distinct levels.
In [45], Wies separate them into four classes. More technically oriented. Koch [25] put them
into three levels.

Dividing high level policies into low level ones is known as “stepwise refinement”,
which topic is studied also in the field of software engineering. Policy refinement can be
done by refining the goals, partitioning the targets or delegating the responsibility to other
managers.

In [33]’s hierarchy. societal. directional and organization policies focus more on the

Masullo & Callo(1993) Wies(1995) Koch(1996)
Y Societal Policy Corporate/High-Level Policy
3 Directional Policy
- g | Organizational Policy Task Oriented Policy
3 g Functional Policy Functional Policy Requirement Level Policy
Eog Process Policy Goal-oriented Level Policy
e< Procedural Policy(Rule) | Low-Level Policy Operational Level Policy

Figure 2.1: Masullo and Calo’s Policy Hierarchy

business economic aspects and should only be constructed by humans using their talent and
intuition. Therefore. the discussion of these kinds of policies is out of our thesis’s scope and
they are not addressed here.

The policies described in this thesis is in between the functional level and process
level in Masullo & Calo’s hierarchy. In this level. a policy’s subjects and targets are specific
entities which have clear definitions in a system management environment: the behaviors of
a policy can be mapped to a specific action or a set of actions together with the authoriza-
tion/obligation information: the expression of a policy can be formalized in order to process
further refinement steps: and the result of the execution of a policy can be simply specified
by a system changing its status from one to another.

Definition: A policy defines a set of actions. which are triggered under certain
conditions. acting on the target objects. When actions defined in the policy are triggered.

they cause the target system environment to change from one state to another.

2.2 Policy Types

According to Sloman’s model [30], authorization and obligation policies are two main
types of policies in the policy area.
Authorization policies specify what action the subjects are authorized or forbidden

to invoke on the target objects. Examples of this type of policies include:

Examplel: Only root has the authority to modify /etc/default/cron file.

Example2: Any member of the University may attend the candidate’s thesis defence.

When an authorization policy is specified, whether or not to do the actions defined
in the policy depends on the policy executor’s intention at the run time. Therefore, the
result of an authorization policy is real dynamic and cannot be predicated until the events
actually happen.

Obligation policies specify the actions that subjects must or must not perform on

the target objects.

Example3: Each member of the examining committee must submit a written report on the

thests to the chair before the thesis defence begins.

Example4: The chair must return the ezamination report to the thesis officer.

An obligation policy describes the policy executor’s duties. When the conditions of
triggering the policy is satisfied. the actions defined in the policy must be performed and
should lead the system status to a predictable result. If any unexpected result happens. the

system will be in an error state.

2.3 Policy-Based System Architecture
A policy-based system usually contains the following components.

Policy Management Tool accepts high level or natural language statement of policies
from the Policy Capturing Interface. It first translates the policies into formal
logical form. then refines the high level policies into the operational level policies.

Finally, it checks and resolves the static conflicts.

Policy Capturing Interface provides an interface for policy providers to input policies
into the Policy Management Tool. It is ideal to use a natural language to exchange
information between the system and the end users just like the humans communi-

cate.

Policy Capturing Interface

Policy Manager

L High level/natural language policies

Supported
Knowledge Base

Policy
Repository

Policy Management Tool L

Policy Translation

{ Formalized policies

Policy Refinement

¢ Low level formalized policies

Static Conflict Resolution

Low level formalized policies
without static conflicts

i

Policy Enforcement Tool

Abstraction of network/distributed system resources

Policy
Monitoring

Tool

Figure 2.2: A Policy-Based System Architecture

Policy
Opcration
[nterface

~F
@ ¢
ko
Policy
Opcrator

10

Policy Operation Interface provides an interface for policy operators to enable or dis-
able policies in the policy repository. Operators don’t have the right to define
policies. Their responsibility is to select the existing policy and send them to the
Policy Enforcement Tool. After the policy system is well defined or the policy
repository is created. the whole system will run automatically. This interface only

provides an auxiliary way for human operators to fine-tune the automatic systems.

Policy Enforcement Tool receives the policies from the Policy Management Tool and

cnforce them to the appropriate system objects.

Policy Monitoring Tool monitors the policy enforcement process. It collects the sys-
tem states and sends them back to the system objects as the conditions to trigger

policies. This is also the place to detect and resolve dynamic policy conflicts.

Supported Knowledge Base is the place to store lexicon. domain knowledge. refinement
meta-rules and conflict resolving meta-rules for the Policy Management Tool. which

performs translation. refinement and conflict resolution.
Policy Repository is the place to store all the policies.
In the Policy Management Tool. the following components are essential.

(1) The Component for Policy Translation: An abstract level policy which is
captured from the end user may be in a natural language format. Thus. we need a
tool to translate the natural language policy into some formalized form to

(a) discard those “error” policies which contain ill syntax or semantics.
(b) reduce the ambiguity

(c) resolve the incompleteness

A formal-logic based policy representation is usually used for the formal form.

11

(2) The Component for Policy Refinement: Abstract policies cannot be directly
implemented. A stepwise refinement is needed to detail the abstract policies into

machine-understandable operational level policies.

(3) The Component for Static Conflict Resolution: Conflicts may arisc in the
policy refinement process. Thus. a static conflict check should be done after the

refinement process is complete.

2.4 Policy Representation

Policy representation. as one of the fields in policy research. has the goal of establish-
ing a formal form to represent policies, which makes automated analysis. verification and
refinement of policies possible.

In recent years, scientists have proposed several approaches for policy representation
([25]. (45]. [12]. [29] and [11]). Generally. they can be divided into two groups: description-

language based approaches and formal-logic based approaches.

24.1 Analysis of Policy-Description Language Based Approaches

The Policy-Description Language (PDL) based approaches have some common char-

acteristics:
e They all use Backus Naur Form as the format of the languages.

e They contain fixed formats for each kind of policies. Once a new kind of policy is

created, a new set of syntax should be developed.

e For each syntax. they predefine a set of columns to contain every aspects of a policy.
Therefore. once a policy is described in a PDL. it is quite easy for a machine to

interpret it into a machine-understandable language.

e Because of the variety of the policies. the syntax of PDLs could be very complex

in order to achieve the coverage for each kind of policy. This makes the languages

12

difficult to learn and without memorizing the basic parts of the syntax. nobody
can use the languages. This aspect limits the languages’ usability to only a few

professional people who can become familiar with the them.

e These languages are very good in describing operational level policies because of
the explicitness of operational level policies. However. it is inappropriate to use

them to express abstract level policies because of the following reasons.

(1) Expressing abstract level policies makes the language loose its “casy-to-interpret”
advantage since the semantics of abstract level policies may not be explicit.
To reduce the ambiguity and dismiss the indistinctness and to do the stepwise
refinement. the system needs a domain-dependable knowledge base. Such a

refinement is a hard process and may not be 100% correct.

(2) In the abstract level policies. the triggers or constraints may not be clearly
declared. This makes it hard to incorporate an abstract level policy into a

clearly predefined PDL.

Approaches of policy description languages includes [12]. {29]. [25] and [41]. We will

use Ponder language [12] as an example to briefly introduce PDLs in Section 2.4.3.1.

2.4.2 Analysis of Formal Logic-Based Approaches

Formal-logic based approaches usually combine an object model to represent the
entities in the policy domain and one or more logic models to express the logical or time
elements and the authorization/obligation concepts. The Cuppens’ deontic logic based
approach has been used to formalize security policies [11]. which will be explained in Section

2.4.3.3. The key features of such approaches are listed as follows.

e Abstract level policies are represented in the same format as the operational level
policies. It is convenient to represent an abstract level policy by introducing ab-

stract level objects into the representation and use logics to represent the relation-

13
ships among abstract objects. The abstract level objects are combined with some
attributes and methods. These attributes and methods are also in an abstract level.
The relationships among abstract objects and the real entities can be expressed in
an object-oriented data model. In this way the abstract level policies are expressed
in a formal manner. Thus. mathematical methods can be used for further policy
refinements. The underlying object-oriented model becomes a knowledge resource

for going through the refinement process.

e When mathematical logic is used for the formal representation. it is possible to
create proved correct and complete refinement patterns [13] that can be used to

refine the policies. Thus, high level policies can be correctly refined into elementary

level policies.

2.4.3 Case Study
2.4.3.1 Ponder Policy Specification Language

Ponder language {12] is an object-oriented language for specifying security and man-
agement policy for distributed object systems. It provides a complex syntax for “access
control policies™ and “obligation policies™. It also provides the syntax to organize policies
into groups.

Access control policies are those policies which are used to limit the activity of legit-
imate users who have been successfully authenticated. Ponder supports access control by
providing authorization, delegation, information, filtering and refrain policies.

Authorization policies define what activities a member of the subject domain can
perform on the set of objects in the target domain. An example of an authorization policy
syntax is shown in Figure 2.3

Based on the above syntax, we can express the policy “Members of the NetworkAdmin
domain are authorized to load. remove, enable or disable objects of type PolicyT in the
)

Nregion/switches domain.” in the format shown in Figure 2.4.

14

inst (auth+ / auth-) policyName {
subject [<type>] domain-Scope-Expression ;
target [<type>| domain-Scope-Expression ;
action action-list ;
[when constraint-Expression ; |

Figure 2.3: Authorization Policy Syntax

In natural language the policy is:
“Members of the NetworkAdmin domain are authorized
to load, remove. enable or disable objects of type PolicyT
in the region/switches domain.”

In Ponder language the policy is:
inst auth4 switchPolicyOps {

subject /NetworkAdmin;
target <PolicyT> /NRegion/switches;
action load(), remove(), enable(), disable() ;

Figure 2.4: An Example of Authorization Policies

-

15

Obligation policies specify the actions that must be performed by managers within
the system when certain events occur. An example of obligation policy syntax is shown in
Figure 2.5.

inst (oblig) policyName {
on event-specification ;
subject [<type>] domain-Scope-Expression ;
[target [<type>| domain-Scope-Expression ; |

do obligation-action-list ;
[catch exception-specification ;
[when constraint-Expression ; |

Figure 2.5: Obligation Policy Syntax

Figure 2.6 is an example about how to use the obligation policy syntax.

This policy is triggered by 3 consecutive login-failure events with the same userid.
The NRegion seccurity administrator (SecAdmin) disables the user with userid in the
/N Region/users domain and then logs the failed wuserid by means of a local operation

performed in the SecAdmin object.

2.4.3.2 Koch’s Policy Definition Language

In [25]. Koch proposed a three level policy hierarchy and used a policy definition
language to express the policies on the operational level. At the requirement level the

desired behavior in an abstract level and is specified in natural language. as in the following

example.

Garbage: “The administrator should immediately remove all

garbage-files if more than 80% of the available disk-space on

a home partition is used.”

The goal-oriented level is an intermediate level at which the roles of the objects
involved are defined in terms of constraints and actions. For example. Table 2.1 shows a

second level refinement of the above (with mandatory attributes in boldface).

16

In natural language the policy is:
“If the user has failed to login the system using the
same userid for three times, then the Nregion security
administrator disables the user with userid in the
/Nregion/users domain and then logs the failed userid
into a log file.”

In Ponder language the policy is:
inst oblig loginFailure {

on 3*loginfail(userid) ;

subject s = /NRegion/SecAdmin ;
target <UserT> t = /NRegion/users A {userid} ;
do t.disable() -> s.log(userid) ;

Figure 2.6: An Example of Obligation Policies

Name Goal03

Ancestor Goal02
Descendant disk80

Subject root

Target Object none

Action removeGarbage()
Constraint none

Event disk-usage > 80%
Modality Obligation
Status refined

Author Thomas Koch

Table 2.1: Goal-oriented policy

17

The operational level policy specification (shown in Figure 2.7) employs the policy
description language (PDL) to express the policy in a form which can be translated into
executable rules conveniently.

policy disk80 type obligation for duvt/root {

for every EztendedFileSystem in filesys/home
actiondisk_use.use80 {

removeGarbage()
} nosuccess (dvt/status.filesys == ALARM)

Figure 2.7: An Example of Operational Level Policies

2.4.3.3 Cuppens’ Deontic Logic Approach

In [11]. Cuppens introduced a deontic logic-based policy representation approach to
formalize security policies. According to his analysis. security policies may contain the

following concepts:
e objects. events, actions and agents
e most of classical deontic concepts such as obligation. permission. and prohibition

s concepts of responsibility and delegation

e the temporal structures

He constructed a deontic language to represent all the above concepts. He used an
object-oriented representation to express objects as shown in Table 2.2.

Events are represented as objects. Three temporal concepts before. during and after

are defined as follows.

Ve, Before(e) «

3ty. ta, Date(e) = (t,.ta) A Current_Date < t,

Class:
Inherits:

Attributes:

Methods:

Ve, During(e) «

Classified_Document

Document

Classification: Level

Consignment_Note: Note

Change_Classification: Classified_ Document — Level
Establish_Consignment_Note: Classified_Document — Note

Table 2.2: A Class of Objects/Agents

3¢y, ta, Date(e) = (t;.ta) Aty < Current_Date <ty

Ve, After(e) «

3. ta, Date(e) = (t. t2) Aty < Current_Date

18

Actions are defined in the same way as the methods are defined in an object-oriented

environment. In addition. three corresponding binary predicates are clarified: if a is an

agent and if « is an action. then

e Before_Erec(a.a) is true if the value of Current_Date is previous to the time of

the execution of ¢ by a.

o During_Erec(a.) is true during the execution of « by a.

s Erec(a.a) is true after a has executed . Erec is actually an abbreviation for

After _Ezrec.

Deontic concepts are expressed by classical deontic modalities.

Op is to be read p is obligatory:

Fp is to be read p is forbidden:

Pp is to be read p is permitted.

19
Class: Mission

Attributes: Responsible: Agent
Controller: Agent
Obligations: set of Action
Methods: Designate_Responsible: Mission — Agent

Table 2.3: Class Mission

In order to formalize the organizational concepts of responsibility and delegation. the
special object class Mission is defined with the structure shown in Table 2.3:

Therefore. if i is a mission and a and b are two agents. then Responsible(m) = a
means that a is responsible for the mission m and Controller(m) = b means that b is the
agent who is in charge of controlling the execution of a’s mission. If a is an agent and «
is an action. then Delegate(a, «x) corresponds to the action of delegating the obligation of
executing the action « to the agent a.

An example policy is shown as follows using the above definitions.

Policy: The transmitter of a classified document is obliged to update the document clas-
sification as soon as it is possible, i.e. immediately after the transmitter evaluates

that the document classification is obsolete.

Rule R1:
Classified _Document(d)
A Transmitter(d)=t
A Res_Exec(t. Evaluate_Classification(d). level)
A Classification(d) # level

— O Exec(t. Change_Classification(d))

One advantage of using deontic logic to express policies is a policy with complex
structures can be expressed directly. while it is hard to do using PDL. The following is such

an example. We can see that Cuppen’s logic based approach is suitable to express such a

20

policy.

Policy: If the organizer of a meeting does not incinerate all the preparatory documents
of the meeting when it is finished, then he is obliged to bring it about that these

documents are kept in a safe.

Rule R12:
MEETING(m)
A Organizer(m) = o
A After(m)
A d € Preparatory_Documents(m)
A = Exec(o. Incinerate(d))

— O Do(o. 3 s, (Safe(s) A deContent(s)))

2.5 Policy Capturing

As shown in Figure 2.2, the goal of policy capturing is to provide an efficient and
convenient way for the users to transfer their knowledge about policies of the system to the
policy management software systems.

Currently, many rescarch efforts have been devoted to the policy representation area.
Several policy description languages and formal-logic based representation approaches have
been proposed as we saw in the previous sections. These approaches. however. are complex
to the end-users. Consider the following problem: How can we add a shell outside the policy
description languages or the formal-logic based representations to make the interface easier
to communicate with end-users. and maintain the acceptable response time at the same
time?

In an organization, policies are often recorded in written natural language. Short and
transient policies may also be expressed orally. It would be convenient if policy management

systems could capture such policies directly in suitable natural language form. In this thesis.

21

4

we propose a Restricted Natural Language (RNL) for policy capturing. The RNL is a subset
of the natural language with restrictions in lexicon, syntax and semantics. The details are

explained in Chapter 4 and 5.

Chapter 3

Natural Language Interface

The main goal of most natural language interfaces (NLI) is to provide users interfaces
that are easy to learn and easy to use. In this chapter, we provide an overview and a brief
introduction to NLI. Complete surveys and extensive descriptions of NLI are abundant in
the literatures [10] and [3]. Natural language research attempts to develop a technique
to make the NLI “understand™ the semantics or the meaning of the user’s input. and
provides intelligent response. When combined suitably with the specch recognizers. the
natural language interface will minimize the training requirement. release the users’ burden

of learning numerous artificial command languages. and support hands-free or mobile usage.

3.1 Implementing a Natural Language Interface

Despite the intuitive appeal of a natural language interface. it has been argued that
a natural language like English has too many ambiguities to be useful for communicating
with computers. The research in [36] indicates that a restricted natural language interface
is better suited for novice users when it is used for solving only simple problems. When
problems get more complex, the ambiguity of the restricted natural language will pose a
challenge in understanding the user’s command.

The ambiguities are found at every linguistic level in natural language specifications:
lexical, syntactic. semantic and pragmatic. Examples of different kinds of ambiguities are

shown as follows ([20]).

23
Lexical ambiguity: The astronomer married the star.
Does the word “star” mean a planet or a Hollywood actor/actress?
Syntactic ambiguity: Time flies like an arrow.
What is the verb in this sentence, “flies™ or “like”?
Semantic ambiguity: The professor sent the student to see the dean. because he
wanted to see him.
Who is “he” /~him”. the “student” or the “textitdean™?
Pragmatic ambiguity: [saw the Grand Canyon flying to New York.

What is “Grand Canyon™?

There is no perfect way developed yet to solve the ambiguity problem in natural
language systems. Many efforts ([26]. {17] and [10]) are undertaken by researchers to solve or

avoid such problems. Examples of these efforts can be grouped into the following categories:
(1) Use rule-based or probabilistic disambiguator to solve ambiguity.
(2) Use dialogue to interactively assist in the disambiguation of the input.

(3) Restrict the lexicon and the syntactic structures into a certain scope to reduce the

possibility of ambiguity.
3.2 A Model of Natural Language Processing (NLP)

A model of a natural language processing system is shown in Figure 3.1.

In Figure 3.1. the “Parser” module is the basic component of an NLP system. It
reads an input sentence and performs, step by step. the lexical. syntactic and semantic
analysis. The output of a parser is a formal logical representation of the input sentence.
The module "Reasoning System” then adds the pragmatic information to it. Finally, the
“Action System” module converts the derived logical form to a suitable command language

for a computer execution or to generate a natural language response to the end user.

Natural language sentence

0

“~

Output to the users

PARSER
Lexical Analysis
Structural Analysis
Semantic Analysis

——

Lexicon
—

v

REASONING SYSTEM
User Representation
Domain Representation

v

\
/
1\

ACTION SYSTEM
Generator
Database Manipulator
NL Translator

Grammatical
Rule Base
____-—/

Semantic Rule
Base
\—_’—/

S

Pragmatic Rule
Base

Figure 3.1: A Model of an Natural Language Processing System

25

3.2.1 Lexical Analysis

In lexical analysis, the NLP system divides the input sentence into words or tokens,
and looks up in the lexicon to see if it recognizes the word or token. The lexicon is a
collection of the words and their related information such as the word’s root. forms. lexical
categories. semantic meanings, its prefixes, suffixes. and the rules describing how these
“pieces of information” combine etc. A simple lexicon is shown in Table 3.1. It is a

database containing the word itself. its type. the verb’s root and the word’s form.

Word Word Type | Verb Root | Word Form
a Determiner

house Noun

street Noun

jump Noun

jump Verb jump

jumping | Verb jump ing
is Auxiliary

to Preposition

where WH word

Table 3.1: An Example of a Lexicon

In Table 3.1. word “jump” has two types: noun and verb. This is a kind of lexical

ambiguity. [t may cause two or more parse trees to be derived in the syntactic analysis.

3.2.2 Syntactic Analysis

In syntactic analysis. the parser analyzes the sentence to determine its structure
according to a pre-defined grammar. The output of a parser is one or more “parse trees”.
each of which represents a syntactic structure of the input sentence. If more than one
parse tree is derived. it means that the input sentence contains ambiguities or multiple
interpretations. Semantic analysis is the next step to solve these ambiguities according to

the analysis of the semantic meanings.

3.2.2.1 Context-Free Grammar

The context-free grammar (CFG) was first introduced by Chomsky [8] to describe the
phrase structure of natural language sentences. The formal definition of the context-free
grammar is:

Assume
(1) V is a finite set of non-terminal symbols,
(2) T is a finite set of terminal symbols, where N NT = 0,
(3) P is a finite subset of V' x (V UT)*,
(4) S is a symbol of V' designated as the start symbol.

A grammar G = (V.T.S. P) is said to be context-free if all productions in P have

the form
A-r

where 4 € V and £ € (VUT)". A language L is said to be context-free if and only if there
is a context-free grammar G such that L = L(G).

The CFG is important because its formalism is powerful enough to be able to describe
most of the structures in natural languages and yet it is restricted enough so that cfficient
parsers can be built to analyze sentences.

An example of context-free grammar is shown in Figure 3.2.

The grammar can be mapped to the parse tree shown in Figure 3.3.

3.2.2.2 Recursive Transition Networks(RTN)

The recursive transition network represents the context-free grammar in a graphical
form. An example of it is shown in Figure 3.4. Within the network. the nodes represent

“states” and the “arcs” between nodes are labeled. The labels are assigned grammatical

(1)
(2)
(3)
(4)

S - NP VP

VP — verb NP
NP — name

NP — deter noun
noun — “man”
name — “Gloria”
deter — “the”

verb — “saw”

Figure 3.2: An Example of Context-Free Grammar

AN
/

e .

name vetb NP\
Gloria saw deter noun
the man

Figure 3.3: Parse Tree of the input “Gloria saw the man.”

27

28

tags such as noun, verb, NP and VP etc. For the non-terminal items such as NP and VP.

other networks are defined to represent their CFGs: thus, the network is recursive.

3.2.2.3 Top-Down Parsing and Bottom-Up Parsing Techniques:

Parsing techniques for natural languages can be summarized into two categories.
one is top-down and the other is bottom-up. In top-down parsing, the parser reads a
CFG rule from the left-hand side. In the process of top-down parsing, the left-hand side
symbol (goal) is rewritten into right hand symbols (sub-goals) sequentially until a sequence
of terminal symbols is obtained. Top-down parsing usually combines a technique called
backtracking in order to recursively derive the parse tree. A top-down parsing algorithmn
with backtracking technique can also be used in recursive transition networks [47]. [48]. In
Figure 3.4's RTN. the parser reads the net from the start state SO and browses the net until
it reaches the end state S7. If it encounters an arc labeled with a non terminal symbol, it
will jump into that non-terminal item’s sub-network. travel in it. and then return back to
the original network until the sub-network’s end state is reached. The parsing is a success
if it reaches the original network’s end state. A parse tree is derived at the same time as
the output of the parsing process.

Top-down parsing techniques have the advantage that they will never consider word
categories in positions where they could not occur in a legal sentence. However. when an
error occurs in the carly stage of the top-down parsing. the parsing process will be very
time consuming.

Since bottom-up parsing methods start by looking at the input and then building
up the larger structures. those structures that cannot lead to the input words will never
be built. However. it costs time to consider all senses of each word and construct useless
structures that could never lead to a legal sentence.

In contrast to top-down parsers. bottom-up parsers read the CFG rules in a reverse

direction. The top-down parsing algorithm uses a data structure called chart as a book-

The grammar of the sentence

VP NP
T A
NP NP
AP
AP .
AP NP jump ump
jump
>
57
The grammar of NP
prep_subj
pop
el

nounname

Figure 3.4: An Example of Recursive Transition Network

30
keeping storage for all the information produced while parsing. This information includes
the positions of the words, the new structures derived from the sentence and the rules that
have partially matched but are not complete yet (active arcs). Unlike top-down parser. the
bottom-up parser looks for the CFG rules from the sentence start symbol. the chart parser
tries to match every possible CFG rules to the word it reads. It then records the current

status into the chart and continues to read the next word until it finds a matched rule.

3.2.2.4 LR Parsing

LR parsing method is a bottom-up parsing technique. It was first introduced to
handle a small subset of context-free grammar sufficient for programming languages. This
method is considered the most efficient parsing technique right now. The LR parser consists
of two parts. a driver routine and a parsing table (shown in Figure 3.5 [2]). The parsing
table is the place to store the grammars. When the parser works. it reads the input stream
from left to right with one symbol at a time. Being guided by the parsing table. it constructs

a rightmost derivation.

Grammar ———pp Table —— Parsing Tablc
Generator

(a) Generating the parser

Driver Parsing

Input —P» — Output
Routine Table

(b) Operation of the parser

Figure 3.5: Generating an LR Parser

There are many different parsing tables that can be used in a LR parser for a given

grammar. Simple LR(SLR) is the easiest one to implement. Unfortunately, it may fail to

31

produce a table for certain grammars on which the other methods would succeed. Canon-
ical LR(CLR) is the most efficient one and will work on a very large class of grammars.
LALR(lookahead LR) uses a more compact LR table than the one used in CLR and its effi-
ciency lies in between SLR and CLR. The generation of the parsing table is a too complex
work to be completed by hand. Fortunately, many parser generators have been developed by
people to generate a LR parser. YACC [22] and CUP [21] are such kind of parser generators.

LR parser is an attractive method to parse natural languages because of the following

two reasons:

e [ts efficiency makes the response time of the interactive natural language interface

short enough to keep the dialogues between the system and the end users “smooth™.

e The LR grammar. although is only a subset of context-free grammars. is still close
to the natural language grammars. Thus. it is possible to extend the LR parser a
little bit to make it suitable to parse natural languages. In fact. many cfforts have
been done to extend LR parsing methods to make them more suitable for natural

language parsing. Tomita’s GLR parsing algorithm [43] is one of the examnples.

Alternatively. if we restrict the natural language to “a small scope™ in both lexicon

and syntax. we can also use the LR parser to parse that restricted natural language.

3.2.3 Semantic Analysis

The target of semantic analysis is to add each word’s meaning into the parse trees
derived from the syntactic analysis. resolve the possible ambiguities that may exist in the
natural language input. and combine these meanings to form a logical form. The logical
form is the formal representation of the input sentence that is suitable for execution by
a computer. It uses mathematical methods to make the sentence’s semantics clear and
unambiguous. Logic. production rules and semantic networks are some typical means to
represent this logical form. Case grammar, which is introduced by Fillmore {15]. is used to

establish a bridge between the sentence syntactic structure and its logical form.

32
3.2.3.1 Case Grammar

Case grammar was first proposed by Fillmore in 1968 [15] and was widely accepted by
Al researchers [7]. The idea behind case grammar is that every sentence has an underlying
representation of its meaning. This representation includes the verb and the various noun
phrases related to the verb. It actually describes the case relationships between the verb

and its nouns in the sentence (shown in Table 3.2).

Agent(A) the instigator of the event

Counter-Agent(C) | the force or resistance against which the action is carried out

Object(O) the entity that moves or changes or whose position or
existence is in consideration

Result(R) the entity that comes into existence as a result of the action

[nstrument(I) the stimulus or immediate physical cause of an event

Source(S) the place from which something moves

Goal(G) the place to which something moves

Experience(E) the entity which receives or accepts or experiences or
undergoes the effect of an action

Table 3.2: Fillmore's Case System

Consider the following two sentences

S1: “.John opened the door with the key.”

S2: ~The door was opened by John with the key.”

Using the case grammar. we designate “John" as the agent. “door™ as the object. and
“key” as the instrument for the verb “opened™. Suppose the verb “open™ can be used in

the following four ways: (A - agent, O - object. I - instrument)

e The door opened. (O)

e John opened the door. (A. O)

¢ The wind opened the door. (1. O)

e John opened the door with the key. (A, O, I)

33
We can observe that when “open” is used, its object must appear in the surface sentence
whereas the agent and instrument are optional. If we find the relationships between the

sentence surface structure and the deep case grammar. we can translate the surface sentence

into its case structured form and then easily interpret it into the logical form.

3.3 Habitability

The notion of habitability was introduced by Watt in 1968 [44] in order to measure
how productively a formal language can be used to express everything the user needs without
exceeding the language boundary. A language is considered habitable if the user can express
everything that is required for a given task using only sentences allowed by the language.
[n order to satisfy the habitability criterion, the designers of the natural language interface
should study the task(s) at hand. make the interface as casy to use as possible and keep users
stay within the conceptual. functional, syntactical and lexical limitations of the habitability
(38].

The concept of habitability is important in the natural language interface domain,
because with the current technology, any natural language interface can only be restricted
into a bounded problem domain, thus restricts its habitability into a limited scope. There-
fore. the following two problems become challenging and unavoidable in the development

of a natural language interface.

Probleml: How to bring users from somewhere outside the language boundary back

to lie within the habitability region of the language (cure)?

Problem2: How to avoid users to use the language conceptually. functionally. syn-

tactically or lexically exceeding the habitability limits (prevention)?

Chapter 4

A Restricted Natural Language for Policy Capturing

In this chapter. we propose a user-centered design approach for policy capturing. In
the design of user interfaces to software systems, the “user centered approach™ is gaining
importance [14]. [40]. The key goal of this approach is to produce usable systems that
are highly “friendly” to the end users. Usability. the most important concept of Human

Computer Interaction(HCI). is concerned with the following key factors [18]:

(1) effectiveness: the accuracy and completemess with which specified users can achieve

specified goals in particular environments.

(2) efficiency: the resources expended in relation to the accuracy and completeness of

goal achieved.

(3) satisfaction: the confort and acceptability of the work system to its users and other

people affedted by its use.

To support this definition, our design objective for the interfaces for policy capturing focuses

on the following items:
(1) ease of use
(2) ease of learning how to perform the intended tasks using the new software
(3) adapting the interface to match different classes of user needs

(4) naturalness in the software-human interactions.

35

To achieve the targets of ease of use and ease of learning, we propose a Restricted
Natural Language (RNL) Interface for the end users to dynamically define and change the

policies in a policy-based system.

4.1 User-Centered Design for Policy Capturing

Consider this scenario: A person is using a newspaper reading software to browse
several local and global newspapers. The software is installed on a PC with a connection to
Internet. It retrieves the newspapers’ contents from various databases by Internet and reads
them to the end user by means of text-to-speech algorithms. Before using this software.
the user first sets up some policies and preferences about what contents he or she wants to
retrieve. For example. he or she wants to read the international news in Globe and Mail
after the terrorist attacks happened in the U.S in September 11th. 2001 and the sports news
in Montreal Gazette when the 2002 Olympics begins at Salt Lake City. Then. he or she

specifies the following policies for the system to maintain.

(1) Read every international news from Globe and Mail after September 11th. 2001.

(2) Read every sports news from Montreal Gazette after the 2002 Olympics begins.

We find that the policies the end user sets up are simple policies. These policies
may change dynamically depending on the end users’ intention. In addition. these policies
are personalized and may be different according to the different users” interests. The users
who set up these policies are. most likely, the casual users and may not be familiar with
the formal languages which are used to set up the policies in most of the policy-based
systems. In such a situation. using any kind of Policy Description Languages or logic-based
policy representations are not appropriate for users who have low tolerance to learn artificial
languages to perform their tasks (set up the policies); instead. using a Restricted Natural
Language (RNL) to set up the policies becomes a good choice: and if the system uses a
speech recognition technique to allow user input via speech. the usability of the software

can be further expanded.

36

The RNL interface provides an easy-to-use and easy-to-learn environment for the end
users to input and modify the dynamically changing policies. It is especially useful under

the following conditions:
e The policies are changed dynamically and frequently.

e The policies are simple. They are basically describing the action between one sub-
ject and one object. We will explain in the following chapters why the policies

should be kept simple.

e The policies are suitable to be described in natural language. In some situations.
using natural language to express a policy could be much more complex and longer
than using some artificial languages. Let’s see an example policy defined in a

Message Notification System (MNS) [23].

A MNS is a system that can deliver messages to the recipients. When inputs arrive
to MNS. the system generates a notification to the recipient and is sent through
one of the delivery media like pager. or voice mail. The recipient would call back
to MNS to acknowledge that the notification was received. A 1-800 number is
provided by the system for receiving acknowledgements. If the intended recipient
doces not acknowledge the receipt of a message. the MNS server would send another
notification to the next receiver on a list who is supposed to receive that message
as an alternate receiver.

A sample policy in this case is expressed using a script language (a kind of artificial

languages):

When Contact arrives:

If Contact.priority = “critical™;

Then Notify (message = Contact.message: priority = 1: severity = 1:
recipientl = “Contact.recipient”; deliveryl = pager; delayl1=10;

recipient2 = “Wang”: delivery2 = pager; delay2=20;

37

recipient3 = “David”; delivery3 = pager; delay3=30:

The policy says when a Contact arrives the system will check its priority. If the
priority is “critical”, the system will first deliver the notification and the Con-
tact.message to the first recipient listed above. [f the recipient doesn’t acknowledge
the notification in the listed delay time, the system will sequentially send the noti-
fication and the Contact.message to the next recipient listed above until the system

reccives an acknowledgement.

The above explanation could be seen as a natural language version of the sample
policy. We observe that using natural language. this policy has to be expressed in
a paragraph instead of a simple sentence. In addition. the list of the recipients is

not clearly stated in the textural description.

In a complex situation like the above. the use of natural language is not straight-

forward.

The tasks that our intended users do are simple. Defining. modifying and reviewing
are three basic tasks that users need to do with cach policy. We believe a Restricted Natural

Language (RNL) could be used for such simple tasks.

T1: define a policy.
Step 1: Find out in which step should this policy be executed.
Step 2: Input the policy by keyboard typing or speaking. Wait
the system to check the policy. If it passes the check.
the system saves the policy. If not. go to Step 3.
Step 3: Correct the errors by re-entering part of the policy. until

no error remains. The system then saves the policy.

T2: modify a policy.

38
Step 1: Find out which policy needs to be modified.
Step 2: Re-input the policy by keyboard typing or speaking. Wait
for the system to check the policy for consistency. If it
passes the check, the systemn saves the policy and exits.
Step 3: Correct the errors by re-entering part of the policy. until

no error remains. The system then saves the policy.

T3: review a policy.
Find out which policy the user wants to review. retrieve it from the

storage and display it.

Despite supporting the above tasks. a RNL interface should also have the ability to
transfer the restricted natural language to a formal language without loosing any informa-
tion. Since a natural language (even when it is restricted) is too hard to be understood by
machines, a formal language must be used as the communication tool inside the systems.
As for representing policies. we have known that PDLs and logic-based approaches can form
such a tool. In this thesis. we choose a logic-based formal language as the system’s internal
language to represent policies. As a result, a translator that translates the RNL statement
to the formal logic-based representation becomes a necessary part of the RNL interface.

Based on the above analysis we say that if we construct a RNL as the communication
language between the end user and the system, such a RNL interface would be easy to use
and to learn. In addition. such an interface matches the different levels of users’ needs and
retains a natural way in the software human interactions.

To keep things simple, we restrict each policy to be sentence-based. That is to say,
we use no more than one sentence to express one policy. Moreover, we observe that policies
are executed in a pre-determined sequence, that is to say. some policies should be executed

earlier than other policies. (Explained in Section 6.3.1.) We use an ordinal number that

39
tags the policies to represent this sequence. In this way, we avoid the need to express a
complex time constraint in each policy. Also, it saves us from giving an undetermined

physical time constraint in an abstract level policy. As we pointed out in Chapter 2. we

leave this problem to the further policy refinement steps.

4.2 Level I - The Restricted Natural Language

[n our two levels of policy specifications. the Restricted Natural Language is in the
higher level. which is used for human-computer interactions.

In this case. the restricted natural language contains a limited vocabulary and a
simple syntax. It is used for expressing simple policies. The characters of the “simple”

policies can be described as follows:
¢ One policy can be expressed in one “simple” sentence.

e As defined in Section 2.1. the policies described in this thesis are a set of actions.
which are triggered under certain conditions. acting on the target objects. That
is to say. the statement like “Root is a member of the super user group™ is not
a valid policy in our scope because assertions like this do not explicitly result in
any action. Alternatively. the statement ~The super user group is combined with
root and system administrator” can be seen as a valid policy. because the action

“combine” is explicitly specified.
e Each policy contains only one subject. one action and one object.
The restricted natural language is restricted in three dimensions.

Restriction-1: The vocabulary or the lexicon is limited and it is specific to the prob-
lem domain. The vocabulary doesn’t record any word or the meaning of the
word outside the problem domain. In addition. different verb forms may not be
recorded into the vocabulary if they are not useful for expressing the policies.

For example, for the verb “attend”, we only record its root form “attend” and

its singular form “attends”. Other forms such as the past tense “attended” are
ignored since we never use a past tense to express a policy in the chosen do-
main of applications. At the same time, we recognize “attend” and ~attends” as
synonyms because we don’t need to remember the semantic meaning behind the
verb tenses and the singular/plural forms. We also define some open words and
some closed words. A set of open words can be expanded by the end user
at any time: that is new words can be added or existing words in the set can be
deleted. A set of closed words contains the words fixed at the time when the
vocabulary is created. We make the closed words into a small set. In this way

we restrict the lexicon of the RNL.

Restriction-2: the syntactic structures used to form sentences are kept simnple and few

in number. There are several reasons for choosing a simple syntax for our RNL.

e The target we arc expressing is the first consideration. The policies we
express are simple. Every policy contains only one subject. one action and

one object. There's no need to use complex sentence structures.

e Sentence length is another factor we consider. Rescarch in [39] indicates
that sentence ambiguity increases exponentially with respect to sentence
length. Usually. sentences whose lengths are more than twenty words can
be considered stylistically poor. and can lead to serious problems in com-
prehension [31]. For that reason. we use simple sentence structures as well

as limit the sentence length.

e The use of simple syntax also gives us a chance to use efficient parsers
to reduce the response time of the system. Since real natural language
sentences may have many interpretations and the real natural language
parser has to handle all of them, it is not surprising that a real natural

language grammar is usually big and the real language parser is not as

40

41
efficient as compiler parsers such as a LALR parser. Because we restrict
the sentence syntax to a simple set, we can use an efficient LALR parser
to parse our RNL sentences. Although ambiguities will still exist. they are
quite limited. We can solve them by repeatedly generating different parse
trees and filtering the wrong ones out in the semantic analysis stage, and at

the same time, we can assure acceptable response time.

Restriction-3: The semantics of the statements are expressed in terms of an underlying
object-oriented model of the domain. Any object outside the scope of the domain
is not included in this model. Obviously the RNL interface cannot understand
the semantics that depend on such excluded objects. In another aspect. the
restriction of the object-oriented model itself imposes a restriction of the RNL's
semantics. An object-oriented model is suitable to express the semantics like
“an action happens/an action does not happen”. However. it is not appropriate
to express the semantics such as “to what degree or how an action happens”™ or
“until what degree an action may cause such a result”™ ete. Consequently. our

RNL is restricted in expressing such kind of semantics.

In this way. we draw a “clear boundary” for our RNL. Ounce a natural language
obtains clear lexical. syntactic and semantic scopes. ambiguity problems will be greatly

decreased and a practical RNL processor is relatively easier to develop.

4.3 Level II - A Formal Logic-based Language (FR)

As the lower level in our two levels of policy specifications. a Formal Logic-based Lan-
guage is used to store the policies inside the policy-based system and for further automatic
processes. This formal language is an essential part of the policy-based systems for internal
representation. To translate the RNL into the formal language becomes one of our RNL
interface’s functional requirements.

Compared to the RNL, the formal language is unambiguous. All the automatic

42
processing such as policy conflict analysis, policy verification. policy refinement etc. is
based on this language. That's why a formal policy representation plays a fundamental role
in the policy-based system architecture.

In this thesis. we choose a temporal logic-based approach as the formal language
to represent the policies. OQur approach is combined with two parts: the object-oriented
model to represent the entities and the actions in the policies, and the logic to express the
obligation/authorization policies, the constraints and the relationships between two actions.

The details of how to construct such a FR is explained in Chapter 5.

4.4 A Methodology to Construct a Restricted Natural Language for
Policy Capturing

We use the following seven steps to construct a Restricted Natural Language for the

problem domain.

Stepl: Define the problem domain by capturing ~adequate™ number of use case sce-
narios from one or more background materials and creating a sample set of policy
statements. The number of use case scenarios can be seen ~adequate”™ when all
the concepts inside the problem domain are covered by these use case scenar-
ios. The use case maps or UCMs can be drawn at this step in order to visually

representing the causal use case scenarios combined with structures.

Step2: Create an object-oriented model for the problem domain. In this stage. the
objects are clustered into classes: the attributes and the methods of classes are

defined: the relationships and interactions between classes are determined.

Step3: Based on the cases selected in the problem domain (Stepl) and the domain

expertise, coustruct a vocabulary.

Step4: Select a minimal set of simple-to-use syntactic structures for the intended

RNL.

43
Step5: Verify by manual methods to see if all the use case scenarios can be expressed

in RNL, that is to verify if the RNL satisfies the “habitability” requirement. (The

concept of habitability has been explained in Section 3.3.)

Step6: Develop a formal logical specification based on the semantics created by the

object-oriented model.

Step7: Develop a mapping from the RNL to the formal logic-based representation

(FR) to suit the further refinement or enforcement steps.

To explain in detail how the above step-by-step procedure works. we give two exam-

ples in Chapter 5.

4.5 The Expandability of the RNL

The RNL is designed as an expandable language. That is. the end users are allowed
to add words into the vocabulary or expand the object-oriented model to accommodate

more objects. The RNL can be expanded in two ways.

Expand the Vocabulary: End users can add new words into the vocabulary at any time
they want. However. they can only modify or add to the set of open words. Since
closed words are often related to the structures and semantics of the sentences.
modifying them may result in re-programming of the whole RNL analyzer. So.
closed words are fixed at the time when the vocabulary is created and do not allow

to be modified.

Expand the Object-Oriented Model: Users can add objects. attributes or operations
into the existing object-oriented model. As a result. they have to expand the vo-

cabulary to fit the modified model.

The Syntax is not allowed to expand: We believe that by expressing the policies in

an appropriate way, most of the policies can be described using the existing syntax.

44

Furthermore, any “small” modification of the syntax will cause a re-generation of

the RNL parser. For the above reasons, we do not allow users to modify the syntax.

Expanding a RNL may cause a serious ambiguity problem. Let’s see an example to
explain how expanding a RNL can cause an ambiguity problem. Suppose we already have
a RNL. Inside the vocabulary. we have a word “committee” representing the object “the
graduate studies committee”. Now we add a new object “the examining committee™ into
the object-oriented model and use the same word “committee™ to represent this object in
the vocabulary. An ambiguity arises. Does the word “committee” mean “the graduate
studies committee” or “the examining committee™? In this thesis. we try to use noun
phrases to avoid this kind of ambiguity problems. In this example. we delete the word
“committee” from the vocabulary and add two noun phrases to represent the two different
objects: “graduate studies committee”™ and “examining committee™. In Chapter 6. we will

discuss more about this.

Chapter 5

Case Study

In this chapter. we use two examples to explain how to construct a RNL using the
methodology described in Chapter 4. In the first example. we explain how to coustruct a
RNL for a Virtual Thesis Office (VTO) step by step. Then. we briefly introduce our second

example, a Virtual Call Center (VCC).

5.1 Virtual Thesis Office (VTO)

A Virtual Thesis Office (VTO) is a simplified system that handles procedures re-
lated to the submissions and examinations of students’ theses like the real thesis office at
Concordia University does. The thesis office accepts students’ theses. appoints examining
committees, schedules the defence dates. holds defences. and makes the final decisions for
the theses according to a set of pre-defined policies. The policies of the VTO have the same
contents as the regulations set up for the real thesis office.

In this chapter. we will set up a policy management system for the VTO. In order
to accept users’ statement of policies in natural language. we will construct a RNL for the

VTO system using the methodology proposed in Chapter 4.

5.1.1 Stepl: Define the Problem Domain

Define the problem domain by capturing “adequate” number of use case scenarios

and creating a sample set of policy statements. The use case maps or UCMs can

46
be drawn at this step in order to visually representing the causal use case scenarios

combined with structures.

5.1.1.1 Use Case Maps

To construct a RNL for the VTO system, the first thing we need to do is to define
the problem domain. As mentioned above. our problem domain will be restricted to the
aspects of a VTO system'’s regulations for dealing with masters’ theses. We first find out the
document about the examinations of the master’s theses from the Concordia University’s
Graduate Calendar (1999-2000) and develop as many use case scenarios as we can. Two
use case maps are drawn in Figure 5.1 and Figure 5.2. The notations used in these UCMs
are as per [Ref] or Ref.

To schedule a master’s thesis examination, the candidate nceds to first submit the
thesis to the VTO (start point SubmitThesis in Figure 5.1(a) Root Map). The VTO then
needs to schedule the defence date (stub ScheduleDe fence in Figure 5.1(a) Root Map).
At the same time. the Graduate Committee needs to appoint an examining committee
for the thesis examination (stub Appoint Examiner AppointChair in Figure 5.1(a) Root
Map). After that. the VTO nceds to hold the defence somewhere in the school with the
attendance of the student himself/herself and the examiners (stub HoldDc fence in Figure
5.1(a) Root Map). Finally, the examiners need to give a defence result to the student (stub
GenerateDe fence Result in Figure 5.1(a) Root Map).

The plug-ins in Figure 5.1(b). (c). (d). (e). (f) explain in detail how the VTO system

works.

(b) [Plug-in ScheduleDe fence|: It describes how the VTO system decides a thesis defence

date. (Figure 5.1(b))

Stud: (Figure 5.1(b)) Object Stud represents the candidate or student who submits the

thesis.

ScheduleDefence
\/ HoldDefence
SubmitThesis
AppointExaminer
NI Appol AppontChair ouT!
</\ \A/ GenerateDetenceResult
(a) Root Map
GSC
Toffice FCm CnltAppoint I
1 @
stud Schedule I
SN H
SubmitThess ~ (¢) AppointExaminer Plug-in
.; oLT!
IN? .
RequestPostpone AgrecPostpone GSC
o {yes]
7o 1 AppointChar I
(nol @®—X | oLt

d) AppointChair Plug-i
(b) ScheduleDefence Plug-in () AppointChair Plug-in

Figure 5.1: The Use Case Map for the VTO system

47

ECm
IN2 SubmitEfonp
nemenam—
SignEform
WriteReport
EC
SignRdport FillEform Decdethiguess
1detimn uestion
A
7N
SubmitRdport PreparcRepprt
AskQuestion

\c
Check ?NPPI Ay
Detence 'ﬁ____

Chair Um

(¢) HoldDefence Plug-in

(¢!]: accepted with major modification
{¢2]: no decision made
{€3]): accept as submitted, accepted with minor modifications or rejected

48

oLT2

Defencz Adjourn

oLT3

EC Stud Sup
VoteDecide (el]) Modity Thesis Demo
N
Inform
Chair
3 (<2} tnform ArmangeObtan
(V2 N, "
raY e A /N
Defence Adjoum Retumn DeterAddiRep CallMeceting
[c3]

() GenerateDefenceResult Plug-in

Figure 5.2: The Use Case Map for the VTO system - Continue

49
SubmitThesis: (Figure 5.1(b)) At the start point, the object Stud submits his/her thesis

to the VTO.

IN1: (Figure 5.1(b)) At point IN1. the VTO system receives the thesis submitted from

the candidate.
Tof fice: (Figure 5.1(b}) This is an object name representing the thesis office.

Schedule: (Figure 5.1(b)) Object Tof fice performs this action to schedule the thesis de-

fence date.

ECm: (Figure 5.1(b)) This is an object name representing the member of the examining

cominittee.

Request Postpone: (Figure 5.1(b)) Object Tof fice performs action RequestPostpone to

require a postponement to the current thesis defence date.

AgreePostpone: (Figure 5.1(b)) When Tof fice requests a postponement. object ECm
should perform action AgreePostpone to reply Tof fice if they agree upon the
postponement. If the answer is “yes”. then the new thesis defence date is deter-
mined. If the answer is “no”. then Tof fice should propose a new request to the

postponement.
OUT1: (Figure 5.1(b)) At this end point. the defence date is determined.

(c) [Plug-in Appoint Examiner]: It shows what actions are performed to appoint the ex-

aminers. (See Figure 5.1(c).)

IN1: (Figure 5.1(c)) At point IN1, the VTO system receives the thesis submitted from

the candidate.
GSC: (Figure 5.1(c)) This is an object name representing the graduate studies committee.

CnltAppoint: (Figure 5.1(c)) GSC performs the action CnltAppoint to appoint examiners

in order to organizing an examining committee for the thesis defence.

50
(d) [Plug-in AppointChair|: It shows what actions are performed to appoint a chair for

the examining committee. (See Figure 3.1(d).)
GSC: (Figure 5.1(d)) This is an object name representing the graduate studies committee.

AppointChair: (Figure 5.1(d)) GSC performs the action AppointChair to appoint a chair

for the examining committee.

OUT1: (Figure 5.1(d)) At the end point OUT1. Both the examiners and the chair have

been appointed.

(e) [Plug-in HoldDefence]: It describes how the thesis defence is held. (Sece Figure

5.2(c).)

ECm: (Figure 5.2(c¢)) This is an object name representing the member of the examining
g g

comimittee.
IN?2: (Figure 5.2(e)) This is the start point of plug-in HoldDe fence.

Write Report: (Figure 5.2(e))} Object ECm performs the action Write Report for preparing

a report for the thesis before the defence begin.

SignReport: (Figure 5.2(e)) Object ECm should sign the report he/she prepared by per-

forming the action SignReport.

Submit Report: (Figure 5.2(e)) After signing the report. object ECm should submit the

report to the chair by performing the action SubmitReport.

Chair: (Figure 5.2(e)) This is an object name representing the chair of the examining

commiittee.

CheckErep: (Figure 5.2(e)) Before the thesis defence begin. the chair should check if all

the examiners submit the reports by performing the action CheckErep.

Time Stamp - DefenceBegin: At this point the defence begins. (See the triangle in

Figure 5.2(e).)

51

FillE form: (Figure 5.2(e)) During the defence, the object ECm should fill an evaluation

form by performing the action FillFE form.

SignE form: (Figure 5.2(e)) Object ECm should sign the evaluation form after filling it

out. The action for sign this evaluation form is SignFE form.

SubmitE form: (Figure 5.2(e)) After the evaluation form is signed. ECm should submit it

to the chair by performing the action SubmitE form.

Attend in ECm: (Figure 5.2(e)) Object ECm should attend the thesis defence by per-

forming the action Attend.

AskQuestion: (Figure 5.2(e)) During the defence. the ECm will ask questions by doing

the action AskQuestion.
EC: (Figure 5.2(¢)) EC is an object name representing the examining committee.

Decide EndQuestion: (Figure 5.2(e)) During the defence. EC will make the decision that

no further question is needed by performing the action Decide EndQuestion.
PrepareReport: (Figure 5.2(e)) A report should be prepared by EC for the thesis defence.
Umn: (Figure 5.2(e)) Um is an object name representing the member of the university.

Attend in Um: (Figure 5.2(e)) any Um can attend the thesis defence by performing the

action Attend.

OUT?2: (Figure 5.2(e)) At the end point of HoldDe fence plug-in. the defence is adjourned.

Time Stamp - DefenceAdjourn: This is the time stamp representing the time the de-

fence being adjourned. (See the triangle in Figure 5.2(c).)

(f) [Plug-in GenerateDefenceResult]: It describes how the thesis defence result is gen-

erated. (See Figure 5.2(f).)

52

IN3: (Figure 5.2(f}) At the start point plug-in GenerateDefenceResult, the defence is

adjourned.

Time Stamp - DefenceAdjourn: This is the time stamp representing the time the de-

fence being adjourned. (See the triangle in Figure 5.2(f).)
EC: (Figure 5.2(f)) This is an object name representing the examining committee.

VoteDecide: (Figure 5.2(f)) Object EC should vote to make the decision for the thesis

defence by performing the action VoteDecide.

Chair: (Figure 5.2(f)) This is an object name representing the chair of the examining

committee.

Return: (Figure 5.2(f)) The Chair should return all the reports and evaluation forms to

the thesis officer by performing the action Return.

Inform in Chair: (Figure 5.2(f)) If there’s no decision made. the Chair should inform

the candidate that the decision is pending by performing the action Inform.

Deter AddiRep: (Figure 5.2(f)) If there's no decision made yet. object Chair should de-
termine what additional information is required for the examining committee by

performing the action Deter AddiRep.

ArrangeObtain: (Figure 5.2(f)) After doing the action Deter AddiRep. the Chair should

then arrange to obtain this additional information by performing the action ArrangeObtain.

CallMeeting: (Figure 5.2(f)) When additional information is obtained. the Chair should
call another meeting to reach a decision for the thesis defence by performing the

action CallMeeting.
Stud: (Figure 5.2(f)) This is an object name representing the candidate.

ModifyThesis: (Figure 5.2(f)) If the thesis is accepted with major modification. the object

Stud should modify the thesis by performing the action ModifyThesis.

53

Sup: (Figure 5.2(f)) This is an object name representing the candidate’s supervisor.

Demo: (Figure 5.2(f)) After Stud modified his/her thesis (ModifyThesis), the Sup should
denomstrate the modification to the examining committee by performing the action

Dermo.

Inform in Sup: (Figure 5.2(f)) Sup should also inform the thesis officer that the modifi-

cation is approved by performing the action Inform.

OUT3: (Figure 5.2(f)) At this end point. the decision of the defence is made. If the defence
is accepted with major modification. the required modification has been done. If
there's no decision reached during the defence adjourn period, the late decision
has been made at this point. This is the end point of the all thesis examination

processes.

5.1.1.2 Sample Policies

A set of sample policies is given below. These are derived manually from the real

procedures followed by the Concordia Thesis Office.

P1 Upon receipt of the thesis from the Thesis Office. the graduate studies commit-
tee of the program in which the candidate is enrolled appoints an examining
committee in consultation with the thesis supervisor. The examining committee
consists of a minimum of three. and a maximum of five members. The candidate’s

supervisor is a member of the examining committee.

P2 In the programs where there is a thesis supervisory committee. any or all members
may be named as members of the examining committee. subject to the policy of

the program concerned.

3 SIP students must have one external examiner on their committee.

P4

P3

Y

Students in the M.A.Sc. programs in Engineering must have one examiner from

outside their department.

The defence normally shall be scheduled within a period no fewer than two. and

no more than five. weeks from the submission of the thesis.
The parties concerned may agree upon a postponement.

The examining committee. and the thesis defence examination. will be chaired
by a person appointed by the program’s graduate studies committee. The chair

will act as a neutral person.

Each member of the examining committee must submit a written report on the

thesis to the chair before the defence.

Any member of the University is free to attend a master’s oral thesis defence.

P10 The chair will give priority to questions from members of the examining com-

mitcee.

P11 Only members of the faculty of the University may be recognized by the chair.

P12 The chair adjourns the examination when the examining committee decides that

further questioning is unnccessary.

P13 The deliberations of the examining committee are held in camera. that is to say.

only appointed tnembers of the examining committee are present.

P14 It is the responsibility of the chair to see that a report on the examination is

prepared before the committee adjourns.

P15 The examiner’s evaluation forms and the examination report must be signed

and returned to the thesis officer.

54

P16 Four decisions are open to the examining committee, voting to be based on a
simple majority. The thesis can be accepted as submitted, accepted with minor
modifications, accepted with major modifications, or rejected. Minor modifica-
tions are defined as corrections which can be made immediately to the satisfaction
of the supervisor. Major modifications are defined as corrections requiring further

research. or structural changes. or other substantive revision.

P17 When a thesis is accepted with major modifications. a precise description of
the modifications must be included in the examining committee’s report along
with a date for their completion. It is then the responsibility of the candidate’s
supervisor to demonstrate to the examining committee that the required modi-
fications have been made. The candidate’s supervisor should inform the Thesis

Officer in writing that the modifications have been approved.

P18 If the examining committee is not prepared to reach a decision concerning the
thesis at the time of the thesis defence. it is the responsibility of the chair to
determine what additional information is required by the committee to reach
a decision. to arrange to obtain this information for the committee. and to call
another meeting of the committee as soon as the required information is available.
It is also the chair’s responsibility to inform the candidate that the decision is

pending.

We notice that the use case maps do not provide detailed information for the opera-
tional aspects and the sample policy statements stay in an abstract level. This is because
both the use case maps and the sample policies are derived from the real world policies
used for humans. Policies stayed in the abstract level are already clear enough for humans
to execute. The operational details of these policies. in contrast, are redundant and only
expected to be useful for the machines. Since our target is to construct a RNL for expressing

the policies. either the abstract level or operational level description is adequate. The policy

56

refinement step should take the responsibility for mapping the policies from the abstract

level to the operational level.

5.1.2 Step2: Create the Object-Oriented Model

Create an object-oriented model for the problem domain. In this stage. the objects
are clustered into classes: the atiributes and the methods of classes are defined: the

relationships and interactions between classes are determined.

Once the domain is clearly bounded. we will create an object-oriented model from
the use case scenarios and the sample policies set up in Stepl.

First we abstract objects from the sample policies by analyzing the nouns. As shown
in Figure 5.3. for example. class ECm is an abstraction of “member of the examining
committee”, class Urn is an abstraction of “member of the university”. and class Ectm is
the abstraction of “external examiner”. Some abstract classes are added in order to make
the generalization relationships complete (shown in Figure 5.3). For example. Doc and
Person are abstract classes added by the designer. A complete explanation of the class

names is listed following the Figure 5.3:

LIST OF CLASSES:
Class Person is added by the designer. It represents all the persons in the VTO model.
Class Extm is an abstraction of “external examiner” in sample policy P3.

Class ECm is an abstraction of the "member of the examining committee™ in sample
policy P2.

Class Sup is an abstraction of the “thesis supervisor”™ in sample policy P1.
Class Chair is an abstraction of the “Chair” in sample policy Pl.

Class SupCm is an abstraction of the *member of the supervisory committee™ in sample
policy P2.

Class Um is an abstraction of the “member of the university” in sample policy P9.

Class Outdeptm is an abstraction of the “examiner from outside the department™ in
sample policy P4.

! Person
[———
TN Ty
S Y S
" i ~
. e ' B
i Bxtm ECm i Um
[— 1 S
L ; — . e SupC | EC |
; \‘\ Toffice |
f Sue Chair | Outdeptm | Om | Toficer 1 ———
RSN F——— SR SR S S
O / N . ThesisStatus |
" : N R v W
SupCm Fm |! Pm .
- ; ; ; ModiResult | Question |
o - L [i
_ GSCm . Std “Modificaon . Postpone
TR
" Doc Message
Deparment ST
- — Ve
— CRe B Eem | M0
F . Program -
sc st _
Ny L
ST TS T
/"/ ,‘ | o .‘\“\ \
"ECmSet I JOUN e T - PmSet |
o7 e N N
Thesis PR N N
.7 4 N .
¢ ‘ i FmSet p s N UmSet :
~ > : . .
, L N R
Defence [Deliberation ‘ N
L SupCSet — ————r
: " il TofficerSet | SignatureSet

Figure 5.3: Class Diagram for the VTO Model and its generalization relationships

57

58

Class Dm is an abstraction of the “member of the department” added by the designer.
Class Fm is an abstraction of the “member of the faculty” added by the designer.

Class GSCm is an abstraction of the “member of the graduate studies committee” added
by the designer.

Class Pm is an abstraction of the “member of the program” added by the designer.

Class Stud is an abstraction of the “candidate” or “student™ in sample policy Pl. P3 or
P4.

Class Tofficer is an abstraction of the “thesis officer” in sample policy P15.

Class SupC is an abstraction of the “supervisory committee” in sample policy P2.
Class EC is an abstraction of the “examining committee” in sample policy P1.
Class Toffice is an abstraction of the “thesis office” in sample policy Pl.

Class ThesisStatus is an abstraction of “the four decisions made by the examining com-
mittee regarding the thesis defence” in sample policy P16.

Class ModiResult means the result of the modification. It is abstracted from the sentence
group “the required modifications have been made” in sample policy P17.

Class Modification represents the modification the student made for his/her thesis ac-
cording to the examining committee’s requirement. It is abstracted from the sen-
tence group “the required modifications have been made™ in sample policy P17.

Class Question represents the questions asked in the thesis defence. It is abstracted
from the sentence “the chair will give priority to questions from members of the
examining comrnittee” in sample policy P10.

Class Postpone is an abstraction of the “postponement”™ in sample policy P6.

Class U is an abstraction of the “university” in sample policy P9.

Class Department is an abstraction of the “department” in sample policy P1.

Class F is an abstraction of the “faculty” in sample policy P11.

Class GSC is an abstraction of the “graduate studies committee” in sample policy P1l.
Class Program is an abstraction of the “program” in sample policy P1.

Class Doc is a generalization of all the documents used in the VTO model. It is added
by the designer.

Class Rep is an abstraction of the “written report™ in sample policy P8.
Class Erep is an abstraction of the “report on the examination” in sample policy P14.

Class Eform is an abstraction of the “evaluation form” in sample policy P15.

39

Class Message is a generalization of all the messages send/receive between the chair.
examination committee, supervisor, student. and the thesis office. It is added by
the designer.

Class Info is an abstraction of the “additional information” in sample policy P18.
Class Thesis is an abstraction of the “thesis” in sample policy P1.

Class Defence is an abstraction of the “thesis defence” in sample policy P9Y.

Class Deliberation is an abstraction of the “deliberation™ in sample policy P13.
Class Set is an abstract class added by the designer. It represents a group of objects.

Class ECmSet is an abstract class added by the designer. It represents the group of the
examining committee member.

Class FmSet is an abstract class added by the designer. It represents the group of the
faculty members.

Class SupCSet is an abstract class added by the designer. [t represents the group of the
supervisory committee members.

Class TofficerSet is an abstract class added by the designer. [t represents the group of
the thesis officers.

Class SignatureSet is an abstract class added by the designer. It represents the group
of the signatures.

Class UmsSet is an abstract class added by the designer. It represents the group of the
university members.

Class PmSet is an abstract class added by the designer. It represents the group of the
program members.

We then fill out the attributes of the classes and summarize the operations by an-
alyzing the use cases and the sample policies. The relationships between the classes are
added at the same time. A sample class ECm is shown in Figure 5.4. A complete class list

is shown in Appendix B.

LIST OF ATTRIBUTES:

Ecm rep: Ecm_rep is an attribute of class ECm. It represents the report that each
member of the examining committee must fill before attending the defence.

signature: signature is an attribute of class ECm. It represents the signature of cach
examiner.

60

ECm

i
!
EBEcm_rep :Rep !
&®;signature : String i
BHECm_eform : Eform 1
@thes is : Thesis |

|

t

Z¥Submit(ECm_rep : Rep, ¢ : Chair) : Boolean |
Z@WriteReport() : Rep
#®AskCuestion() : Question 3
5®Altend(d : Deliberation) : Boolean !
£¥Sign(d : Doc): Boolean !
| Z@FillEform (ECm_eform : Eform) : Boolean

| T@®AgreePostpone(p : Postpone): Boolean

Figure 5.4: ECm Class

ECm_eform: ECm_eform is an attribute of class ECm. It represents the “evaluation
form™ that each examiner should submit after the defence.

thesis: thesis is an attribute of class ECrm. It represents the thesis the candidate defends.

Submit: Submit is a method of class ECm. It represents the action described in P8 “Each
member of the examining committee must submit a written report on the thesis to
the chair before the defence”™.

WriteReport: WriteReport is a method of class ECm. [t represents the action the ex-
aminer write the report.

AskQuestion: AskQuestion is a method of class ECrm. It represents the action that
people ask questions in the defence.

Attend: Atfend is a method of class ECm. It represents the action that people attend the
defence.

Sign: Sign is a method of class ECm. It represents the action that the examiners sign the
documents like the evaluation forms etec.

FillEform: FillE form is a method of class ECm. It represents the action that the ex-
aminers fill the evaluation forms.

AgreePostpone: AgreePostpone is a method of class ECm. The semantics is coming
from P6 “The parties concerned may agree upon a postponement”. It represents the
action that the examiners state their opinion whether they agree upon the defence
postponement.

5.1.3 Step3: Construct a Vocabulary

Based on the cases selected in the problem domain and the domain erpertise. con-

struct a vocabulary.

61

Once the object-oriented model is created, we can begin to construct the RNL's
vocabulary. Three types of information should be determined at this stage. They are

name, type and meaning.

Name: The name records the information about how the words look like. In our vocabu-
lary. both a single word and a word group can be names. A word group is a group of
words syntactically acts as a single word in a sentence and has a semantic meaning.

We call a word group as a segment in our RNL.

Type: The type information is used for the syntactical analysis. We introduce 8 word
types in our RNL. They are:
(1) deter (determiner).
(2) noun/nounname (a segment acts as a noun),
(3) aux (auxiliary).
(4) verb/verbname (a segment acts as a verb).
(5) prep (preposition).

(6) prep-subj (a special kind of preposition that can only be placed before the in-
direct object. Here is an example. “Each examiner must return the evaluation

form to the chair.” “to” is a prep_subj.).
(7) conj (conjunction) and

(8) adv (adverb).

Meaning: The meaning records the semantic information for each word. In our RNL. most
of the semantics or meanings come from the object-oriented model. For example. the
name “member of the examining committee " means the object ECm in the object-
oriented model. So the class name ECm is recorded as the meaning of “member
of the examining committee”. When the object-oriented model is expanded. this

part of vocabulary should also be expanded. The words or segments in this part

62

of vocabulary are called “open words”. (See Section 4.2 for the definition.) On
the other hand. the semantics or meanings of certain words are not coming from
the object-oriented model. These names have fixed unique meanings in practice
{~closed words™. See Section 4.2 for the definition). Table 5.1 is a sample list of

such words.

Segment Type Word Be Translated To
Determiner “the, this, only, each™ =y
“an. a. any. any or all” -3"
Auxiliary “may, be free to” el
“must. can. should, will, shall” ~0"
Preposition “before” {constraint} =t <"
“after” {constraint} =t >"
“for. in, upon” {trigger}
Conjunction “when. as soon as, if " {trigger}
Adverb “also” “ernpty” (meaningless in RNL)

Table 5.1: A List of Words with Fixed Unique Meanings

We use at least one word or segment to represent each class and do the same thing
to attributes and operations of classes. In this way. a RNL’s vocabulary is constructed.
Figure 5.5 shows a part of such a vocabulary. It lists the verbs or verb segments for the
VTO's RNL. For the purpose of simplicity. the RNL parser doesn’t provide mechanisins
to recognize different forms of verbs. The different forms of the verbs are seen as the
synonyms of the original verbs. For example. word “attends™. “attended” and “attending”

are translated to be the synonyms of word “attend”.

5.1.4 Step4: Construct the Syntax

Select a minimal set of simple-to-use syntactic structures for the intended RNL.

\
e & EC i
prepae S
| Poeadspoelendian | p e esion) |
i gveanopinion b e modiicaion Preper " ! .
; gveanopinion about the modicalon - Vowed@oil ' submit ™,
decide i urter quesion be : f sign |
| AddTcRepar() ‘ agree upon the posponement |
2mbenohhaqxadm AddToRepor() f be present in 1
' P I
vdebget ! Approv eMadiicaton()| :
T
’ | | \.v(.
| !
| atend :_\‘ _.__E_C_m._,___,.
L J Submii) '
WriteRepart) jretm —
Camont T 1 AskQuesion() adoum 1
e e = | | delrmine ‘
' Um ~ appoitachar Atend) g
S— Sin(jcheck
) B “FIEOmM) |give pricrly b
Atend) ~_ AgeePestpong() | (inform
GSC -~ ; amange 1o oblain
- S — L. ! call anoher meeting
B
_5TT@ L Char -call a meeing of he examining commitee
- T ' i call @ meefing
Giv ePrionity () | cdll anober meeing of fhe commitiee
DeterAddRep) | call a mesting of he committee
Adjoum() |
—— CheckEren()
- modify ' X Rewm() ‘ S
confrue modiy ArrangeObeain)
o CallMeeting()
Sud Irdorm() s v N
I w B
N;%;sg‘ T ik b wrie
Submi Toficer - Dem)
S 1n
| request a posiponemento L : Tfice
3 i i RequestP ostpore() |
| Postpone() |
e

Figure 5.5: The Verbs Listed in the Vocabulary

63

64

5.1.4.1 The Grammar for the sentences

Compared to the flexible syntax of natural English sentences. the sentence structures
of policies are quite limited and fixed because basically a policy is a well organized complete
sentence describing what action should be done under certain conditions. In this thesis. we
selected three groups of sentence structures and a total of eight grammar rules as our
RNL's syntax by analyzing the sample policy statements. We believe that using these eight
grammar rules one can describe most of the policies (conditions and actions) in a natural
way. Figure 5.6 shows these eight grammar rules. Figure 5.7 presents some examples for

these eight grammar rules.

S S S
NG!1 VG NG2 AGI NGI VG NG2 NGl VG NG2 AG2
Grammar Gl Grammar G 2 Grammar G3

S S S
AGI NG1 VG NGI VG NGI vG NG2 NG3
Grammar G4 Grammar G5 GrammarG6é
S S
AG2 NG2 VG NG2 NG3 NGI VG NG2 NG3 AG2
Grammar G7 Grammar G8

Figure 5.6: Eight Grammar Rules for VTO System’s RNL

The following notations are used in Figure 5.6.

S: The sentence.

NG: Noun group. It is a group of words which acts as a noun. It could be the subject or

object in the sentence, and it is an elementary part of a sentence.

\VG\

65

NG \ NGZ\
The program graduate studics committee must appoint a chair

An Example of Grammar G|

/\

NGI

/

vG

AN

The members of the examining committee

may agree upon the postponement

An Example of Grammar G 5

S

T

NG1 vG NG2 NG3
The candidate’s supervisor should inform the thesis ofTicer that the modification
in writing have been approved

An Example of Grammar G6

Figure 5.7: Some Examples for VTO System's RNL Grammar

66

VG: Verb group. It is a group of words which acts as a verb. It acts as the predicate of a

sentence and is an elementary part of a sentence.

AG: Adjective/Adverb group. It is a group of words which acts as an adjective or adverb.
It could be the modifier of the noun group, the adverbial modifier or the complement

of the sentence. It is not an elementary part of a sentence.

5.1.4.2 The Grammar for NG, VG and AG

Sentences are made up of groups and groups consist of segments or groups. The

following BNF formulas describe the syntax we use to construct NG. VG and AG.

NG ::= PREP_.SUBJ DETER NOUN
| PREP_.SUBJ DETER NOUNNAME
| PREP_SUBJ NOUNNAME
| DETER NOUN
| DETER NOUNNAME

| NOUNNAME:

VG ::= VERB
| VERBNAME
| AUX VERB
| AUX VERBNAME
| AUX ADV VERB
| AUX ADV VERBNAME:

AG == CONJ NG VG
| CONJ NOUNNAME

| PREP NOUNNAME:

67

5.1.5 Step5: Manually Verify the RINL’s Habitability

Verify by manual methods to see if all the use case scenarios can be erpressed in

RNL, that is to verify if the RNL satisfies the “habitability™ requirement.

To test if the vocabulary is sufficiently large to express every aspect of the policies
inside the VTO problem domain and if the syntax set is appropriately selected to construct
the policy sentences. we manually rewrote the sample policies of the VTO system using the

vocabulary we constructed and the grammar rules selected. Following is our conclusion:

e Most of the information contained in the use case scenarios is incorporated into
the policy statements. However, because of the limitation of the RNL syntax and
vocabulary. policies have to be rewritten into simple sentences. As a result. the
total number of policies becomes almost double. In Appendix C. a complete set of

the rewritten policies is provided. !

e The RNL does not cover all the complexities shown in the use case scenarios. When
things become too complex. it is the responsibility of the end users to rewrite the
difficult things into simple sentences that can be expressed in the RNL. Examples
of this can be found in Appendix C. In Appendix C. the end user rewrote 18 sample
policies into 34 simpler policy sentences in order to express them in RNL (P1 to
P18 in Section 5.1.1.2). If there are no difficult things to express in RNL. the RNL

is 100% habitable.

! Two cases are not incorporated into the policy statements because the syntax and the vocabulary of
RNL are too simple to cover them. Following is a list of such exceptions.

» [n sample policy PI *“...The ezamining committee consists of a minimum of three. and a mazimum of
five members. ...". the cardinality information “a minimun of three. and a mazimum of five” cannot
be expressed in RNL because RNL doesn’t have mechanisms to analyze such a complex determiner.

= In sample policy P5 “the thesis officer should normally schedule the defence unthin a period no fewer
than two. and no more than five, weeks from the submission of the thesis.”. RNL is not complex enough
to express AG “within a period no fewer than two, and no more than five, weeks from the submission
of the thests™.

68

5.1.6 Step6: Develop a Formal Logic-based Policy Specification

Develop a formal logical specification based on the semantics created by the object-

oriented model.

Our Formal Representation (FR) consists of two parts. One is the object-oriented
model. It is used to represent the entities and the actions in the policies. The other is based
on logic. which is the glue to stick the entities and the actions together. The latter also
adds the obligation/authorization information. the constraints and the trigger conditions

to the policies.

5.1.6.1 Objects

A set of objects having common attributes can be grouped into a class. We describe
the attributes, operations. association relationships and generalization relationships in the
object-oriented model which is explained in Section 5.1.2. For example. the class ECrmn
shown in Figure 5.4 describes the common attributes of all the members of the examining
committee. ECm.signature is an attribute of class ECrm. ECm.Submit is an operation of
class ECrm.

In policy definition. an instance of the class is used as the object or subject of the
policy sentence. If we define ecrn as an instance of class ECm in policy “P8: Each member
of the examining committee must submit a written report on the thesis to the chair before
the defence.”. then ecn represents “(a particular) member of the examining committee”.

ectn.signature is an attribute of ectn. ecrn.Submit is an operation of ecrn. 2

5.1.6.2 Modality Do(p. action)

We define a modality Do(p. action) to represent the following structure “Somebody

takes some action™. p means a person or an agent who does the action. action is the

2 In this thesis a class name starts with a capital letter (ECm) and the instance of that class starts with
the same letter but in lower case(ecmn).

69
operation the person or a software agent takes. Actions come from the “operations” of the
object-oriented model. ~Do(p, action)” can be TRUE or FALSE indicating whether the
agent has performed the action or not. Here is an example of the use of this structure. In

order to represent information that “the examiner signs the evaluation form™ we can use

the following form:

Do(ecin. Sign(ecm.Ecm_e form))

5.1.6.3 Temporal Operators J,(f) and O,(f)

To represent the obligation/authorization information and the time constraints in-
volved in the policies. we use temporal operators O, {f) and <. (f).

Assume f as a formula such as a modality Do(p. action). we define Q,(f) as ~f is
necessary at time t7; O4(f) denotes = f is possible at time £7.

For example. to represent the obligation information in the policy “the examiner must

sign the evaluation forin before the defence”. we can use the following expression.

Dt<the:sts.dcfence’.defencr_be*gm-turw Do(ecm. Sign(eform))

If the above policy is changed to “the examiner may sign the evaluation form before

the defence”. we then change our expression as follows:

Ot(thesis.de fence.de fence _begin_time DO(CC‘IH.. Sign(eform))

5.1.6.4 The Formal Policy Representation (FR)

We also use the quantifiers V. 3 and the “if...then” operator “—" in our formal rep-

resentation. The complete expression of the policy *The examiner must sign the evaluation

form before the defence” now becomes

70

Vecn, Ve form, Dl<thesis.defence.dejence_begin_timeDO(CC""'~ Sign(eform))

Another example shows how the “if...then” operator *—" works.

Example: “As soon as the additional information is available, the chair shall call another

meeting of the committee.’

'y

VYec. ec.info # NULL —

Vec.chair, ODo(ec.chair, Call Meeting())

5.1.6.5 The List of FR Format Policies in VTO

In corresponding to the 34 rewritten RNL policies. the 34 FR format policies is

generated and listed here.

P1.1:

P1.2:

Upon receipt of the thesis from the thesis office. the graduate committee of the pro-
gram in which the candidate is enrolled should appoint the candidate’s supervisor

to be a member of the examining committce.

3tof ficer. Jstud Do(stud. Submit(tof ficer. stud.thesis)) —

Vstud.gsc. ¥stud.sup QDo(stud.gse. Cnlt Appoint(stud.sup))

Upon receipt of the thesis from the thesis office. the graduate committee of the
program in which the candidate is enrolled should appoint a person to be a member

of the examining committee in consultation with the thesis supervisor.

dtof ficer. Astud Do(stud. Submit(tof ficer. stud.thesis)) —

Vstud.gsc, 3stud.sup, Iperson ODo(stud.gsc. CnltAppoint(stud.sup. persomn))

: In the program where there is a thesis supervisory committee. the graduate com-

mittee of the program may appoint any or all members of the thesis supervisory

committee to be the member of the examining committee.

71
Vstud, stud.supc.count > 2 —
Vstud.gsc. 3person, Isupcm ODo(stud.gsc. Cnlt Appoint(supemn, person))
P3: The graduate studies committee must appoint an external examiner for SIP stu-
dents.
Vstud. stud.program.program,ame = “SIP" —
Vstud.gsc., 3stud.sup, Jextm ODo(stud.gsc, Crlt Appoint(stud.sup. ertm))
P4.1: The graduate studies committee must appoint an examiner outside the department
if the student is in the M.A.Se program in Engineering.
Vstud. stud.program = "M.A.Sd" —

Vstud.gsce. Joutdeptn ODo(stud.gsc. Cnlt Appoint(outdeptin))

P.:

(V]

The graduate studies committee must appoint an examiner outside the department

for the student in the M.A.Sc program in Engincering.

Vstud. stud.program = “M.A.Sd" —

Vstud.gsc., Istud.sup. Joutdeptrn ODo(stud.gsc. Cnlt Appoint(stud.sup. outdeptm))
P6.1: The thesis office may request a postponement addressed to the members of the

examining comimittee.

Vtof fice. 3thesis. Yecrn ODo(tof fice. RequestPostponie(ecm., thesis))

P6.2: The members of the examining committee may agree upon the postponement.
VYecn. 3postpone O Do(ecm. AgreePostpone(postpone))

P6.3: If the members of the examining committee agree upon the postponement. the
thesis office should postpone the thesis defence.

Yecn, Jpostpone Do(ecm. AgreePostpone(postpone)) —
Vtof fice. dpostpone, Yecm.thesis.defence

ODo(tof fice, Postpone(ecmn.thesis.defence. postpone))

P7:

P8:

P9:

P10:

P12:

P13:

Pi4.1:

P14.2:

P15.1:

The program graduate studies committee must appoint a chair.

Vgsc, 3sup, Jchair ODo(gsc. CnltAppoint(sup. chair))

Each member of the examining committee must submit a written report on the
thesis to the chair before the defence begins.

Vecn. 3decrn.ECm_rep. VYchair

Dt<theszs.defence.dejence_begin_timeDo(ec’ns Submit(ecrn. ECrmn_rep. chair))

Any member of the University is free to attend a master’s oral thesis defence.

Jum. 3thesis.defence O Do(umn. Attend(thesis.defence))

The chair will give priority to questions from members of the examining committee.
Ychair, Yquestion ODo(chair. GivePriority(question))

The chair adjourns the examination when the examining committee decides that

further questioning is unnecessary.

Vec ODo(ec. Decide EndQuestion()) —

Vec.chair. Vec.thesis. QDo(ec.chair. Adjourn(ec.thesis.de fence))

Ounly appointed members of the examining committee are present in the delibera-

tions of the examining committee.

VYecn, Vthesis.deliberation Do(ecmn. Attend(thesis.deliberation))

The examining committee should prepare a report before the committee adjourns.
Vec. derep Dt<thests.deliberation.adjourn_end_timeDo(ec- PrepareReport(erep))
The chair should check the examining committee’s report.

Ychair. Yerep QDo(chair. CheckErep(erep))

Each examiner must sign the examiner’s evaluation form.

Vecm. Veform ODo(ecm, Sign(eform))

P15.2:

P15.3:

P16:

P17.1:

P17.2:

P17.3:

P17.4:

73
Each examiner must sign the examination report.

VYecm., Verep ODo(ecmn, Sign(erep))

The chair must return the examiner’s evaluation forms to the thesis officer.

Vchair, Veform, Vtof ficer OQDo(chair, Return(eform. tof ficer))

: The chair must return the examination report to the thesis officer.

Ychair, Verep, Viof ficer QDo(chair, Return(erep, tof ficer))

The examining committec vote to get the final decision.

Vec., Vthesis.status Do(ec. VoteDecide(thesis.status))

When a thesis is accepted with major modification. the examining committee must
include a precise description of the modifications in their report.

dthesis. thesis.status = “accepted with major modification” —

Vthesis.ec, Jerep.modification QDo(thesis.ec. AddToReport(erep.anodification))
When a thesis is accepted with major modification. the examining committee must
also include a date of modification completion.

Jthests. thests.status = “accepted with major modification” —
Vthesis.ec. Jthesis.ec.erep.modi.comp_date

ODo(thests.ec. AddToReport(thesis.ec.erep.anodi_comp.date))

the candidate should modify the thesis.

Vstud, Imodification. Vthesis ODo(stud. ModifyThesis(thesis. modification))
When a thesis is accepted with major modification. the candidate’s supervisor

should demonstrate to the examining committee that the required modification

have been made.

Jdthesis, thesis.status = “accepted with major modi fication” —

Vsup. Vthesis.ec, thesis ODo(sup, Demo(thesis, thesis.ec))

P17.5:

P17.61:

P17.62:

P17.63:

P18.1:

P18.2:

74
The examining committee should give an opinion about the modification.

Vec. dmodification ODo(ec, ApproveM odification(modification))

The candidate’s supervisor should inform the thesis officer in writing that the mod-

ification has been approved.

Vsup, VYtof ficer, ec.modi_result ODo(sup, Inform(tof ficer. ec.modi_result))

If the modifications have been approved. the candidate’s supervisor should write to

the thesis officer about the result.

Vec.thesis. Yec ec.mnodi_result = TRUE —
Vsup. Yiof ficer. ec.thesis.econodi_result

QODo(sup. Inform{tof ficer, ec.thests.ec.modi_result))

[f the modification has not been approved. the candidate should continue to modify

the thesis.

Vec.thesis., Yec ecomnodi_result = FALSE —
Vstud. Jmodification. Vec.thesis

ODo(stud. ModifyThesis(ec.thesis. modification))

If the examining committee is not prepared to reach a decision concerning the
thesis at the time of the thesis defence. the chair should determine what additional

information is required by the committee to reach a decision.
Vec.thesis, Vec

- Doec.thesis .de fence.de fence begin_time<t<ec.thesis.adjourn.adjourn_end_time

(ec. VoteDeside(ec.thesis)) —

Vec.chair, Vec.info ODo(ec.chair. Deter AddiRep(ec.in fo))

If the examining committee is not prepared to reach a decision concerning the thesis
at the time of the thesis defence, the chair should arrange to obtain this information

for the committee.

Vec.thesis. Vec
ﬁDoec.thesis.dezjence.dej’ence_bezgin_time<t<e.'c.thesi.ei.adjourn.ad_jtmrn_end.time
(ec. VoteDeside(ec.thesis)) —

Yec.chair, Yec.in fo ODo(ec.chair. ArrangeObtain(ec.info))

P18.3: As soon as the additional information is available. the chair shall call another meect-

ing of the comimittee.

Vec ec.info # NULL —

Yec.chair QDo(ec.chair, CallMeeting())

P18.4: The chair should inform the candidate that the decision is pending.

Vehatr, Vstud., Ythests.status OQDo(chair. Inform(stud. thesis.status))

5.1.7 Step7: Develop a Mapping from RNL to the FR

Develop a mapping from RNL to the FR to suit the further refinement or enforce-

ment steps.

It is hard to directly map the RNL to the FR. However. by proposing a Hidden
Template (HT) as an intermediate representation between the two languages. we create a
bridge and the translation process becomes much easier. In the new translation process. we

first map the RNL into a HT and then map a HT into a FR.

5.1.7.1 Hidden Template(HT)

We borrow the idea of Hidden Template from case grammar [7], [15]. [n case grammar.
the focus of analyzing a sentence is turned into its conceptual structure (deep case) rather
than to its syntactic construction. Taking the verb as the key. the sentence actually describes
one or more semantic relationships between the verb and its “instruments”. Following this
idea. we created a Hidden Template which contains several logically related items and

centers on an action item (shown in Table 5.2). Once we fill the information contained

76

in a RNL sentence into this HT. we can obtain this sentence’s semantic meaning in a

straightforward way.

Item of HT RNL Group Semantic Meaning
0. Policy No.: P15.1

1. Subject Name: examiner ecm

2. Subject Scope: each v

3. Targetl Name: evaluation form | eform

4. Targetl Scope: the v

Target2 Name:

Target2 Scope:

N

Complement Name:

oc

Complement Scope:

(3]

Action:

sign

ecm.Sign{Doc)

10. Action Type:

must

a

11. Constraint:

12. Trigger Event:

Table 5.2: The Hidden Template for the policy “Each eraminer must sign the evaluation

form™

In Table 5.2. column 1 describes the structure of the table: column 2 records the

corresponding RNL groups of the sample policy statement: column 3 shows the real content

of the sample policy’s HT. The meaning of items in the HT are explained below:

0. Policy No records which policy this HT describes.

1. Subject Name records the entity’s name which acts as the agent of the action.

2. Subject Scope records the quantity of the subject. Two quantifiers can be used. V

and 3.

3. Targetl Name is the entity’s name who acts as the target of the action.

4. Targetl Scope is the same as Subject Scope.

5. Target2 Name is reserved for the actions which have two targets. For example. the

action “submit” has two targets: a document and a person.

6. Target2 Scope is the same as Subject Scope.

77

7. Complement Name is reserved for the target that does not appear in the RNL sen-
tence. However, according to the semantic meaning of the verb, it should be added
to the HT. For example. in the policy “the thesis office may request a postponement
to the members of the examining committee”. the verbname “request a postpone-
ment” has the semantic meaning “TOffice. RequestPostpone(ECm, Thesis)". Al-
though the concept “Thesis” in the above semantic meaning does not appear in the
surface level policy, it is an essential part of the action “RequestPostpone”. For

this reason, the entity “thesis” is added into the “Complement Name” item.
8. Complement Scope is the same as Subject Scope.
9. Action records the action of the policy sentence.
10. Action Type records the obligation/authorization information of the action.
11. Constraint records various of constraints of the action.

12. Trigger Event records the trigger condition of the policy.

5.1.7.2 Map the Policies in RNL to the HT Formats

Based on the eight grammar rules listed in Figure 5.6. Table 5.3 shows the relationship
between a RNL sentence and its HT. In Table 5.3, column 1 lists the structural component,
of the HT and column 2 enumerates the mapping relationship between that HT item and
the surface sentence structure.

According to the mapping relationship listed in Table 5.3. we can directly map the ap-
propriate contents in the RNL sentence into the right HT rows without ambiguity. These HT
rows include Subject Name/Scope, Targetl Name/Scope, Target2 Name/Scope,
Action and Action Type.

We notice that the AG (Adjective/Adverb group) falls into two possible rows: “Con-
straint” and “Trigger Event”, which means AG could be either a constraint or a trigger

event. We use the first word of AG to decide if it should be filled into the “Constraint™ row

78

HT Compoment | Mapping Relationship (HT <= RNL Syntax)

Policy No.:

Subject Name: NGl - NOUNNAME/NOUN
Subject Scope: NG1 —» DETER

Targetl Name: NG2 - NOUNNAME/NOUN
Targetl Scope: NG2 —» DETER

Target2 Name: NG3 - NOUNNAME/NOUN
Target2 Scope: NG3 —» DETER

Complement Name:
Complement Scope:

Action: VG - VERBNAME/VERB
Action Type: VG - AUX

Counstraint: AG

Trigger Event: AG

Table 5.3: The Mapping Relationship between the HT and RNL's Syntax

or the "Trigger Event™ row. Let’s sce an example. Suppose we have a policy “The eram-
iners should submit the written report to the chair before the thesis defence begins.”. The
AG in this sentence is “before the thesis defence begins”™. We check the semantic meaning
of the word “before”™ in the vocabulary and find match shown in Figure 5.3.

The word “before™ has a “{Constraint}” sign in its semantic meaning column. so
we fill this AG into “Constraint™ row. If the word has a “{Trigger}” sign (sce the word
“in” in Figure 5.8 as an example). we will fill the AG into “Trigger Event”™ row. According
to the AG grammar shown in Section 5.1.4.2. only two categories of words can be lead-ins
of an AG. "PREP” and “CONJ". Since words in category "PREP™ and "CON.J" are all
closed words which have unique semantic meanings. we won't have ambiguity problems and
misplace the AGs.

We also notice that the Complement Name/Scope’s mapping relationship items
are empty, which means no content in the RNL sentence can be directly filled into these two
items. This is easy to understand. Assume an action mentioned in a RNL format policy
needs two object parameters. Only one is mentioned in the policy sentence. We still need

the other one to complete this action. In this case, we fill the object parameter that doesn’t

79

|Seg| SegmentName | SegmentTyp| Segme | SegmentMeaning |

64 when conj 1 {trigger}
142 as soon as conj 3 {trigger}
29 if conj I {trigger}
24 for prep 1 {ungger}
15 in prep 1 {trigger}
1 upon prep 1 {trigger}
49 before prep I {constraint} t<
507 after prep I {constraint} t>

Figure 5.8: The Sementic Meaning of “before” in the Vocabulary

appear in the RNL format policy into Complement Name/Scope items. Let's see an

example:

Example: “The thesis office may request a postponement addressed to the member of the

examining committee.”

The structural analysis of this sentence is shown in Figure 5.9.

The action “request a postponement to” has the match shown in Figure 5.10 in the
vocabulary.

We notice that method Request Postpone has two parameters ECm and Thesis. The
parameter ECm in this sentence is filled by NG2 “the members of the examining committee ™.
The parameter Thesis isn’t mentioned in the sentence. However. the concept of “thesis™ is
a necessary part to complete the action Request Postpone. For this reason. we fill “thesis”
and V" (default setting) into the Complement Name/Scope items to make the sentence

concepts complete.

5.1.7.3 Map the HT to the FR

The mapping relationship from HT to the FR is quite straightforward. The following
BNF captures the essence of how to obtain FR format’s policy representation from its

corresponding HT representation.

(1) < Policy > := < TriggerEvent >—< Poli.cy >

80

NPI/ \!SP\ NP2
/ | AN

The thesis office may request a postponement to the members of the examining committee

Figure 5.9: The Semantic Meaning of “request a¢ postponement to” in the Vocabulary

(2) < Policy > = < SubjectScope >< SubjectName > < ComplementScope >
< ComplementName > < TargetlScope >< Targetl Name >
< Target2Scope >< Target2Name >

< ActionType >constraint Do(< Subject Name >, < Action >)

(3) < TriggerEvent > = < Policy >
(1) < SubjectScope > = V|3

(5) < TargetlScope > == V|3

(6) < Target2Scope > = V|3

(7) < ComplementScope > = V|3

(8) < ActionType > = |0

(9) The content of < SubjectName >.< TargetlName >.< Target2Name >.<
ComplementName >.< Action > and < Constraint > are coming from the

vocabulary.

The following example explains how the above formulas work. Let’s sec the same example

we used in Table 5.2 in Section 5.1.7.1:

Example: “Each ezaminer must sign the evaluation form.”

81

[Se| _ SegmentName [SegmentT|Se| SegmentMeaning |
32 request a postponement to verbname 4 [Toffice, Postpone, RequestPostpone, ECm, Thesis|

Figure 5.10: The Semantic Meaning of “request a postponement to” in the Vocabulary

The HT is already listed in Table 5.2 in Section 5.1.7.1. According to the formulas

listed above, a FR format of the policy is generated as follows:

Yeem. Ve formODo(ecn. Sign(eform))

At this stage. by following the methodology presented in Chapter 4. we have con-

structed the RNL of the policies of the VTO. The RNL includes:
e an object-oriented model describing the domain knowledge.
e a vocabulary recording the words and segments used in the RNL.
e cight grammar rules used to construct legal RNL sentences.

e a formal logic-based representation (FR) used to represent the policies inside the

software system. and

e a mapping technique to map the RNL format policies to the FR format policies.

5.2 Virtual Call Center (VCC)

A Virtual Call Center (VCC) simulates a real call center center which provides tech-
nical support to the customers by answering the incoming calls.

In the call center scenario. the customer can contact employees in VCC by telephone.
One of the employces takes the call. identifies the problem and assigns it to one of the
available experts. The expert might contact the customer for more information. or solve

the problem. or redirect the call to other expert.

82
5.2.1 Stepl: Define the Problem Domain

Define the problem domain by capturing “adequate” number of use case scenarios
and creating a sample set of policy statements. The use case maps can be drawn
at this step in order to visually representing the causal use case scenarios combined

with structures.

5.2.1.1 Use Case Maps

To define the problem domain of the VCC, we draw a use case map (Shown in Figure

5.11) describing the call center scenario.

Expert
Notity
Contact
; N
Customer Employee > o
Contact Notity I
. N
Ldh
Notity I
SolveProblem

Figure 5.11: The Use Case Map for the VCC system

[n Figure 5.11.
[Customer, Employee and Ezpert] are three object names.

[Contact in object Custorner] means “the customer contacts the employees in VCC by

phone™.

[Notify in object Employee|] means “the employee takes the call. identifies the problem

and assigns it to one of the available experts”.

83

[Contact in object Expert] means “the expert contacts the customer for more informa-

tion”.
[Notify in object Erpert] means “the expert redirects the problem to another expert”.

[Solve Problemn in object Erpert] means “the expert solves the problem™.

5.2.1.2 Sample Policies

A set of sample policies is set up at the same time.
Pl The customer may contact employees in VCC for technical support.
P2 The employee in VCC should notify an expert about the problem.
P3 The expert may solve the problem.
P4 The expert may contact the customer for more information.

P5 The expert may redirect the call to another expert.

5.2.2 Step2: Create the Object-Oriented Model

Create an object-oriented model for the problem domain. In this stage. the objects
are clustered into classes: the attributes and the methods of classes are defined: the

relationships and interactions between classes are determined.

The object-oriented model for the call center scenario is created in Figure 5.12. In Fig-
ure 5.12. Person is an abstract class generalized from Employee and Custorner. Ezpert is
a subclass of Employee. An instance of Person can send messages to other Person objects
by using the method Contact. An instance of Employee can inform other Employee objects
about the incoming call by using the method Notify. An instance of Erpert can answer

the incoming call and solve the customer’s problem by using the method SolveProblem.

84

contact o
“Message |—— _Person
"Contact()’
W—‘,; [I
redirect S
cmeom e Employee Customer
~$Notify() T
solve — —
Expert
7 9SolveProblem()

Figure 5.12: Class Diagram for the VCC Model and the Verbs Listed in the Vocabulary

85

5.2.3 Step3: Construct a Vocabulary

Based on the cases selected in the problem domain and the dormain erpertise. con-

struct a vocabulary.

The verbs listed in the vocabulary can be seen in Figure 5.12. Figure 5.13 lists the
complete vocabulary.
5.2.4 Step4: Construct the Syntax

Select a minimal set of simple-to-use syntactic structures for the intended RNL.

The syntax of VCC system is shown in Figure 5.14. The grammar for NG and VG is the
same as those we used in the VTO system. We observe that the grammar rules we used in

the VCC systemn is only a subset of those we used in the VTO system.
5.2.5 Step5: Manually Verify the RNL’s Habitability
Verify by manual methods to see if all the use case scenarios can be expressed in

RNL. that is to verify if the RNL satisfies the “habitability” requirement.

We manually rewrote the sample policies of the VCC system using the vocabulary
constructed and the grammar rules selected. We found that the vocabulary and the gram-
mar are large enough to express everything happened in the call center scenario. Therefore.

the RNL of VCC system is 100% habitable.

5.2.6 Step6: Develop a Formal Logic-based Policy Specification

Develop a formal logical specification based on the semantics created by the object-

oriented model.

We can use the same formal representation (FR) developed in the VTO system. The

FRs for the five sample policies are listed as follows.

86

[Se| SegmentName [SegmentT|S | SegmentMeaning |

[the deter 1 {for all}

2 customer noun | customer

3 can aux I {must}

4 contact verb I [Person,bool,Contact,Person,Message]
5 employee noun 1 employee

6 employee in VHDC nounname 4 employee

7 should aux 1 {must}

8 notify verb ! (Employce,bool,Notify,Person,Message]
9 an deter 1 {exist}

10 expert noun 1 employee

11 may aux 1 {may}

12 solve verb I [Eepert,bool.SolveProblem Message]
13 problem noun | message

14 call noun | message

15 for prep_subj 1

16 information nounname | message

17 redirect verb I [Employce,bool.Notify,Person,Message]
18 to prep_subj 1

19 another deter 1 {exist}
20 cxpert noun | expert
21 about prep_subj 1
22 more deter I {exist}
23 technical support nounname 2 message

Figure 5.13: The Vocabulary for the VCC system

NGt G

NG2

Grammar G|

NG! VG NG2 NG3

Grammar G2

Figure 5.14: The Grammar Used in VCC system

87

(1) The customer may contact employees in VCC for technical support.

VYcustorner, 3employee. Imessage © Do(customer. Contact(employee. message))

(2) The employee in VCC should notify an expert about the problem.

Vemployee, Jexpert, Imessage ODo(employee, Notify(erpert.mmessage))

(3) The expert may solve the problem.

VYerpert, Imessage O Dolexpert. Solve Problemn(message))

(4) The expert may contact the customer for more information.

Yexpert Vcustomer, Imessage O Do(ecpert. Contact(customer. message))

{5) The expert may redirect the call to another expert.

5.2.7

the on

Verpert, Jezpertl, Imessage O Dolexpert, Contact(expertl, mnessage))

Step7: Develop a Mapping from RNL to the FR

Develop a mapping from RNL to the FR to suit the further refinement or enforce-

ment steps.

Since the syntax of the RNL we developed for the VCC system is only a subset of

e we used in the VTO system. and since we use the same FR as the one in the VTO

system, we adopt the same mapping technique used in the VTO system without modifying

anything.

At this stage. following the methodology we presented in Chapter 4. a new RNL for

the VCC system is developed. It includes:

e an object-oriented model describing the domain knowledge.

e a vocabulary recording the words and segments used in the RNL.

e two grammar rules used to construct legal RNL sentences.

88

e a formal logic-based representation (FR) used to represent the policies inside the

software systemn, and

e a mapping technique to map the RNL format policies to the FR format policies.

5.3 Summary

[n this chapter. we presented two examples to demonstrate how to construct a RNL
for a policy-based system. Using the methodology we presented in Chapter 4. we can
construct a RNL for any policy-based system as long as the policies satisfy the conditions

we mentioned in Section 4.1.
e The policies are changed dynamically and frequently.
s They are simple policies.
e They are suitable to be described in natural language.

We also notice that some parts of the RNL are quite stable and seldom change when

the problem domain changes from one to another. These parts include:
e the syntax.

e the FR and

e the mapping technique used to map the policy from its RNL format to the FR

format.

Once we create a RNL whose syntax is sufficiently large to contain every possible
grammar rule, we can retain the syntax. the FR and the mapping technique of this RNL as
reusable components. When we create a new RNL for a new problem domain. we can just
develop the object-oriented model and the vocabulary, and copy the reusable parts to this
new RNL. It will save time and resources. This reusability is demonstrated in constructing

the RNL for the VCC system.

89

In the next chapter, we will present a prototype RNL interface for the VTO system
to test the methodology we explained in this chapter. The VTO system is a policy-based
system that handles the procedures related to the submissions and the examinations of the
students’ theses. A RNL interface for this VTO system can accept the end user’'s RNL
policies as inputs. analyze them automatically, translate them into FR format. and save

them into the policy repository.

Chapter 6

VTO System Design and Implementation

6.1 Implementation Environment

A prototype called VTO (Virtual Thesis Office) System is designed and implemented
for testing the methodology we proposed in this thesis. The VTO system is a policy man-
agement tool for the domain of the Master’s thesis examination in Concordia University. [t
accepts the RNL format of policies which are restricted in the problem domain. analyzes
the RNL format inputs. translates them into the FR format policies and saves them into a
policy repository. The users of the VTO systemn can review the policy repository. add new
policies into it. update existing policies. and delete policies from the repository.

The VTO system has been implemented using the JAVA programming language.
combined with a Microsoft Access database to store the knowledge base and the policies.
A JDBC-ODBC driver is used to access the Microsoft Access database. Following is a list

of software packages we used to develop the VTO system:

e JDK Standard Edition 1.2
e JDBC-ODBC Driver 1.1
e Microsoft Access 97

6.2 Software Architecture

The basic architecture of the proposed system can be subdivided into two major com-

ponents: the policy management tool and the RNL processor. The policy management tool

91

provides an interface to add, update and delete policies into or from the policy repository.
The RNL processor analyzes input policies stated in the RNL format. translates the RNL
policy into the FR format and saves both the RNL format and the FR format in the policy
repository. The overall architecture is shown in Figure 6.1.

In the following sections. we will briefly introduce the functions of each module and

the algorithms we used.

6.3 Policy Management Tool

The policy management tool (Figure 6.2) provides to end users an interface to add.,

update. delete policies into or from the policy repository.

6.3.1 The Time Sequence of the Policies

Generally. a time sequence of actions exists in the set of policies of VTO. In a policy-
based system. the policies being executed earlier may affect the system states. and some
of these system states may become a part of the conditions considered in the subscquently
applicable policies. This kind of condition relationship between early-executed and later-
executed policies can hardly be expressed in a single policy sentence. Alternatively, a
sequence of policy procedure such as “stepl. step2. steplO... ...” becomes an

appropriate way to record this time sequence.

6.3.1.1 The Time Scope of the Policies

Before we introduce the time sequence of the policies. we first introduce a time scope
concept.

Each policy. no matter the obligation type or the authorization type. has an effective
time scope. In Figure 6.3. Policy P1 is active in P1’s time scope. Qutside of that scope.

policy P1 has no effect on the system. An example follows:

Example 1: The chair will give priority to questions from members of the examining

End User

RNL format policies

FR format policics or error prompts

Policy Management Tool

Policy Repository

FR format policics

RNL format policics CoTTTTTTT T '
)
| Error prompts
H
) [} t
| [} '
! B 4oo-omomemoo o !
: L L L t
' ‘
'
'] Lexical - - Pt --p»| Semantic |)
* Analyzer Parscr Analyzer
t)
i :
' RNL Processor !
h H
Lexicon

Objcct-oriented Modcl

VTO System

Figure 6.1: The VTO system’s Architecture

92

 File View

»:g Policy Management

'Record - Help .~

93

A

3 g— %
‘I

v

4 : 3 LS
¢ b ;3 SUE
Rt | B

Current Policy:

'Row 1 is now selected.

P |
Policy No Policy: RNL Form Input Paolicy; Formal Form Output
1 upon receipt of the thesis from the...exist tofficer, {exist}stud Do...!
1.2 upon receipt of the thesis from the...|{exist tofficer, {exist }stud Do... | =
12 the chair will give priority to questi... [{for alljchair {for alljquestion ..
13 only appointed members of the ex... {for all}ecm {for allthesis.deli..
142 the chair should check the examini.../{for all}chair {for all}erep{mu...
151 ieach examiner must sign the exa... |{for alijecm {for all}eform{mu...
152 each examiner must sign the exa... /{for alljecm {for all}erep{mus...
15.3 the chair must return the examiner ... !{for alljchair {for all}eform {f...
154 the chair must return the examinati...i{for alljchair {for all}erep {for...
16 the examining committee vote to g... {for alljec {for allthesis statu....
171 when a thesis is accepted with m... {exist thesis thesis status="a...
17.2 when a thesis is accepted with m... {exist thesis thesis .status="a...
17.3 ithe candidate should modify the th... {for all}stud {exist jmodificatio. ..
17 .4 when a thesis is accepted with m... {exist thesis thesis status="a...
17.5 the examining committee should gi... ({for alljec {exist jnodification... ||
17 81 lthe candidate's sunervisor should — Yfar allysun {for alltafficer ec 1Y
~Policy Card
PolicyNo: 1
Restricted Natural Language Expression of the Policy: =
upon receipt of the thesis from the thesis Ofﬂce, the_graduate committes
Formal Form Expression of the Policy:
Stofficer, Istud Do(stud, Submitofiicer, studthesfs))—r» pstud.gsc, bstud
| »]

Figure 6.2: The VTO System’s Policy Management Tool

94

Time Scope Time Scope Time Scope

of P3

of P1 of P2

2

+ >
w_/ ~—PI—" 1ime

Figure 6.3: The Time Scope of Policies

committee during the thesis defence.

[t is obviously that policy P10 given above is effective after the thesis Defence has
begun and before the defence finish. Qutside this period of time, this policy is not mean-
ingful.

Time scopes exist in not only obligation policies but also in authorization policies.

Cousider the following example:

Example 2: Any member of the university is free to attend a master’s oral thesis

defence.

This is an authorization policy. The member of the university can attend the thesis
defence only after the defence has begun and before the defence finishes. In other time this

policy has no effect.

6.3.1.2 The Time Sequence of the Policies

The policy’s time scope starts at a begin_tirne and ends at an end_titne. Assume we

have two policies P1 and P2. If
begin_time,| < begin_timep; () end_timey, < end_timep;

then we say P1 should be executed earlier than P2. If we sort the policy set {P1. P2}

in an ascending order according to the time sequence. Pl should be in a earlier place than

P2,

95

Figure 6.3 is an example demonstrating the time sequence in a policy set { P1. P2. P3}.

Since
begin_timep) < begin_timeys < begin_timeps () end_timey) < end_timep; < end_timep;.

P1 should be executed earlier than P2 and P2 should be executed earlier than P3. The

time sequence of this policy set is
Pl. P2 P3

In our policy management tool, we use a Policy No. to order the time sequence of the
policy set. The policies having smaller Policy No.s should be executed earlier. For example.
assume we have four policies labeled as P1. P1.1. P1.2, P2, then the time sequence of this

policy set is
Pl1.P1.1.P1.2. P2

P1 should be executed carlier than P1.1. P1.2 and P2. Same way. P1.1 should be executed
carlier than P1.2 and P2 but later than P1.

The reason we order the policy set in the policy repository is to keep our transla-
tion from RNL to FR simple. As we mentioned above. every policy should have a time
scope. then each policy in RNL format shouid have phrases to describe the begin_time and
end_tirne of the time scope since we analyze the policy based on a single policy sentence.
However, this is not the way people communicate in a natural language. In our VTO sys-
tem. almost every RNL policy omits one or both the time scope boundaries in its policy
sentence. Instead of using phrases to specify the time scope, our RNL implies a policy
time sequence by specifying the policies in an execution time order. In order not to loose
this information and to avoid analyzing time scope phrases in every policy sentence. we use
“Policy No.” to record this information and let the end users decide what “Policy No.” an

input policy should have.

96

6.4 RNL Processor

The RNL Processor is combined with three components: (Shown in Figure 6.1)
(1) a lexical Analyzer.
(2) a parser, and

(3) a semantic analyzer.

6.4.1 Lexical Analyzer

The lexical analyzer accepts the input RNL sentence from the policy management
tool. It tokenizes the sentence into words. compares each word with the one in the lexicon.

corrects the spelling errors. and generates a segment list for the parser.

6.4.1.1 The Data Structure of the Lexicon

Our VTO system keeps two database tables to save the lexical informmation. They
are “Word” table and “Segment” table. As we mentioned in Chapter 3. every word or
word group which has a semantic meaning recorded in our lexicon is called a segment. We
record these segments into our “Segment” table. Along with the semantic meaning of each
segment, we also save the information about how the segment looks like. with which words
it combines, how many words it has. what category it belongs to etc. Similarly. we record
the information about how to spell a single word and in which position this word should
be in a segment into the table “Word™. In the next section. we will explain how these two

tables are used in the lexical analysis.

6.4.1.2 The Definition of Similar Words

There is an important concept in our lexical analysis. the similar words. The similar
words are those words similar in spelling. To provide similar words for the original word is

a function the Lexical Analyzer provided with, when it does the spelling check of the input

97

sentence. If the user inputs some words not existed in our lexicon, the lexical analyzer will
give him/her a similar word list, help him/her to correct the spelling errors and choose the
words the system known. For this purpose., a definition of similar words is needed. We
adapt Winiwarter’s similarity measurement approach [46] to measure to what degree two
words are similar. After introducing this similarity measurement approach, we will give the
definition of similar words.

Assume we have two words wl and w2. wl and w2’s similarity degree can be measured

by the following formula:

Zf:l | Clp —C2, E
Z:k:l cit+ Zf:l 2

Here. wl is the initial user input word. w2 is the word in the word dictionary. ¢ ,(es,)

SIM(wl.w2) = 1 —

signifies the number of occurrences of character ¢ in the first (second) term wl(w?2). k is the
sum of different character numbers in wl and w?2.

A suitable threshold p can be chosen. The terms whose similarity degree is larger
than p are treated similar to the original word.

This similarity measure is not always right. Consider the following pathological case:

if wl = “omrnunicationc” . w2 = “communication”.

then SIM(wl.w2) =1

This result is certainly wrong because wl has an obvious error. However. for most of the
practical situations. this method leads to a reasonable result. That’s why we adopt it as

our spelling similarity measure.

Now suppose
wl is the iniiial input word.
w?2 is a word in the word dictionary.
len_wl is the length of wl.

len_w?2 is the length of w2,

98

p is the pre-defined threshold (for example 80%) of the
similarity measure SIM,
we define the two words are similar if and only if
3 <len.wl < 1) A(] len-wl — len_w2 |< 1) A(SIM (wl. w2) > p)

or

(12 < lenwl) A(] len-wl — len_w?2 |< 2) A(SIM (wl. w2) > p)

6.4.1.3 Two-Phase Lexical Analysis Algorithm

Our lexical analyzer uses a two-phase lexical analysis algorithm (shown in Figure 6.4

to check the spelling errors and construct a segment list for the following analysis).

e Phase one: A spelling check is done. If the word has spelling errors. a list of

similar words is suggested to the end user to correct the errors.

(1) Tokenize the input sentence into single words.

(2) For each individual word. look up the “Word™ table to find the match. If
the match is not found. then use spelling similarity measurement algorithm
(described in the next section) to check every possible similar word in table
“Word” to find out the most similar one (or several words). If one or several
words’ similarity degree > p (say 80%). then use them as possible similar words

and ask the end user to correct the spelling error.

(3) The output of phase one is a list of correctly spelled words.

e Phase two: Browse the word list generated in phase one and match the segments
by looking up the “Segment” table. The output of phase two is a segment list which
records the segments’ types and their semantic meanings. The information about

segments’ types will be used for parsing. Their semantic meanings will be analyzed

in semantic analysis.

Input sentence:
Any mmber of the university

muy attend the thesis defence.

Ward Panif x
Yy ! any /@mbep/ of / the / Phase one:
mber 3 university / may / attend / Tokenize the sentence
of g the / thesis / defence / \Spclling check
ivers ty 3
y 2 \

atzend 3

the 3

the sis 5 member?
v

Word List

fom o e m o e m e e e e e e e e e e e e mmmm—mmmmmm————n————
t]
t]
] any - member > of T the T
))
' ‘
I 1
] 1
E I—P universityl T may | TP auend | TP the T ;
' '
]]
: '
! thesis I defence '
])
[}

Segment List

Phase two:
Match the scgments

any member of the university | | >

> the thesis defence

nounname

aounname

Figure 6.4: The Process of Lexical Analysis

99

100

Note that a segment may belong to several segment categories or have several semantic
meanings. This phenomenon is called ambiguity. At this stage, we record every category
and semantic meaning into the segment list and submit them to a parser. The parser and
the semantic analyzer will check every possible combination to reject the inappropriate

segment categories or semantic meanings.

6.4.2 Parser

The parser takes the segment list generated by the lexical analyzer as input. analyzes
the sentence’s syntactical structure and generates a parse tree for further semantic analysis.
In the VTO system. we use a LALR parser generator “CUP" [21] to gencrate our

LALR parser. Figure 6.5 is an example of the parse tree the parser generated.

S
/\JG 1 vG NG2
deter nounname aux verb deter noun
the must an examiner|
deter aux deter noun
v 1] 3 eem
program graduate studies committee appoint
nounname verb
gsc [GSC.ECm,CnltAppoint, Person]

Figure 6.5: A Parse Tree Generated from the Parser

Note that if ambiguous segments exist in the input sentence, the parser may generate
more than one parse tree, all of which are syntactically correct. In this situation. the

ambiguity can only be resolved in the semantic analysis stage by analyzing the semantic

101

meanings of different parse trees.

6.4.3 Semantic Analyzer

Semantic analyzer analyzes the content of the policy sentence. resolves the ambigu-
ity problems, and generates the policy in FR format. Our semantic analyzer divides the

semantic analysis into three steps.

Stepl: For each parse tree. fill each segment’s semantic meaning into the Hidden Tem-

plate(HT).
Step2: Do the cousistency check according to the object-oriented model.

Stepd: If the sentence passes the cousistency check. then generate the policy in FR
format. If not. the semantic analysis has failed and the input sentence contains

illegal contents and cannot be accepted by the RNL Processor.

6.4.3.1 Fill the Hidden Template

Filling the HT is the means that the VTO system uses to “understand™ the RNL
input sentence. In Table 5.3. a relationship between the RNL's syntax and the HT has
been established. We can follow this relationship to fill the appropriate segment’s semantic
meaning in the parse tree to the HT. For example. for the parse tree shown in Figure 6.5.
a HT shown in Table 6.1 is filled.

Note that one segment may have a possibility to have multiple meanings. For exam-

ple, in our VTO system. verb “inform™ may represent class Chair's method
[bool Inform(Stud. ThesisStatus)]

(which means “the chair informs the student about the thesis status™): it may also represent

class Sup’s method

[bool Inform(Tof ficer, ModiResult)]

—
o
(%]

Policy No.: P4

Subject Name: graduate studies committee | gsc
Subject Scope: the v
Targetl Name: examiner ecm
Target]l Scope: an 3

Target2 Name:
Target2 Scope:
Complement Name:
Complement Scope:

Action: appoint GSC.CultAppoint(Sup,Person)
Action Type: must @)
Constraint:

Trigger Event:

Table 6.1: An Example of a HT

(which means “the candidate’s supervisor informs the thesis officer if the modification of

the thesis is approved™). In this situation. the semantic analyzer should check
(1) if the method’s owner matches the subject in the HT.
(2) if the method’s parameters match the target in the HT.

Only the matched one can be chosen to fill the action item in the HT.

6.4.3.2 Consistency Check

Consistency check is the main task of the semantic analysis. [t will succeed if the
translation of the input sentence is logically reasonable. In the VTO system. since we fill
the translation of the input sentence in the HT, we make the following checks sequentially

for the HT to see if the translation is logically reasonable.
(1) Does the action’s owner match the subject in Subject Name item?

(2) Does each parameter of the action match the target in Targetl Name or Target2

Name or the complement in Complement Name item?

If the answers of the above two questions are “yes” then we say the translation passes

the consistency check and it is logically reasonable. If the translation doesn’t pass the

103

consistency check. it means either the subject cannot do the action described in the HT or
the subject doesn’t do the action the same way described in the HT. In both situations. the

translation has some logical errors and should be rejected by the semantic analyzer.

6.4.3.3 Generate the Output

Once the translation passes the consistency check. a policy in FR format can be

generated following the formulas introduced in Section 5.1.7.3.

6.4.4 Ambiguity Problem

In the VTO system. ambiguity problems exist in every stage of the RNL analysis.
If in the lexicon. a segment has more than one segment types or more than one segment
meanings. an ambiguity problem may raise when that segment is used in an input policy
sentence. To avoid or solve this problem. we adapt several methods in the design the VTO

systern.

(1) To simplify the problem, we try to avoid most ambiguity problems by separating the
lexicon into two parts. the “closed word™ part and the “open word” part (Chapter
4). In the “closed word™ part. every segment has a unique type and meaning. They
are defined by the designer and cannot be modified by end users. For this reason.
they seldom cause an ambiguity problem. We include as most words as possible into
the “closed word™ part. These words include every word in segment type deter,
prep, prep_subj, conj, aux and adv. On the other hand. we have to allow users
to add objects and actions to the existed object-oriented model in case they have
the needs to expand the knowledge base(object-oriented model). As a result. new
segments that represent the objects and actions are added into the existed lexicon
at the same time. These segments are categorized into the “open word” part of the
lexicon. In this part, a segment might have more than one segment type or segment

meaning and may cause ambiguity problems. We restrict the “open word™ part into

—_—
(3]
~

(3)

104

only those nouns, nounnames, verbs and verbnames. In this way, we restrict

the ambiguity problems into a limited area of the lexicon.

We also try to use word groups instead of single words to represent objects and ob-
ject’s attributes. By adopting this method. we reduce the chances of noun/nounname
segments having multiply meanings. For example, segment “committee” in our lex-
icon may represent “the graduate committee” or “the examining committee™. If we
replace the single word “committee” as two word groups “the graduate committee”

and “the examining committee”, the ambiguity problem is avoided.

If the system finds a segimment which has more than one segment types in the process
of syntactic analysis. it will try to analyze each type of the segment to generate the
parse trees. In some situations, only one type of the segment is “correct” and can
generate a parse tree. [n that case. the ambiguity problem is solved in the syntactic
analysis stage. In other situations. more than one parse trees can be generated.

The additional semantic analysis has to be done to solve the ambiguity problems.

[n the following situations. the ambiguity problems have to be solved in semantic
analysis.

e The system finds a segment which has multiple segment meanings.

e The syntactical analyzer generates more than one parse trees.
The semantic analyzer discards the inappropriate segment meanings or parse trees

by doing the consistency check. If the action’s owner and the parameters don't

match the subject and targets filled in the HT. then

o the segment meaning filled in the Subject Name, Targetl Name, Target2

Name or Action Name is incorrect, or

e the parse tree is incorrect.

105

The semantic analyzer has to choose another segment meaning or parse tree to do
the semantic analysis again until the right meaning or parse tree is selected. or the

semantic analysis failed in all the possible choices.
6.5 The Verification of the Software

To verify if the VTO system achieves the design objective, we input every rewritten
policy listed in Appendix C to the VTO system and checked if the output FR format policies
match the formal statements given in Section 5.1.6.5 in Chapter 5. The results generated
by the system is exactly the same as the FR format policies we manually wrote in Section

5.1.6.5 in Chapter 5. The prototype is proven to be correct.

Chapter 7

Conclusion And Future Work

In this chapter the conclusions of the thesis are summarized and some suggestions

for areas of further work are given.

7.1 Conclusions

The aim of this thesis is to present two levels of policy specifications for both human
and the software processing and introduce a methodology to construct a Restricted Natural
Language (RNL) and the corresponding interface (RNLI) for policy capturing. The thesis
first investigated the existing problems in policy capturing area. then the development issues
for natural language interface design is examined. Based on these investigations. two levels
of policy specifications are presented and a methodology of how to construct a RNLI is
introduced. As the examples of how to use this methodology. a VTO system and a VCC
system are illustrated.

Although policy-based systems are gaining more importance recently. the rescarch
on policy capturing stays in an early stage and no case-of-use and ease-of-learning tools
are developed to capture policies. Policy-based systems are expected to play a role not
only in the system management but also in satisfying special needs of the end users. We
expect that the need for an easy-to-use and easy-to-learn policy-capturing tool will increase
in the future. In this context the RNL-based policy specification could play a role. The
FR level specification. which is derived automatically from RNL. could be used for stepwise

refinement and conflict analysis etc.

107

The RNL level policy specification represents policies using a Restricted Natural
Language. The RNL is a subset of the natural language and is restricted in the lexicon. the
grammar. as well as the semantics. [t is used for the end users to input their policies into
a policy-based system.

The RNL is restricted because both the lexicon and the grammar are selected subsets
of the natural language; and the semantics describes the knowledge only in one problem
domain. How good the “habitability” ([44] and [38]) of the RNL is depends on what words
and syntax are chosen. On the other hand. a well-chosen lexicon and syntax also reduce
the ambiguity problems of the RNL.

The FR (Formal Form) level policy specification express policies using a logic-based
formal representation. Instead of giving end users the convenience to input their policies.
the formal form of the policy specification focuses on the preciseness of the information in
order to enable the automatic processing by software. In this thesis, the policies are stored
in FR format in the policy repository. and is ready for the further automatic processes such
as automatic policy refinement. static policy conflict analysis and policy enforcement ete.

The RNLI designed based on the RNL has two main objectives:

(1) to be a user interface for the end users to use the RNL.

(2) and to translate the RNL format policies into the FR format policies and store them

into the policy repository.

A RNLI consists of a lexicon for the specific domain. a grammar for constructing
policy statements. an object-oriented model for representing the knowledge expressed in
the lexicon. (these three components combines a RNL). a formal form of the policy repre-
sentation for the behavior of the specific domain. and a parsing technique to map the RNL
into the formal form of the policy representation.

Inside the RNL parser. which is an essential part of a RNLI. we developed a two-
phase lexical analysis to tolerate the spelling errors in the input sentences and use a Hidden

Template (HT) to help the translation from the RNL to the FR.

108

The methodology of constructing the RNLI is demonstrated through the VTO system
and the VCC system which we believe that this generalized and methodical approach could

be used in.

7.2 Future Work

There are a number of areas in which this work can be expanded. In the area of
the natural language interface, if the RNLI is combined with commercially available speech
recognition engines to provide spoken input, it will minimize the training requirement of
the end users and support hands-free or mobile usage. In the area of policy management.
a better policy editor tool could be developed if we integrate the RNLI with a policy
refinement tool and a conflict analyzer.

The well-known concept of “habitability”™ is examined in order to measure the produc-
tivity of our Restricted Natural Language. The habitable degree of a system is determined
by the way we choose the lexicon and the grammar rules. However. we do not have the
tools to quantitatively measure the habitable degree of a system. Furthermore. following
what kind of rules can improve the habitability of a system still needs investigation.

There is also room for improving of our VTO system’s RNL Processor. In our lexical
analyzer. the similarity measurement algorithm is only used in the word level. As the
result. when errors exist in the input sentences. ounly those single word spelling errors can
be detected and the right words can be suggested. If we could expand this similarity
measurement algorithm to a segment level. the habitability of the language will be improved.

Finally. because of the limitation of the RNL's lexicon. syntax and semantics. the
information a RNL can express is limited. How to express as much information as possible
and maintain the small size of the lexicon. syntax and semantics at the same time is always
an issue we should examine. Although different RNLs have different lexicon. syntax and
semantics, we believe that some basic parts are similar. For example. we believe that the

core grammar of different RNLs should be similar. If we could find out this similar part

109

and provide a general solution to it, the challenges of constructing different RNLs would

get simpler. How to find out this core part. certainly, needs more work.

(1]

(2]

3]
(4]

[9]

[10]

(11]

[12]

Bibliography

A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation. and Compiling.
Prentice-Hall. Inc.. 1972.

A. V. Ahoand J. D. Ullman. Principles of Compiler Design. Addison-Wesley Publishing
Company. 1977.

J. Allen. Natural Language Understanding. Springer-Verlag. 1st edition. 1987.

D. Amyot. Use case maps quick tutorial version 1.0, http://www.usecasemaps.org,
1999.

D. Amyot and G. Mussbacher. On the extenston of umnl with use case maps concepts. In
The 3rd International Conference on the Unified Modeling Language (< UML2000>>).

York. UK. October. 2000.

A. W, Appel. Modern Compiler Implementation in Java. Cambridge University Press.
1998.

B. Bruce. Case systems for natural language. Artificial Intelligence. vol. 6:pp. 327-360.
1975.

N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory. vol. it-2(no. 3):pp. 113-124. 1956.

D. M. Cleal and N. O. Heaton. Knowledge-Based Systems: Implications for
Human-Computer Interfaces. Ellis Horwood Limited. 1988.

R. Cole. J. Mariani. H. Uszkoreit. G. B. Varile. A. Zaenen. and A. Zampolli eds. Survey

of the State of the Art in Human Language Technology. Cambridge University Press.
1998.

F. Cuppens and C. Saurel. Specifying a security policy: A case study. In Proc. of the
Computer Security Foundations Workshop. pages pp. 123-134. Kerry. Ireland. 1996.
9th IEEE.

N. Damianou. N. Dulay. E. Lupu. and M. Sloman. The ponder policy specification
language. In Proc. Policy 2001: Workshop on Policies for Distributed Systems and
Networks, pages pp. 17-28. Bristol. UK, Jan. 2001. Springer-Verlag LNCS 1995.

R. Darimont and A. Lamsweerde. Formal refinement patterns for goal-driven re-
quirments elaboration. In Proceedings 4th ACM Symposium on the Foundations of
Software Engineering (FSE4), pages pp. 179-190, San Francisco. October 1996.

[14]

[15]

[16]

(17]

(18]

[19]

120]
(21]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

111

A. Dix, J. Finlay, G. Abowd. and R. Beale. HCI-User Centered Design. Prentice Hall
Europe, 2nd edition, 1998.

C. Fillmore. The case of case. In P. Cole and J. Sadock (eds.), editors, Universals in
Linguistic Theory. New York:Holt, Rinehart, and Winston, 1968.

Internet Engineering Task Force. http://www.ietf.org.

J. J. Granacki, Jr., and A. C. Parker. Phran-span: A natural language interface for
system specifications. In Proceedings 24th ACM/IEEE Design Automation Conference.
pages pp. 116-422, 1987.

C. Grossner, X. He. B. Kurusetty, G. Mahoney. and T. Radhakrishnan. Restricted
natural language and an internediate representation in policy controlled systems. Nortel
Networks, Ottawa and Concordia University. 2001.

B. Grosz. D. Appelt. P. Martin. and F. Pereira. Team: An experiment in the design of
transportable natural-language interfaces. Artificial Intelligence. vol. 32:pp. 173 243,
1987.

J. A. Hendler. Lecture notes of natural language interfaces. 1989.

S. E. Hudson. Cup parser generator for java. http://www.cs.princeton.edu/ ap-
pel/mudern/java/cup/. 1999.

Steven C. Johnson. Yace: Yet another compiler compiler. In UNIX Programmer's
Manual. volume 2, pages 353 -387. Holt. Rinehart. and Winston. New York. NY. USA.
1979.

Venkatachalam Kanthimathinathan. Master’s thesis: An enterprise policy specification
tool. Concordia University, 2001.

M. Kay. The mind system. In R. Rustin. editor. Natural Language Processing. New
York: Algorithmics Press. New York. 1973.

T. Koch. C. Krell. and B. Kramer. Policy definition language for automated man-
agement of distributed systems. In Proc. of Second IEEE International Workshop on
System Management. June 1996.

R. Krovetz and W. B. Croft. Lexical ambiguity and information retrieval. ACM
Transactions on Information Systems. vol. 10(no. 2):pp. 115-141, 1992,

A. Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elaboration of re-
quiements for a meeting scheduler: Problems and lessons learnt. In Proceedings RE'95
- 2nd IEEE Symposium on Requirements Engineering. pages pp. 194-203. York. March
1995.

P. Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett
Publishers. 2nd edition, 1997.

J. Lobo. R. Bhatia, and S. Naqvi. A policy description language. In Proc. of AAAL
Orlando. Florida. USA, July 1999.

(30}

[31]

[32]

(33]

(34]

(39]

[40]

[41]

112

E. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE Transactions on Software Engineering, vol. 25(no. 6):pp. 852-869, 1999.

B. Macias and S. G. Pulman. A method for controlling the production of specifications
in natural language. The Computer Journal. vol. 38(no. 4):pp. 310-318. 1995.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems
.Specification. Springer-Verlag, 1992.

M. Masullo and S. Calo. Policy management: An architecture and approach. In IEEE
First International Workshop On Systems Management ., Los Angeles. California. April
1993.

J. Moffett. Policy hierarchies for distributed systems management. IEEE JSAC Special
[ssue on Network Management. vol. 11(no. 9), Dec. 1993.

J. Mylopoulos. A language facility for designing database-intensive applications. ACM
Transactions on Database Systems. vol. 5:pp. 185-207, June 1980.

H. A. Napier. D. M. Lane. R. R. Batsell. and N. S. Guadango. Impact of a restricted
natural language interface on ease of learning and productivity. Communications of
the ACM. vol. 32(no. 10):pp. 1190-1197. 1989.

K. K. Obermeier. Natural Languagfe Processing Technologies in Artificial Intellifence:
The Science and Industry Perspective. Ellis Horwood Limited. Chichester. 1989.

W. C. Ogden. Handbook of Human-Computer Interaction. chapter 13. pages pp. 281
298. Elsevier Science Publishers B. V. (North-Holland), 1988.

M. Osborne. Estimation of stochastic attribute-value grammars using an informative
sample. In Proceedings if COLING 2000. Saarbruecken. Germany. 2000.

J. Preece. Y. Rogers. H. Sharp adn D. Beuyon. S. Holland. and T. Carey.
Human-Computer Interaction. Addison-Wesley Publishing Company. 1994.

T. Ryutov and C. Neuman. Representation and evaluation of security policies for
distributed system services. In Proceedings of the DARPA Information Survivability
Conference Exposition, Hilton Head, South Carolina. January 2000.

H. Tanaka. Current trends on parsing - a sur-
vey. http://citeseer.nj.nec.com/tanaka93current.html.

Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm For
Practical Systems. Kluwer Academic Publishers. 1986.

W. C. Watt. Habitability. American Documentation. vol. 19(no. 3):pp. 338-351. July
1968.

R. Wies. Using a classification of management policies for policy specification and
policy transformation. In Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management, Santa Barbara, California, USA, May 1995. Elsevier
Science Publishers.

113

[46] W. Winiwarter. Adaptive natural language interface to faq knowledge bases. Data &
Knowledge Engineering. vol. 35:pp. 181-199. 2000.

[47] W. A. Woods. Transition network grammars fpr natural language analysis.
Communications of the ACM. vol. 13:pp. 591-606. 1970.

[48] W. A. Woods. An experimental parsing system for transition network grammars. In
R. Rustin, editor. Natural Language Processing. Algorithmics Press. New York, 1973.

Appendix A

The regualtions for the examinations of the master’s theses

The following regulations are extracted from the Concordia University’s
Graduate Calendar 1999-2000 in page 511-512

Upon receipt of the thesis from the Thesis Office. the graduate studies committee
of the program in which the candidate is enrolled appoints an examining committee in
consultation with the thesis supervisor. The examining committee consists of a minimum
of three. and a maximum of five members. The candidate’s supervisor is a member of the
examining committee. In the programs where there is a thesis supervisory committee, any
or all members may be named as members of the examining committec. subject to the
policy of the program concerned. SIP students must have one external examiner on their
comimittee. Students in the M.A.Se. programs in Engineering must have an examiner from
outside their department.

The defence normally shall be scheduled within a period no fewer than two. and no
more than five, weeks from the submission of the thesis. The parties concerned may agree
upon a postponernent.

The examining committee, and the thesis defence examination. will be chaired by
a person appointed by the program graduate studies committee. The chair will act as a
neutral person. Each member of the examining committee must submit a written report on
the thesis to the chair before the defence. Any member of the University is free to attend a
master’s oral thesis defence. The chair will give priority to questions from members of the

examining committee. Only members of the faculty of the University may be recognized by

115

the chair. The chair adjourns the examination when the examining committee decides that
further questioning is unnecessary. The deliberations of the examining committee are held
in camera. that is to say. only appointed members of the examining committee are present.
It is the responsibility of the chair to see that a report on the examination is prepared before
the committee adjourns. The examiner’s evaluation forms and the examination report must
be signed and returned to the thesis officer.

Four decisions are open to the examining committee. voting to be based on a simple
majority. The thesis can be accepted as submitted. accepted with minor modifications. ac-
cepted with major modifications. or rejected. Minor modifications are defined as corrections
which can be made immediately to the satisfaction of the supervisor. Major modifications
are defined as corrections requiring further research. or structural changes. or other substan-
tive revision. When a thesis is accepted with major modifications. a precise deseription of
the modifications must be included in the examining committee’s report along with a date
for their completion. [t is then the responsibility of the candidate’s supervisor to demon-
strate to the examining committee that the required modifications have been made. The
candidate’s supervisor should inform the Thesis Officer in writing that the modifications
have been approved.

[f the examining committee is not prepared to reach a decision coucerning the thesis
at the time of the thesis defence. it is the responsibility of the chair to determine what
additional information is required by the committee to reach a decision. to arrange to
obtain this information for the committee. and to call another meeting of the committee as
soon as the required information is available. [t is also the chair’s responsibility to inform

the candidate that the decision is pending.

Appendix B

Class Definition

In Appendix B. each class’s definition. attributes and methods defined in the VTO

system are listed.

117

poli
cy Noun Object name | Inheritance Attributes & Methods
captured from captured
p policy p from
member of the examing

p8 Jcommittce ECm Person Rep ECm_rep p8
Signature signature pls
Eform ECm_cform pls
Thesis thesis p8
booi Submit(Rep ECm _rep, Chairc) [p8
Rep WritcReport() p8
Question AskQuestion() pl0
bool Attend(Deliberation d) pl3
bool Sign(Doc d) pls
bool FillEform(Eform ECm_cform) pls
bool AgrcePostpone(Postpone p) poé

p8 [the examing committee JEC n/a String name p8
ECmSet ecm_set p8
ModiResult modi _result
Erep erep pl4
Chair chair p7
Integer count pl
Info info
bool DecideEndQuestion() pl2
bool PreparcReport(Erep p) pld
ThesisStatus VoteDecide(ThesisStatus
status) plé
bool AddToReport(Modification m) pl7
bool AddToReport(Time
modi _comp date) pl7
ModiResult ApproveModification(
Modification m) pl7

plO [chair Chair ECm
Question GivePriority(Question q) pl0
Time Adjourn(Defence d) pl2
bool CheckErep(Ercp erep) pid
bool Return(Doc d, Tofficer o) pis
Info DeterAddiRep(Info in) pi8
bool ArrangeObtain(Info info) pl8
bool CallMeeting() pl8
bool Inform(Stud s. ThesisStatus ts) pl8

118

p!l

graduate studics
committee

GSC

Program pgm p!

ECm CnltAppoint(Person person) pl

Chair AppointChair(ECm ecm) p7
member of graduate

pl |[stydics commitice GSCm Fm

(added by myself)

p3 |external examiner Extm Person U unit p3

examiner outside the

p4 |department Outdeptm Um Deparntment department pd

thesis supervisory

p2 |committce SupC n/a SupCSet SupC sct p2
lngctcr count p2

member of thesis

p2 |supervisory committee |SupCm Sup

(added by myself)

p!7 |supervisor Sup ECm Stud stud pl
bool Demo(Thesis th, EC ¢) pl7
bool Inform(TofTicer tof, ModiResult r) |pl7

pl7 jcandidate Stud Pm Thesis thesis pl7
SupC supe pl7
Sup sup
GSC gsc
EC ec pld
Thesis ModifyThesis(Thesis t.

Modification mo) pl7
Thesis Submit(TofTicer of, Thesis th) |pl
pl7 |thesis Thesis n/a Time submit_begin time pl
Defence defence pS

pl2

Deliberation deliberation

pl3

119

ThesisStatus status plé
EC ec pl7.1
pl [thesis office Toffice n/a TofTicerSet officer_set pl
Time Schedule(Detence d) p35
Postpone RequestPostpone(ECm
m.Thesis th) pé
Time Postpone(Defence d, Postpone
postpone) pé
pl4 [thesis officer TofTicer Um Toffice belongto pl4
pl |person Person n/a String name pl
any member of the
p9 |university Um Person U unit p9
bool Attend(Defence d) p9
p9 |the university U wa UmSct um_set P9
String university name p9
member of the
pl ldepartment Dm Um Department department pl!
1 |department Department U String department _name pl
FmSet fm_set pll
member of faculty of the
pll Juniversity Fm Dm F faculty pl!
pll Jfaculty of the university |F Department [FmSet fm_set pll
String faculty name pli
p4 |program Program Department_{String program _name pd
PmSct pm_set pd
member of the program |Pm Dm Program program p4
plS {document Doc n/a String sender _name pls
String recciver _name pls
Signature signature pls
p8 |written report Rep Doc p8

120

pl4 [examining report Erep Doc SignatureSet signature set pld
Modification modification pl7
Time modi_comp_date pl7
pi3]evaluation form Eform Doc
thesis defence Defence Thesis Time defence_begin time
Time adjourn_begin_time
thesis deliberation Deliberation | Thesis Time adjourn_begin _time
Time adjourn_end _time
ThesisStatus |n/a
ModiResult |n/a
Modification |n/a
Set n/a
ECmSet Set
SignatureSet |Set
UmSet Set
SupCSet Set
FmSet Set
PmSet Set
TofTicerSet Set
Time na
p18 |message Mcssage na
p18 Jadditional information |Info Message
p6 {postponement Postpone n/a
10 Jquestion Question n/a

Appendix C

A Complete List of Re-written Policies Using VTO System’s RNL

P1l: Upon receipt of the thesis from the Thesis Office. the graduate studies committee
of the program in which the candidate is enrolled appoints an examining committee
in consultation with the thesis supervisor. The examining committee consists of a
minimum of three. and a maximum of five members. The candidate’s supervisor is

a member of the examining committee.

Re-written policy:

PL.1: upon receipt of the thesis from the thesis office. the graduate committee of
the program in which the candidate is enrolled should appoint the candidate’s

supervisor to be a member of the examining committee.

P1.2: upon receipt of the thesis from the thesis office. the graduate committee of the
program in which the candidate is enrolled should appoint a person to be a

member of the examining committee in consultation with the thesis supervisor.

P2: In the programs where there is a thesis supervisory committee. any or all members
may be named as members of the examining committee. subject to the policy of

the program concerned.

Re-written policy:

P2: In the program where there is a thesis supervisory committee. the graduate

committee of the program may appoint any or all members of the thesis su-

122
pervisory committee to be the member of the examining committee.
P3: SIP students must have one external examiner on their committee.
Re-written policy:

P3: The graduate studies committee must appoint an external examiner for SIP

students.
P4: Students in the M.A.Sc. programs in Engineering must have one examiner from
outside their department.
Re-written policy:
P4.1: The graduate studies committee must appoint an examiner outside the de-
partment if the student is in the M.A.Sc¢ program in Enginecring.
P4.2: The graduate studies comnittee must appoint an examiner outside the de-
partment for the student in the M.A.Sc program in Engincering.
P5: The defence normally shall be scheduled within a period no fewer than two. and no
more than five. wecks from the submission of the thesis.
Re-written policy: Invalid.
P6: The parties concerned may agree upon a postponement. Re-written policy:
P6.1: The thesis office may request a postponement addressed to the members of the
examining committee.
P6.2: The members of the examining committee may agree upon the postponement.
P6.3: If the members of the examining committee agree upon the postponement. the

thesis office should postpone the thesis defence.

P7: The examining committee. and the thesis defence examination. will be chaired by

a person appointed by the program graduate studies committee. The chair will act

as a neutral person.

P8:

P9Y:

P10:

Pl1:

P12:

P13:

Pl4:

123
Re-written policy:
P7: The program graduate studies committee must appoint a chair.
Each member of the examining committee must submit a written report on the
thesis to the chair before the defence.
Re-written policy:
P8: Each member of the examining committee must submit a written report on
the thesis to the chair before the defence begins.
Any member of the University is free to attend a master’s oral thesis defence.

Re-written policy: Same as above.

The chair will give priority to questions from members of the examining committee.

Re-written policy: Same as above.

Only members of the faculty of the University may be recognized by the chair.
Re-written policy: Invalid action. The policy is discarded.

The chair adjourns the examination when the examining committee decides that
further questioning is unnecessary.

Re-written policy: Same as above.

The deliberations of the examining committee are held in camera. that is to say.
only appointed members of the examining committee are present.

Re-written policy:

P13: Only appointed members of the examining committee are present in the de-

liberations of the examining committee.

It is the respounsibility of the chair to see that a report on the examination is prepared

before the committee adjourns.

124
Re-written policy:
P14.1: The examining committee should prepare a report before the committec ad-
journs.

P14.2: The chair should check the examining committee’s report.

P15: The examiner’s evaluation forms and the examination report must be signed and

returned to the thesis officer.

Re-written policy:

P15.1: Each examiner must sign the examiner’s evaluation form.
P15.2: Each examiner must sign the examination report.
P15.3: The chair must return the examiner’s evaluation forins to the thesis officer.

P15.4: The chair must return the examination report to the thesis officer.

P16: Four decisions are open to the examining comumittee, voting to be based on a simple
majority. The thesis can be accepted as submitted. accepted with minor modifi-
cations, accepted with major modifications. or rejected. Minor modifications are
defined as corrections which can be made immediately to the satisfaction of the su-
pervisor. Major modifications are defined as corrections requiring further rescarch.

or structural changes. or other substantive revision.

Re-written policy:
P16: The examining committee vote to get the final decision.

P17: When a thesis is accepted with major modifications. a precise description of the
modifications must be included in the examining committee’s report along with a
date for their completion. It is then the responsibility of the candidate’s supervisor
to demonstrate to the examining committee that the required modifications have
been made. The candidate’s supervisor should inform the Thesis Officer in writing

that the modifications have been approved.

125

Re-written policy:

P17.1: When a thesis is accepted with major modification. the examining committee
must include a precise description of the modifications in their report.
P17.2: When a thesis is accepted with major modification. the examining committee

must also include a date of modification completion.
P17.3: the candidate should modify the thesis.

P17.4: When a thesis is accepted with major modification. the candidate’s supervisor
should demonstrate to the examining committee that the required modification
have been made.

P17.5: The examining committee should give an opinion about the modification.

P17.61: The candidate’s supervisor should inform the thesis officer in writing that the
modification has been approved.

P17.62: If the modifications have been approved. the candidate’s supervisor should
write to the thesis officer about the result.

P17.63: If the modification has not been approved. the candidate should continue to

modify the thesis.

P18: If the examining committee is not prepared to 1each a decision concerning the thesis
at the time of the thesis defence. it is the responsibility of the chair to determine
what additional information is required by the committee to reach a decision. to
arrange to obtain this information for the committee, and to call another meeting
of the committee as soon as the required information is available. It is also the

chair’s responsibility to inform the candidate that the decision is pending.

Re-written policy:

P18.1: If the examining committee is not prepared to reach a decision concerning
the thesis at the time of the thesis defence. the chair should determine what

additional information is required by the committee to reach a decision.

P1i8.2:

P18.3:

Pi8.4:

126

If the examining committee is not prepared to reach a decision concerning the
thesis at the time of the thesis defence, the chair should arrange to obtain this

information for the committee.

As soon as the additional information is available. the chair shall call another

mecting of the committee.

The chair should inform the candidate that the decision is pending.

