INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

The Truckin' Project
Experimenting with Genetic Algorithms

Debbie Papoulis

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

October 2001

© Debbie Papoulis, 2001

L |

National Library Bibliothéque nationale
of Canada du Canada
isitions and ions et
sﬁmc Services mﬂ%ﬁggraphiques
395 Wellington Street 385, rue Wetllington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre rédérence
Our le Notre référance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68476-8

Canada

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

The Truckin' Project
Experimenting with Genetic Algorithms

Debbie Papoulis

Darwin’s theory of evolution says that the more suitable an individual is to
his environment, the more likely that individual is to reproduce. Conversely, the
less suited an individual is to his environment the less likely he is to reproduce.
Consequently, by the laws of heredity, the fitness of the subsequent generation,

as a whole, should be greater than the last.

The Truckin' project attempts to use these theories and laws to prove that
a program can aiso evolve. Using evolutionary programming and object oriented
techniques, Truckin' simulates a world in which trucks buy and sell commodities
competing for the best deals. The most successful of these trucks are allowed to
‘reproduce’ and compete in the next generation. Over a period of time the truck

population should converge to an overall fitter population.

in this thesis the basics of genetic algorithms are explained and then the
Truckin’ project is described in detail. Finally the resuits and current status of the

project are outlined.

Acknowledgements

| would like to thank my supervisor, Dr. Peter Grogono, for his guidance, support

and infinite patience.

| would also like to thank the people at school, work and especially home whose

support helped me accomplish this thesis.

iv

Table of Contents

TABLE OF FIGURES VIII
TABLE OF TABLES IX
1. INTRODUCTION 1
2. BACKGROUND 4
2.1 DEFINITION 4
2.2 HISTORY 5
2.3 INTRODUCTION TO SIMPLE GENETIC ALGORITHMS 6
2.3.1 ENCODING MECHANISM 7
2.3.2 FITNESS FUNCTION 8
2.3.3 SELECTION 8
2.3.4 CROSSOVER 8
2.3.5 MUTATION 8
2.3.6 GENERATION CYCLE 9
2.3.7 TeRMINATION CONDITION 9
2.3.8 SIMPLE GENETIC ALGORITHM EXAMPLE 9

2.4 WHY DO GENETIC ALGORITHMS WORK? 12
2.5 UseS OF GENETIC ALGORITHMS 14

3.

>

5.

TRUCKIN'

34

THE COMPONENTS

THE COUNTRY

w

w

w N

COMMODITIES

GAS STATIONS

w

1.4 PRODUCERS

w
NN

:

[#M]
-
(o)}

id
-—

N

RETAILERS
CONSUMERS

TRUCKS

THE INTERACTION

———————————————

1 AT START UP

3.22 SIMULATION CYCLES

3 How GENETICS FITS IN

DESIGN

1N
-

F-N
N

> & IR BB
o lo Ia o

1S
~J

ENCODING MECHANISM

FITNESS FUNCTION

SELECTION

CROSSOVER

MUTATION

GENERATION CYCLE

TERMINATION CONDITION

IMPLEMENTATION

16

16

16

17

17

18

18

19

19

20

20

21

22

23

25

26

26

27

28

29

29

51 PROGRAM STRUCTURE

5.2 ENCODING MECHANISM

5.3 FITNESS FUNCTION

5.4 SELECTION

5.5 CROSSOVER

56 GENERATION CYCLE

5.7 TERMINATION CONDITION
6. RESULTS

7. CONCLUSIONS

FUTURE WORK

REFERENCES

32

b S

37

41

53

55

58

Table of Figures

Figure 1: Truckin’ Class Model 23
Figure 2; Differences in Capital Acquired Due to Starting Point 43
Figure 3: Differences in Capital Acquired Due to Number of Trucks 45

Figure 4; Differences in Capital Acquired Due to Length of Generation Cycle 49

Table of Tables

Table 1; Algorithm Components and Associated Steps
Table 2: Example Population and Fitness Values

Table 3: Creation of New Population

Table 4: Fitness of New Population

Table 5:_Capital Acquired by Proven Gene Combination

Table 6: Difference in Convergence Due to Number of Generations

Table 7: Difference in Convergence Due to Length of Generation Cycle

Table 8: Convergence

10

11

12

42

47

52

1. Introduction

Researchers working in the area of Genetic Algorithms try to use
biological evolution as a model for the structure of the code of their programs.
They try to mimic real world evolution in the hope that the outcome of the
algorithm will parailel the outcome of nature. In the Truckin’ simulation we
attempted to mimic an economic world in which the successful players will
survive long enough by trading to be chosen to reproduce. With this pattern in
mind we expected that the results of the simulation would eventually converge to

‘strong’ solutions and eliminate ‘weak’ ones.

Truckin' is a simulation in which a square country of ten avenues and ten
streets is modeled. On several of these intersections there exist dealers that can
buy and sell commodities. Roaming around the country there are trucks whose
mission is to buy commodities from one dealer at a low price and sell them to
another at a higher price in order to make a profit. Each truck has a genetic
combination that is made up of eight genes that determine the specific strategies
used by the truck to make a profit. The goal of the simulation is to use the theory
of Genetic Algorithms in order to display convergence to the optimal solution,

i.e., the most profitable truck.

In Chapter 2 we will look first at the background of Genetic Algorithms.

We will define terms such as fitness function and selection mechanism. Once we

1

have defined the terms, we will go through an example of a simple genetic

algorithm to make it all clear.

In Chapter 3 we will explain the Truckin’ simulation. We will outline all the
players and the rules that they play by. We also explain the economic world that
we have simulated and how genetic techniques should produce the optimal

solution.

In Chapter 4 we will explain the Design of Truckin'. We will outline how
the terms described in Chapter 2 fit into the Truckin' simulation and why we think

that it should work.

In Chapter 5 we will describe how Truckin’ was implemented. We look at
the details of the implementation and how dynamic binding is used to produce

the different make-up of each of the competing trucks.

in Chapter 6 we look at the results obtained by the simulation. We see
how the different parameters of the simulation can affect the results produced

and also the amount of convergence visible.

In Chapter 7 we will draw some conclusions of what went right and what

went wrong in the simulation and finally in Chapter 8 we will speculate as to what

future work can be done with the simulation to improve the results and the

amount of convergence visible.

2. Background

2.1 Definition

Genetic algorithms are an abstraction of biological evolution [1]. They
employ the theory of natural selection to find good solutions for optimization

problems.

The basic principle behind genetic algorithms is to do what nature does.
In nature, individuals best suited to their environment survive long enough to
reproduce, while the weaker ones die before being able to, a phenomenon
known as the survival of the fittest. Nature has encoded each individual's
characteristics into a chromosome that serves as the blueprint of that individual.
A chromosome can be divided into genes, each encoding one trait of the
individual. Competition for sparse resources, such as food, results in the
stronger individuals overpowering the weaker ones thus surviving while the
weaker die, a process knows as natural selection. As a direct resuit of natural
selection, the genes of the stronger individual live on in their offspring, while
those of the weaker ones do not, thus implicitly generating a second generation

that is even better suited to their envircnment [2].

Genetic algorithms mimic this phenomenon by encoding each possible

solution to an optimization problem into a string analogous to the chromosome.

4

The elements of the string represent a specific characteristic of the solution
analogous to the gene. The genetic algorithm then repeatedly manipulates the
most promising strings in its search until a sufficiently good solution has been
found or some other termination condition is met. Operators such as selection,
crossover and mutation are employed in the search for the optimal solution (see

Section 2.3).

2.2 History

Genetic Algorithms were formally introduced in the 1970s by John
Holland at the University of Michigan. They were subsequently studied by De
Jong, Goldberg and others. Holland's original goal was not to design a solution
to specific optimization problems, but instead to study the phenomenon of

adaptation and its possible applications to computer systems [3].

Before 1980s most of the research done in genetic algorithms was
theoretical. Hollstien and De Jong were the most active, with Hollstein's work
providing an analysis of the effect of selection and De Jong's work focusing on
the features of genetic algorithms that would lead to a robust search procedure.
In the early 1980s experiments with large applications were developed across
many disciplines. From this work came new and important findings about

robustness and applicability of genetic aigorithms [4].

2.3 Introduction to Simple Genetic Algorithms

The simplest of genetic algorithms work with a population of binary
strings. Each string is an encoded version of a possible solution to the problem.
Each solution is evaluated according to some fitness function. The fittest of the
soiutions are selected to contribute to the next generation of solutions. The
selected solutions are recombined using crossover of the strings and then
mutation is applied to produce the next generation. The next generation is then
evaluated and cycles through the same process until the termination condition is

met.

Therefore the seven basic components of a genetic algorithm are: an
encoding mechanism, a fitness function, a selection mechanism, crossover,
mutation, a generation cycle and a termination condition.

Table 1 maps each component of a simple genetic algorithm to a step in

the basic structure.

Algorithm Component

Encoding Mechanism

Algorithm Step

. Create an initial population

Fitness Function

. Evaluate each individual in the population

Selection . Select the individuals best suited for the
problem at hand.

Crossover . Generate a new population by recombining
the original population.

Mutation . Apply mutation to the new population.

Generation Cycle and

Termination Condition

. Go to step 2 and repeat until the termination

condition is met.

Table 1: Algorithm Components and Associated Steps

2.3.1 Encoding Mechanism

The solution to an optimization problem may consist of a discrete value,

or it may assume continuous values. The encoding mechanism maps each

solution to a unique string. The different variations of the string make up the

search space and the goal of the genetic algorithm is to intelligently traverse the

search space until it has found a satisfactory solution or ultimately the optimal

solution.

2.3.2 Fitness Function

The fitness function provides a mechanism for evaluating each encoded
solution to determine how well the chromosome solves the problem at hand. The
value of the fitness function will determine if the chromosome did well enough to

survive the current generation and produce offspring for the next.

2.3.3 Selection

Selection is the method used to implement nature's survival of the fittest
mechanism. The solutions with the highest fitness values survive and produce
offspring, while the weaker ones die. The selection strategy takes into
consideration the proportion of solutions that survive onto the next generation

and the amount of offspring each solution is allowed to produce.

2.3.4 Crossover

To recombine the genes of two successful solutions, crossover is used. In
its simplest form, a single, randomly selected crossover point is chosen and the
genes of the two parent chromosomes are switched at that point to create two
new offspring. More complex forms of crossover may include multiple crossover

points and/or a probability factor whether crossover should take place at all.

2.3.5 Mutation

To ensure proper searching of the search space, mutation is used.
Mutation of a bit invoives flipping it from a 0 to a 1 or vice versa. In so doing, the

8

genetic algorithm can regenerate lost bits of the search space if all strings in the

population have converged to the wrong value.

2.3.6 Generation Cycle

A single generation cycle in a genetic algorithm is defined by one cycle of
creation - evaluation - selection - manipulation phases. Each cycle examines a

set of solutions, known as a population, and selects the fittest among them.

2.3.7 Termination Condition

The termination condition dictates when the algorithm should stop
searching. Typical examples of termination conditions include a satisfactory
solution has been located or a predefined number of generations have been

searched.

2.3.8 Simple Genetic Algorithm Example

To illustrate a simple genetic algorithm the example of optimizing the

function f(x) = x* over the interval {0-31] will be used [5].

The first step is to encode the possible values of x into a binary string. In
this example, we will use a binary string of length 5 [00000-11111]. Next we
generate an initial population of 4 individuals as shown in Table 2. The strength,
or fitness function, of the chromosome is calculated as the percentage of the

sum of all f(x). This initial population is then evaluated according to the fitness

function and the best solutions are chosen to survive and reproduce for the next

generation.

Chromosome Strength

11000 24 | 576 49.2
01000 8 | 64 5.5
10011 19 | 361 30.9

Table 2: Example Population and Fitness Values

Chromosome 11000 has a large fitness value, therefore it is allowed two
copies in the mating pool for the next generation. Chromosomes 01101 and
10011 are each allowed one copy and since chromosome 01000 has a very

small fitness value, it is not allowed any copies and therefore dies.

The next step is to construct the new population by applying crossover.
There are two factors in applying crossover. The first being the crossover
probability, whether crossover is to occur on a pair of strings and the second is
the randomly selected crossover point. In this example both pairs of
chromosomes will have crossover applied to them, the first with a crossover
paint of 5 and the second with a crossover point of 3. Table 3 displays the status

of the population after crossover is applied, but before mutation.

10

Parent Chromosomes Swapping New Population

01101 0110{1] 01100
11000 1100[0] 11001
11000 11[000] 11011
10011 10[011] 10000

Table 3: Creation of New Population

(“[T Indicates crossover).

The next step is to apply mutation to the new population. Again, there are
two factors in applying mutation, the first being whether mutation should be
applied and the second being to which bit position should the mutation be
applied. In this example we will apply mutation to the first chromosome of the
new population in the first bit position. Table 4 dispiays the second generation

and its fithess values.

11

Chromosome X f(x) Strength

11100 28 | 784 32.7
11001 25 | 625 26.1
11011 27 | 729 30.5
10000 16 | 256 10.7

Table 4: Fitness of New Population

As we can see, the overall strength of the population has gone up from
the first generation to the second. The algorithm continues like this until a
predefined number of generations have been examined (say 50) or until the

strength of the population reaches an acceptable level.

2.4 Why do Genetic Algorithms Work?

The schema theory and the building block hypothesis explain the essence

of the workings of genetic algorithms.

A schema represents a subset of all possibie binary strings of a certain
length that have the same bit values in certain positions. For example, the
schema 1*1 represents all strings of length four that have a one in the first and

last bit positions. The members of this schema are: 1001, 1011, 1101 and 1111.

12

The positions in the schema that are not allocated a value, and therefore
represented by a *, are called wild cards, and conversely, the positions in the
schema that are allocated a value (0 or 1) are called fixed positions. The number
of fixed positions in a schema is called the order of the schema (the order of 1**1

is 2).

A schema represents a subset of all strings that follow a certain pattern.
We can therefore allocate a fitness value to a schema. The fitness value of a
schema is the average fitness value of the members of the current population
that are instances of that schema. Therefore, the fitness value of a schema can
change from generation to generation as the make up of the population

changes.

The Schema Theorem [6] describes the growth of a schema from one
generation to the next. It implies that short, low order schemas whose fitness
values are higher than the mean will increase in numbers of samples from

generation to generation.

The defining length of a schema is the difference between its outermost
fixed position and its innermost fixed position. Since crossover is disruptive to
schemata (the crossover point may fall within the schema's defining length and
cause the schema to be lost) the best schemata (those that will survive and

increase in numbers within a population) are those with short defining lengths.

13

Schemata with high fitness values and short defining lengths are called building

blocks. Given a schema with a high fitness value and a short defining length, the

optimal solution to the problem will likely be the winner of that schema's

individual competition. "The notion that strings with high fitness values can be

located by sampling building blocks with high fitness values and combining the

building blocks effectively is called the building-block hypothesis." [2]

2.5 Uses of Genetic Algorithms

When we attempt to apply genetic algorithms to a number of practical

problems, we find that there are some inherent difficulties. These difficulties

include:

1.

A suitable representation of the solution is not always easy to find. The
solution domain may not be easily mapped to binary strings or real-valued
vectors therefore making the encoding mechanism difficult.

The various constraints of a problem need to be taken into account.
Expert knowledge needs to be incorporated into the representation to
help the search, but without allowing for biased opinions of experts to
interfere.

The fitness function needs to be developed, often with the help of experts
in the domain. Once again, their possibly biased opinions need to be
guarded against.

The parameters of the genetic algorithm need to be tuned and compared

to the results given by experts or other algorithms.

14

Despite these limitations and obstacles, genetic algorithms have been
successfully applied to a wide range of fields. Some examples are timetabling (of
exams or classes), job scheduling (of maintenance jobs or others), optimization

problems, engineering, natural science, economics and business. (3]

1S

3. Truckin'

Truckin' is the simulation mode! that was used as a basis for
experimentation. it models a country in which producers produce commodities,
retailers sell them and consumers consume them. Trucks distribute the
commodities for profit while consuming gas from gas stations. The remainder of
this chapter will detail each aspect of the Truckin' project and how they all fit

together.

3.1 The Components

Involved in the simulation are a number of entities that interact with each
other to mimic the economic world that we live in. For simplicity's sake a number
of economic facts of our world have been overlooked, but enough has been
incorporated into the model so that the simulation is not trivial. The simulation is
based on a country in which commodities are produced, distributed and

consumed. The individual entities are outlined below.

3.1.1 The Country

The country is made up of a square grid of highways. Avenues run north -
south and streets run east - west. In the current version of the simuiation there
are 10 avenues and 10 streets. At any given intersection there can either be a
producer, a retailer, a consumer, a gas station or nothing at all. The trucks in the
simulation move from intersection to intersection trying to make profitable deals.

16

3.1.2 Commodities

There are three types of commaodities in the current version of the
simulation: crates containing a fixed number of items, the individual items as
commodities themselves and gas. A truck can buy or sell crates, buy or sell
items or buy gas. A producer produces crates at a given rate and sells them to
trucks. Producers do not buy anything. A retailer can buy the crates from the
trucks and break them down into items and resell the items to the trucks - each
crate contains the same number of items. A consumer buys items from trucks,
but does not sell anything. And gas stations sell gas to the trucks but do not buy

anything.

3.1.3 Gas Stations

Gas stations can sell gas to trucks in unlimited quantities (i.e. they do not
run out of gas). They do not buy any other type of commodity. The purpose of
the gas stations in the simulation is simply to make it more difficult for trucks to
survive. A truck must have a strategy to avoid running out of gas, and when a
truck runs out of gas it no longer competes in the simulation. Therefore the
trucks with the better gas-getting strategies are the ones that will survive the
longest to make the largest amount of profit and are therefore likely to be

selected to reproduce for the next generation.

17

3.1.4 Producers

Producers produce crates of commaodities at a fixed and predefined rate.
This rate can be used to control the amount of commodities present in the
country at any given time. By increasing the rate of production of crates, we can
make it a little easier for the trucks to make a profit because there will be a more
plentiful supply of commodities to trade. And by reducing the rate of production,
we can make the simulation a little more challenging for the trucks because
there will be more competition for the commodities. The producers sell the crates

of commodities at a predefined constant price.

3.1.5 Retailers

Retailers buy crates of commodities from trucks and sell them as items
back to the trucks, in other words only retailers have to ability to break up the
crates into individual items that consumers consume. Each retailer has a limited
amount of storage space for the commodities that they buy and once they have
reached that maximum, they cannot buy any more crates until they sell some

items to decrease their stock.

A retailer has the ability to change its buying price for crates and its
selling price for items. If the retailer has not sold any crates or items for some
predefined period of time, the retailer will raise its buying price and lower its

selling price, thus making the retailer more attractive to trucks. If the retailer has

18

performed several transactions within a short period of time, the retailer will

lower its buying price and raise its selling price since it can afford to do so.

3.1.6 Consumers

Consumers buy items from trucks to consume. They have a fixed buying
price for items and can consume at an unlimited rate. The rationale for this is
that since the producers can only produce at a certain rate there will never be a
oversupply of commodities for consumption (i.e. we only need to limit the flow at

one end).

3.1.7 Trucks

The goal of trucks is to traverse the country buying and selling
commodities at prices that are profitable. All trucks initially start off with a full
tank of gas, an initial amount of capital and no knowledge of the layout of the
country. As they move around the country they can obtain knowledge about the
whereabouts and prices of dealers therefore enabling them to intelligently

attempt to perform deals that will be profitable.

All trucks have a capacity (the maximum amount of cargo they can carry
around). They can buy crates from producers, the amount being limited by either
their available capacity or their available capital, and sell these crates to
retailers, attempting to make a profit. A good strategy for a truck will ensure that

the deal decided upon is indeed profitable at the time that the truck decided to

19

pursue this deal. Within the execution time of the deal, several variables of the
deal can change (such as the buying price of the retailer) which can make the
deal no longer a profitable one. Trucks can also buy items from retailers and sell
them to consumers, again attempting to make a profit. Moving from intersection
to intersection has a cost of expending gas, and has the benefits of obtaining
knowledge about the dealers at each intersection and facilitating the execution

of a deal.

3.2 The Interaction

3.2.1 At Start Up

At the beginning of the simulation, the country is set up as follows:

1. There are 5 producers scattered at different intersections within the
country. The producers have no crates to sell until the first cycle of
time intervals are up when they have produced their first ‘batch’ of
crates. By varying the length of the cycle of time intervals in which
producers produce a batch of crates, we can control the rate of
commodities within the country. Within every cycle of time intervals
each producer produces one more batch of crates to sell.

2. There are 10 consumers scattered at difference intersections within

the country. They have the ability to consume items immediately.

3. There are 25 retailers scattered at different intersections within the
country. They have half of their stock space full with items that are
ready to be sold.

4. There is a variable number of trucks that can either all have the same
starting position or can each have randomly selected starting positions
within the country (tests have been run on both scenarios). By varying
the number of trucks in the country, we can control the amount of
competition that the trucks are faced with. Each truck initially has a full
tank of gas, an initial amount of capital and no knowledge of the setup
of the country. The goal of the truck is to make a profit by traversing
the country and obtaining information about dealers and their prices
so that they can make intelligent decisions on what a profitable deal

would be.

3.2.2 Simulation Cycles

The first generation of trucks competes with each other for a predefined
amount of simulation time at which point they are evaluated according to the
fitness function. The fitness function in the simulation is the amount of capital
that they have at the end of one simulation cycle. The fittest of the trucks are

then chosen to reproduce and contribute to the next generation of trucks to piay.

The next generation of trucks is made up of: the winners of the last

simulation, the offspring of the winners of the last simulation and a new sample

21

of trucks that are created randomly. The current version of the simulation selects
the fittest 25% of the original population to be the winners of the last simulation.
Each pair of these trucks is then recombined to make up four offspring, therefore
contributing another 50% of the next population. The final 25% of the next
population is randomly created for the gene pool simulating a version of
mutation. These percentages can be varied to study the effects of the selection,
crossover and mutation in the context of genetic algorithms. The next generation
of trucks then competes for one simulation cycle and the program then cycles

again through the selection and recombination process.

3.2.3 How Genetics Fits In

All dealers (producers, retailers, consumers and gas stations) are static
entities. In other words they do not change positions or strategies from
generation to generation. But the trucks are not static entities, they can and do
change positions and strategies and this is where we have found some signs of
evolution. Each truck employs eight different strategies. For example a truck can
adopt one of three different strategies on when and how to look for gas (see
Chapter 4 Design for more details on the trucks' strategies). By making trucks
with different strategies compete with one another, and then selected the best of
those to reproduce and create offspring, we can eventuaily find the best

combination of strategies to make a truck that will be the most profitabie.

22

4. Design

The framework of the Truckin' project consists of the classes depicted in

Figure 1.
——
< L Do !
[rp— |
Sopwrsar »>0
u—:" l Qoperstwe)
n_gadk
max_seck
_captal
st
=._tra
pch
tale
Or_dodur()
Swper()
Ggu_turd,
N-}Nm
:':I'M
(]
Syxc_wnal) SComeie @“u.c*ﬂ
Doripi 0 :::'-c-uﬂ
e SCasrerid
[iger goto) :L-—“x-- e}
ey Wiondiera)
WracStatsT dbie()
Wrge_UsedGanai}
Vhcnt T abinbyCacstall)
Aan Tabladvera()
Ve _peadGenet()
p
. 1
[Dedtrw | [Oesalme Owm2sel)
= | (e oo ez go ool |
[s | ==
I | ;
Pueten | | OwGas CadOodl
[t gt | { boct s sk _for

Figure 1: Truckin’ Class Model

The Dealer class has four subclasses, one for each type of dealer in the
simulation, namely Gas Station, Producer, Retailer and Consumer. To ensure

that all dealers adhere to the rules of the simulation, no dealer is allowed to

23

access the data structures of the simulation directly. Each dealer has an
associated Manager to which all requests are put forth. The manager can then in

turn execute the request on behalf of the dealer.

The Place class identifies one location in the map of the country. The
Map class consists of a map of the entire country and a pointer to each manager

that lies within the country.

The Truck class is the base ciass for all trucks. Each truck is made up of
eight different strategies. The different strategies are: Gas (when and how a
truck should go about getting gas), Trade (how and when a truck should trade),
Buy (how a truck buys), Sell (how a truck sells), Move (how a truck moves), Deal
(what is a good deal to this truck and how it goes about finding one), Init
(initialization of state parameters for the truck) and Go (how a truck goes from
one place in the map to another - there is only one subclass of Go and therefore
it does not add any diversity to the makeup of the different trucks). There are
five subclasses for the Deal class, therefore any given truck can have one of five
strategies on how to look for deals. There are four subclasses for the Gas and
Trade classes, three subclasses for the Buy and Sell classes and two
subclasses for the Move and Init classes. A single truck is created by selecting

one subclass for each of these strategies.

24

Similar to the Manager - Dealer relationship, each truck has a Controller
to which it puts forth all requests to be processed. The rationale for the
Controller class is identical to that of the Manager class, which is to ensure that
all trucks adhere to the rules of the simulation. At any given intersection of the
map, the controller of the truck at that place interacts with the manager of the

dealer at that location.

4.1 Encoding Mechanism

The encoding mechanism used in Truckin' is a discrete method but not
binary. Each truck has a chromosome eight genes long. Each gene represents
one of the eight strategies discussed in the previous section. The first gene
specifies which Init class the truck has adopted and therefore has two possible
values. The second and third genes specify which Gas and Trade classes the
truck has adopted and therefore each have four possible values. The fourth and
fifth genes specify which Buy and Sell classes the truck has adopted and
therefore each have three possible values. The sixth gene specifies which Go
class the truck has adopted and therefore has only one possible value - all
trucks will have the same strategy for this method. The seventh gene specifies
which Move class the truck has adopted and therefore has two possible values.
The eighth, and last, gene specifies which Deal class the truck has adopted and

therefore has five possible values.

25

By selecting one subclass for each of the possible strategies the
simulation can examine up to 2*4*4*3*3*1*2*5 = 2880 different trucks. The goal
of the simulation is to intelligently search the solution space and converge to a

solution that approaches the optimal solution.

4.2 Fitness Function

The fitness function in the Truckin' simulation is directly related to the
amount of capital a truck has at the end of a simulation cycle. At the end of a
simulation cycle each truck will have a certain amount of gas left, a certain
amount of cargo that it is carrying and a certain amount of capital that it has
obtained. The trucks with the largest amounts of capital will be the ones selected

to reproduce and compete in the next generation.

At the present time the amount of gas and cargo that the truck has at the
end of a simulation cycle are not taken into consideration, but this may be an
area for future work. Another possible implementation of the fitness function may
be to give a monetary value to the gas and cargo and sum that with the capital to

obtain a more accurate 'net worth' of the truck at the end of the simulation cycle.

4.3 Selection

Once each of the genes in a certain generation has been evaluated (i.e.
their final amount of capital has been established), the selection process begins.
The selection process in Truckin' selects the top one fourth of the trucks to

26

reproduce and compete in the next generation. Each pair of the surviving trucks
create four children through crossover of their genes and the last fourth of the
population is randomly selected from the gene pool (see Section 4.5 for more
details). By varying the proportion of trucks that are selected to reproduce and
compete in the next generation we can examine the effect of selection within
genetic algorithms. By varying the proportion of trucks that are created from the
survivors of the previous generation we can examine the effects of crossover
within genetic algorithms. And by varying the proportion of trucks that are
randomly created we can examine the effects of mutation within genetic

algorithms.

With this method of selection the population size remains constant and
the best of the trucks (i.e. the parents) compete in more than one generation
cycle. This will enable the algorithm to show that the strongest genes are indeed

persisting from generation to generation.

4.4 Crossover

The crossover mechanism in Truckin' randomly selects four genes from
the first parent and then fills in the missing genes from the second parent. With
this method there may be as little as one crossover point or as many as four
crossover points. The rationale for using this method was to examine as much of
the gene pool as possible in the ieast amount of generation cycles. The downfall

to this method is that the convergence of good schemata is highly disrupted. As

27

outlined in Section 2.4, the higher the number of crossover points present, the
higher the chance that a good schemata will be broken. Therefore, by randomly
selecting the crossover points and the number of crossover points, we are very
likely to break up a good schema if the algorithm does find one. Conversely, by
randomly selecting the crossover points and the number of crossover point, we
are likely to not spend too much time on any one schemata therefore raising the
probability that we will in fact search the solution space in which the optimal

schemata can be found and are more likely to find the optimal solution.

In the design selected crossover is implemented with a probability of one
(i.e. it is always implemented). Possible variations to this design decision include
a single crossover point that is (or is not) randomly selected and a probability

factor taken into consideration.

4.5 Mutation

There is no mutation implemented in Truckin' at the present time that
conforms to the classical definition of mutation. The classical definition of
mutation says that for each truck in the current population alter one or more of
its genes randomly with some small probability. This is used to avoid working
with a finite, non-expanding gene pool, which may not contain the schemata of

the gene that leads to the optimal solution.

28

In the Truckin' simulation no such mechanism was implemented, but the
problem of 'missing’ a set of gene combinations was addressed by adding one
fourth of the new population randomly in each generation and by having random
crossover points. Therefore as the simulation progresses, more and more of the

gene pool will have been given a chance to compete.

4.6 Generation Cycle

The generation cycle in Truckin' is defined by creating a population,
allowing the trucks in the population to compete for a certain amount of time and
selecting the fittest of the trucks to contribute to the next generation. Each
generation of trucks compete for some predefined amount of time. This amount
of time is a variable within the Truckin' simulation and experiments with the
length of the cycle have been performed. It has shown that the longer the
simulation cycle is, the less the fluctuation that will appear in the results of the
tests. In other words the evolution of the trucks is more apparent when they are

allowed to compete for longer periods of time.

4.7 Termination Condition

The termination condition within Truckin' is defined by the number of
generations that must compete before the simulation terminates. This number of
generations is a variable that can be easily altered. We expect that extending
this variable would lead to more convergence in the evolution of the gene
combination of the trucks.

29

5. Implementation

Truckin’ is implemented in C++ and takes advantage of features such as
classes, inheritance and dynamic (run time) binding. In using these aspects of
Object Oriented programming, Truckin' is capable of constructing trucks with
different strategies to compete against each other and ultimately selecting the
stronger trucks to continue to reproduce and compete in the following

generations.

5.1 Program Structure

On start up, Truckin’ checks if any command line parameters where
supplied. If arguments are provided, Truckin’ expects there to be exactly five. If
no command line arguments are supplied, Truckin' uses defaults. The five
command line arguments that can be provided are as follows:
‘RANDOMSTART’, ‘NUMTRUCKS’, ‘NUMRUNS’, ‘SIM_TIME' and ‘DEBUG'.
‘RANDOMSTART telis the program whether or not to start all the trucks at
random positions in the country or if they should all start at the same
intersection. Test runs have been run with both cases and we have observed
that the start position of a truck affects the amount of profit that it makes.
‘NUMTRUCKS' tells the program how many trucks to create in each generation.
Test runs have proven that the higher the number of trucks in the simulation, i.e.
the more competition the trucks have, the less likely it is for any one truck to do

well. ‘NUMRUNS' tells the program how many generations of trucks to create

30

and loop through the creation — evaluation — selection — manipulation phases.
‘SIM_TIME’ determines the length of one run of the program and ‘DEBUG’

determines whether or not to output the debugging statements to the log file.

There are also a number of other variables that have not been
incorporated as command line arguments but have been left as constants within
the program. These constants include: ‘RANDOMGENE’, ‘SINGLEGENE’,
‘STARTAV' and ‘STARTST'. By setting the ‘RANDOMGENE’ constant to zero a
single set of genes that have been proven to work well together will be used to
create all trucks. This feature is useful in determining if the evolutionary aspect
of the program is not behaving as expected or if there is a more fundamental
problem in the code that would occur even without the natural selection feature
in place. ‘SINGLEGENE' determines which of the three sets of proven pairs of
strategies to run when ‘RANDOMGENE ' is set to zero. If RANDOMGENE' is set
to one, then the value of ‘SINGLEGENE' is ignored and the natural selection
process takes place within the program. ‘STARTAV' and ‘STARTST are the
values used as the starting avenue and starting street for all trucks if the

‘RANDOMSTART’ command line parameter is set to faise.

Once these command line parameters and constants have been

astablished, the program proceeds in opening the log file and creating the map

of the country. It then selects the first set of genes to take part in the simulation

31

(see Section 5.2. for more details) and begins with the first competing

generation.

5.2 Encoding Mechanism

For the first generation of trucks, assuming the ‘RANDOMGENE’ constant
is set to true, to make up the genetic code of one truck, the program randomly
selects a number for each of the genes within the allowed values defined in the
constants called ‘POSGENES’ (possible genes). Iteratively the program fills in
the data structure called genetic_code that is a two dimensional array of the
genetic codes of each of the trucks in the current generation.

if (RANDOMGENE)
{v = rand()%(POSGENE([g]);

genetic_code(tllg] = v;

}
where t loops through the trucks and g loops through the genes.

For all subsequent generations, the program populates the genetic_code

data structure according to the selection rules described in Section 5.4.

Once the program has completed the population of the genetic_code data
structure, it is this information that is used to dynamically create trucks that use
different strategies. The encoding mechanism in Truckin' uses base and derived
classes to implement the creation of trucks. Each truck is initially greated as an
instance of the class Truck as shown in the following line of code.

32

trucks(t] = new Truck(t, ctrist], genetic_code(t]);

The base class of the Truck contains pointers to each of the strategy
classes (Gas, Trade, Buy, Sell, Move, Deal, Init and Go). The constructor of the
Truck class accepts as a parameter an array of eight numbers (the genetic code
for one truck). This array is the gene of the truck to be created. Reading the
array the constructar knows which derived class of each of the strategy classes
to instantiate for each of the pointers in the base truck class.

Truck:: Truck (int id_num, Control *controller, int genes[8])

{

switch(genes[0])

{

case 0:
init = new Peteinit(this);
break;

case 1:
init = new Debinit(this);
break;

}

switch(genes[1])

{

case O:
gas = new Petegas(this);
break;

case 1:
gas = new Jeffgas(this),
break;

case 2
gas = new Debgas(this);
break;

case 3:
gas = new Jeff2gas(this)
break;

}

... and similarly for the remaining genes.

33

5.3 Fitness Function

The fitness function in Truckin' is defined by the amount of capital a truck
is able to accumulate during a single run of the program. The list of trucks that
compete in a given run are managed by the ‘UsedGenes’ data structure:

struct genelist

{

int genes(8]; /I gene combination
long money_acquired; // capital after run
struct genelist *next;

3

struct genelist *UsedGenes = NULL;

Once a generation has finished competing, the trucks are then sorted in
decreasing order of money acquired and the top quarter of the population is
allowed to reproduce trucks that compete in the next generation and to compete
between themselves. In the following code UsedGenes is already sorted on
capital acquired during the last generation cycle.

ptr = UsedGenes;

for(int i=1;i<div(counter,4).quot;i++)
ptr = ptr->next;

prev = ptr;

ptr=ptr->next;
prev->next =NULL,

5.4 Selection

Once the first generation of trucks have completed their run, the selection
of the next generation of trucks to compete is performed by taking the 25% of the

trucks that performed the best in the last run, as described in the previous

34

section, creating the next 50% as children of these trucks and randomly

selecting the last 25% to ensure that the gene pool continues to expand.

In the code below ptr points to a list of the best 25% of genes that
participated in the last generation cycle therefore add these genes to the

genetic_code data structure to compete in the next generation.

while (ptr != NULL)

for(int i=0;i<8;i++)
genetic_code[counter][i] = ptr->genesfi};
counter++;
ptr = ptr->next;
}

Once again ptr points to the best genes from the previous generation, and
we therefore use these genes to create twice as many children as parents, i.e.

for every pair of parents make 4 children and add them to the genetic_code data

structure to compete in the next generation.

while ((ptr != NULL) && (ptr->next != NULL))
{

ptrmate = ptr->next;
for (int x=0;x<4;x++)

{
.

ptr = ptrmate->next;

}

35

Finally, we fill the rest of the genetic_code data structure with random
genes. This ensures that the program does not converging to a solution space

that does not contain the optimal solution.

for (int x=0;x<nbr_new;x++)
{ for(int g=0;g<8;g++)
{ if (RANDOMGENE)
{v = rand()%(POSGENEI[g]);
genetic_code[counter+x][g] = v;

}

5.5 Crossover

The crossover method used in Truckin’ is to take a random selection of
four genes from one parent and to fill in the rest from the other parent. This
method is easily implemented and examines a large portion of the solution
space but is highly disruptive to the schemata due to the many possible
crossover points. In the worst case scenario there can be seven crossover
points (each gene is taken alternately from each parent) and therefore the
longest schemata is of length one. In the following code ptr points to the first

parent and ptrmate points to the second parent.

First randomiy select the first four genes from ptr->genes.

36

for (int y=0;y<4;y++)
{
v = rand()%8;
genetic_code[counter][v] = ptr->genes|v];

gene_filled[v] = 1;
}

Then for every gene that is not already filled, fill it from ptrmate->genes.

for (int y=0;y<8;y++)

{
if (gene_filled[y] == 0)
genetic_code[counter][y] = ptrmate->genes(y];

5.6 Generation Cycle

For each generation cycle in Truckin’ the simulation makes the dealers
and managers to be involved in the cycle, makes the trucks and the controllers
to compete in the cycle, allows the simulation to run for a predefined amount of
time and then processes the results. In processing the results the simulation
maintains the resuits of the cycle and then prepares the genetic_code data

structure for the next generation cycle.
The dealers to be involved in the simulation are defined in a data file that

is read in by Truckin’. According to the information found in the data file the

simulation creates all the producers, retailers, consumers and gas stations at

37

particular locations on the map. One line of data from the data file is read in as
follows:
data >> av >> st >> kind_bought >> kind_soid >> bp >> sp;
The same type of dynamic binding used to create trucks is used to create
dealers as well. kind_bought and kind_sold define the type of dealer to be

created.

else if (kind_sold == GAS)

dir = new Gas_stn(sp);
mgr = new Manager(d, NONE, kind_sold, -1, sp, DEF_MIN,
DEF_MAX, DEF_MAX, DEF_MIN, DEF_MAX);

}
else if (kind_sold == CRATE)

{
dir = new Producer(sp*UNITS_PER_CRATE);

mgr = new Manager(d, NONE, kind_sold, -1, sp *
UNITS_PER_CRATE, 0, DEF_MAX, DEF_MAX, 0, DEF_MAX);
}

Using the technique described in Section 5.2 the trucks and the
controllers are created and then the simulation is allowed to run for ‘total_time’
amount of time.

while (time < total_time)

{
time += TIME_SLOT;
map->play(time);
for (tk = 0; tk < num_trucks; tk++)
{
ctris[tk]->set_sim_time(time),
trucks(tk]->play();
}

38

The map->play(time) method allows the managers to execute one
simulation step. If the manager is associated to a producer then the producer
would increase their stock by creating more crates. If the manager is associated
to a retailer then the retailer would update their buying and selling prices. If the
manager is associated to either a consumer or a gas station the play method has
no effect. The trucks[tk]->play() method implements the playing strategy of the

truck according to its genetic code.

Once the simulation time runs out Truckin’ then collects the statistics for
the run in the Stats data structure. The data structure is as follows:

struct StatRow
{

int genes[8]; // gene combination
long capital[MAX_RUNS]; // capital per run for this gene combination
int instances[MAX_RUNS]; // the number of trucks with this gene
combination per run
long TotCapital, /Il capital truck obtained throughout all runs
struct StatRow *next;
3
struct StatRow *Stats = NULL;

The amount of capital the truck collects per run and the number of times
the truck is selected to compete in the simulation (instances) are tracked since

they are indications of the fitness of the truck.

39

Once the statistics for the run are collected the genetic_code data
structure is filled with the next generation of trucks and the simulation starts

another generation cycle.

5.7 Termination Condition

The termination condition in Truckin’ is simply a predefined number of
generations. The NUMRUNS command line parameter defines the number of
generations and the program terminates afterwards.

for (int nbr_runs=0;nbr_runs<NUMRUNS;nbr_runs++)

{
}

cout << “finished.”" << end!;

40

6. Results

In analyzing the results we have found that they are somewhat uneven.
One set of runs may show signs of evolution, and then a subsequent run with the
same parameters will show none. We find in the results that a certain gene
combination can do very well in one run, and we therefore expect that it does
equally as well or better in the next, but it doesn't. But what we do see quite
clearly is that the different parameters in the simulation do in fact affect the
resuits of the runs. The number of trucks in a generation, the number of
generations, and the length of time simulated in one generation all affect the

results produced by the simulation.

In analyzing the results, before we can look for signs of evolution, we
must first make sure that there exists a gene combination that can make a profit.
Once we have established that such a gene combination exists then we can look

to see whether the simulations are able to find such a combination.

Therefore we investigate whether the trucks themselves make any money.
If none of the trucks are making money, then we have to review the environment
we created to ensure that there is a possibility for profit. By rurining the program
with proven sets of gene combinations we can see that there are combinations
that will make a profit. In the following example the simulation was run with ten

trucks, for ten generations, each generation lasting 5000 time units. We can see

41

from Table 5 below that the gene combination0222 100 2 is a proven
combination that can make a profit. Since we now know that there are
combinations of genes that do make a profit, we now would like to see the
simulation converge to these combinations, or possible others, when started

from a random gene pool.

Gene Combination Capital Acquired

02221002 $9283.50
02221002 $8402.65
02221002 $8393.45
02221002 $8189.25
02221002 $7767.85
02221002 $7515.55
02221002 $7244.75
02221002 $7160.95

Table 5: Capital Acquired by Proven Gene Combination

Now we will examine the affects of the different parameters to the resuits
of the simulation. The parameters that may affect the resuits are:

1. The starting position of the trucks

2. The number of trucks in the simulation

3. The number of generations in the simulation

4. The length of time for one generation

We have observed that the starting position of the trucks does in fact

affect the results of the simulation. Trucks that start off in the middle of the

42

country (intersection (5,5)) are more likely to succeed than trucks that start off at
the North-West corner of the country (intersection (0,0)), the South-East corner
of the country (intersection (9,9)) or at random starting points. The foliowing
figure illustrates this point. Each line in the graph represents a run of the
simulation in which all of the trucks started at the specified intersection. For each
line graphed, the results were produced by running the simulation with 50 trucks,
for 50 generations, each generation lasting 10 000 time units. The graph
outlines the results of the last generation of trucks, sorted in ascending order of

capital acquired.

Differences in Capital Acquired Due to Starting Point

- (5,5)
——Random

Capital Acquired

($20,000.00)

TruckNumber

Figure 2: Differences in Capital Acquired Due to Starting Point

43

As we can see from Figure 2, the run of the simulation that startéd all
trucks off in the middle of the country is the run in which more trucks made more
money. For example, the best truck starting at (5,5) accumulated more that
$100 000. At the beginning of the simulation, trucks explore the country by
traveling East and South, collecting information about the dealers before
attempting to make any deals. Consequently, a truck that starts at (0,0), the
North-West corner, will explore the entire country before starting to deal,
whereas a truck that starts at (9,9), the South-East corner, will not do any
exploring. We believe that this is why trucks starting in the middie of the country
are the most profitable, they don’t spend too much, or too little, time exploring
before attempting any deals. The trucks that start of at intersection (0,0)
probably spend too much time collecting information (they roam the entire
country) before attempting any deals, and the ones that start off at intersection
(9,9) probably don’'t spend enough time (they immediately attempt to make deals

with no knowledge of the country).

We have observed that the number of trucks in the simulation also affects
the results greatly. The more trucks in the simulation, the more likely it is that the
best truck will make a large amount of money, and that more trucks in general
will make money. The reason that we suspect for this is that there is a greater
sampling of the gene pool and therefore more of the ‘winning’ combinations are
likely to have been explored. Conversely, if there are too many trucks in the

simulation, then the competition for the limited amount of commodities (the

44

producers production of crates is unlimited in that they don’t have to seli the
existing crates before producing more, but yet the rate of production is fixed
therefore there is a maximum amount of crates that they will produce) is feit by
the trucks and they are less likely to make a huge amount of profit. The following
figure illustrates this point. For each line graphed, the results were produced by
running the simulation with the specified number of trucks, for 50 generations,
each generation lasting 10 000 time units. The graph outlines the resuits of the

last generation of trucks for each run of the simulation sorted in ascending order

of capital acquired.

Differences in Capital Acquired Due to Number of Trucks
$120,000.00
$100,000.00
3 $80,000.00 —10 trucks
3 $60,000.00 —— 50 trucks
< —— 100 trucks
% $40,000.00 ——250 trucks
3 $20,000.00 — 500 trucks
$0.00
($20,000.00)

Figure 3: Differences in Capital Acquired Due to Number of Trucks

45

As we can see from Figure 3 above, the most successful run was the one
with 100 trucks. In this run the most profitable truck in the last generation made
more that $100 000. There where enough trucks in the simulation to sample a
large part of the gene pool, but few enough to give each of them a chance to do

well.

The number of generations in the simulation does not seem to affect the
amount of money that the trucks can make, but does seem to affect the amount
of convergence visible in the results. The more generations in the simulation the
more of the trucks in each generation converge to a certain gene for some of the
strategies. The results in Table 6 were obtained from running the simulation with
100 trucks, for the specified number of generations, each generation lasting
10 000 time units. The top 30 money making gene combinations of the last

generation of the runs are extracted and shown in Table 6.

46

5 Generations 10 Generations 50 Generations 100 Generations

12111013 01201010 01321010 01000010
12110013 01201013 13211010 01300010
12110013 01200014 01321010 01000010
01220012 02112013 00321010 01302010
01220012 03310013 01321010 01302010
01220012 01312010 01321010 01302010
01220012 02112013 01321010 00300013
01220012 03100014 02121010 11000013
03022014 00111010 01321010 01302010
01220012 02022010 01321014 01302010
11111003 102020010 01321010 02302010
12122011 03010013 11201010 00302010
13001000 02310010 01321010 00302010
11111003 00020014 01321010 01302013
13112004 01022010 01321010 01302010
02321011 02020010 00322010 01302010
11102004 02002010 01321010 01302010
13100014 02022010 01321010 01302010
12101013 103100003 01321010 01302010
00111000 02201014 01321010 01000013
13102004 01020010 00321010 01302010
11201004 01201014 11201010 01300014
11222014 102201003 01321010 01302010
13110013 (00200004 01321010 01322014
02110000 102300010 00321014 01300010
11122014 1111000 00321010 01302010
11211004 00000014 01321010 01302010
11201004 12220002 01321010 01302010
11202014 01101004 00321014 01302010

Table 6: Difference in Convergence Due to Number of Generations

47

We can see from Table 6 in the first column the gene combinations have
much less of a pattern visible than in the last column. In the first column the
gene combinations are rather random, but in the last column there is a high
proportion of gene combinations of form 0130201X. Therefore the more
generations the simulation is allowed to run, the more likely it is to converge to a

pattern in the gene combinations.

The length of time for one generation also seems to affect the results of
the simulation. The amount of capital acquired by the trucks is greatly increased
if the trucks are allowed to compete for longer time periods in each generation,
but the amount of convergence exhibited is not affected by the length of time for

one generation. Figure 4 and Table 7 below illustrate this point.

48

Differences in Capital Acquired Due to Length of
Generation Cycle

$700,000.00

$600,000.00

$500,000.00
E ——500 TU
5 $400,000.00 —— 1000 TU
< $300,000.00 5000 TU
% $200,000.00 ——10000 TU
S ——100 000 TU

$100,000.00

$0.00
($100.000.00)
Truck Number

Figure 4: Differences in Capital Acquired Due to Length of Generation Cycle

49

00
03300010

000
00301010

000
01210010

0 000
01201014

00 000
02021010

02312013

01311010

01110013

01321010

01020010

01311014

01300010

01312010

00211010

02021010

01311013

03100010

01312010

00320010

02021010

03100013

00202010

02012013

00320010

02321010

01301014

00300010

02011013

12322010

02021010

01300013

02200010

02001013

00321010

01221014

01310014

01301010

00100013

01320010

01221014

03111013

02100010

00012000

00321010

01221014

01102013

02200010

00311013

01320010

02321014

02012013

01112010

13301014

01212010

01320010

02002013

03202010

13301013

11112004

01021010

01302010

00101010

00000003

01320010

01321010

01111010

02102010

11200013

00320010

01021010

00012014

02202010

11101013

01301010

01021010

02312013

03300010

01000010

00320010

02021010

02312013

01100010

01012010

02201010

02021014

00001010

01202010

00012013

11301010

02321010

01301010

03300010

00312010

00320014

02321014

01302013

03200010

13311013

00320010

02021010

01301010

02100010

12110013

00320010

02321010

01301010

01000013

13001010

12222013

01021014

02102014

03200010

11211013

01320010

01021010

01311010

02202010

13011013

00320010

01021010

01301010

00102010

13001014

01320010

02022010

01111014

03220012

12311013

00321010

02021010

01300014

02300010

02212014

11320010

01022010

02302014

03102010

11200013

00320010

01021010

02310014

03321010

00311013

13210014

02022010

Table 7: Difference in Convergence Due to Length of Generation Cycle

50

The results in the Figure 4 and Table 7 above were obtained from running
the simulation with 100 trucks, for 10 generations, each generation lasting the
specified time units. All 100 trucks of each of the last generations are graphed in
Figure 4 in ascending order of money acquired. The top 30 money making gene
combinations of the last generation of the runs are extracted in Table 7. We can
clearly see that the run with 100 000 time units for each generation made the
most money (the best truck made $600 000), but it does not display any more

definite signs of convergence then the other four runs.

Lastly we will show that the simulation does display some signs of
convergence. The following table displays the resulits of the first, the 25" the
50™ and the 100™ generations with the simulation having been run with 100
trucks for-100 generations each generation lasting 100 000 time units. The top
30 trucks of each generation are extracted. We can see that the first gene tends
to converge to 0 by the last run, the second also to 0 with some sporadic 2s, the
third to 3, the fourth to 2, the fifth to 0 or 1, the sixth to O (it is the only option for
this gene), the seventh to 1 and the last one to 0 or 4. Conversely the first run

shows no such patterns.

51

1st run

00200013

25th run
00321014

50th run
00021010

75th run
00321010

100th run
02320010

02322013

00321010

00321010

11201010

02320010

12111013

00321010

00321010

13012010

00320010

12310014

00321010

00321010

00321010

00320010

02220002

00321010

00321014

00321010

00321010

12321010

00321010

00321010

00321010

00321010

13101003

00321010

00321010

00321010

00320010

10100013

00321010

00321014

00320010

00021010

12222011

00321014

00321010

00321010

00321010

11012004

00321010

00321010

00320010

12300014

12301003

00321010

00321010

00321010

00022010

02221012

00321010

00021010

00321010

00320014

03221014

02221014

00321010

00320010

00320010

01101010

00321010

00321010

00321010

00320010

02322012

00321010

00321014

00321010

00320014

12321013

01321010

00321010

00320010

00320010

03310010

01321010

00321010

00321010

00120014

01121002

01321010

00321010

00321010

00320014

01121002

00321010

00021010

00321010

02320014

00020012

00321014

00321010

00320010

00321010

00010011

00321010

00321010

00321010

00120014

02010011

00321010

00321010

00320010

02320010

03101002

00321010

00321010

00321010

02320014

03211001

00321010

00321010

00321010

02320014

03210013

00321014

00321010

00320010

00120014

10320004

01321010

00321010

00321010

00320010

11222012

00321010

00321010

00321010

00122010

12100010

02221010

00021010

00321010

00320010

03321003

12202004

00321010

00321010

00320010

Table 8: Convergence

52

7. Conclusions

There are some surprises in the results produced by the simulation. One
generation of the simulation can exhibit sure signs of evolution, but the next with
the same parameters does not. In one generation a certain gene combination
can do very well, but the same combination goes bankrupt in the next. These
inconsistencies lead us to believe that there are several defects in the current

version of the simulation.

In the first version of the simulation there was only one type of dealer and
only one commodity. Trucks had unlimited capacity and dealers could produce
goods at an unlimited rate of production. This version of the simulation produced
no signs of evolution at all. In each generation of the simulation there would be
some real winners and some real losers, but there were no patterns in the gene
combinations that would win or lose. Then in subsequent generations different

combinations would win with no correlation to the previous generation.

The simulation was then expanded upon to present a more realistic
version of the economic world that we live in. These changes produced
somewhat more positive results, but still no consistent signs of evolution. We
can therefore conclude that the economic world depicted by the simulation is still

too simplistic to exhibit the results we are looking for. Implementing some of

33

what is mentioned in Chapter 8 may elaborate on the economic world of the

simulation sufficiently so that this is no longer an issue.

There are 2880 different gene combinations in the current version of the
simulation. The results of the simulation have been studied by another graduate
student (Liang Yu) who concluded that the inconsistencies in the results of the
simulation may be due to the fact that number of different strategies and actual
variation between the strategies is insufficient to produce consistent
convergence [7]. In other words, in some generations the simulation does find
real apparent ‘losers’ among the trucks and real ‘winners’, and in other
generations it does not. Any future work done with the simulation should most
definitely include expanding not only the number of trucks in the simulation but
also the actual strategies implemented must differ more than those implemented
in the current version. In doing this, we may find that the simulation will in fact
exclude the trucks whose strategies are ‘weak’ and converge more consistently

to the trucks whose strategies are ‘strong’.

Since we do in fact see some convergence in the resulits of the simulation
(sporadically) we are lead to believe that there is in fact a chance for the
simulation to produce the results that we are looking for, but to do so some or all

of the Future Work in Chapter 8 will need to be impiemented.

54

8. Future Work

There are several areas of the Truckin’ project that could be expanded
upon in the future. Some involve expanding the features and functions that are
already in place in the current version and others entail expanding the

economical world that Truckin’ depicts.

As described in Chapter 7, the number of variations on the strategies and
the actual differences in the strategies were insufficient to produce enough
genetic variation in the trucks to draw any positive conclusions. In the current
version of Truckin’ there are 2*4*4*3*3*1*2*5 = 2880 different trucks. Although
this number may seem large, Liang Yu found that to produce any real
convergence towards an optimal solution more permutations of trucks are
necessary [7]. Possibly the most important future work that can be added to the
Truckin' simulation would be to increase the number of different strategies for
each gene in the encoding mechanism and to add greater variation to the actual
strategies implemented. Once these improvements are put in place, we can
assess whether the Truckin' simulation would ever exhibit signs of evolution.
Once some signs of evolution are established we can go on and improve the

features in the simulation to show stronger signs of evolution.

Mutation is not implemented at all in the current version of Truckin’.

Future work may involve adding mutation to the simulation (and nothing else)

55

and noting the differences in the results between the pre and post mutation

versions of the simulation therefore extracting the effects of mutation alone.

The current fitness function is rather crude. A truck competes in the
simulation for a predefined amount of time and is assessed by the amount of
capital it has acquired at the end of the run. Other criteria could be implemented,
such as number of profitable trades accomplished, largest amount of capital
acquired at any point in the run, earnings per unit time of the run, or earnings
per litre of gas consumed. With any of these criteria in place as the fitness
function we may find that the program converges to a different set of genes and
therefore can conclude which genes are best to accomplish the fargest amount
of trades, which genes are best for the largest earnings per unit time of the run,

or which genes are best to accomplish any of the fitness functions implemented.

Changes to the actual economic world that the trucks compete incan
include Bankruptcy and Franchising. Bankruptcy is in place for trucks, in that
once a truck is out of money and out of gas they can no longer perform any
tasks and therefore dies out of the simulation, but no such hurdle is in place for
retailers. Retailers pay for the crates that they buy and acquire money for the
items that they sell, but no budget is kept for them. Future work can include
keeping track of money acquired and spent by retailer and making a retailer go

bankrupt once he is out of money. On the other hand, if a retailer does very well,

56

then that retailer should be allowed to franchise and occupy two intersections on

the map but continue to share one ‘bank account'.

In the current simulation, trucks move around the map with no knowiedge
of other trucks and their locations. Another area of improvement for the
simulation to mimic our real economic world would be the introduction of traffic. If
there are a certain number of trucks at a certain intersection, then no new trucks
are allowed to move into that intersection until someone has moved out. This
would cause the truck to waste simulation time and gas without being able to
accomplish anything. Some differences in the move strategy could aiso be

implemented to prevent a truck from ever encountering heavy traffic.

All of these changes mentioned above can be implemented independently
of all other changes and therefore should be added to the simulation one at a
time. Once one change is in place data should be analyzed to establish the

impact this one change had on the entire project.

57

References

{1] Melanie Mitchell, An Introduction to Genetic Algorithms, The MIT Press,
1996.

[2] M. Srinivas and Lalit M. Patanaik, Genetic Algorithms: A Survey, IEEE, 1994.
(3] Thomas Back, Uirich Hammel and Hans-Paul Schwefel, Evolutionary
Computation: Comments on the History and Current State, IEEE, 1997.

[4] Robin Biesbroek, GA Tutorial Home Page,
http:/fwww.estec.esa.nl/outreach/gatutor/Default.ntm

(5] Jose L. Ribeiro Filho ang Philip C. Treleaven, Genetic - Algorithm
Programming Environments, |\EEE, 1994,

(6] John Holland, Adaptation in Natural and Artificial Systems, Ann Arbot, Mi:
Universoty of Michigam Press, (1975).

[7] Liang Yu, Truckin’ Simulation and Visual Interface, Masters of Computer

Science, Concordia University, March 2001.

58

