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ABSTRACT

WAVE INDUCED RESPONSE OF SEA FLOOR DEPOSITS:

A SIMPLE MODEL FOR SANDS AND HONLINEAR ANALYSIS BY FEM.

Qingshi Yang , Ph.D.

Concordia University, 1990

This dissertation analyzes the ocean wave-induced response of seafloor deposits.
The linear wave theory is introduced for determination of the wave-induced pressure at the
mud line. The seafloor deposit is assumed to be a saturated porous medium modelled by a
two-phase system. The theory of mixture is used 1o derive the coupled governing
equations.

A simple material constitutive model is proposed based on the generalized plasticity-
bounding surface formulation. Some comparisons of the model tests with experimental
results are made. The simple model is capable of simulating both loose and densc sand
behavior under monotonic and cyclic loading, drained and undrained conditions.

A nonlinear finite element analysis procedure is presented. A fictitious {rcedom
technique is used to treat the different nodal degreces of freedom due to the composition of
coupled fields. A non-symmetric frontal solver subrbutinc is developed to accommodate the
esymmetry due to the non-associated plastic flow rule. A simple artificial boundary is
suggested to deal with the unbounded domain, which is easy to implement in the finite

element program and universal to apply to nonlinear analysis.
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One important conclusion obtained from the numerical analyses is the influence of
the cocfficient of permeability on the susceptibility of the sand mass to liquefaction; for
high values of permeability even a loose sand mass need not liquefy. This is in direct
contrast to the commonly held view that the liquefaction potential is a function of density
only.

Two example cases are studied in detail. The first example examines the seabed
response to the wave train at a pipeline site in Lake Ontario (Christian et al., 1974; Nataraja
and Gill, 1983), where the deposit was measured to be loose and medium dense. The
second example investigates the seafloor behavior under a storm wave at the Ekofisk tank
site in the North Sea (Lee and Focht, 1975; Nataraja and Gill, 1983). Here the deposit was
reported to be dense. The numerical analyses predict the susceptibility of the two sites to
liquefaction which reflects the real situations. It helps build confidence in the numerical

procedure adopted in this study and lends it credibility.
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INTRODUCTION

1.1 GENERAL

The solution of geotechnical engineering problems is complicated for several
reasons. First, geotechnical problems generally involve large scale structures and/or
unbounded domain. Second, soil exists in general as a nonhomogeneous multi-phase,
solid-fluid interative system. Third, the behaviour of the soil skeleton is highly nonlinear,
anisotropic and hysteretic. Under these conditions, the analytical solutions of geotechnical
problems have necessarily involved many simplifying assumptions. However, the
development of computing facilities has now made it possible to solve these complicated
problems more exactly using numerical methods.

One problem which has received considerable attention in geotechnical and marine
foundation engineering is the ocean wave induced response of seafloor deposits. The
stability and deformation of the seafloor under the action of storm waves are important
considerations in the design of pipelines, anchors and offshore structures such as gravity
and pile supported platforms.

Various methods including empirical, analytical and numerical procedures for
predicting the response of marine deposits have been proposed. Noticeably different

methods can be categorized as the total stress approach and the effective stress approach.



In all cases, the seafloor is considered as being subjected to an ocean wave induced plane
pressure wave, travelling across the surface of the underlying deposits. In wave response
studies, it is customary to neglect the effects of inertia and damping (pseudo-static
analysis).

Henkel (1970) was one of the first to carry out a total stress analysis for one-phase
system seafloor under wave loads following the classical procedure of limit equilibrium
slope stability analysis. Generally the total stress method does not account for the changes
in pore water pressure explicitly. The pore water flow in a rigid porous bed is governed by
the Laplace equation (Putnam, 1949 and Lin, 1977).

Analytical solutions of effective stress analysis for two-phase coupled response of a
poro-elastic bed to water wave were provided by Madsen (1978) and Yamamoto (1978)
applying the Biot theory of consolidation.

Assuming linear elastic behavior Seed and Rahman (1978) developed a
methodology for wave induced liquefaction analysis using an uncoupled scheme. This was
accomplished by solving the usual continuity equation of flow in conjunction with 2 pore-
water pressure generation model proposed by Seed et al. (1976). The combined effects of
the pore pressure generation and dissipation cause the pore pressure build-up which
depends on the storm characteristics, i.e. wave height, period and duration, and the
drainage and compressibility characteristics of the seafloor deposits.

The needs grow for numerical techniques and material constitutive relations which
efficiently and accurately model the complex behavior of soil systems. Owver the past
decades much effort has been devoted to constitutive modelling of the soil behavior under
cyclic and transient loading conditions such as that caused by earthquake, traffic and ocean
waves.

The observation of the behaviour of sand from experimental results such as

accumulation of permanent deformation, existence of hysteresis loops, etc., suggests that



the behavior of soil can be modelled by means of plasticity theory. Moreover, the
observation of the dissipation of energy, even at low stress levels, implies that the soil
behavior within a classical yield surface cannot be ireated as purely elastic. A more
sophisticated material model should be adopted such as the bounding surface model (Krieg,
1975; Dafalias and Popov, 1975; Dafalias and Herrmann, 1982) and the two-surface
model (Mroz et al., 1978,1979; Poorooshasb and Pietrusczcak, 1985, 1986) where the
attention has been focused on the progressive build up of excess pore water pressure
during cyclic or transient loading. The developed pore pressure may become almost equal
to the confining pressure and this phenomenon is referred to as liquefaction (for loose
sand) or cyclic mobility (for dense sand). So far, the realistic modelling of the non-linear
transient dynamic behaviour of soils is still an active field which calls for further
experimental and theoretical research.

Transient analyses of the response of seafloor deposits to ocean waves have until
recently been solved by very simple models. Traditionally, the finite element method is
used assuming elastic soil behaviour (e.g. Dunham et al., 1971; Gatmiri, 1990). An
equivalent linear method has been developed (Seed et al., 1973; Siddharthan, 1987) in
which the nonlinear characteristics of the soil skeleton are accounted for by using
equivalent linear soil properties, and an iterative procedure is used to obtain modulus and
damping values compatible with the effective strains computed in each zone of the soil
mass. |

Some simpliﬁei:‘lf procedures were proposed for wave-induced liquefaction analysis.
(Seed and Rahman, 1978; Finn and Lee, 1979; Nataraja and Gill, 1979, 1983). These
approximate procedures actually are modifications of those for seismic response analyses
(Seed and Idriss, 1971). The seismic shear strength curve developed by Seed (1979) was
extrapolated {o ocean wave problems. The fairly simple step-by-step procedures can be

used in ocean wave-induced liquefaction problems as a first check if a sophisticated



analysis is required. It is worth noting that certain differences exist between earthquake
excitation and wave loading although both are cyclic in nature. Ocean wave periods and
duration are considerably longer than the earthquake periods and duration. Ocean wave
loadings are imposed at the surface of the seafloor as a pressure load rather than earthquake
excitation at some lower boundaries as base shaking. Ishihara (1983) has indicated that the
ground motion developed in s0il deposits during an earthquake is attributed to the upward
propagation of shear waves from an underlying rock formation. A soil element is
deformed in the simple shear mode. However, the soil element under the seabed is
stressed in a more complicated manner during the passage of a wave train. Therefore, the
cyclic stresses induced in the seabed deposits due to water wave travelling overhead are
characterized by a continuous changing of the principal stress values and their directions.
Therefore, one must be cautious in using these procedures.

It is possible to develop a more rigorous nonlinear transient analysis procedures. In
an atlempt to analyze the liquefaction susceptibility of the seafloor deposits to wave action,
Poorooshasb, Ishihara and Yang (1987), Poorooshasb, Yang and Clark (1990) have
carricd out the finite element nonlinear transient analyses, in which the soil was considered

as a coupled two phase system modelled by a two-surface plastic constitutive law.

1.2 PURPOSE OF STUDY

For many constitutive models currently available for soils, a common drawback is
that they are applicable only to a specific boundary condition. Monotonic and cyclic
loading are usually treated separately so that an artificial distinction is made between the
two types of loading in order to suit the specific requirements of the boundary value

problems which are to be solved.



For a genuine representation of saturated soil the single phase thcory is inadequate.
Two phase theory for consolidation was first introduced by Terzaghi. Subsequently Biot
generalized Terzaghi's work to three dimensions, and the so-called Biot theory has been
further extended to accommodate the different nonlinear constitutive relations for soil by
Zienkiewicz and Bettess (1982).

The primary purposes of this study are to

(1) develop a simple constitutive model in terms of effective stress within a more
fundamental framework of the generalized plasticity-bounding surface formulation such
that the same model could be applicable to monotonic or cyclic, drained or undrained, or
any other form of loading condition in three dimensions.

(2) develop a numerical procedure incorporating the proposed constitutive model
for nonlinear transient analyses of two phase coupled problems of effective stress and pore
pressure interaction under wave loads. The finite element method is employed.

(3) work out examples relevant to wave induced response of seafloor deposits.
Standing waves and two example cases of travelling waves passing over homogeneous

seafloor deposits are studied in detail.

1.3 STRUCTURE OF THE THESIS

1. The general coupled transient, dynamic field equations for a two-phase soil
system based on the theory of mixture are presented. Then they are reduced to the nonlinear
transient consolidation equations for analysis of the ocean wave induced response of sea

floor deposits. ( Chapter 2)



2. The soil plasticity is historically reviewed. First, the general formulation of
classical plasticity is derived, then the concepts of isotropic, kinematic and mixed hardening
and their generalizations on the cap models, the nested yield surface models and the

bounding surface models are briefly illustrated. ( Chapter 3 )

3. Zienkiewicz's generalized plasticity concept is introduced to develop a simple
constitutive model for sands. The proposed model is first derived in the triaxial

configuration based on the generalized plasticity-bounding surface formulation. (Chapter 4)

4. The proposed material model is also a simplified version of the two-surface
elasto-plastic model developed by Poorooshasb and Pietruszczak (1985, 1986). Non-
associative flow rule is adopted in the simple model. The global plastic potential is similar
10 that used in the two-surface model. The idea of reflecting local plastic potential is
retained implicitly by a vanishing yield surface which significantly reduces the numerical

complexity of the model. (Chapter 4 )

5. The formulations of the proposed model are generalized from the triaxial
configuration to the full effective stress space to describe the soil behaviour along any

possible stress path. ( Chapter 4 )

6. The computer program MDTEST is developed for numerical implementation of
the model. There are three different versions: MDTEST 1, MDTEST 2 and MDTEST 3
serve for stress controlled drained path, stress controlled undrained path and strain
controlled path, respectively. The algorithm for the stress controlled drained path is
straightforward. The effective stress increment can be controlled as an independent variabie.

However, for stress controlled undrained path, the internal constraint of undrained

6



condition must be satisfied. Thus, the effective stress increment cannot be controlled
independently. A modified constitutive relation in terms of the total stress increment and
strain increment should be derived.

The state variables are computed for a given deformation history in the displacement
type finite element method. The precision of the integration at a local level of the
constitutive equations for the strain controlled path has a direct impact on the overall
accuracy of the analysis. Most of the algorithms can be considered as particular cases of the
generalized trapezoidal rule or midpoint rule (Ortiz and Popov, 1985) in which the update
process splits into an elastic predictor of trial state and a plastic comector of retum mapping

that restores incremental plastic consistency. ( Chapter 4 )

7. The loose and the dense sand behaviour under monotonic and cyclic loading,
drained and undrained conditions are simulated by a number of numerical model tests.
Comparison is made with experimental results whenever possible to establish confidence in

applying this simple model to initial-boundary value problems. ( Chapter 4 ).

8. The methods of finite element spatial discretization of the field equations are
described. The virtual principle and the weighted residual method are used to derive the
semi-discrete finite element equations. Time integration schemes such as field elimination,
staggered method and direct integration of the resulting coupled nonlinear system are
discussed. A fictitious freedom technique is proposed to treat the different nodal degrees of
freedom. Based on Iron's symmetric frontal solver, a non-symmetric frontal solver
subroutine is developed to accommodate the asymmetry due to the non-associated plastic

flow rule adopted in the material model. ( Chapter 5)



9. The sea floor is considered as being subjected to an ocean wave induced, plane
pressure wave travelling across the surface of the underlying deposits. The linear wave
theory is introduced for determining the wave-induced pressure at sea bottom (mud line).

( Chapter 6)

10. Numerical methods for an unbounded domain are investigated. A simple
artificial boundary is applied in dealing with the wave-induced response of seafloor
deposits. The suggested artificial boundary is derived from the Taylor series without any
problem dependence. It simply states that the boundary values at current time could be
predicted by extrapolation of the values of the variable in the vicinity of the boundary at
past time. Thus, it is universal and can be used for nonlinear analysis. It is also very easy

to implement in finite element programs. ( Chapter 7 )

11. Finite element nonlinear transient analysis program PCPSTAD and PCPTRAV
are developed. An incremental iteration procedure is used for the solution of the global
nonlinear system.The numerical formulation of the proposed simple constitutive model and
the suggested simple artificial boundary are implemented into the computer program to
solve the two-phase coupled, nonlinear, unbounded domain problem.

Two relevant examples are worked out. The standing wave and the travelling wave
train passing overhead the homogeneous seabed are studied and the wave-induced
responses of seafloor deposits are analyzed. The effects of various factors involved,

especially the coefficient of permeability, are examined. ( Chapter 8 )

12. Concluding remarks are made and further work is suggested. ( Chapter 9)



MECHANICS OF SATURATED POROUS MEDIA

2.1 INTRODUCTION

The analysis of dynamic transient phenomena in fluid-saturated porous media is of
great interest in geophysics and geotechnical engineering. Fluid saturation of a porous
solid skeleton introduces a time dependence into the response to applied loads. The
classical early work of Terzaghi (1943) on soil consolidation was followed by the more
explicit work of Biot (1941, 1955, 1956, 1962, 1963). Biot first formulated linear
governing equations for the interaction of the fluid and solid phases. It was later extended,
by himself, to the dynamic range using a mechanistic modelling approach. Since then his
theory and results have been the standard reference and the basis for most subsequent
investigations in acoustics, geophysics and geomechanics.

Modern treatment of mixture was first tried by Truesdell (1960). He introduced
three principles:

(1) All properties of the mixture must be mathematical consequences of properties

of the constituents.

(2) So as to describe the motion of the constituent, one may imagine it isolated

from the rest of mixture, provided one will allow properly for the actions of the

other constituents upon it.

(3) The motion of the mixture is governed by the same cquations as is a single

phase body.



The development of general nonlinear equations has later become fashionable using the
theory of mixtures, such as Eringen and Izgram (1965, 1967), Green and Naghdi (1965),
Bowen (1976, 1982) and Prevost (1980). A physical derivation of the full formulation and
the validity of various simplifying approximations have been given by Zienkiewicz et al.
(1977, 1980, 1982, 1984).

In the following sections, the general coupled transient, dynamic field equations for
a two-phase soil system based on the theory of mixture are presented. Then they are
reduced to the nonlinear transient consolidation equation for analysis of the ocean wave

induced response of seabed deposits.

2.2 EFFECTIVE STRESS AND CONSTITUTIVE EQUATION
Saturated soil is a two-phase mixture consisting of solid particles and water in the

pores which is idealized in Figure 2.1.

7 L
% |85 . vz
y a’’ 7

Saturated Soil Solid Phase Fluid Phase

Figure 2.1 Saturated soil as a two-phase mixture.
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For each constituent a (o = s, f for solid and fluid phases respectively):
n%=n%{(x; ,t)=dV®/dV = volume fraction occupied by the o phase.
P = microscopic mass density
p% = n® p,, = macroscopic average mass density (no summation involved)
u% = displacement of the o phase
v% = velocity of the o« phase

0%; = partial (Cauchy ) stress of the & phase

Thus,
nf+nf =1
nf = n = porosity (2.1)
=1-n
p=ps+pf =(1-n)ps +npf (2.2)

The relative displacement,velocity and acceleration of the fluid vis-a-vis the solid skeleton

are
wi =1 (uf - us;)
w; =n(vh-vs)= n(uf;-08) (filter velocity) (2.3)
w; =n(af -a%5) =n(f -v8 ) =n ;- i)

The partial stress tensor of;; corresponding to the fluid phase is assumed to be

Ufij =nf P aij =np 6jj (2.4)
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where p is the pore water pressure, 6ij is the Kronecker delta and compressive stress and
strain are taken as positive. However, with the total stress gj; given by
g = o% +ofj (2.5)
the partial stress tensor 0% corresponding to the solid phase is not the effective stress o
of classical soil mechanics (Terzaghi, 1943), which is defined as
Oj =0y -p by (2.6)
from (2.4), (2.5) and (2.6)
o5 =0y +(1-n)p 2.7
Oj =0% +0f; =0+ pdy (2.8)

Terzaghi (1943) showed that the definition of effective stress allows a rational treatment of
the stress-strain behavior. Terzaghi's principle of effective stress states that all measurable
effects of a change in strain in soils (such as compression, distortion) are due to changes in
effective stress. The consequence is that the constitutive laws which describe soil behavior
must refer to effective stress (rather than total stress). A rate-type constitutive equation is
assumed 1o describe the behavior of the porous solid skeleton, of the following form (the

summation convention over repeated indices applies hereafter):

=D (05 ) =Dy Vivsy = DS Vg vop + DSy V3 Vi) (2.9)

where
- = — + v{* V; = material derivative following the a constituent

D g

Vo v®x) =symmetric part of solid relocate gradient
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Vi ve) = skew-symmetric part of solid velocity gradient
DGy is the constitutive tensor for the rotational component of the stress rate:

DGijld =-( o'y 6jk + oljl dik - ik 6j1 - G'jkﬁﬂ) /2 (2.10)

This tensor plays a role in finite deformation theory only and is ignored in the following.

Dsiju is an objective, material constitutive tensor. For linear isotropic elastic material

Dsiji = A8 8y Oy + us ( Oy O + Oy Oy ) (2.11)

where A®, us = Lame elastic constants.

The strain is given for small deformation by

gij=- (S +usj;)/2

éijz-(vsi_j-i-vsj‘i)/Zz-V(i Vsj) (2.12)

where us;,; = dus; / dx; , etc.
Thus, the constitutive equation is

6'ij =D S éij (2.13)

For 2 rate-independent plastic model, it is appropriate to write in the incremental form

d o = DSy dey (2.14)

where Dsjjq is the tangent modulus tensor.
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2.3 BALANCE LAWS AND SYSTEM OF GOVERNING EQUATIONS
2.3.1 Balance of Mass

D% p% + p% Vjvj® = 3, p®+ V5 (p® vj*) = 0 (a=s,f) (2.15)

2.3.2 Balance of Linear Momentum

-Vjouij+p°bi+R°‘i = p%a% (U.&S,f) (2.16)

In the above set of equations the notation is as those in section 2.2 and

b; =body force per unit mass

a% = acceleration of the o phase

R% = momentum supply to the o phase from the other phase

The momentum interaction is assumed to consist of diffusion and dilatation contributions,

Rsi=-Rfi=-dij(V5j-ij)-—ijl'l (2'17)

Where d;; is a symmetric , positive definite second-order tensor. The first term in (2.17 ) is

sometimes called the 'Stokes drag ', (See e.g. Bowen, 1976 ).

2.3.3  Full System of Equations
The problem of the dynamic transient response of a two-phase soil system can be

represented as the following initial-boundary-value problem:

Let € denote the domain occupied by the two phase structure and I its boundary.

Find the soil displacement field us; (x;,t ) and fluid velocity field vf; {x;,t ) in the domain

14



QERNSD ( NSD= number of space dimensions ), such that they both satisfy equilibrium

equation (2.16), continuity equation (2.15) and constitutive equation (2.13), together with

the bouindary conditions
us; = us; |, on Iy,
Vfi =Vfi |'Y on I'g,
(o'ij+(1-n)p6ij)nj=h5i|.‘, on I'sy
npdn=hi|, on I'y, (2.18)
and the initial conditions
us; (0) = usip
v5;(0) =v5ip
¥, (0) = VHig @ 19)

Tsu, I'tv, T'sn, ' are the parts of the boundary on which the dispIacemcnl and traction for

the solid and fluid respectively are prescribed. They satisfy the following conditions:

I UTsp =T ’ rsu NIsy=0

Iy UTg =T, I[NNIy =0 (2.20)

15



2.4 SOME REDUCED SYSTEMS OF APPROXIMATIONS
2.4.] The u-w Formulation ( Biot theory )
Substituting equation (2.4) and (2.7) in equation (2.16) and (2.17) for the solid

phase and fluid phase respectively two equilibrium equations are obtained.
-Vijdi-(1-n) Vip+psh - djj (vSj - vl ) = ps a3, (2.16s)
- nVi P+ pt~ bi + dij (Vsj -ij ) = pfafi (2.16f)

The overall equilibrium equation is derived by adding equation (2.16s) and (2.16f) and
using equation (2.2) and (2.3)

-V 0 - Vip +pb; =-Vj 05 +pb; =p U5 + prw; (2.21)
The fluid equilibrium equation (2.16£) could be rearranged with the notation
di; /n? =ye k'l (2.22)
as
- Vip + peb; = ye kol Wy + peliS; + peWi /n (2.23)
Rewriting equation (2.15) for the solid and fluid phases respectively ,
(1) dips + ps & (1-n) + ps Vi (1) v8 )+ (1-n) v5; Vips =0  (2.155)
nope+prdin+peVy v )+nvi;Vipr=0 (2.151)

Dividing equation (2.15s) and (2.15f) by f; and f; respectively, and adding them

results in
Vivsi+ Vi@ (v -v8 ) ) + (0 pe+ViVipeIn/ pp + (3; ps + v5iVi ps) (1) / ps = 0
that is

- &+ Wij +nf¢/pr+(1-n)ps/ps=0 (2.24)

The solid grains may be assumed to be incompressible, i.e. ps= 0.
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According to conservation of mass,

D(psVH

Dt

- . f
=peVi+p V' =0 (2.25)
Pt/ pp=-VI/VE = /K;
where Ky defining the bulk modulus of the fluid, represents ine rate of fluid contraction.
Therefore, the continuity equation (2.24) yields
- V.Vi'i =- é;i + I.) n/Ks (2.26)

Thus the generalized Biot's equations (2.8), (2.12), (2.14), (2.21), (2.23) and (2.26)
have been derived from the theorv of mixture. For easy reference, this system is

renumbered in the set of equations (2.27) where uS and DS;; have been replaced by u;

and D , respectively.

o = djjt+ p Oy (2.27a)

dej = - (du;; +duy;)/2 (2.27b)

d o'yj =Dy dew (2.27¢)

-Vio; +pbi =p i+ prWi (2.27d)
- Vip + pgbi = ye kol W + pell + prWi /m (2.27¢)
-Wii=-& +pn/Ke (2.270)

It may be noted that equation ( 2.27 a,b,c,{ ) can be used to eliminate oy; , o'ij , Ejj

and p, leaving two sets of equations, (2.27d) and (2.27¢), for the determination of the

primary set of variables u; and w; . The solution of its discretized equations in the linear

case has been adopted as the basic formulation used by Ghaboussi and Wilson (1972).
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2.4.2 The u-p Formulation ( medium-speed phenomena )
The use of u-w formulation requires six variables in three dimensions (or four in

two dimensions). It is often preferable to reduce the problem by retaining u; and p as basic
variables. If W; terms are negligible in dealing with medium-speed phenomena, the
elimination of the variable w; is simple. Now solving equation (2.27¢) for w; with W; term

dropped, results in
-wi =(kij /¥e ) (Vi p-peby) + (ki /ve) pr U8 (2.28)

which upon substitution in Equation (2.27f), yields;

0 =0+ p & (2.29a)

dgjj = - (du;; +duj; )/ 2 (2.29b)

d 05 = Djjiq den (2.29¢c)

-Vjo; +pb =pij (2.29d)

Vi (ki /ve)(Vyp-peby) + €= - Vi((ki /ve) pe i )+pn/Ks (2.29f)

2.43 Consolidation Equation ( slow phenomena )

If the process is so slow that all the acceleration forces are found to be negligible,

w; =0, i, -0, Uf—0
then the fluid equilibrium equation (2.16f) or (2.28) reduces to Darcy's law (1856) as
Wi =n (V- v) == (ky /10) (VP -peby) (230)
with

kii = n2 ypd-1; = Darcy permeability tensor.
j yP y
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k; =k 8; for an isotropic medium, k is the permeability coefficient (unit: L/T).
¥¢ = Pr g = unit weight of the fluid.

g = acceleration of gravity.

By omitting terms containing ©; from u-p formulation (2.29), the well-known equations of

consolidation are obtained,

oj; =0+ p dyj (2.31a)

dejj =- (duj; +dui)/2 (2.31b)

d 0 = Dy deg (2.31¢)

-Vjo; +pb; = 0 (2.31d)

Vi(kj /ve)(Vip-pehy) + €= pn/Ke (2.31f)

Equation (2.31f) represents the transient seepage of the fluid, coupled with the deformation
of the solid skeleton. The incremental form of this system of equations also allows dealing

with the nonlinear consolidation problems.

2.4.4. Undrained Behavior (rapid phenomena)
When the speed of the phenomena is very fast so that w; , W; and w; never reach

significant values, one obtains the limiting case of undrained behavior. It is equivalent to

the case of very small permeability k;; . On making k; = 0, equation (2.29f) gives
éii = fJ n/ Kf
or incrementally

dp = (K¢ /n)de; (2.32)
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Thus we can readily express the constitutive equation in terms of total stress. The system

can be written as

dey = - (dugj+duy; )/2 (2.33b)
dojj = Dy dey (2.33c)
-Vjoy; +pb; = p i (2.33d)
with
Dijt = Dija + 8 du K¢ /n (2.33¢e)

which is identical to the behavior of a single-phase system with a redefined total stress

tangent modulus Dy .

2.4.5. Fully Drained Behavior ( steady flow )
If all transient behavior has ceased, i.e. if W; =0,0;=0,%; =0, =0andp=0

’

complete uncoupling of equations occurs. Equation (2.29f) becomes

Vi(ky /ye)(Vijp-ph) =0 (2.34)

which can be solved independently to determine the pore fluid pressure p.

The remaining equations are

dejj = - (dug; +dugi)/2 (2.35b)
dO'ij = Dijk! dEk] (2350)
-Vjd'ij - Vip+pb; = 0 (2.35d)

Thus one may determine u; using the known values of p.
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2.5. SUMMARY OF BASIC EQUATIONS IN MATRIX FORM

Defining displacements as uT = { uj,uz,u3 ], stresses and strains as ol =
[611,022,033,045,0,3,03;], D as a 6 x 6 matrix of stiffness coefficients, mT =

[1,1,1,0,0,0], and L as a 6 x 3 matrix operator equivalent to the strain definition, such as
(2.12), the basic equations may be written in a form more suitable for the finite element

discretization.

Thus the equivalent of the generalized Biot's equations (2.27) is

C=0 +mp

de=L du

do'=Dde

LTo+pg=pl+p¥w (B)

-Vp+ prg=(kl/y )W+ prl +pW/n
-mTLTw + mT ¢ = pn/ K;

The approximate dynamic equation (2.29) becomes

g =0 +mp
de = L du
do'=D de (Z)

LTo+pg=pi

VT ((k/ve)(Vp-pr 8))+mT & =-VT((k/yr)pru)+pn/Ks
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The consolidation equation (2.31) will be

o =0 +mp

de = L du

do'=Dde

LTo+pg=0 ©

VI((&/y)(Vp-ps g))+mTe = pn/K;

Finally the system of equations for the undrained case (2.33) is reduced to:

do=Dde
de = L du
LTo+pg=pi U))

with

D=D+m(K¢/n)mT

Zienkiewicz, Chang and Bettess (1980) stated the basic conclusions taken from the
examination of many computational results, in which zones (Figure 2.2) of applicability of
various assumptions hold for determination of pressure fluctuations.

Extrapolating the conclusions of this simple elastic analysis to other real problems

one now has a useful guide as to the applicability of the various assumptions.
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Zone|l B=2Z=C Slow phenomena (w and i can be negiscted)

Zone ll B=2#C Moderate speed (W can be negiected)

Zons lll B#Z#C Fast phenomena {Ww can not be neglected) only
full Biot equation valid

mﬁ ratlp————— Drained (influence
) of n, negligibiel
10! Th
" (0]
1
“1
10"
10! !( I) I
10 /§| ;
0w 0 w0
—_— e,
_koVZ 2kpT (i)f T
Ted? wT? Bu/g T2
232 ™ 2
m= wd®_ . (l)
_ v T
k = pgk k—kinematic permeability
T=2d/V, VZ=(D+Kinllp

~ BKdpn
~ Ky/p; (speed of sound in water)
B=pdp n=033 B=033

Figure 2.2 Zones of applicability of various assumptions

(after Zienkiewicz and Bettess, 1982)
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Thus for a typical seabed response problem on which waves of a period of seconds
are acting and in which the length of interest, (say the depth below surface), is of the order
of 10m

T =102s

hence,
I, <10 (0%2)2 - 103

so the dynamic terms may be entirely neglected.

In wave response studies it is customary to neglect the effects of inertia. The
nonlinear transient consolidation equations (2.31), or the set of equations (C) will be used
to study the ocean wave induced response of sandy sea floor deposits and liquefaction

analysis.
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SOIL PLASTICITY — A HISTORICAL REVIEW

3.1 INTRODUCTION

For a long time, soil mechanics has been based on Hooke's law of linear elasticity
for stress and deformation analysis of a soil mass under a footing, or behind a retaining
wall, when no failure of the soil is involved. These are classed as elasticity problems in soil
mechanics. On the other extreme, the theory of perfect plasticity is used to deal with the
conditions of ultimate failure of a soil mass. Problems of earth pressure, retaining walls,
bearing capacity of foundations, and stability of slopes are all considered in the realm of
perfect plasticity. These are called stability problems.

Partly for simplicity in practice and partly because of the historical development of
mechanics of solids, elasticity problems and stability problems in soil mechanics are
treated separately in unrelated ways. The essential connection between clasticity problems
and stability problems are problems known as progressive failure problems. Progressive
failure problems deal with the elastic-plastic transition from the initial linear clastic state to
the ultimate state of the soil by plastic flow. The essential set of equations for the solutions
of progressive failure problems is the set of constitutive equations of soils.

In fact, the actual behavior of soils is very complicated and varies greatly when
soils are subjected to different conditions. Drastic idealizations are therefore essential in

order to develop sinple mathematical models for practical applications. Each soil model
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largets a certain class of phenomena, captures their essential features, and disregards what
is considered to be of minor importance in the class of application.

The development of the modem theory of soil plasticity was strongly influenced by
the well-established theory of metal plasticity. Soil mechanics specialists have been
preoccupied with extending these concepts to answer the complex problems of soil
behavior. Tresca's yield condition, used widely in metal plasticity, can be regarded as a
special case of the condition of Coulomb on which the important concept of the limiting
equilibrium of a soil media had been firmly established in soil mechanics (Terzaghi, 1943).

It is a relatively straightforward matter to extend the method of characteristics to

cover Coulomb material where ¢ and ¢ can either remain constant (Sokolovsky, 1965) or

vary throughout the stress field in some specified manner (Booker and Davis, 1972).

The general theory of limit analysis, developed in the early 1950's considers the
stress-strain relation of a soil in an idealized manner. This idealization, termed normality or
the associaied flow rule, establishes the limit theorems on which limit analysis is based.
Although the applications of limit analysis to soil mechanics are relatively recent, there have
been an enormous number of practical solutions available (Chen, 1975). As a result of this
development, the meaning of the limit equilibrium solutions in the light of the upper- and
lower-bound theorems of limit analysis becomes clear.

The first major advance in the extension of metal plasticity to soil plasticity was
made in the paper "Soil Mechanics and Plastic Analysis or Limit Design" by Drucker and
Prager (1952). In this paper, the authors extended the Coulomb criterion to a
three-dimensional soil mechanics problem. The Coulomb criterion was interpretéd by
Drucker (1953) as a modified Tresca, and by Drucker and Prager (1952) as an extended
von Mises yield criterion. The yield criterion obtained by Drucker and Prager for the latter

case is now known as the Drucker-Prager model or the extended von Mises model. Shield
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(1955) following the related work of Drucker and Prager (1952), extended uniquely and
correctly the Coulomb criterion into the three-dimensional stress space.

One of the main stumbling blocks in the further development of the stress-sirain
relations of soil based on the Drucker-Prager type or Coulomb type of yield surface to
define the limit of elasticity and beginning of a continuing irreversible plastic deformation
was the excessive prediction of dilation, which was the result of the use of the associated
flow rule. It became necessary, therefore, to extend the classical plasticity ideas to a
non-associated form in which the plastic potential and yield surface are defined separately
(Poorooshasb, Holubec and Sherbourne 1966, 1967).

In 1957 an important advance was made in the paper "Soil Mechanics and
Work-Hardening Theories of Plasticity” by Drucker, Gibson and Henkel. In this paper
the authors introduced the concept of work-hardenin plasticity into soil mechanics. There
are two important innovations in this paper. The first is the introduction of the idea of a
work-hardening cap to the perfectly plastic yield surface such as the Coulomb type or
Drucker-Prager type of yield criterion. The second innovation is the use of current soil
density (or void ratio, or plastic compaction) as the state variable or the strain-hardening
parameter to determine the successive loading cap surfaces.

These ideas have led in turn to the generation of many soil models, most noiably the
development of the critical state soil mechanics at Cambridge University, U. K. Thcse new
soil models have grown increasingly complex as additional experimental data has been
gathered, interpreted, and matched. This extension marks the beginning of the modern
development of a consistent theory of soil plasticity.

It is important to note here that the path 1 - reach the present state-of-the-art in the
soil plasticity is by no means easy and that much of the classical theory of plasticity for
metal has been considerably modified in order to obtain rational results for soils. These

achievements have been summarized in two earlier symposia (Parry, 1972; Paimer, 1973),
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as well as in ASCE workshop and symposium proceedings (Pande and Zienkiewicz, 1980;
Yong and Ko., 1981; Yong and Selig, 1982). An up-to-date summary is given in the
books "Constitutive Laws for Engineering Materials" by Desai (1984), "Constitutive
Equations for Engineering Materials, Vol. 2, Plasticity and Modelling" by Chen and Saleeb
(1986) and the Proceeding on "Constitutive Laws for Engineering Materials: Theory and
Application" edited by Desai et al. (1987).

The use of strain- ‘or work - hardening plasticity theories in soil mechanics has been
developed for about three decades. Most research has been conducted in the area of soil
statics. In recent years, attention has been focused on the modelling of soil behavior under
cyclic loading conditions encountered in soi! transient and dynamic problems. In the
following sections, the general formulation of classical plasticity is first derived, then the
concepts of isotropic, kinematic and mixed hardening and their generalizations on the cap
models, the nested yield surface models and the bounding surface models are briefly

illustrated.

3.2 CLASSICAL PLASTICITY

In the 1950's major advances were made in the theory of metal plasticity by the
development of (a) the fundamental theorems of limit analysis of perfect plasticity (Drucker
and Prager, 1952), (b) Drucker's postulate for stable material or definition of
work-hardening material (see for example, Drucker, 1951, 1960), and (c) the formalization
of the concept of normality condition or associated flow rule. The theory of limit analysis
of perfect plasticity leads to practical methods that are needed to estimate the load-carrying
capacity of structures in a more direct manner. The concept of a stable material provides a
unified treatment and broad point of view of the stress-strain relations of plastic solids. The

idea of normality condition provides the necessary connection between the yield criterion or
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loading function to the plastic stress-train relations. All these have led to a rigorous basis

for the theory of classical plasticity.

The general formulation of elastoplasticity could be derived from three fundamental
assumptions ( see e.g. Yang, Poorooshasb and Yong, 1987 ):
(1) Additive
The total strain increment dgj; is assumed to be decomposed into clastic strain
increment de®;; and plastic strain increment dePy; . (In the following, both the indicial and
matrix notation will be used whenever it is convenient.)
dey=de’y +dePy de = de® + def (3.1)

The elastic part is usually assumed to be governed by an incremental form of the

generalized Hooke's law. i.e.
e = Cydog de®* =C’ do
dojj =D de’n do =D°de (3.2)
where C°, D® are the tensor of elastic compliance and moduli respectively with
D%t Citmn = (Bim Ojn + Bin Ojm )/ 2 (3.3)
(2) Existence of a scalar valued yield function F (o, &P, x ).

The previous loading history, expressed quantitatively by means of the plastic strain

tensor &P and a scalar function x = x ( €P ), determines the current yield surface in the

stress space. It is evident that stress o here stands for the effective stress. Since the

constitutive relations refer to the deformation of the soil skeleton, the state of the material is

defined in terms of the effective stress and plastic internal variables, such as £ and x(eP).
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If F < 0, the material is in the elastic range. If o satisfies F=0, the material is at

the plastic state. Therefore, the so-called "consistency condition" is introduced which
states that during loading each stress increment leads from one plastic state to another, the
condition F=0 holding both before and after, that is

dF=0 (3.4)

(3) Drucker postulate (1951): Non-negative dissipation of mechanical energy.

The work done by the added stress over any step cycle starting at o® and involving
infinitesimal plastic straining is

WD=J‘(0-0°)Td520

o (3.5)

It may be expanded to Taylor series at point b which satisfies F=0,

Wp = (0°-0° ) deP + [do’ deP + (- %) (deP)? 1/2+0[(deP )2 120
If o is inside the elastic domain, then
(c®-0"Yde? = 0 (3.6)
o= o, then
do'de? /220 (3.7)

Thus the yield surface must be convex and deP must be normal to the yield surface

according to inequality (3.6). So that the associated flow rule results in the form

deP = dA (9F /3G )" diz 0 (3.8)

The scalar parameter dA in (3.8) is determined by the consistency condition
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aF = OF do + 2 ge P+‘E9idsp 0
ao deP ox geP (3-4)‘

Substituting (3.8) into (3.4)', and solving for dA

dh=L/K, (3.9)
where
L = (8F / 30) do = loading function

oF dF dx
+
geP 0K 9P

o=-(— —)¢ 9% YT = hardening parameter
Substituting (3.9), (3.8) into inequality (3.7), the condition of stability results
do'de® =L%/H=0
i.e.
K,z 0 (3.10)
This means that the non-negative hardening modulus is required by the material stability.
If Kp <0, the material is said to be unstable. For Kp > 0, it is a hardening material,

and Kp= 0, an ideal (perfect ) plastic material.

For a hardening material { K, > 0), the loading criteria is

(1, L>0 & F=0 loading
0, L=0 & F=0 neutral lnading
h(L)= {0, L<0 & F=0 unloading
(3.11)
[ 0, F<0 elastic state
The plastic strain increment is obtained as
h(L)  oF .8
deP = do CPdo
Kop (Go 80 ) 90 (3.12)
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Therefore, the elastoplastic constitutive equation is

de=C%do=(C"+CP)do
h(L) aF T
CeP = C* +
Combining equation (3.1) with (3.2), (3.8),(3.9)
i pede =3t poder+ S peawr
do do
o+ 2F pe (I
= —do+— ppe De ( pye ) dA
— _Q__I_:‘_ e E T
—Kpd?x+aoD (ao) dA
yields
dn =1 9F pege
Kz, 90
where
Kop=Kp+ 3o D* (30T
Therefore
h(L)  oF aF
P= T T
deP = h (L) O YT ah = %o (557 50D
The inversion of the constitutive equation is
do=D°de°=D°(de -de? ) = DP de (3.15)

where

(] h(L) -3
D% = D¢ . o D (ao)T
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3.3 ISOTROPIC HARDENING AND CAP MODEL

{Concept of Critical State)

The introduction of isotropic hardening plasticity into soil mechanics led in turn to
the generation of the family of soil models of the strain-hardening cap type developed at
Cambridge University by Professor Roscoe and his co-workers. Two of these models are
now widely used. The first is known as the Cam-clay model (Schofield and Wroth. 1968)
and was originally formulated by Roscoe et al. (1963) for normally and lightly
over-consolidated clays in the triaxial test. The second, known as the Modified Cam-clay
model, was developed by Roscoe and Burland (1968) as a modification and extension of
the Cam-clay model to the general three-dimensiona! stress state. In both models, the
associated flow rule was used. The modified Cam-clay model is an isotropic, nonlinear
elastic-plastic strain-hardening model. Only the volumetric strain is assumed to be partially
recoverable; i. e. elastic shearing strain is assumed to be identically zero. The clastic
volumetric strain is nonlinearly dependent on the hydrostatic stress and is independent of
the deviatoric (shear) stresses. For certain stress histories, strain-softening may occur.
Extensive reviews of various types of Cambridge models have been given in two symposia
(Parry, 1972; Palmer, 1973).

The important feature that has been the integral part of all Cambridge models is the
concept of critical state proposed by Poorooshasb (1961) which had previously been
referred to as the critical void ratio {(Roscoe et al., 1958). The critical state line is the locus
of the failure points of all shear tests under both drained and undrained conditions. Its
crucial property is that failure of initially isotropically compressed samples will occur once
the states of stress in the samples reach the line, irrespective of the test path followed by the
samples on their way to the critical state line (Atkinson and Bransby, 1978). At the critical

state, large shear deformations occur with no change in stress or plastic volumetric sirain.
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Experimental results have indicated that at failure the behavior of soil is governed
by the Mohr-Coulomb failure criterion (Bishop, 1966). The failure (yield) surface
corresponding to the Mohr-Coulomb criterion in principal stress space is an irregular
hexagonal pyramid whose apex lies on the space diagonal as shown in Figure 3.1. A
strain-hardening cap intersects with the Coulomb surface in line ABCDEFA. This line is
called the critical state locus, and it is simply a line which separates the two surfaces
corresponding to one fixed value of the specific volume (or void ratio). The complete
failure surface is termed a state boundary surface (e.g. Roscoe and Burland, 1968; Atkinso
and Bransby, 1978). There will be similar surfaces of different sizes, but of the same
shape, corresponding to different values of the specific volume. The geometric
representation of the shape of the generalized state boundary surface requires four
dimensions (i.e., three principal stress and one specific volume).

DiMaggio and Sandler (1971) proposed a generalized cap model. The yield
function they used consists of a perfectly-plastic (failure) portion fitted to a strain-hardening
elliptical cap. The associated flow rule was employed for the failure and cap functions. In
this model, the functional forms for both the perfectly-plastic and the strain-hardening
portions may be quite general and would allow for the fitting of a wide range of material
properties.

The movement of the cap is controlled by the increase or decrease of the plastic
volumetric strain. Strain-hardening in this model can therefore be reversed. It is this
mechanism that leads to an effective control of dilation, which can be kept quite small

(effectively zero) as required for many soils.
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Figure 3.1 A Cambridge type of strain-hardening cap model.

Using the idea of a cap fitted to the yield surface, Lade (1977, 1979) has developed
a strain-hardening model to describe the behavior of different sands and normally
consolidated clays. He used a spherical cap together with a modified version of the conical
yield surface suggested earlier by Lade and Duncan (1975). In this model, both the conical
yield surface and the cap are allowed to barden isotropically. However, for the cap, the
associated flow rule was employed, while the nonassociated rule was used in connection

with the conical portion.
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3.4 KINEMATIC HARDENING AND NESTED YIELD SURFACE MODEL

An alternative approach to the isotropic hardening type of models described above
is provided by the kinematic type of strain-hardening rules. This approach has been
employed by severai researchers to provide a more realistic representation of soil behavior
under reversed, and particularly cyclic, loading conditions.

Iwan (1967), following the earlier work of Masing (1926), proposed one-
dimensional plasticity models which consist of a collection of perfectly elastic and
rigid-plastic or slip elements arranged in either a series-parallel or a parallel-series
combination. The model can contain a large number of elements and the properties of these
elements which can be distributed such that they can match the particular form of hysteretic
behavior of certain types of soils. This is known as the overlay or mechanical sublayer
model (e.g. Zienkiewicz, Norris and Naylor,1977). The concept of a sublayer model was
originally introduced by Duwez (1953) and further developed by Besseling (1958).

In order to extend the one-dimensional model to the three-dimensional situation, an
extended formulation of the classical incremental theory of plasticity has been proposed by
Iwan (1967). Instead of using a single yield surface in stress space, he postulated a family
(nest) of yield surfaces (Figure 3.2) with each surface tranzlating independently in a pure
kinematic manner, or individually obeying a linear work-hardening model. Their combined
action, in general, gives rise to piecewise linear work-hardening behavior for the material
as a whole. The approach leads to a realistic Bauschinger effect of a type that could not be
obtained by using a single yield surface and a nonlinear work-hardening rule even with
kinematic hardening. The same concept of using a field of nested yield surfaces was also
proposed independently by Mroz (1967). All the nested yield surface models have a
feature common 1o the early sublayer models: namely, a piecewise linear stress-strain
behavior under proportional loading. These models used for soils are usually known as

nested yield surface or multisurface plasticity models.
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Figure 3.2 Nested yield surfaces in Mroz-Iwan type of strain hardening models.

Figure 3.2 demonstrates the qualitative behavior of a multisurface model with pure
kinematic hardening. The initial positions of the yield surfaces £ . £3 , £2) , and £ are
shown in Figure 3.2a. When the stress point moves from O to P1, elastic strains first

occur until the surface £ is reached, where the plastic flow begins and the surface {0
starts to move towards the surface £ . Before their contact, the hardening modulus HO®
associated with £% governs the plastic flow according to the normality flow rule. However,
when £ engages {1 at P1 (Figure 3.2b), the first nesting surface £ becomes the active
surface and , upon further loading, the hardening modulus HD applies in the flow rule.

Both £” and £V are then translated by the stress point, and they remain tangent to each
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other along with the stress path until they touch the yield surface ® which then becomes
the active surface. For subsequent contacts of consecutive surface, the process is repeated
with new corresponding values of hardening moduli applied. The situation when £ is

reached is illustrated in Figure 3.2c. Prevost (1977, 1978a, b) has extended the Iwan /
Mroz model for the undrained behavior of clays under monotonic and cyclic loading
conditions. In this development, the basic work-hardening rule is still of the kinematic type

but a simultaneous isotropic hardening (or softening) is allowed.

3.5 MIXED HARDENING AND BOUNDING SURFACE MODEL

Various types of work-hardening plasticity models have been recently employed for
soils based on the bounding (consolidation or limiting) surface concept introduced earlier
for metals (e.g. Dafalias and Popov, 1975; Krieg, 1975). A two-surface model of this
type was proposed by Mroz et al. (1978, 1979) for clays. A bounding surface, F=0,
representing the consolidation history of the soil, and a yield surface, f=0, defining the
elastic domain within the bounding surface (Fig. 3.3) were employed in the model.

The bounding surface was assumed toc expand or contract isotropically, but the
yield surface was allowed to translate, expand or contract within the domain enclosed by
the bounding surface. The translation of the yield surface is governed by the same rule as
the multisurface models described earlier (i.e., F will translate towards the bounding

surface along PR in Fig. 3.3).
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Bounding Surface F=0

Yield Surface =0

Figure 3.3 Yield and bounding surfaces in stress space.

The hardening modulus on the yield surface is assumed to vary depending on the
relative configuration of the y..id and bounding surfaces. It was this last assumption that
distinguished the present formulation from the prcvious.multisurface models. Bere,
instead of using a field of nested yield surfaces with associated hardening moduli, an
interpolation rule is utilized to define the variation of the hardening moduli beiween the
yield and the bounding surfaces. In the interpolation rule used by Mroz ct al. (1978,
1979), the hardening modulus , H, was taken as a function of the distance d (Fig. 3.3)
between the current stress point, P, on the yield surface and its conjugate point, R, on the
bounding surface. Very detailed discussions of the present model and its application to
represent the behavior of clays under monotonic and cyclic triaxial test conditions have

been given by Mroz et al. (1979).
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Dafalias and Herrmann (1980) have also used the bounding surface formulation to
describe the behavior of clay under cyclic loadings. However, no explicit yield surface
was postulated. The associated flow rule was utilized for the bounding surface. In this
model, the variation of the plastic (hardening) modulus within the bounding surface is
defined on the basis of a very simple radial mapping rule. For each actual stress point
within (or on) the bounding surface, a corresponding "image" point on the surface is
specified as the intersection of the surface with the straight (radial) line connecting the
origin with the current stress point (the origin was assumed to be always within the
bounding surface). The actual hardening modulus is then assumed to be a function of the
hardening modulus on the bounding surface at the "image" point and the distance between
the actual stress point aiid its "image”.

Unlike the nested yield surface models, the bounding surface models have the
definile advantage of smooth transition from elastic to fully plastic state for general reversed
loading which is generally observed experimentally on soils. In fact, the bounding surface
model can be considered as a smooth extension of the nested yield surface model with an

analytical function to replace the nest of several loading surfaces.
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A SIMPLE CONSTITUTIVE MODEL FOR SANDS

4.1 INTRODUCTION

The classical concept of a yield surface implies a purely elastic stress range contrary
to the reality for many soils. Some very important aspects of soil behavior, mainly relating
to the cyclic response such as strain accumulation for drained cyclic loading or pore water
pressure build up for undrained cyclic deviatoric loading, cannot be adequately described.
A feature of many stress-strain laws for soils is that they are applicable only 1o loading
conditions of a rather specific nature. When an artificial distinction is made, for example,
dealing primarily with gross overall soil behavior under specifically chosen cyclic
conditions, the corresponding constitutive relations are useless for monotonic, or
interchange of monotonic and cyclic loading. This shows the necessity to develop
constitutive laws within a more fundamental framework, such that they are applicable to
monotonic or cyclic, drained or undrained, or any other form of loading conditons which
may occur in earthquake response of large dams, nuclear power stations or in off-shore
structures subject to wave action. Eisenberg and Phillips (1969) introduced the concept of
loading surfaces distinct from the yield surface. Mroz (1967) introduced the field of work-
hardening moduli which was originally applied to metal plasticity and subsequently o soils
by Mroz, Norris and Zienkiewicz (1978) and Prevost (1978). Among the new concepts is
that of the bounding surface originally introduced by Dafalias and Popov (1975, 1976) and
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independently by Krieg (1975) in conjunction with an enclosed yield surface for metal
plasticity. The salient features of a bounding surface formulation are that plastic
deformation may occur for stress states within the surface and the possibility of having a
very flexible variation of the plastic modulus. These features yield definite advantages over
a classical yield surface formulation, particularly with regard to soil plasticity.

A bounding/yield surface plasticity formulation for soils was fully developed by
Mroz et al. (1979) and Mroz and Pietruszczak (1983) within the triaxial space of critical
state soil mechanics. Poorooshasb and Pietruszczak (1985, 1986) developed a two-surface
model for sand extended to the general effective stress space which is based on the
bounding surface concept incorporating a non-associative flow rule and the idea of
reflected plastic potential (Pande, 1982). A computer program, called CARIBOU (Yang,
1986), was also developed for numerical simulation of the model behavior. This model has
been proved to be applicable for both loose and dense sands, in particular, liquefaction and
cyclic mobility can adequately be simulated. Also it has been applied to analysis of
earthquake excitation (Pietruszczak and Stolle, 1987) and wave action (Poorooshasb,
Ishihara and Yang, 1987; Poorooshasb, Yang and Clark, 1990). The model is fairly
complicated mainly because of the kinematics of the yield surface.

A relatively simple constitutive model within the framework of the generalized
plasticity / bounding surface formulation is proposed. The idea of reflecting plastic
potential is retained implicitly by a vanishing yield surface which significantly reduces the
numerical complexity of the model. For a number of tests, the performance of the model is
compared with experimental results (Castro, 1969; Ishihara and Tatsuoka, 1974, 1975,
1982). The predictions indicate that the model is capable of appropriate simulation of
several fundamental aspects of sand behaviour which have already been recognized through
laboratory investigations. Therefore, this simple constitutive model may be applied to

initial-boundary value problems with confidence.
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4.2 THE GENERALIZED PLASTICITY FORMULATION

In generalized plasticity formulation, the unit vector n at the effective stress space
which determines both loading and unloading direction is required. The incremental stress-

strain relations could be written in compact matrix notation in which the subscripts ! and u

refer to loading and unloading respectively,

do' = D, ds if n* do'> 0 loading

do' =D, de if n'do'< 0 unloading 4.1)
where the tangent matrices are related (Zienkiewicz and Mroz, 1984) by
(D) = (DY +mgn’ /H, (4.2)
(Du)' =(D°) +ngn’/H, (4.3)
in which Hy and H, are scalar parameters known as plastic loading and unloading moduli.

D€ is the eastic matrix. This relation simply ensures the uniqueness of strain increments

whenn'do'=0. ng and ng, are arbitrarily specified unit vectors which define the flow

rule. If they differ from n then the flow is non-associative and will lead to non-symmetric
tangent matrices Dy and D,

It is easy to convert equation (4.2) in the same way as used in section 3.2, to the
standard form of the so-called elasto-plastic matrix,

D* Ngl/u nT D¢

Hg/u+llTDellg]/u (4.4)

D[!u=De'

The material behaviour can be fully described if we prescribe D°, n, g and Hyy, for all

states of the material.
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For comparison, a yield surface F(d', q,) is used in classical plasticity. The state of

the soil skeleton is defined in terms of the effective stress o' and the plastic internal variable

gn accounting for the past loading history. The q, are usually scalar or second-order tensor

quantities such as the plastic work, the plastic strain, etc. From the point of view of the
generalized plasticity , n is defined by the unit normal vector of the yield surface.

nT= 202N (e 45

The loading flow direction vector ng is specified by the unit vector normal to plastic
potential G(o')

+_9G , 3G g

5= T (3

(4.6)

Imposing the consistency condition dF=0 during plastic deformation, results in

_ oF aqn T JF oF 12
1= 30 o e [ (55 (55)]) @
The unloading is always assumed to be elastic in classical plasticity:
Hy=w , D,=D° (4.8)

In bounding surface theory, the bounding surface is identified as the yield surface if
loading takes place at the bounding surface. However, if the actual stress point is within
the bounding surface, n, Dgijy and H),, are defined by a suitable interpolation rule from the
values of its 'image’ on the bounding surface. The definition of image point and
interpolation rule could be very flexible according to generalized plasticity.

The proposed model is based on the generalized plasticity-bounding surface
formulation (Zienkiewicz and Mroz, 1984 and Dafalias, 1975). It is also a simplified

version of the two-surface elasto-plastic model introduced by Poorooshasb and
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Pietruszczak (1986). A brief description of this two-surface model is given below. It
invokes two families of surfaces (Figure 4.1). The first family is called the bounding
surface which is assumed to be created by an active loading process imposed upon virgin
material. The bounding surface expands along with the accumulation of plastic distortion
which serves as the measure of the loading history until the stress point tends to move
inside it (stress reversal) or a limit state (failure) is reached. It is of an isotropic plastic
distortion strain hardening type. The second family is called the yield surface which
defines a pure elastic domain and is involved in all stress reversal programs. Upon stress
reversal, the yield surface moves within and indeed is guided by the bounding surface. As
long as the stress point reaches the bounding surface and tends to move outside, it will
behave again as a virgin material. It should be emphasized that during the stress reversal
programs the bounding surface may expand or contract depending on the mode of
accumulation of plastic distortion. The non-associated flow rule is used. A global plastic
potential is incorporated in the model to define the direction of plastic strain increment for
the virgin loading process while a local plastic potential is for the stress reversal program
(Figure 4.2). Nevertheless, the local plastic potential is related to the global plastic
potential in a reflecting manner as shown in Figure 4.5 for the triaxial configuration.

In the light of the generalized plasticity formulation, it is not necessary to use a yield

surface and plastic potential, if one can specify D°, n, Bgu and Hyy in some way. This

idea is quite clear and useful in modelling soil behaviour under complicated loading

conditions.
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o= 3paca diagonal oni’

«=space diagonal of Z;

{wstrass path

a bounding surface.

a yield surface

Figure 4.1 Bounding surface and yield surface of the two-surface model

(Poorooshasb and Pietruszezak, 1986)
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Figture 4.2 Global and local plastic potentials of the two-surface model
(Poorooshasb and 'Pictruszczak, 1986)

47



4.3 DERIVATION OF THE PROPOSED MODEL

4.3.1 Modelling in the triaxial configuration

In the triaxial configuration ( 0'2 = 0'3 ), the usual stress and strain measurements
p', q and de,, de, are given in terms of the principal effective stress and strain
pP=(c1+20a3)/3, q=0'1-0' (4.9)
dey=de; + 2dez | deg=2(de; -de3 )} /3
The increment of work dW would equal to
dW =p'dey, + qdeg = 0'y de; + 20'3 des
p' and q are related to the effective stress invariants by
p=n/3 9=31)" (4.10)

where I is the first invariant of the effective stress tensor and J, is the second invariant of

the stress deviation tensor.
The yield loci are almost straight lines radiating outwards from the origin according
to several test results ( see Figure 4.3, Tatsuoka and Ishihara , 1974). So it is reasonable

1o choose the bounding / yield surface as follows

F=F(p,qe )=g-n(e"p =0 (4.11)
n(E*) =nc[ 1-exp(-e* / A)] (4.12)
e* =[] dePs|

where de is the plastic deviatoric strain increment, A is the plastic hardening parameter

and m¢ can be related to the angle of internal frection , ¢, by the Mohr-Coulomb relation
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e =(6sindg)/(3-sindg) when o'y > 0'3 (compression)

Mg = (6sin ¢r) /(3 +sin ¢¢ ) when o'y < o's {extension)
R =7¢ (compression ) /n; (extension ) = (3 +sin ¢ ) /( 3 -sin ¢¢ ) (4.13)
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Figure 4.3 Yield surface for sand with different densities

(after Tatsuoka and Ishihara 1974 )
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The plastic potential G could be written as
G=G(yq)=0 o q=q(p) (4.14)
The plastic volumetric and deviatoric strain increments would be

dePy = dA (8G / ap"), dePs =dA (3G /3q)

Therefore the dilatancy d, defined as the ratio of the plastic strain increments, could be

expressed by
d=deP, /dePy =(3G/dp")/ (G /dg)=-dq/dp (4.15)
On the basis of the experimental work of Stroud (1971) on sand it is possible to

assume that the dilatancy depends only on the state of stress and not on the stress increment.

A plot of the experimental data of Frossard (1983) is shown in Figure 4.4.

C :_g.v —— — ELLPSE

w0 [ \ ———  PROPOSED SURFACE
N \ . EXPERIMENTAL DATA
C IFROSSARD 1983
L . \

05 -

o [

.05 L.

-10 an |

05 8 15 20

Figure 4.4 Experimental and predicted values for dilatancy
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Nova (1982) suggested a linear stress-dilatancy relationship

M=M, - p,d (4.16)
where M,; and p are positive material constants while M is the stress ratio

M=q/p' 4.17)

so that d=-dq/dp' =-(M-My)/u (4.18)
If p =1 then integration of equation (4.18) leads to

G=q+Mgp'In(p'/po)=0 (4.14)
In the above equation po' is a size parameter at which q=0. It has no influence on defining

the plastic flow vector n,; .

Itis easy to show that equation (4.14) may be written, alternatively, as
G=pexp(M/Mg)-po=0
which falls into the general form of plastic potential suggested by Poorooshasb et al.(1966).

The line M=q/p'=M; on which no plastic volumetric strain occurs is synonymous with the
‘critical state line' (CSL), which has been also termed 'the characteristic state line' by

Habib and Luong (1978) or 'the phase transformation line' by Ishihara, et al. (1975). Its
slope is given by M which can be related to the residual angle of friction, ¢, by the Mohr-

Coulomb relations as
Ma=(6sin¢g )/(3-sing,) when o'y > o's(compression)
Mer=(6sin¢y )/ (3 +sinde) when ¢'1< o's(extension) (4.19)

For virgin loading, the bounding surface F in (4.11) and the plastic potential G in

(4.14) are used to determine n and ng by (4.5) and (4.6) respectively. While H, could be

obtained from (4.7) with q, =n(e*),
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< L 8] BEyr SF )
Hl“ A(M 1)‘3_(;]/[(60|) (60')] (4‘20)
If unloading (stress reversal) occurs, it is assumed H,, = o at this moment.

For the stress reversal process, the stress point lies inside the bounding surface.

However, it will be on a surface F. with a certain value of e"c .

Fe (P, qec)=0 (421)
which is used to define n; according to (4.4). One can now distinguish loading and
unloading in terms of this n..
The vector ng is specified by G which passes through the actual stress point.

However, instead of a small yield surface and a local reflecting plastic potential used in the

two-surface model, ng, is directly related to ng as shown in Figure 4.5 and Figure 4.6,

gy (g, 0°g ) =(n'y,0’y) if M > M

n (0, 0 )=(0"g,0°g)  ifM<My (4.22)
where the superscripts v and s refer to the components along the p' and q axis respectively.

It is evident that this definition of ngy will produce almost the same results as those
by the two-surface model since the pure elastic domain is very small for many soils.
However it simplifies the model considerably.

The 'image’ point on the bounding surface is defined by a simple 'deviatoric radial
rule Figure 4.6. The image point is the intersection of the bounding surface and the straight
line which is perpendicular to the p' axis and passes through the actual stress point. The
image point and the actual point are located on the same side for loading and on the

opposite sides for unloading, i.e.
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d=ac if loading
d0=ad if unloading (4.23)
8p=ac+ad (see Figure 4.6)

Finally, we need Hys, which could be defined by the interpolation rule:

A -1 1.8
Hy ~Hp ao)Y (4.24)

where vy is a material parameter and Hy is the plastic moduli at the image point.
It may be noted that although Hy and H, are expressed similarly in equation (4.24),
they are different. The reason is that Hp and 6 have different values in the two cases: the

image onints are not the same for loading and unloading.

Another point worthy of mention is as follows. The results of drained cyclic test
(Fig.4.11 and Figure 4.12) show the cyclic load - densification phenomena. A remarkable
fact is that volumetric plastic strain developed during unloading is always of a contractive
nature, which makes the material exhibit an overall densifying character. This unloading -
contraction feature is ensured by the definition of n and ng, in the proposed model.

However, volumetric compression occurs at a progressively decreasing rate as the sand

densifies. This is obtained by changing the interpolation index y along with the

densification process.
Y =Yo ifeys B (4.25)
Y=%Y0 & /B if e,>B

where y, and B are positive constants.
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4.3.2. Material parameters of the model

In order to identify the model, elastic parameters are required to determine D°. In

this study v, Possion's ratio is taken as constant and K, the bulk modulus is assumed 1o

depend on the mean effective stress in such a manner that;

K=Kz +/3a'n/x (4.26)
where K; and k are constanis.
In total, eight material constants, K;, x, v, ¢f , $cr. A, B, Yo are used in the model.
All the above parameters except for B and yg can be determined from the results of a

conventional triaxial compression test, The parameter yq can be evaluated from the results

of an undrained cyclic test by a process of trial and error. Finally B can be determined from

the results of a drained cyclic test.
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Figure 4.6 Simple model in triaxial plane
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4.4 FORMULATION IN GENERAL EFFECTIVE STRESS SPACE

So far, only the triaxial configuration has been considered. To be employed in a
computer program for the solution of boundary value problems, the model must be
generalized to describe every possible stress path in the effective stress space. Following
Drucker and Prager (1952) it is possible to generalize the formulations from a triaxial field
to the full principal stress space.

In the triaxial configuration, the bounding surface and the plastic potential are

F=q-n(e*)p (4.11)
n(e*) =ne [ 1-exp (-e*/A)] (4.12)
Mr (compression) = 6 sin ¢/ ( 3- sin ¢ ) (4.13)
G =q+Mep'ln(p'/po)=0 (4.14)
M (compression) = 6 sin ¢ / (3 - Sin ¢ ) (4.19)

or cxpressed by the principal stress [ and 1o,
F=(31)"-ne"1 /3 (4.11)'

G =(312)" M (1, /3)In (1;/1°) (4.14)

It is convenient to use the set (r, 8, Z) which have the true values in the & plane

and diagonal of the principal stress space as shown in Figure 4.7,

r=Q25)"
B=sin? (-3V3J3/(23,°%)/3, -n/6<8sn/6

Z=1,/V3 (4.27)
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Where I is the first invariant of the effective stress tensor o';j while J; and J5 are the
second and the third invariants of the stress deviation tensor Sij.

I} =o'k

J2 =i 83/ 2

J3 =sij sk 8/ 3 (4.28)

Sij = o'ij - o‘kk aij / 3

o2 A ¥4 o'2
space diagonal "
8
D-)(
7t plane
o'3 o't
0 —-0'] 7 plane

Figure 4.7 The expression of 1, 8, Z in the principal stress space.
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Firstly, F and G can be transformed by the set (r,8,Z) with 8 = - & / 6 for triaxial

compression and eliminating a constant coefficient (2/3)1’2

F=r - (¥2/3)0(e*)Z=0 (4.11)"

G=r+(V2/3)M;ZIn(Z/Zp)=0 4.149)"
Secondly, the equation of the bounding surface could be generalized to the whole

stress space with all the features in the triaxial formulation retained,
F=r-n(e*) g®)Z=0 C(4.29)

where e* is a measure of the total plastic distortion given by the expression

e* = [de*,

de* = ( deP; dcpij)”z ,

deP; = dePy; - dePiy &5 /3
Here deP;j is the incremental plastic deviatoric strain. The function n{e*) recording the
loading history is given by the relation

ne*) =mg [ 1-exp (-e*/ A)],

Me= 2V2sin¢r/ (3 -sin ¢¢ ) (4.30)

by which the size of the bounding surface is determined. The bounding surface approaches

the failure envelope when e* increases continuously. However, it is better to have a very

small value ng when e* equals zero to avoid certain difficulties in dealing with the purely
hydrostatic pressure state of stress.

The function g(0) is used to describe the cross section shape of the bounding

surface on the x plane. 1t should be convex and symmetric with respect to three axes for
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isotropic materials. The ellipse formulation first proposed by William and Wande (1975) is

adopted to quantify the function g(8). It is symmetric and will be convex if

1 < 8max / Bmin 5 2
In the present case
g(-71/6) = Bmax = 1 for triaxial compression
g(/6) = Emin=(3 -sind )/ (3+sings)  for triaxial extension
are chosen to be consistent with the Mohr-Coulomb failure criterion,
R =gnax/ Bmin = (3 +sind¢) /(3 -sin ¢y ) (4.31)
Therefore, the convexity is always ensured . Function g(8) could be expressed by 8, as

shown in Figure 4.8.

B1=8-x%/6 -n/6s0=sm/6 -n/3s0,s0
g@) =gB1+n/6)=(Cicos B; +Cs)/(Cs +Cy) (4.32)
where
C1=2(R* 1)
Cy=(2-R)’
C3=5-4R

! Cs=20C coszel
Cs = (C2(Cs + Ca))1?

It is easy to calculate its derivative

g‘(B): g'(91) =[28in 291((:1008 81+C5)-(Si1‘191+(C2/Cs)Sinzel)(C4+C2)]C1 /(C4+C2)
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Some values used in next section are listed below:

g'(- 1/6) = 0, g"(-m/6) = -3C; / (2C2) = -3(R*-1)/(2-R)Y < o

g(/6) = 0, g"(/6) = Cy/ (RE(2R-1))= AR>*1) / (R*(2R-1)) < (4.33)

The shape of bounding surface is similar to that in the two-surface model
(Poorooshasb and Pietruszczak,1986) which is a cone having straight meridians and a non-
circular cross section with its apex at the origin and its axis along the diagonal of the stress
space, as shown in Figure 4.1.

Thirdly, the plastic potential could be generalized in the same way

G=r+ Mzg®)Zln(Z/Z)=0 (4.34)

Mo =2V2 sin ¢c / (3 - 5in ¢ )

7 plane

Figure 4.8 Elliptic trace of the function g(6)
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In summary, the constitutive equations are determined by D°, n, By, Hi

Ifn'do'> 0 loading . use ng and H;

Ifnt do' < 0 unloading . use ng, and H,.

de = de® + deP = (Dyy, ) do
D )" = @ + ngun'/ Hy,

do' = (Dyy Me

De Dgisa nT D¢

Dy;y=D°-
Hyju+aTD®ng

For virgin loading process F(o', e') =0

nT = /[( )T( )17

If n'do'>0, virgin loading

r_8G , 3G, 3G 1n
nd = L2 (32))

=%\(n 1)[ (de v—-—-)T(d .)]1’2/[(%)”%)]”2[(3%)1

with
N=r/(g®)Z

If n'do'<0 , pure elastic response

(4.1)

(4.2),(4.3)

4.1)

4.49)

(4.5)

(4.6)

aG
(Er) )12

(4.35)

(4.36)

(4.8)



For stress reversal process, F (0, e ) < 0. The condition F(o', e‘c }=0 leadsto

f = 2% /[ ( 2oy ( e e 45y

If n." do' > 0, the process is loading; n.' do'=0), pure elastic response and
n:" do' < 0, unloading. The loading flow vector ng is given by

aG

gy =320 /(5207 ( L)

(4.6)
The unloading flow vector ng, is related to my, in the same manner as indicated in (4.22)

ng (0'gy ,nsgl)=(nvg],nsg;) ifn>M/g®)
ng Mg, 0y )=(-n"g,n%) ifn <M /g(®) (4.22)
where superscript s refers to the deviatoric component in the x plane and v stands for the

hydrostatic component along the diagonal of the space. Hy, is obtained according to the

definition of the image point (4.23) (see Figure 4.6)

o

=ac if loading
6=ad if unloading (4.23)
dp=ac+ad (see Figure 4.6)

and the interpolation rule (4.24) in which Hp is the plastic moduli at the image point

1 = 1 1- .Q... )Y
Hyu Hg ( 8o (4.24)
Y=Yo ifeys B
Y=Yo & /B if & >B (4.25)
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4.5 NUMERICAL IMPLEMENTATION

4.5.1 Stress controlled drained path

The stress controlled drained path requires the determination of the strain increment
for a given effective stress increment with the initial state known. The algorithm is

straightforward. However, for implementation of the model into a numerical code, all the

quantities have to be expressed in terms of stress variables 1,0 and Z;. This is given as

follows:
I =0'w
Io =si5 84/ 2
J3 = 8ij Sjk Si / 3 (4.28)
Sij = O'4j - O'kk 0ij/ 3
tij = Sik Skj - Sik S 055/ 3
a1, /8c'=m’
dlz /40" = st
33 /90 = t'
where

m' ={1,1,0,1,0,0]
(cr')T = [ Ox, Oy, 2Txy, Oz, 2Ty 2%y, ]

T
§° =[5y, Sy, 2Txy, Sz, 2Ty 2Ty |
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Thus

t =] (SySz "‘Zyz+12 [3), (825¢ - Tex +32/3), 2(txzTyzs - S2Txy )»

( SxSy, - szz + Jz / 3 ), 2( tyxtz_x, - Sx'l'.'}z ), 2( Txytzy, - Sy-:x_z) ]

r=@25)"

0=sin™ (-3V313/(21,7%)/3, -n/6s6sn/6

Z=1,/V3 (4.27)
8r/d0'=(ar/ala ) (31, /80 =s" /1

39_._ vicl 1 3J3_tan38'3]2___ -Y6 tT+-tar13ﬂsT

90" 20539 1,3290"° 2]z 30" 355539 r2

9Z /30" = (9Z /a1y ) (3l /éc) =m" /V3

a' =9F/dd = (9F /9Z)(3Z / 30") + (9F / ar)(dr / a0') + (3F / 30)(96 / 30"

=cyym +cps 4ot (4.37)
For bounding surface
F=r-n(e®g®Z=0 (4.29)
ciy=-1/(V3Z)
¢z =(1+tan 36 (g'(9) /g(®) )/t (4.38)

c3 = V6 g(8) / (g(6 ) r°cos 38)
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bT= 3G /30" = (3G / 9Z)GZ / 80") + (3G / ar)(ar / 30") + (3G / 30Y(98 / 30

=Cy4 m! + C1s st + Ci6 tr (4.39)
For plastic potential
G=r+Mgg®ZIn(Z/Zp) =0 (4.34)

Cu=-(r/Z- M,g(0))/V3

C15 =C2 (4.40)

€16 =Ci13

laf= (T a)” n=a/|a|

|b] =" b)? ng=b/|b]

vizcam’

d" = dev (3G /90) =dev b =cy5 5" +ciqt” ld | =(a"ay”
Hi=@/A)Xne/m-1)|d][a]|b] (4.35)

It is worth mentioning that
(1) Z = 0 means that the effective stress becomes zero, i.e. the soil sample liquefies.
C11 and ¢4 in (4.38) and (4.40) would also become singular. The model could drive the

material to reach this state under certain conditions but cannot proceed further.
(2) Z = 0 but r = 0, i.e. isotropic compression state. © is undetermined and

singularity would be encountered in calculating ¢7 and c;3. This may be avoided by sctting

a small value of r when it approaches zero.
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(3) When 8 = zxt /6, an indeterminate form 0/0 is involved in ¢;» and ¢y3. This

problem is solved by L'Hopital's rule with the value of g"(0) in (4.33)

8® _ g'® _ ®R:-1
cos 30 -3sin30 (2-R)?
8—-/6 8—»-n1/6
g'® _ . g'®) __ _2(R*-1)
cos 39 -3sin30  (3R?(2R-1))
0—x/6 8—n/6
for 8 = -x1/6, 2 =ci5 =(1+R*1)/2-R)?)/r
e =¢i6 =-V6 (R*- 1)/ (2 - R)*r?) (4.31)
for 6 = x/6, cp=cis=(1-2R*>1)/BRER-1))/r
e =Cis=-2V6 R*-1)/BR (2R - 1) 1°) (4.32)

4.5.2 Stress controlled undrained path

For incompressible fluid and solid phases, the undrained condition would imply the
internal constraint dey = 0, which by means of equations (4.2), (4.3), (4.5) and (4.6)

yields

+_;L_6G dF 20

degy = e’y + dePy = Coyq;do’; ——daol; =
kk kkij ij Kp ao'kk ao'ij ij (4‘33)

where KP= Hl[u | a | | b |.
The undrained effective stress path has to satisfy this differential equation. Thus the

effective stress is no longer independently controlled . The constitutive relation should be
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expressed in terms of the total strain and stress increments
do'y =dsy + do'mmd;;/3 (4.44)
de’y = Cllg; o'y = Clieij dsij + Cliii d0'mm / 3 =d0'mm / (3K)  (4.45)
where K is the elastic bulk modulus
Cuai=1/K and  Cug;dsj=0 (4.46)
On the other hand, undrained conditions demand that
de®y = -~ deP = - AMOG / 80'yy) (4.47)
Therefore, it is given by (4.45) and (4.47)
do'yk = -3 KdA (G / 00') (4.48)
and
dp = (dokk - A0y / 3 = doyk /3 + K MG / 90"k ) (4.49)
Substituting this value of dp into the expression of d), results in the expression:
dA = (8F / 90'j)( doy; - dpdy) / K
= (9F / 80%) (doyj - doi 85/ 3 - Kd;; dA (9G / 80') ) / K
which can be solved to obtain dA using equation (4.46)
(Kp + K)(0F/d0'mm)(9G / 80'k) dh = (8F / 30'5) dayj - (9F / 80"y, ) doy / 3

= (aF / BOTij) dC‘ij - K(aF/ ao'nn) Cc'mm;j (613 dOk_k/3 + dSij)

OF

ao.J K(

)C mmij

)(aG)

60 nn

dF
K, + K( o

dA =

dO’i j

(4.50)
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Actually ds;; can be used instead of doj ,

doj; = dsy + dog 6jj /3 (4.51)

Substituting (4.51) into (4.50) and using (4.46)

oF
- 00 )
= L K )(aG)dS‘J
Kot KGoom ) (o (4.52)

For a given total stress increment doij, it is easy to calculate ds;; and dogy from

(4.51). Then d is determined by (4.52). Afterwards, do'y, dp, do';j and d&Py could be

oblained from (4.48), (4.49), (4.44) and (4.47).

4.5.3 Strain controlled path

The strain controlled path requires the determination of effective stress increment
for a given strain increment and the initial state. In any numerical scheme employed for the
analysis of elastoplastic problems it eventually becomes necessary to integrate the
constitutive equations governing material behavior. The state variables are computed for a
given deformation history in the displacement type finite element method. The precision of
intcgration in the local level of the constitutive equation has a direct impact on the overall
accuracy of the analysis.

The importance of the integration algorithm for the strain controlled path has
motivated a number of studies, such as Hughes (1984), Ortiz and Popov (1985), Simo
and Taylor (1985, 1986), Owen, Marques and Cesae (1986), Crisfield (1987).

A wide range of elastoplastic materials can be characterized by means of a set of

constitutive relations of the general form
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eE=€g" +¢& (4.533)

o'=D° ¢ (4.53b)
deP =dA b(o,q) b = 3G / d0' (4.53¢)
dg=dih(c,q) , dAz 0 (4.53d)

where q signifies some suitable set of internal variables. Equation (4.53d) is the

hardening law which governs the evolution of plastic internal variables. dA is a plastic

parameter to be determined analytically by means of the differential plastic consistency

condition
dF = (9F / 80") do' + (8F /dq) dq =a' do' + ¢’ dq =0 (4.54)
Here F(o',q) signifies the bounding / yield function,
a’ =oF/do , <" =9F/dq

However, the basic problem now is to update the state variables (0',q) in a numerical way.

That is, assuming that

O'n, €n, & qn are known with F,= 0,
and
Enst or deg = €n41 - &p is given
determine
O'ny1 O do'= o'y -0’y
el O deP = €Pp,q - €F) (4.55)

Qns1 OT dq = gn+1 - qp
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in a manner consistent with the elastoplastic constitutive equations (4.53) subjected to the

constraint

Fryps 0 (4.56)

Many different schemes have been proposed for integrating the elastoplastic
constitutive equations. Ortiz and Popov (1985) have shown that most of these methods can
be considered as particular cases of the generalized trapezoidal rule or alternatively, the
midpoint rule.

Generalized trapezoidal rule.

O'ne1 = D° (o1 - €7041) (4.57a)
ePns1 = eP + dA[(1 - @) b, + a by ] (4.57b)
Qns1 = Qo+ dA[(1 - o) hy + @ By ] (4.57c)
Fnet (0'n415Gn+1) =0 (4.57d)

with
b, = b(c'y, q, ) ’ bay1 = B(0'n41, Qns1)

hy = h(d's, qn ) ; hy.y =h(0'ns1, gne1 ) (4.58)

Here dA may be regarded as an incremental plastic parameter to be determined with the aid

of (4.57d), which may be called the incremental plastic consistency condition. The

algorithmic parameter o ranges from 0 to 1.

A revealing geometric interpretation of algorithm (4.57) can be given by

substituting (4.57b) in to (4.57a) and using (4.53)
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O'net = D° { €q41-€n+ £q- € - AA[(1 - )by + A by ]}

=0y + D (£n41-€0) -dA D[(1 - @) by + @ by ]
which one may write as

O'nst = 0%q41 ~dA D [(1 - )by + &t by ] (4.59)
where

O*n41 = 0"y + D°(Ens1 - €, ) = Oy + do* (4.60)
or equivalently as

do' =do* -dA D° [(1 - a)by + c byey | (4.61)

The update process splits into an elastic predictor of trial state and a plastic corrector

of return mapping that restores incremental plastic consistency. It is graphically shown in

Figure 4.9, which illustrates how stresses are updated in two steps. The first one takes o',

into an elastic predictor o*,,; by do*, obtained from the elastic stress-strain relation. The
P n+l OY

elastic predictor is subsequently mapped onto a suitably updated yield surface. Such return
mapping can be in turn divided into two substeps. First, the stresses arc projected along

the initiai plastic flow direction by,. The stresses so obtained are then projected onto the

yield surface along the final plastic flow direction by,;. The definition of the return

mapping with the adjustable parameter o determines the relative weight given o the initial

and final plastic flow directions by, and by, respectively. For a > 0, the algorithm is

implicit which requires a s¢” of nonlinear algebraic equations (4.57) and (4.58) to be solved

for the unknown O'441, €Pn41, qp+1 and dA. Hence iterations are usually involved at a
1 q b

sample point level. For a = 1/2, the algorithm coincides with the mean-normal procedure
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proposed by Rice and Tracy (1971). For a = 1, the closest point projection algorithm

(Simo and Taylor, 1986) is obtained. This integrated the plastic corrector by an implicit
backward-Euler difference scheme and solved the consistency equation (4.57d) by a

Newton type of iteralive procedure.

O*n+l

- (1-o) dhbn
bn+1

- dA bo+l

Fa=0 Fn+1=0

Figure 4.9 Geometric interpretation of the generalized trapezoidal rule.

For o = 0, the algorithm is an explicit integration or forward-Euler difference

scheme. The main advantages of the forward-Euler scheme are its relative simplicity and
the avoidance of equation solving and iterations, involving only function evaluations. The
simple forward-Euler scheme has probably remained the most popular despite certain
disadvantages. For effective use, it must be coupled with a sub-incremental scheme as
shown in Figure 4.10. Even if sub-increments are used, some form of "artificial return to

the yield surface" may also be required. In this study, an artificial deviatoric radial return
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combined with the sub-increment forward-Euler scheme is adopted in the numerical

implementation of the constitutive model.

O*n+l

Figure 4.10 Forward - Euler scheme with sub-increment and artificial return.

4.6 MODEL TEST RESULTS

The proposed simple constitutive model for sands in the general effective stress
space was implemented into a computer program MDTEST. The program can be utilized 1o
simulate three types of loading processes: stress controlled drained path, stress controlled
undrained path and strain controlled path.

A number of numerical model tests has been done to simulate the loose and dense
sand behavior under monotonic and cyclic, drained and undrained conditions. The values
of material parameters used in these tests are listed in Table 1.

Figure 4.11 (a) and Figure 4.12 (a) present the results of cyclic drained tests

73



(Tatsuoka and Ishihara, 1574; Habib and Luong, 1978). The plastic volumetric strain
develops throughout the test, causing the soil to contract. This densification plays an
important role in sand behavior. A remarkable fact is that volumetric plastic strain
developed during unloading is always of a contractive nature. Another feature is that
volumetric compression is occurring at a progressively decreasing rate as the sand densifies.
The model predicted behavior as shown in Figure 4.11 (b), and in Figure 4.12 (b}
reproduces the cyclic load-densification phenomena fairly well.

Figure 4.13 shows the influence of relative density on undrained behavior. The
numerical simulations agree well with the triaxial compression tests performed by Castro
(1969). The strength of loose sand after reaching a peak, drops continuously to almost zero
and complete liquefaction is achieved. For dense sand, negative pore pressure occurs
while mean effective: stress increases after passing the phase transformation line.

Figure 4.14 presents the results of a two-way stress controlled (constant stress
amplitude) cyclic undrained test (Ishihara et al., 1975). During the test, the pore pressure
progressively builds up causing the effective stress paths to migrate towards the origin.
Initially, the pore pressures are generated successively in both compression and extension
domains. After a number of cycles, a phenomenon called cyclic mobility occurs in which,
during the loading phase, negative pore pressure develops (due to dilatancy of the material)
followed by a subsequent build-up during unloading phase. In the present case cyclic

~mobility does not prevent the sample from attaining complete liquefaction. The numerical
simulation indicates fairly close agreement with experimental data.

Figure 4.15 and 4.16 show the effects of large preshearing on cyclic behavior (tests
conducted by Ishihara and Okada, 1982). In Figure 4.15, the sample was subjected to the
same de. -toric stress on the triaxial compression and extension sides, respectively.
During subsequent reloading the pore water pressure buiids up to values as high as 97

percent of the initial confining pressure. In Figure 4.16, the sample was subjected to a
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large preshear toward the triaxial compression side. Upon unloading a pore water pressure
of almost 85 percent of the initial confining stress was produced. A further small amplitude
cycle was needed to bring the specimen to the state of complete liquefaction. The numerical
results from both Figures 4.15 and 4.16 are quite encouraging and indicate the same trends
as those observed experimentally.

Figure 4.17 shows the results of a strain controlled undrained test (Ishihara et al.
1975) in which a constant strain amplitude varying between 0.05 and 0.71 percent was
applied. Progressive reduction in stress amplitude accompanies the generation of pore
pressure. After a number of cycles the sample liquifies. Numerical prediction seem
satisfactory though fewer cycles are required to produce liquefaction.

As emphasized before, the main features of the model developed in this chapter are
its relative simplicity and capability of simulating several fundamental aspects of sand
behavior. It has been implemented into computer programs PCPSTAD and PCPTRAV for
standing wave and travelling wave induced response analyses of seafloor deposits which

are described in Chapter 8.
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volumetric strain £ ()

e=0.722

volumetric strain £ (%)

p'=2.0 kg/cm?

=il -5 [ 5 w ' T3
extension compression
stress ratio q/p'

Figure 4.11 (a) Drained test on Fuji river sand (after Tatsuoka and Ishihara 1974)

9

°r S

T = \;\"/ = 0722
e /1

%35 -2.0 -1.0 c.c 1.0 2.0 3.0
stress ratio q/p’

Figure 4.11(b) Cyclic drained triaxial test (o, = 200 kPa)
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shear stress q (kPa)

na132 —
Y
+ 0.2
;
0 . , ; /
o 1) 10 + {20
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%12-083 /

+ =02

Figure 4.12 (a) Cyclic triaxial drained test on medium dense

Fontainebleau sand (after Habib.and Luong, 1978).

Initial D, = 62%, confining pressure o, =200 kPa .

a0 -
200 -
| ~ \é\bi
.3 5.5 7.0 1.5 Z.0 Z.5 3

volumnetric strain € (%)

Figure 4.12 (b) Cyclic triaxial drained test (o =200 kPa)
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Figure 4.13 (a) Influence of relative density on undrained
behavior of Banding sand (after Castro,1969)
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Figure 4.15 (a) Two way stress reversal test results (after Ishihara, 1982)

(b) Two way stress reversal undrained test (o, = 100 kPa)
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Figure 4.16 (a) Two way stress reversal test result (after Ishihara, 1982)

(b) Two way stress reversal undrained test (o, =100 kPa)
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Figure 4.17 (2) Strain controlled undrained test results (after Ishihara, 1975)

(b) Strain controlied cyclic undrained test
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Table 4.1 Material Parameters for Numerical Model Tests

TYPE D 9)8] UD [8)3] UD UD
C C M C C C C
FIG. NO. 11 12 13 14 15 16 17
€, 0.722 C.737| 0.780; 0.807| 0.745
Dr 0.82 | 0.27 | 0.47 | 0.84
Kz 20000 (20000 { 2000 | 2000 | 200G ; 2000 | 2000 | 2000 | 2000
K 0.002 (0.002 { 0.025| 0.025| 0.025! 0.025| 0.025; 0.025| 0.025
v 0.3 0.3 1 0.25 | n.285 | 0.28 | €.15 § 0.15 | 0.18 | 0.18
n, 0.004 (0.004 | Q.004| 0.004| 0.004| 0.004; 0.00G4) 0.004| 0.004
¢r 40 40 27 32 36.5( 40.3}) 38.0| 38.6 40
¢cr 32 3t 27 28 29 36.8| 38.8( 36.8| 36.5
A £.030 [0.013 {0.0074|C.0070/0.0050}0.008 |0.G082|0,0035|0.00862
B ¢c.025 |0.01
T 3.0 3.5 7.0 5.0 5.0 5.0
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FINITE ELEMENT METHOD

FOR NONLINEAR CONSOLIDATION

5.1 INTRODUCTION

One of the most popular numerical techniques which engineers and scientists
everywhere are using is the finite element method. With the help of high-speed digital
computers, the finite element method has greatly enlarged the range of engineering
problems amenable to numerical analysis.

The method of finite elements originated in the aircraft industry as an effective
means for analyzing complex uirframe structures. It began as an extension of matrix
methods of structural analysis, but now it is recognized as a powerful and versatile tool
which permits a computer solution for previously intractable problems.

An appealing feature of the finite element method is that it is not restricied to solid
mechanics. Actually, it is applicable to almost all continua and field problems. Hence it is

not surprising that the method is receiving much attention today in engineering, physics,

and mathematics.
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The solution of a continuum problem by the finite element method aiways follows

an orderly step-by-step process. To summarize in general terms how the finite element

method works these steps will be briefly listed in the following:

1. Discretize the continuum. The first step is to divide the continuum or solution
region into elements. A variety of element shapes may be used. Although the number
and the type of elements to be used in a given problem are matters of engineering judgment,

the analyst can rely on the experience of others for guic zlines.

2. Select interpolation functions. The next si=p is to assign nodes to each element
and then choose the type of interpolation functicn to represent the variation of the field
variable over the element. The field variable may be a scalar, a vector, or a higher-order
tensor. Often, although not always, polynomials are selected as interpolation functions for
the field variable because they are easy to integrate and differentiate. The degree of the
polynomial chosen depends on the number of nodes assigned the element, the nature and
number of unknowns at each node, and certain continuity requirements imposed at the
nodes and along the element boundaries. The magnitude of the field variable as well as the

magnitude of its derivatives may be the unknowns at the nodes.

3. Find the element properties. Once the finite element model has ben established
(that is, once the elements and their interpolation functions have been selected), one is
ready to determine the matrix equations expressing the properties of the individual elements.
For this task one may use one of four approaches: the direct stiffness method, the
variational principle method, the weighted residual method, or the energy balance method.

The variational approach is often the most convenient and the weighted residual approach is
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now in fashion, but for any application the approach used depends entirely on the nature of

the problem.

4. Assemble the element properties to obtain the system equations. To find the
properties of the overall system modeled by the netwerk of elements, all the element
properties must be assembled. In other words, one must combine the matrix equations
expressing the behavior of the elements and form the matrix equations expressing the
behavior of the entire solution region or system. The matrix equations for the system have
the same form as the equations for an individual element except that they contain many
more terms because they include all nodes.

The basis for the assembly procedure stems from the fact that at a node, where
elements are interconnected, the value of the field variable is the same for each element
sharing that node. Assembly of the element equations is a routine matter in finite element

analysis and is usually done by digital computer.

5. Solve the system equations. The assembly process of the preceding step gives a
set of simultaneous equations that we can solve to obtain the unknown nodal values of the
field variable. If the equations are linear, a number of standard solution techniques can be
used; if the equations are nonlinear, their solution is more diffic:1t to obtain. Several

alternative schemes for solving nonlinear problems are available.

To close this section it must be pointed out that the application of the finite element
method can be divided into three categories, depending on the nature of the problem to be
solved. The first category includes all the problems known as equilibrium problems or

time-independent problems. The majority of applications of the finite elemeni method fall

into this category.
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The second category is composed of the so-called eigenvalue problems in solid and
fluid mechanics. These are steady-state problems whose solution often requires the
determination of natural frequencies and modes of vibration of solids and fluids. Examples
of eigenvalue problems involving both solid and fluid mechanics appear in civil engineering
when the interaction of lakes and dams is considered, and aerospace engineering when the
sloshing of liquid fuels in flexible tanks is involved. Another class of eigenvalue problems
includes the stability of structures and the stability of laminar flows.

The third category includes the multitude of time-dependent or propagation
problems of continuum mechanics. This category is composed of the problems in which
the time dimension is added to the problems of the first two categories. The nonlinear
consolidation with which this study is concerned falls into this third category.

In the following sections the above steps are taken in sequence as it pertains to the

present study.,

5.2 FINITE ELEMENT SPATIAL DISCRETIZATION

It is possible to identify four approaches (the direct stiffness method, the variational
principle method, the weighted residual method and the energy balance method) for
deriving finite element equations. Clearly it is largely a matter of taste how one sets up the
finite elemer: equations. The weighted resiciual method, is now in fashion and the energy
balance method such as the principle of virtual work can be flexibly used to treat both linear
and nonlinear problems and its physical meaning is easier to understand. These two
methods are used to derive finite element equations for the nonlinear consolidation

problems.
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The system of governing differential equations in matrix form is given as follows

(see Equation (2.31).)

Effective stress do =do'+ mdp (5.1a)
Strain - displacement de =L du (5.1b)
Constitutive equation do'=D, de (5.1c)
Equilibrium equation LTdo+pdb=0 (5.1d)

Continuity equation VT ((k/yw)(Vp-pwb))+mT& =pn/K, (5.1¢)
where the subscript w indicates that the pore is filled by water.
If b =g i.e. only the gravity force pyg is considered as the body force. The

excess pore water pressure can be used instead of the pore water pressure. The wiole
equation (5.1) will remain the same except (5.1€) which is transformed to
VT ((k/yw)Vp)+mle =pn/Ky (5.1¢)
where p stands for the excess pore pressure.
Together with the appropriate initial conditions
U= Uy at t=0
P=Po at t=0

and boundary conditions

du =durp on Iy
dtT = nTdo on Iy (5.2)
dp =dpr on I'p
h=hp=-aT [ (k/fw)Vp] on T

88



where n is the outward unit normal vector on the boundary surfaces, equations (5.1)

specify the problem completely.

5.2.1 The Principle of Virtual Work and Virtual Power
Following standard finite element discretization procedures, the displacement u and
pore water pressure p are described in terms of noda! parameters g and p respectively,
u=N;yL (5.3)
p=Nzp (5-4)
where N; and N3 are suitabie shape functions.
For overall equilibrium, instead of starting from the differential equation (5.1d) one

may directly use the incremental form of the principle of virtual work which states

J 0T dodQ - [ duTpdbdQ - | buT dtdl'=0 (5.5)
o

in which the incremental displacement, strain, effective stress, pore pressure, gradient of
excess pore pressure and total stress could be expressed by the shape functions and

increments of the nodal parameters in (5.3) and (5.4)

du=N1dg

de=L N du =Bdu, B=LN1

do'=D (Bdr)

dp=N,dp

Vp=(VN)p

do=do'+mdp=DBdy+m deg (5.6)
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The virtual displacement, strain and excess pore water pressure are also expressed in terms
of the shape functions and nodal virtual displacement and virtual excess pore water

pressure

1‘5u=N1 du

6e =B du (5.7
Substituting (5.6) and (5.7) into (5.5)

Jo(B 6u)T( D Bdu+mN,dp)dQ-f (N, 8u)Tp dbdQ - f(N; Sy )T dt dT' = 0

duT [ O'QBTDI BdQ)du + ( [aBT m N2dQ )dp - (JoN,Tdb dQ + - N1 TdtdI)] = 0

Since the nodal virtual displacements are arbitrary, the above equation could be

converted to

Kdu+Qdp=df (5.8)
where
K =J’QBTD;BdQ , B =LN;
Q =fQBT m Nz dg (5.9)

dfy = foNyT pdb dS + f-oN; T dtdl

in which K is the usual form of the tangent stiffness matrix encountered in the uncoupled

solid problem (D, is elastoplastic tangential modulus of the solid phase). B is the standard
strain matrix. Q is the coupling term and df1 is the change in the external force due to

boundary and body forces.
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In the following it is shown that performing the same kind of ope:ation on the
continuity equation yields another 'virtual principle’. The first step is to multiply the
differential continuity equation (5.1e)' by virtual pore pressure.

It is noted that the filter velocity obeys Darcy's law (2.30)

w=-(k/y)Vp (2.30)

in which p is the excess pore pressure. Thus the continuity equation (5.1e) is replaced by

fnbp{Vl"(-v'v)-a-mTe -pn/K }Q=0

Then integrating by parts for the first term, yields

Sl VT (8 p)] wdQ - fr(bp)nT\ide' +Jo (Sp)mT £dQ2 - fo (dp)pn/K,, dQ2 =0

(5.10)
which could be regarded as ' the principle of virtual power '. This forms the starting point
for deriving the {inite element equation corresponding to the continuity. In the same way,

one can write

Vp=(VN:)p (5.11)
p=N2p
€ =Ba

W = -(k/yw)VN>op
and

Op = N2 6p = (Op)TN,T (5.12)

VI(8p) = [V(N2 8p]T = (8p)T(VN; )T
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Substituting (5.11) and (5.12) into (5.10)

Op)T {- [Ja(VN2)T(k /% )VN2dQ 1 p + [ [rN2TnT (k /vy )Vp dI']

+ [ JaN2TmT BdQ]g - [faN2T (n/ Ko)N2dQ] p } =0
Since the nodal virtual excess pore water pressures are arbitrary, the above equation
is converted to
Qi+ Sp+Fp =1 (5.13)
where

H = - Jo(VN2 )T(k /vy )VN; dQ

S = - foNa T (n / Ky)N2dQ

QT = [oN>TmTBdQ

-~
th
—
S

p—

£ = - [iN2T 0T (k /v,y )Vp dT
and H and § are the conductivity and capacity matriccs corresponding to an uncoupled

secpage problem. f3 indicates the outflow rate across I'y, and n is the outward unit normal

vector of Ty, .

5.2.2 The weighted residuzl method

The weighted residual methods obtain approximate solutions to systems of
differential equations by arranging for the error in the solution to be distributed in some
manner throughout the continuum. In fact, it is done by setting the integral of the weighted
residue of the differential equation over the domain of the element to be equal to zero. The
use of different weight functions will produce different results. The Galerkin-type

discretization procedure actually is one kind of weighted residual method with the shape
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function being its weight. For the equilibrium equation, Galerkin method will yield
z:zzactly the same finite element equation as that derived from the principle of virtual work.
The essential boundary conditions (the prescribed displacement boundary) are not
considered at the element level; instead they are included in the assembly process.
However, the natural boundary conditicns (the prescribed force boundary) emerge
automatically in the formulation of the element equation.

The integral of the equilibrium equation (5.1d) multiplied by the interpolation

function N;T over the element domain is set to zero
JaN1T(LTdo + pdb)dQ2 = 0

Integration by parts for the first term yields

- fo (LN])Tdo dQ + [ (nN;)Tdo dT" + foN{T pdb d2 = 0

Substituting (5.6) into above equation results in

- (fa(BT D, BdQ)du - (BT mN2dQ)dp + [N, T nTdodTl + foN;T pdbd§ = 0

which is the same as (5.8) and (5.9) derived from the principle of virtual work.

Kdu + Qdp=df; (5.8)
where

K = [oBTD,BdQ , B=LN;

Q =[BT m N,dQ (5.9)

dfl =J'QN1TP db dQ2 +f1-°.N1Tdtdr
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The integral of the continuity equation (5.1e) muliiplied by the interpolation

function N,T over the element domain is set to zero
JaN2T [VI( (K /v4)Vp) + mTE - pn /K] dQ =0
Integration by parts for the first term gives
- [o(VN)T (kiyw)VpdQ + J(nN2)T (k /4w )VpdT + [oNoTmT € dQ - [N:Tpn/K,dQ =0
Substituting (5.11) into above equation results in
- (Ja(VN2)T (k Aw)VN2dQ)p + [rN,T nT (k /yw)Vpdl +(foN2TmT B dQ)u

- (IQNZT (D / Kw)deQ)h =0

which is exactly the same as (5.13), (5.14) derived from the principle of virtual power.
QTi + Sp +Hp = f; (5.13)

where
H = - Jq(VN2 )T(k /vy )VN2 dQ
S = - JoNoT(n/ Ky)N2dQ
QT = [oNoTmT BdQ (5.14)

fo = - f[N,TnT (K / y5, )Vp dT

The coupled finite element equations (5.8) and (5.13) for the nonlinear, transient

consolidation problems could be expressed in a compact form which appears to be

symmetric provided K is symmetric.

AR

(5.15)
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53 SOLUTION SCHEME FOR COUPLED SYSTEMS

It is convenient to introduce a classification of coupled problems into two distinct
categories (Zienkiewicz, 1984), each amenat!e in general to similar treatment.

Class 1. This contains problems in which the various domains overlap (totally or
partially). Here the coupling occurs via the differential equations normally referring to
different physical phenomena.

Class 1I. This contains problems in which coupling occurs only on domain
interfaces and clearly this coupling will occur only through the boundary conditions
imposed.

In many physical problems coupling may occur only in time-dependent (transient)
forms and disappear when steady state conditions are reached, for example, a fully drained
problem is uncoupled while pore water flows in steady staie.

The transient consolidation problem falls into the category of Class I, which_
requires an integrated treatment of coupled soil skeleton displacement field and pore
pressure field. The finite element spatial discretization of the system of coupled partial
differential equations results the first-order system of temporal ordinary differential
equations (5.15). The numericai solution of the coupled system of the form (5.15) can be
carried out by three different approaches: field elimination, partitioned solution and

simultaneous solution procedure.

5.3.1 Field elimination procedure

In the field elimination procedure, either the pore pressure or the soil displacement
is eliminated from the coupled equations. The resulting equations may become a system of
second-order ordinary differential equation.

For example, if the pore pressure is eliminated the resulting reduced equations in

general become
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Goil + G + Gau =r (K,Q.S,H,i) (5.16)
where Gy, G, and G are complicated matrices, and r consists of contributions of both

external forces and fluid flow boundary conditions. This may be integrated by a suitable
direct time integration method. If necessary, the reduced pore pressure can be obtained by
back-substituting the displacement into the original differential equation.

Equation (5.16) leads to the consequence that the elimination scheme raises the
order of the differential equations. Moreover, the sparseness of the stiffness matrix is in

general lost. This can impose a major computational burden in the solution process.

5.3.2 Partitioned solution procedure (staggered method)

In the partitioned (or the staggered) solution procedure the solution of each field is
obtained by adopting paraliel, sequential, or hybrid execution of each field analysis moduie.
The integration terms are treated as external forcing quantities, which have to be
extrapolated judiciously in order to satisfy both stability and accuracy requirements for a
given problem (Park, 1980; Park and Felippa, 1980). Hence the sparseness of the original
system is preserved and many well established single field analysis programs can be
applied to the coupled field problems which are decoupled now by the staggered method.

In an attempt to analyze the wave induced susceptibility of a seabed deposit
Poorooshasb, Ishihara and Yang (1987) proposed a staggered procedure combining
physical assumption with the numerical analysis to solve the coupled field problem. A
distinct feature of the procedure is the load-time curve replaced approximately by a number

of step functions as shown in Figure 5.1. This is reasonable if very small time steps arc

employed.
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Figure 5.1 Step function representation of the load-time curve.

Hence each time step t,, —> tp4; is subdivided into two parts. The load increment is

applied at the very beginning t, — t,+ . There is no time to drain. Thus, the continuity
equation (5.1e)' is reduced to
dp = (K, /n) mT de (2.32)
Substituting this into the equilibrium equation (5.1d) yields
LT{D;+mT (Ky /n)mjde+ pdb=0

which is identical to a single field system with a modified stiffness matrix K calculated

from a redefined total stress tangent modulus D,,

K du =diy (5.17)
where

K= [oBTD BdQ

D_:=D(+mT(Kw/n)m
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The pore pressure field could be evaluated in terms of equation (2.32)' after solving
equation (5.17) for the soil skeleton displacement field by a nonlinear finite element

program of stress analysis.
In the second part ty+ — th41, the load keeps constant. Assuming do = 0, it follows
from equations (5.1a) and (5.1c) that

do=do'+mldp=Dy de+ mTdp=0

ml:g = -m(D;)lmTp (5.18)

Substituting into equation (5.1e), the transient seepage equation turns out a diffusion

equation equivalent to a single fluid phase with a modified diffusion coefficient C.
Ap=V2p=Cap/at (5.19)

where
C=(n/Ky+m@D)1mT )y, /k (5.20)
in which the constant permeability k = k &;; is assumed.

It is simple to solve the diffusion type of equation (5.19) by a finite difference
program. The non-equilibrium nodal forces due to the pore pressure dissipation is added to
the load increment of the next time step for the first part of the total stress analysis.

The numerical results appeared to be satisfactory. As shown in Figure 5.2 and 5.3,
two graphs marked E2G1 and E8G3 represent the evolution of the pore pressure and the
effective stress at two points (Gauss point 1 of element 2 and Gauss point 3 of element 8)
respectively. It is seen that the pore pressure gradually developed, while the mean effective
stress and the vertical effective stress decrease as the number of wave cycles increases.
After about seven cycles the mean effective stress and the vertical effective stress appear to

be approaching zero. This indicates that a state of liquefaction is being developed.
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Figure 5.2 Vertical effective stress versus pore water pressure (kPa)

(after Poorooshasb, Ishihara and Yang, 1987)
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Figure 5.3 Vertical effective stress versus mean effective stress (kPa)

(after Poorooshasb, Ishihara and Yang, 1987)
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5.3.3 Simultaneous solution procedure (direct integration)
The simultaneous solution procedure may be carried out by direct time integration

of the coupled system of equations (5.15), or {5.9) and (5.13)

ENERERIREH

Since (5.9) is already in the incremental form, it is only necessary to integrate (5.13).

(5.15)

In order to discretize in time domain, the single-step integration (two point formula)

defined below is used

'L“ a(t)dt =[ 8 aps1 +(1-8) 3, ] At (5.21)

where a, and ap, are the values of the variable a(t) at times t; and ty4; respectively.

The time step is At = t;,1 - t, and 0 indicates the type of interpolation:
8 = 0, forward interpolation (fully explicit), 8 =1/2, linear interpolation (Crank-Nicolson),
and 6 = 1, backward interpolation (fully implicit).

Integrating equation (5.13) from t, to tpy

taal la+l tosl bael
f Q! adt +J Sgdt+f Hpdt=| fdt
1n e

by to

and using formulation (5.21)

QT (Wn+1 - Wn) + S (Rn+1 - Ra) + H(O poyy + (1-6) Ry ) A

= (8 Ty 041 + (1-6) f2,0) At (5.13)
Equation (5.9) could be written as

K1 -w) +Q (Bo+1 ~Pn) =F1 041 - f1p (5.9)
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Combining (5.9)' with (5.13), a recurrence relation is obtained

[ K Q Uner | _
QT S+0 AtH |{RBat
[ K Q J Un |, f1ne1-f1,0
QT S-(1-8)atH B | (6™ 0 +(1-6) F50 )AL (5.22)
An alternative form could be given as
K Q dui _
Q" S+oatH|(dR
{ 0 0 u, N dfy
0 -AtH JIB) ) @™, L+ (1-0)F At (5.22)'

In several investigations the condition of stability and accuracy of the consolidation

algorithm have been examined (Sandhu and Wilson, 1969; Sandhu, Liu and Singh, 1977,

Booker and Small, 1975 and 1977). It has shown th=: if 8 is chosen between 1/2 and 1 the

process is unconditionally stable and that for © < 1/2, the process is stable if

Ats1/(1/2-6) Sy (5.23)
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where Sy is the greatest eigenvalue. In this study @ = 1/2 was chosen, i.e. Crank-

Nicolson method which is unconditionally stable.

An accuracy condition of numerical solution of one-dimensional consolidation has

been given by Vermeer and Verruijt (1981) as a lower bound for the time step in terms of

the coefficient of consolidation C, and element size for a homogeneous mesh Ah is:

Atz ((Ah)2/8Cy)/6 (5.24)

The minimum time step criterion can be used for two-dimensional consolidation as an

approximate value and for choosing an adequate finite element mesh.

5.4 SOME RELATIVE TECHNIQUES
54.1 Composite element

Clearly it will be logistically desirable to use the same finite element domain for
each of the variables encountered but it is not necessary to use the same order of
approximation or the same number of nodes (Sandhu and Wilson, 1969). Indeed good
accuracy will usually be obtained by using an interpolation function for p which is one
order lower than that used for u. A composite element consisting of an eight-node
isoparametric quadrilateral is used for u combined with the four-corner node element to
compute p. Thus the displacement field u varies quadrilaterally over the element while the
variaiion of p, the excess pore water pressure, is only lines It must be noted, however,
that since the strain is the giadient of the displacement, the variation of the strain (and hence
the variation of the stress field) over the element is linear and therefore of the same nature

as the pore water pressure p.
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5.4.2 Fictitious freedom and element stiffness matrix

In equation (5.25), the unknowns are arranged with all the displacement increments
followed by the pore water pressure increments. This is convenient for derivation of the
expressions, but is not efficient due to its very large band width or frontal width, which
leads to great waste of core storage space. In practice all the unknowns associated with the
nodal points are arranged sequentially and the rows and columns of the stiffness matrix are
rearranged accordingly.

Since some nodes (corner nodes) have three degrees of freedom, two for u and one
for p, but the mid-side nodes have only two degrees of freedom (for u), an effective
bookkeeping must be developed to record the degrees of freedom for each node. In the
present study the following simple scheme which proved to be quite effective was adopted.

All nodes were assumed to have three degrees of freedom. For the mid-side nodes,
however, all the elements of the columns and rows associated with the third freedom are set
to zero, except the pivot point where a non-zero number is assignied, Thus, the pore water
pressure term is always evaluated as zero at these fictitious freedoms and make no
contribution to the system. The scheme is illustrated in Figure 5.4 for node No. 2 of the
element shown,

If the prescribed flow boundaries are impervious i.e. f3 = 0, the recurrence equation

(5.22) is reduced to

K Q

-
QT S+0 AtH |2

df;
- At Hp, (5.25)
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Figure 5.4 Rearranged element stiffness matrix.
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5.4.3 Non-symmetric frontal solver

The linear simultaneous stiffness equations are solved by using the frontal solution
method. In essence this is just Gaussian elimination , but programmed in such a way as to
minimize operation on zero terms and to use minimum computer memory for the stiffness
matrix.

The frontal technique (Irons, 1970) starts from the observation that in Gaussian
climination one can start eliminating variables before the global matrix is fully assembled.
The main feature of the frontal solution technique is that it assembles the eqguations and
eliminates the variables at the same time. The globe stiffness is never fully formed.

Since the non-associative flow rule is adopted in the material constitutive model,
the resulting stiffness matrix is non-symmetrical, and since Iron's frontal solver is only for
symmelric matrices, it is necessary to modify the procedure to account for the non-

symmetry. A non-symmetric frontal solver subroutine is developed in this study.

5.4.4 Incremental itera.tion algorithm for nonlinear analysis

In general, non-linearity of a system may be due to geometric non-linearity, material
non-linearity, or both. Cater (1977) and Cater et al. (1977) examined the importance of
non-linear geometric effects in geotechnical analysis. His general conclusion was that the
'lincar' assumption of small strains and small displacements is usually satisfactory in the
solution of geotechnical problems.

Thus, in most geotechnical analyses, non-linearity arising from material behavior is
of more importance than non-linearity from geometrical effects. The small-displacement,
small-strain approach is used in this study.

A non-linear finite element analysis is most effectively performed using an
incremental formulation by which the variables are updated incrementally corresponding to

successive time steps in order to trace out the complete solution path. An accurate solution
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can be expected if the time steps are made sufficiently small but such a solution may prove
to be prohibitively expensive. For efficiency, larger time steps are employed using iteration
processes tiat ensure a sufficiently accurate solution. In the present study the modified
Newton-Raphson iteration scheme is adopted. The tangent stiffness matrix is only updated

at the initiation or updated at the second iteration of each time step.

5.4.5 Equilibrium check

The effective stress and elastoplastic matrix D, are calculated at the Gaussian
integration points of each element. The reduced integration technique is used, i.e. the order
of 2 x 2 Gaussian numerical integration in evaluation of the composite ¢lement integration.

The program incorporates an equilibrium check to ensure that equilibrium is
satisfied at the end of each increment. In this equilibrium check the stress in the elements
currently in the mesh are integrated over the volume to calculate the equivalent nodal force
and these are then compared with the external loadings. The difference is then expressed as
a percentage of the applied load and called the error in the equilibrium or the out-of-balance
force. This form of equilibrium check is essential in any analysis using iterative methods.
A convergence tolerance of the non-equilibrium nodal force based on trial and error or

previous experiences is specified. After convergence the residue forces are added o the

load increment of the next time step.

5.4.6 Stop-restart facility

Non-linear finite element analysis tends to be a time-consuming business (for both
the computer and program user). Getting the appropriate size of the load increments
usually involves re-running the program several times and examining the computer output.
In order that the user does not have to continually rerun the analysis from the beginning

each time, a stop-restart facility is provided.
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WAVE-INDUCED PRESSURE AT THE SEA BOTTOM

6.1 INTRODUCTION

Waler waves propagating on the ocean may be considered to consist of an infinite
number of wave trains having a constant amplitude and wave length. Passage of such an
array of surface waves, creates harmonic pressure waves on the sea-floor increasing the
pressure under the crest and reducing it under the trough.

The height of waves in the ocean is generally very small as compared to the length
of the waves. The basic equation of water waves solved on this assumption leads to the

well-known theory of small amplitude wave (Horikawa, 1978).

6.2 LINEAR WAVE THEORY
6.2.1 Governing Equations

A Cartesian coordinate system (x,y,z) is defined with x measured in the direction of
wave propagation, z upward from the still water level and y orthogonal to x and z. It is
assumed that the waves are two-dimensional in the x-z plane, progressive in the positive x
direction and propagate over a smooth horizontal bed in water of constant undisturbed

depth d. It is further assumed that the wave maintains a permanent form, i.e. there is no
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underlying current and the free surface is uncontaminated. The fluid (water) is taken to be
incompressible and inviscid and the flow to be irrotational. Figure 6.1 indicates the general
form of a wave train conforming to these assumptions. Here the wave height H is the
vertical distance from trough to crest, the wave length L is the distance between successive
crests, the wave period T is the time interval between successive crests passing a particular

point and the wave speed or celerity ¢ is the speed of the wave travelling through the fluid

(¢ =L/T). Itis often convenient to work with the wave angular frequency ® =2x/T

and wave number N=2n/L (and thus c=w /N also).

Surface elevation shown at t=0

Figure 6.1 Definition sketch for a progressive wave.

Any particular wave train is generally specified by the quantities H, L and d or by

H, T and d. The objective of any wave theory is to determine ¢ (and therefore T or L as
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appropriate) and a description of the water particle motions throughout the flow.
Dimensionless parameters are frequently used to characterize a wave train, The wave height
is often expressed in terms of H/gT2, the wave steepness H/L or the relative height H/d.
And the water depth is often expressed in terms of the depth parameter d/gT2 or Nd or the
relative depth d/L. For steeper waves in shallow water the Ursell number U = HL2/d3 is
often used. Thus a design wave specified by H,T and d may conveniently be

characterized, for example, by the parameters H/gT2 and d/gTz.

It is required to determine the velocity potential ¢ pertaining to the fluid region.

This satisfies the Laplace equation

ox2 0z2 6.1)

subjected to the boundary conditions

6_¢-=0 atz =-d
72 (6.2)

a9 3 .
ERET N (6.3)

% 1|[oe) [ae)], _ )
a0 + E[(E) + (B_z)] +gn =1{(t) atz=m 6.4)
¢(x,zt)=¢(x-ct,z) (6.5)

where 1(x,t) is the free surface elevation measured above the still water level z=0.

The existence of the velocity potential ¢ and the validity of the Laplace equation

follow from the assumptions of an irrotational flow and an incompressible fluid. Equation
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(6.2) corresponds to the boundary condition at the seabed which imposes a zero vertical
component on the fluid particle velocity at the seabed. Equations (6.3) and (6.4) represent
the kinematic and dynamic free surface boundary conditions respectively. The former
describes the condition that the fluid particle velocity normal to the free surface is equal to
the velocity of the free surface itself in that direction, while the dynamic condition
expressed in terms of the Bernoulli equation states that the pressure at the {ree surface is
constant. This later requirement follows from the assumptions that the atmospheric
pressure (immediately above the fluid) is constant and the free surface is uncontaminated
(corresponding to a zero surface tension ). Equation (6.5) describes the periodic nature of
the wave train. In the absence of an underlying current the waves are progressive with a
celerity c and are of permanent form: the dependence of variables of interest upon x and

may consequently be written in terms of dependence upon a single variable (x - ¢t )

6.2.2 Linear Wave Theory
Two serious difficulties arise in the attempt to obtain an exact solution for a two-

dimensional wave train. The first is that the free-surface boundary conditions are nonlinear

and the second is that these conditions are prescribed at the free surface z=7 which is

initially unknown. The simplest and most fundamental approach is to seek a linear solution
of the problem by taking the wave height H to be very much smaller than both the wave
length L and the still water depth d, i.e. H << L, d. The wave theory which results from
this additional assumption is referred to alternatively as small amplitude wave theory, linear
wave theory, sinusoidal wave theory or Airy theory. The nonlinear terms in equations
(6.3) and (6.4) are negligible in comparison with the remaining linear term. Furthermore,

the free surface boundary conditions may now be applied directly at the still water level

z=0.
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Equations (6.3) and (6.4) reduce to

% o, = atz=0

dz ot (6.6)
itl_l_ +gn=0 atz=0

ot (6.7)

which may be combined to give

2
g% + ga—fPL =0 atz=0

atz 0z (6.8)

d
n=-12
Blat Lo (6.9)

Due to the periodic condition given by equation (6.5), the solution may be obtained by

separation of variables in which ¢ is written in the form
$=Z @) Px-ct) (6.10)
Substituting this expression for ¢ into the Laplace equation(6.1) and imposing upon
the boundary conditions (6.2) and (6.9), the velocity potential is obtained

_ gH cosh [N(z +d)] _.
¢ = NG cosh (Nd) sin [N(x- ct)]

(6.11)

in which time is defined to be zero when a wave crest crosses the plane, x = 0.

The remaining boundary condition (6.8) could be used to obtain the linear

dispersion relation.

w? = gN tanh (Nd) (6.12)

c2 = (/N ) tanh (Nd) (6.13)

111



Therefore, the velocity potential may be written alternatively in forms

gH cosh [N(z + d)] i

b= oy Y
_ni cosh [N(z + d)] .
“NT sm g 8 (6.14)

where 0 = N(x-ct) = Nx-wt is the wave phase angle.
The velocity of water particles is given by the velocity potential ¢,

v=V¢ (6.15)

The pressure p is governed by the unsteady Bernoulli equation for irrotational

motion

a—¢+-1-—v2+gz+—E—=f(t)
Pw

3t 2 (6.16)

Frequently, f(t) is absorbed into ¢ since this does not affect the physical quantities of

interest. In accordance with the present linear approximation, the nonlinear velocity

squared term could be omitted to yield

P=-pwBZ-pw /0t ( 6.16)'
Therefore,
_. H cosh{N(z+d)]
P=-PugZ*Pu8 ) — Ny P (6.17)

In the above the first term is hydrostatic pressure and the second term is the hydrodynamic

pressure.
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6.3 WAVE-INDUCED PRESSURE AT THE SEA BOTTOM

Al sea bottom, z = - d, the water pressure could be directly obtained from (6.17)

P=pugd+pug coshl(Nd) cos § (6.18)

The amplitude of pressure exerted on the sea bottom due to the travelling wave is given by

_ H_ 1 _
Po= PwE % Cosh(Nd) (6.19)

This is obtained by using linear wave theory and assuming the seafloor to be rigid
and impermeable. Mallard and Dalrymple (1977) analyzed the effect of a deformable
seafloor on dynamic pressure amplitude. Their analysis predicts that pressures on a
deformable impermeable seafloor are higher than those on a rigid base. The increases may
be significant for very soft cohesive sediments (increases up to 15% are quoted), but may
be ignored for most sands.

A distinction is made between ranges of Nd. The shallow and deep water ranges

correspond to Nd<x/10 and Nd>m respectively. A complete range of water depths may be

conveniently divided into shallow water, intermediate depth and deep water ranges as

follows

Nd d/L d/gT2

Shallow water wave (0, x/10) (0, 1/20} (0, 0.0025)
Intermediate depth wave (7/10,7) (1/20, 1/2)  (0.0025, 0.08)

Deep water waves (m,0) (1/2, ) (0.08, =)
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It is easy to show that these limits in terms of Nd, d/L and d/gT2 are equivalent by

using the dispersion relations (6.12) and (6.13) or another form,

L = (gT2 / 2x) tanh (Nd) (6.20)

For deep water waves (Nd >x ), tanh (Nd) = 1. The wave length in deep water is
given from (6.20)

L 0= gTZ /211 (6.21)
thus, the dispersion relation (6.20) can be written as
L = L tanh (Nd) (6.20)'

It is also assumed that no energy loss is involved during the wave propagation over
the sloping bottom towards the shore, therefore Bernoulli's equation (6.16) in the
following form holds.

9
pw“g{ =-PpwBZ-P +F(t) (6-16)'
The energy flux, i.c. the time rate of change of energy per unit area normal to the

flow direction is (6.16)' multiplied by the particle velocity (6.15)

3 .. 00
Pugp V= Pug Ve (6.22)

The average energy flux per wave transmitted by the wave train through a cross
section at x is obtained by integrating (6.22) over the wave period T and water depthd,
d¢ 9¢
E=1( p, 2 g
Thelo Pw gy 3t 2 (6.23)

Replacing ¢ by (6.14) and using (6.20), (6.23) yields

_ pwgH?Lo [ INd
E=—T61 |! * simn(znay) 2t (N

(6.24)
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For deep water waves, tanh {Nd) = 1 and 1+ 2Nd /sinh (2Nd)= 1
2
_ PwgHjlo
B="ter (6.25)

Thus, combining equations (6.24) and (6.25), one obtains

H =Ho[(1+2Nd/sinh (2Nd)) tanh (Nd) }-12 (6.26)

Waves at depth d Waves at deep water

Lo
< >
_L_ 3 \.|T
Tz
N~ = OA/ N\

d/L>1/2

7’

Section I Section II

Figure 6.2 Deformation of wave profile during shoaling

A commonly used procedure to evaluate the amplitude pressure, pg , exerted on the sea
bottom at a location of given water depth, d, is envisaging an overall profile of waves
propagating from the deep water towards the shore, as illustrated in Figure 6.2, and
determining the wave height, H, and length, L, from equations (6.20) and (6.26) on the
basis of the key wave parameters, T, Ly and Hy specified at a location in deep water. The
wave period, T, is assumed unchanged. The values of L and H determined in water depth,

d, are then introduced in equation (6.19) to determine the amplitude of pressure, py .
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NUMERICAL METHOD FOR AN UNBOUNDED DOMAIN

7.1 INTRODUCTION

The analysis of unbounded continuum problems with discrete methods such as
finite element and finite difference which must be terminated somewhere calls for the use of
special boundary artifacts. These boundary conditions are particularly usefu! in studies of
soil-structure interaction effects by the finite element method. The finite portion of the soil
being modeled is customarily referred to as "the soil island" or "the soil box".

Finite element procedures were first used to evaluate wave-induced seafloor
movements in 1971 (Dunham et al.). These procedures have received considerable use in
practice and a number of refinements have been made in the models (Arnold, 1973; Kraft
and Watkins, 1976; Wright and Dunham, 1972 and Wright, 1976). Soil beneath a
particular wave is characterized by finite elements extending to the maximum depth of
anticipated movement. Lateral boundaries of the region described by finite elements are
assigned boundary conditions consistent with the assumption of an infinite train of uniform
plane waves. Almost all the finite element analyses of wave-induced response of sea floor
deposits employed elastic or some kind of nonlinear elastic stress-strain relationships to
represent the soil properties. Nonlinear stress-strain curves were used with iterative
processes to compute equivalent linear elastic modulus in each element consistent with the
stresses (Seed et al, 1973). In such cases, without permanent deformation and residual

stresses, the sea floor response will be simply a harmonic type due to the harmonic wave
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pressure load. Therefore, the wave could be frozen in position and fixed, impermeable
lateral boundaries are assigned due to the symmetric character. The wave induced changes
of pressure at the sea bottom are applied as static loads to the upper surface of the finite
element mesh and corresponding stress and displacement within the soil are calculated.

The proposed simple material mode! for sands is used in this study. In considering
the time-dependent progressive nature of the wave loading and the path-dependent
cumulative response of the sea floor, there is no symmetric lateral boundary at all. A

simple lateral artificial boundary is proposed to deal with this unbounded domain problem.

7.2 CONSISTENT BOUNDARY

In certain cases, it is possible to formuiate exact solutions, exact in the finite
element sense, in which the behavior of the boundaries and their effects on the soil island
are completely equivalent to that of an infinite succession of finite elements beyond the
artificial edges of the model. In such cases, the boundaries are said to be consistent.
Examples are the boundaries developed by Lysmer and Waas (1972) and Kausel (1974) in
matching finite element solutions to analytical or semi-analytical solutions for the
propagation of elastic waves in unbounded layered strata. More general consistent
boundaries can also be developed using Green's functions in connection with the boundaiy
integral method (Kausel and Peek 1982). Unfortunately, such exact boundaries not only
couple all boundary points (i.c., they are non-local in space), but they are properly
formulated only in the frequency domain (i.e., they are non-local in time). Hence, they
cannot be used to study nonlinear problems using time-step integration techniques. This
fact has led to the search for high quality approximation which are local in space and time,
that is, approximations involve only points in the neighborhood of the boundary point

under consideration within a small time-window,
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7.3 LOCAL BOUNDARY
7.3.1 Truncation (Elementary BSoundary)

Brutal truncation is widely practiced, widely accepted, easy to implement,
inaccurate or expensive in static problems, and expensive or disastrous in any time
dependent problem. It must employ large finite elements to model as large a medium as
possible with a minimum number of degrees of freedom or employ a very large finite
model. It can sometimes work fairly well, but it is usually better to improve the finite
clement model of the exterior. An elegant variation, which is highly accurate, was
suggested by Smith (1974) for transient problems in which two solutions are carried out
with free and clamped (Neumann and Dirichlet) bouﬁdary conditions. In the two cases, in
and out of phase reflections occur. The addition of the two solutions cancels out of the

reflection, so the effect of the boundary vanishes. Unfortunately, for every wave that hits

the boundary, another two solutions are required, i.e. for n reflections there would be 20

solutions. Research on this algorithm has therefore concentrated on improving the

averaging algorithm (Zienkiewicz, Kelly, and Bettess, 1977; Cundall et al 1978).

7.3.2 Damper (Transmitting Boundary)

Dampers were first proposed by Zienkiewicz and Newton (1969) for fluid
problems, and by Lysmer and Kuhlemeyer (1969) for elastic problems . Since then they
have also been used in numerous periodic problems and a few transient ones. The idea is
fairly simple; a damper can be designed to absorb an outgoing wave completely. The
problem is that the form of the wave must be known a priori. It is usually assumed to be
plane, although better results are often obtained if the wave is assumed to be cylindrical
(Zienkiewicz, Kelly and Bettess, 1972). An extension of the damper concept has been
proposed by Bayliss, Gunzberger and Turkel (1978). The dampers are normally referred

to as absorbing, silent, anechoic, non reflecting, viscous or transmitting boundaries.
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A very general set of transmitting boundaries was proposed by Lindman (1973,
1975), who used projection operators to obtain boundary conditions having 2 high degree
of effectiveness for the scalar equation. Closely related to Lindman's contribution is the
family of boundary conditions proposed a few years later by Engquist and Majda (1977)
for the scalar wave equation and by Clayton and Engquest (1977) for the elastic wave
equation. These so-called para-axial boundaries are formed with growing effectiveness and

complexity.

74  INFINITE ELEMENT

As an alternative, special infinite elements are placed at the edges of the
mathematical models which previously must remain finite in size.

Infinite elements were introduced independently by Ungless (1973), Anderson and
Ungless (1977) who used a reciprocal type of decay and Bettess (1977) who used an
exponential decay. The shape function for an element which extends to infinity should lead
to finite integrations over thé infinite element domain .

The infinite element method was originally applied to potential problems.
Subsequently it was applied to periodic or harmonic problems, first by Zienkiewicz and
Bettess (1976), Bettess and Zienkiewicz (1977) for surface waves problem in shallow
water; then by Saini, Bettes and Zienkiewicz (1978) in dam reservoir interaction problems.
It has been applied to elasto-static problems by Chow and Smith (1981), Beer and Meek
(1981) and for electro-magnetic fields by Lynn (1981). Elastodynamic problems have also
been analyzed by Chow and Smith (1981), Chow (1981) and Medina (1981).

It is important to note that these methods described above do not give a true
indication of the behavior of the mathematical model towards infinity. Rather the effect of

the far region on the domain of interest is modelled.
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7.5 A SIMPLE ARTIFICIAL BOUNDARY

Many methods for unbounded field problems have been developed and
implemented for analyses with varying degrees of success. It seems all the transmitting
boundaries deal with linear problems such as elastic wave propagation. They may not be
applicable to nonlinear analyses. Infinite elements can be used for non-linear problems
which boundary integral methods fail to solve. However, there are some difficulties in
treating the wave train induced pressure which extends to infinity as applied surface load.
It appears that employing a large finite element solution domain remains to be the only
avaijlable approach, but the cumulative response of the sea floor deposits with the cyclic
nature of wave-loading makes it impractical.

A simple artificial boundary is suggested in terms of Taylor series expansion of
unknown variables to solve unbounded domain problems. If u(x,t) is the boundary value at

time t, here the x axis is perpendicular to the lateral boundary, then the boundary value at

time t+dt can be estimated as

u(x, t+dt) = u (x-dx)+dx, t+dt)

du
=u (x-dx, t) + —
( ) dx% | x-dx

dx + %%‘ t dt + 0((dx)2,(dt)2) (7.1)

The first-order approximation is obtained by setting only the first term in (7.1)
u (x, t+dt) = u (x-dx, t) (7.2)

then

du (x, t) = u (x-dx, t) - u (x,t) (7.2)

which means
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Ju du 2 ra2y
= dx = dt + O((dx)%,(dt)?) = 0

Let dt — Q0 and dx = cdt. One can reach

du 1 9du =0

ox  Cat (7.3)
This js exactly the same as that given by the viscous boundary condition (boundary
damper). One may also write

u( x-2dx, t-dt ) = u( (x-dx)-dx, t-dt )

=u (x-dx, t) -g—;

2 2
N~ R CORChY

(7.4)
The second-order approximation can be obtained by adding (7.1) and (7.4),
u(x, t+dt ) = 2 u( x-dx, t ) - u( x-2dx, t-dt ) (7.5)
then
du(x,t)=2u(x-dx,t) -u(x-2dx, t-dt ) -u(x, t) (7.5)'

Thus, the boundary values at current time could be predicted by extrapolation of the
values of variables in the vicinity of the boundary at past time. The simple artificial
boundary conditions (7.2) and (7.5) are easy to implement in the finite element program,
Since dt and dx should be chosen as small values, the interior auxiliary point usually would
not fali on nodal point. However, the values at these auxiliary points could be interpolated
from values of the nodal points. The simple artificial boundary conditions derived above
are similar to those proposed by Liao and Wong (1984) for linear wave propagation
problems. However, the boundary conditions (7.2) and (7.5) derived from Taylor's series
without any problem dependence could be used for nonlinear analysis.

The second-order approximation of the artificial boundary condition is used in

nonlinear analysis of the travelling wave induced response of sea floor deposits.
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WAVE INDUCED RESPONSE OF SEAFLOOR DEPOSITS

8.1 INTRODUCTION

The stability and deformation of the seafloor under the action of storm waves is an
important consideration in the design of pipelines, anchors and offshore structures such as
gravity and pile supported platforms. The interaction of ocean and seafloor is a very
complex problem and all methods for assessing stability are based on extensive simplifying
assumptions. Storm waves are almost invariably represented as a series of harmonic
waves. These waves create dynamic pressure waves on the ocean floor, increasing the
pressure under the crest and reducing it under the trough.

Many investigators have been attracted to the problem of assessing the transient
stress field and the variation of pore water pressure. These investigators have made various
simplified assumptions in order to study seafloor response. In various approaches, the
seafloor has been treated as either a one-phase (total stress theory) or a two-phase
(effective stress theory) medium by uncoupled or coupled schemes.

Henkel (1970) was one of the first {o provide an analytical framework for stability
analyses under wave loading. It followed the classical procedures of limit equilibrium slope
stability analysis. He assumed the seafloor to be a one-phase medium and examined the

limiting equilibrium condition along a circular failure plane. His contribution is historically
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important because he demonstrates conclusively that the pressure changes on the seafloor
induced by storm waves could be a significant factor affecting seafloor stability.

Putnam (1949) analyzed the flow induced in a rigid and non-deformable saturated
porous bed by the pressure field. He assumed incompressible flow with an isotropic
permeability, the validity of Darcy's law and hydraulic isotropy, and showed that under
these conditions flow was governed by Laplace's equation. Sleath (1970) extended the
Putnam analysis to include anisotropic permeability and Liu (1977) considered stratified
permeability. These analyses neglect the mechanical properties of the sand. The coupling of
the sand skeleton and pore water in resisting the waves is ignored. Consequently, it is
called uncoupled analyses of pore water pressure response.

Taking the assumption of deformability of the soil skeleton and the interaction of
the solid and fluid phases, different authors have carried out studies by applying the general
theory of three dimensional consolidation (Biot, 1941). The elastic deformation of a porous
medium was considered by Yamamoto (1978) for a saturated soil bed of both infinite and
finite depth with isotropic permeability, by Yamamoto (1981) for a non-homogeneous soil
and by Madsen (1978) for déposits of infinite depth with anisotropic permeability. There is
a unique one-to-one relationship between the predicted response and the applied load at any
time. Therefore, the design storm wave condition in the coupled effective stress analysis is
specificd in terms of a single wave with the largest amplitude.

A computer program was developed by Siddharthan and Finn (1979) for the
analysis of transient pore water pressure and effective stress due to wave loading. It is also
based on Biot's equations and extends the capacity for analysis to layered soils with
hydraulic anisotropy and variable depth. The program evaluates the stability of the seafloor
under the wave-induced effective stress system using the Mohr-Coulomb failure criterion.
Gatmiri (1990) extended the linear analysis of the coupled effective stress and pore

pressure to a submarine sediment with sloping surface. However, none of the above
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mentioned response analysis accounts for the residual pore water pressure and permanent
deformation.

The problems associated with seafloor instability were brought sharply into focus in
1969 when Hurricane 'Camille' struck areas around the Gulf of Mexico. 'Camille'
demonstrated that ocean waves produce pressures on the seafloor that can trigger seafloor
instability even though the bottom slope is very flat, less than 0.5% (Focht & Kraft 1977).
Two structures were destroyed by massive seafloor movements during the storm. It was
clear therefore that the lateral loads imposed on these structures by moving soil from
unstable slopes could be substantial, and could even exceed the wave forces from the
design storm.

The phenomenon of wave-induced liquefaction has been recognized in recent
years. It may occur in sand or silt deposits, thereby exerting damaging influences on the
engineering installations placed nearby such as the flotation of pipelines (Christian,1974),
loss of anchor resistance, loss of significant lateral resistance of piles (Finn and Martin,
1979), and slope failures in soil structures such as the artificial islands used for oil and gas
exploration in the Beaufort Sea (Finn et al., 1982). The term 'liquefaction’ was originally
associated with the loss in strength of the soil that causes flow slides. The definition of the
term 'liquefaction’ has been extended to a particular value of pore pressure (the value of the
confined pressure, Seed and Lee, 1966) or a particular level of strain (5% double-amplitude
strain, Ishihara, 1983). The common procedure to evaluate the resistance of soil to
liquefaction is to test soil specimens by means of the cyclic triaxial test apparatus.

Lee ar.  Focht (1975) studied the liquefaction potential under the Ekofisk tank in the
North Sea. It was probably the first investigation of ocean wave-induced liquefaction
utilizing the principles established for the solution of seismic liquefaction problems.

Several investigators have collaborated to shape analytical frameworks for the

liquefaction analysis under wave loadings. Seed and Rahman (1978) devecloped a
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methodology in which generation and contemporaneous dissipation of excess pore water
pressures during strong wave loading can be evaluated. An uncoupled scheme was
adopted. This was accomplished by solving the usual continuity equation of flow in
conjunction with a pore water pressure generation model proposed by Seed et al. (1976).
The effective stress was computed assuming elastic behavior.The residual pore water
pressure is not uniquely related to the instantaneous values of wave-induced stresses, but
depends on the intensity and duration of the storm and on the drainage characteristics of the
seafloor. Under these circumstances, the design storm wave condition in Seed's
liquefaction analysis is specified in terms of the wave height, number of waves and
duration. Finn and Lee (1979) extended this approach for performing an effective stress
stability analysis of the seabed deposits.

Siddharthan (1987) presented a paper in which the wave-induced response was
split into the transient and residual components. The coupled transient response was
obtained by solving Madsen's equations (1978) analytically with inertia terms introduced.
An equivalent linear elastic approach (Seed et al., 1973) has been used, employing an
iterative process to obtain shear modulus and damping, The residual response was obtained
by solving the uncoupled equation (Seed and Rahman, 1977) for the residual pore water
pressure based on finite element method. An empirical relation of the cyclic pore water
pressure generation model (Seed et al., 1976) was used. The full response is the addition
of the independently obtained solutions. For typical storm wave conditions that exist in the
North Sea, it appears that the inclusion of damping, inertia and anisotropic permeability is
not important relative to ocean sands.

In an attempt to analyze the liquefaction susceptibility of the seafloor deposits under
wave action, Poorooshasb, Ishihara and Yang (1987) presented a paper in which the
seabed was assumed to be a saturated porous medium simulated by a two-surface plastic

model for the solid phase. Probably it was the first time that the wave-induced seabed
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response was investigated by elasto-plastic effective stress analysis step by step following
the wave loading history.

The build-up of pore water pressure and the accumuiation of permanent
deformations are produced by the model itself. Results from the coupled nonlinear analysis
predict that liquefaction may indeed occur for certain loose deposits. A FEM and FDM
hybrid computational procedure is used which provides an example of the staggered
solution scheme combined with some simplifications to solve the coupled field problem. A
simultaneous solution (direct integration) scheme is also used for analysis of the seabed
deposit subjected to standing wave action by FEM (Poorooshasb, Yang and Clark, 1990)
in which the two-surface plastic constitutive model is adopted.

The results shown in the next sections are the response analyses of seafloor
deposits to standing waves and to fravelling waves by FEM. The simple constitutive model
proposed in this study has been incorporated into computer programs PCPSTAD and

PCPTRAY for standing wave and travelling wave cases respectively.

8.2 RESPONSE OF SEAFLOOR DEPOSITS TO STANDING WAVE

When a traveling wave strikes a vertical flat barrier such as a sea wall, the wave is
reflected and a standing wave results. In this section, an analysis of nonbreaking waves
that are perfectly reflected at a vertical barrier is presented.

Perfect reflection can be represented mathematically by adding the expression for
the free-surface displacement of a right-running wave and that for its mirror image, which
is a left-running wave with the same profile but a phase velocity directed to the left . If the

right-running wave is described by
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7* = a cos (Nx - wt) (8.1)
and its mirror image by

1 = a cos (Nx + wt) (8.2)
then the reflected wave is described by

7 =n* +1- = 2acos (Nx) cos (wt) (8.3)
where the wave number N=2x/L and the angular frequency w=2xn/T. Equation (8.3)

describes a standing wave with an amplitude twice that of the incident traveling wave.
According to the linear wave theory the water pressure exerted on the seabed due to
standing waves would be of a sinusoidal nature. Thus it is sufficient, by the argument of
symmetry, to consider only a half wave length L/2 as shown in Figure 8.1.
Plane strain is assumed. The initial and boundary conditions for the standing wave

action problem are

t=0 Olyy=(¥s-YwW Y U‘xy =0, O'xx = 0'z = Ko Olyy
p=0 (excess pore water pressure) (8.4)
y=0 doryy = 0, dolxy = 0,

P = Po cos (Nx) cos {wt)
dp = pg cos (Nx) [ cos w(t + dt) - cos wt ]

po = 0.5 vy H / cosh (Nd)

y=h dp/dy=0,dux =0,duy=0
x=0 dp/dx=0,duy =0
x=L/2 op/ox=0,duy, =0 (8.5)

127



where K is the coefficient of earth pressure at rest, T is the wave period and H is the wave

height.

In the perticular example cited in this study the following geometrical and material

parameters were employed (Figure 8.1)

L/2 =80m. h = 40m. d = 20m.

H/2 = 6.62m. T = 100sec. Ko =0.5

¥s = 19 KN/m3 Yw = 10 KN /m3 n/Ky, =107 m2 / KN
A = 0.0022 B = 0.05 Yo = 5.0

x = 0.008 v =02 1o = 0.004

K; = 4000kPa ¢y =270 o = 270

k =103 ~10-1 cm/sec

The material properties stated above correspond to data for loose Fuji river sand as

tested by Ishihara and Tatsuoka (1975).

The finite element recurrence equation (5.25)

)
dp (5.25)

is accommodated in computer program PCPSTAD in conjunction with the initial and

K

Q dfy
Qf S+6AtH

-AtH p,

boundary conditions listed above for the standing wave case.
The finite element mesh used is given in Figure 8.2 which shows the nodal

numbering system, element numbering system and the position of Gauss integration points

within an element. ©=0.5 is used in the recurrence equation (Crank-Nicolson method).

The displacement is calculated at nodal points, however the effective stress and pore water
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pressure are evaluated at the Gauss points. Hence the various curves are labeled by their
Gauss point number, for example E2G1 means the results of the computations at Gauss
point No.1 of element No.2.

The graphs shown in Figure 8.3 represent the variation of the pore water pressure
with time. It may be noted that in the case of sands with relatively high permeability the
variation in the pore water pressure essentially oscillates about a constant mean value. This
is not, however, the case for the low permeability sand. The pore water pressure oscillates
about a mean value which is increasing with time. This build up of the pore water pressure
is detrimental to the integrity of the system.

Figure 8.4 shows the variation of the mean effective stress with time. When the
permeability of the sand is high, the surface loading appears to have little effect on the
variation of the mean effective stress, i.e. the water just enters and leaves the pores of the
soil without affecting the stress regime to any extent. The situation is quite different for the
low permeability sands. Take, for example, k=0.01 cm/sec. Curves indicate a general
tendency for the mean effective stress to decrease in magnitude as the number of loading
cycles increase. The decrease in effective stress for the case of k=0.001 cm/sec is more
rapid. Here the mean effective stress at the Gauss points E2G2 and E2G1 approaches zero
only after ten cycles of surface loading. This reduction of the mean effective stress is
clearly an indication of the loss of strength of the system at these points and can lead to
failure. The system behaves as a fluid with no infrinsic shear strength and the phenomenon
is generally referred to as liquefaction. Massive movement of shallow sea bed soils due to
the action of the surface waves and the collapse of the foundation of waterfront structures
when subjected to storm waves is the direct result of liquefaction.

Figure 8.5 and 8.6 give what may be loosely termed as the stress paths followed by
the sand element located at the Gauss points E8G3 and E8G4. They show the variation of

the vertical effective stress with the pore water pressure and with the mean effective stress
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as loading proceeds. The situation is as before. The water waves appear to have no effect
on highly permeable sand, but for the low permeability sand, the decrease in the vertical
effective stress is associated with the increase in pore water pressure and the decrease in the
mean effective stress.

Finally in Figure 8.7 the settlement at nodal point No. 37 is plotted against time for
the three cases. In the first case a small but finite amount of densification of the sand is
experienced. This is, of course, expected since plastic deformation is always irreversible.
In the third case, the initial soil densification is followed by a heave (upward movement
which in the convention of geotechnics is shown by negative numbers) of the deposit.
This is the liquefaction phenomenon referred to earlier.

It is a well known fact that the relative density of a sand plays a very important role
in its liquefaction potential when subjected to dynamic loadings such as those imposed by a
severe earthquake. What is not as well known is that such loose deposits may liquefy under
cyclic loading even without dynamic (inertial) effect if the permeability of the sand is low
enough. The example cited here clearly demonstrates this phenomenon.

The behavior of sand under standing wave action is different from that under fully
drained or undrained conditions. When the permeability of the sand is relatively high, in
excess of 0.01 cm/sec in the case studied here, the system is safe. On the other hand, if the
same system has a low permeability (say less than 0.001 cm/sec) then instability due to

liquefaction is likely to take place.
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8.3 RESPONSE OF SEAFLOOR DEPOSITS TO TRAVELLING WAVE

In wave response studies, the seafloor is considercd as being subjected to an ocean
wave induced plane pressure wave travelling across the surface of the underlying deposits.

Nataraja and Gill (1983) developed a simplified proceduie £37 ocean wave-induced
liquefaction analysis and examined a few case histories for evaluation of the simplified
procedure. In the siinplified procedure, the existing solutions from the theory of elasticity
are used 1o estimate the cyclic shear stress distribution resulting from the passage of a wave
train. The existing data on cyclic shear strength of liquefaction under seismic loadings are
modified and extended to estimate the cyclic shear strength of liquefaction under wave
loading conditions. It can serve as a first step in determining whether a sophisticated
analysis is required.

Offshore structures such as large diameter underwater pipelines for nuclear power
plants (Christian et al. 1974) and Ekofisk oil storage tank in the North Sea (Lee and Focht,
1975) are two examples of projects where either safety or critical environmental
considerations are involved: For such important projects it is usually required to perform
sophisticated calculations involving state-of-the-art analytical techniques as well as detailed
field and laboratory investigations. The liquefaction susceptibility analyses of the two
example cases are carried out in this study. The computer program PCPSTAD has been
modified to program PCPTRAV for the travelling wave case, in which the proposed
artificial boundary condition is implemented. The second-order approximation (7.5) is used
for the lateral artificial boundaries.

It is assumed that in the first stage it takes three wave periods of time to reach the
full magnitude while the wave train is forming and travelling simultaneously. Afterwards,
the wave is travelling with the constant amplitude. The size of solution domains are taken
as one-wave length and two-wave lengths for the Lake Ontario case and the North Sea

casc, respectively.
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8.3.1 Underwater pipeline in Lake Ontario

The finite element mesh used for the Lake Ontario case is shown in Figure 8.8
whose width is one wave length. The lateral artificial boundaries are set at x=L/2 and x=-
L/2.

Plane strain is assumed. The initial and boundary conditions for analysis of

travelling wave action are listed below

t=0 O'yy =(Ys - Yw) 7> dxy =0, O'xx =02z = Ko o’yy
p=0 (excess pore water pressure) (8.4)
y=0 do‘yy = O, d01xy = O,

P = po cos (Nx- wt)

= pp ¢os (INx) cos (wt) +pg sin (Nx) sin (wt)
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dp = pg cos (Nx) [ cos w(t + dt) - cos wt ]
+ Po Sin(Nx) [ sin w(t + dt) - sin wt ]

po = 0.5 yw H/ cosh (Nd)

H= Hpax t/(3T) t=<3T

H = Hpax t>3T
y=h dp/dy =0, duy, =0, duy =0
x=L/2 dux(x,t+dt) = 2uy(x-dx,t) - ux(x-2dx,t-dt) - ux(x,t)

dug(x,t+d1) = 2uy (x-dx,1) - uy(x-2dx,t-dt) - uy(X,t)

dp(x,t+dt) = 2p(x-dx,t) - p(x-2dx,t-dt) - p(x,t) (8.6)
x=-1/2 dux(-L/2, t+dt) = du,(L/2, t+di)

duy(-L/2, t+dt) = duy(L/2, t+dt)

dp(-L/2, t+dt) = dp(L/2, t+dt)

where Ky is the coefficient of earth pressure at rest, T is the wave period and H is the wave
height. The wave number N=2x/L and the angular frequency w=2n/T.

The following design wave data (Christian et al., 1974), geometrical and material

parameters were employed in the numerical analysis:

L =73m. h = 12m. d = 12m.
H = 9m. T = 7sec. Kog=05
¥s = 19 KN/m3 Yw = 9.8 KN / m3 n/Ky, =1.2*10-7m2 /KN
A =0.0022 B =0.05 Yo=15.0
x = 0.005 v=033 7o = 0.004

139



K, ¢ ber k

loose sand 2000kPa 250 250 0.01 cm/sec

medium dense sand  4000kPa 390 270 0.001cm/sec

Two cases, loose sand and medium dense sand, are analyzed. The numerical
results for loose sand are shown in Figure 8.9 - 8.16.
Figures 8.9 and 8.10 present variations of the mean effective stress, pore water

pressure, vertical effective stress and shear stress with time at Gauss point E4G2. It is

clearly shown that all quantities increase their magnitudes in the ™ . This is due to
the wave train growing from zero to its full magnitude during “ze wave periods
of time. Afterwards, the wave train remains at a constant ampi:. 1ay be noted the

mean effective stress and the vertical effective stress are decreasing with time, and
approaching zero only after 5 cycles of surface wave loading. While the pore water
pressure is increasing during the same period. It indicates that the condition for
liquefaction is indeed develaped in the underlying deposits.

Figures 8.11 and 8.12 give the stress paths at Gauss point E4G2. The variation of
the verticai effective stress with the mean effective stress is shown in Figure 8.11, in which
the curve migrates towards the origin: an indication of liquefaction. The variation of the
vertical effective stress with the pore water pressure in shown in Figure 8.12. The
reduction of the vertical effective stress is due mainly to a general tendency of the pore
water pressure build-up. Figure 8.13 shows the variation of horizontal displacement and
vertical displacement with time at Node 13 which is closest to point E4G2, the first
liquefied point. The graphs indicate a different deformation trend when compared with the
standing wave case under similar circumstances. The initial soil densification is followed

by a heave (upward movement) in the standing wave case since the lateral boundaries arc

140



fixed, therefore the upward movement is the most likely motion. However, for the
travelling wave case, the lateral boundaries are released by the second-order approximation
of the artificial boundary conditions. The horizontal displacement increases noticeably
along the direction of wave travel. This indicates a loss of lateral resistance of the soil
system during liquefaction.

The accumulation of permanent deformation is described in Figures 8.14-8.16.
They show the development of the vertical profiles of horizontal displacement and vertical
displacement for cross sections marked by x=0, 9.125, 18.25 m (x=0, L/8, L/4) at
different time instants t=21, 28, 35 sec. (3, 4, 5 cycles) respectively.

The numerical results for medium dense sand are illustrated in Figures 8.17--8.25.
Figures 8.17 and 8.18 show variation of the mean effective stress, pore water pressure,
vertical effective stress and shear stress with time at Gauss point E4G2. Figure 8.19 and
8.20 present the stress paths at Gauss point E4G2. Figure 8.21 gives the variation of
horizontal displacement and vertical displacement with time at Node 13. The general
tendency appears the same éls that in the loose sand case. Liquefaction is also developed
but more wave loading cycles (about eight cycles in this case) are required to drive the
underlying deposits to liquefy.

The accumulation of permanent deformation is shown in Figures 8.22-8.25 for
cross sections marked by x=0, 9.125, 18.25 m (x=0, L/8, L/4) at different moments t=21,
35, 49, 63 sec. (3, 5, 7, 8 cycles), respectively.

The numerical analysis results predict the evidence of liquefaction for both loose
sand and medium dense sand in the circumstances of Lake Ontario where, indeed,
liquefaction did occur. A single 3.05 m (10 ft) diameter steel pipeline in Lake Ontario has
failed several times, apparently because of liquefaction (Christian et al. 1974). It is noted
that the soil particles and the water behaved very much like a dense fluid and caused the

buried pipeline to float to the surface.
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8.3.2 Ekofisk tank in the North Sea

The Ekofisk oil storage tank in the North Sea (Lee and Focht, 1975), where the site
oceanographic and geotechnical design parameters are well investigated and documented,
has successfully withstood 100-year design storm waves without experiencing wave-
induced liquefaction.

The finite element mesh used for the North Sea case is shown in Figure 8.26. Its
width is two wave lengths. The lateral artificial boundaries are set at x=L and x=-L. Plane

strain is assumed. The initial and boundary conditions are

t=0 0'yy = (YS - Yw) y , o‘xy =0 3 O'xx = olzz = KO o'yy
p=0 (excess pore water pressure) (8.4)
y:O doiyy = 0, dolxy = Os

P = po cos (Nx- wt)
= pp cos (INX) cos (Wt} +pg sin (Nx) sin {(wt)
dp = [;0 cos (Nx) [ cos w(t + dt) - cos wt ]
+ po sin(Nx) [ sin w(t + dt) - sin ot ]

po = 0.5 yw H/cosh (Nd)

H= Hpa t/(3T) t<3T

H = Hpax t>3T
y= dop/ady =0, du, =0, duy =0
x=L duy(x,t+dt) = 2ux(x-dx,t) - u(x-2dx,t-dt) - uc(x,t)

duy(x,t+dt) = 2uy(x-dx,t) - uy(x-2dx,1-dt) - uy(x,t)

dp(x,t+dt) = 2p(x-dx,t) - p(x-2dx,t-dt) - p(x,t) (8.7)
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x=-L du(-L, t+dt) = dux(L, t+dt)
duy(-L, t+dt) = duy (L, t+dt)
dp(-L, t+dt) = dp(L, t+dt)
where the symbols are as defined previously.
The following design storm wave data (Lee and Focht, 1975), geometrical and

material parameters were employed in the numerical analysis.

L =324m. h = 25m. d = 70m.
H = 24m. T = 15sec. Ko=0.5
Ys = 21.45 kN/m3 Yw =9.8kN /m3 /Ky =1.2*10-7"m2 / kN
A =0.0022 B =0.05 Yo=5.0
x = 0.005 v =033 N = 0.004
K; = 14000 kPa ¢ =500 $er = 360

k = 0.01 cm/sec

The numerical results are shown in Figures 8.27 — 8.37. Figures 8.27 — 8.30
describe the variations of the mean effective stress, pore water pressure, vertical effective
stress and shear stress with time at Gauss point E14G2 and E16G4, respectively. In the
first stage, all quantities increase their magnitudes in accordance with the wave train
development to its full magnitude within the first three wave periods. Afterwards the wave
travels with constant amplitude. The mean effective stress and vertical effective stress are
gently decreasing for about 500 sec. (33 wave cycles), then fluctuating around certain mean
values. The pore water pressure first increases a little, then oscillates about a constant

mean value. This implies that the water just enters and leaves the pores of the soil during
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the wave cycle without affecting the stress regime. The shear stress is aimost in a cyclic
mode. After a duration of 780 seconds (52 wave-induced cyclic loadings) there is no
evidence of liquefaction.

The stress paths at Gauss point E14G2 are given in Figures 8.31 and 8.32. The
curves are almost overlapping after 35 wave-induced cyclic loadings indicating a situation
generally referred to as cyclic mobility.

Figures 8.33 and 8.34 show the variation of the horizontal displacement and the
vertical displacement with time at Nodes 53 and 69, respectively. The general densification
tendency with very low rate appears in the vertical displacement. The lateral movements
are substantial.

It is noted that the curves representing the effective stresses and pore water
pressures at Gauss points E14G2 and E16G4 resemble each other in appearance. The same
can be said about the displacements at Node 53 and Node 69. This is as expected since
the wave induced responses in the neighborhood should be similar. This may be
considered as a verification of the success of the proposed artificial boundary condition.

Figures 8.35 — 8.37‘present the vertical profiles of horizontal displacements and
vertical displacements for sections marked by x=0, 40.5 and 81m (x=0, L/8 and L/4) at
different times of t=300, 600 and 780 seconds (i.e., 20, 40 and 52 cyclcs), respectively.
The permanent deformations are accumulated as the wave loading proceeds.

The numerical analysis successfully predicts that wave-induced liquefaction would

be not likely to happen in the North Sea dense sand environment.
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Figure 8.9 M.E.Stress and P.W.Pressure vs Time for Lake Ontario loose sand
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Figure 8.13 Displacement vs Tiine for Lake Ontario loose sand
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loose sand, k=0.01cm/sec. at t=21sec.
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Figure 8.14 Displacement profiles at t=21sec for Lake Ontario loose sand
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loose sand, k=0.01cm/sec. at t=28sec.
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Figure 8.15 Displacement profiles at 1=28sec for Lake Ontario loose sand
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loose sand, k=0.01cm/sec. at t=35sec.
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Figure 8.16 Displacement profiles at t=35sec for Lake Ontario loosc sand
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medium dense sand, k=0.001cm/sec. at E4G2.
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Figure 8.17 M.E.Stress and P.W.Pressure vs Time for Lake Ontario medium dense sand
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medium dense sand, k=0.001cm/sec. at E4G2.
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Figure 8.18 V.E.Stress and Shear stress vs Time for Lake Ontario medium dense sand
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medium dense sand, k=0.001cm/sec. at Node13.
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Figure 8.21 Displacement vs Time for Lake Ontario medium dense sand
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medium dense sand, k=0.001¢cm/sec. at t=21sec.
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Figure 8.22 Displacement profiles at t=21sec for Lake Ontario medium dense sand

158



medium dense sand, k=0.001cm/sec. at t=35sec.
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Figure 8.23 Displacement profiles at t=35sec for Lake Ontario medium dense sand
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medium dense sand, k=0.001cm/sec. at t=49sec.
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160



medium dense sand, k=0.001cm/sec. at t=63sec.
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Figure 8.25 Displacement profiles at t=63sec for Lake Ontario medium dense sand
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North Sea, dens sand, k=0.01 cm/sec. at E14G2
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North Sea, dense sand, k=0.01cm/sec. at E16G4.
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North Sea, dense sand, k=0.01 cm/sec. at E14G2.
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North Sea, dense sand, k=0.
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North Sea, dense sand, k=0.01 cm/sec. at Node 53.
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Figure 833 Displacement vs Time at Node 53 for the North Sea case
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North Sea, dense sand, k=0.01 cm/sec. at Node 69.
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North Sea, dense sand, k=0.01 cm/sec. at t=300sec.
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Figure 8.35 Displacement profiles at t=300sec for the North Sea case



North Sea, dense sand, k=0.01 cm/sec. at t=600sec.
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Figure 8.36 Displacement profiles at t=600sec for the North Sea case
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North Sea, dense sand, k=0.01 cm/sec. at t=780sec.

200

i —0— x=81.0m.
3 ——  x=40.5m.
£ 150 —f—  x=0.0m.
=
-]
E 100 -
d
Q
i)
@
a 50 -
X

0 T T ? Y
0 10 20 30

Depth (m)

North Sea, dense sand, k=0.01 cm/sec. at t=780sec.

40

4 - e x=81.0m.
‘é" —r— x=40.5m.
E 30 - ——  x=0.0m.
€
@
E
-]
Q
3
Q,
L
Q
-

0 : . . ’
0 10 20 30
Depth (m)

Figure 8.37 Displacement profiles at t=780sec for the North Sea case
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CONCLUSION

9.1 CONCLUDING REMARKS

The ocean wave-induced response of seafloor deposits and liquefaction hazards
have received considerable attention in geotechnical and marine engincering. Either safety
or critical environmental considerations are involved in the design of pipelines, anchors and
offshore structures such as gravity and pile supported platforms.

Until now most analyses of the ocean wave-induced response used very simple
models. However, it is possible to develop a more rigorous analysis procedure as
presented in this study.

The linear wave theory is introduced for the determination of the wave-induced
pressure at the sea bottom (mud line). The seafloor deposit is assumed to be a saturated
porous me¢ium which is modelled as a two-phase system consisting of a solid and a fluid
phase. The general Biot equations could be derived from the theory of mixture. For slow
phenomenon of ocean wave loading, it is reduced to nonlinear transient consolidation
equations to serve for analysis of the ocean wave-induced response.

The proposed material constitutive model, based on the generalized plasticity-
bounding surface formulation, simplifies the numerical implementation to a very great

extent. The non-associated flow rule is adopted. Realistic mcdel paramelers from
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experiments are incorporated in the model. Some comparisons of the numerical model tests
with experimental results have been made and the result. . e considered satisfactory. The
simple model is capable of simulating both loose sana ..«d dense sand behavior under
monotonic and cyclic loading, drained and undrained conditions.

Time integration of the resulting semi-discrete finite element equaiions is performed
by the Crank-Nicolson method which is unconditionally stable. Incremental iteration of the
Modified Newton-Raphson procedure is used to solve the nonlinear system. The
numerical procedure adopted is proved to be adequate for solving this coupled nonlinear
transient problem of wave-induced response analysis.

A fictitious freedom technique is proposed to treat the different nodal degrees of
freedom due to the composition of coupled fields. It has been demonstrated to be quite
effective.

Based on Iron's symmetric frontal solver, a non-symmetric frontal solver
subroutine is developed in this study to accommodate the asymmetry due to the non-
associated plastic flow rule adopted in the material model. It could be used to solve any
non-symmetric linear system of equations.

A simple artificial boundary is suggested in this study to deal with the unbounded
domain problems. This artificial boundary can be applied to linear or non-linear analysis. It
has been used for travelling wave-induced response analysis with success.

An important conclusion obtained from the standing wave induced response
analysis is the influence of the coefficient of permeability on the susceptibility of the sand
mass o liquefy — for high values of permeability even a loose sand mass need not liquefy.
This is in direct contrast to the commonly held view that the liquefaction potential is a
function only of the sand density.

Two exampie cases are studied in detail. The first example examines the seabed

response o a wave train at a pipeline site in Lake Ontario (Christian et al., 1974; Nataraja
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and Gill, 1983), where the deposit was measured to be loose and medium dense. The
second example investigates the seafloor behavior under a storm wave at the Ekofisk tank
site in the North Sea (Lee and Focht, 1975; Nataraja and Gill, 1983). Here the deposit was
reported to be dense. The numerical analyses predict the susceptibility of the two sites to
liquefaction which reflects the real situations. It helps build confidence in the numerical
procedure adopted in this study and lends it credibility.

Hopefully, with more widespread use of this numerical procedure and additional
verification against case histories, as well as extensive experiments and field investigations,
this numerical analysis procedure can become 'routine’ and made widely available.

It should be noted that the preceding solutions are the free field solutions and must
be applied with caution in the vicinity of structures. Since inclusion of the structures in the
analysis would make the problem much more complicated, the assessment of a free-field
solution is a good first approximation.

Ocean wave-induced response analysis of seafloor deposits and liquefaction
susceptibility investigation have necessarily involved many simplifying assumptions. Even
so it may still be expensive- and time-consuming due to its intrinsic complexity. Hence,

good engineering judgement should be exercised.

9.2 FURTHER WORK

1. In the proposed simple model, the relative density or void ratio of the sand docs
not explicitly appear as a material parameter. It may directly enter the mode] formulation,

say, as one of the state variables to further improve the model performance.
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2. To extend the application range to clays, the cohesion would have to be added
into the model in an appropriate way. Creep type of behavior could also be iucorporated

by having some viscous terms in the model formulation.

3. For more efficiency and flexibility, the skyline storage technique, the implicit-
explicit time integration algorithm and the Quasi-Newton nonlinear iterative procedure

could be implemented into the finite element analysis program as options for the user.

4. A seafloor deposit with a sloping surface is another example ready to be
analyzed. The finite element computer program may be easily modified to account for a

nonhomogeneous seabed situation.

5. The analysis capabilities could be further enhanced by carrying out further
research on ficld equations and algorithmic strategies to allow the calculations to be pursued

further after localized liquefaction and possibly up to total liquefaction of the soil deposit.
6. A fully structure-fluid-foundation interaction problem may be formulated. The

analysis will be much more expensive and time-consuming. Hence, only very important

projects might require such a sophisticated analysis.
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