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ABSTRACT

Prediction of Cell Loss Rate and Its application to Connection Admission
Control
Hamid R. Mehrvar

Concordia University, 2001

At a node of a broadband network, such as an ATM network. the prediction of qual-
itv of service plays an important role in formulating traffic control functions. The
historical data from 1995 to 2001 has shown that data traffic has doubled each year
and this trend is likely to continue. Assuming that traffic is generated from a number
of data sources, we propose a new approach in predicting packet (or cell) loss rate,
which is considered to be the quality of service of interest . The proposed approach
not only does not rely on an assumption of a statistical model for the traffic patterns,
but also closely approximates the cell loss rate in an output queue of a node. To do
this, first, we identify a set of traffic parameters, as traffic indicator, that can describe
the behavior of short-term, long-term or self-similar traffic. Then, we approximate the
cell loss rate in terms of the traffic indicator using function approximation capability
of a neural network system consisting of a linear combination of a number of sigmoid

functions.

The proposed traffic indicator and cell loss approximator can be used for traffic en-
gineering of broadband networks, e.g., ATM networks, to maximize the utilization of
an output link. As an illustrative example, we propose a new connection admission
control that predicts packet cell loss rate from the aggregate of two traffic indicators:

one for the existing connections and the other for the new connection. If the predicted

iil



cell loss rate for the aggregate traffic indicator is less than a pre-set threshold, the
new connection is admitted. Under the assumption that the users do not require a
tight bound on the cell loss rate, we showed that the proposed admission control is

twice as efficient as the Equivalent Capacity.
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Chapter 1

Introduction

At a node of a broadband network, such as an ATM switch, it is required to maximize
the utilization of each one of the output links, while maintaining the quality of service
(in terms of cell loss rate, delay, etc) of all services at acceptable levels. In this
work, we assume that only data services utilize the network resources and, hence, the
quality of service of interest is Cell Loss Rate! (CLR). This assumption is based on
the observation that Internet traffic has doubled each year from 1995 to 2001 and the
trend is likely to continue [1]. The platform that we considered is an ATM network,

although the results are applicable to other broadband networks.

In order to maximize the utilization of an output link of an ATM switch, while main-
taining an acceptable level for the CLR of all connections, user demands need to be
controlled in three different forms. First, a decision must be made whether a user
requesting a connection, can be accommodated. Second, once a connection is es-
tablished, its flow should be monitored in order to avoid performance deterioration

due to user violation from its negotiated traffic contract. Third, congestion control

1Packet loss rate, cell loss rate or loss probability all refer to the same quantity.



must be maintained to ensure that congestion at the node does not develop, or if the
congestion occurs, to quench the source as quickly as possible. These three forms of
traffic control schemes need to be applied at two different levels: at the connection
set-up and during the connection cycle. Call Admission Control (CAC) is applied at
the connection set-up, whereas congestion control schemes (open-loop and/or closed

loop) are applied during the connection cycle.

1.1 Issues and Approaches

CLR prediction plays an important role in formulating traffic control functions, in
particular, CAC. Without accurate CLR prediction, a network may adopt a conser-
vative CAC function while guaranteeing the agreed upon CLR, and may lower the

bandwidth utilization.

In the literature, the CLR in a finite buffer queuing system (with buffer size z) is
often approximated by P(Q > z), the tail of the queue length distribution, in the
corresponding infinite buffer queuing system. This distribution is asymptotically ex-
ponential, i.e., P(Q > z) < Ae™™ as z — oo. However, determining the asymptotic
constant A is usually computationally intensive. In the case of equivalent capacity
[2](3][4], this constant is ignored. This provides an easy way of allocating bandwidth,
independent of the number of sources being multiplexed. However, this simplicity is
the main weakness of this approach, as it does not exploit the statistical multiplexing

gain.

Markov Modulated processes, which are considered to be rich stochastic processes,

have attracted researchers’ attention for system traffic modeling and performance
g



analysis. As an example of such process, Markov Modulated Poisson Process (MMPP),
has been used to model several types of traffic sources such as variable bit rate videos
and still images [4]-[8] fed into a statistical multiplexer. Despite the assumption of
Poisson process for mathematical tractability, the results of MMPP are complex from
the computational point of view. Another Markov-modulated process that has been
extensively used to model various types of traffic is the Markov Modulated Fluid
(MMF) process [9]. The advantage of this model over traditional queuing models is
that the numerical complexity is independent of the buffer size. However, unlike the
case of the MMPP in which the discrete nature of the cells is preserved, the fluid
model is unable to capture the effect of cell variability for small buffer sizes. It can
be viewed as an approximation to the MMPP for large buffer sizes. Furthermore,
as in the case of the MMPP, when a large number of sources are being multiplexed,
the computational complexity to estimate either the queue tail or loss probability can

become prohibitively high.

As far as Long-Range Dependent (LRD) traffic modeling is concerned, Tsybakov et
al [10] constructed a self-similar model by superposing an infinite number of inde-
pendently and identically distributed (i.i.d) heavily-tailed on-off sources with Pareto
sojourn time and derived a lower bound solution for the buffer overflow probability.
The bound is not tight and the accuracy of the model is also questionable. On the
other hand, Norros [11] proposed a simple model in which the input traffic is consid-
ered to be Fractional Brownian Motion (FBM) that is self-similar. For this model, he
obtained an upper bound for the queue length distribution assuming that the queue
scheme is First In First Out (FIFO) and link transmission rate is constant. The prob-

ability that the queue length is greater than z is shown to be bounded below by a



complementary error function that decays more slowly than the exponential form in
the Markovian processes. Some experiments with actual traces of LAN traffic have
also shown that in certain circumstances FBM models serve as a good approximation
in estimating the queuing behavior [12]. In view of the practical significance of FBM,
several attempts have been made to obtain a tighter bound for the performance of
FBM traffic than the upper bound provided by Norros. The most interesting one re-
lies on the fact that even though an FBM process has long range correlations in time,
the frequency components of its time derivative are independent Gaussian variables.
By setting up the problem in the Fourier domain, Narayan [13] has obtained an exact
expression for asymptotic P(V > z) for 1/2 < H < 1, where H is the Hurst param-
eter. In certain cases, the FBM model can represent some traffic scenarios. However,
for most traffic cases encountered in the broadband networks, FBM is considered to

be at the extreme.

To avoid the problems of the previously introduced methods, other approximate ap-
proaches have also been proposed for approximating the CLR. For instance, in [33]
approximations have been derived for the queue length distribution of a fluid mul-
tiplexer fed by a superposition of homogeneous on/off sources. This approach uses
large deviation estimates of the queue length distribution obtained when the link ca-
pacity and the multiplexer buffer size scale (or diverge) with the number of sources
sharing the multiplexer. In [15), the same approach is used to derive the large devia-
tion estimates of the queue length distribution for more general heterogeneous arrival
processes, such as superposition of Gaussian processes. Although the large deviation
estimates give very good approximations of the CLR even under more practically in-

teresting assumptions (e.g., reasonably small number of sources) while avoiding the



complexity of the fluid flow and the MMPP models, they still depend on the knowl-
edge of the arrival process, which for most practical sources is yet to be determined.
To avoid dependency on the assumption of the arrival process, the non-parametric
approach [32] has been introduced. The approach uses the peak rate and the mean
rate of the traffic sources to obtain the distribution of number of cells in an observa-
tion interval and from there to calculate an upper bound for the CLR. A comparison
(as discussed in [14]) between a non-parametric model and a statistical model, such
as the fluid flow model, shows that both models overestimate CLR, however, the fluid
flow model outperforms the non-parametric one. Another approach that neither as-
sumes the arrival process nor uses the declared parameters by user, such as the peak
and the mean rates, is Global Rational Approximation (GRA) algorithm [34]. In this
approach, CLR, as a function of number of sources (or buffer size) is approximated
by a rational function of the form R(z) = gﬁg where P,, and @Q, are polynomial
functions of degree m and n, respectively. The attractive feature of this approach
is that it approximates CLR for a large-sized system using small-sized information.
However, the accuracy of the approximation is closely related to the degrees of m and
n. The computation time can sometimes be long since the fitting process is based on
an iterative algorithm for determining suitable values for m and n. In addition, de-

pending on the values of the pairs, the system of equations to be solved can sometimes

encounter singularity problems.

Simple and yet accurate prediction of CLR is required in order to devise an efficient
traffic (or admission) control scheme. The state-of-the art approaches assume @ prior:
characterization of traffic for the convenience of mathematical tractability. However,

it is quite difficult, if not impossible, to provide an accurate and tight statistical model



that adequately describes the traffic arriving at a queue or a multiplexer. Proper char-
acterization of traffic avoids use of conservative approaches for CLR prediction and,
hence, results in a better utilization of the network resources. It is well known that
CLR in a multimedia environment depends on many unknown and unpredictable traf-
fic parameters, such as burst and silence lengths distributions [16] and more generally,
long term correlation. Recent findings from the analysis of data traffic [17] and VBR
video [18] have shown long-range dependency in the traffic patterns. We believe that
consideration of parameters that represent long-range dependency can improve the

CLR approximation.

Most of the existing model-based approaches in CLR approximation are conservative
due to either limitation of the assumption on the arrival process, or consideration of
the generic parameters that are declared in the initial phase of a call set-up. The
main focus of our research effort will be on the accurate prediction of CLR using a set
of traffic parameters that characterize traffic. We propose to use a universal indicator
of traffic by which CLR can be predicted. Such an indicator of traffic includes a set of
parameters that impact CLR, and these parameters adequately describe the quality
of Short-Range Dependent (SRD), Long-Range Dependent (LRD) and/or self-similar
trafficc. The proposed approach for CLR prediction requires solutions to two main

issues:

e Identification: which refers to finding a set of parameters, as an indicator of traf-
fic, that are sufficient for CLR prediction. The desire is to have fewer parameters

to reduce complexity.
?Markov Modulated sources are SRD, whereas thick-tailed distributed On-Off sources or FBM

sources are LRD.



e Approrimation: which refers to finding techniques that approximate CLR in

terms of the traffic indicator.

To identify the indicator of traffic, we generated different traffic scenarios each by
aggregating traffic from many bursty data sources. The generated traffic from each
traffic scenario has been applied to a FIFO queue with a finite buffer capacity and
the CLR has been measured for different traffic parameters (such as load, burstiness,
etc). Our results (as discussed in Chapter 4) show that the indicator of traffic should

include:

e Traffic load, which is related to the first moment of traffic,

e IDC(1), which is related to the second moment of traffic and it represents the
value of the Index of Dispersion for Counts (IDC) calculated over a single inter-

val,

e K, which is related to the slope of IDC curve in logarithmic scale and it refers
to the degree of self-similarity (for FBM traffic K represents Hurst parameter),

and

e IDC(L), which is the value of IDC at L interval and it represents the degree of

burstiness in that interval.

We examined various approximation techniques to capture the functional relation-
ship between the traffic indicator and the measured CLR. Due to the requirement of
real-time CLR prediction, we are interested in the low complexity approaches. We
have shown that for all traffic profiles, a neural network system consisting of a linear
summation of a set of sigmoid functions can adequately capture CLR as a function of

traffic indicator and buffer size.



As an illustrative example, we propose a new CAC strategy based on the proposed
CLR approximator. In addition to the identification and approximation, the deriva-
tion of the projected traffic indicator for all connections is an issue for the formulation

of the new CAC. This issue will be discussed in Chapters 6 and 7.

1.2 Thesis Contributions

Let us assume that
e traffic patterns are generated by data sources,
e CLR is the quality of service of interest,

e traffic sources do not require a tight bound on CLR, i.e., the traffic engineering

functions assume predictive services over the network and
e the queues are FIFO with finite capacity.
The key questions that the proposed research attempts to answer are:

1. What are the sufficient parameters (as an indicator of traffic) by which CLR

can be closely predicted?
2. How can one approximate the CLR as a function of the traffic indicator?
3. How well does the CLR approximator perform?

4. Given the CLR approximator, how can one derive the projected indicator of

traffic for all the existing connections?



5. How can we formulate an admission strategy based on the traffic indicator? Or
equivalently, how can the two indicators of traffic, i.e., for the existing connec-

tions and for the new one, be aggregated?
6. How effective is the proposed CAC procedure?

Answers to these questions constitute our main contributions.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2, we provide an overview of
the state-of-the art admission control and CLR approximations in broadband ATM
networks. In Chapter 3, we state the research problem, its objectives along with the
justification of why we need to solve this problem. We break down the problem into

three research issues: Identification, Approximation and Derivation.

In Chapter 4, we identify the indicator parameters that are universal and have domi-
nant effect on the CLR. In Chapter 5, we examine various approximation techniques
for the CLR function in terms of the identified traffic indicator and buffer size. A
real-time derivation for the traffic indicator is discussed in Chapter 6, which provides
the basis for the formulation of an admission strategy (discussed in Chapter?7) using
the proposed traffic indicator. Finally, thesis conclusions and some suggestions for

future research are discussed in Chapter 8.

To complement the contents of the thesis Chapters, there are four appendices. Ap-
pendix A gives an overview of congestion control schemes in broadband ATM and
IP networks, which complements the discussions in Chapter 2. Appendices B and

C are related to MMPP and FBM traffic models, respectively. These traffic models
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have been used to generate various traffic profiles and their mixtures. Appendix D
provides a proof that a linear combination of a set of sigmoid functions can accurately

approximate any continuous function, such as the CLR function.
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Chapter 2

State-of-the-Art Connection

Admission Control in Broadband

ATM Networks

Generic traffic management functions can be classified as either traffic control or
congestion control functions. A clear distinction of whether a traffic management
mechanism is traffic control or congestion control is difficult. Traffic control functions
are network functions that take actions to avoid congestion conditions. Congestion
is defined as the state of the network elements in which the network is unable to
meet the negotiated performance objectives for already established connections and/or
new connections. A range of traffic and congestion control functions is necessary to
maintain the quality of service of the connections over the network. These functions

are divided into Connection Admission Control (CAC) and congestion control.

In this chapter we discuss CAC in ATM networks. Appendix B provides an overview

of congestion control schemes in ATM and IP networks. The intent is to position the
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proposed research with respect to the state-of-the-art traffic control functions.

2.1 Background

Since packet switched networks support a large number of bursty traffic sources, sta-
tistical multiplexing can be used to gain bandwidth efficiency allowing more traffic
sources to share the bandwidth. But if a large number of traffic sources become ac-
tive, traffic control is required to relieve the potential network congestion due to the
limited capacity within the network. Provisioning links at a certain utilization, say
80%, does not solve congestion problem due to the random nature of traffic. On the
other hand, setting the resource utilization at a low level, say 50%, so that a simple
admission scheme can prevent congestion, is not an acceptable alternative because
of under-utilizing the resources. Thus, the challenge in packet switching networks is
to develop a framework that maximizes the resource utilization while controlling the
traffic entering the network, so that the temporary periods of overload due to the
stochastic nature of traffic do not turn into sustained periods of congestion, which
deteriorate the network performance. In order to achieve efficient utilization of re-
sources while QoS requirements (delay, loss, etc) of all applications are met, traffic
control functions need to be performed both at the connection set-up and during a
connection life-time. CAC is performed during the connection set-up whereas con-
gestion control is performed during a life-time of a connection. Figure 2.1 shows this
classification of traffic control functions. In the next sections we discuss connection
admission control because of its relevance to this thesis. Congestion control schemes

are discussed briefly in the Appendix A.
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Figure 2.1: Classification of traffic control functions into admission and congestion

control.

What makes the admission and congestion control problem different is the variety
of traffic types to be accommodated each to be provided with a different quality of
service. Thus, before addressing traffic control functions we discuss quality of service

parameters and their relevance to each one of the services.

2.2 QoS Metrics

2.2.1 ATM QoS Parameters

The QoS metric in a connection-oriented service network differs from a connection-less
service network. It can be categorized into two classes: the first class includes the
call control parameters associated with connection-oriented service networks and the
second class is the set of information transfer parameters defined in packet networks'
as shown in figure 2.2. Call control parameters include connection set-up delay, con-
nection release delay and blocking probability. Information transfer parameters are
used by the network for CAC, finding a path that support its service requirement
and so forth. These parameters can be classified into two classes of transmission and

networking parameters.

1 ATM networks are connection oriented packet switching networks.
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Transmission parameters are:

e Cell Error Ratio (CER): CER is related to the bit error rate of the information in the

cell. It is the ratio of cells in error to the total number of transmitted cells.

e Cell Misinsertion Ratio (CMR): CMR represents the number of misinserted cells dur-
ing an interval. Misinsertion happens due to an error in the header, which causes a

cell to appear in a connection flow that it does not belong to.

e Severely-Errored Cell Block Ratio (SECBR): SECBR is the ratio between the number
of severely errored cell blocks and the total transmitted cell blocks. Practically, a cell
block could be a sequence of cells between two OAM(Operation, Administration,

Maintenance) cells.

Networking parameters are:

e Cell Transfer Delay (CTD): CTD is defined as the elapsed time between the transmis-
sion of the first bit of a cell and the reception of the last bit. This delay is composed

of propagation delay, transmission delay, switching delay and queuing delay.

e Cell Delay Variation (CDV): CDV, also called jitter, gives the delay variability between
two consecutive cells. ATM Forum specification differentiates between one-point CDV
and two-point CDV. One-point CDV describes the variability in the pattern of cell
arrival observed at a single measurement point with respect to the negotiated peak
rate, whereas two-point CDV is the difference between the actual measured CTD

between two points and a predefined reference CTD between the two points.

e Cell Loss Ratio: CLR is the ratio between the lost cells and the transmitted cells. Dif-

ferent applications have different CLRs, e.g., 10~3 for telephony and 10~° for MPEG-2
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Figure 2.2: Quality of Service metrics.

video stream. A related parameter to CLR is the Average Time Between Cell Losses

(ATBCL).

e Skew: This parameter shows the difference in presentation times of two objects, e.g.,

video and audio, which impacts the quality of the picture.

ATM Forum [19] specifies a subset of the above parameters as QoS parameters: CTD,
CDV, CLR, CER, CMR and SECBR. Other QoS parameters such as connection

establishment delay, blocking probability and skew may still be very useful.

The ITU-T Recommendation 1.362 specifies six service classes among the various
services and applications that an ATM B-ISDN might support. These are listed in
Table 2.1. Class A and class B are stream type and real-time, whereas class C and class
D are jitter-tolerant. Examples of class A, B, C and D are voice, compressed video,
TCP/IP over ATM and SDMS over ATM, respectively. In class X, the traffic and
timing relationship between the source and destination is defined by the user, whereas
in class Y traffic characteristics can be changed after connection establishment. A
QoS class specifies a set of performance parameters and the object values for the
connections belonging to the class. There can be more than one QoS class associated

with every service class in broadband networks.
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Class Bit Rate | Timing Relation® | Connection Mode Example
A: stream | Constant Required connection-oriented voice
B: stream | variable Required connection-oriented video
C: data variable not Required connection-oriented bulk data
D: data variable not Required connection-less data(between LANSs)
X: data variable not Required connection-oriented data
Y: data variable not Required connection-oriented data

*Timing between source and destination

Table 2.1: ITU-T Recommendation 1.362 for B-ISDN service classes.
ATM Forum defined the following five QoS classes (or service categories):
a) Constant Bit Rate (CBR) category which requests a static amount of bandwidth

and supports real-time applications requiring tight delay and constrained delay

variations,

b) Real-Time Variable Bit Rate (RT-VBR) service which requires tight delay and

constrained delay variations,

c) Non-Real-time VBR (NRT-VBR) which expects low CLR but has no delay vari-

ation requirement,

d) Available Bit-Rate (ABR) which changes its rate based on the network congestion
information and does not require bounding the delay or delay variation but

expects low CLR,
e) Unspecified Bit Rate (UBR) which does not require any delay constraints or CLR.

Each one of the above five classes specifies traffic parameters in terms of Peak Cell
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QoS class Traffic Parameters Guaranteed QoS
PCR CDVT SCR BT MCR |CLR CTD CDV
CBR ) ) o ° °
RT-VBR o ° ° . ° ° °
NRT-VBR ° ° ° . ° °
ABR ° ° ° °
UBR ° °

Table 2.2: Traffic parameters and the required QoS for each one of the ATM service

categories.

Rate (PCR), Cell Delay Variation Tolerance (CDVT), Sustainable Cell Rate (SCR),
Burst Tolerance (BT) and Minimum Cell Rate (MCR). Table 2.2 shows the traffic

parameters and the required QoS for each one of the ATM service categories.

2.2.2 IP QoS Parameters

IP networks have two different architectures for services: Integrated services and Dif-
ferentiated services. Integrated services define two levels of services called Controlled
Load and Guaranteed QoS. In addition, recent work in the Internet Engineering Task
Force (IETF) has focused on defining scalable QoS capability for the Internet back-
bone using differentiated services. The IETF Integrated Services focus primarily on
bounding absolute delay as the principal QoS parameters [21][20], as shown in Ta-
ble 2.3. More recent standard activities in the IETF differentiated services working

group extend the definition of QoS to include packet loss rate.
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QoS parameter Controlled Load Guaranteed QoS

Maximum Delay Variation Not specified Automatically measured
Packet loss rate Little or no enough buffer for
congestion loss zero congestion loss
Minimum delay Large percentages of packets Not specified

do not exceed minimum delay

Average delay Little or no queuing delay Not specified

Table 2.3: IP’s Integrated services QoS parameter: terminology and definitions.

2.3 Call Admission Control (CAC)

When a new call (or connection) is received at the network, the call admission proce-
dure is executed to decide whether to accept or reject the call. A call is accepted if the
network has enough resources to provide the QoS requirements for the new connec-
tion without affecting the QoS of the existing ones. Accordingly, two questions need
to be answered: one is how the amount of bandwidth required by a new connection
can be determined and second one is how we can make sure that service levels for
the existing connections are not affected when multiplexed with the new connection.
Any admission technique that tries to answer these two questions should function in
real-time and attempt to maximize the utilization of network resources. The first step
is to determine a set of parameters to describe the source activities adequately for the
prediction of the performance of interest. This is still an open issue. Nevertheless,
some CAC schemes, as in what follows, assume analytically tractable models such as
multi-state Markovian models to characterize variable bit rate sources. Both ITU-T

[22] and ATM Forum [19] require that the parameters specified in Table 2.2, i.e., traf-
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Figure 2.3: Deterministic multiplexing versus statistical multiplexing.

fic parameters, QoS requirement and QoS class (or service category) will be available

to CAC.

In general, the bandwidth required by a connection can be allocated by two ap-
proaches: deterministic and statistical multiplexing, as shown in Figure 2.3. Deter-
ministic approach allocates the peak rate and causes waste of bandwidth particularly
for those connections with high peak to average bit rate ratios. Although this alloca-
tion can totally eliminate cell level congestion, there is nonzero probability that cell
loss occurs when the number of active sources that simultaneously send cells to the
queue exceed the buffer size. The deterministic approach goes against the philosophy
of the ATM framework, which takes advantages of multiplexing capability. In sta-
tistical multiplexing, the allocated bandwidth to a VBR source is less than the peak
rate, but necessarily greater than the average rate. This allocated bandwidth in some
literature (e.g., [24]) is referred to as statistical bandwidth. As seen in Figure 2.3,
there is a trade-off between deterministic multiplexing and statistical multiplexing.

When the peak to the average ratio is high and peak rate to bandwidth ratio is low

19



Call Admission Control

(CAC)
/ \-
Dynamic Static
\ Y v
RSVP Renegotiation Measurement Quality-Based Class-Based

(IP Networks)

l

l ! ! | ! | .

Equivglent  Markov Superposed Fractional Flow Noa- Other

i Modulsted Thick-Tal Brownian Approximation - Approaches
Capacity  "\fodels OwOrr Motion toCellLoss | orametric AN
i 7 |\ pLare  Globel Rutons
Bermoulli  Fluid vistion  Approximation
MMPP) (MMBP) (MMPF) Estimates Algorithm

Figure 2.4: Classification of Call (connection) Admission Control.

and also burst length is short, statistical multiplexing is beneficial; otherwise, the

deterministic approach is beneficial.

All the proposed CAC schemes in ATM networks are based on statistical multiplexing.
They can be broadly classified into static and dynamic schemes. In the static scheme
the decision is based on the static measures of either the ATM traflic descriptor (PCR,
SCR and BT) supplied by the new connection or the maximum number of allowed
connections for a given type of traffic. Dynamic schemes consider the dynamic changes

in the network in an attempt to better utilize the network resources.

Static schemes are classified into class-based and gquality-based schemes. Dynamic
schemes are classified into re-negotiation and measurement schemes for ATM networks
and Resource reSerVation Protocol (RSVP) for IP networks. Figure 2.4 shows this

classification. In the following subsections, we address briefly all the schemes.
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2.3.1 Class-based CAC

In this scheme, traffic is classified based on the required resources and the QoS re-
quirements. For example, class 1 has bandwidth requirement of 1-10Mbps and class
2 has bandwidth requirement of 10-20 Mbps and so on. Due to the large number of
classes on both bandwidth and QoS requirements, this approach may not be easy to

implement.

Classification is made in several ways. For instance Galassi [23] tabulates the required
bandwidth of all the connections that have the same characteristics. An entry (z, j)
in the table shows the bandwidth required for j class-i connections to meet their QoS
requirements. A class-i connection is accepted if, for the total of j connections, the
bandwidth specified in the table is available. In another scheme [25] (explained by
[26]), the available bandwidth is distributed among various traffic classes. For every
class i, n; is the maximum number of class-i that can be accepted. The problem with
this scheme is that connections of a certain class may be rejected when their number
exceeds the maximum, even though other classes are not utilizing their allocated

bandwidth. Bolla [27] has attempted to alleviate this problem by soft partitions.

The advantage of class-based schemes is their simplicity at connection acceptance.
This is because the scheme uses tabulated results of off-line simulation or computation.
The disadvantages are a low statistical multiplexing gain due to the classification and
an increase in the storage as the number of classes grow. Low statistical multiplexing
gain is due to the unused bandwidth of each class that can not be shared by other
classes. For example, if a class 1 connection has a peak bandwidth between 10 to 20

Mbps, then a 12 Mbps connection causes 8 Mbps of unused bandwidth.

21



2.3.2 Quality-based CAC

Quality-based CACs attempt to predict the quality of service for all connections in
order to decide whether to admit a new call. Most of the quality-based approaches in

the literature have considered the CLR as the QoS of interest.

In the literature, the loss probability in a finite buffer queuing system (with buffer
size z) is often approximated by P(Q > ), the tail of the queue length distribution
in the corresponding infinite buffer queuing system. For infinite buffer queuing sys-
tems, it has been shown in considerable generality that P(Q > z) is asymptotically

exponential, i.e.,

P(Q>z)—> Ae™™ as T — oo. (2.1)

Here 7 is a positive constant called the asymptotic decay rate. A is a positive constant
called the asymptotic constant. The asymptotic decay rate in a finite buffer queuing
system is the same as the one in the equivalent system with an infinite buffer (which
is another reason why the tail is often used to approximate the CLR). However, it is
usually computationally intensive to determine the asymptotic constant A; as a result,

it is sometimes ignored. In the following we describe various quality-based CACs as

classified in Figure 2.4.

Equivalent Capacity (Effective bandwidth)

The classical Equivalent Capacity approximation assumes that the constant A in (2.1)

is 1, i.e., if we write it as

P(Q > z) - e~ ™ tlos(4) as r — oo
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then

Pioss =~ ™™ as T — oo (2.2)

Although this approximation is logarithmically similar to the exact loss probability
[28], the constant can often be a fairly small multiplicative factor. In that case the
approximation would certainly not be useful for any practical loss probabilities. One of
the main reasons that Equivalent Capacity has become very popular in the literature
is that it provides an easy way of allocating bandwidth independent of the number
of sources being multiplexed [2][3][4]. For example, let us consider the following

bandwidth allocation problem:

For each source i, a constraint on the probability of loss PL,, [as defined by (2.2)] is
given by

rss < Threshold, (2.3)

loss

then for a total capacity p , how should the bandwidth be allocated such that the above

constraint is met for each source?

Equivalent Capacity provides a relatively simple answer to this question. It says that
we can look at each source in isolation being fed into a queue with a certain capacity.
Then, for source i , we can find the minimum capacity C; such that the constraint
given by (2.3) is met. The Equivalent Capacity approximation further states that as

long as

Z: Ci S K, (2'4)

none of the constraints P, < Threshold will be violated.

Guerin et al [3] proposed an approximation for equivalent capacity with feasible real-

time computation. They employed two different approaches: one based on the fluid
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model® and the other based on the approximation that the stationary bit rate of N
sources follows a Gaussian distribution with the mean and variance of the aggregate

bit-rate.

a) Gaussian Approzimation: In this method, a connection 7 is characterized by its
average bit rate, m;, and standard deviation, 0;. The problem is to determine the
required bandwidth of ¢y for n multiplexed connections so that the probability
that the aggregate bit rate of all the connections exceeds ¢y is less than €, where
€ is a small positive number. Assuming that the aggregate bit rate follows a
Gaussian distribution, ¢ can be derived (Appendix of [24]) as ¢¢ = m + ao,
where m and o are the mean and the standard deviation of the aggregate bit

rate and « is the inverse of Gaussian distribution with one possible value given

by

a= \/2 In(1/€) — In27.

When a new connection arrives, new m, o and ¢y are calculated. If ¢ is less
than the link capacity, the connection is accepted. The Gaussian assumption
for the aggregate bit rate is true if the stationary distributions of individual
connections are also Gaussian. The approach doesn’t fully explore the amount

of achievable statistical gain because of the zero buffer assumption.

b) Fluid Flow Approrimation: Let us assume each source is characterized by an
independent On-Off source with the exponential sojourn time, peak rate of R,
average rate of m and burst size of 3. If a connection with the parameters

(R, m, B) input to a link with buffer capacity of B, then the service rate that

2Fluid flow model [29] assumes the number of cells during On period is so large that it appears

to be a continuous flow
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gives buffer overflow probability of € is

-1+ -1)2+4
Ci = R> ‘/(;z Yt ey (2.5)

with z = —In(€)(1 — p)B/B, where p is the source utilization, i.e., m/R. In
this framework, the total bandwidth of n connections is equal to the sum of the

equivalent capacities of the individual connections, C;:

However, C overestimates the required bandwidth for the aggregate traffic be-
cause interactions between individual connections have not been considered. To
capture the effect of multiplexing, the Gaussian approximation is used together
with the equivalent capacity. In particular, the total bandwidth required for the
aggregate traffic of n connections, C’, is given by
n
C' = min(m + o'o, Y_c),
i=1
where

n n
n=fm o=3
i=1 i=1

and the mean, m;, and the variance, o2, of the connection bit rate are related

to the connection parameters by
mi = RiB;, o7 = mi(Ri —my).

When a new connection with parameters (Rn+1, Mn+1, Bn+1) arrives, new values
of m and o2 are calculated and C,,, is evaluated from (2.5). Then, C’ is
calculated for all n + 1 connections and if it is less than the link bandwidth,

the call is accepted. Combining the two approaches and choosing the minimum
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value may still overestimate the capacity. Experiments in [30}{14] indicate the

inaccuracy of the equivalent capacity in some situations.

Given that the bandwidth required to meet the needs of each source is C;, the effective
bandwidth (or the equivalent capacity) of all sources is simply 3;C;. Therefore,
in the bandwidth allocation problem, the only computationally intensive part is to
determine the capacity C; for each individual source. This is why Equivalent Capacity
appears to be such a tempting method to use for bandwidth allocation. However, it
is the simplicity of (2.4) which also exposes its main weakness. Since the required
capacities of connections add, it means that statistical multiplexing gain, which is so
important to the success of these high-speed broadband networks, is not exploited.
A little thinking will convince us that the only sources for which the bandwidth of
connections add, as in (2.4), are Poisson sources. For all sources that are more variable
than the Poisson source (such as Markov-Modulated sources), adding the capacities
in this way will prove to be conservative and wasteful of network resources since the
aggregate source will be “smoother” than the original sources. Moreover, if the sources
are less variable than Poisson, adding the capacities would result in the system being

overutilized and lead to violations of the negotiated QoS parameters.

Markov Modulated Models

A Markov-Modulated source is governed by an underlying continuous Markov chain
with state space ¥ that determines the current state of the source. In each state: € %,
the source transmits information at a rate ); according to a stochastic process, which
we will call the modulated process. The sojourn times for each state are exponentially

distributed with the mean —1/m,;. When each sojourn time is over, the Markov chain

26



moves to a state j # i with probability —m;;/m,;. Hence, m;; is often referred to as the
transition rate from state ¢ to state j. The MMPP has been widely used to characterize
different types of traffic such as voice, video, and still images citeElwalid93-[7]. In
this model cells arrive at a multiplexer according to a Poisson process whose intensity
depends on the state of a Markov process. The fact that the modulated process is
assumed to be Poisson allows for mathematical tractability. Moreover, the Poisson
approximation for the modulated process of the MMPP is fairly good when a large
number of Markov-modulated sources are multiplexed, as is expected to be the case in
the broadband networks. Heffes and Lucantoni [7] have studied the performance of a
statistical multiplexer whose inputs consist of packetized voice and data sources. The
server is allowed to be general. The superposition is approximated by a correlated
MMPP which is chosen such that several of its statistical characteristics identically
match those of the superposed process. The system is represented by MMPP/G/1 and
matrix analytic methods are used to evaluate the system performance measures. This
technique is shown to have good results in determining the mean delay in the queue,
but it is not accurate in determining the queue delay distribution. In [5], Baiocchi
et al provide a technique which studies multiplexed On-Off sources by approximating
the aggregate input process by means of a suitably chosen two-state MMPP. Their
model provides a good insight, but is unfortunately limited to the multiplexed On-
Off case. In [8], Choudhury, Lucantoni, and Whitt provide an interesting three-term
approximation to determine the tail probability of the waiting time for independently

identically distributed (i.i.d.) On-Off sources, i.e.,

P(W >t) =~ a1e”™! + aze™ ™ + aze ™, (2.6)
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where a; and 7, are the asymptotic constant and the asymptotic decay rate, re-
spectively, in equation (2.1), while a3, 72, a3 and 73 are chosen to match different
parameters and moments of the distribution P(W > t). Assuming that service time
is small enough in comparison to an average delay, we can approximately represent

the probability of cell loss in the queue by the delay survivor function based on
Pr(Q > % =z)=Pr(W >t),

where h is the time to serve a cell. This approximation for the tail of MMPP can be
computed much more easily than the exact tail, but it still suffers from the computa-

tional complexity involved in determining the asymptotic constant a;.

Another Markov-modulated source that has been extensively used to model various
types of traffic is the Markov Modulated Fluid (MMF) source. In MMF, information
is generated and processed as a continuous flow (fluid) at a rate which depends on
the state of the Markov process. The model gained widespread popularity as a result
of the pioneering work by Anick, Mitra, and Sondhi [9]. The advantage of this model
over traditional queuing models is that the numerical complexity is independent of
the buffer size. However, unlike the case of the MMPP, where the discrete nature of
the cells is preserved, the fluid model is unable to capture the effect of cell variability.
Hence, the fluid model is usually inaccurate for small buffer sizes and can be viewed
as an approximation to the MMPP for large buffer sizes. Furthermore, as in the case
of the MMPP, when a large number of sources are being multiplexed, the compu-
tational complexity to estimate either the queue tail or loss probability can become

prohibitively high.
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Superposed Thick Tail On-Off Models

Tsybakov et al [10] constructed a self-similar model by superposing an infinite number
of i.i.d heavily-tailed with Pareto sojourn time On-Off sources. They derived a lower

bound for the buffer overflow as

c T +a+1\°*!
>
Pouerﬂo"’ = a(a - 1)(Er + Ek)2 ( a )
where
Az 7
E- nel ln—a—l ’ @7
Ec = 1-€")"1-1, (2.8)
a = (E-+Eg) ' -1 (2.9)

In the above set of equations z is the buffer size, a is the Pareto parameter related to
the Hurst parameter, H, by H = (3 —a)/2 and ), is the mean number of Poissonian
active sources. Asymptotically, when z is large, Poerfiow 2> cz~°*! where c is a
constant independent of z but dependent on A; and «. The important conclusion is
that for Pareto On-Off sources the overflow probability, Pperfiow, can not decrease

faster than hyperbolically with the growth of buffer size z.

Fractional Brownian Motion Model

Norros has considered a simple model where the input traffic is considered as Frac-
tional Brownian motion (FBM), which is LRD. There is no exact solution, only an
upper bound approximation method [11][31] was followed resulting in the following

expression for the probability of the queue length:

(C —m)*H . n2-2H

() = (2.10)

P(Q>z)=exp|—
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where H is the Hurst parameter characterizing the long-range correlation in the input
traffic, C is the service rate, m is the mean arrival rate, a is the variance coefficient
and k(H) is given by:

k(H) = H¥(1 — H)!" 4,

From the above upper bound, equation (2.10), it is apparent that the CLR decays
more slowly than the exponential form characteristic of Markovian processes. More
recently, using queuing simulation experiments with actual traces of Ethernet LAN
traffic, it has been shown that the effect of long range dependence traffic can often
dominate the queuing behavior of experimentally measured traffic and that in certain
circumstances FBM models serve as a good approximation in estimating the queuing
behavior [12]. In view of its practical significance, several attempts have been made
to obtain tighter bounds for the performance of FBM traffic than the provided upper
bound in (2.10). The most interesting one relies on the fact that even though an FBM
process has long range correlations in time, the frequency components of its time
derivative are independent Gaussian variables. By setting up the problem in Fourier
domain, Narayan [13] has obtained an exact expression for asymptotic P(V > z) for
1/2< H <1as

1-1y/H JI/H-2
27 4 ]Bexp (= + sto)?/2627] , (2.11)

FPosy(V > z) = l\/—I{—TTJ—T

where s is the difference between the serving capacity and the mean traffic rate and

z + st
d0= t” 0
0
with
b= zH
°T s - H)
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The parameter § is a constant prefactor that has been determined for various values
of H numerically. This parameter decreases as H increases, for instance for H=0.5,

f# = 0.98 and for H =1, 6 is 0.404.

Flow Approximation to Cell Loss

In this scheme [24], a VBR On-Off source is characterized by its peak bit-rate, p;,
and average bit-rate, m;, with no assumption on the distribution of On-Off periods
except that the probability of being in the active state is given by m;/p;. Consider N
independent sources multiplexed on a link with the transmission rate of C cells/sec
and a buffer size of B. Let r; denote the random variable for cell distribution of
connection %, then random variable R = =¥ r; denotes the aggregate traffic from N
connections. Thus, the flow model is a continuous cell stream with the arrival rate R
and departure rate C. Denoting ¢ as available buffer slot, the rate at which cells are
lost, L, is given by
L=)Y (X-C)Pr(R=X){1—- Pr(qg>0[R=X)},
X>C

where X is the aggregate rate. The meaning of the equation is: if X > C and the
buffer is full, the rate at which cells are lost is equal to (X — C). The key in applying
this method is in the fact that as the active period increases while the peak and
average rates are kept the same, the probability of available buffer slot reduces to
zero for X > C. Then the above equation can be reduced as

L=Y (X-C)Pr(R=X),
X>C
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which defines a supremum of L with respect to the burst length. Using L, an upper

bound for cell loss probability can be given as

R N
H = L/Zmi.
=1

An approximation to F, is given by

a1 (Mn/pa){e™*P — 1} +1
s*e~s"C Zil m;

P =

with s* obtained as the root of

Y m;e*P: 1
: —=——-C=0.
L pdier 1+ 1

The calculated P can be used to decide whether to admit a new connection. The
main drawback of this approach is that the size of buffer is not considered in making

the decision.

Non-Parametric Approach

To avoid dependency on the assumption of arrival process, the non-parametric ap-
proach [32] has been considered as an alternative. The approach is based on the peak
and the average cell rates of the connections and does not require any knowledge of
the distribution of the cell arrival process. Consider a link with a transmission rate of
C cells/sec and a cell transmission time (slot) of 1/C. Let R; and a; denote the peak
and the average cell rate of the connection ¢. Given an observation of r slots, the new
peak and the average rates are defined as R; = [rR{/C] and a; = [ra}/C]. If the

multiplexed connections onto the link are provisioned a target CLR of Pcrg, then

S omax(0, k—1)0305---0,(k)"
ke k6163 - - - O (K)*

Porr<U(n, r) =
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where 6763 ---60,(k)* denotes n-fold convolution of 8;(j)s, with 6;(j) denoting the

distribution of the number of cells arriving (maximum or none) during r slots, i.e.,

"3

a;/R; if j=HR;
0:(j) =4 1-a;/R; if j=0 -

| 0 otherwise

Now, the new (n + 1)th connection can be admitted if the calculated U(n + 1, 7) is
larger than the target cell loss rate, PcLg, otherwise, it is rejected. The approach re-
quires real-time calculation of U(n, r) on a recursive manner that calls for a dedicated

signal processor.

Other Approaches

Other approaches for the CLR approximation have also been proposed. For instance,
in [33] approximations have been derived for the queue length distribution of a fluid
multiplexer fed by a superposition of homogeneous On/Off sources. This approach
uses large deviation estimates of the queue length distribution obtained when the link
capacity and the multiplexer buffer size scale (or diverge) with the number of sources
sharing the multiplexer. In [15], the same approach is used to derive the large devia-
tion estimates of the queue length distribution for more general heterogeneous arrival
processes such as superposition of Gaussian processes. Although the large deviation
estimates give very good approximations of the CLR even under more practically in-
teresting assumptions (e.g., reasonably small number of sources) while avoiding the
complexity of the fluid flow and MMPP models, they still depend on the knowledge

of the arrival process, which for most practical sources is yet to be determined.

Another approach that neither assumes an arrival process nor uses the parameter
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declared in the traffic contract (as in the case of non-parametric) is global rational
approximation algorithm (GRA) [34]. In this approach, the CLR as a function of
number of sources (or buffer size) is approximated by a rational function of the form
R(z) = —2"‘781), where P,, and Q, are polynomial functions of degree m and n, re-
spectively. The coefficients of P,, and P, are determined by solving a set of linear
equations: R(z;)=G(z;), i =1, ---, m + n, where the pairs [G(z;), zi] represent
small-sized system information, e.g., {CLR, number of users}. The attractive feature
of the approach is to approximate CLR for a large-sized system using small-sized
system information. Although it is efficient and accurate in many cases, it has the
following drawbacks: 1) The accuracy of the approximation is closely related to the
degrees m and n, which in turn determine the numbers of pairs [G(z;), z;] that are
required, i.e., m + n pairs. The accuracy of GRA can be poor if m and n are not large
enough; 2) The computation time can sometimes be long since the fitting process is
based on an iterative algorithm to determine the suitable values for m and n. In

addition, depending on the values of pairs, the system of equations to be solved can

sometimes encounter singularity problems.

2.3.3 Renegotiation

In this scheme, when a source feels that the presented traffic descriptor during call
admission no longer describes its traffic, it may choose to re-negotiate for more or
less bandwidth by presenting a new traffic descriptor [35]. This approach results in
a better utilization of the bandwidth at the expense of additional signaling overhead.

For this reason, it has not been adopted by the ATM Forum.
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2.3.4 Measurement

In a measurement scheme [36], similar to non-parametric approach, the admission
decision is independent of the cell arrival process. It can be considered as a dynamic
non-parametric approach as it measures the traffic descriptor of the existing connec-
tions in real-time when a new connection requests admission. Dynamic measurement
can provide a better estimate of the QoS. Qiu and Knightly [37] proposed a mea-
surement approach for the delay-sensitive traffic based on the measured maximal rate
envelops of the aggregate flow. Lee and Song [38] proposed a variable window based
measurement in which the window size changes based on the actual measured packet
loss. The advantage of measurement approaches is that it considers the dynamicity
of the network traffic in resource allocation and, hence, results in better utilization of
the resources. Our proposed CAC, as we see, is similar to this approach. The main
difference is that the proposed CAC uses a set of parameters that describe traffic
behavior more adequately. This makes CAC to be more efficient at the expense of

additional complexity.

2.3.5 IP’s Resource reSerVation Protocol (RSVP)

RFC 2205 [39] defines how Internet services utilize the RSVP protocol to reserve
resources and guarantee QoS over the best-effort IP infrastructure. Contrary to ATM,
RSVP employs receiver-initiated, unidirectional reservation. RSVP requires that the
receiver periodically refresh reservation requests. The network may deny a refresh
request or simply stop providing the reserved capacity and QoS in the middle of a
flow under certain conditions, whereas ATM avoids this situation. In other words,

reservations and routing operate independently in IP, while in ATM, they operate
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concurrently during the connection establishment interval.
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Chapter 3

Research Topic

In broadband ATM networks, a connection traverses a set of switching nodes in the
network. To set up a connection, network resources must be reserved at each node
in order to guarantee the contracted quality of service. Figure 3.1 shows a network
example in which a connection between the end-users A and B pass through several
switches. A connection is established once all the switches have enough resources to
handle the connection with the requested QoS. The set of rules (or procedures) that
determine admissibility of a connection in an ATM switch are commonly termed as
CAC. To maximize the utilization of network resources, hence the generated revenue,
without affecting the QoS, CAC scheme has to be efficient. Prediction of QoS, e.g.,

CLR, plays an important role in formulating an efficient CAC.

In this chapter, we state the problem, its objective and why we need to solve this
problem. We break the problem into three research issues that will be addressed in
the next chapters. Let us first list the assumptions that we consider throughout this

thesis.
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Public WAN

Figure 3.1: A network example.

3.1 Assumptions

We consider the following assumptions throughout the thesis:

e All the traffic sources are loss-sensitive data sources. We make this assumption
as the historical patterns from 1995 to 2001 have shown that internet traffic has

doubled each year, and this trend is likely to continue over the next decade [1].

e Traffic, being bursty, is queued at the output of each switch in order to allow

statistical multiplexing gain.

e The CLR is the QoS of interest that needs to be maintained at an acceptable
level for each connection. CAC procedure admits a connection if the CLR
requirements of all the existing connections as well as that of the new one can

be met.
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e Classification of data sources is based on their CLR requirements, i.e., each out-
put of a switch has a sub-queue for each CLR class. For simplicity, the proposed

CAC scheme assumes that all data sources have the same CLR requirement.
e Queue scheduling scheme is FIFO.
e Queues are drained at a constant rate.

e The services that are carried by the network are predictive!. This is because the

proposed CAC is a measurement based approach.

3.2 Problem Statement and the Objectives

The focus of this thesis is to approximate the CLR function for different traffic models
at a node of a broadband networks. The objectives of this research is to maximize
link utilization of a node through an efficient CAC scheme while maintaining the CLR

of all connections at an acceptable level.

1Services can be categorized into three classes: Guaranteed, probabilistic and predictive. Guaran-
teed services require gnaranteed QoS. For this service category, CAC procedure is simple. It accepts a
connection if the requested peak-rate can be allocated. Probabilistic services require a tight bound on
QoS. For these services, QoS-based CACs, discussed in Chapter 2, are more appropriate. Predictive
services have more relaxed QoS requirements and, hence, measurement CACs can be used for these
services in order to achieve higher bandwidth utilization. It has been shown that measurement-based

CAC better utilize the bandwidth at the expense of relaxing the QoS requirements {40].
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Figure 3.2: Classification of Call Admission Control (re-plotted from Chapter2).

3.3 Justification

Let us first examine the performance of the CAC schemes that were discussed in
Chapter 2. Figure 3.2, which is a duplicate of Figure 2.4, shows the classification of

various CAC schemes in broadband ATM and IP networks. They are classified into

two main schemes: static and dynamic.

In a static scheme, the allocated bandwidth to a connection remains unchanged during
the connection lifetime. The way the bandwidth is calculated divides static scheme
into two main classes: Class-based and Quality-based. Class-based approaches have
simplicity at connection acceptance, but require off-line computation and storage for
the results. The required storage increases as the number of classes increase. The
stored value may not track the real value due to the changes in the traffic patterns
of a connection. Besides, the unused bandwidth from one class can not be shared

by other classes. This results in a low statistical multiplexing gain. Quality-based
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approaches predict the QoS metric, for example CLR, of all connections in order to
decide whether to admit a new connection. Various methods such as Equivalent Ca-
pacity, Markov Modulated models, Superposed thick-tail On-Off, Fractional Brownian
Motion, Non-parametric, Large deviation estimates and Global Rational Approxima-
tion methods have been used to approximate the CLR in an ATM multiplexer. All
methods assume that loss probability in a finite buffer queuing system is approximated
by the queue length distribution, which is considered to be asymptotically exponential
(equation 2.1). In case of the Equivalent Capacity method, loss probability, Py, is
approximated by e~ and the bandwidth for each connection is calculated in isolation.
The method assumes that the bandwidth of the connections can be added (see equa-
tion 2.4). This means that the Equivalent Capacity method is effective if each traffic
source can be represented by a Poisson process. For variable bit-rate bursty sources,
adding capacities is proven to be conservative and wasteful of network resources, since
it does not fully explore the statistical multiplexing gain [18][42]. Markov Modulated
Processes are rich stochastic process that model the variable bit rate traffic. In case
of the Markov Modulated Poisson Process (MMPP), Choudhury et al 8] provided
a three-exponential-term approximation that determines the tail probability of the
waiting time for i.i.d On-Off sources, from which an approximation can be made for
the queue tail probability. Although this approximation can be computed more easily
than the exact tail computation, it suffers from computational complexity that is in-
volved in determining asymptotic constant of a; (equation 2.6). Another Markovian
Modulated Process is the Markov Modulated Fluid (MMF) model. The advantage
of MMF over MMPP is that the numerical complexity is independent of the buffer

size. However, unlike MMPP, the MMF model is unable to capture the effect of cell
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variability and, hence, inaccurate for a small buffer size. Furthermore, when a large
number of sources are being multiplexed, both MMPP and MMF models are too
computationally complex to calculate the queue tail (or loss probability). In addition,
MMPP and MMF models can represent the SRD traffic, and fail to represent LRD

or self-similar traffic.

To overcome the shortcomings of Markov Modulated processes, other traffic models
that are LRD and/or self-similar have been considered. For instance, Tsybakov et al
[10] constructed an LRD and a self-similar model by superposing an infinite number of
i.i.d heavily-tailed On-Off sources with Pareto sojourn time and derived a lower bound
solution for buffer overflow probability that cannot decrease faster than hyperbolically
as buffer size increases. However, the bound is not tight and the accuracy of the model
is also questionable. Furthermore, the results discussed in [41] indicate that a 2-
state Pareto Modulated Poisson Process (PMPP) source, constructed by aggregating
many thick-tailed On-Off sources, does not trace actual data traffic of LAN. Another
LRD and self-similar traffic model is Fractional Brownian Motion (FBM). Norros
[11] has obtained an upper bound for the queue length distribution of FBM/D/1
queuing systems. The probability that queue length is greater than z is shown to
be bounded below by the complementary error function which decays more slowly
than the exponential form in the Markovian processes. Narayan [13] has obtained
an exact expression for asymptotic queue length distribution (equation 2.11). Some
experiments from actual measurements of real data show that FBM model can be
used as a good approximation for LAN traffic [12]. However, there are traffic scenarios
and services that have non-fractal property. Other approximate approaches in CLR

prediction, such as using large deviation estimates [33][15], rely on the assumption of
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arrival process, which is still unknown for many practical sources.

Unlike the previously discussed CLR prediction approaches, the Non-parametric ap-
proach [32], Flow approximation to Cell Loss approach [24], and Global Rational
Approximation (GRA) algorithm [34] do not rely on the assumption of the arrival
process. Both the Non-parametric approach and Flow approximation to Cell Loss use
the declared parameters by source (such as peak rate, sustainable cell rate) to predict
the CLR. As far as the performance is concerned, a comparison between the Non-
parametric approach and Equivalent Capacity has shown that the Non-parametric
approach achieves lower statistical multiplexing gain than the Equivalent Capacity
[14]. This is because the Non-parametric approach is less sensitive to the buffer size
and, hence, an increase in the buffer size does not result in a significant increase in
the statistical multiplexing. Other sets of experiments in [14] have investigated the
effect of the required CLR on the amount of statistical multiplexing. The amount
of statistical multiplexing gain in the Non-parametric approach is more sensitive to
the required CLR than that of the Equivalent Capacity. the Flow approximation to
Cell Loss approach does not consider the impact of the buffer size in decision making
and, hence, it is conservative compared to the Equivalent Capacity approach. The
attractive feature of the GRA approach is that it approximates the CLR for a large-
sized system using information from a small-sized system. However, if the degree of
the polynomials of the numerator and denumerator is not large enough, it results in
a poor approximation. In addition, the complex computation for the fitting process

may encounter singularity.

Dynamic approaches, in general, try to utilize the network resources more efficiently

43



compared to the static ones. Renegotiation approach has not been supported by the
ATM Forum because of the signaling overhead. A measurement-based approach is
indeed a dynamic version of a non-parametric approach, as it uses real-time measure-
ments of the ATM traffic descriptor. Although the measurement approach outper-
forms the non-parametric one, it still overestimates the required bandwidth. This
is because the ATM traffic descriptor, i.e., the peak-rate, mean rate and burst size,
cannot describe the correlation between the traffic patterns. RSVP, which has been
proposed for Integrated Services over IP networks, not only is unscalable but also

cannot guarantee delivering the QoS throughout the life-time of a connection.

Devising an efficient admission control that maximizes the utility of the resources
remains unsolved, as all the state-of-the-art approaches for the CLR prediction tend

to be conservative.

3.4 Research Issues

Accurate prediction of CLR is required in order to devise an efficient CAC. What
all the previous studies have in common is the assumption of a priori characteriza-
tion of the traffic for the convenience of mathematical tractability. Without proper
characterization of the traffic, the network may adopt a conservative approach for
the CLR prediction and hence underutilize the resources. It is well known that the
CLR in multimedia environments depends on many unknown and unpredictable traffic
parameters, such as the burst and silence lengths distributions [16] and more gener-
ally, long term correlation. Recent findings from the analysis of data traffic [17] and

Variable-Bit-Rate (VBR) video [18] have shown long-range dependency in the traffic
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patterns. With respect to the stated problem and the state-of-the-art approaches,

there are three research issues involved:

1. Identification: which refers to forecasting the relevant traffic features (charac-
teristics of traffic), or identifying dominant parameters of the traffic that impact
the CLR. Representing these parameters as the Traffic Indicator, the first re-

search issue is identifying the traffic indicator.

2. Approximation: which refers to finding a technique that approximates the
CLR as a function of the traffic indicator. The technique needs to be accurate

and less complex.

3. Derivation: which refers to finding the techniques and approaches that derive

the projected traffic indicator in real time in order to perform admission control.

In the following chapters we address each one of these issues in detail.



Chapter 4

Identification of Traffic Indicator

4.1 Background

As discussed in Chapter 3, the first research question that we need to answer is to
identify a set of traffic parameters that can describe the aggregate traffic to an output
queue of a broadband switch. Moreover, the set should include necessary parameters
that form the CLR predictor variable. Under the assumptions of Chapter 3, a solution
to this issue requires analyzing the statistics of the aggregate traffic from many data

sources that arrive to an output queue of an ATM switch.

4.2 Traffic Models

The traffic that arrives to an output queue of a switch is the aggregate traffic from
many bursty data sources. This aggregate traffic can be represented by time series of
X={---, Xi-1, Xi,---}, where X; is the number of cells that arrive in the ith count
interval, say one millisecond or one second. The aggregate traffic to a queue may

represent short-term dependency, long range dependency or self-similarity in its traffic
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patterns from time to time. Thus, we use a mixture of traffic models ranging from
conventional ones to self-similar (or fractal) ones in order to generate the aggregate
traffic. In the following subsections we discuss some of the SRD and LRD traffic

models that can be used to model data and VBR sources.

4.2.1 Data Traffic Modeling

Recent studies on Local Area Network (LAN) and Wide Area Network (WAN) traffic
suggest that the assumption that packet inter-arrival time is exponentially distributed
is not always valid. In fact, a large number of papers (e.g., [17] and [42]-[45]) suggest
that the modeling network traffic, such as Poisson processes, might result in under-
estimating the burstiness of the packet arrivals and the required buffer sizes. Some
WAN traffic studies [17][42] have provided evidence that the actual network traffic
is self-similar, or in other words, its bursty nature is kept over a wide range of time
scales. Poisson models are only valid when modeling the arrivals of TELNET or FTP
user sessions but not the FTP or WWW (World Wide Web) data bursts. The fol-
lowing definitions for long range dependence and self similarity are adopted from the

literature.

Definition 1: A weakly stationary process (i.e., stationary as regards its second
order statistics ) is called “long-range dependent” if the correlation r(k)' between
neighboring exclusive blocks does not asymptotically vanish when the block size is
increased, i.e., 35, r(k) = 0o. This correlation ts zero for the Potisson process

and decays ezponentially towards zero for the finite space Markov processes.
1 Autocorrelation function r(k) of an stationary process is defined as E[X (¢) X (t+k)]/ E[X (t) X (t)],

where X (t) is a discrete time stochastic process or time series of number of cells at time instance &.
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Definition 2: A stochastic process X, is called “self-similar” if it behaves up to a
scaling factor in ezactly the same way at all the time scales. The main parameter
that characterizes a self-similar process is the Hurst parameter (H). X, is called

strictly self-similar [18], with Hurst parameter H, if:
r(k) = 5 [(k+1)% — 2K + (k= 1], for 05 <H<1
and asymptotically self-similar when:

r(k) = [kz(l“”)] -L(k), for k— oo and lim Litz) _ 1, Vz > 0.

t—oo L(I)

From the above definitions, it can be seen that a self-similar process is LRD as long as
it has some positive correlation at all the time scales. This property is quite important
to be considered in tele-traffic engineering, since LRD traffic patterns are the worst
that could be expected. The fluctuations in LRD traffic are larger than those of SRD
traffic and, hence, congestion build-up occurs more quickly. A lot of research has been
carried out in order to develop methods that produce self-similar traffic, among them
are the generation of n (n — oo) On-Off sources with heavy-tailed sojourn time distri-
bution such as Pareto and the generation of sample paths of a fractional ARIMA [46]
process. However, these approaches require a very large amount of computer process-
ing power and take a very long time to come up with valuable results. Furthermore,
results of [41] show that traffic generated by aggregation of n On-Off sources with
Pareto sojourn time (known as Pareto Markov Modulated Poisson Process, PMPP)
can not track the real traces of data traffic, whereas Fractional Brownian Motion
(FBM) provides a closer match. FBM is a zero mean Gaussian process, By (t), with

the Hurst parameter H, and it is defined by

1. E[Bu(t)] =0,
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2. By(0) =0,

3. By(t + 6) — By(t) is normally distributed, N(0, o|é|¥),
4. Bg(t) has independent increments and

5. E[Bu(t)Bu(s)]=0%/2 (|t/*¥ + [s|*¥ — [t — s|2#).

By (t) is exactly self-similar, perfectly determined by H. In (31], FBM is defined to

characterize the number of arrivals in the interval (0, t):
N, = mt + VamzZ,,

where m denotes the mean of the process, a is the coefficient of variation and Z, is
the normalized FBM with the Hurst parameter, H. FBM is an example of an exactly
self-similar process that can be generated using fast algorithms. In the Appendix
C, we detailed the approach that we used in this study to generate Fast Fractional

Brownian Motion (FFBM) traffic samples.

4.2.2 VBR Traffic Sources

On-Off sources, as shown in Figure 4.1, have been widely used to model bursty traf-
fic sources (e.g., [5][14]). With this model, traffic is switched off in the Off state,
whereas in the On state traffic is generated deterministically at a constant rate A.
For analytical tractability, in most literature, duration of On and Off periods has
been assumed to be exponentially distributed and mutually independent with means
B~! and a~!, respectively. Superposition of N On-Off sources results in an N +1
state birth-death process. The state space grows as the number of sources in the

superposition is increased. As originally proposed by Heffes and Lucantoni (7], the
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Figure 4.1: A single On-Off source that models a bursty traffic source.
(0]

Figure 4.2: A 2-state MMPP that models aggregation of many On-Off sources.

aggregate packet arrival process from the superposition of many On-Off sources (with
exponential sojourn time) may be represented by a doubly stochastic Poisson process
that is modulated in a Markovian manner. They approximated the aggregate packet
arrival process of N On-Off sources by a 2-state MMPP shown in Figure 4.2. The
approximating MMPP model has been chosen in such a way that its statistical char-
acteristics match those of the aggregate traffic from the On-Off sources. There are
four parameters for the chosen 2-state MMPP; namely, the mean sojourn times (oy !
and o; ') and the Poisson arrival rates of A, and ), in states 1 and 2, respectively.
In Appendix B, we outlined a procedure that determines the four parameters of the

MMPP from the characteristics of the original On-Off sources.

Video sources are divided into two main categories: video conference with uniform

activity level, i.e., slow movements and broadcast video with more dynamic sequences.

a) Modeling of video conferences:
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Video conferencing may be modeled by a model originally proposed by Maglaris
et al [47]. In this model, each video source is represented by a continuous-time,
discrete state Markov chain. The bit-rate from a source is quantized into M
discrete levels of step-size v. The model switches between various levels and
spends exponentially distributed time at each level. Maglaris noted that the
continuous time, discrete-state Markov chain, may be constructed from the su-
perposition of M mini On-Off sources, where each mini-source is in one of the
states, On or Off. Thus, superposition of video sources may also be approx-
imated by a 2-state MMPP. The experimental results show that a two state
MMPP source gives an excellent estimate of the covariance of teleconferencing
the VBR video over a large number of frames [41]. Other traffic models that
can represent video conferencing are Discrete Auto-Regressive (DAR) models
and Gamma Beta Auto Regressive (GBAR) models. It has been shown that
the DAR model does a good job of capturing the actual traces when a number
of sources are multiplexed, whereas GBAR is well suited for single source video

modeling, i.e. no interaction with other sources [48].

b) Modeling of broadcast video :

The results presented in [41] show that a simple 2-state MMPP fails to predict
the covariance of highly correlated entertainment video or TV series. Moreover,
Skelly [49] has found that an 8-state MMPP source can fit a TV-quality video
segments. A simple DAR or GBAR model is not sufficient for the broadcast
video, although the DAR model is used as a building block in a more complex
model. Heyman [50] has shown that the number of bits per frame has a different

autocorrelation function for the broadcast video than for video conferences. The
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autocorrelation function for video conferencing decays geometrically to zero. For
the broadcast video, autocorrelation function does not decay to zero. Moreover,
the first frame after a scene change has significantly more bits than the other
frames in the scene. Ramamurthy and Sengupta [51} observed that the corre-
lation function declines more rapidly at the small lags than at the large lags,
and that the time series can be described by a semi-Markov process, for which
states have been identified by the bit rates for different types of scenes and one

state for scene changes.

4.3 System Model in Traffic Indicator Identifica-
tion

Figure 4.3 shows the system model that we used in order to generate various mixtures
of Short Range Dependent (SRD) and Long Range Dependent (LRD) traffic that
arrive to an output queue of a switch. Conventional Poisson traffic does not represent
any correlation between the time series of X. Traffic generated by an MMPP model
is SRD, whereas traffic generated by an FBM source is LRD and self-similar. Each
traffic source independently sends its traffic, in terms of cells, to a finite queue. Thus,
the time series of X={---, Xi_1, Xj,-- -} represents the aggregate traffic to the queue.
Each sample represents the total number of cells arrived in a time interval from all
the sources. By changing the parameters of each model as well as the mixture ratios,
we obtain different traffic profiles with different traffic characteristics. As shown in
Figure 4.3, for each traffic profile, the CLR is measured for different queue sizes and

the time series of X, and it is stored for further statistical analysis in this chapter.
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Figure 4.3: Simulation model to identify the traffic indicator.

4.4 Candidate Traffic Indicator

The commonly used parameters of X that may be thought to be considered are:
E[X], var(X) and the peak value of X. The results reported in [53] have indicated
that these parameters may be sufficient to characterize some applications, such as
voice and video conference traces. However, they failed to characterize VBR and data
sources. This is because E[X] and var(X) are measured over a single time scale. As
a result, we need to use measures that are applicable over multiple time scales. That
is why the Index of Dispersion for Counts (IDC) is considered as a reliable measure
of variability and it provides more information than variance, since it is calculated
for multiple time scales. Let us assume Y, is a random variable that represents the
number of packets arrived in n consecutive intervals, i.e., a sample of Y, is the sum

of n samples of X. Then, IDC is defined as [54]

var(Y,)  Var(Y,)

IDC(n) = “prt = =3

nZl’ 2’ .o
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Figure 4.4: IDC curve for various traffic profiles.

For a long range dependent traffic, Var(Y,) experiences a faster growth as a function
of n implying that IDC is a measure of burstiness. Figure 4.4 shows the IDC curves
for Poisson, MMPP1, MMPP2 and FBM traffic models. MMPP1 and MMPP2 are
two different MMPP sources with different peak-to-average ratios of 4 and 20, respec-
tively. As seen in Figure 4.4, for a Poisson source IDC is a constant, i.e., showing no
variability. For both MMPP1 and MMPP2 sources, the IDC curves reach a plateau at
large values of n (or time), which indicates that the MMPP traffic is SRD. For FBM
source IDC is increasing monotonically, which indicates that the FBM traffic is LRD.
The IDC curves for the two plotted FBM sources are associated with two different

burstiness levels (i.e., Hurst parameters).

Since time varying traffic arriving to a queue may represent different variability from

time to time, we are interested in identifying a set of parameters from the IDC graph
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that can describe the traffic behavior. Let us define
K =~ (1+5s)/2

where s is the slope of the linear part of the IDC curve in a logarithmic scale, i.e.,

log(IDC(n3)) — log(/DC(n,))

100 >n, >n; > 1
(n2—n1)—0 log(n,) — log(n1) ne ™

S =

and

K = H for FBM traffic

The value of K is between 0.5 and 1. The higher the value of K, the burstier the

traffic. For conventional Poisson traffic, K is 0.5. For MMPP1 and MMPP2 sources,

K equals 0.7 and 0.9, respectively.

Aside from the slope of IDC, there are two other parameters from the graph that may
describe the behavior of a traffic profile. One is the initial value of IDC, i.e., IDC(1),
and the other is the value of IDC calculated at a longer time interval L, say 300 time
units. IDC(1) is related to the second moment of traffic as

E[X?] — E?[X]
EX]

IDC(1) =

whereas IDC(L) shows the amount of burstiness evaluated at the dependency interval
L. It is given by:

var(Yy)

IDC(L var\ iyl L>1,2, .-, 4.1
(L) E(Y2) (4.1)
Yo = {--, YU, VR vy, (4.2)
kL
Y = Y X, k21,2 - (4.3)
i=(k—1)L+1

The slope of IDC curve as well as IDC(1) and IDC(L) change as the traffic becomes

a mixture of various traffic models. For instance, Figures 4.5 and 4.6 show the IDC
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curves for a mixture of Poisson sources with MMPP1 and MMPP2, respectively.
Figure 4.7 shows the IDC curve of the aggregate traffic of a mixture of MMPP1
and MMPP2. Figures 4.8, 4.9, 4.10 and 4.11 show the IDC curves for the mixtures of
MMPP1 and FBM (H=0.6), MMPP1 and FBM (H=0.8), MMPP1 and FBM (H=0.9)

and MMPP2 with FBM (H=0.9), respectively.

It can be observed from Figures 4.7 to 4.11 that when the traffic profile changes, the
IDC slope, IDC(1) and IDC(L) change. As a result, in addition to traffic load, we
consider IDC(1), IDC(L) and K (which is related to the slope of the linear portion of
the IDC curve), as the potential parameters that may describe a traffic mixture. The

next question is to determine which one of these parameters impacts the CLR.

4.4.1 Effect of the Traffic Indicator Parameters in the CLR

To determine which one of the parameters of the traffic indicator impact the CLR, we
use the model shown in Figure 4.3 for the CLR measurement. Traffic generated from
a mixture of traffic models is applied to a queue that is served at a constant rate. We
measure the CLR? versus the buffer size for each traffic mix scenario. The ratio of the
arrival rate of the aggregate traffic, in terms of cells/sec, to the service rate is defined

as traffic load.

Figures 4.12 and 4.13 show the measured CLR versus buffer size (in terms of cells)
for MMPP1 and MMPP2, respectively, for different traffic loads. As seen, traffic load
has significant impact on the CLR. On the other hand, when the traffic load is high

and the traffic source is highly bursty, e.g., MMPP2, buffer size does not have any
2The confidence interval for all CLR measurements is 95%.
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significant impact on the CLR. Let us consider the case where traffic load is constant
and the mix ratio is changing. Figure 4.14 shows the CLR versus buffer size for various
mix scenarios of MMPP1 and MMPP?2 sources. Examining this curve in conjunction
with IDC curves of Figure 4.7 reveals that the CLR is also a function of IDC slope
and/or IDC(L). On the other hand, for a mixture of MMPP1 and FBM (H=0.8) the
changes in the IDC slope are insignificant (see Figure 4.9). Thus the CLR changes,
shown in Figure 4.15, are due to the value of IDC(L). Now, let us examine the IDC
and the CLR of the mixture of MMPP2 and FBM. Figure 4.11 shows the IDC curve
and Figure 4.16 shows the CLR at traffic load of 0.9. As seen, the IDC slope and the
value of IDC(L) have both impacted the CLR. As a result of the above experiments,
we consider an indicator of traffic that consists of four parameters: Load, K, IDC(1),
and IDC(L), i.e.,
I¢ = {Load, IDC(1), K, IDC(L)},

where I is the global indicator of traffic that we propose as a CLR prediction variable.

The next questions are:
how can we assess the performance of such a traffic indicator?
how can we predict the CLR using this indicator?

These questions are answered in the next chapter.

4.5 Confidence Interval for CLR Measurements

As the time series X generated by a traffic profile is a stochastic process, the question
that is raised is how good is the measurement of the CLR? Since the true value

of CLR is unknown, one cannot compare it to the correct answer. However, what
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we can do is to postulate an interval, as confidence interval, and make a probabilistic
statement about the chance that CLR is covered by that interval. Let random variable
S represent the measured CLR for a given traffic load at a given buffer size. Using

the following theorem from the literature, we can estimate E(S) by S.
Theorem: The estimator
S = —11;(51 +S2+ -+ Sp)

has the following properties

o (a) E(S) = E(S) =,
e (b) var(S) = o2/n,
e (c) For n sufficiently large S is approximately normal with the above mean

and variance.

Parts (a) and (b) can be proved using the estimation theory discussed in the

literature (e.g., [55]) and part (c) follows from the central limit theorem.

By the above theorem, CLR is normally distributed, i.e. CLR € N(g, o/n%3). Then,

— B _<_ zl—a/2) =1- «, (44)

Pr(—zi_as2 < pYRLE

where (1 — @) is the probability that a random variable from Z € N(0, 1) will fall in

the interval (—2zi_a/2, Z1-as2)- Equation (4.4) can be manipulated to the form
Pr(S — (a/n®%)z1_a2 <0 < S+ (0/n*%)z1_sp2) = 1 — . (4.5)
Assuming
L = 55— (a/n*%)z1_q/2,

U = S+ (a/n®)ziap; (46)
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equation (4.5) states that the probability that the random interval (L, U) contains p

is (1 — a).

In the following we obtain the confidence interval for the measured CLR of the three
traffic models that we use in this thesis, i.e., MMPP1, MMPP2 and FBM. For every
CLR of a traffic profile at a given buffer size, the confidence interval is calculated
using n = 10 samples of CLR measurements each obtained by a different seed in the
generation of the time series X for the specified traffic profile. It is noted that in each

one of the n runs about 20 x 10° cells are generated.

Case 1: Confidence Interval for the CLR measurement of FBM

Let us consider an FBM source with Hurst parameter H = 0.8. Figure 4.17
shows the CLR measurements with the confidence coefficient of 99% at load 0.7,
0.75 and 0.8. The confidence intervals have been calculated using equation (4.6)
with n = 10 samples, each obtained from different seed value in the generation of
time series X. Figure 4.18 shows the measured CLR and the confidence interval

for load 0.9 and 0.95 with 99% confidence coefficient.

Case 2: Confidence Interval for the CLR measurement of MMPP1 Source

Figure 4.19 shows the CLR measurements with the confidence coefficient of
99% for MMPP1 traffic source. Similar to FBM case, the interval has been
calculated using n = 10 measured samples. At higher traffic load, the variance
of the measured n samples is considerably low. As a result, the confidence

interval is smaller.

Case 3: Confidence Interval for the CLR measurement of MMPP2 Source
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The CLR measurements of MMPP2 source with confidence coefficient of 99%
has been ploted in Figures 4.20 and 4.21. Similar to the cases 1 and 2, the
coffidence interval for each measured CLR is calculated using n = 10 samples
of the random variable that represent the CLR for the given traffic load at the

given buffer size.

4.6 Summary

In this chapter we first generated various traffic profiles by mixing both SRD and
LRD traffic and then applied them to a finite FIFO queue that is served at a constant
rate. For each traffic profile, we obtained the IDC curve versus interval-size and the
measured CLR versus buffer size. Examining both the IDC and the CLR curves
for various mixtures of traffic reveals that the traffic indicator should include Load,
which is related to the first moment, IDC(1), which is related to the second moment,
K, which is related to the IDC slope, and IDC(L), which represents the degree of
burstiness evaluated at the dependency interval L. In the next chapter we examine

the performance of this indicator in approximating the CLR function.
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Figure 4.5: IDC curve for various mixtures of Poisson and MMPP1 sources.
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Figure 4.6: IDC curve for various mixtures of Poisson and MMPP2 sources.
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Figure 4.7: IDC curve for various mixtures of MMPP1 and MMPP2 sources.
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Figure 4.8: IDC curve for various mixtures of MMPP1 and FBM (H=0.6) sources.
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1IDC for Mix of FBM with H=0.8 and MMPP1 source
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Figure 4.9: IDC curve for various mixtures of MMPP1 and FBM (H=0.8) sources.
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Figure 4.10: IDC curve for various mixtures of MMPP1 and FBM (H=0.9) sources.
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Figure 4.11: IDC curve for various mixtures of MMPP2 and FBM (H=0.9) sources.
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Figure 4.12: Measured CLR versus buffer size for MMPP1 source.
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Figure 4.13: Measured CLR versus buffer size for MMPP2 source.
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Figure 4.14: Measured CLR versus buffer size for various mixtures of MMPPI1 and

MMPP2 sources.
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Figure 4.15: Measured CLR versus buffer size for various mixtures of MMPP1 and

FBM (H=0.8) sources.
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Figure 4.16: Measured CLR versus buffer size for various mextures of MMPP2 and

FBM (H=0.9) sources at load=0.9.
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Figure 4.17: The measured CLR versus buffer size with confidence coefficient of 99%
for FBM traffic (H=0.8) at different traffic load.
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Figure 4.18: The measured CLR with confidence coefficient of 99% for FBM traffic
(H=0.8) for traffic load of 0.9 and 0.95.
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The measured CLR with confidence interval of 99%
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Figure 4.19: The measured CLR with confidence coefficient of 99% for MMPP1 source.
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Figure 4.20: The measured CLR with confidence coefficient of 99% for MMPP2 traffic
for traffic load of 0.9 and 0.95.
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Measured CLR with the confidence interval 99% for MMPP2 source at load 0.9 and 0.95
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Figure 4.21: The measured CLR with confidence coefficient of 99% for MMPP?2 traffic
for traffic load of 0.9 and 0.95. As the variance of each measurement is small the

confidence interval is small.
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Chapter 5

CLR Approximation Using Traflic

Indicator

5.1 Background

As discussed in the previous chapters, in the literature CLR has been approximated
by P(Q > z), the probability that queue exceeds z. There are two main shortcomings
associated to this approximation. First, CLR assumes a finite buffer space whereas
P(Q > z) assumes an infinite buffer space. Second, the derived queue overflow
probability assumes a traffic model, for the convenience of mathematical tractability,
that may not follow the real traffic traces. For instance, the derived P(Q > z) [52]
based on a Poisson model underestimates the CLR when data sources are bursty.
When an MMPP source is used to model one or many data sources that are SRD, the
analytical result of P(Q > z) overestimates the CLR. For superposed tick-tail On-Off
sources, the derived P(Q > z) only provides a lower bound for CLR [10], while using

the analytical results for the FBM traffic model provides an upper bound for CLR
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[13][31]. Table 5.1 summarizes the results of various approaches.

In searching to obtain an approach that closely approximates the CLR, in Chapter
5 we identified a set of parameters that impact the CLR and they can be used as
indicator of traffic. The candidate traffic indicator consists of four parameters: Load,
which is related to the first moment of traffic, IDC(1), which is related to the second
moment of traffic, K, which is related to the slope of IDC curve versus time, and
IDC(L), which is the IDC value at the dependency interval L. In this chapter, we
propose an approach that uses traffic indicator for CLR approximation [97]. Since
approximating CLR using a minimum number of parameters is desirable, we also
consider traffic indicators that contain a subsut of parameters that were identified in
Chapterd. We show that all the parameters of the set is required for a close CLR

approximation.

5.2 A Proposed Simple Approach in CLR Approx-
imation

The problem of CLR approximation as a function of the traffic indicator can be
abstracted as a task of approximating an unknown function from a set of input-
output pairs, say, T={(1%, FPh,); p=1, ---, P}, where P is the number of pairs.
It is hypothesized that an input vector Ig,= {Load”, I DC?(1), K? IDC?(L)} and an

output sample PP,, are related by an unknown function f

Pi,, = f(Ig, BP)+e? Vp
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Model CLR Approximation Comments
Poisson Underestimation|
P(Q>x)-l—(l—p)§#L;x):¢m 0 .041
MMPP - - Complex &
A >x)=PE >5. xtlh , limitation of
PW 2t)~ e " + a,e”"" + g,e™ ™ resuits
Su”mm‘ P > > < x+t atld et
on.of (@ >x)2 (2= 1XZ. * E,)° p” ]z-: - Lower-bound
(Pareto) g = 2=
Ey=(-e¢™™)'-1 a=E. +Ey -1 ‘ z’ n -1
2=l
21—H-ld H“-2
P(O >x) = 0 6 exp [(x+ st5)? /2627 || Asymptotic
JH -H? Result
FEM d. = X * 5t to = —__ s=1
Y °" sa-H) =i=p
(C -m)*? 2-2H
P >x -
(@>x)=~ W{ 2R (H).IDC Wm
Upper-bond
where k(H)= HEZQ- )" Result

Table 5.1: A summary of the state-of-the-art CLR approximation for various models.

where BP is the buffer size and €? is a random vector due to the imprecise measurement

of P, and IZ.. The task of function approximation is to find f, an approximation of

f, such that the metric of an approximation error, e.g., Mean Squared Error (MSE)

1s minimized.

In a classical approximation theory, arbitrary non-linear functions are approximated

by a linear combination of nonlinear basis functions. As examples of such classical

methods, Spline fitting, projection-based approximation and Fourier methods can be

mentioned. On the other hand, classical techniques for approximation can be embed-

ded naturally in the computational framework of a multi-layer feed-forward network
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Figure 5.1: A three layer feed-forward neural network architecture (superposition
of sigmoid functions) that approximates CLR (output) as a function of the traffic

indicator.

as shown in Figure 5.1. It has been demonstrated [56] both analytically and construc-
tively that function representation by multilayer feed-forward neural networks is more
general since it includes many representation schemes of the classical approximation

methods.

Figure 5.1 shows a three layer feed-forward neural networks system that we use in
this case study. The three layers are: input, hidden and output layers. There is
no processing neuron (node) at the input layer. The middle layer in Figure 5.1 is
called hidden layer as its outputs are not directly accessible. Each hidden layer node
simply implements one basis function, and the output layer (or node) linearly com-
bine the outputs of the hidden layer nodes. For a given traffic indicator, say _l_:_é_:

{Load?, IDC?(1), K7 IDC?(L)}, the output of a hidden layer node, say ith node, is
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given by
O; = h(W,Load + W2IDC(1) + W3K + W4IDC(L) + W5B)

where

W == [I’Vl "Vg “V3 I’V4 "Vs]

is the weight vector and
Y = (Load IDC(1) K IDC(L) B]

is the input vector. The function h(WY?) is often referred as an activation function.
Its domain is the set of activation rules, net, of the neuron model. Each neuron (node)
in the hidden layer performs the operation of summation of its weighted input, or the
scalar product computation to obtain net. Subsequently, it performs the nonlinear
operation h(net) through its activation function. The activation function that we used

is a sigmoid function defined as

h(net) = 1 1 (5.1)

— ez-neH—b

where z > 0 is propositioned to the neuron gain determining the steepness of the

continuous function h(net) near net=0 and b is the bias value of neuron.

The reasons that we select a single hidden layer feed-forward neural network with the
sigmoid activation function (as the basis function) to approximate the CLR function

are:

1. It has been proven (see the Appendix D) that a linear combination of sigmoid
functions can approximate any continuous function as long as there is no limit

on the number of sigmoid terms.
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2. Examining Table 5.1 reveals the existence of exponent terms in the CLR func-
tion. This means that a solution to CLR approximation not only needs to
capture fhe exponential term (as in the case of Poisson and MMPP (8]), hy-
perbolic term (as in the case of superposed thick-tail on-off sources [10]) and
e~= term (as in the case of FBM ([13][31] ), but also needs to capture a general
solution for a mixed traffic that is identified by a traffic indicator. As we will see
in the next subsection, a single hidden layer feed-forward neural network with

sigmoid activation function is capable of capturing the CLR function.

5.3 Performance Evaluation of the Proposed Ap-

proach

Figure 5.2 shows the model that we used to collect the statistics of the measured CLR
and the measured indicator of traffic from the collected time series of X. Two sets
of samples were collected: one for training, i.e., adjusting the weights of the system
of Figure 5.1, and the other one for testing the performance of the approximated

function.

In Chapter 4 we determined a set of parameters, which can form the traffic indica-
tor, is {Load, IDC(1), K,IDC(L)}. To assess the effectiveness of each one of these
parameters, we determine the amount of improvement that each one can introduce in

approximating CLR. The performance metric is MSE in approximation.

It is clear that the first and second moments of traffic (which are related to load and
IDC(1)) need to be considered. We consider the following four cases (as shown in

Table 5.2 ) derived by including and/or excluding IDC(L) and H. For each case, the
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Figure 5.2: Simulation model for performance evaluation of the CLR approximator.
CLR function is approximated by
Hossi = fi(IGh B) 1= 17 21 3s 4.

where Ig; is the indicator of traffic for case i, as shown in Table 5.2 and B is the

buffer size. Function f(-) is the superposition of sigmoid functions,

M
g,

fillgi, B) =G + & 1§ e (G 0Wi B+,

in which © denotes the scalar product and

M : Number of sigmoid functions or the equivalent number of neurons,
Wy, : Vector that contains the weight of each input,

w : Weight of buffer size,

Yx; : The bias value for the function,
g, The gain of the kth sigmoid function and
¢; : Function constant.
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Case | Traffic Indicator Parameters
1 Ig, {Load, IDC(1) }
2 Ic, {Load, IDC(1), K }
3 I, {Load, IDC(1), IDC(L) }
4 Ic, {Load, IDC(1), K., IDC(L) }

Table 5.2: Various cases for the set of parameters of the traffic indicator that can be

considered for CLR approximation.

Wi, Yk:» @, and G (all for the case i) are obtained in such a way that the MSE of
the case i, between the actual output and the approximated one is minimized, i.e.,
1 & 2| . S
{; Y- [loe(PS,) — log(f Tai, B)))] } is minimized,
=1

where n is the total number of samples over which the optimization is performed.

Let us drop the subscript i. The most widely used algorithm to minimize MSE is back-

propagation (described in [58]). A set of input vectors, i.e., {input,, inputs, ---, input, }

are applied to the system of Figure 5.1. The weights are adjusted based on the corre-

sponding target vectors, {taget,, target,, ---, target,} at the output. The procedure

stops when a certain stop-criterion is satisfied. The input and output are

Load® Load® ... Load™
IDC(1)®) IDC(1)® ... IDC(1)™
{inputy, ---,input,} = K K2 ... KM (5.2)

IDC(L)M IDC(L)® ... IDC(L)™

L B B e B®™
{target,, ---, target,} = { log P, logP® - log ‘g;l } (5.3)
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Input vector is connected to the kth sigmoid function with Wy (Figure 5.1). For a
given input vector, say input = {input,, inputz, ---, inputs}, where input, denotes
the Load value, input, denotes the value of IDC(1), inputs denotes the value of K,
inputy denotes the value of IDC(L), and inputs denotes the size of buffer, B. The

output of kth sigmoid function is given by:
Oi = 9(3_ Winput, + %) (5.4)

where g(z) = 1/(1 + 7). Let the target state of the output be ¢. Output error can
be defined as

E=3(t-O) (5.5)
where O = =X, Ok + ¢.
Let us consider a neuron whose output is O; and it receives the output of previous
node ! with gain W;. The gradient descent algorithm adapts the weights according

to the gradient error, i.e.,

OE OE 90,

AW, < — = — . 5.6
4T aw, T 80; oWy (5:6)

Specifically, we define the error signal as

oF
P = —— 5.7
%= "30; (5.7)
With some manipulation, we can get

AVVIJ' =€ O'j O[ (58)

where € is learning rate. For the output O, which is a single linear neuron (linear
summation of sigmoid neurons), o; is given by
o= (t-0), (5.9)
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and, hence,

Aak=eaO,, k‘=1,---, M.

For the output of sigmoid functions,
gj =O,~(1—O,-)aaj j=1,'~',M. (510)

In order to improve the convergence characteristics, we can introduce a momentum

term with a momentum gain T and an adaptive learning rate to equation (5.8):

Aag(m +1) = €(m)oOr+TA(m) k=1,---, M (5.11)

AW j(m+1) = €(m)o;O + TAW;;(m) j=1,---, M, 1=1,2,3,4 (5.12)

where m represents the iteration index or epoch that each input is presented to the

system.

In the following subsections, we first evaluate the performance of the CLR approx-
imation with respect to the selection of traffic indicator. After selecting the traffic
indicator, we compare the performance of the proposed CLR approximator with those

proposed in the literature.

5.3.1 Performance Evaluation of the Traffic Indicator

Let us assume that CLR is approximated using an arbitrary number of (for example
40) sigmoid functions !. Two sets of statistics are collected using the system model
of Figure 5.2: training set and test set. We used the training set to adjust the
weights and the coefficients of the neural network approximator of Figure 5.1. The

test set is used to assess the performance of the approximator. Each set consists of

1A higher number of sigmoid functions improves slightly the accuracy at the expense of complexity.
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a thousand samples of input and output pairs , which are the actual measured CLR,
constructed from various traffic profiles: Poisson, MMPP, FBM and their mixtures
such as (Poisson, MMPP1), (MMPP1, MMPP2), (MMPP1, FBM), (MMPP2, FBM),
etc. Figure 5.3 shows the convergence of the MSE as a function of the epoch (iteration)
in adjusting the weights and the coefficients. The stop criteria has been set to be either
an MSE of 1072 in predicting |log(CLR)| or an iteration index of 2 x 10°, whichever
of the two comes first. We observe that at the epoch of 2 x 10°, the value of MSE for
case 4 is 1/5 of that of case 1 and 1/2 of that of case 3. We examine the approximated
functions for all the four cases by applying the test set. Figures 5.4 to 5.10 show the
performance of the approximator with respect to the measured CLR for all the four
cases. Figure 5.4 shows the predicted CLR for all four traffic indicators when the
traffic profile is the mixture of MMPP1 and MMPP2. As seen, for this traffic profile
both Ig, and Ig, closely approximate CLR. Figures 5.5, 5.6 and 5.7 compare the
predicted CLR for mixed traffic of MMPP1 and FBM for different values of both
K and load. From these figures, it is seen that only Ig, closely approximate the
CLR. For the case of FBM traffic, as shown in Figure 5.9, both Ig, and Ig, are
good indicators to approximate the CLR. However, examples shown in Figures 5.8
and 5.10 for MMPP2 and MMPP1, respectively, indicate that only Ig, can closely
approximate the CLR. As a result of the above discussion, we conclude that using
Ig,={ Load, IDC(1), K, IDC(L)} as the traffic indicator leads to a close prediction

of CLR for various traffic profiles.
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Mean Squared Error as function of training epoch
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Figure 5.3: Mean Square Error (MSE) versus the epoch. The training set, which is
the same for all four cases, consists of one thousand input (traffic indicator and buffer
size) and output (CLR) pairs constructed from traffic profiles of Poisson, MMPP1,

MMPP2, FBM (with different H) and their two-by-two mixtures.
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Figure 5.4: An example of predicted CLR for various traffic indicators when the input

traffic profile is a mixture of MMPP1 and MMPP2.
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Figure 5.5: Predicted CLR for various traffic indicators when the input traffic profile

is a mixture of MMPP1 and FBM (H=0.8) and load=0.9.
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Figure 5.6: An example of predicted CLR for various traffic indicators when the input

traffic profile is a mixture of MMPP1 and FBM (H=0.9) and load=0.95
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Figure 5.7: An example of predicted CLR for various traffic indicators when the input

traffic profile is a mixture of MMPP and FBM (H=0.8) and load=0.95
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Figure 5.8: An example of predicted CLR for various traffic indicators when the input

traffic profile is an MMPP2 source at load=0.85.
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Figure 5.9: An example of predicted CLR for various traffic indicators when the input

traffic profile is FBM with H=0.8.
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COmp-rison of the pr.dlaod CLR with the measured one
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Figure 5.10: An example of predicted CLR for various traffic indicators when the

input traffic profile is an MMPP1.

5.3.2 Performance Evaluation of the Approximator

In this subsection, we compare the performance of the CLR approximator that uses

Ig, with the analytical results of FBM and MMPP.

Let us first examine the queue length distribution of FBM. According to [31], there
is no exact formula for the queue length distribution of FBM. Only an upper-bound

approximation method exists as

(C —m)*H . 2—2H

P(Q > z) = exp [" 2%2(H) - IDC(1) -m (5.13)

where C is the service rate, m is the mean arrival rate (Load = m/C) and k(H) is
given by [31}:

k(H) = H¥(1 - H)'7 4.
Now, let us look at an infinite FIFO queue that is served at a constant rate and it
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is fed by a 2-state MMPP source, i.e., MMPP/D/1 queue. The stationary transition

probability matrix is given by [52]

Ao A1 A2 A3
Ay Ay Ay A
0 Ao A Ay ---
P= (5.14)
0 0 A A --
0 0 0 A
where
o0
A, = / P(m, t)dQ(t) (5.15)
0

and P(m, t) is the probability matrix of m cells arriving in time ¢ and Q(t) is the prob-
ability distribution of service time of the queue. Let us assume that x=(xo, X1, ---)
is the steady-state probability (queue length distribution) vector of P. For a 2-state
MMPP, x;s are row vectors of 2 dimension. In order to obtain x;, it is required to
solve the fundamental matrix G, the transition probability matrix of first passage

time, from the following non-linear matrix equation [59]

G = )_ A.G". (5.16)

n=0
Several fast algorithms have been proposed to solve these equations (for example [60]).

For a stable system when the Load < 1 we have
gG =g ge=1
where e is unity column vector. Xg is given by

xo = (1 — Load)g.
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The steady-state equation is given by xP = x as

i
Xi = XoA; + Z Xp4+1Aiy.

=0

One of the solution methods is Adaptive Newton-Kantorovich (ANK) algorithm?[61].

ANK works with the following iteration

i-1

xi = (on+ 5 xmx,-+1_m) I-K), i<M
m=1

Xi = |XoA;+ z XmAiti-m | (I— Al)—l, i>M
m=i—M .

where M is selected such that |74—M+1| < € and
A; = Z AGY

Using x, an upper bound for CLR in a finite queue with size B can be obtained as
o0
CLRanalyﬁcal = Z xieT- (517)
i=B

Now, we consider four cases among many possible cases and compare the predicted
CLR using the proposed approach with that of the analytical approach. We assume

the service rate is C=100 cells/time-interval.

Case 1: MMPP1 as traffic profile
Let us consider that the traffic profile is generated by only an MMPP1 source
that has been mapped from N=51 On-Off sources (see Appendix B) each with
peak-to-average ratio PAR=4, peak-rate A=5 cells/interval, On-time sojourn
time a = 0.284 and Off-time sojourn time 3 = 0.154. Figure 5.11 shows the

analytical result of the CLR approximation for MMPP1 source using equation

2Computaional complexity of the ANK solution can be embeded into a framework of a neural

network system [62].
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(5.17). The measured indicator of traffic, I, for this MMPP1 source is Load =
0.9, IDC(1)=1.04, IDC(L)=2.7 and H=0.64. Using this indicator of traffic,
CLR is predicted by the proposed CLR approximator for different queue sizes.
As shown in Figure 5.11, when compared to the analytical results, the proposed
approximator closely predicts the CLR. However, there is a significant difference
between the calculated CLR by using (5.17) and the measured CLR. This is
because equation (5.17) provides an upper bound for CLR assuming that the

services over the network are probabilistic?.

Case 2: MMPP2 as traffic profile
Now, let us assume that traffic is generated by an MMPP2 source, equivalent to
aggregating N=8 On-Off sources with peak-to-average ratio PAR=20, peak-rate
A=33 cells/interval, and the same values for @ and 3 as in the case 1. Figure 5.12
depicts the analytical results by using ANK iteration and equation (5.17). The
measured indicator of traffic, I, for the traffic generated by this MMPP2 source
is Load = 0.9, IDC(1)=1.5, IDC(L)=102.6 and K=0.9. This indicator has been
applied to the proposed CLR predictor and the results have been compared with
both the measured CLR and the analytical one as shown in Figure 5.12. Similar
to case 1, it is observed that the analytical approach overestimates the CLR,

while the proposed approach closely follows the measured one.

Case 3: FBM as traffic profile
As another example, let us assume that the traffic profile is generated by an

FBM source! with H=0.8, mean m = Load - C (0.9 x 100 cells/interval) and

3As mentioned in Chapter 3, the proposed approach assumes predictive services.
1Generation of FBM traffic has been discussed in the Appendix C.
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variance coefficient of m - IDC(1) (90 cells/interval x 1). Figure 5.13 compares
the analytical result given by equation (5.13) with both the measured CLR
and the predicted one using the proposed approach. The measured indicator
of the traffic is Load = 0.9, IDC(1)=1.0, IDC(L)=28 and H=0.8. As shown
in Figure 5.13, equation (5.13) provides an upper bound for CLR, whereas the

predicted CLR using the proposed approach closely follows the measured CLR.

Case 4: Mizture of MMPP! and FBM as traffic profile
As an example of a mixed scenario, let us consider a traffic profile that consists
of 50% MMPP1 traffic and 50% FBM traffic. For this traffic mix the mea-
sured traffic indicator is Load = 0.9, IDC(1)=0.98, IDC(L)=21.5 and K=0.78.
Figure 5.14 compares the predicted CLR with the measured one. Now, let us
assume that CLR is approximated by either analytical result of FBM or that of
MMPP. Let us first apply the measured traffic indicator to equation (5.13) and
evaluate it by substituting C=100 cells/interval, m = Load-C, IDC(1)=0.98 and
K=0.78. The results, plotted in Figure 5.14, show that using analytical results
of the FBM model to approximate the CLR of the mixed traffic overestimates
the CLR. Now, let us look at the performance of the analytical result of MMPP
model. By trial and error, we determined that the measured traffic indicator
can result from aggregating N = 37 On-Off sources with A = 7 cells/interval,
PAR=4, a = 0.284 and 8 = 0.154. Mapping the On-Off sources to the equiva-
lent MMPP source (using the procedure in the Appendix B), we can solve for
the CLR using equation (5.17). As shown in Figure 5.14, using the analytical
results of MMPP to approximate the CLR of the mixed traffic overestimates the

CLR at small buffer sizes, whereas it underestimates the CLR at large buffer
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sizes. On the other hand, for the mixed traffic, FBM approximation of CLR

result in an overestimation of CLR.
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Figure 5.11: Comparison of the predicted CLR with the analytical result of MMPP1

source discussed in case 1.
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Figure 5.12: Comparison of the predicted CLR with the analytical result for the

MMPP2 source discussed in case 2.
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Figure 5.14: Comparison of the predicted CLR with the analytical approaches of FBM

and MMPP1 sources discussed in case 4.
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5.4 Summary

In this chapter, we selected a neural network system consisting a linear combination of
a set of sigmoid functions to approximate the CLR from the candidate traffic indicator
whose parameters were identified in Chapter5. We considered four traffic indicators
each constructed from a subset of the identified parameters. The results indicate that
all four parameters of the candidate indicator (i.e., {Load, IDC(1) , K and IDC(L)}
)are necessary for a close CLR prediction. Results also indicate that the learned CLR
function in terms of the selected traffic indicator closely follows the measured CLR

and outperforms the results of analytical approaches.
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Chapter 6

Real-time Derivation of Traffic

Indicator

The derivation of the parameters of the traffic indicator can be viewed as an estimation

problem. The parameters of I can be estimated from the traffic samples using a set

of estimators, i.e.,

I_G—_‘Z(Xir Xi—h A Xi—g),

where Z = {Z,(-)," -+, Z4(-)} is a set of estimators for the four parameters of I and
s={s1, s2, S3, s4} is a vector that represents the orders of the estimators. In the

following sections, we describe these estimators in detail.

6.1 Load and IDC(1) Measurement

Load and IDC(1) can be obtained by measuring the mean px= E[X] and the variance

ox=E[(X — px)?] of the time series X over a large window of samples as

Load = Z(X)= éE[X]
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IDCc() = zz(X)=-5[§q, (6.1)

where C is the transmission rate in terms of cells/sec. In [63], we discussed an alter-
native approach in measuring load at time Z using a Finite Impulse Response (FIR)

filter as

1 N-1
Load,- = E E MX,’_J',

7=0

where i is the current time interval. N is chosen based on the frequency of the traffic
load variation. W;’s are calculated dynamically using Least Mean Square algorithm
[63]. The FIR approach is effective when traffic load and its variance are the only
parameters of the traffic indicator. Since the proposed traffic indicator includes both
K! and IDC(L), which both represent traffic burstiness, we use a large number of
samples to measure the mean rate and the standard deviation of the traffic. The
measured values of the mean rate and the standard deviation are used to estimate

load and IDC(1).

6.2 Techniques to Measure K and IDC(L)

For LRD and self-similar traffic, the parameter K represents the Hurst parameter.
Thus, before we address the proposed approach in measuring K and IDC(L), we
first discuss classical methods in the measurement of the Hurst parameter. Then, we
discuss the shortcomings of the classical approaches followed by the proposed approach

[64].
IFOR FBM or a self-similar traffic K = H. where H is the Hurst parameter. For other K =

0.5(1 + s) where s is the slope of the linear part of the IDC curve.
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6.2.1 Classical Approaches in Measurement of the Hurst Pa-

rameter

In the following subsections we discuss several methods that have been used in the

literature to estimate the Hurst parameter.

IDC Calculation

For a given time interval of length m, IDC is given by the variance of the number of
arrivals during the interval of length m divided by the expected value of that same

quantity:
var(3X7L; X;)
E[xm, X;]

j=1

IDC(m) = , (6.2)
where X; represents the number of cells arrived to the queue in the ith time interval.
To calculate IDC(m), a large number of samples of X; are collected and divided
into blocks of m so that each block is the sum of m samples. The variance and the
average of these blocks are calculated and substituted into the equation (6.2). The

Hurst parameter is estimated by calculating (6.2) for two different intervals m, and

my (m2 > m,), obtaining the slope in logarithmic scale and evaluating 0.5(1+slope).

Adjustment Range for Hurst Estimation

Suppose during the time interval (0, T"), the time series of X, X2, ---, X7, have
arrived into the queue. The mass diagram, which is basically a plot of the cumulative
samples up to time ¢, is given by
ngzt:X,- for t=1, 2, ---, T'.
i=1
The average rate during the time interval (0, 7") is X7+ = Sp/T'. Now, let us assume
that the cells are served steadily at the average rate. Assuming the initial value of
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the number of cells in the queue is X, at time ¢ the queue has Xo + S; — tX 1 cells.
Attention is focused on the maximum and the minimum of the queue values, which
are:

Doz = Xo+  max (S, —tXr)

and

Dmin = XO + L Sn}ig T’(St - tXT'),

respectively. The required buffer that does not allow queue overflow is R(X1, X2, ---,
X1) = Dz — Dimin which is called adjusted range of flows. The statistic &, where
S is the standard deviation of (X;, X, ---, X1v), assumes further importance due
to the work of Hurst on long-term dependency. Hurst found that % could be approx-
imately equated to the asymptotic result (T-z—')H, where H is the estimated the Hurst

parameter. As a result, H can be found by

logR/S

e T/ /3" (6.3)

H=~
Hurst Estimation using Maximum Likelihood Estimation (MLE)

MLE could also be employed to estimate the Hurst parameter. The method assumes
that the traffic patterns follow a Discrete Fractional Gaussian Noise (DFGN) model
(or FBM). Let X;, ¢ =1, 2, ---, n be an observed time series with EX)) = u

and cov[X;, X;_k] = Yx. Because DFGN is multivariate normally distributed, its log
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likelihood is

X, —u X, —p
Xo—p Xo—p
1 1 : )
L(H, p, Yo) = —§lnLn— 3 r;t (6.4)
| Xn =4 ] | Xn—p ]

where [, and Y, are covariance matrix and the variance of Xj;, respectively. L[, is
given by
Ln = K) [C(l - jv H)]nxn ’

in which C(s, H) is given by equation (C.1) in the Appendix C. Efficient estimates

of 1 and Y, are obtained from

p=Xp=

S|

> X
t=1

and

1 —
Yo=Co==3 (X:—Xa)
n

t=1
MLE of H can be obtained by evaluating L(H, p, Yp) for H =0.5, 0.6, 0.7, 0.8, 0.9

and using inverse quadratic interpolation provided that n is not too large, say n < 200.

Other Approaches

Recently, an Abry-Veitch wavelet-based estimator has been proposed for on-line esti-
mation of the Hurst parameter [65] which seems promising as it requires low memory
and less computations. In addition to wavelet method, other approaches such as line

length method and Fourier filtering have been deployed for Hurst estimation [66].
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However, Lee et al [66] were not able to give a fair comparison of the performance
of the these methods, because the Hurst parameters of the sets of samples that they

used were unknown.

6.2.2 Performance Comparison of Classical Approaches

Since MLE method assumes a self-similar traffic model, we compare the performance
of the classical approaches using the FBM model. When IDC calculation is used in
Hurst estimation, the results (as plotted in Figure 6.1) show that the estimated H is
fairly close to the actual Hurst parameter that was used by the FBM traffic generator
in the Appendix C. For any time interval m, the Hurst parameter has been measured

by obtaining a logarithmic slope at m, i.e.,

N~ . log[IDC(m + Am)] — log[IDC(m — Am)]
=05 1+ tim, 2 oali = A )

The number of samples of X (or window size) affect the IDC or Hurst calculation.
Figure 6.2 shows this effect for a given m. The results highlight that in order to obtain
a good estimation of H, the number of samples that we need to consider is at least
8000. For this reason, a real-time estimation of the Hurst parameter using the IDC

slope may not be effective due to the computational overhead.

When the adjusted range approach is deployed, there will be a bias value in the Hurst
estimation. Figure 6.3 shows, for instance, the estimated values versus the real ones
for T = 2000. For 0.5 < H < 0.75, the bias value is positive, whereas for H > 0.75,

it is negative.

MLE approach can potentially offer a good estimation if n could be chosen fairly large,
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Estimated Hurst parameter using 1DC curve
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Figure 6.1: Estimated Hurst parameter using IDC slope.

i.e. n >> 200. However, large n results in a very complex and impractical inverse
matrix calculation. Another disadvantage of the MLE approach is the assumption

that the traffic is FBM, which might not be the case in broadband networks.

6.2.3 Proposed Approach for Measurement of K and IDC(L)

On-line measurements of the proposed parameter, K, and IDC(L) have two main

requirements:

1) the newly arrived sample can be merged with the existing processed data, rather

than requiring complete re-computation;

2) the technique needs to be efficient enough to implement at the rate samples

arrive.
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EHect of window size (number of samples) in estimation of Hurst Parameter
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Figure 6.2: Effect of number of samples in IDC calculation for a given m.

The first requirement is critical for on-line estimation, whereas the second one is

related to the necessary computing power.

Now let us examine the classical approaches. None of the approaches comply with the
above requirements. Hurst estimation using MLE suffers from both the computational
complexity and the assumption of the FBM traffic model. Rescaled adjustment,
with asymptotic result, gives an estimate with a bias value that is undesirable. IDC
calculation gives a better estimate for a fairly large window of observation, however,
it lacks efficiency. To make IDC calculation more efficient and compliant with the
above requirements, we propose to use a Neural Network system to learn the IDC
function as well as to learn the correlation between the time series of traffic [64]. This

is due to the following potential benefits that can be achieved when a neural network

system is used:
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Effect of Bias value in Asymptotic Estimation
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Figure 6.3: Estimated Hurst parameter when % is equated to asymptotic result given

by Hurst.

e a) Adaptive learning: Neural network can learn the functional relationship be-
tween the input time-series and output IDC value(s) during the course of net-

work operation and, hence, it can approzrimate the IDC function.

e b) High computation rate: This is due to the parallelism of hardware implemen-
tation of neural networks. In general, computation time is independent of the

neural network dimension and the number of input and outputs.

e c) Generalization on learning: A neural network has the ability to generalize

learning to what has never been seen.

As a result, neural network can overcome the shortcomings of direct IDC calculations

and comply with the two requirements.



In the Appendix D, it has been demonstrated that a neural network with a set of
sigmoid functions is capable of approximating any continuous real function of n real

variables with support in the unit hypercube. The function of the K is

K =05 (1 . L\[logIDC(m)])l

log[IDC(m)])' ~ 0.5 (1 T Aflogm]

m

_d
d[log m}
where

var (X7, Xj)
B[}, X
Alog[IDC(m)] = log[IDC(m,)] — log[IDC(m,)]

IDC(m)

Alog(m) = log(m,) — log(m,).

m, and my (where my > m,) are two time intervals. The parameter K is a continuous
function of samples of X, j =1, ---, J, where J is the number of samples that is
required in order to make a good estimation of K. From the Figure 6.2, it can be
seen that the selection of .J = 8000 results in a close estimation of the value of K, for

all values between 0.5 and 1.

Now, let us assume .J samples of X are used in estimation of K. Consider two
estimated values at time i — 1 and i, i.e. K;_, and K;. Samples of X,_s_ to X;_,
and X,;_; to X; have been used to estimate I{',-_l and Ii",- , respectively. Since both
estimations have inputs from X;_; to X;_; in common, it is possible to use previous
estimated sample A;_; in conjunction with X;_,_; and the newly arrived sample X;
to estimate K;. As a result, the function of K has three variables and it can be

expressed as

K: = f(Xi, Xi_y, Ki_1),
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Figure 6.4: A neural network system consists of two sets of linear combinations of

sigmoid functions that approximate K and IDC(L).

which can be approximated by a single hidden layer neural network®. Similarly, the

function of IDC(L) can be expressed as
IDC(L); = f(Xi, Xi_s, IDC(L)i-y).

Figure 6.4 shows a neural network system that approximates A" and IDC(L)3. Each

parameter is approximated by a linear combination of sigmoid functions.

2Narendra [67) has argued that. in general, under weak conditions on the function f(-). a multi-

layer neural network can be constructed to approximate such mapping over compact sets.
3In order to avoid propagation of an estimation error over a long period of time, periodically. the

actual value of K is calculated and fed into the estimator.
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Figure 6.5: Time series of X that has been used for training of the approximator.
6.2.4 Performance Evaluation of the Proposed Approximator

To examine the performance of the proposed approximator of Figure 6.4, we generate
two sets of data. One set for training the neural network (i.e. adjusting the weights,
bias values, etc.) and the other set to test the performance of the trained approxima-
tor. Each set consists of traffic patterns generated by MMPP1, MMPP2, FBM with
H=0.6 and FBM with H=0.9 and their mixtures. Figure 6.5 shows time series of X
that has been used as input of the training signal. Figures 6.6 and 6.7 show the values

of K and and IDC(L) of X as the output of the training set.

Once again, back-propagation is used to train the neural network (or adjust the co-
efficients of the approximator). The average mean-square error for an input-output
pair has been plotted in Figure 6.8 versus training epoch. Note that the converged

value of MSE for IDC(L) is higher than that of K. This is because IDC(L) ranges
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Figure 6.6: The value of K for the time-series X that has been used as the output of

the training set.
from 1 to 200, whereas the value of K ranges from 0.3 and 1.

Figure 6.9 shows the time series of the mix traffic that has been used to test the
performance of the approximator. Figures 6.10 and 6.11 shows the output of the
neural network compared to the actual one. Figures 6.12 and 6.13 (which are indeed
two portions of Figure 6.10) show closer comparison of the approximated A" with
the actual one. Similarly, Figures 6.14 and 6.15 show a closer comparison of the

approximated IDC(L) with the actual one.

6.3 Summary

In this chapter, we addressed the real-time estimation of the parameters of the traffic

indicator. The four parameters of the traffic indicator are estimated from the time
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Figure 6.7: IDC(L) of the time-series X that form the output part of the training set.

series of cell counts. Load and IDC(1) are estimated from the mean and the vari-
ance of the time series. Classical approaches in estimating IDC(L) and the Hurst
parameter (or more generally K) suffer from imprecision, computational complexity
or inefficiency. To cope with the shortcomings of the classical approaches, we deployed
a neural network system consisting of a set of sigmoid activation functions that learn
the functional relationship between the time series X and IDC(L) (or K'). To reduce
the number of inputs and, hence, reduce the complexity, we used the previously esti-
mated sample in estimating new samples. To avoid error propagation as a result of
using the old estimated value, periodically, the actual calculated sample of IDC(L) (or
K) are fed into the neural network to reset the propagated error. T he results show
that the estimated values of the K and IDC(L) using a neural network system closely

follow the actual calculated values while estimation can be performed real-time with
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less computational complexity.
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Comparison of the approximated K with the measured one
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Figure 6.10: Comparison of the approximated value for K with the measured one.

Comparison of approximated IDC(L) with the measured one
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Close comparisom of approximated K with the measured one
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Figure 6.12: A close comparison of the approximated value for K with the measured

one for the shown time scale.
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one for the shown time scale.
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Close Comparison of approximated IDC(L) and the measured one
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Figure 6.14: A close comparison of the approximated IDC(L) with the measured one

for the shown time scale.
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Chapter 7

Application of the Proposed CLR

Approximator in ATM CAC

An ATM connection may traverse a set of switching nodes in the network. To set up a
connection, resources need to be reserved at each queuing point to guarantee the QoS.
Under the assumption of Chapter 3, in this Chapter we give an illustrative example on
application of the proposed CLR approximator in formulating an admission strategy.
We also assume that traffic contract includes the parameter K in addition to the
mean rate and the peak rate. The parameter K has been obtained from off-line

characterization of the traffic source.

Ideally, an admission decision can be viewed as a solution to a queuing problem. To
decide whether a connection can be admitted, the queue need be solved to predict
the CLR for all the connections including the new one. If the predicted CLR is less
than an acceptable threshold, the new connection is accepted. In ATM networks, a
solution to this problem has remained an open issue due to its complexity, specially

when a complex traffic model is assumed.
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Figure 7.1: An ATM switch with output queuing.

In this chapter, we use the results of the previous chapters on both real-time measure-
ments of the traffic indicator and the CLR approximation to propose a new admission
strategy that maximizes link utilization while maintaining the CLR less than a set
threshold. We then assess the performance of the proposed admission scheme using
OPNET simulation and compare its performance with that of the Equivalent Capacity

scheme.

7.1 Introduction

Once a switch receives a connection admission request to an output, it executes an
admission procedure to decide whether to accept or reject the connection. It is ac-
cepted if the CLR of all connections (including the new one) can be maintained at
an acceptable level. Let us consider a non-blocking contention-less ATM switch of
Figure 7.1. CLR occurs in an output queue when the the multiplexed traffic from
all the inputs sources is bursty and there is a limited buffer capacity. Let us assume
that traffic of all sources that arrives to the queue requires the CLR of less than a
predefined threshold, for instance 10~%. The question that CAC tries to answer is:

would the CLR exceed the threshold if a new connection were added to the existing
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Figure 7.2: Admission procedure attempts to solve a queuing problem with two traffic

indicators.

ones? If the answer is yes, the connection is rejected; otherwise, it is accepted. The
engineering challenge requires developing an admission strategy that explores fully
statistical multiplexing gain and, hence, maximize link utilization while maintaining
CLR. for all connections below the threshold. As discussed in Chapter 3, accurate
prediction of CLR for the aggregate traffic of both the existing connections and the
new one is the key in developing an efficient admission strategy. For the non-blocking
switch of Figure 7.1, the CAC algorithm is applied to each output queue. If we isolate
each queue from the rest of the switch, we will obtain the queuing model of Figure 7.2.
The model is known as multiplexer (or ATM multiplexer) in which a number of traffic

sources feed a finite queue that is being served at a constant rate.

The proposed approach first characterizes the existing connections by a traffic indi-
cator Ig and the new connection by a traffic indicator In'. Then, it solves the queue
for the aggregate indicator of traffic. The solution uses the learning capability of a
neural network in capturing the functional relationship between the aggregate traffic

indicator and the measured CLR as discussed in Chapter 5.

1An alternative static approach that we previously proposed uses traffic classification and maps
the total number of connections from all classes to a traffic indicator using a fuzzy inference system

[92].
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Figure 7.3: Proposed admission procedure that uses the traffic indicator in CLR

prediction.

7.2 CAC Procedure

Figure 7.3 shows the proposed CAC strategy. Ig is the measured indicator of traffic
that represents the existing connections to the queue. Iy is the traffic indicator for

the new requested connection. The CAC procedure is as follows:

a): A user requests a connection to a queue and declares the traffic indicator of the

new connection, i.e. Iy.

b): Traffic indicator for the requested output queue, i.e., Ig, is measured from the

time series X using approaches discussed in Chapter 6.

c): The two traffic indicators, Ig and Iy, are aggregated using a set of equations

that will be described in a sequel, i.e., equation (7.12).
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d): The CLR is predicted from the aggregate traffic indicator and the given buffer

size.

e): If the CLR is less than the predefined threshold, say 10-%, the new connection is

admitted; otherwise, it is rejected.

In the following sections, we first describe the aggregation of two traffic indicators
and then give an illustrative example in which we compare the performance of the

proposed CAC with that of equivalent capacity.

7.3 Deriving the Aggregate Traffic Indicator

Let us first assume that the new connection has been admitted to the queue. In the

ith time interval, the time series of the total traffic to the queue can be represented
by
.X,' = -X'gi + X,

where X; and X, represent the number of cells that arrived in the ith interval from
all the existing connections and the newly admitted one, respectively?. Aggregate

traffic load is given by
Load = E[X;]/C =(E[Xy] + E[X.])/C
= Ay + A)/C (7.1)

where A, and A, are the average cell rates for all the existing connections and the

new connection, respectively, and C is the link transmission rate. IDC value of the

2The subscript ¢ indicates the global indicator of the traffic and the subscript n represents the

new connection.
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aggregate traffic for the interval-size of k is given by

var(Ti; Xi)
E[CE, Xi]
var (Z{;l(Xgi + . ,,,-))
E (SE(Xg + Xu)
var(Yge + Yok)
k(Ag + An)

IDC(k)

Since Yy = 35, X, and Y = 5., X, are not correlated to each other,

var(Yy) + var(Yoe)
k(Ag + An)

IDC(k) = (7.2)

On the other hand, IDC for the existing connections and the new one are given by

[ch(k) — Ua"(Zf:l < .‘F) . var(ng)

—T = (7.3)
E[Zf=1 ‘\gi] k’\g
var(TF, Xai)  var(Yu)
IDC, (k) = : = . 74
O = e Xl R 74
The aggregate of K is given by
. 1
I\aggregate = ;(1 + IDC slope)
1 . IDC(ks) — IDC(k,) .
= 3 (1 + 4im, V2 (7:3)

where Ak = lky — k| and k2 > k,. Replacing (7.2) into (7.3) results

Kaygregate = % [1 -+ lim i (var(y—gkz) + UGT(Y;.,L.,)) _ var()"ykl) + Uar(y;lkx))]

Ae30 Ak k2(Ag + An) k(N + An)
_ 1 1+ i 1 [ var(Ye,)  var(¥g,) var(Yae,)  var(Yax)
T 3 T A0 AR (ka0 + An)  Ei(Ag + An) - Fa(hg + An) Ki(Ag + An)
1 i 1 Ag var(Yee,) var(Yg,)
=3 [1 + 4% Ax [,\g * A ( koA Kihg
+ An var(Yok.) B var(Yux,)
A + A\ kohn ki hn
1 Ay An
=3 [1 + X+ /\an + X +A"Cn] (7.6)
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where (, and (, are defined as

B 1 [var(Yeu,) var(Ye,)
G = kD0 Ak ( ka)Ag kiAg (70)
.1 [rvar(Yak,) var(Yak,)
n = 1 AL — - : ’
G ax50 Ak ( k2 n k1 78

Using (7.3), the parameter K for the existing connections is given by

el 1 1 1
K, = 3 [1+ A1'1:30_A_k-(irz)cg(kg)—IDC_f,(l'n))]
1 . 1 frvar(Yeu,) var(Ye)
= - 1 - = — =
2 [1 t Ao Ak ( ka)g ki1Ag
1
= §[1 + Gl (7.9)

Similarly, using (7.4), the parameter K for the new connection is given by
1

Combining (7.6), (7.9) and (7.10) result in

MK,y + MK,

I(agg‘regate = A+ ) (7.11)
g n

Now, let us assume that the traffic indicator I = {Load,, K,, IDC,(1). IDC,(L)}
has been measured and the traffic indicator of the new connection has been given by
Iy = {Load., K,, 0.}, where Loadn=icIL (with A, as the mean cell rate and C the
link transmission rate), o, is the cell rate standard deviation and K, is the declared
burstiness parameter for the new connection. Then, the parameters of the aggregate

traffic indicator can be given as

Loadaggregate = (’\g + /\n)/c

" /\gKg + MK,
I\aggreyate = W—
AIDCy(1) + o2
IDCaggregate(l) = g ) i('A)
V] n
var(SE  (Xg + Xoni) Lo2
IDCaoreqate(L) = 1 i = ~_ +IDC,(L). 7.12
ggregat ( ) E[Zf:[(xgi'*'xni] An +’\g 9( ) ( )
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The approximation of the last equation assumes A, >> A,.

7.4 Performance Assessment of the Proposed CAC

We use simulation using OPNET to assess performance of the proposed CAC. Let us
assume that there are three different VBR classes that are entered to the network.
Let us consider that the connection admission requests from VBR1, VBR2 and VBR3
classes to a given output of a switch are generated based on Poisson models with
average rates of 100, 10 and 40 calls/count-interval, respectively. The holding time,
or the time a connection stays in the network on average, is exponentially distributed
with average of 180, 240 and 30 count-intervals for VBR1, VBR2 and VBR3 classes,
respectively. That means if the count interval is assumed to be one second, the average
holding time for VBR1 sources is 3 minutes, for VBR2 sources is 4 minutes and for
VBRS3 sources is 30 seconds. During the holding time, each VBR source is modeled
by an On-Off source with exponential sojourn time. Table 7.1 shows the peak rate,
R, average rate, m, and burst size, 3, for each On-Off source. In addition to these
parameters, we assume that each source declares our defined parameter K. Under

the assumption of On-Off, the variance, o, is given by [24]
on = (m(R —m))**

The Equivalent Capacity approach uses these parameters to allocate bandwidth to
each one of the classes. Table 7.1 also shows the traffic indicator for each class of

traffic assuming that C = 1.22 x 10° cells/sec (or 51.84 Mbps).

A connection request from each class is submitted to the admission control. Once a

request is admitted, it uses link capacity for an exponentially distributed holding time
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Class | Parameters of Equivalent Capacity Traffic Indicator In
R m B Load=2 K, 0= (m(R-m))"®
cells/sec cells/sec cells
VBRI1 132.5 53.01 2.33x102 0.0004345 0.6 64.9
VBR2 | 43773  4377.36 6.74x10* 0.0359 0.75 41338
VBR3 6910 354.52 1.06x10* 0.002906 0.9 1524.5

Table 7.1: Traffic parameters of three VBR classes that were used in the case study.

during which cells are generated based on the parameters described in Table 7.1. The
first graphs of Figures 7.4, 7.5 and 7.6 show the number of connection requests as
a function of simulation time for VBR1, VBR2 and VBRS3 classes, respectively. The
second and the third graphs of these figures show the admitted number of connections
and the rejected number of connections, respectively. Figures 7.7 shows the total
number of admitted VBR1 sources versus simulation time that are in the system and
use the output resources. Figures 7.8 and 7.9 show the same quantity for VBR2 and
VBR3, respectivelyv. The aggregate traffic indicator is obtained from the measured
indicator Ig and the declared indicator I using the sets of equations given in (7.12).
Figures 7.10, 7.11, 7.12 and 7.13 show the aggregate indicator of traffic. i.e. load, K,
IDC(1) and IDC(L), respectively, versus the simulation time. Figure 7.14 show the
approximated CLR for all the existing connections as a function of simulation time.
Note that in all of the figures, the y-axis quantities are sampled every one second of

the simulation. The first 1000 sec of simulation has been considered as warm-up.
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7.4.1 Performance Comparison with Equivalent capacity

Figure 7.15 shows the offered load., i.e. traffic load from all the requested connections,
versus the carried load, i.e. the load from the admitted connections, for the simulation
period. In the simulation, the link transmission rate of 51.84 Mbps (or 1.22 x 10°
cells/sec) has been considered. As seen, the maximum achieved carried load during
the simulation time is 0.77. The number of connections that corresponds to this
carried load is Nvri = 108, Nyver2 = 17 and Nygrz = 39. Now let us calculate the
required bandwidth using the Equivalent Capacity approach. From Chapter 2, the

required bandwidth for Equivalent Capacity is given by
C' = min(m' + &'0’, Nyggri - Cvsri + NvBrz - Cver2 + NvBrs - CvBrs)
where
m' = Nypgr: - mvert + NvBR2 - MvBRr2 + NvBR3 * MVBR3

— 2 2 2
o' = Nypri-0vgr; + NVBR2 - Ovpra + NVBR3 - OVBR3

o = \/2In(1/CLR) — In2m.

Cvsri. Cver2 and Cygrs are obtained from
z— 1+\/(Z—1)2+4py
R P

—In(CLR)(1 - p)8/B

C =

N
I

p = m/R

by substituting the values of R, m, 3 and p from table 7.1 for each class of traffic. B

is the buffer size in terms of cells and it has been assumed to be 200 in the simulation.

The numerical results of Equivalent Capacity for a single connection as well as multiple

connections from each class have been tabulated in Table 7.2. As seen, the required

122



bandwidth to accommodate Nyvgr: = 108, Nvgr2 = 17 and Nyvgr3 = 39 connections
is 4.106 x 10° cells/sec. A comparison between this bandwidth and the bandwidth
that we considered in the simulation, i.e. 1.22 x 10° cells/sec, reveals that Equivalent
capacity needs at least three times more bandwidth in order to accept Nygr, = 108,

NvBr2 = 17 and Nygra = 39 connections.

Let us consider another example. For the period of the simulation, on average there
are Nygr; = 160, Nvpra = 9 and Nygrs = 64 connections in the system, as shown
in Figures 7.7, 7.8 and 7.9, respectively. Equivalent capcity needs a bandwidth of
1.3 x 10* cells/sec for Nypr: = 160, 2.3 x 10° cells/sec for Nypr2 = 9 and 8.3 x 10*
cells/sec for Nygrs = 64. The total required bandwidth sums to 2.36 X 103 which
is double the link bandwidth of 1.22 x 10° cells/sec. As a result, we conclude that
on average Equivalent Capacity has half the efficiency of the proposed CAC. There
are two reasons for this significant improvement. One is that Equivalent Capacity
sums the required bandwidth of each connection and, hence, it does not exploit the
statistical multiplexing gain. The other reason is that Equivalent capacity is used
for probabilistic services, which require a tight bound on CLR, whereas the proposed

approach target predictive data services, which do not require a tight bound on CLR.

7.5 Summary

In this chapter, we proposed an admission control scheme based on the proposed
indicator of traffic and the CLR approximator. The proposed admission strategy
is highly efficient for predictive services. It maximizes link utilization by allowing as

many as possible connections to the network while maintaining an acceptable CLR for
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Class Required Bandwidth (cells/sec)
VBR1 | One connection 1.4216 x 102
108 connections 9.5406 x 103
VBR2 | One connection 4.376 x 10*
17 connections 3.494 x 10°
VBR3 | One connection 6.901 x 103
39 connections 6.1243 x 10*

Table 7.2: The required bandwidth for each class of traffic when bandwidth is allocated

by the Equivalent Capacity approach.

all connections. It outperforms the Equivalent Capacity approach. In the illustrative
example that we considered, on average, Equivalent capacity has half the efficiency of
the proposed CAC. This is because Equivalent Capacity can not maximize the statis-
tical multiplexing gain since it considers each connection in isolation. The advantage

of Equivalent Capacity over the proposed approach is that it guarantees a tight bound

on CLR.
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Figure 7.4: The number of requested, admitted and rejected connections for VBR1

class of traffic versus simulation time.
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# of requests, admited and rejected connections of VBR2 vs time

v T ! 1 I 1

# VBR2 requests
o 8 B

-—
Q

# of VBR2 admitted

S
3]
g5

g

g

g

g

—
wn

-y
(=4

# VBR2 rejected
o

0 ,
1000 2000 3000 4000 5000 6000 7000 8000 3000
Time, sec

Figure 7.5: The number of requested, admitted and rejected connections for VBR2

class of traffic.
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# of requests, admited and rejected connections of VBR3 vs time
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The number of VBR1 connections that are in the system
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Figure 7.7: The number of VBRI that are in the system versus simulation time.
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Figure 7.8: The number of VBR2 that are in the system versus simulation time.
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The number of VBR3 in the system
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Figure 7.9: The number of VBR3 that are in the system versus simulation time.

Tratfic load of the admitted call in the system

T T T T

1 T T

Load

Figure 7.10: Measured traffic load versus simulation time.
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Figure 7.11: Measured parameter K of all connections versus simulation time.
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Figure 7.12: Measured IDC(1) versus simulation time.
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Figure 7.13: Measured IDC(L) versus simulation time.
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Carried load versus offered load during the simulation
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Figure 7.15: Carried load versus Offered Load for 9000 samples over 9000 seconds of

simulation.
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Chapter 8

Conclusions and Recommendations

for Future Research

8.1 Conclusions

In broadband networks, prediction of QoS plays an important role in traffic engi-
neering. The state-of-the art approaches use a priori characterization of traffic for
the convenience of mathematical tractability. However, it is difficult to provide an
accurate and tight statistical model that can adequately describe the traffic patterns
of different data sources. In this thesis, we proposed a new approach that closely
predicts QoS. e.g. CLR. The QoS predictor is further applied in formulation of traffic

control functions, e.g. admission control, that maximize traffic load, hence revenue,

of the system.

From this thesis work we conclude that:

1. For a given QoS, traffic can be represented by a universal set of parameters.
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N

Assuming that the QoS of interest is CLR, we considered various data traffic
profiles that are SRD, LRD, self-similar or mixed. By analyzing both the sta-
tistical property and the measured CLR when fed fed into a FIFO queue, we

obtain the following set parameters that impact the CLR:

e Traffic load, which is related to the first moment of traffic,

initial value of IDC, which is related to the second moment (or variance)

of traffic,

the degree of self-similarity, K, which is related to the slope of the IDC

curve and

e the burstiness value, or calculated IDC, at a large time interval.

We label this set of parameters as the traffic indicator that is used as a CLR

prediction variable.

The aggregation of two traffic profiles, each described by a traffic indicator, can

be represented by a new traffic indicator using our derived equations.

The CLR function in terms of the traffic indicator and buffer size can be cap-
tured by a linear combination of a number of sigmoid functions. This is because
a linear combination of sigmoid functions can approximate any continuous func-

tion as long as there is no limit on the number of sigmoid terms.

The results show that the introduced CLR approximator closely follows the

measured CLR of various traffic profiles and, therefore, it can be used for traffic

engineering of broadband networks.
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5. The proposed traffic indicator and the CLR approximator can be used to formu-
late a new CAC that maximizes the link utilization while the CLR of connections
is kept at an acceptable levels. If the predicted CLR of the aggregated two traffic
indicators (one for all existing connections and the other for the new connec-
tion) is less than a set threshold, the new connection is admitted, otherwise, it

is rejected.

8.2 Recommendations for Future Research

We suggest the following research work:

e The proposed CLR predictor can be applied to formulate efficient congestion
control schemes in the core of the network in conjunction with flow control
schemes at the access in order to maximize the system goodput and minimize

re-transmissions while maintaining the QoS of all connections.

e In this research work, we identified the indicator of traffic as a CLR prediction
variable. It is possible to identify a set of parameters that impact the delay

performance.



Appendix A

Congestion Control Schemes

Traffic control functions are classified into CAC and congestion control schemes. In
chapter 2, we discuss CAC schemes in ATM networks. In this appendix, we provide
a high level overview of congestion control schemes in both ATM and IP networks.
There are two main categories for congestion control: open-loop and closed-loop as

they will be discussed in the following sections.

A.1 Open-Loop Congestion Control

Open-loop congestion control functions, as shown in Figure A.1, are performed at

the source and any other node. These functions are described briefly in the following

subsections.

A.1.1 Policing and Shaping

Both IP and ATM network elements perform policing and shaping functions. The

policing function checks to see whether incoming traffic conforms to a specific traffic
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Figure A.1: Classification of congestion control functions.

contract. On the other hand, the shaping function delays outgoing packets or cells to
ensure conformance to a traffic contract. Properly shaped traffic never fails a policing
check when both functions employ the same traffic contract. Figure A.2 shows the
generic placement of policing and shaping functions. Normally, the first network node
performs policing of end users as shown by solid box in Figure A.2. Optionally, one
network node may police the traffic received from another node. Frequently, end-users

shape their traffic outputs to ensure conformance by the policing function at the first

node.
a) ATM’s Usage Parameter Control (UPC)

ATM networks employ Usage Parameter Control (UPC) and Network Param-
eter Control (NPC) to check conformance of cell flows from a user, or another
network, against negotiated traffic parameters, respectively. In ITU documents,

this function is referred to as the policing function. The function makes sure
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network node A network nodoe B

Figure A.2: Generic placement of policing and shaping functions.

that the users obey the negotiated traffic contract by detecting non-conforming
sources and takes appropriate action to minimize the potentially harmful effect
of the excess traffic. The set of traffic parameters that are controlled are the
same set of parameters used to characterize a source. Since the latter remains an
open issue, the former is also unresolved. In various proposed mechanisms, the
controlled parameters are the peak rate, the average rate and the burst length.
Standards do not specify the precise implementation of UPC and NPC func-
tions. Instead, they bound the performance of any UPC/NPC implementation
in relation to a Generic Cell Rate Algorithm (GCRA). One representation of

GCRA is leaky bucket which is the most commonly used regulator.

Leaky bucket scheme was first introduced in [68]. The idea is that the arriving
cells are transmitted when there are tokens in the bucket, otherwise they are
dropped or tagged (for selective cell discarding when cell level congestion occurs

[69]). Tokens are generated at constant rate' with an upper bound for the

LThe rate at which tokens are generated represent either the average rate or the peak rate of the
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number of waiting tokens. This upper bound, which is the size of bucket, controls
the burst length. There are two types of enforcement action that can be taken
and whether or not there is a user buffer gives rise to four different versions of
leaky bucket schemes. In the first scheme, an arriving cell is dropped if there
is no token awaiting in the bucket. Since tokens are generated at a constant
rate, this scheme can be used to control either peak rate or the average rate
but not both. Second scheme tags the violating cells and lets them enter the
network and, hence, possibly discards them within the network at the congested
nodes. The third and the fourth schemes are similar to schemes one and two,
respectively, with the difference that arriving cells with no token waiting are
queued. The cells will be dropped when queue is full. In the buffered schemes the
operation is not transparent to the user due to the delay introduced by the buffer.
Leaky Bucket scheme has been widely analyzed in the literature. The simplest
analysis of the leaky bucket uses closed queuing networks in which both cells
and tokens are generated by a separate Poisson process. Other complex analyses
have also been proposed (e.g., [70] and [71]). In [70], a Markov chain discrete-
time analysis has been proposed when there is no buffer for the arrived cells.
Tokens are generated periodically in every interval. The approach calculates the
steady-state data throughput by first calculating the steady-state probability of
the number of tokens in the bucket just before new tokens are generated. The
approach in [71] considers buffering of the arrived cells. It uses the fluid flow

approximation generalized to a finite buffer case.

Leaky bucket approach in conjunction with buffering has been used for traffic

cells.
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shaping. This has been performed by transforming a non-conforming cell flow

into a conforming cell flow by delaying the transmission of non-conforming cells.
b) Policing and Shaping in IP networks

In the Internet, a bucket collects tokens that control the average transmission
rate and burst duration. The network periodically adds tokens to the bucket(s)
corresponding to each flow at a rate determined by the traffic parameters. If a
token bucket is full nothing adverse happens. It means that the source has not
transmitted data in a while and has a full set of token permissions to transmit
once it becomes active again. On the other hand in ATM, arriving cells fill a
logical set of buckets which leak at a rate as specified by the traffic parame-
ters. If an arriving cell overflows any of the buckets, the network considers the
cell non-compliant to the traffic parameters. The Internet Resource reSerVation
Protocol (RSVP) [72] uses the token bucket algorithm to describe traffic param-
eters corresponding to a specific flow of IP packets. Two parameters completely
specify the token bucket: an average rate r and a bucket depth b. RFC 2215
[72] defines the token-controlled average rate r as the number of bytes of IP

datagrams permitted by the token bucket per second.

A.1.2 Scheduling

A traffic policer acts as a traffic cop at the node connected to the user at the edge
of the network and optionally at points where networks interconnect. Although IP
and ATM employ different algorithms to define traffic policing parameters, they have
similar semantics. The two popular scheduling schemes are Weighted Fair Queuing

[73] (WFQ) and Priority Queuing (PQ). In WFQ, as shown in Figure A.3, N flows
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Figure A.3: Weighted Fair Queuing (WFQ) scheduling scheme.

characterized by r;, the token rate, and b;, the token bucket depth arrive to an indi-
vidual queue @Q; via input links operating at a rate of R; bps. A weighted scheduler
services each queue at a proportion ¢; of the overall output link rate R of the node.
For the case where the input link speeds are infinite (i.e., R; = oc), the worst case

nodal delay D; irq. for flow i is bounded by

L mar

b:
DWFQ <_1+

i, Mazx =
i

where L., is the maximum packet length across all flows. It is interesting to compare
the performance of a lossless WFQ system with that of a PQ system that has been
engineered to achieve a low loss. For a PQ system with buffer capacity B and link

rate R, the maximum delay for a high priority flow is:

PQ <£+£’E
1,‘\IaI—R R

The required buffer capacity is a function of offered load p, loss probability Py, and

characteristics of traffic. For Markovian traffic patterns, the ratio of the maximum
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delay for WFQ and PQ is approximately:

i R _(1-p)

D-PQ = r; — In Ploss

i, Mazx

The first term is the ratio of the multiplexer link rate to the regulated source rate.

(1-p)

. As a result, sources
—In Pigy,

The second term is a constant on the order of a fraction
with an average rate r; on the order of a fraction of the link rate achieve comparable
performance with WFQ and PQ. Sources that have a rate on the order of the link
rate achieve better performance with WFQ than PQ. Finally, sources with low average

rates achieve better performance with PQ than with WFQ but at the expense of poorer

performance of low priority traffic.

A scheduling algorithm that deliver optimal delay with minimal buffer space exist
if the user shapes the traffic to a level less than or equal to that enforced by the
policing function [74]. The analysis in [74] compares three schemes: Fixed Allocation
(allocates a worst-case buffer to each flow), Semi-Flexible Allocation (allocates a buffer
to each flow based on knowledge of r; and b;) and Flexible Allocation (implements
a completely shared memory buffer). The result of the analysis indicates that the
buffer requirement decreases as the flexibility of the scheduling policy increases. The
paid price for better buffer utilization is the increased complexity. Examples includes
Non-Preemptive Earliest Deadline First (NPEDF') and a Tracking policy based upon

Preemptive Earliest Deadline First (TPEDF) [74].

A.1.3 Discard Mechanisms

IP routers and ATM switches can recover from congestion by discarding traffic. There

are three discard mechanisms:
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e Selective Discard of Lower Priority traffic (ATM and IP)
e Early / Partial Packet Discard, EPD/PPD (ATM)

e Random early detection (IP)

Selective Discard: Policing allows the ingress traffic node to either discard the traffic
that fails to conform to the traffic parameters, or mark non-conforming traffic
at a lower priority. In ATM, the Cell Loss Priority (CLP) bit is used to indicate
whether the cell is of high priority (CLP=0) or low priority (CLP=1). The
IP diffserv standard allows implementations to selectively mark non-conforming
packets. The experimental field in the Multi-Protocol Lable Switching (MPLS)
header may also support selective tagging of non-conforming packets. Addition-
ally, the IP integrated services architecture document [75] recommends tagging
non-conforming packets if such a means is available. Selective discard gives
preferential treatment to higher priority cells or packets over lower priority cells
or packets during periods of congestion in order to maintain a guaranteed QoS
for higher priority traffic. In ATM, selective discard is an important standard-
ized network function for recovering from congestion. If network is not con-
gested then the network may provide higher throughput by also transferring
non-compliant traffic. Selective discard is effective when wp < 1, where w is the
percentage of high priority traffic and p is the total load. In extreme overload

situations (wp > 1), other congestion recovery mechanisms need to be employed.

Early/Partial Packet Discard: Loss of a single cell in the ATM Adaptation Layer
5 (AAL5) Segmentation and Reassembly (SAR) process means losing an entire

packet. A number of studies and tests (for example {76]) show that a more
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effective reaction to congestion is to discard at the frame level rather than at
the cell level. As a result, ATM Forum [77] specifies an intelligent frame discard
function as an optional congestion recovery procedure. Such intelligence is used
at the heavily congested points (such as a highly utilized link of an ATM switch)
to maximize the number of complete packets transferred. Early Packet Discard
(EPD) occurs when a device in a congested state discards every cell from an
AAL5 PDU. EPD prevents cells from entering the buffer, reserving the remain-
ing buffer capacity for the cells from packets already admitted to the buffer.
Partial Packet Discard (PPD) occurs when a device discards all remaining cells
except the last one. PPD acts when some cells from a packet have already been

admitted to the buffer.

Random Early Detection (RED): The objective of RED algorithm (described in {78])
is to fairly distribute the effects of congestion across multiple user flows compet-
ing for a congested resource. The operation of the RED algorithm is as follows.
A buffer queue that is served by a transmission link has two thresholds: min
and max. The queue keeps a low-pass filtered average using the current queue
length ¢ with memory factor of z, i.e., avgnew =atgud(l—z)+zq. If the low-pass
average is less than the minimum threshold, then the node admits the packet.
If the average exceeds the maximum threshold, then the node discards every
incoming packet to avoid congestion. If the average is between minimum and

maximum threshold, then the node drops packets with the following probability:

avg — min
d = —_—

where Pmez is the maximum drop probability. Other refinements and enhance-

ments of the RED algorithm include dropping all packets from a randomly iden-
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tified low and implementing thresholds on a per-flow basis upon prioritization

across different flows [79].

A.1.4 Fixed Window Retransmission

Fixed window retransmission protocols are invoked at the source to combat the packet
(or cell) loss. Packet loss or excessive delay results in a time-out or negative acknowl-
edgment in a higher layer protocol (e.g., TCP) which then retransmits one or more
packets. Higher layer protocols recover from detected errors, or time-outs, by one of

the two basic methods called Go-Back-N and Selective Reject.

The Go-back-N strategy, which is the default protocol in TCP, retransmits the packets
that are erroneous or have been time-out followed by all other packets sent afterwards.
If the transmitter has sent N packets upon detecting a lost packet or time-out, then
it must retransmit the same N packets again. The selective reject strategy retrans-
mits only those packets that were actually lost or timed out. It is superior to Go-
Back-N strategy as the transmitter resends only the selectively rejected packets. On
the other hand, this method requires greater complexity in the receiver and sender
protocols. Standards call this a selective reject, selective retransmission or selective
acknowledgement strategy. The ATM Service Specific Connection Oriented Protocol
(SSCOP) details a sophisticated selective reject algorithm [80]. The IETF defines op-
tional selective acknowledgement strategy as extensions to TCP (e.g., [81]) in support
of communications over long delay paths (e.g., Satellite Communications); however,

few implementations support it.
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A.2 Closed Loop Congestion Control

When a large number of sources start generating traffic simultaneously, momentary
periods of cell loss occur within the network. Admission control and policing schemes
reduce the buffer overflow probabilities, however, they can not prevent it. On the
other hand, the optimum selection of window size for the adapted retransmission
protocol depends upon a number of parameters that real applications cannot stat-
ically configure. As a result, IP and ATM-based applications utilize adaptive flow
control techniques to set the window size or adjust the transmission rate. Since these
techniques utilize feedback, they are called closed loop congestion control schemes.
Depending on how the status of congestion is notified to the source, gives rise to two
classes of closed loop congestion control: Explicit Congestion Notification and Implicit

Congestion Notification. We briefly describe them in the following subsections.

A.2.1 Implicit Congestion Notification

TCP slow-start congestion control [82] [83] is an example of implicit congestion noti-
fication. It is an enhancement to the initial TCP implementation designed to dynam-
ically maximize throughput and prevent congestion collapse by changing the window
size. A TCP sender keeps track of a congestion window which is never greater than
the window size reported by the receiver in the TCP packet. TCP geometrically
increases the window size (i.e., 1, 2, 4, 8, and so forth) during the initial start-up
phase. However, TCP congestion control has another function that limits the inter-
val of geometric increase until the window size reaches a threshold of one-half of the
congestion window size achieved before the previous unacknowledged segment. After

this point, TCP increases the congestion window by one segment for each round-trip
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time instead of doubling it during the geometric growth phase. The linear phase of
TCP window growth is called congestion avoidance while the geometric growth phase

is called slow start.

A.2.2 Explicit Congestion Notification

As shown in Figure A.1, explicit congestion control functions can be performed locally
or globally. Rate-based control are global congestion control algorithms whereas ATM
Available Bit Rate (ABR) Virtual Source/ Destination and IP source quench are local
congestion control algorithms. For either local and global algorithms, there are two
sub-categories: persistent and responsive. A persistent algorithm continuously gener-
ates feedback, while a responsive algorithm only generates feedback when congestion
actually occurs. The suite of ATM Available Bit Rate closed-loop flow control algo-

rithms all operate using explicit feedback. The following subsections briefly describe

these algorithms.

Rate-based Congestion Control

In a rate-based scheme, the ABR source adjusts its allowed cell rate according to
a feedback messages carried by Resource Management (RM) cells coming from the
network. The source changes its actual cell rate based on the information in the
Congestion Indication (CI) and Explicit Rate (ER) fields of the RM cell. Researchers
have proposed various forms of rate-based congestion control algorithms for the ABR
service category([84]. These algorithms can be grouped into two main classes: Binary

Feedback (BF) and explicit rate(ER).

Binary mode is like green/red lights at the entrance to congested freeways. This mode
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involves ATM switching nodes setting Explicit Forward Congestion Indicator (EFCI)
in the forward direction so that the destination end station can set the CI field in a
returned RM cell to control the flow of the sending end-station. The binary mode
ensures interoperability with older ATM switches which can only set EFCI bit in the
forward direction in response to congestion. Although the binary mode is simple,
it experiences higher loss rates in certain situations such as those where congestion
occurs at multiple points in the network. Furthermore, unless the network elements

perform per connection queuing, unfairness may result when sharing a single queue.

In Explicit rate mode, each network element explicitly sets the maximum allowed rate
in the RM cells looped back by the destination as they progress backward along the
path to the source. The goal is that each user receives a fair allocation of available
capacity and buffer resources in proportion to their traffic contract in a responsive
manner. Simultaneously, the ABR service should operate at higher utilization with
negligible loss. This mode requires tuning of far fewer parameters and hence is the

preferred method in networks that are capable of supporting explicit rate ABR.

In contrast to the explicit rate algorithms, binary mode algorithms are known to be
less responsive to changes in network congestion and less fair in allocating bandwidth
among active sources [85]. On the other hand, binary algorithms are much simpler

and require less hardware complexity.

Given the performance superiority [86], several ER algorithms have been proposed in
the literature, for example [87] and [88]. In general, the proposed ER algorithms can
be classified into two main classes: approzimate and ezact. As the name implies, ap-

proximate algorithms estimate the bandwidth fairness for different connections using
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exponential running averages rather than computing fair-share values. As a result,
approximate algorithms are relatively less responsive to network changes and can re-
sult in high oscillations in the generated bandwidth allocations. At the expense of
higher implementation complexity, exact algorithms are more accurate in computing a
fair-share bandwidth and, in most cases, offer an oscillation-free bandwidth allocation

[85].

ABR Virtual Source/Destination (VS/DS)

The ABR VS/DS approach incorporates segmentation using the concept of mated
pairs of virtual sources and destinations. These sources and destinations form closed
flow control loops across the sequence of network elements involved in an ABR connec-
tion. The situation in which every node in the network is a virtual source/destination

is called hop-by-hop flow control.

IP Source Quench

Source quench messages are send to hosts to throttle back their traffic to avoid con-
gestion [89]. A source quench may be sent by destination host or by some gateway.
The host that receives a Source Quench should throttle itself back for a period of
time, then gradually increase the transmission rate again. The mechanism to respond
to Source Quench may be in the transport layer (for connection-oriented protocols

such as TCP) or in the application layer (for protocols that are built on top of UDP).
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Appendix B

Procedure to Derive Parameters of

a 2-State MMPP Source

In this appendix, which is an extended discussion to Section 5.1, we discuss the
mapping of many (V) On-Off sources into a 2-state MMPP process. A 2-state MMPP
process has been used in OPNET to generate variable bit rate (VBR) bursty traffic

with short-range dependency.

The procedure uses underload and overload approach. Given a set of N independent
and homogeneous On-Off sources, each with average On-time, a~!, average Off-time,
3-! and arrival rate in the On-state, A, we would like to map N sources into a single
9_state MMPP source with four parameters: arrival rate in state 1, A,, arrival rate in
state 2, )\,, average sojourn time in state 1, or' and average sojourn time in state 2,
o5 '. Before we start deriving parameters of 2-state MMPP from On-Off parameters,
let us first consider an On-Off source shown in Figure B.1. Since the On-Off source

forms a Markov chain, we can solve the stationary probability of being in On state or
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Figure B.1: A single On-Off source that models bursty traffic sources.

Off state at any time £,

Pon(t)'i-Poff(t) =1

Po(t+At) = Po(t)(1 — aAt)BAL

P,,(t + At) — Ppu(t)

At = _aPon(t)+5Poff(t)' (B'l)

In steady-state, the left hand side of (B.1) approaches zero, Fun(t) = Po, and

Poff(t) = Poffy thus

B
Pn = o Forr
Po,l-}-Poff = 1
and
B
Pa"_a+,6"

Now, given N On-Off sources, the probability that k of them are in On state is given

by a binomial distribution, i.e.,

N 3 \* o \V*
Pr(k source in On state] = m, = ( ) ( , ) (B.2)
E a+ 3 a+j3

and the average arrival rate is

B
a+j

XN On-Off = N A. (B3)
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Since the peak arrival rate, Apax on—osys, is equal to NA, we can find the peak to

average ration, PAR, as

Ape n— 3
PAR= Jpeakon-ofg o3 1 (B.4)
AN On—-Off B FPon

The Index of Dispersion for Counts (IDC) for each one of the On-Off sources is
the same as the IDC for aggregate N source and it has been derived by Heffes and

Lucantoni [7] as
1-(1-a/A)?

@/ A+ 8/A7 (59)

IDCy on-off =

The basis of the matching technique using overload and underload approach is due to
the fact that there are two regions in a CLR versus buffer size: cell level and burst
level. A 2-state MMPP attempts to capture these two regions through the two states.
Of the N On-Off sources, if more than L of them are active, we say the MMPP source
is in the overload region, whereas if less than L sources are active we say MMPP is
in the underload region. As the average rate is given by equation (B.3), the average
number of sources which are active is given by #XR. As a result, a good choice for L
is
N 77
e~ [pare] oo

where ¢ is a parameter between 0.9 and 1.1. Setting it to 1 is a good choice.

Figure B.2 shows a 2-state MMPP source in which subscript 1 refers to the underload
state and the subscript 2 refers to overload state. For a 2-state MMPP, the average

arrival rate and the IDC is given by

- /\]_0'2 + /\20’1 -
Ammpp = W (B.7)
1

20102(A — X\p)?
IDC. A o = 1 + 2
rrarpp(00) (o1 + 02)2(A\102 + Aa0y)
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Figure B.2: A 2-state MMPP that models aggregation of many On-Off sources.

The matching procedure matches the followings: a) the average arrival rate in the
underload and the overload region to the average arrival rate in states 1 and 2 of the
MMPP source, respectively, b) the total average arrival rate between the two states

and c) the asymptotic value of IDC. As a result,

-L_ i:’lﬂ’i
/\l = _Z'_—LL__ (B_g)
2izo i
and
N 4
A = ZLa AT (B.10)
241 T

where 7, is given by (B.2) and L by (B.6). The remaining parameters o, and o are
obtained through

20102(A — Ag)?

IDC n— = DC ) = =1
~ on-off(0c) IDCarpp(o0) = IDC + (o1 + 02)%(A102 + A20)

~ — - A102 + A0y
AN One = Apmpp=A=12- 7221
N On-0Off MAIPP o1 + 02
Note that
A — A= (’\_17_’\_2)ﬂ (B.11)
gy + 02
X — Ay = QiAo (B.12)
oy + 02
Using the above equations with some manipulations we obtain
2(A = A)2(A = A

T (A= A)A(IDC - 1)
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and
20 =)A= )
72 = A = A)AIDC = 1)

(B.14)

Now, the mapping procedure can be summarized. Given the number of On-Off
sources, N, peak-to-average ratio, PAR, peak-rate, A, and IDCy on-oss(o0) (or o

and j3) the following steps are required to obtain the parameters of a 2-state MMPP

source:

1. Find :\. = /\NOn—-Of] using (B.3)

(3]

. Find IDC using (B.3).

3. Find m, k=0, 1, ---, N using (B.2).

4. Find L using (B.6).

5. Find A, and A» using (B.9) and (B.10), respectively.

6. Find o, and o> using (B.13) and (B.14), respectively.
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Appendix C

Fractional Brownian Motion Traffic

(FBM) Generator

In this appendix, which is an extended discussion to Section 5.1, we discuss fast
generation of FBM patterns. We deploy both MMPP and FBM generators, with

various parameters and different mixture ratio, to obtain aggregate multimedia traffic.

The FBM generator uses Markov-Gauss processes to generate low frequency and high
frequency of traffic arrivals. Low frequency shows long-range dependency and high
frequency shows short-range dependency. Low frequency component is generated
by weighting the sum of N Markov-Gauss processes with an appropriate weighting
function and a high frequency component is generated by one Markov-Gauss process.

The covariance function of standardized discrete time FBM is given by

C(s, H) = %{(s +1)27 — 928 4 (s —1)?"} fors=0, 1,--- (C.1)

The interest is in the high lag of (C.1). Thus by expanding on powers of s~! we have



the following approximation:
Ci(s, H) = H(2H - 1)s2H-2 for s >> 0. (C.2)

To construct Fast Fractional Gaussian Noise (FFGN), which is a continuous version
of the Fast FBM, with no loss of generality we consider standardized X (t. H) which
has mean of zero and variance of 1. It is assumed that X (¢, H) can be decomposed

into two parts:
X(t, H) = Xi(t) + Xa(t)

where X(t) denotes low-frequency (or long-range dependent) term and Xn(t) denotes
high-frequency (or short-range dependent) component. The separation between these
two terms is arbitrary, but Mandelbrot [57] has proposed it to be £ = 0.368 . The low
frequency component X,(t) is implemented by a weighted sum of N+1 standardized
Markov-Gauss processes,
X(t) = EV: Wi M (2).
=0

Markov-Gauss process are assumed to be pairwise uncorrelated. The autocorrelation

function for the kth standardized Markov-Gauss process is
Ri(s) = E [M®(t +5)M*(t)] =1
The auto-correlation function C;(s, H) of Xi(t) is given by

Ci(s. H) = E[Xi(t+ s)Xi(¢)]

N N .
= E [Z(Wn)%./ [P(t+5)- Y Wi M(")(t)]

n=0 n=0

N
= 2: ["anlf I.

n=0

By setting 7, = e~ * the analog version of the above formula is obtained as
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Cu(s, H) = /o " e W (u) du. (C.3)

It is noticed that C,(s, H) and W (u) are a Laplace transform pair. Using the equation
(C.2), we can get

2H(1— H)2H ~1) oy

W) = L7 [Culs, B)] = =155

In FFBM the values of r and u are not incremented uniformly. The reason is that
uniform increments put too much emphasis on high and mid-frequency components.

Uneven increments are obtained by substituting B~ for u where B is called Mandel-

brot base.

Substituting u = B~ into equation (C.3), we get

v o, 2H(1 - H)(2H — 1
Ci(s, H) = /_oo e*? logB (1“(3—)'()H) :

2H(1— H)(2H - 1) IR mtr g o)
s 2 “dy.
G =2 log B n_f__:x/n_% e v

Bz(”‘”"du,

Approximating the exponential inside the integral by its mid-span value e™*#7" we

have

+4

o 1y = AT oy 2 e

B?(H—l)vdu

(X1

H(QH — 1) 1-H H- = —sB~™ p2(H-1
= ———(B'"""-B"") e 87" pAH-In
r'(3-2H) ,.é:w

In practice the limits of the summation can not be —oc or +oc which corresponds to
r =0 and r = 1, respectively. The lower limit is replaced by n = 0 corresponding to
u = 1 and the upper limit is replaced by N. Mandelbrot has employed a procedure

to establish a precise value of N as a function of the length of record to be simulated.
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However, Chi et al [93] recommended a value of N = 20 which gives e~ ~ 1. Also,
they provided graphs of B versus N for different values of H. From these graphs if
we select N = 20, then

B = max(2, 10H - 3)

can be chosen for different values of H. Putting finite limits on NV gives

(s, H) = ZW B

n=0

where
H(2H - 1)

We =T -2m)

(BI—H _ BH—I)BZ(H—l)n.

To produce one sample of X;(¢t, H), W, from the above, and r, and M,(t) given by

My(t) = raMa(t—1) + /112 G(t)

—R-n
Thm = e B8

are calculated for all the values of n = 0 to /N and are substituted into equation

N
Xi(t, H) = S_(Wa)T M™(2).
n=0
For X,(t), the high frequency component, a single Markov-Gauss process M(t) =
raM(t — 1) + /1 — r2G(t) is used rather than N + 1 Markov-Gauss processes as in

the case of X;(t). After setting the two values of NV and B, the only input to the

generator is Hurst parameter and the output is the corresponding X (¢, H).
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Appendix D

Function Approximation Ability of

Sigmoid Networks

In this appendix, first we mention the general representation of functions of an N-

dimensional real variable, x € RV, by finite linear combinations of the form

aja(yfx +6;) (D.1)
o

J

where y € R and aj, 8; € R, o is the sigmoid function with the following property:

1 as t—> o
o(t) —»

0 as t— —c¢

It is noted that the above function is indeed the activation function in the neural
network. Now, we investigate conditions under which the above summation is dense
in C(D), where C is the set of continuous functions on D and D is the N-dimensional
unit cube (D = [0, 1}%¥). We present one Theorem and one Lemma. By combining
the Theorem and the Lemma, it can be shown that the networks with one hidden

layer and an arbitrary number of continuous sigmoid functions can approximate any
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continuous function with arbitrary precision provided that no constraints are placed

on the number of nodes or the size of the weights[94].

Let D denote the N-dimensional unit cube [0, I]N. The space of continuous functions
on D is denoted by C(D) and || f]| is used to denote the supremum (or uniform) norm
of a function f € C(D). The space of finite. signed regular Borel measures on D
is denoted by M (D)[96]. The objective is to investigate the conditions under which
sums of the form

G(z) =3 o0(yTz +6;) (D.2)
j=1

are dense in C(D) with respect to the supremum norm.
Definition 1: We say o is discriminatory if for a measure u € M(D)
/D o(yTz +0)du(z) = 0
for all y € RY and 6 € R, implies that u = 0.

Definition 2: we say o is sigmoid if

1 for T—> o0
o(t) —
0 for T—> —x

Theorem I: Let o be any continuous discriminatory function. Then the finite sums

of the form

G(z) = L. ajo(ulz +6;) (D.3)

2

with a; € R are dense in C(D). In other words, given any f € C(D) and € > 0,

there is a sum G(z) for which
|IG(z) — f(z)l <€ for all €D
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Proof: Assume S C C(Dj is the set of functions of the form G(z) as in D.3. Ob-
viously, S is a linear subspace of C(D). We argue that the closure of S is
all of C(D). Assume that the closure of S is not all of C(D) and it is 7,
which is a closed proper subspace of C(D). By the Hahn-Banach theorem,
there is a bounded linear functional L on C(D), with the property L # 0 but
L(T) = L(S) = 0. By the Rieze representation theorem, this bounded linear

functional L is of the form:
L(h) = [ h(z)dp(z)

for some i € M (D) and for all h € C(D). In particular, since our discriminatory

function o(y’z + ) is in T for all y and 6, we should have
/Da(yTx +0)du(z) =0 for all yand @

Since we assumed that o is discriminatory, this condition implies that x4 = 0,

contradicting the assumption. Hence, the subset S must be dense in C(D).

This proof shows that the sums of the form D.3 are dense in C(D) provided that

o is continuous and discriminatory. Now we show that the sigmoid functions are

discriminatory.

Lemma 1 [94]: Any bounded, measurable sigmoid function, o, is discriminatory. In

particular, any continuous sigmoid function is discriminatory.

Proof. To demonstrate this, note that

4

-1 for (yTz+60) >0 as A - +©

c(A@Tz+0)+9)§ -0 for (yTz+0) < 0 as A = +oo

‘ =oa(¢) for (yTz+0) = 0 forall A
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for any z, y, 0 and ¢.

Therefore, the function ox(z) = o(A(yTz + 0) + @) converge pointwise and

boundedly to the function

4

1 for (yTz+6) > 0O

Y=40 for (yYz+6) <O

| (@) for WTz+6) = 0
as A — oc.
Let [I,, o be the hyper-plane defined by {z | y*z + 6 = 0} and let H, 4 be

the open half-space defined by {z | yTz +6 < 0}. By the Lesbegue Bounded

convergence theorem, we have

0 = /D ox(z)du(z)
= [ +@)du(2)

= o(o)u(I) + r(Hy, »)
y, 0

for all ¢,6 and y.

Now we show that the measure of all half-planes being 0 implies that the measure
u itself must be zero. This would be trivial if 1 were a positive measure, but in
our case u is not necessarily a positive measure. It will be shown that 4 =0 in

what follows.

Let us fix y. For a bounded measurable function f, let’s define the linear function

F according to

F(h) = [ h(y"2)du(z)-



Since p is a finite single measure, F is a bounded functional on L*(R). Let

1 if u >0
h(u) =
0 if u<é

be the indicator function of the interval [#, oc). Then

F(h) = [ hw"z)du() = u( T1 ) + u(H,, o) = 0.

Y, -9

Similarly, F(h) = 0if h is the indicator of the open interval (6, oc}). By linearity,
F(h) = 0 for the indicator function of any interval and hence for any simple
function since simple functions are the sum of indicator functions of intervals.
Since simple functions are dense in L>(R)[93], then F = 0.

In particular, the bounded measurable functions s(u) = sinmu and c(u) =

cos mu give
F(s(u) + je(u)) = /Dcos(mrz) + jsin(mTz)du(z)

/ ™ Tdp(z) = 0
D

for all m.

Thus Fourier transform of g is 0 and so p must be 0. Therefore, it can be

concluded that o is discriminatory.

Having addressed Theorem 1 and Lemma 1, the results can be applied to the
neural networks with sigmoid functions as neurons. A straightforward combination of
the above mentioned theorem and lemma shows that networks with one internal layer
(or hidden layer) and any arbitrary continuous function as neurons, can approximate
continuous functions with arbitrary precision provided that no constraints are put on
the number of neurons or the size of the weights. As a consequence we mention the

Theorem 2 for function approximation of a single hidden layer neural network.
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Theorem 2: Let o be any continuous sigmoid function. Then the finite sums of the

form

G(z) = z’V: aja(yfx +6;)

j=1

are dense in C(D). In other words, given any f € C(D) and € > 0, there is a

sum G(z) for which

|G(z) — f(z)|<e for all z€D

Proof: Combining Theorem 1 and Lemma 1 by considering the fact that continuous

sigmoid functions satisfy the conditions of the lemma, the theorem is proven.
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