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Abstract

“The Wigner Function and its relation with the wavelet

transform for certain Lie groups”
Md. Alomgir Hossain

We study Wigner functions on general Lie groups when the group admits square-
integrable representations. We develop a relation between Wigner functions and
wavelet transforms. In the main part of this thesis, we build Wigner functions and

study the connection between Wigner functions and wavelet transforms on the group

a b
Gap = | a>0,b€Rand c is a fized constant. c # 1 » . Further we

0 «af

check the covariance property, marginality and overlap conditions for the Wigner

functions on Ggp.
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Chapter 1

1.1 Introduction

The main aim of this thesis is to build Wigner functions on the group
a b

G = |a>0.beR and c is a fired constant. ¢ # 1 (1.1)
0 a°

Further we will establish a connection between Wigner functions and wavelet trans-
forms on the same group.

The Wigner function was introduced by E. Wigner in 1932 [12] and it has been stud-
ied by many mathematicians and physicists. The idea of building a Wigner function
on the group G, originated from [1] where the theoretical basis of such a construction
was laid and an example was given. following a general construction.

We divide this thesis into three chapters. In Chapter-1, we give the prelimenaries.
In order to arrange the preliminaries in a decent mathematical way we divide this
chapter into three sections. In Section 1.2, we explain how one can construct the Lie

algebra of the group Gg,. In order to do integration on the group we will determine



the invariant measures on it. In Section 1.3 we study the adjoint and coadjoint actions
of a group . Finally we explain the covariant coadjoint representations in Section 1.4
In Chapter-2, we will have three sections. In section 2.1, we will study the theoretical
nature of Wigner functions and in Section 2.2, we will introduce wavelet transforms.

In the final section (Section 2.3), we give the connection between Wigner functions

and wavelet transforms.
The first two chapters are completely a survey of Wigner functions. In chapter-3, we

study Wigner functions on G,. Such functions are presented for the first time in this

thesis. However the method of construction is an adaptation of earlier work.

1.2 Lie algebra of a group and Haar measures

Here our concentration will be on Lie group. adjoint. coadjoint actions and their

orbits.

Definition 1.1 An abstract group G is said to be a Lie group if
(i) G is an C>* manifold.
(ii) The mapping G x G — G given by (z.y) — zy~" is C*.

Definition 1.2 Let L be a finite dimensional vector space over the field K of real or
complex numbers. L is called a Lie algebra over K if there is defined on it a bracket
operation

[]:LxL—L by(X,Y)—[X.Y]

2



satisfying the following:
(i) [@X +3Y.Z] =a[X,Z] + 3[Y.Z] fora,3€ K
(i) [X.Y] = —[Y. X]

(iii) [X.[Y.Z)] +[Y.[Z. X)| + [Z.[X.Y]| = 0

1.3 Lie algebra generated by a Lie group

Let G be a Lie group and e € G its identity element. Let
T(e) = {f | fis a differentiable function of class C' defined on a neighbourhood of e}
and such that there exists r : [a.b] — G . ¢t — z(t). a homomorphism of class C

such that z(0) = e. Now the tangent vector to the curve z(t) at e is the map

A:T(e)— R
df (z(t

Af= ———f(dt( ) lt=0 (1.2)

In a local coordinate system {z'.....z"} at e we have
df (z(t)) — Of dz’ -
Af = = 0= ) 5 lemwe) - 0= D@ Ly(e)f

j=1 j=1

where
af - dzi(t) _
Li(e)f = o0 |z1=z1(ey and a? = o ll—o J=1l...n (1.3)

a'......,a™ are the components of the vector A. Indeed, we can represent the tangent

vector (1.2) by its components i.e., A = (al.....,a"). Let G be the tangent space



at e. We convert this vector space into a Lie algebra. Set
¢' = [4, B]' = c},a’b* (1.4)

where A =37 a'Ljle) : B = Y.l ¥ Lj(e) and the ¢t are called structure
constants. Now G together with [,] forms a Lie algebra and is called the Lie algebra

of the Lie group G.

Definition 1.3 4 homomorphism ¢ : R — G is called a I-parameter subgroup of

G.

Definition 1.4 Let G be a Lie group and let G be its Lie algebra. Let X € G then
/\% — AX. A€ R is a homomorphisin of the algebra of R onto G. ie.. If R is

the Lie algebra of R. then ¢:R — G such that /\(;—lr — AX s a homomorphism

Theorem 1.1 Let G and H be Lie groups with Lie algebras G and H respectively
and with G simply connected. Let v : G — H be a homomorphism. Then there

exrists a unique homomorphism ¢ :G — H such that

Proof. : See [7] m

Note 1.1 Since the real line is simply connected, there exists, by theorem(1.1). a

unique l-parameter subgroup expy : R — G such that

d A
dexpy(Ar) = AX (1.6)



i.e., {expy(t).t € R} is a 1-parameter subgroup of G.

Definition 1.5 Let G be a Lie group and G be its Lie algebra then the mapping

exp:G — G by

exp(.X) = exp(1) (1.7)
is called the erponential map from G to G.
Theorem 1.2 Let G be a Lie group and G its Lie algebra. Let X € G then
(i) exp(t.X) =expy(t) VEER
(ii) exp(t; + t2).X =exp(t;.X)exp(t2.X) Vi .taeR
(iii) exp(—tX) = (exptX)~t VteR

(iv) exp : G — G is C™ and dexp : Ny — V. is the identity map where Ny is a
neighbourhood of 0 in G and V. is a neighbourhood of e in G. ie.. exp

gies a diffeomorphism of Ny onto V..

Proof. : proof can be found in standard texts of Lie groups. For example see

reference [11] =

Corollary 1.1 Let G be a Lie group and G be its Lie algebra. Then the exponential

map exp : G — G where

exp(X) =g (1.8)



is a topological homeomorphism between an open neighbourhood Ny of 0 in G and

an open set V., around the identity e in G.

Note 1.2 Now exp : Ny — V, is a homeomorphism. So we can define the inverse

map Log: V. — Ng by
Log(g) = X. (1.9)

Definition 1.6 Let G be a locally compact group and let Co(G) and C§i(G) de-
note the space of continuous and continuous non-negative functions on G with com-
pact supports, respectively. A positive Radon measure is a positive linear form p on

Co(G) which is non-negative on Cy(G). e, p(f)=20 for feCi(G).
Definition 1.7 A positive Radon measure p which is left invariant.
w(TLf) = u(f) where Ty f(z) = f(g™'x) (1.10)

YV r.g € G is called a left-Haar measure and it is denoted by .  Similarly, a right

Haar measure p, satisfies
(T3 f) = pe(f) (1.11)
where (Tng)(.L‘) = f(zg). Yz.g € G.

Definition 1.8 4 measure p which is both left and right invariant is called the

invariant Haar measure.



Definition 1.9 The left and right invariant Haar measures are equivalent,

du(g) = A(g)dp-(9) (1.12)
where A : G — R is a measurable function , called the modular function.
Theorem 1.3 The modular function A(g) is a group homomorphism

(i) D(g1g2) = D(g)D(g2) Var.g2 € G.
(ii) O(e) = 1.

Proof. : See reference [4] m

1.4 Coadjoint orbits of a Lie algebra

In this section we will concentrate on adjoint and coadjoint actions of a Lie algebra.

Definition 1.10 A Lie group has a natural action on its Lie algebra. which is called
the adjoint action. Let G be a group and G be its Lie algebra. Then for g€ G
1

®,: G — G gwen by g — gg'g™" is a differentiable map (inner automorphism)

from G to itself. Now. for X €G , exp(X)e G
B,(exp(X)) = gexp(X)g™" = exp(Ad, X)

The linear map Ad,:G — G is called the adjoint action.

-~



Note 1.3 (i) If G is a matrix group. so that G consists of matrices then Ad, : G —

G is given by X — Ady(X)
Y = Ad,(X) = gXg~". (1.13)
(i) Ad, is an automorphism of G.

(iii) G* = {X*:G — R| X" linear} is called the dual of the Lie algebra G. G~ is

a vector space.

(iv) ;) : " x G — R where (X*.X) — (X":X) is called the dual paring and is
defined as follows. Let {X,}, beabasisin § and {X[}L, be a basis in

G. Let X e€Gand X*€ G then
X = ir"x,-. X = znjg &
i=1 i=1
where z,.§ € R Vi=1.2...n Now (:) is defined as
(X" X)=1£ (1.14)
where 7= (z!.....z") and € = (€', ....€M).
(v) With the above notation, we write the Lebesgue measure on G and G* as
dX — dZ = dz' A ... Adz"; dX* — dE = dE| A ... A dE,.

Definition 1.11 The coadjoint action Ad; of g€ G is a mapping Ady : G—g-

and is defined as

(Ad;(X7); X) = (X" Ad; (X)), X" €G". X €6 (1.15)



Theorem 1.4 Let G be a Lie algebra and G~ be its dual and {X'}7,. {X[}1,
bases for G and G* respectively. If M is the matriz representation of the adjoint

action then (M~Y)T is the matriz representation of the coadjoint action.

Proof. : It can be proved using elementary linear algebra techniques. =

Definition 1.12 Let G* be the dual of a Lie algebra G . Let X be a fired element

in G* then the coadjoint orbit of X is defined as
O ={Ad X5 | g € G}. (1.16)
Note 1.4 (i) O comes naturally equipped with a measure d€2 such that
dQUX") = dQ(Ad; X7) : (L.17)
X0 [§
(ii) Two coadjoint orbits are either distinct or else they coincide entirely.

(iii) The collection of all coadjoint orbits exhausts G*. i.e..

Joi=¢ (1.18)

\eJ
where A can be a descrete or a continuous parameter.

(iv) We denote the invariant measure on the coadjoint orbit O3 by df2,.

(v) Let X* € G* then by (1.17) X* € O; for some A € J. So we could denote

X* by X;. With this notation we assume the following decomposition of the



Lebesgue measure on G*
dX™ = dr(N)oa(X3)d(X3) (1.19)

where o, : O} — R is a positive non-vanishing function.

1.5 Adjoint and Coadjoint representations

Through out this section H and H* stand for the Hilbert spaces L*(G.dz) and

L*(G*.dX"), respectively.
Definition 1.13 The adjoint representation V :G — L(H) is defined as
(V(g) F)(X) =]l Ad, 72 F(Ad;'X) (1.20)

where X € G. F € Hand g € G. | Ad, || is the determinant of the linear

transformation Ad, on G.
Theorem 1.5 The adjoint representation is unitary.
Proof. Consider

| V(g)F |1
- /g | (V(g)F)(X) [P dX

= [ 1, 17 Flady ) P ax

10



by a change of variables, Y = Ad,-1 X..
I V(9)F |I?

- / | (F(Y) [2 dY
[+

= [ FIP
Thus V(g) is unitary. ®
Definition 1.14 The coadjoint representation V* : G — L(H*®) s defined as

(VE(g)E)X™) =|| Ad] |

1 F(Ad X7 (1.21)

where X* € G*. g € G and F € H*. | Ad || is the determinant of the linear

transformation  Ad; on G*.
Theorem 1.6 The coadjoint representation is unitary.
Proof. Similar to theorem (1.5) m

Theorem 1.7 The adjoint representation V' and the coadjoint representation 17

are unitarily equivalent.

FV(g) = Vi(9)F (1.22)

for some unitary operator F from H to H*.

Proof. Let D(G) be the set of infinitely differential functions with compact sup-

port. Let F be a Fourier transform on D(G)

F— FF, F e D(9)

11



(FF)(X*) = TEY: /g exp Y F(X)dX (1.23)
We have
| FF?
= (FF|FF)
g.{ 7 %/;e\p—ﬂY 0 P(X }dY(2 )%/ge‘(p YT P(Y)dYd X

Since | expX " Y) F(X)F(Y)| < |F(X)||F(Y)] is integrable, by the Fubini theorem

we may interchange the order of integration. [10]

Thus || FF|?

_ oi ///Oxp,\'.\'-:x—v‘; F(X)F(Y)dXdYdX"

= // (X — Y)F(X)F(Y)dXdY. [/ exp T d X = (27)6(X - V)]
G

= / X)F(X)dX

=/|F ) [2dX

= | FIP

Thus F is unitary on D(G). We have D(G) = L*G). Let F € L*(G). then there
exists {F,} € D(G) such that F, — F in L*(G) -norm. ie., ||[F, — F|| — 0 as
n — oc. So {F,} is a Cauchy sequence and ||FF, — FFull> = |[|Fn — Fall2 — 0
as m,n — oc, because the Fourier transform is unitary on D(G). Hence {FF,} is a
cauchy sequence and it is convergent in L?(G). Then there exists g € L*(G) such that
lim FF, = g = FF. Hence F is unitary in L*(G).

n—oc

12



Now we will show V(g) and V*(g) are unitarily equivalent.

FV(g) = Vi(g)F (1.24)

Consider

(FV(g) F)(X7)

- & / exp™ O (V(9) F)(X)dX
2.Jg

=— /exp—r(-\";x) | Ad, H"% F(Adg-X)dX
(2m)2 Jg
- (.)1)2 /exp_l(_\’-;;\ng) ” Adg l% F(Z)dZ [Z = Adg—l.)(]
2m)2 Jg
1A% / exp™ - F(Z)dz
(27)2  Jg
_ H ‘Tldg Dl.l-’ /exp—i(:ld;_lx';x) F(.'\')d.}(-
(2m)2  Jg
Other part:
(VIFF)(X")  =| Ady: ||7F FF(Ad_,X")
Ad, |2 —i(Ad* _ X"
_ IAd, 12 / exp 1YY F(X)AX
(27)z Jg

Thus V' (g) and V*(g) are unitarily equivalent. ®

Definition 1.15 (covariant coadjoint representation) With the earlier notation.
for A € J. let O3 be a coadjoint orbit and Hy = L*(O3, dQ). Now define the

covariant coadjoint representation Uj : G — L(H)) as
(USEA)(XT) = FA(AdS .. X7) (1.25)

13



where FA € Hy and X~ € OF
Theorem 1.8 The covariant coadjoint representation is unitary.
Proof. Similar to to theorem(1.5). =

Remark 1.1 o V: and U ,\ are built on the dual of the Lie algebra G-.

e U; is more covariant than V* because U7 is restricted to a single orbit Of and
dQ, is invariant under coadjoint action. But V* is defined on functions on the

entire dual space G*.

Definition 1.16 e define a new Hilbert space H as the direct integral over the

spaces Hy.

H= / HydA (1.26)
J

which means that H is the space of equivalence classes of measurable and square

integrable vector fields {F,\} equipped with the scalar product
(BB = [ Az e, (1.27)
J

In other words. each ¢ € H is an equivalence class i.e., ¢ = {FA},\ e J: Fy € H,

Further we define the norm of ¢ onH as

- / LB} (B Dds())

J

14



_ / [ / | EV(X7) P dQA(X7)]dr(N) <x (1.28)
7 Jo;

Now using the following definition we will pack all the covariant coadjoint repre-

sentations U; defined in Definition(1.24) into one covariant coadjoint representation

U* on H

Definition 1.17 A new covariant coadjoint representation U* : G — L(H) is defined

as Uig)e = {UiFs}res. 9€G.
(U*(9)9)(XX) = (Ui(9) FR)(X3) = Fa(Ads- X3). (1.29)

Lemma 1.1 The operator N : L2(G*.dX") — H given by F — NF=y¢={C\}r s

=g =

is unitary . Where

Jo—

G\(X3) = [oa( X))

LM

F(X3) (1.30)

X; € O3 and oy : O3 — R is given by X3 — oA(X}). and is a positive nonvanishing

function.
Proof.

| NP
- /u NE |I? de(\)
J
= [ N CERR) IR sy
= [ [ 10601 FOG) a3 jdn()
1 Jo;

15



/ / | E(X) P dr(N)aa(X3)d(X5)
1Jo;

| F(X*) |* dX™

g-
= | Fi?

Thus N is unitary m

Theorem 1.9 The coadjoint representation V* given in Definition(1.14) and the co-

variant coadjoint representation given in Definition(1.17) are unitarily equivalent.
NVi(g) = U*(g)N.Vg e G (1.31)
where N is as in Lemma(1.1).

Proof. We have to show that V'* and U* are unitarily equivalent. We have the

unitary map N LYG .dX") — H. Now we will show

NVEg) = U*(g) N (1.32)
We already know
dX" = de(M)oA(X1)dU(X}) : X3 € OF (1.33)
and
d(AdEX") =|| Ad? || dX*
Now

dX* = dr(N)aa(X3)dU(X3)
d(AdE X*) = dr(N)oa(Ad:X5)d (AdE X3)

16



multiplying (1.33) by || Ad} |

By (1.34) and (1.35) we get

Consider

Now consider

Thus we get

dX" = dr(\)oa(AdE X5)d(X5);

, we get

dX" = dr(N) || Ad || ox(X5)dQN(X3).

| Ad: || 7A(X3) = oa(Ad5X3).
(NV3(g)F)(X")

(N(Vi(g)F)(X")

(oA (X")]FVEg) F(X3)

| AdE 7% [oa(X")]2 F(Ady-1 X))
(U*(g) NE)(X")

(U3(9) N FA)(X3)
NFE\(Ad:_, X3)

[ox(Ady-1 X3]2 F(Ady-1 X5)

| A3 1% [oa(X™)]2 F(Adg-1 X3)

VigIN =

(1.34)

(1.35)

(1.36)

In the following few pages we will concentrate on square integrable representations.

17



Definition 1.18 Let U be a unitary irreducible representation of the group G on

a Hilbert space H. A vector n € H is said to be admissible if

I(n) = /G | (Ug)n | ) 1 dyulg) < oc

where duy is the left Haar measure on G.
Note 1.5 Since du,(g) = dw(g~"') and U(g) is unitary. we have
1) = [ U™ 1) P dinto)
= [ Lalvi@m  ducto)
Thus I(n) = [ | ({U(g)n|n) I* dur(g)-

Theorem 1.10 If n € H is an admissible vector then ng = U(g)n is also an admis-

sible vector for all g € G whenever U(g) is unitary.
Proof. It can be found in reference [2] m

Definition 1.19 (Square integrable representation) Let U(g) be a strongly con-

tinuous unitary representation of G on H. U(g) will be called square integrable if
(i) U is irreducible.
(ii) There erists at least one non-zero admissible vector in H.

Note 1.6 (i) Any representation, unitarily equivalent to a square integrable rep-

resentation, is also square-integrable.

18



(ii) If G iscompact, any irreducible representation U' of G issquare integrable.

(iii) If G is unimodular and if U is a square-integrable representation of G then

every vector in H is admissible. (By Theorem 1.11)

Theorem 1.11 Let U be a square integrable representation of G. acting on the

Hilbert space H. Then there erists a unique self-adjoint operator C in H such that

the following hold :
(i) The set of admissible vectors coincides with the domain of C.

(ii) Let n; and ny be any two admissible vectors. Let ¢y and 2 be any two vectors

in H then

/G(U(g)n-. | w2)(U(g)m | wr)du(g) = (Cm | Cm2)(ea | 1) (1.37)
The above relation is called the orthogonality relation.
(iii) If the group G is unimodular then C is a multiple of the identity.

Proof. It can be found in (2]. =

19



Chapter 2

In this chapter. we will introduce the Wigner transform and Wigner functions. In
the final chapter. the main part of this thesis. we will construct Wigner functions
explicitly. The existence of Wigner functions for a certain class of groups depends
on the existence of square integrable representations. The notation introduced in the
previous chapter will be used without further explanation. An adequate reference for

the material in this chapter is [1].

2.1 Wigner transforms

Definition 2.1 Let n € H be an admissible vector of a square integrable unitary
representation U and ¢ = Cn where C is as in Theorem (1.11). Let D(C™1) be the
domain of C~'; then the Wigner transform = is defined as = : H = D(C™!) —

L*(G.du) by p— wp and

(=p)(g) = (U(@)C 0w | 0y =Tr[U(g)"pC™"] (2.1)



where p =| ¢){¢ |€ Ba(H). the Hilbert-Schmidt operators on H. and || p ||z,=

{Trippl}t.

[N

Theorem 2.1 The Wigner transform = satisfies the orthogonality relation.

/G (F22)@)(=p1) (9)dualg) = Trloior] = (o2 | pr)z, (2.

[N
N
e

Proof. Consider

/p (F52)@) (=p1)(9)dilg)

- /((U(Q)C_IU’;’ T2(U(9)C ™ e | 2)dinlg).

G

If n= C_lu"g. m= C"lwl then

/G Ep2) (@) (=) (9)dilg)
= (& | u2) (e | P
= (p2]p1)

= Trlpip].
Hence the theorem. ®
Theorem 2.2 The Wigner transform is an isometry.
Proof. We know from (2.2)
| =ma e o)duts)

= Tr{p3p]

21



Let’ Pm = 211 l]l‘i‘ol)(u{]l? m = 1

Then. /G (575)(9) (=p1) (9)dpe(g)

n

= Tr[(z ciilwi) (U51) Zcul\«k (wil)]
= Z(CU i) (eil) ZCMH) )]

= ZZ Cij ) il ) (ilen) (unl]
i

- ZZ ci)crelws) (€l b
iJ

= TY'[ZZ(C?j)‘C}I‘wJle”

g il

n n

= Tr]>_ (O (c]) ch)lw;)(ul]

jl ul

ZZ cy) lJ

Let po=p1=p

Then. /;(E?Tz)(g)(rm)(g)d#(g)

= ZZI(%‘)P

Lol

The Wigner transform is an isometry on the set H 2 D(C~!). Since H = D(C™) is
dense in B2{H). as in Theorem 1.7 it can also be extended to an isometry on all of

B,(H) by continuity of the linear map ¥ — [@)(¥| = p. Hence the theorem. =

Definition 2.2 The unitary representation U(g) on H gives another unitary repre-

V]
{]



sentation U; on Ba(H) and is defined as

Ui(g)p = U(g)p. (2.3)

Theorem 2.3 The Wigner transform = intertwines Ui(g) on Bo(H) with the left

reqular representation U; on L*(G.dy) i.e..
=Ui(g) = Ui(g)=. Vgedi. (2.4)
Proof. Consider

L.HS = (=Ui(g)p)(g")

Tr(U(g") U(g)pC "]

= Tr{U(g")"U(g)pC"]

Again consider

I
H
=
S
&
\;
t
<
©
9

Thus =U(g) =Ui(g)= =
Note 2.1 The operator C satisfies the following covariance condition.

(i) U(g)"CU(g) = [A(g)]"3C



2.2 Wigner maps and functions

Before we define the Wigner map and Wigner function let us rewrite the orthogonality

relation in a different coordinate system.

Remark 2.1 (i) The exponential map of the group G is given as g = e® where
X =5",2X € G where {X,}, (and z* € R) is a basis for the Lie algebra

G and assume that the range of exponential map is dense in G.

(ii) du(g) — m(X)dX under the coordinate transformation g =e® where m is
a positive Lebesque measurable function on Ny. where Ny is a neighbourhood of

0mgG.

(iii) Under the above coordinate transformation the orthogonality relation (2.2) be-

comes

| ErE =) )mX)X = Tripio] = (o2 )z

o
w
~—

Definition 2.3 The Wigner map is the Fourier transform of the Wigner transform
=. The Wigner map W : Bo(H) — H is defined as
(Wp)(X3) = _c(>~_)" / e 59 () (e¥) [m( X )] FdX (2.6)
- No

where oy :G" — R™ is as in Lemma(1.1).

Definition 2.4 The Wigner function corresponding to the Hilbert-Schmidt operator



p defined on G* 1is defined as

Wip| X7) = (Wp)(X7) = 2% Ju

Theorem 2.4 The Wigner map W is linear.
Proof. It is easy to verify. So we omit the details. =
Note 2.2 The change of co-ordinate X — —X yields
Ae¥)m(=X) = m(X).
Theorem 2.5 The Wigner function satisfies sesquilinearity.
W(pl X*) =W | X7).
Proof. We know by eq.(2.7)

Wi(pl X7)

(MB]

(27)

_ 1 / e—i(.\";X)(U(e-\’)c—lw | o) oA(XT)m
v

(S ]

(27)

No

e“<"<°“Y)T7'[U(e“Y )pC_I] [al\(_‘(')m(."f)]%d."f.

(2.7)

—~
o
(v.2]

~—

- /e-*‘<x"~—‘>Tr[U(e—-‘)pC”‘][aA(X')m(.\')]%d_\'
No

(X)]FdX.

Now let X = —X thus dX =d(—X) and A(e¥)m(—=X) = m(X). Then

WiplX7)

1

[ OO | Ao (X Im(=X) (- X).



Using invariance of Ny under X — —X, we have

W(p| X7)
B (2;)% / U )C Y | @>[%]m
) (2;)% / | U(e--‘>c-‘w>[%]%dx
- (g,i)% / 0 <”(%g | 1y (X m X)X,

let A(e¥)~2U(e¥) = CU(e¥)C~! then

WplX")
B (zi)% / X XCU(¥)C T | C-Iiy[oa(X ) m(X)]2dX
B (2;)% / em XU (V)T | ) oa(X ) m(X)]2dX

Thus W(p| X)=W(p" | X*) m

Definition 2.5 Let U be a square-integrable unitary representation as before. Now
we define u new representation U, of G on the Hilbert space B,(H) of the Hilbert

Schmidt operaturs as follows

Us(g)p = Ulg)pU(g)" (2.10)
Vg € G. As can be easily verified. U, is unitary.

Lemma 2.1 With the usual notation we have

m(X)

m(Ad,X) = 5

XegG. gedG. (2.11)

26



Proof. We know that

eltdsX) = g(e¥)g™!. where X €6
dp(eM) = dp(g(e¥)g™)
= m(Ad, X)d(Ad,X) =dw((e¥)g™") (du(e®) = m(X)dX)
— du,(ge_x)'l

=dp(ge™%) (dwm(g™") = du-(g))

Hence.

m(Ad, X)) Ad,[|[dX = A(g~)m(X)dX
A(g~H)m(X)

Ay X) T4,
- q
. m(X) .
m(Ad,X) A4, 1A0)" Xeg gec.

Hence the Lemmma. =

Lemma 2.2 The Wigner map W intertwines the representation U, with the covariant

coadjoint representation U*.

WUs(go) = U*(g0)W, VgeG. (2.12)

()
=



Proof. Consider

(WU, (g0)p)(X3)
_ [0 (‘X-‘)]% —i(Xy 3
- zzw)x% /,voe XX (Up(go)p) (e)[m(X)]2d X
oy (X33 (X :
= DR [ 0y 0) UutgohoC e m( XY
- Il [ eSO () Ugo)oU (g0) € () (X)X
(—"T)", No
= [U’Z;:);_)]- /\' e XX OT U (g0)U(9)" U (go) C (%) [m(X)]2dX
B [UZS)A)] /\ e SHITHU (go)Ue™¥)pC ™ A (g0)] 72U (g0} }(e™)

(2m)? Jx, [A(g0)]E
— [0’,\(;\';)]% ~i{X3:X) —Adgg (X) _ k m(X) 1
= Toni /Aoe ¢ Tr{U(e )pC l](eY)[A(gO)].d‘x

Now consider the other part.

(U*(g0)Wp)(X5)

= (W)(Ad?_. X3)



(o (Ad7o X301 [ S vy e im0
= — e 99 T "pCT[m(X)|2dX
(271’)7 Na w
| Ad, 17 [oa(X5)]2

(2m)2

/e-x(.‘(§;.4dg0.\')Tr[U(g)'pC-‘][m(X)]%dX.
No

Put X = Ad,, X then

(U*(g90)Wp)(X3)
| Ay F a1 :
(27;')2 No

x [m(Adg, X)]2d(Adyy X)

o ( Xy XX L .
- 90 L) 2 No

% ” Ad_’lo ” 1[m(-Y)]f d.\
| Ady, Iz D(g0)?

- [”?gf,\)]i/ e—i(X;:X)T,,[U(e—,-\dgo(X))pc—l](e.\')

n

)2

Thus WU,(go) = U*(go)W. =

In the following theorem we prove the covariance property of the Wigner function.
Theorem 2.6 With the usual notation we have

W(U(go)pl(g0)™ | X7) =W (p | Ad;gu\"), geG X" €g". (2.13)



Proof. Using Definition(2.4) of the Wigner function

W(U(go)pU(g0)™) | X7)
1

7 )" No

e XXT U (e7¥)U (go)pU (90)°C ™o (X ™) m(X)]2dX

Il
|
(LB
\

2

e MO (go)U(e™%)pU (go)*C 7Y [rr(_X")m(.X')]%d.X'

Il
o
N | -
(M)
—

SER
B (2;-)% / O TR (go)U(e™)pC ™M A (g0)) "2 U (90)]

Using Note(2.3)

W(U(go)pU(g0)™) | X7)

(-)i): / e O H{U(g0)U (™) (g0)"pC A (g0)| 2]

v )2

[ (X)m(X)]2dX

X

! / e“""":‘“Tr[U(goe““'go'l)pC“Il[LY.)(m—()ﬂ]%d-"'

(2m)% Jx, A(go
= (2;)% [\-0 e"\'x”'\')Tr[U(e“"“"OX)pC‘1][%;)—]%(L\'
Consider the other part
4 (pl:’ldfjo_l\ )
- (2}_)% /NOe'“‘““‘?o"X"‘“Tr[U(e--Wpc-‘][a(Ad;O_lx')m(x)]%dx
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Let X = Ad, X then

go-

Wi(p

Ad;o.u\ )

I Ad;“ I= (XX P o= Adgg X

— B [ e Oy p0 )
(277)") No

x [0( X ")m(Ady, X))2d( Ady, X).
Using lemma(2.2)

Wip | Ad_,X")

_ | Ad__;?:“i/ e (XU (e~ M0 pC X )ml X))
27)F  Ja | Adg 12 [A(g0)]2

x || Adg, [| d(X)

a(X)m(X),:

— - i e—l{X':.\'\,Tr U e—:\d.jo.‘() C-l FdX.
/ U e T

Thus W (U(g0)pU(go)" | X7) = W(p | Ad_,X"). =

Note 2.3 The Wigner map is an isometry because it preserves scalar products (The-

orem 2.2). Thus for any two p,.pa € Bo(H). we have
(Wpi | Wpa)z = (p1 | p2)z,- (2.14)

Theorem 2.7 With the usual notation the following overlap condition holds.

o
—
(1]
N

/g o T X)W (2 | X)[o(X)] X" = Trlpipal. (2.1

31



Proof.

Using the Definition (2.4)

/ Wipr ] X)W (ps | X)[o(X™)]"1dX"
G.

/g (21)% /\ e XU (g)C ey | 1) [o(X7) m(Yl)] dX,

e XX o —i(X " X) (U( )C' 11,01154)

No

x(U(g)C u/)q ) [m(X1)m(Xa)|2d X dXd X"

2 / / / et (U 9)C~ty | 1)
T ~No

1 % /V e“\‘( ‘(o)(U(g)C—lwq | V’)[”(-X")m(.}{_z)]%dl‘{-_)_[o'( v

)|7HdXT

< (U(g) o) [m( X0 ) m(X2) Fd X dXad X",
Using the delta function, [ e ¥1=%NdX" = (2m)"6(.X, — X3) we have
/ o T X)W (p2 | X0 (X)] X
“ \U 7)"8(X1 = o) (U(g)C ey [ 1) {U(9)C ™ e | 22)

Using f Vo f(

x[ (X1 )m (X )] dX,dX,.
X1)8(X, — Xu)dX, = f(X3,), we have

/ Wip | X)W (p2 | XO)[o(X™)]dX"
G.

- / ({U(eX)C-1uy | w1 {U(e™)C 7y | pa)m(X2)d Xa
Vo

- / ({U(eN)C ey [ o) (U ()0 wn | wa)m(X)dX.
No



Using the orthogonality relation(1.37), we have
| TR W | X)) dx
G.
= (CC7'n | e1)(CC o1 | @)
= (2 | ¥1)(1 | ¥2)
= (p1]p2)

= Trpipa).
Hence the theorem. =

Note 2.4 The Wigner function satisfies the follouing

ﬁ W (e T X)W (o | X)o(X)] X" = (¢ | pr) (2.16)

where py = p and py =| £){¢ [.

Theorem 2.8 Using the Wigner function. we can have the following reconstruction

formula

(| X)) ) X 2.17
Lif.e (p ] X")U()C (TN (2.17)
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Proof. Consider

/g T T XIW (o | X)[o (X)X

= | G [ U s (XXX (| X)

x[r(X*)]"'dX"

=/ : / T ()0l o (X )m(X)HdX W (p | X7)
G 2 JNg

x[o(X*)]"dX"

_ / ‘1 /e““""x"(%’lU )C nW(p| X7) [ Y)L
G. ;

27)2 I (X*)
— (o 1 UX X7 (e y m(X), 'y
el [ (27)%/\0 U()CWip | X Sy X dx )

=p= ‘1 /-[/Noe'(‘\"‘xz)lV(plX')U(ex)C“[———or_rz(;?:))]%d.\'](l,k". (2.18)

Hence the theorem. m

2.3 The Wigner function and wavelet transform

Definition 2.6 Let U be a square integrable representation and n € A an ad-
missible vector with I(n) as in definition(1.18). The wavelet transform f, . of an

arbitrary » € H is defined as

fre(g) = ({Ugnl¢), g€G (2.19)

Note 2.5 The wavelet transform is a square-integrable function on G and is an

element of the Hilbert-space L*(G.dp).
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Theorem 2.9 The map ¢ — f, . is an isometry.

/ | foslg) 2 dislg) =1l & I (2
G

2.20)
Proof. We know from the orthogonality relation (1.37)

| T@mRTa W | eodute) = Cmi C)iea |20 (221)

Ifm =mn =g =¢2=nthen

(| Cayln | n) = / W@ 17U (9 | ndutg)
(Cn1Cn) = =z [ 1 Wan 10} duty
again if n = =1. (221)=
| TG o | edulg) = (Cn 1 Cndea | 20

== [ U@ 1) F dulg) ez | 20 (2.22)

Let U be a representation of the group G on a Hilbert space H and n be an admissible

vector such that

e(n) = ﬁ /G | (Ulg)n | m) 1P duulg) <

/G(_U(_QW(U(Q)TI | &)du(g) =l ¢ “2

35



2 2
[ 1 50so) P dute) =l ¢ I
G
Hence the theorem. =
In the following definition we define the term Coherent state. We will not establish
any theoretical results about coherent states. For details on coherent states, one may

refer to [2].

Definition 2.7 As before let U be a square integrable representation and n € H be
an admissible vector. Let n, = U(g)n then the following resolution of the identity
holds

1
I(n)

to
[RV]
(L)
N

ﬁ | ny) (10 | dug) = 1. 2
[

Further. the vectors [c(n)]‘%r) are called the coherent states of the group G .

2.4 A relation between the Wigner function and

wavelet transform

In this section we establish a relation between the Wigner function ' (p| .X") and
the wavelet transform f, . of ¢ € H. In Theorem(2.11) we write a Wigner function

in terms of the wavelet tranform and in Theorem(2.12) we do the reverse.

Theorem 2.10 For a fired admissible vector n € A and arbitrary » € H we have

/ e“‘“':‘“f,,w.(ex)[(f(X')m(X)} idX (2.24)



Proof. We have by eqn.(2.7)

Wip| X7
1 . e ] .
= G TR0 oA (X
1 -i{X* ) - . l) -
= GpE J TEIOECT (X mx)ax.

= ‘ 1 ' ﬂ e—i(f\’-;-\')( 1 ;U(e'\’)c—ln I Ci,i‘)[(f,\(.\")m(.—‘{)]%d.-\'

(2m)% Jx [e(n)]?
_ —ixmxy b Xy aet X oy VY
om) T /Noe [c(n)]%(b(e O™ | C)oa(XT)m(X)]2dX
= (t)i)% /\r e ¥ \’)fn (") o (XT)m( \')]%d./\'.

Hence the theorem. =

Theorem 2.11 With the same notation as in Theorem(2.10) we have

Foo(eX) = 1%/.ex<x-;x>w(pw|_.\")[aA(X')vm(X)]-%d_\". (2.25)

Proof. We know from the relation between the Wigner function and the wavelet

transform

W(pn.s | X°)

(9.1-)% / X £ (X [y (X )m( X)) FdX




This relation is easily inverted.

1

13
‘2

/ MW (. | X7)[oa(XT)m(X)]72

JY *

— 1(Y Y) -i(X*:.X) X"V %
- %‘/[0 Fao€¥)oA(XT)m(X)]

x[o’,\(‘( m(Y)|"1dX"dX

No

Now using the delta function

1

we have
(;ﬁéé“MW%lxnmw
= [, 8 = 0 o e mXEm)] 2N
= fasle")
Thus
Fcte) = ggg LW ons 1 X (X)

Hence the theorem. m

38

KXY =X £ () [m(X))F[m(Y)] 2dX"dX.

(9_)n/ XY =X)gxr — §(Y - X) and / FINOE(Y = X)dX =
i g. .'Vu

X)|"2dX".



Chapter 3

In this final chapter we build Wigner functions on the group G,». Then we establish
a connection between the Wigner function and the wavelet transform on the same
group. Basically. we will go through all the concepts discussed in the first two chapters
on this particular group. Similar work can be found in [1] for the affine group and in

[3] for the SINI(2) group.

3.1 Lie algebra of the group G.

Consider the group

Gap = la>0.b€ R and cisa fired constant.c # 1
0 a
Let X, and X, be two elements of the Lie algebra G, of the group Gg. Take

a O 1 b
and as a one parameter subgroups of Gg. Let a = exp(\).

0 a° 01
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So A =loga. Now

exp(A) 0 1 b
exp(AXy) = . exp(bXy) =
0 exp(Ac) 01
1 0 01
.X’l = . .X"‘_) =
0 ¢ 00

Therefore the basis for the Lie algebra G, is

—
o
o
—

X, = Xy = . (3.1)
0 c 0

o

Now the general element in the Lie algebra can be written as

\ 0 0 z* ' oz
X=2X+1rX; = + = (3.2)

0 cxt 0 0 0 cr!

The group element obtained from the exponential map is

g = exp(¥X)
o2
= exp
0 cr!
2 3
R L2t 22 Lo \
= I+ +_2—! +§ +
0 czt 0 czt 0 cxt
1 0 !z 1| (&h)? (1+c).r‘1"3\
01 0 cz? - 0 c(z!)
3
i (1) (1 +c)(zh)%x® + *(z!)3z?
+ Z’,_' +
' 0 c(z?)



. . N 2 tere)(zly2 22
/ 1+I1+?1,(l'1)2+%(1'1)3+... 0+x2+(1<c).’t"1 + (l1+c+c )zt )~z + ..

2! 21 31

1,2 )3
0 1 +eczt + S =k

-

r2

exp(z!) g (expler?) — exp(at))

exp(cz?!)

a 0

0 a°

— — —
(e

2

Thus a = exp(z'). b= rf—(exp(cz') — exp(z')). which gives us

, (c—=1)bloga

' =loga. 1= (3.3)

ac —a

Every X € G, is mapped to g € G, by the exponential map and we can use

I = (x!.2%) € R® as the coordinates for the elements of the Lie algebra G,.

3.2 Haar Measure

Here we build left and right invariant Haar measures on the group Gu. Let g =

a b ag by
. Fix an element gy =

0 af 0 af

Then the left action of go on g is

aga agh + bga®
c e
0 aga
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Let o' = aga. then da’ = apda and b = agb + boa®. Thus db! = aodb. Now

dedt! — dob Thus we have obtained our left Haar measure as du(gog) = 2. The

coordinate transformation a = exp(z!) and b = l(c 5 —=—(exp(cz') — exp(z')) yeilds
Iy 21 2
da = exp(r!)dz! and db = explez ()C_elx)‘;(f Ddz” © Let us calculate 42 under this

coordinate transformation.

dadb

exp(z!) (explea') —exp())
(c — 1)zt exp(2z!)
exp(cz! + ! — 2z!') - 1

= dz'ds?
(c— 1)zt
1 1
exp(cz* —z')—1 .
— p( ) (Lrldlﬂ
(¢ — 1)zt
1 —exp(—(1 —c)z! .
p( ( ) )(ttldlg‘
(1 —c)xt
Right action of gy on g gives us
a b ag bn aay abg + ba§
= . Now let @’ = aag then da’ = aqda
0 a° 0 ag 0 (aap)©
and b = aby + ba§ then db’ = agdb. 49% = 42b  Thus we have obtained the right

Haar measure as du,.(ggo) = ff‘f‘”j The coordinate transformation a = exp(z!) and

_ P(exp(ezh—exp(z!)) _ 1yl exp(cz!)—exp(s!)
b= = “pﬁ(c_f)‘p" veilds da = exp(z!)dz' and db = i—(;:——li‘il—dl: Let us

calculate %4% under this coordinate transformation.

dadb
al+c
exp(z')(exp(ez!) — exp(z)) |
(c — 1)zt exp((1 + c)zt)
exp((1 + ¢)z!) — exp(2z?) )
(c — 1)zt exp((1 + c)zt) dz'dz

)
rldzr?




(1 — exp(2z! — z! — czt))

= EC 2t dr'dz?
1
_ - e(-‘ccpi(i);f)r )) gl gy
1
_ ercp(((l1 —_i))zl) Ry
The modular function is
Alg) = (—11_-)- (3.4)
a

We know from remark (2.1) du(g) — m(Z)dZ under the coordinate transformation

o . g —exp(=(1—¢)z} .
g = oxp(.X). Now £ = m(I)df = L%i—;;f);)d;rldr’. Thus

m(z'.z?) = L—exp(=(1 - C)Il).

(i —c)zt

3.3 Adjoint and Coadjoint action

In this section we define adjoint and coadjoint actions on the group Ggu. Let g =

a b
.a>0.beRand cisa fired constant.c # 1 » . Then the adjoint ac-

0 a°

tion of the group Ggs on an element of Lie algebra G, is

Ad, X
= gXg~'
-1
a b b2 a b
\O ac \0 cx! 0 a
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— —_ 9 —_
b —ba~cz! + al~°z? + cxlba~C

Thus the matrix of this transformation which acts on vectors £ = (z,.z2)" € R* is

1 0
M(g) = : (3.6)
(c—=1)ba"c a'~c
On the dual of the Lie algebra G, X* € G, has coordinates £ = (£.6)7. The

coadjoint action is represented by the inverse transpose matrix.

) o 1 (1-c)ba!
M g)=(M(g™)) = : (3.7)
0 ac!
Now the determinants of these matrices are
| Ady ||=a'™® =|| A, || (3.8)

Th coadjoint representation of the group is carried by the Hilbert space L3 (R2. dé).

-

(ViH(g)F)(E)

= || Ad ||7F F(Ad ., X)
(l=c) = ! (C“ 1)ba—c gl
= aq 2 F
0 a'~¢ &2
= (Vi(g)F)() = a"TF F(& + (c — 1)ba™*C2. &20'7°) (3.9)
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3.4 Coadjoint orbits of the group

The coadjoint orbits OF, O and O3 are defined as follows:

1. The orbit obtained by acting with the matrices M (g~H)T on the column vector

(0.1)7.

2. The orbit obtained by acting with the matrices M(g~H7 on the column vector

(0. -7,

= {M(g™HTO.-1T}

1 (1 —c)ba™t 0
= 4
c—1 -1
\ K 0 a
)
—(1 —c)ba™!
1 __ac—l

{62 =(6.8) e R & <0} =R xR[.
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3. Applying the matrices to the column vector (o, 0)7, for each a € R, we obtain an

orbit that consists of the single point (a.0)7 .

Oc

= {M(g ") (a.0)T}
( 1 (1-c)ba™t o

0 a! 0

(

(a7

0

From the construction QL. Q. O are disjoint. Further

+-° - «a

R*=| O3 (3.10)

where J = {+. —.R).

Note 3.1 (i) The Lebesque measure of the set of orbits O. a € R is zero in R? .
(i) dX* = de(N)oa(X3)d(X3) Thus dQs(§) = e fe O

(&2l

(iii) The direct integral Hilbert space H = H, < H_. where H. = L*(OL.dQ.)

3.5 Covariant coadjoint representaion

The covariant coadjoint representation on our group can be written as

e

(U*(g)F)(E) = F(M(9)T) = F(& + (c — 1)ba™62. ') (3.11)
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where £, is the translation in the group and &, is the scale parameter. In or-
der to construct the Wigner function for the group, we need its unitary irreducible

representations. Consider the representation U(g) on the Hilbert-space L*(R.dt),

Ulghe)(t) = et e

). o€ L*(R.dt), g =(a.b) € Ga. (3.12)

Now let us show U(g) is unitary representation.

ezl t—~(l—c)ba
= a,* U(g2)o( gl-c —! )
1
st o=t b= (1= c¢)biay® = (1 = c)baaz®ay”™*
= a7 ay’ (lala,)l-c L)

et (]. —c)(blal +b>a, al C)

= () Y( (ayan)l-< )
= (aa2)T a(t + (e —D)(aby + blag)(alag)‘c)
= 1@2) 2 ¢ A
= (U(g192)¢)(¢)
e) (U(g1)U(g2)¢)(t) = (U(g1g2)¥)(t).
(U(e)p)(t)
= 1 x¢( (1—1f—)c><0><1)
= ()

ie) (Ule))(t) =(t).

Thus it is a representation.



Unitarity:
| Ug)e II?

- / | Ulg)e |? dt
Gab

= [ et e
Gub

al—c
t—(l—-c)ba"*

al—c

/ | ¢(w) |? dw, where w =
Gab
2
= I«
This representation is unitary but not irreducible. To find its irreducible cornponents.

we take the Fourier transformation of (3.12).

/_ (U(g)) () tdt

xC

> o t — -_ b -¢ _ _ —-c
= / a“ T o (1~ c)ba e *tdt. letz=t (1—clba

al-c al—c

LY

c=1 ; - 1-c
_ L l=c, o f o)\ p—tw((l=c)ba™ +a ) 1
= / a? a ;,,(.«.)e « )d-.

]

1=c —ix(l—c - __ l-c.
— / a2 ;(:)e w(l—c)ba e iwe d=

-
> .
=< —twal "% —w(l- —<
— / a2 7’)(:)6 twa tw(l—c)ba d=
—nc
—c=1 - —i( 1= -c,
= a~ = ;(CLI C,’.d)(i i(l—c)ba w

Thus the unitary irreducible representation of Gg on the Fourier-transformed Hilbert

space L%*(R.dw) is
(U(9)&)(w) = a7 3(al Cw)e e ¢ L*(R.dw), g € Gap. (3.13)

Note 3.2 (i) Each of the two subspaces of the functions defined on the intervals
(0.c), and (—oc.0) are denoted as H* = L*(R*.dw). Further H= are
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stable under the action of U(g). In fact H= are irreducible subspaces under

this action.

(ii) U=(g) are square integrable representations of Ga. on H* respectively in

the sense of Definitions(1.18) and (1.19).

3.6 Wigner functions for U(g)*

In this section we build the Wigner function for U(g)* on the group G. In a similar
way we do it for U’(g)~ too. For this purpose first we will find the operator C. We

know the orthogonality relations by (1.37)

/G (Cg)m | 2 (T(@)m | 21)du(g) = (Cm | Coalea [ ).

let ;p =no=1n and ), =2 = then

(Ci | Ciie | o) = /G T T2 (9)i | 2)dulg).

Thus.
I ci |l
- ”;“._, /G ()i | @) 2 duto)
e T AOELCUEE
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), L || Sttt Tente duds
1

ac
0 < —_— l—c l-c —i(l—c)ba_‘-';d 1—c ,
PRTE c(w)a T f(a' " w)e 0% ()
le 2o JoeSonJon

a..

=N /ZafJ("uTc;(w')ﬁ(al—c Vi)

x e 1=~ =) dodbdusde)

xmt(lc

Let & = (1 —c)ba™¢ then db = (1 —c)a™“db then

e
Using _}_x

| cnli?
i / / / / e l)e(@)n(at T w)iai =)
=B
’ d /
X P‘b (w'=w) b dadewl

l—C _Cal c

- ”vll / / / / Ni(a~ew)Rlal—ca’) et = =)

X db — dadwd.'.
(1 -c)a
e (W =) = 27é(w’ — ) and ]0 V6w — w)de = f(x).we have
I Cq |l
IR / [ 2t - @it i
X dadwdw’
1 —c)a

(w) e YAlal=eg)
B “v” / / To(w)e(w)i(a " w)i(a! d)(l—c)adadd



Again let o' = a'~“w then dd’' = w(l — c)a"°da.

I Ci |1
B “’:HZ/_ /_ aw(zficc)lg(“}_)‘p(w)ﬂ(a')ﬁ(a’)da'dw
= — Y i oanl@)nta)
B ||<;||2/_x/_,,o(1_c)z%°(~”)v(w) ——da'dw
= = [ et ¢ B
S SR . [CORT:
G rrerd
_ [2ria)
- (Eie

Thus the operator C is obtained. i.c.,

C(i)(w) = \/%:g(_—f-)z w > 0.

Now we build the Wigner function. Consider the Wigner function

2T No

Using(3.13), we have

% e_i(l_c)(_ba(—l—c)ac_g) [U(g)m(f)]%dfw-
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Let a = e*

Let & =

Put [~

b= F(if_—a(e" ~ e="), Then

Wi(p|é)

l—-c¢c

= / / —l(~xr +E272 \/— ( )(,,(e(c"l)’lu})
No

- ) (c-l)t —
¢ S eSS () (7)) d

— 1 —C / / / —I(E[I (c 1)2 \/—w(“u P(e(c l)I )

ip2 (l—-e(c-”‘: 3 -

xe 2T ¢ [n’{-’ ] dr'dz?dw

1_d(c—l)zl

, S x! J
T w thus dw = mdw . Then

Wip | §)
—-c -—x(\“:l te=nsl i . iy
)7 % 1 — e(c—l).z:l L'(]_ ele— 1)r! )
s _(c=1)r ria(w'—£2 -\ =11 ‘I“l 1 ld 2d, N
x (e 1 — P(C_mx Je [o( )m(I)]-mfI rodw’

et TRt = 2m8(u — &) and [§T f()8(w — S2)dw’ = f(S2) Then

Wiplé)
l—c [> [T (g, gty le=bs! ! - '
< e (\1': )e 2 e—1)z! L’,'( c—1 :l)

(27)2 Jox J-x 1 —etel L—elemd
)l s o€ m() e datd

¥ 1 — ele—Dx! 52 1 —ele-l)z -
1—-c = —i(& ) L L: IIE’-’. . J'lgq

Gizl)g - ( —27)
()/t)-’ —ac 1 E(C b 1 - e(c b=
1 (c—-1)z pl

sete-bet STy Al J— :

XY(e 1 — e(c—l)-‘tl )[U(E) (1 . c)zl }- 1 - e(C-l)Il dx

1—C < - Ilf~ _ 1 521:1 e, ) (c—l)zl
/ U gremmer) $T g Sae T e

z! 1 — ele—D)=! !
X &2 - -~dz!
1 —ele=lz' (1 —c)x! 1 —ele—l=




)g,)e-i(fxxl)e

— < 7 1 1
1 C ; I 62 ) ¢(e(c_1)zl 11:
21 —¢)m)3 S L—elemD L —efe-hat >
3
I !
X1 elene
— l
1 C 5— .;,( (e—1)z! §a c —(
oo (e—1) :1:1) wle (c=1)z! )82
2T —e l1—e
X——'——— .’L‘ .
1 — ele-bst
Now we know sinch(u) = sithe
, (c— 1)zt
sinch(———27)
(e=1z! —(c=1)z}
e 2 —e 2
(c— 1)zt
iyl
o eniet _
(c — 1)zt
(1--.): (1 _ e(c 1 )
(1 - c)z!
(1 ) 1 (l—«.): ((l—c).: _y
. —c)r e
So  sinch(*——=) = oo
Again.
rt 1
1 - e(c—l);l:x - ele=lzl
—rl
1l
- (-c)z!  _(1-ayel  (1-c)rl?
e e e s —e 2
—Zt
L.l
- _(l—c)xl (1-c)z! _(I.—c).x:1
e 7 (e = —e 3
(1—c)zt
e 2
= (l-c)z (e (1=e)zl -1
(1 - C) (1-¢)z!
(1—c)z!
€

(1- c)sinch(%)
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(e=1)z!
—_—
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1 1
(l—c)zr {e=1)x
:z:le(‘:'”"1 e”

Similarly T = (l—c)sinch(.‘—l—_—;—)z—l) and fl_ee:”: = (1_c)sinclll(“——-_f£l')'
(0 18)
=o JEPE
27 / (l—csmch((l clz ))
- . —tzosl | e ilErzh) 5

Sa2€
(1 c)smch(“‘—g)‘-) (1 — ¢)sinch( Y= c;zl)

Thus the Wigner function is

(1=c)x!
. [ 1 = . §oe 2
Wv.216.86) = (1-c)2m ./—oc o’ (1 — ¢)sinch({=g= ))

e_"'_g_ &_)C_i(sl-tl)

2
)sinch( =22 ) SinCh(“—_-.fE)

(3.15)

which is the Wigner function for the irreducible representation U~ supported on
the orbit (@7 where & > 0. Similarly we can find an analogous function for
the irreducible representation U~ supported on O. Thus the Wigner function

for the reducible representation U = U* + U~ for arbitrary ¢ € L*(R.dw) and

Lf; € L*(R.dw) is

{l—c)z
- e 2
W(0.316.6) = /
@1 &1.62) \/—T_c— (1—-¢) smch((l_.zc)r))
Eze_“_-;)i | & | e~ i&17)

x P
“’((1 — ¢)sinch(9522) "sinch(4522)

(3.16)
which is valid for all £ € R2
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3.7 Covariance

Here we check the covariance relation for the Wigner function(3.16).

- —

W(U(9)d.U(g)2 | €) = W(b. 3| MT(9)€).g € G, and w.& € H

Since (M(g~')T =

LHS = W({U(9)u.Ulg)¢|€)

- L [Toge—
B V27l —c¢) J-x I (l—c)smch(“—c—)i)

e FE |G|ed

(1 — ¢)sinch(&z2= C)I) smch(uf-)

(-cir

(3.1

(l—cir

£ae

(l-c):

-
|

2r(l —¢) J o (1 — ¢)sinch(452)
0 ' _(l—c):
_ —‘,c: 1 —e £ae - —i(&1z)
xal'%;r:_‘( 2€ - e H1=c)ba ((1 c)nmch(iw‘:)—:) Md.ﬂ
(1 — c)sinch(Y522) blIlCh(“—cu)
C (l c)z
_ / 22¢ 7 )
V27 (1l =«¢) (1- c)smch M)
(1=c)x . _{l=az (l—ciz
o ap e ae £2e < —-——
xel(l <)ba ((l—c)smch(—w-‘—“—c):) (l-c).anch(—g—-—“‘c“));( Sae” @ )
b ).t
— ¢)sinch(4=22)
smch(Lc)—I)

n
[@4]



Now

. (1—c)z _(l—c):
i(l—c)ba-‘:( =2= (l c)x =< (.‘l—cu )
e (1= c):mch(—r—) (1—c)sinch(—z—)
— ei(l-c)ba"cfgr
(l—c)z
1 roe - e 2 . —e
LHS = _________/ w( '52. T )el(l—c)ba oz
27(l —¢) J-= (1 — ¢)sinch(+=5==)
(B G
2
(1 - c)alnch(l—c)x) sinch({=22 c)’“')
(1—c).:
— 1 /oc L/}( E’e 2 )ex(l—c)ba"cfvz.z
27(l —¢) J-= (l—c)smch(“—cﬁ)
SV < Co Y -0 i
v (1 = ¢)sinch({=2= C)‘) sinch(—“__;“)
(== U-o)s

§re72 §ae T

1 x )
V 2~(1 - C) /-ac u((l - C)Sln(‘h((_lﬂ)) Q( (1 —c Sil’l(?h((l_,_)c)'x))

[
(1=

e—'—’ 5 e_‘(\l“(c“l) a”“E2)z
X € S' | oo dr.
sinch(*—=—)

RHS = W(uw.&|& + (c—1)ba&, &al ™)
1

o ] a(l_c)gze(l—;)z
= —————‘)” = U( R (l—c)z )
27(1 ~c) J-= (1 = ¢)sinch(~==)
) a(l—c)&e_# a(l-¢) | & | e—i(51+(c—l)ba_cfg).rd
X & z.
(1- c)sinch(“—_.lﬂf) smch(“—_c)f)
put a!=¢=ell-9Y,
{l—cl}z
ez
RHS = / Eq (1-c)z c):: )
7(1 —¢) (1 — ¢)sinch(~=—=)
(1—c)z (1— c)x c
—_ e—z(&-r-(c—l)ba Sa)z
\‘2’( 2€ )e l 5‘7 | dl'.

(1 — ¢)sinch(452%) smch(%)
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Thus

W(U(g)v,U(9) | €) = W(d,@ | &1 + (c — 1)ba™*€z, &a' 7). (3.18)

3.8 Overlap condition
Here we check the overlap condition.
/g. W0 é1 [ W (a2 | 0§ dE = (41 | Sa)(a | wr).  (3.19)

Proof. Consider

(1=c)r (1-¢)r
L / /x * §re ) e~ T | & | e
= s L e s(—E i
27(1—=¢) Jg- Joe (1 = c)sinch(452 LT — ¢)sinch( 9522 sinch(U522)
. (l=cly _f{l=cly
* . 2€ 2 - 5")8 2 I‘CQ | e"’(\l.’l) e
vl ) o ——= ’ dy(&a] ™ dé
/x 1—c)sm(h((l C)J) v (1 —c)sinch(“'_;’y) sinch(“f)”) (2]
X Q ;): ¢, (‘l_TM' ¢, | eilis)
= / / & € — ) \‘51( S-e T ) i Sa fl_) (1-[:
1 - <) (1 — c)sinch(4522) (1 = ¢)sinch(*=5==) sinch(===)
U=cly _ -y e
2€ ==t . f.)e 2 e~ &1y -
X /r ( ) A ( < ) iydc
/ (1 — ¢)sinch(4=2y C)J) (1 — ¢)sinch(Y=2 -C)J) sinch( 4z -C)J) 5
c {l—c)z e (1_“:):
SQC’ 2 - Sl 2
= Ul( )/n ( )
"'(1 - c) / / / / (1 - c)slnch((1 C)z) ! (1 c)sm(h(—————(I clz)
5 {1—-clu E (1=—
N AN - e~ ’-‘
X W )&a( )

(1- c)smch((—lzﬂ)
| & | eté1(z—y)

sinch(i%c)—z)sinch( Uclyy

(1-— C)blnCh((l%)y)

dydzd§,d&,

[$4]
=1



Ere" 7 . S
= (]_ o) )I‘rgl( (1—c)z )
1 — ¢)sinch(~5=%) (1 = ¢)sinch(~5=)
(l-oly (l—c)y
o L Gt
XU’( (1 <) )‘r’;’( (1—c)y )
(1 — ¢)sinch(=5*) (1 — c)sinch(~=5+%)
92 (5 T —
. |(1§:c|)3: ( : )(l—c)l dydl‘dgg
sinch(*=5=%)sinch(+5**)
¢ (l-c)r —-{l—c)z
2e” 2 — x$Ho e 7 z82 ;
Put (l—c)sinch((l_.;)z) T l—e—-(l=clz (1— c)amch(“ c).:) = ell=cjz_| and
7 f(x)é(z — y)dz = f(y). Then
/g W (e | W (2,22 | O] e
= o} > o}
_ Yo N yé2
- /—x - wl(l - e‘“‘c)y)w(e“'c)y 1)
- y&2 N y&2 §2y°(1 = ¢) c
Xw..)(]. - e'(l—c)y)%"z(e(l—c)y _ l)e_(x-;-\’ly (e(l-c)y _ 1)2dyds'l~
Let w = T—:-’_i?c-l—_—,; and W= :-(—‘-_if,f;—_—l- thus  dwdw' = — Savi(l-c) dyd&,.

(1-c)2
em T (el -l _ )2

Hence the theorem. m

3.9 Marginality relations of the Wigner function

Here we check the marginality relations of the Wigner function W(¢. 3] &.&). The
integration with respect to the variable &, yields a nice form but the integration
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does not yeild a nice form

with respect to &
(W, @1 €1,&)
/ et \ Lo~ U £ emi(612) )
(1-c)2 (1 — c)sinch(Y522) """ (1 - c)sinch(Y522) “sinch (4522)
Now integration with respect to &;:
1 °e d
IS
)3 | §: |
(l—c z
L / )
(27)2 1—C 2w / / 1—csmch((l =Ly
<, “ .C): e~ &) d
xu > (I-c)z C)J: §2 (1-c} dz o
( c)smch( ) “sinch(&522) [ &2 |
e“ == e i&12)
= )2 drde
271 — c/ / (1-c) smch((1 _C)I) sinch (4 ,_C)") >t
(1-ciz
92 ‘_2—_ 9 5 -
/ - oy L (1 0)) dz
(1 — ¢)sinch(+5==) sinch(====)

=
62 |2

)

Integration with respect to &
1 /°° &
(0.0 | &1.62)
(277)% —oc ! 6- I
5 e(l qc).:

\/27.' (1=0¢) / / (1 — c)sinch(452%)
- £, (l_—:;.)_x —-i(&1z) P
w0 &ae & e (: d§

(1 — ¢)sinch({= I) sinch(+~=== C)”) l &l
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R 3 W = déa
let @ = ey S = oy Then
1 /°C d&o
U U l EI’E )
(2 )% - | E' l

(1 c)x - —(l=c)z

/ / =) Y(wem T e {81 — ¢)dzdw
\/77 (1—c¢)

(1- oz - —(l-c)=

QWC / / —i6iz)y, we“'z) ) U(we =R Ydzdw.

3.10 Coherent states of the group

Consider the representation of the group G, given in (3.12). A mother wavelet is
any vector 1 in Hilbert space L?*(R7.dw) of the representation which satisfies the

admissibility condition
/ —{r]()ldw<:>c (3.20)
o |wl 1-

Now use the irreducible representation on R™.

8
38

(i)

- [ 1w e

- [ Cabilao abnln>dadb

- [ /Oxn 10 (a. b)) D (@ D)) i() e
5L

o x e ) .
/ / T](al—c,‘d)e—l(l—c)ba ")
0 0

((1 5 T](Cll c, I) —i(l—c)ba =’ ,7( )

?

dadb
ad.‘.d'

.y dadb

a?

dwdw'

ax pac ~
/ A(w)A(w ) i(a=w)at R (a' Cw) el et T -
. 0

il
O\Q
P
9 3
o
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Let & = (1 — c)ba™° which gives db’ = (1 — ¢)a™“db.

Thus,

- —c W — da lb,d{.b' l{.u'l
/ / | [ it aer - e
a(l —c¢)

since [7_ e =db = 2m6(w’ — w)

- / Vi VAT Y0 )28 (o — )
e a(l - ¢)
> dadw
= %/‘/. w)i(w)n(a )md%mdf_d
Let a = (a'“w) then da’ = w(l — c)a~da. Thus
c(n)
e poe , - , da'dw
= o [ [T i) B @) S
- [ [T Z 1
0 0
= 1CalPllal® e = CalPlla I
c(n) =l Ca 1Pl 7 117 (3.21)

Now using the mother wavelet 7. We define a family of wavelets or equivalently

coherent states of the group as

flap = U(a.b)i. (a.b) € Gas. (3.22

~—
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3.11 Wigner-wavelet relations

Consider an arbitrary signal » € L*(R, dw) and its wavelet transform in the transla-

tion and scale parameter a.b of the wavelet family

fazla.b) = / la] T (@' ~w)e T (T (W) dw = (flasl) (3.23)

we build a connection between the wavelet transform and Wigner function. This

connection points the way to for practical applications of the Wigner function. WWe

know that

Put 7 = Cn. Then

—

W(Cn.&1¢)
1 EF - . . = -1l
= 5= ve“*' (Uet)e™tcn | §H)o(€)m(F)]2dz
1 & l—e ot
= [ X s 3
.27‘_ R’.’e (U(e )’7 I gI")[ (1 _C)Il ] d'E
1 .ol Isinch(l =),
= o= [ e UED A rarTa— R
N X2 e —-c) %



Put f;:(g) (U(g)7i | 2),where g =e¥ € G

W(Ch.3 | €
1 —if.F £l 1‘2(6:‘ — ezt | &2 | sinch(1 — c)% L
— :;: R € f'.l.y:'( * 1 1— — = ]2 T
Liv JR2 I ( C) 8(1 )5
9, ool ~(1—c)t =l el
= L e—-ié'.;i"f_ 2(611 :I:"(e p) —e 5 )( + % ))
A R2? ¥ s Il(l — C)
sinch(1l —
(L lsinch( =0,
ell—< 2
1 r . +c)z! 1 _— 1
= 3 6"“‘fﬁ,;-(e”‘,rze"‘T’“sinch(( )
- -Qd 5

| & | sinch(1 — ¢)
X

21
e(l_c)_-.)-

]d:r

Thus the connection between Wavelet transform and Wigner function is

-~ 1 * &= o reyzet 1 — 1 CQ sin‘hl—c% 1
W(CH 218 = o= | e7$7f, (e 2255 sinch(L =62 ))[l‘ | “‘ () )-]idf.
s 32 & e —<iT
(3.24)
We know
- 1 &= 5 az! 1- ) mhl—c
W(CH 218 =52 [ e hae” 26 5 gineh(((L 92 )y | &2 | sinch Iz

2 e(l—c)%—

1 I T | & | sinch(l —¢)% 1 =
32 [ WO I

| & | sinch(1 — c)%]%[l &5 | sinch(1 —c)-'{_,i

<l (1= 5 (101 %

1 =i o (xazl | (1 —C).’L‘1

|=2dTdE

| & | smch(l - c)-'!i

9 1— £‘ 1 5) 1 -
| & | sinch(1l — ¢)% Hi T |-4gzdé

e(l_'c)x e(l_c) B
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(1+c)z! (1 — c)l.l

= / o(y — f)fﬁ’v;'(exl,l‘ze_?_sinch( | & | sinch(1 — c)?
2

[

DI ]

= e(l-a%
1
| & | sinch(l — )%, _
x| P 2]"2dF
e 2
(1+cyz! (1- C):L‘l

= fﬁ,é(etl-l'Qe = sinch(

)

Thus the wavelet transform in terms of the Wigner function is

2 rere! ]_—C_L'l 1 * o L = 2 sinchl—c‘f—:- -
,)’;,v‘;.(e"l.:z:“e(I 2 Sinch((—-—z——)) =5 eSEW(Ch, ¢ | )[| §2 | (:1 )5 ]_%df
Z I JR2 6(1_C)T
(3.25)

64



Bibliography

(1]

S.T.Ali, N.M. Atakishiyev, S.M.Chumakov and K.B.Wolf. The Wigner Function
for General Lie Groups and the Wavelet Transform. Ann.Henri Poincare 1. (685-

714),2000.

S.T.Ali. J-P.Antoine and J-P.Gazeau. Coherent States,Wavelets and their Gen-

eralizations, Springer-Verlag,New York.(March 1999).

S.T.Ali, A.E.Krasowska and R.Murenzi, Wigner functions from the two-

dimentional wavelet group.J.Opt.Soc.Am.A(2277-2287)

A.Barut, R.Raczka, Theory of group Representations and applications.World

scientific publishing Co.pte.ltd.(August 1976).
Daubechies, Ten Lectures on Wavelets. (SIAM, Philadelphia. 1992).

A.Grossmann, J.Morlet and T.Paul, Integral transform assoaciated to square

integrable representations. I.General results, J.Math.phys 26 (1985) 2473-2479.

65



[7] S. Helgason, Differential Geometry, Lie Groups, and Symmetric

Spaces,(Academic Press, Inc. San Diago, Ca. 1978).

8] A.A.Kirillov,Elements of the Theory of Representations,(Springer-

Verlag,Berlin,1976)

[9] L.M. Nieto, N.M. Atakishiyev, S.M.Chumakov and K.B.Wolf, Wigner distribu-

tion function for Eucldean systems, J.Phys.A 31(1998) 3875-3895.
(10] H.L.Royden, Real Analysis,(The Macmillan Company, New York,1963)

[11] Frank W.Warner. Foundations of Differential Manifolds and Lie Groups.

Springer-Verlag, New York Berlin Heidelberg Tokyo(October 1983).

[12] E.Wigner. On the quantum correction for thermodynamic equilib-

rium,Phys.Rev.40 (1932) 749-759.

66





