INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

A Distributed Arithmetic Based CORDIC Algorithm and its
Use in the FPGA Implementation of the 2-D IDCT

Y1 Yang

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

April 2002

© Yi Yang, 2002

| Ld |

National Library
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4
Canada

395, rue Wellington
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68448-2

Canadi

Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your fle Votre rétdrence

Qur file Notre rélérence

L’auteur a accord€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

A Distributed Arithmetic Based CORDIC Algorithm and its Use
in the FPGA Implementation of the 2-D IDCT

Yi Yang

The discrete cosine transform (DCT) based image compression techniques play an
important role in today's digital applications, such as high definition television (HDTV)
and teleconferencing, which require high speed transmission of digital image/video sig-
nals. The dedicated video codec is widely used to perform this task because of its low cost
and high performance compared to the general-purpose processors. A video codec chip
requires an integration of high-speed DCT and inverse DCT (IDCT) hardware units in a
limited silicon space. In video codecs, the error in the IDCT computation is more critical
than that in the DCT computation due to the cumulative nature of its computation error
within a reconstruction loop of the codec. Thus, the design and implementation of IDCT
algorithms poses a greater challenge.

This thesis presents a distributed arithmetic based CORDIC algorithm for the com-
putation of the 1-D IDCT and an FPGA implementation of a cost-effective architecture for
a 2-D IDCT processor using the proposed algorithm. The processor consisting of two 1-D
IDCT cores, a transpose memory and a control logic block performs the 2-D IDCT com-
putation by using the row-column decomposition approach. The basis of the proposed
scheme is a combined use of the distributed arithmetic and the CORDIC algorithm in

order to provide a small access time to the lookup tables and a reduced complexity for its

iii

architecture. In the proposed design, the deep pipeline structure of an existing CORDIC
based architecture is replaced by much smaller DA-based ROM accumulators. By adopt-
ing the CORDIC approach, the size of the ROMs becomes relatively small and indepen-
dent of the size of the image block. In the proposed design, a bit-level digit-serial structure
based on the redundant number system using an on-line algorithm is employed in order to
provide a good compromise between the area and the speed of the processor.

An 8 x 8 2-D IDCT processor has been simulated and implemented on a Xilinx
Virtex VC2V 1000 FG256-4 FPGA board. The accuracy compliance with the [EEE 1180-
1990 standard has been verified by a simulation scheme provided by the standard. The
processor operates on blocks of 8 x 8 pixels, with 12-bit and 9-bit precisions for inputs
and outputs, respectively. Comparing with the existing designs using similar technology.
the proposed IDCT processor is found to provide a better performance when the area and

the speed of operation are considered together.

Acknowledgements

I would like to express my sincere gratitude to my Supervisors, Dr. Chunyan Wang
and Dr. M. Omair Ahmad, for their guidance. encouragement, and support throughout my
graduate studies.

[would like to thank Yintao Jiang, Ning Guo and Wei Wang for their help and the
fruitful discussions on my research.

Finally, I would like to express my sincere thanks to my wife, Jinglei, and to my
parents for their support and understanding during the course of this research. and for their

unselfish love.

Table of Contents

Listof Figures i viii
List Of Tables . . oot e iX
List of ACTONYMIS . . . oot i e e X
List of Primary Symbols i Xii
L. INrodUCHION . .\ v e e e e |
1.1. Hardware Implementation of Video Compression Standards 3
1.2. Motivation for Research in the Hardware Design of the Inverse DCT 4
1.3. Scope and Organizationof the Thesist 6
2.Background 8
2.1. The Discrete Cosine Transform and its Inverse. 9
2.1.1. Definition of I-D DCT anditsinverse 10

2.1.2. Definition of 2-D DCT and itsinverseccouvvu... 10

2.1.3. Row-column decomposition of 2-D DCT/IDCT 11

2.2. Distributed Arithmetic for the Computation of the IDCT 13
2.2.1. An overview of the distributed arithmetic 13

2.2.2. DA-based implementation of the IDCT 15

2.2.3. Doubling the speed of distributed arithmetic 17

2.3. 1-D DCT/IDCT Computation using CORDIC Algorithm 18
23.1.CORDIC algorithm i 18

2.3.2. 1-D IDCT computation using the CORDIC algorithm 20

2.4. Comparison of the Existing Design Approaches......................... 23
2.5, SUMIMATY .« oot vttt e e e e ettt ettt et ittt it 24

3. Algorithm Design of IDCT Core oiin... 26
3.1. A DA Based CORDIC Algorithm for the 1-D IDCT Computation 27
3.2. Speed Improvement of the DA Based CORDIC Algorithm 32

vi

3.3. Bit-Level Architectural Details of the Proposed IDCT Core. 35
3.3.1. Binary signed digit representationo ... 37
33.2.Carry-freeaddition 38
3.3.3. Addition using an on-line algonthm 40

34 SUMMATY . .ottt e 43

4. Hardware Architecture i 45

4.1. Hardware Architecture of the 2-D IDCT Processor 46

4.2. Parallel-in-Serial-out Register i 49

43.DABased ROtator 51
43.1. Addressdecoder 52
4.3.2. Operationdecoder 54
4.3.3. Hybrid radix-2 signed-digit accumulator 54

44 Radix-4On-Line Adders 58

4.5. Redundant-to-Nonredundant Number Convertor 59

4.6. Transpose MEMOry i 66

47 SUMMATY . .t 67

S.Implementation 69

5.1. IEEE 1180-1990 Compliance Standard forthe 8 x 8 IDCT 70
5.1.1. IDCT accuracy test procedurecuiuuunininneninn... 70
5.1.2. Exact-bit simulationresults i i 72

5.2. FPGA Implementation of the Proposed Design., 73

5.3. Implementation Results and Comparison with Dedicated Designs. 77

S SUMMAIY . . oot e e e e e 79

6. Conclusion 81
6.1.Concluding Remarks 81
6.2. Suggestions for Future Investigation. L 84

References it e e 86

vii

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:

Figure 3.2:

Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:
Figure 5.1:
Figure 5.2:

Figure 5.3:

List of Figures

Block diagram of an H. 261 video (a) coder and (b)decoder. 5
2.D DCT/IDCT computation using row-column decomposition. 13
Block Diagramof aRAC. i 15
Parallel implementation of an eight-point DCT using distributed arithmetic 16
Block diagram of an RAC for doubling the speed. 18
Vector (V,) rotated through anangle 19

A block diagram of the 8-point 1-D IDCT using the CORDIC rotators. . .. 22
Block diagram of DA-based rotator. e 31

Implementation of 1-D IDCT using the proposed DA-based CORDIC

algorithm e 32
The scheme for the on-line addition. it 42
Top-level hardware architecture of the 2-D IDCT processor 47
Parallel in serial out (PISO) reg@ister.oovvnenetian 50
Hardware architecture of the DA-based rotator. 52
Hybrid radix-2 signed-digit accumulator.t 55
Digital-serial radix-4 signed digit redundantadders 59
(a) COPY cell (b) APPEND cell used in the conversion of a radix-4
redundant number to a nonredundant number. oo 63
Block diagram of B-bit MSDF redundant to nonredundant converter. 64
Eight redundant to nonredundant converters and the RAM write-in
MULEPIEXET . .ottt 65
Schematic symbol of a dual-port memroy.t 66
Setup for measuring the accuracy of a proposed 8x8 IDCT 72
Blockdiagrm of the testbench for the 2-D IDCT processor. 75

Timing diagram of the test procedure. oooonninnn. 76

viii

Table 3.1:
Table 3.2:
Table 4.1:
Table 4.2:
Table 4.3:

Table 4.4:

Table 5.1:

Table 5.2:
Table 5.3:

List of Tables

Binary Signed-Digit. 38
Digit Sets Involved in Hybrid Radix-2 Addition. 39
Truth table of the addressdecoder. 53
Truthtable of PPMand MMP 57
Conversion mapping of a radix-4 redundant number to two's complement
4100311013 o 60
Computation of the output digit during the conversion of a radix-4 redundant
to a nonredundant number operating in the MSDF mode 62
Compliance of IEEE 1180-1990 Standard 73
Characteristic of the 2-D IDCT processor. vt 78
Comparison with dedicateddesigns 79

X

1-D
2-D
AorS
ASIC
BSD
CCITT

CORDIC
CRA
CSA
DA
DCT
DFT
DHT
DSP
DST
DUT
FPGA
GOPS

HDTV
IC
IDCT
[EEE

List of Acronyms

One-dimensional

Two-dimensional

Add or Subtract signal

Application specific integrated circuit
Binary signed digit

Commité Consultatif International de Telecommunications et
Telegraphy

Coordinate rotation digital computer
Carry ripple adder

Carry-select adder

Distributed arithmetic

Discrete cosine rransform
Discrete Fourier transform
Discrete Hadamard transform
Digital signal processing
Discrete sine transform

Device under test

Field programmable gate array
Giga operations per second
Hardware design language

High definition television
I[ntegrated circuit

Inverse discrete cosine transform

Institute of Electrical and Electronic Engineers

JPEG

LSDF
MMP
MOPS
MPEG
MSB
MSDF
PISO
PPM
R-NNC
RAC
RAM
RISC
ROM
RTL
SIPO
VLSI

Joint Photographic Experts Group
Karhunen-Loeve transform

Least significant digit first
Minus-minus-plus

Million operations per second
Moving Pictures Expert Group
Most significant bit

Most significant digit first
Parallel-in-serial-out
Plus-plus-minus
Redundant-to-nonredundant number convertor
ROM-accumulator

Random access memory

Reduced instruction set computer
Read only memory

Register transfer level
Serial-in-parallel-out

Very large scale integration

Xi

m

()
)

FN(a’ xm

g(i,u)
1
K

q

Rp(0, pY), ¢

Ry(9. p. ¢

List of Primary Symbols

Fixed coefficient of the sum of products

Matrix with the cosine basis functions of 1-D IDCT
Pixel wordlength
Constant factor of the IDCT

Direction of the CORDIC rotation

Loopback data of the radix-2 ROM accumulator

Intermediate result of the sum of products using the distributed
arithmetic approach

Intermediate result of the IDCT using CORDIC algorithm
N x N identity matrix

Scaling factor of CORDIC algorithm

Size of the image block

Output data of the ROM in ROM accumulator

Horizontal coordinates of a 2-D plane

Vertical coordinates of a 2-D plane

First of the two pre-computed intermediate results of 1-D IDCT
using DA-based CORDIC algorithm.

Second of the two pre-computed intermediate results of 1-D IDCT
using DA-based CORDIC algorithm

Sum digit in one-digit radix-2 signed-digit addition
Transfer digit in one-digit radix-2 signed-digit addition

Interim sum in one-digit radix-2 signed-digit addition

Xii

Transfer digit in one-digit radix-2 signed-digit subtraction
Interim sum in one-digit radix-2 signed-digit subtraction
Input data of the operation of sum of products

Jthbitof x|

Output data of IDCT

Input data for IDCT

Output digit of the CORDIC rotators

Output digit of the butterfly adder array

Output digit of the PISO register

Output results of the redundant-to-nonredundant number convertor
Intermediate product matrix of the 2-D IDCT

Digit of the intermediate result of radix-+4 signed-digit addition

Xiii

Chapter 1

Introduction

In recent years, there has been a significant increase in the demand of multimedia
applications. These applications require dealing with a large amount of data, and/or image,
video and audio signals, resulting in high storage and transmission costs. Without com-
pression, most of these applications would not be feasible. In the case of signal transmis-
sion, compression is a process intended to minimize the bit rate of the digital
representation of a signal stream. As an example, in a facsimile image transmission, scan-
ning and digitizing an 8.5 x 11 inch page at 200 dpi results in 3.74 Mbits data that takes
typically 5.62 minutes of transmission over a 14.4 kbts/s modem. With compression. the
transmission time can be reduced to only 17 seconds. thus resulting in substantial savings
in the transmission cost.

Transform coding has been a dominant method of video and still image compres-
sion. Transform coding is based on the characteristic that image data tend to have a high
degree of spatial redundancy. Furthermore, often image data are eventually presented to a
human viewer. Thus, if one views a lossy still-image compression system from end to end,
that is, from the creation of the visual information to the eventual display of the informa-

tion after decompression, then it is prudent to exploit the characteristics within each com-

Chapter 1. Introduction

ponent of this system so as to generate a compressed stream with the least number of bits.
Within such a system, compression is achieved by exploiting both the spatial redundancies
within the image and the perceptual characteristics of the human visual system so that the
loss due to the compression may not be discernible to the viewer.[3]

Some of the most commonly used transtorm coding functions include the basis
functions of the discrete Fourier transform (DFT), the discrete cosine transform (DCT),
the discrete sine transform (DST), the discrete Hadamard transform (DHT), and the Kar-
hunen-Loeve transform (KLT). Among these transforms, the DCT is the basis of most of
the image and video compression standards since its conception in 1974. Because the
DCT uses cosine as the basis function as opposed to a complex exponential, it exhibits a
computational complexity lower than that of the discrete Fourier transform by almost a
factor of 2. Besides, the DCT virtually produces optimally decorrelated frequency domain
coefficients. With respect to this property, the DCT is only slightly surpassed by the theo-
retically optimal and computationally intensive Karhunen-Loeve transform which unlike
the DCT has several implementation-related deficiencies, including the fact that the basis
functions are image dependent. Because of these most desirable properties, the DCT-based
image coding has been adopted as a standard in many applications, such as JPEG, MPEG-

2, MPEG-4, and CCITT Recommendation H. 26x [13].

t9

Chapter 1. Introduction

1.1 Hardware Implementation of Video Compression Standards

Until recently, the general-purpose processors have provided enough computing
power for the software implementation of some of the video standards. For example,
MPEG-2 compression/decompression for a 720 x 480 frame size at 30 frames per second
(fps) requires approximately 132 MOPS (million operations per second) and that is now
easily achievable by several general-purpose processors such as Intel Pentium micropro-
cessor [29]. However, for a high definition television (HDTV) application in which the
frame size is assumed to be 1440 x 1152, the codec requires more than 22 GOPS (giga
operations per second), which is beyond the present capabilities of a general-purpose pro-
cessor [3]. Besides, the dedicated video compression chips are normally much cheaper
than the general-purpose processors, thus making it quite appealing to the industry.

Recent hardware implementations of the video compression standards fall into
three main design categories: video signal processors, multimedia coprocessors, and dedi-
cated coders/decoders. Video signal processors are programmable processors with a digi-
tal signal processing (DSP) core or reduced instruction set computer (RISC) core and
coprocessing units for compute-intensive operations, such as motion estimation. Multime-
dia coprocessors are also programmable; however, they also support multitasking for
simultaneous acceleration of multimedia tasks, including video, audio, and graphics. Ded-
icated coders provide limited, if any, programmability and have a dedicated architecture
and control logic for a specific video encoding or decoding standard. There is an expecta-

tion that applications using video compression, such as set-top boxes for interactive TV,

Chapter 1. Introduction

HDTYV, digital cameras, and desktop video teleconferencing, which all require dedicated

video codecs, will experience a huge growth in the next few years.

1.2 Motivation for Research in the Hardware Design of the Inverse DCT

Single-chip video codecs need to integrate in a limited silicon space the DCT or
inverse DCT (IDCT) hardware with a core processor, an entropy coder, and other circuitry.
For such a restricted size requirements for the implementation, efficient designs of DCT/
IDCT algorithms have received considerable attention in the research community [11]-
[22]. Figure 1. shows the block diagram of H.261 video coder and decoder. The three key
functions included in a video codec are: (1) the computation of the DCT and IDCT, (2)
quantization of the DCT coefficients, and (3) entropy coding. Among these operations. the
computation of the DCT/IDCT requires a substantial portion of the overall computation
time.

In video codec applications, the error in the IDCT computation requires much
more attention than that in the DCT computation, due to the cumulative nature of its com-
putation error within the reconstruction loop of the code. As shown in Figure 1.1, both the
encoder and the decoder contain a reconstruction loop. Any error in the computation of the
IDCT simply gets accumulated because this error is added to the previous reconstructed
frame. Therefore, if the error in the IDCT computation is not properly taken care of, it may
result in a substantial quality degradation of the reconstructed pictures. Since the forward

discrete cosine transform is outside the reconstruction loop and is not needed in the

Chapter 1. Introduction

decoder, error in its computation is not as critical. Thus, because of the greater need of the
IDCT computation in a codec and the cumulative nature of the error in its computation,

the design and implementation of IDCT algorithms poses a greater challenge.

r— -] Coding Control <
|
4 :
Frame PQuantizexr—» VLC
Memory % M[IIXI l DCT l_’ (Q) —»| Encoder
$ 2 Y
5 l v
NTSC v | Qd
to A Buffer [—
CIF g I
: - | IDCT v
T 8 Error
Input— g [0 MUX Correction
: !
Loo Motion Frame
. b a . Encoded
Filter| |[Compensation| (Memory dat
* : ata
Motion
] . .]
Estimation
(a)
Step size
Error BUEE [] VLC
Correction utter Encoder
Inter/Intra [
mode r—J
0= MUx
Input
\ 4
Loop < Motion Frame
Filter| |[Compensation| |Memory
(b)

Figure 1.1 Block diagram of H. 261 video (a) coder and (b) decoder.

Chapter 1. Introduction

Many 2-D DCT/IDCT structures have been proposed with an objective of acceler-
ating the computation speed by reducing the number of multipliers and adders. Among the
existing architectures, many are based on distributed arithmetic (DA) [23]. The property of
the DA that allows the implementation of a sum of products without using multipliers
makes it ideally suitable for integrating a DCT processor into a video codec. However, in
such an implementation, the size of ROM increases exponentially with the size of image
blocks and the bit-serial nature of DA limits the processing speed and causes a large
latency. In [33], a pipelined CORDIC algorithm has been employed in a DCT/IDCT archi-
tecture in order to achieve the high speed requirement of HDTV applications. However,
deeply pipelined structure of this scheme occupies a large implementation area that could

even be comparable to the direct multiplier-based implementations.

1.3 Scope and Organization of the Thesis

In this thesis, a new architecture for a 2-D inverse discrete cosine transform pro-
cessor based on a modified radix-4 on-line CORDIC algorithm and the distributed arith-
metic in the framework of the redundant number system is proposed. The architecture is
designed to take advantage of the “carry-free” addition property of the redundant number
representation and the multiplierless property of the DA. The carry-free property leads to a
high-speed operation and makes the delay independent of the internal wordlength of the

processor. The objective of employing the radix-4 on line CORDIC algorithm is to reduce

Chapter 1. Introduction

the latency and to control the ROM size without compromising the good feature of the
DA.

The thesis is organized as follows. In Chapter 2, some background material on the
principle of the DCT/IDCT computation and some of the widely used schemes for its
design and implementation are presented. The advantages and disadvantages of these
designs are also discussed in this chapter. The algorithm and the conceptual architecture
for the design of a 1-D IDCT core are developed in Chapter 3. In Chapter 4, details of the
hardware architecture of an 8 x 8 2-D IDCT processor, which employs the algorithm and
architecture proposed in the previous chapter, are presented. In Chapter 5, the design of
the proposed IDCT processor is validated through simulation. An exact-bit simulation is
carried out to demonstrate the accuracy compliance of the proposed design with the [EEE
standard 1180-1990. The designed processor is also implemented using Xilinx Virtex
XC2V1000 FPGA board and tested for its speed, space requirement and the functional
behavior. Finally in Chapter 6, the results of this investigation are summarized, the contri-

butions highlighted, and the direction for some further study suggested.

Chapter 2

Background

Normally, there is a high degree of correlation between the intensity values of
adjacent pixels of an image. Image compression can be achieved by removing such a
redundant information.The discrete cosine transform (DCT) is widely used in most appli-
cations for the compression of digital image and video signals. After performing the DCT
operation on the image/video signals, most of the energy is found to be concentrated in the
low frequency region. Thus. it is possible to compress the image by neglecting the high-
frequency components of the DCT. At the receiving end, an inverse DCT operation is per-
formed to reconstruct the image. In this operation, the high frequency components, that
were discarded before the signal transmission, are assumed to be zero. This simple tech-
nique yields good compression of the input image. without much compromise on the pic-

ture quality of the received signal.

Due to the importance of the two-dimensional (2-D) DCT/IDCT in digital image
processing, particularly in video compression, various algorithms and architectures have
been proposed for its implementation. Most of them can be classified into two categories.
The first category of algorithms employ the techniques of matrix analysis and decomposi-

tion. For example, the fast DCT algorithms in [16] and [17] belong to this category. The

Chapter 2. Background

second category includes those algorithms that use polynomials and employ number the-
ory. The algorithms given in [18] and [19] are such algorithms. Each of the categories can
be further divided into two groups. In the first group of algorithms, the row-column
decomposition is used in order to transform the problem of a 2-D DCT computation into
that of a 1-D DCT computation. In the second group, the 2-D DCT computation is carried
out directly on the 2-D data. The algorithms given in [16] and [19] belong to the first

group, whereas those in [17] and [18] belong to the second group.

In this chapter, some background material directly related to the work to of this
thesis is presented. First, the mathematical definition of the discrete cosine transform and
the description of the inverse transform are given in Section 2.1. The distributed arithmetic
(DA) technique and its use for the computation of IDCT is introduced in Section 2.2. In
Section 2.3, a brief description of CORDIC algorithm and its application for the IDCT
computation is presented. Finally, a discussion on the advantages and disadvantages of

these two approaches are given in Section 2.4.

2.1 The Discrete Cosine Transform and its Inverse

The computation of the discrete cosine transform is one of the processes of trans-
forming a block of data from the spatial domain to the frequency domain [2]. The inverse
process of restoring the spatial domain data from the frequency domain is carried out

through the inverse discrete cosine transform.

Chapter 2. Background
2.1.1 Definition of 1-D DCT and its inverse
The one-dimensional (1-D) DCT of a sequence of input data with N elements is
defined as

N -1

. 2 C(u)cos(zl ull

N un)x(i)
i=0

X(u) =

Z|w

where u = 0,1,...,N-1,and C(0) = %.and Cn) =1 forn#0.
2

The 1-D Inverse DCT of a sequence of N points can be expressed as

N -1
N
x(i) = . Z C(u)cos(';;/lun)X(u)
u =O ST
where i = 0, |,

2w

2.1.2 Definition of 2-D DCT and its inverse

The two-dimensional (2-D) DCT of an array x of N X N elements is defined as

N-IN=-1
Xk, 1) =

2 .. Cm+ 1wk 2n+ 1)nl
A—/C(/\)C(l) 2 2 x(n, m)cos >N cos N (2.3)
n=0m=90
where k,[= 0,1,2,...,.N-1,C(0) = L,andC(n) = 1l fornz0.
J2
Then. 2-D inverse DCT can be expressed as
N-IN-1
xnm) = 2 ¥ T ClhICHXKk, Deos EEDTE o Gm e DTl
’ N ’ 2N 2N
k=0[=0
where m,n = 0,1,2,N-1.

10

Chapter 2. Background

2.1.3 Row-column decomposition of 2-D DCT/IDCT

A straightforward implementation of (2.3) and (2.4) requires N* multiplications
for the evaluation of the DCT/IDCT. There are several alternative methods to realize the
N x N two-dimensional DCT. These methods can be divided into two main categories,
fast DCT algorithms which implement the 2-D DCT using the given 2-D data and the
algorithms that use row-column decomposition approach in which the 2-D DCT is imple-

mented by using two one-dimensional DCT and a matrix transpose operation [4].

The row-column decomposition, which has the advantage of regularity for VLSI
implementation, is the most popular and effective approach of 2-D DCT computation in
image and video coding applications. The 2-D DCT is a separable transform in that it can

be expressed in a matrix form involving two 1-D DCT'’s (the row-column decomposition)

as follows.

X=A-x- A" 25)
where x = [x(i,), ,/j=0,1,....N-1],X = [X(x,j). i,j=0,1,....N-1] and
A are N x N arrays, representing the spatial input data, the frequency domain output data,

and the matrix with the cosine basis functions respectively. By the virtue of the orthogo-

nality of A, A - AT= I, wherelisan N x N identity matrix. For example, for N = 8,

we have

11

Chapter 2. Background

(2.6)

where

1

N
(9]
o}
»
|

o< TR
I
STy
(@)
o)
w
.—-IL»J
YK
o
>

Using the row-column decomposition, X can be computed using two 1-D DCT
transforms given by

Y = Ax' (2.84)

T
X = AY (2.8b)
where Y is an intermediate product matrix. The above decomposition to a matrix product
results in a reduction in computational complexity to 23’ multiplications and has been
used in the implementations of most of the image compression algorithm. A standard

12

Chapter 2. Background

block diagram of computing DCT/IDCT using row-column decomposition is shown in

Figure 2.1.

x’ 1D Y MATRIX " 1D X
—{ DCT/IDCT TRANSPOSE PCT/IDCT p—r
A A

Figure 2.1 2-D DCT/IDCT computation using row-column decomposition.

We can easily see that the first 1-D DCT operates on each row of x while the sec-

ond one operates on the transpose of Y.

2.2 Distributed Arithmetic for the Computation of the IDCT

Distributed arithmetic is a technique that allows the computation of a sum of prod-
ucts without using multiplication operations. By storing first a finite number of intermedi-
ate results, a sum of products can be obtained through repeated additions and shifting
operations without the use of explicit multiplication operations. This technique allows the
design of signal processors with a reduced gate count and a very regular structure. Hence,

it is ideally suited for integrating a DCT/IDCT processor into a video codec.

2.2.1 An overview of the distributed arithmetic [20],[26]

Consider the evaluation of the following sum of products

13

Chapter 2. Background

where x, denotes the input data and «,, is fixed coefficient. Without loss of generality,
X,, can be assumed to be a two’s complement binary number with B-bits of precision and

that |x,| < 1.Then, x, can be expressed as

o N
X, = —xfn)+ 2 o) (2.10)

where xf,{) is the jth bit of x,, and has a value of either O or 1. This formulation implies a

binary point next to the most significant bit _vf,?). Substituting (2.10) into (2.9) yields

N B-1
_ (0) (J)y=J
y= Z am[_ Y T 2 Xm 2 :| (.11
1

m= j=1

After an interchange of the order of summations, we have

B-1 N N

) - (N 5~/)
y = 2 z Y |- T Z ot (2.12)

Jj=lm=1 m=1

<

Let

N
Fy(a, xﬁ,{)) = 2 am.tf,{) (2.13)

m=1

T o .
where @ = [ay, a,, ..., ay] . Since z’ can assume a value of either O or 1, Fy(a.x!/’) can

assume only 2V possible values. These values can be precomputed and stored in a lookup-
table. Substituting (2.13) into (2.12), yields

B-1

- ()yy=J

y = ZFN(a,xm)2 " —Fy(a,x
j=1

0
0y 2.14)

14

Chapter 2. Background

This is the key expression for the implementation of a sum of products using distributed

1

arithmetic. Multiplication by 2™ corresponds to a right shift by one bit, hence, v in (2.14)

can be computed by repeated use of the table look-up, additions, and shift operations.
Figure 2.2 shows a block diagram for the implementation of (2.14). Data is pro-
cessed bit-serially, the least significant bit first. After each cycle, the output of the accumu-

lator is shifted by one bit. The final sum is computed in B cycles. This circuit is

commonly referred to as a ROM-Accumulator (RAC).

LookUp Table l > ‘

(ROM)

with 2" words

F(a, \'(”)

m

Figure 2.2 Block Diagram of a RAC.

2.2.2 DA-based implementation of the IDCT [16]

The technique described in Section 2.2.1 can now be directly applied to the hard-

ware implementation of the 1-D IDCT. For a B -bit of data precision of the pixel, X can be
expressed as
B-1
Xu) = =X+ ¥ xP27, (2.15)
j=1
where Xf‘j) denotes the jth bit of X(«) and has a value of either O or L. Substituting (2.15)

into (2.2) yields

Chapter 2. Background

x(i) = J- C(u)cos

u=0

. B-1
lun){— X 3 xf/)z"] (2.16)

j=1

After an interchange of the order of summations, we have

B-1pN-1 . N-1 .
x(i) = 2 |: 2 a"Xf‘j):l 2 2 o Xf‘) (2.17)

u=20

2 2i+1
where o, = NC(u)cos TN zm:).

u=0

Figure 2.3 Parallel implementation of an eight-point IDCT using distributed arithmetic

Comparing (2.17) with (2.12), it is seen that x(i/) can be computed using the
ROM-accumulator unit shown in Figure 2.2, where the size of the ROM is 256 words. The
size of the ROM can be reduced to only 16 words if we take into consideration that an

eight-point IDCT can be computed using two four-point inner-products. The output of the

DA based IDCT will be available after B cycles. Figure 2.3 shows a parallel implementa-

16

Chapter 2. Background

tion of the eight-point IDCT using distributed arithmetic. In this implementation each
RAC unit, which has 16 words of memory, is realized by the structure shown in Figure
2.2. The D’ blocks and *+' blocks in the figure represent the D flip-flops and adders,

respectively.

2.2.3 Doubling the speed of distributed arithmetic

To increase the processing rate of the DA-based implementation, the RAC unit can

be modified to process two bits from the data at the input of RAC. If we can access two
F, in (2.14) simultaneously, then the calculation of y can be performed in one-half of the

number of clock cycles. Equation (2.14) can be expressed as

B/2 B/2-1
2k = 1)y =(2k = | 2h)\ 42k 0
v= Y Fyax* 2 e 3 F ey ho*_Fy@ <), s
k=1 k=1

The above formulation allows odd-numbered and even-numbered bits to be processed in
parallel. Figure 2.4 shows the architecture for a modified RAC unit that processes data at
double the speed. This design requires an additional adder and twice the ROM size of the

original design.

Correspondingly, for the DA-based implementation of the IDCT, (2.17) can be

rewritten as

B/2 N -1 B/2rN-1 N-1
. (Zj-1 ~(2j=1) (25) =(2)) (0)
x(i) = 2 [Z auXu] 2 + 2 |: 2 auxu :l'z - auXu -(2.19)
0

j=lll=0 j:lu_—.O

=

Thus, the RACs in Figure 2.3 can be realized by the structure shown in Figure 2.4.

17

Chapter 2. Background

L —

+ |ROM for

4d bi »1/2
x;‘zk-z) [o] its ~
2

x{m —’ROM . 4 ‘ L J y A

' gr » + Accum. —> Y

ay o

(26 t _|even bitg l

Figure 2.4 Block diagram of an RAC for doubling the speed.
2.3 1-D DCT/IDCT Computation using CORDIC Algorithm

In order to be feasible for high speed applications such as HDTV compression, a
new approach in [33] using the CORDIC algorithm has been introduced for computing
DCT/IDCT. Only simple adders and registers are needed in this implementation and the

computing speed can be very high. In this section, this approach [33] is briefly reviewed.

2.3.1 CORDIC algorithm

COordinate Rotation DIgital Computer (CORDIC) was proposed in [25] to per-
form vector rotations (and therefore to compute sine, cosine, and arctangent functions)

and to multiply or divide numbers using only shift and add elementary operations.

For easy reference, the original CORDIC algorithm is now briefly described. Con-
sider the problem of rotating a vector (V,) through an angle ¢. The original vector is
expressed in terms of its rectangular components p and g. After rotating, the correspond-

ing components p” and ¢’ of the rotated vector shown in Figure 2.5 are given by

’

p
ql

pcos® —gsind

. (2.20)
qcosd + psind

18

Chapter 2. Background

q'-_.

Figure 2.5 Vector (V, B) rotated through an angle ¢.

Equation (2.20) can be rearranged as:

’

p’ = cosd-[p-qtand]
g = cos¢-[q+ptand]

1l

(2.21)
The CORDIC algorithm computes the components of the vector V' by rotating the vector

V through successively smaller angles ¢, = atan 27" i=1.2,..N. With each iteration of

rotation, a sum is accumulated which, by the final stage of rotation. yields the proper

result. The iterative rotation can now be expressed as:

]

pivy = Ki-lpi—q,-d;-27] (2.22a)
div1 = K,--[q,-+p,.-di-2'i] (2.22b)
;.1 =0,-4d;- atan2™ (2.22¢)
where
I when ¢,20
d. =

-1 when ¢,<0 |

and K; = cos(atan2™'). It is noted that K; can be removed from the recursive relations

given by (2.22) and the final values of p; (i.e. p’) and g; (i.e. @) can be multiplied by

19

Chapter 2. Background
K = l—[Ki. The multiplication by the tangent term in (2.21) is reduced to simple shift
i

operations.

2.3.2 1-D IDCT computation using the CORDIC algorithm

The one-dimensional inverse discrete cosine transform was defined in Section
2.2.1as

N -1

. 2 2i+1
x(i) = A/;/ z C(u)cos(TN—un)X(u) (2.23)
u = 0
where i =0,1,....N-1, C(0) = —};,and C(n) = 1 whenn#0.

By using some trigonometric identities of cosine basis functions, we can rewrite (2.23) by

decomposing the summation of the right side of the equation into two parts as,
N/2-1

N-1
. 5
W= 3 C(u)cos(",,xlun)X(u)+ 3 C(u)cos(",,-;llun)X(u)
u=0 - u=N/2 (2.24)
N/2-=1
= Y sg(u
u=0

wherei = 0,1,..., N-1.and

. 2i+1 i (2i+1
g(i,u) = cos(TN zm)X(u)-*—(—l) sm(SN un)X(N—u)

foru=1,2,..,(N/2)=1.i=1,2,...N—-1 and

¢(i,0) = cos(g)xm) + (—1)[%—[]sin(“

Chapter 2. Background

foru =0.i=1,2,...,.N-1 and

g(0,0) = COS(E)X(O)+Sin(§)X(g)

By using the symmetries in the trigonometric functions, the above function g(i, 1)

can be expressed in different forms. Letting K = 1,2,4,...,N/2, and

u = K, 2K, 3K, ..., we can have
N . w/ K 2i+1 i (2i+1
g(E— 1 -4, u) = (-1) [cos(7N un)X(u)-i—(—l) sm(7N u‘n:)X(N—u)]
(2.25)
= (-)"*gi, u)
= a(i, u)

Forif K = 2,4,8,....N/2,andu = K/2,3K/2.5K/2, ..., we can have

g(% -1-1, u) (—I)T[sin(ZH- lllT[)X(ll) - (—l)icos(zé';/lun)X(N - zl)](2.26)

)
S
~~~
~.
-
-~
-~
A

Let

g(1,0)

- sin(g)x(o) + Cos(g)x(%), (2.27)
= -b(0, 0)

Exploiting the symmetries of the trigonometric functions included in (2.25) to (2.27), it

can be shown that a complete set of values g(i,u), which is needed for the computation of

x(i) according to (2.24), can be calculated from only (N2 +8)/12 values of the pair

(a(i, u), b(i, u)). For example, for N = 8, only 6 different pairs (a(i, u), b(i, u)) are



Chapter 2. Background

needed for the computation of the g(i, u)’s. The following equation gives the mapping of

gliu)and (a(i, u), b(i,u)) for N = 8.

8(0,0) g(0, 1) g(0, 2) g(0, 3)
g(1,0) g(1, 1) g(1,2) g(L,3)
8(2,0) g(2,1) g(2,2) g(2,3)
8(3,0) g(3,1) g(3,2) g(3,3)
8(4,0) g(4,1) g(4,2) g(4.3)
g(5,0) g(5, 1) g(5,2) g(5, 3)
8(6,0) g(6, 1) g(6, 2) g(6, 3)

12(7,0) (7. 1) g(7,2) g(7, 3)]

a(0,0) a(0,1) a(0,2) a(0,3)

b(0,0) —-a(l, 1) b(0,2) -a(l,3)
b(0,0) b(1,1) b(0,2) -b(1,3)
a(0,0) b(0,1) -a(0,2) b(O,3)
a(0,0) b(0,1) -a(0,2) -b(0, 3)
b(0,0) -b(1. 1) b(0,2)
b(0,0) —a(l, 1) a(l,3) -b(0,2

1a(0,0) -b(0, 1) a(0,2) -b(0, 3)

b(l, 3)

(2.28)

Comparing (2.25) and (2.26) with the vector rotation transform (2.20) and (2.20) respec-

tively, we see that only 6 CORDIC computations are needed for an 8-point 1-D IDCT. A

block diagram for the computation of the 8-point 1-D IDCT using CORDIC rotators is

shown in Figure 2.6.

X(7) a(0,1)+a(0,3)
Four
X(1) CORDIC a(l,l)-a(i,3) \\ _
rotators
X(5) and b(l,1)-b(1,3) _
eight
X(3) adders b(0,3)-b(0,1) 3
One
e [ wonN_ZN
X(2) rotator y +
w_ /AN
One
CORDIC a(0,0) \\\d/
x(0) rotator

“+

x(7)

x(6)

x(5)

x(4)

x(3)

x(2)

x(1)

x(0)

Figure 2.6 A block diagram of the 8-point 1-D IDCT using the CORDIC rotators.

]
9



Chapter 2. Background

2.4 Comparison of the Existing Design Approaches

In general, the basis of comparison for the various DCT/IDCT algorithms is the
required number of multiplications and additions. However, there are also many other fac-
tors, such as complexity of control logic, requirements for memory size, power consump-
tion, complexity of interconnect, etc.. that can be taken into consideration. Although fast
DCT algorithms, which directly implement 2-D DCT, are superior to the row-column
DCT in the sense that the numbers of multiplication-accumulation operations are reduced
to one-half, the irregular routing cost and the use of additional reording circuit make it to

require even more area in actual VLSI implementations.

The distributed arithmetic is widely used in DSP integrated circuit design because
of its ability of providing regular structures with smaller gate counts. In the context of the
architecture of Figure 2.3, there can be three potential bottlenecks limiting the speed of
IDCT computation using the DA. The first one is the ROM access time, especially when
the ROM size is large. The ROM size in the conventional DA approach increases exponen-
tially with the increment of the size of the image sub-block. The second one is the speed of
the accumulators. In the most applications of image/video compressions. the internal
wordlength is normally large in order to meet the critical accuracy requirement of the stan-
dards. Thus, the accumulators with large wordlength can dominate the speed of the whole
system. The last bottleneck is the speed of the butterfly adder array. Normally, in order to
improve the performance of the circuits, a large area is a compensation for achieving a

higher speed. For example, a 16-bit carry-select adder (CSA) is 50% faster than a 16-bit



Chapter 2. Background

carry ripple adder (CRA), whereas the former is also 50% larger in area than the latter
[24]. Besides, since DA is essentially a bit-serial arithmetic structure, and in the least sig-
nificant bit first processing format, the sign bit is processed last, the accumulators can pro-
vide results only after every B clock cycles, where B is the wordlength of the input

samples, for the subsequent operations.

In the CORDIC approach discussed in Section 2.3, the 1-D IDCT/DCT is imple-
mented by six CORDIC rotators and two stages of butterfly adders in order to take advan-
tage of the multiplierless property of the CORDIC algorithm. Although a direct
implementation of the CORDIC algorithm for the computation of the IDCT presented in
Section 2.3 is better than the multiplier-based approach, it does not provide the results that
are superior to that of the DA scheme. It is because the outputs of the CORDIC rotator
need to be scaled by a constant to obtain the correct results. Thus, the additional hardware

to perform this multiplication eliminates the advantage of the CORDIC algorithm.

2.5 Summary

In this chapter, some background material on the mathematical description of the
[DCT algorithms and their implementations necessary for the study undertaken in this the-
sis has been provided. In Section 2.1, the definition of the discrete cosine transform and
the representation of its inverse have been presented. The row-column decomposition
approach for the 2-D DCT computation has been given. The distributed arithmetic and its
implementation for 1-D IDCT was described in Section 2.2. In Section 2.3, the CORDIC

algorithm and the CORDIC based approach for the IDCT implementation has been briefly



Chapter 2. Background

reviewed. Finally, the advantages and disadvantages of the existing design approaches
based on the distributed arithmetic and the CORDIC algorithm have been discussed in

Section 2.4.

By using a lookup table (ROM) to store a finite number of intermediate results, the
DA technique allows the design of an IDCT algorithm with a reduced gate count and a
regular structure. However, this advantage is diminished because of the requirement of a
large ROM size and the slow speed due to the large access time of the ROM and the bit
serial operation of the DA. By employing the CORDIC algorithm, the IDCT computation
can also be implemented without using multipliers, but unlike the DA implementation, it
does not require the use of a ROM. However, the deep pipeline structure employed in the
implementation of the CORDIC rotator due to its iterative property makes this approach
require a large silicon area. In the next chapter, these problems of the existing approaches
of the IDCT design and implementation will be addressed as a part of the investigation

undertaken in this thesis.



Chapter 3

Algorithm Design of IDCT Core

In the previous chapter, various algorithms and architectures proposed for the
IDCT implementation were presented. Among these algorithms, the distributed arithmetic
(DA) based one is the most widely used technique for the DCT/IDCT implementation
because of its simple and multiplierless structure. By storing the pre-computed intermedi-
ate results of multiplication in a lookup table, the IDCT computation is implemented sim-
ply by a structure containing only ROMs, adders and registers. However, the size of the
ROM employed in DA approach is an exponential function of the size of the image block.
Thus. the speed of operation of the DA based IDCT implementation is mainly determined
by the large access time of the ROM. The CORDIC algorithm, also discussed in proceed-
ing chapter, was introduced in [33] for the IDCT implementation in order to meet the
high- speed requirement of applications such as HDTV. In this approach, the image pixels
are divided into groups of two and processed in parallel by the CORDIC rotators to
achieve a high-speed operation. However, due to the iterative property of the CORDIC
algorithm, a deep pipeline structure must be employed in the CORDIC rotator, requiring
large area for its implementation. Thus, it would seem that by combining the DA-based

approach with that of the CORDIC algorithm, it should be possible to reduce the hardware

26



Chapter 3. Algorithm Design of IDCT Core

complexity and also achieve a reasonable speed of operation, if one could replace the deep

pipeline structure of the latter by ROMs of smaller size.

In this chapter, a new DA-based CORDIC algorithm for the implementation of the
IDCT computation is proposed [30]. In this scheme, the IDCT of the transform values,
which are divided into groups of two, are carried out by several CORDIC rotators and but-
terfly adders. The distributed arithmetic technique is employed in the CORDIC rotator to
avoid the usage of a deep pipeline structure. The proposed IDCT core employs the redun-

dant number system and on-line digit-serial architecture to achieve a high operation speed.

In Section 3.1, the algorithm design of the DA-based CORDIC algorithm for a 1-D
IDCT implementation is presented. In order to improve the speed of the overall system, a
scheme [31] of doubling the speed of the implementation is given in Section 3.2. In Sec-
tion 3.3, in order to further optimize the design at the bit-level architecture, the redundant
number system is employed in the [DCT core. The carry-free property of the redundant
number addition makes it possible to process data serially in the manner of most signifi-

cant digit first (MSDF), which has been referred as on-line algorithm in [10].

3.1 A DA Based CORDIC Algorithm for the 1-D IDCT Computation

The expression of the 8-point 1-D IDCT can be represented by the following equa-

tion

x(i) =

(RSN

,
Z C(u)cos( :Slun)X(u), i=0,1,2 .17 3.0



Chapter 3. Algorithm Design of IDCT Core

where

tion 2.3, the various value of x(i) given by this equation can be computed as

where

c(0) = % ,and c(n) = 1 for n#0. By using the technique presented in Sec-

x(0) = a(0,0)+a(0, 1)+ a(0, 2)+a(o0, 3)
x(l) = b(0,0) +a(l, 1)-b(0,2)-a(l, 3)
x(2) = b(0,0)+5(1, 1)+ b(0,2)-b(1,3)
x(3) = a(0,0)-5(0, 1)-a(0,2)+ b(0, 3)
x(4) = a(0,0) +5(0, 1) -a(0,2)-5(0, 3)
x(5) = b(0,0)-b(L, 1)+ b(0,2)+b(1, 3)
x(6) = b(0,0)—a(l, 1)-5(0,2)+a(l,3)
x(7) = a(0,0)—a(0, 1)+ a(0, 2)-a(0, 3)

b(0.0) = X(0)cos(§) - x(4)sin( §)

)

+13

T

a(0,0) = X(4)cos( )+X(0)sin(

13

b(0,2) = X(6)cos(g) —X(2)sin(§)
a(0,2) = X(Z)cos(g) +X(6)sin(’§‘)
b(0.3) = X(S)cosG—E) —X(3)sin(§£)

a(0, 3) = X(3)cos(3;—16t) + X(S)sin(zi_g)

b(1.3) = X(3)cos( fg) - X(5)sin T

) + X(3)sin(%)

ol

a(l,3) = X(S)cos(

oA

[
oo

(3.3)

(3.4)

(3.6)



Chapter 3. Algorithm Design of IDCT Core

b0, 1) = X(l)cos(_) _x(7)sin(3_")

3n
1

16

3n
l

a(0, 1) = X(7)cos(—) +X(l)sin(3;—76t)

b(1,1) = X(7)cos(

a(l, 1) = X(l)cos(

i )-X(l)sin(

)+X(7)sin(

)
)

ol
ol

7/

o3
ol

(3.7)

(3.8)

As shown in Figure 2.6, (3.3) to (3.8) can be computed by six CORDIC rotators using the

rotation transform given by

p
q

’

pcos® ~ gsind
gcosd + psing

(3.9)

The p and ¢ coordinates in (3.9) can represent pixel values. This equation can be computed

using the distributed arithmetic techniques. For this purpose, the coordinates p and g can

be expressed as

B-1

0) () a=J
=-p +2p 2

j=1

B~-1
0 .
BN P

j=1

(3.10)

where the pixel values p and q are represented by a B-bit precision. and p(j) and q‘j ) repre-

sent the jrh bit of p and ¢, respectively. Substituting for p and ¢ from (3.10) into (3.9)

yields



Chapter 3. Algorithm Design of IDCT Core

B-1 : B-1
p’ = -p P+ 3 p(’).’z-j]cos«D—(— 7% + > q727 |sing
E j: 1

(3.11)
B-1 ; B-1

q = —q(0)+ 2 q(j)z—j]cosq)+L— p(0)+ Z p(j)fj sin®
j=l j=l

The above equation can be rewritten as

B-1
p = —(p(o)cosq)—q(o)sincb) + 2 (p(j)cosq)—q(])sin(b) .2
j=1
0 (O
) ) (J)
= - Rp(0, 9. ¢7)+ T Rp0. p. 4'7)
j=1
Bt | | (3.12)
q = - (q(o)costb + p(o)sin(b) + 2 (q(j)cosd) + pmsin(b) .27
j=1
B-1
0 0 (j (j
j=1
where
R0, p9. q9) = pPcosd - ¢Vsino
RQ((D? p(j), q(j)) - q(j)cos¢+p(j)sinq)' (3.13)

Jj=01,..,B-1
The equations given by (3.12) constitute the key expression for the computation of
p’ and ¢’ using a distributed arithmetic based CORDIC approach. Since each pm and

q(j) may assume the value of either 0 or 1, the intermediate results Rp(0, p(j), q(j)) and

R,(0, p(j), q(j)) can take only 2? possible values. These values can be precomputed and

30



Chapter 3. Algorithm Design of IDCT Core

stored in a look-up table. The equation given by (3.12) can be computed in B clock cycles

by two ROM accumulators (RAC), as shown in Figure 3.1.

p(j)
—f " ROM l

G with r
a
—1 ¢4 words

v p'
Shifter t——-

T
with r

4 words aq’

Shifter ——

Figure 3.1 Block diagram of DA-based rotator.

The 1-D IDCT as expressed in (3.1) can be computed in two steps. First, the equa-
tions (3.3) to (3.8) are calculated by six rotators each as shown in Figure 3.1. Then (3.2) is
implemented by two stages of butterfly adders. Figure 3.2 shows a block diagram for the
implementation of the 1-D IDCT using the proposed DA-based CORDIC algorithm. [t can
be seen from this structure that a total of six 8-word ROMs are needed for the proposed
IDCT design, compared with eight 16-word ROMs required by the conventional DA-
based IDCT presented in Section 2.2.2. The ROM requirement is thus reduced by 63%.
For each rotator as shown in Figure 3.1, there can be only two inputs, p and g coordinates
respectively. Thus the size of the ROM in each rotator in the IDCT implementation is

independent of the size of the image block, as compared to the DA approach presented in

increment of the image block size. However, the proposed approach still has the main dis-

31



Chapter 3. Algorithm Design of IDCT Core

advantage of slow processing speed of the DA-based approach due to the bit-serial nature
of the distributed arithmetic. As the RAC of the DA-based approach, the rotator in the pro-
posed design also needs B clock cycles to perform one accumulation operation. In the next
section, an improved scheme of CORDIC rotator that doubles the processing speed of the

accumulation is presented.

a(0,0) R
02 i LT | ++—+D | x(0)
b(0,0) R
X(2)D ™ o — z+ D71 xi)
CORDIC
x(6) |D > a(0,2) "— s
" ] - D | x(3)
0(0,3) - > . ‘
x(1) (D > b(l,1) J— =+ » D x(4)
b(0,1) »
x(3)|D > b(1,3) — > %D | x(5)
FOUR >
CORDIC a(l,3) - .
X(5) {D » ROTATORS[ & (0, 3) > __ o D | x(6)
a(l,1l) >
' —— x(7)
x(7) |D > a(0,1) |+ > D

Figure 3.2 Implementation of 1-D IDCT using the proposed DA-based CORDIC algorithm.

3.2 Speed Improvement of the DA Based CORDIC Algorithm

In order to meet the accuracy requirements specified by the standards, the DCT/

IDCT architectures normally employ a large internal wordlength in most video applica-



Chapter 3. Algorithm Design of IDCT Core

tions. The bit-serial DA approach presented in the previous section suffers from the low
throughput and large latency. To increase the processing speed of the distributed arith-
metic, a modified DA scheme [3] was presented in Section 2.2.3 to process the odd-num-
bered and even-numbered bits in parallel. This, however, resulted in an increase in
hardware of one adder and doubling the size of the ROM for each RAC. Further, the bit-
parallel structure must be employed for the additional adder, since it is followed by an
accummulator. Depending on the accuracy requirement of an application standard, a par-
allel adder with a large wordlength may be needed. Thus, the speed of the additional adder

may determine the overall speed of the entire IDCT core.

Benefiting from the small ROM size requirement of the DA-based CORDIC
approach as described by (3.12), we now propose to double the speed of the DA architec-
ture without requiring of an additional adder [31]. In (3.12), instead of processing one bit
of p and one bit of ¢ at a time, we take two bits each from p and g in each clock cycle.
Thus, the latency of our proposed RAC is reduced to B/2, where B is the wordlength of p

and q. Equation (3.12) can be rewritten as

’

= (p“)COS(D—q(l)SinQ))—Z(p(O)COS(D-(](O)Sin(D)
B/2-1
+ Z (p(yc)c:osq)—q(zk)sinq))?._(2
k=1
B/2-1 ‘
+ 2 (p(2k+l)cos¢_q(2k+l)sin¢)2—(2k+l)
k=1

k)")

B/2-1

9 () k) k)
Ro(0, P ™)+ Y Ry(o, ™, ¢
k=1

33



Chapter 3. Algorithm Design of [DCT Core

(n

= (q cos¢+p(l)sin¢)—2(p(0)cos¢—q(0)sin¢)
B/2-1 .
g Ry —(2k
+ Y (¢ coso + p*sing)2 - 27V
k=1
B/2-1 .
2" 3 (L (3.14)
+ 2 (q('“”coscb-i-p(z“”sin(b)?. (2k+1)
k=1
B/2-1 . .
0y (0 (k) (k)
= Rp(0, P g™+ Y Rp(0. 94"
k=1
where
Rp(9.p,q, k) = Z(p(zk)cosq)—q(u)sin(D)+p(2k+”cosQ)—q(:k”)sin(p
Rp(0, p.q. k) = 2(q(2k)cos¢+p(2k)sinq'))+q(2k+l)cos¢+p(2k+l)sinq;
(3.15)

(0)

. 1) . 0) .
Rp(9.p.q.0) = (p'coso ¢ sing) -2 (p'”cosp - ¢ Vsino)

1 0
R,(9,p.9.0) = (¢'" ’ o

coso + p“ sing)-2-(q 'cos®+ p(o)sinq))

In the set of equations given by (3.15). Rp(9, p, ¢, k) and R,(9, p, ¢, k) can take

only 2* possible values, since p(k) and q(k) may assume a value of either O or 1 only.
Two 16-word ROMs are used in each rotator to store the intermediate results of (3.14) as
given in (3.15). A total of twelve 16-word ROMs are required by the 1-D IDCT architec-
ture. Compared with the scheme presented in Section 3.1, the doubling of the speed is
achieved without an increase in the number of additional adders in the rotator. Moreover,
the total ROM size of 192 words employed in this design is still smaller than the ROM
size of 256 words needed in the conventional DA-based IDCT design described in Section

2.2.3.

34



Chapter 3. Algorithm Design of IDCT Core

3.3 Bit-Level Architectural Details of the Proposed IDCT Core

In this section, the bit-level architecture for the general DA-based CORDIC struc-
ture for the 1-D IDCT computation proposed in Sections 3.1 and 3.2 is presented. [n order
to fully understand the realization of the bit-level architecture of the proposed design, the
concept of the redundant number system and its implementation in the IDCT core are also

addressed in this section.

There are three kinds of implementations of bit-level architectures in DSP algo-
rithm designs, bit-parallel, bit-serial, and digit-serial. Bit-parallel systems process one
whole word of the input sample each clock cycle and are ideal for high-speed applications.
Bit-serial systems process one bit of the input sample every clock cycle. Such systems are
area-efficient and suitable for low-speed applications [9]. Digit-serial systems [12] process
multiple number of bits every clock cycle and are best suited for applications requiring
moderate sample rate, where area and power consumption are critical. For the DA-based
CORDIC algorithm presented in the previous section, the digit-serial architecture is obvi-
ously the best choice of implementations in view of the critical area requirement of the
video codec applications. This choice of the architecture also conforms with the rotators

which also has a digit-serial structure.

A digit-serial system can be designed for processing either the most significant
digit first (MSDF) or the least significant digit first (LSDF). For a two’s complement rep-
resentation, the most significant bit (MSB) represents the sign of a number. In the rotators

shown in Figure 3.1, if LSDF mode of operation is adopted, the sign of the accumulator’s

35



Chapter 3. Algorithm Design of IDCT Core

content cannot be determined until the last bit of the input operand (the most significant
bit) is processed. This technique has the disadvantage of presenting the results in a parallel
form and thus requires re-serialization, since the subsequent stage to which the results
need to be passed on are bit-serial adders as shown in Figure 3.2. The re-serialization can
result in a complex control logic, additional buffers and lower performance. On the con-
trary, if the on-line algorithm which processes the data in an MSDF mode is adopted, the
results of the accumulator can be passed on to the adder array before completing the entire
accumulation operation. Thus, the accumulators can be chained with the subsequent
adders. Because of these features of the MSDF processing, we adopt this processing mode
in our design. An algorithm based on the MSDF processing has been referred to as on-line

algorithm in the literature [10].

In order to facilitate the computation of a task using on-line algorithm, the data
must be represented using the redundant number system. The carry-free property of the
redundant number system and the MSDF mode of operation provide a fast operation speed
and short latency and thus allow the subsequent calculations to start earlier. Binary signed
digit (BSD) representation is a special case of redundant data representation and widely
used in on-line algorithms. The basic concepts of the binary signed digit representation is
explained in Section 3.3.1. The carry-free addition, which is the main attraction of using
the redundant signed-digit number systems, is presented in Section 3.3.2. The scheme of
on-line addition, making use of some of the features of the parallel addition of redundant

numbers is described in Section 3.3.3.

36



Chapter 3. Algorithm Design of IDCT Core

3.3.1 Binary signed digit representation

In the conventional nonredundant radix-r number system, a digit can take on val-
ues from the set {0, I, ..., r - 1}, and all the numbers can be represented in a unique way.

A radix-r redundant signed-digit number system is given by the set

{B,B-1,...,1,0,1,...,c}, where the notation ¥ denotes —x, | <, B<r -1, and the
digit set contains more than r values. This number system allows multiple representations
of any number, thus the name redundant number system [1]. It has the advantage over the
conventional number representations in that the addition of two numbers may be per-
formed without (or with a limited) carry-propagation. In our design, the binary signed
digit representation is used for the accumulation operation. A number in the BSD format

can be written as
X=Yx-2". xe{-1,01} (3.16)

In the implementation of the proposed IDCT core, an element of the digit set {-1,0, 1} is
constructed using a two-bit binary code, as shown in Table 3.1. Each digit of a BSD num-
ber can be -1, 0 or 1, and the most significant non-zero digit of this number represents the
sign of the number. If this MSD is +1, the BSD number is positive, otherwise it is a nega-

tive number.

37



Chapter 3. Algorithm Design of IDCT Core

Table 3.1 Binary Signed-Digit

Digit Binary Code
X; \T X;
0 0 0
-1 0 l
l 1 0
0 1 1

3.3.2 Carry-free addition

With the redundant number system, it is possible to perform addition with or with-
out limited carry propagation. The procedure of the carry-free hybrid addition of the

binary and BSD number is now explained.

Consider the addition of a BSD number X and an unsigned conventional binary

number Y, each with the wordlength of B:

S=X+Y (3.17

where X = X X2%3...X5, ¥ = ¥, ¥a¥3...¥5. X;€ {1,0, 1 }.and y; € {0, 1 }. This addi-
tion can be carried out in 2 steps. The first step is carried out in parallel for all the digit

positions i(1 <i< B): an intermediate sum p; = x; + v; is computed, which belongs to

the set {I, 0, 1, 2}. This step is expressed as

X;+v; = p; =2+ (3.18)

38



Chapter 3. Algorithm Design of IDCT Core

where ;€ {0, 1 } isthe transfer digit and, u; € {-1,0} is the interim sum. The least sig-
nificant transfer digit ¢y, . | is assigned a value of zero. The most significant interim sum
digit i is also assigned a value of zero. In the second step, the sum digit s; is formed by
combining f; ., and «; into one digit as follows:

Sp = b tu; (3.19)

As shown in (3.18) and (3.19), the sum digit s; depends on x;, x

iv1o Yiand vy

only. As a result of this, the carry propagation is limited to only one digit position. Table

3.2 summarizes the digit sets used in the redundant hybrid radix-2 addition.

Table 3.2 Digit Sets Involved in Hybrid Radix-2 Addition

Digit Radix 2 Digit Set Binary Code Digit Value
X {1,0,1} X X X; - X;
_\ri {O, l } y:. '\'T
pi = X+ {1,0, 1,2}
1 {1,0} ] —u
3 {0, 1} '7 -
Si = Mty {1,0, 1} s;s; s; -5

In the DA-based rotator shown in Figure 3.1, a hybrid radix-2 BSD parallel adder.
which performs an addition of a BSD number and an unsigned binary number, is used in

the accumulator. The carry-free property of the hybrid BSD adder carries two advantages.

39



Chapter 3. Algorithm Design of [IDCT Core

First, the speed of this accumulator is comparable with that of the carry-look-ahead adder
with a much smaller area requirement. Second, since the propagation of the carry is lim-
ited to only one digit position, the most significant digit of the accumulation result can be
shifted out from the rotator in every clock cycle while the accumulation operation is still
being performed. In order to conform with the operation of the rotator, the downstream
adder array shown in Figure 3.2 need to process the output digit of the rotators in the
MSDF mode. Thus, adders using on-line algorithm are required for the implementation of

the adder array.

3.3.3 Addition using an on-line algorithm

The one-digit on-line adders, which perform the addition of two signed-digit num-
bers serially in the MSDF mode, are adopted in the butterfly adder array shown in Figure
3.2. The signed-digit addition using on-line algorithm can be derived from the parallel
addition of two signed-digit numbers. In this section. the scheme of the parallel addition of
two binary signed-digit numbers is first explained. Then, by taking advantage of the carry-
free property of the addition of redundant numbers, the scheme of parallel addition is

reformed to achieve the on-line addition of the two BSD numbers.

As shown in Table 3.1, a BSD digit x; can be considered as the subtraction x: -X;

of the components of its binary code. Consequently, a BSD number X can also be consid-

. + - + + + + + - - - -
ered as the subtraction of X and X , where X = x| x,x;...x5 and X = x| X,x;3...xp.

40



Chapter 3. Algorithm Design of IDCT Core

Therefore, the addition of two binary signed digit numbers X and Y can be computed by

performing hybrid addition and hybrid subtraction sequentially as

S=X+Y=X+Y -V (3.20)
Z=X-X+Y",

=
S=72"-7Z-Y

where X = X X2X3...Xg, ¥ = ¥ Vavs...vp, ;€ {1,0,1} and y;€ {1,0,1}. The
above operations of addition and subtraction can be carried digit by digit in parallel. The

addition can be carried out in two steps. First, the hybrid addition of the signed digit num-

. . + . - . .
ber x; and the unsigned binary number v; is performed to generate the intermediate result

-
+
‘e
il

20+ u;

ST Lty
where z; is also a BSD digit and Z = z,2,25...2 . Then, the hybrid subtraction of the
BSD digit z; and the unsigned binary digit v, is carried out as
-V = 2y wy (3.22a)
S; = Vi tw; (3.22b)

where w; € {0, 1}, v,€ {0,-1}. Note that the sum digit s; depends on x; x;, |, X; 1.

Vi Vi and y; 5 only. Thus, the carry propagation is limited to only two digit positions.

41



Chapter 3. Algorithm Design of IDCT Core

For the conventional nonredundant number system, it is impossible to perform the
operation of the on-line addition, which is in digit-serial MSDF mode, due to the factor
that the carry propagation is from the least significant digit to the most significant digit.
On the other hand, the carry-free property of the redundant number addition makes it pos-
sible to perform the on-line addition. By observing the operation of the parallel addition of

the two BSD number, it would seem that by memorizing the intermediate results

it; 2 w;, and y; ,, it is possible to compute the result of digit s; without the informa-

tion of any other less significant digit. Thus, the on-line addition can be shown as the state
diagram in Figure 3.3. The first circle represents the computation of (3.21). The second

circle represents the computation of (3.22a). The third circle represents the combination of

the intermediate results w; and v, | to form the result s;

;- as given by (3.22b). The

squares in the figure represents the memory cells which could be D flip flops in an actual
VLSI implementations. To generate the first digit of the result s;, 2 digits of the input
operands x

i+ Vi .o are needed. That is, after the two most significant digits of the oper-

ands are received, the most significant digits of the result is generated.

Figure 3.3 The scheme for the on-line addition.

42



Chapter 3. Algorithm Design of IDCT Core

For the signed-digit on-line algorithm, it is quite easy to implement a subtractor
because negation can be performed by just exchanging positions of the respective positive

bit and negative bit. For example, the scheme shown in Figure 3.3 can performs the sub-
traction x; _, — v;, » by simply exchanging the position of yL_ ~and v,

A total of 16 one-bit on-line adders are needed in each of the two 1-D IDCT cores.
By using the on-line adder, the data stream can flow through the rotators and the butterfly

adders without any buffering and re-serialization.

3.4 Summary

In this chapter, a new algorithm for the 1-D IDCT computation and its bit-level
architecture employing distributed arithmetic and CORDIC rotators for its implementation
have been presented. The DA-based CORDIC algorithm combines the DA-based
approach for the [DCT computation with that of the CORDIC algorithm. In this scheme,
the 8-point 1-D IC ~T is decomposed and computed by six CORDIC rotators and butterfly
adders. By employing the distributed arithmetic in the CORDIC rotators, the requirement
of a deep pipeline structure of the conventional CORDIC algorithm approach has been
avoided. By using the CORDIC algorithm, the ROM size of the RAC has also been
reduced, and it has been made independent of the image block size. A scheme of doubling
the speed of the implementation of the DA-based CORDIC algorithm has also been pre-
sented. The details of the bit-level architecture of the proposed design has been discussed.

In the proposed IDCT core, the redundant number system has been employed in order to

43



Chapter 3. Algorithm Design of IDCT Core

further optimize the design at the bit-level architecture. The on-line algorithm, which is a
redundant number algorithm with the processing mode of most significant digit first, has
been described. By taking advantage of the carry-free addition and most significant digit
first property of the on-line algorithm, the new design achieves a faster processing speed

with the requirement of a smaller silicon area.

In the next chapter, details on the hardware architecture of an entire 2-D IDCT

processor are presented.



Chapter 4

Hardware Architecture

In the previous chapter, the design of an algorithm for the computation of the 1-D
IDCT and the corresponding architecture employing the distributed arithmetic (DA) and
the CORDIC rotators for its implementation were presented. By applying the distributed
arithmetic in the implementation of the rotators using CORDIC algorithm [30], the pro-
posed design provided the advantage of a small and regular structure and a reduced size of
ROM required by the rotators to store the intermediate results of the IDCT computation.
The redundant number system along with the on-line algorithm was adopted in the bit-

level architecture of the proposed design.

In this chapter, the entire hardware architecture for the computation of a 2-D IDCT
using the 1-D IDCT core described in previous chapter is given. Since the data flow in our
design is in the digit-serial MSDF mode, some special arithmetic cells and control logic
different from the design using bit-parallel structure are needed. The hardware architec-
ture of the proposed design is described starting from simple modules such as 1-digit on-
line adder, plus-plus-minus (PPM) and minus-minus-plus (MMP) adders to more complex

modules such as DA-based rotator and redundant-to-nonredundant number convertor.

45



Chapter 4. Hardware Architecture

This chapter begins with an overall description in Section 4.1 of the hardware pro-
cessor, that makes use of the 1-D IDCT core proposed in Chapter 3, for the computation of
2-D IDCT. In Section 4.2, the structure of the parallel-in-serial-out buffer, which stores
and serializes the incoming pixels, is presented. The rotators, which are based on the dis-
tributed arithmetic and perform the vector rotation of two pixels, is described in Section
4.3. The one-digit on-line adder, which forms the buttertly adder array, is presented in Sec-
tion 4.4. A redundant-to-nonredundant number convertor, which is needed to convert the
data suitable either for column-wise IDCT processing or for final outputting, is described
in Section 4.5. Finally, the transpose memory, which stores and transposes the intermedi-

ate results of the 1-D IDCT, is presented in Section 4.6.

4.1 Hardware Architecture of the 2-D IDCT Processor

The hardware architecture of the entire processor is based on the algorithm design
and the conceptual architecture for the [-D IDCT computation proposed in the previous
chapter. However, some additional hardware, such as input buffer register, output buffer
register, transpose memory and process control logic, is required for the actual implemen-
tation of the processor. By including these essential units along with the IDCT proposed in
the Chapter 3, the top-level hardware architecture of the entire IDCT processor is shown in
Figure 4.1. As discussed in Chapter 2, in order to achieve a regular structure for the pro-
posed IDCT core, the row-column decomposition approach for the 2-D IDCT implemen-

tation has been adopted in our design. The processor is composed of two 1-D IDCT cores

46



Chapter 4. Hardware Architecture

10sso301d DAL @-T 943 JO 21madnydie arempaey joAaj-dog, g dandyy|
0S1d
" N J+| + A TCITo% . a
\ tgrax | ONN-¥ gy _HT T (tnox ¢ (nsx 5
a1 +I, V0% 51070701 fet a
ONN-Y +1, A, = 2 (11sx
. TR wax [ L e v 619X 5100 t
%l [T _ﬂiTJ T TgIo% anod . qa
I o] ONN-¥ oy _H.T T (L)ox ¢ (1sx 3
0,
s .
o - _ e +I° % (9I0% s a
.m“ {5)Ix ONN-Y TIET: + 1 o \V TR fil (1) 8%
n B T f
- [T - e
@ [ Tyax ONN-Y [Tre)ax | b _|_u.4+ \ v twiox T (1)15% M_
m
~ [T Trrax | ONN-Y [T(erax H_ _+ (£)ox | saojejoux VN\ YY" a
o :
2IAY0D ]
2% | ONN-Y [“rorax _Hi_ {1+ oML o a
T (oox € (nsx
’ t
%  (1ox ¢ (usx
anpow 1appe
QUT[-UO p-XTpeY 4T
X
lllllll -
— — — —
(e1ep - .Mw“c
oot smumyoo SMOX nq 21
1q 6) WYY uo
1Nod (¢ uo < tod-tena |* - NIG
LOAaI a-t 3 tend LOdI d-1
P|J } jll*
b
AQYIY le mMumM LUVYLS
t J LSy
208802014 LOAI d-Z

47



Chapter 4. Hardware Architecture

(one 1-D IDCT (R) and one [-D IDCT (C)) to carry out the IDCT operation for rows and
columns for an image block, a transpose memory to transpose and store the intermediate
results of IDCT operation, and a control logic block to control and supervise the overall

operation of the processor.

In our design, the input pixel is represented by a signed 12-bit word with two’s
complement format. In each 1-D IDCT block, the input sample shifts into an 8-word par-
allel-in-serial-out (PISO) serialization register. In each clock cycle, the PISO register
receives one 12-bit word and serially outputs eight pairs of 2-bit data (xs(i)) to the six
downstream rotators. In each rotator, radix-2 signed-digit number representation is used to
perform accumulation and shift operations. In each clock cycle, the two most significant
digits of the accumulation result (xc(i)) in radix-2 signed-digit format are generated and
shifted out from each rotator. These two radix-2 BSD numbers form one radix-4 signed-
digit number and passed on to the subsequent 2-stage butterfly adder array, which is com-
posed of a total of 16 radix-4 on-line adders. Meanwhile the accumulator continues to pro-
cess. Each radix-4 on-line adder can process two radix-2 signed-digit number in an MSDF
manner. Eight redundant number to nonredundant number convertors (R-NNC) following
the butterfly adder array perform two tasks. First, they convert the incoming digit stream
(xr(i)) in radix-4 signed-digit format into two’s complement number serially in the MSDF
mode. Second, each of the eight R-NNCs operate as a serial-in-parallel-out (SIPO) buffer.
It receives the resuit of a butterfly adder senially and outputs them in parallel to the trans-

pose memory. The last component in the 1-D IDCT core is an 8:1 bus multiplexer. It

48



Chapter 4. Hardware Architecture

selects one of the eight intermediate results (xz(i)) from the R-NNCs and passes it on to the

transpose memory.

The transpose memory stores the 8 x 8 intermediate results of the 1-D IDCT (R),
performs the transpose of the array, and generates the input for the 1-D IDCT (C). The
control logic block of Figure 4.1 controls the computation process of the entire 2-D IDCT
processor. [t generates signals for the two PISO registers to control the serialization pro-
cess and selection signals for the 8:1 bus multiplexers for the two 1-D IDCT cores. For the
transpose memory, the control logic block controls the read and write operations and pro-

vides the access addresses.

The overall circuit starts with a "START signal. A pulse at the ‘START terminal
indicates that the first sample is available at the input and the IDCT computation is started.
The ‘READY’ signal is asserted high when the computation of a block is completed and
the data on the output terminal is valid. The *RST is the active low reset signal, which

clears all the registers in the IDCT core.

4.2 Parallel-in-Serial-out Register

In most applications, an image is divided into blocks of 8 x 8 pixels, and the 2-D
IDCT is computed for each of the blocks. The pixels in a block are fed serially row by row
starting from the top left pixel. This process is repeated for every block. The six DA-based
rotators shown in Figure 4.1 process the data of eight pixels simultaneously, digit by digit

(2 bits). Thus, a buffer is needed to store and transform the incoming pixel stream for the

49



Chapter 4. Hardware Architecture

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

[
Vo
-.
[e ¢ Ire [¢9 ".
A & & o nm
A A\ A Al
v
b
P
[]
. P
-
[ J m"
[
[ ] "“
-
> b
0] ts (] |9 Mr m"m
N b & s e} “"e
M A A Ali o
o P
o] e o o "mw-
= P e
]
| D
Q, “.f
el i i i |3
& fal & & H
F A A A Al s
(@] P
.
o
“_
i
._
[¢ % [: [ [FH “m
P & & & I
A A A Al
-
b
“_
b
-
(R (0 e v
- o~ e o @ a

xs(7)
Figure 4.2 Parallel in serial out (PISO) register

xs(8)



Chapter 4. Hardware Architecture

downstream rotators. A parallel-in-serial-out (PISO) register, which can perform the oper-
ations of inputting and serialization of the data at the same time, is employed in each of
the two 1-D IDCT cores. The PISO register, as shown in Figure 4.1, is composed of an
8 x 12 D flip-flop array to latch eight pixels, and eight 12-bit shift registers to serialize the

data.

The operation of the PISO register can be described as follows. First, pixels are

pipelined into the upper D flip-flop array word by word. After this array is loaded with
eight words, a pulse on *LOAD "’ triggers the eight shift registers at the bottom to fetch all

the eight words, so that the upper D flip-flop array is ready to accept the new pixels. Mean-

while the data in the shift registers are shifted out serially two bits a time to the rotators.

4.3 DA Based Rotator

The DA based rotator, as shown in Figure 4.3, is composed of five different sub-
modules, the address decoder, the operation decoder, the 16-word ROM, radix-2 hybnd
signed-digit parallel adder and shifter In each clock cycle, the rotator processes a two-bit
digit from the PISO and shifts out two digits in radix-2 signed digit format from the
shifter. An active high *First_digit’ signal indicate the position of the most significant digit
of the serial incoming data. An address decoder is employed to generate the addresses for
the ROM accumulators (RAC) based on the combinations of x, v and ‘First_digit’. The
operation decoder generates the signal ‘AorS’ which controls the adders in RAC to per-

form either addition or subtraction. Two RACs are used to compute the rotated coordinates

51



Chapter 4. Hardware Architecture

x’and y’, respectively. As mentioned in Section 3.3.1, four kinds of rotators with rotation
angles /4, m/16, /8 and 31/ 16 are deployed in this design. Each ROM contains 16

unsigned words of intermediate results computed using (3.15).

Accumulator

...........

xs (i) 2 o o ' Adder/ |
e 4, ROM .- M Subtractorl,,
2 o .l with i r T AR Eara]
xs(3) 2 o o ' |16 words| |! ¥4
" ' ' Shifter  jw—rbtexc (i)
Y ' ‘ - - gy
AddrR - + Accumulator ‘
First_digit : ROM Accymlator (RAC)
i .l e eepmmm e oo ,
' S U, o “I
L as . " Adder/ |
o0 4" ROM ' iSubtractor|,
8-: ?"r ons%’ With o [ ' "
o | . 116 words} + |} 1 "4
" 8 : o Shifter |o—F—s xc(3j)

Figure 4.3 Hardware architecture of the DA-based rotator.

4.3.1 Address decoder

As mentioned in Section 3.2, the two 16-word ROMs store the results computed by
(3.15). These contents of the ROMs are addressed by the combinaticn of the incoming two
bits of x and y from the PISO register. However, since the most significant bit is a sign bit
in a two’s complement number, the two most significant bits of the data being received
from the PISO register need to be treated differently from the rest pairs of bits on each line
of the register. Thus, an address decoder is employed to produce the address based on the

52



Chapter 4. Hardware Architecture

incoming bit pair and the signal ‘First_digit’ which indicates the arrival of the two most

significant bits. The truth table of the address decoder is shown in Table 4.1.

Table 4.1 Truth table of the address decoder

vs(J)ys(j=1Dxs(f)xs(j-1)
vy = Dx()Hx(-1)
First_digit = '0’ First_digit="1"
0000 0000 0000
0001 0001 0001
0010 oolo 0010
0011 001t 0001
0100 0100 0100
0101 0101 0101
0110 0110 1001
0111 o111 010l
1000 1000 1000
1001 1001 0110
1010 1010 1010
1011 1011 1001
1100 1100 0100
1101 1101 0101
1110 1110 0110
1111 1111 0101




Chapter 4. Hardware Architecture

4.3.2 Operation decoder

The results of (3.15), which should be stored in the ROMs, could be a either posi-
tive number or negative number. In order to reduce the size of the ROM, only the absolute
value of the these numbers are stored in the ROMs in an unsigned binary format. Thus, an
operation decoder is needed to control the downstream accumulators shown in Figure 4.3
to perform the operation of either addition or subtraction. In each clock cycle, the opera-
tion of the accumulator is controlled by an "AorS’ signal generated by the operation
decoder. If a low-level signal is generated, the accumulator carries out an addition, other-
wise, a subtraction is performed. The operation control signal ‘AorS’ is decoded trom the

inputs of the rotator and *First_digit’ provided by the control logic.

4.3.3 Hybrid radix-2 signed-digit accumulator

The addition/subtraction and shifting operations required by the accumulator
shown in Figure 4.3 can be carried out by the hardware structure contained in the accumu-
lator of Figure 4.4. The accumulators receive the data from the ROMs and perform the
accumulation using radix-2 redundant signed-digit numbers. The hardware structure of the
accumulator, as shown in Figure 4.4, is composed of a hybrid radix-2 redundant adder/
subtractor which contains PPM adder, multiplexer and GUARD combinational logic, and
a shifter which consists of 28 D flip-flops. In each clock cycle, the hybrid radix-2 signed-
digit adder performs the parallel addition of the data from the ROM and the feedback data
from the shifter and shifts out two digits (four bits) to the downstream module of the but-

terfly adder array as the final result.

54



Chapter 4. Hardware Architecture

I933TYS > X
- mx
Y ~uﬁ
— %
alla alla alla d][q] mM:Mm mwuﬂm
s ,:m Jw. tig ’s 1 vs s tg mm_ is Mm_, =]
asvnon
 — ﬁllll» ﬁllllu ﬂllllu
o _ + ~ + . + - + _ + - +
ve Wdd Wdd e Wdad Wdad Wad Wdd
+ . + + - + + B + + _ + + - + + - +
3 ﬁ ﬁ q 3 3 3 3 3 b
0 0 0 0 'a|¥o falfe ‘st 'a|le
X0 le [XNK | "5 . XIIH o X1 e fXH |« [X0H e
rm_ _.m, _.EL gaIoy
vig AP . s 'o o to 165

I030RVI3qNS /IOPPe JURPPUNPLOI Z-XTPRI PTIqAH

Figure 4.4 Hybrid radix-2 signed-digit accumulator.

55



Chapter 4. Hardware Architecture

The critical path of our design is located in the adders shown in Figure 4.4, since
they consist of the largest combinational logic in the IDCT core. There are several possible
designs for the adder/subtractor. Among them, the hybrid radix-2 redundant adder is the
best choice, due to its propagation delay-free property and an area as efficient as that of a
carry ripple adder. The hybrid radix-2 redundant adder/subtractor performs the addition of
the data from the ROM in unsigned binary format and the intermediate results of the accu-

mulation in signed-digit format.
The input O = 0,0,05...0,, from the ROM to the adder/subtractor is in binary

unsigned format. The other input £ = e,¢,¢5...¢,, to the adder/subtractor is the feed-

back data from the output of the shift register in the binary signed digit format. In each

clock cycle, the two most significant digits of S, namely s, and s in the BSD format is

i+ 10
passed on to the subsequent butterfly adder. The rest of the digits of S are shifted two dig-
its to the left and fed back as the input A of the adder/subtractor with two zero digits
appended to the least significant digits. The purpose of the GUARD combinational logic
block of the accumulator is to avoid an overflow in S by recoding the four most significant

digits of S.

In the implementation of the redundant number system, the PPM adder and the
MMP adder perform the same task as that of one-bit full adder in the nonredundant num-
ber system. Thus, the PPM adder shown in Figure 4.4 and the MMP adder which is used in

the radix-4 on-line adder (Section 4.4) are presented in the following.

56



Chapter 4. Hardware Architecture

A. PPM and MMP

The plus-plus-minus (PPM) adder and the minus-minus-plus (MMP) adder are the

most important basic building blocks in the implementation of the signed-digit redundant
number adders. The PPM performs a one-digit addition x:-' -x;+y; = 2t;—u; of a BSD

digit x; and an unsigned binary digit v;. The MMP performs an one-digit subtraction

+ - . . ..
X; —x;—v; = =2t;+u;. The area and complexity of these two units are similar to that of

a 1-bit full adder. The truth tables of PPM and MMP are shown in Table 4.2.

Table 4.2 Truth table of PPM and MMP

Plus-Plus-Minus Minus-Minus-Plus

x; X; Vi l U; X x; Vi fi i
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 |
0 I 0 0 l 0 1 0 1 1
0 1 1 0 0 0 1 1 l 0
1 0 0 1 1 1 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 I 0 0 0 1 1 0 0 0
1 l 1 1 1 l 1 1 L 1

B. Overflow in the accumulator

As shown in Figure 4.4, in each cycle, the two most significant digits of the shifter
are shifted out to be used by the butterfly adders. This means that each intermediate result

57



Chapter 4. Hardware Architecture

of the accumulation sum should not overflow in the shifter. This can be made possible
using the redundancy property of the signed-digit number system. To guarantee this, two
measures are taken to limit an accumulation result so that it always fits into the shifter.

» Two zeros are appended to the most significant positions of every word stored in

the ROM. This means that b,b, are always equal to 00" in Figure 4.4.

* As shown in Figure 4.4, a combinational logic “GUARD* is designed to recode

the four most significant digits to prevent the potential overflow.

4.4 Radix-4 On-line Adders

The radix-4 on-line adder module shown in Figure 4.1 consists of the two-stage
butterfly adder arrays. The hardware structure of each of the radix-4 on-line adders in the
module is shown in Figure 4.5. It is composed of two PPM adders, two MMP adders and
eight D Flip Flops. This adder performs the addition of two radix-4 redundant numbers.
The use of such an adder in our design is essential, since the DA-based rotator shifts out

two digits in the radix-2 format in every clock cycle.

The radix-4 on-line addition can be carried out in a way similar to that of the on-
line addition of two radix-2 redundant digits described in Section 3.3.3. As seen from the
architecture in the Figure 4.5, the radix-4 on-line adder contains two stages of flip-flops.

which introduce the latency of two clock cycles

58



Chapter 4. Hardware Architecture

Y:
y. — + +

= jar .
XL_"&' E I§+——-@_'Sl
X, — + + B 1 0 s;
Y2
D+ B +
x, — ¥+ Q] | "'—@"’S;

Figure 4.5 Digital-serial radix-4 signed digit redundant adders

4.5 Redundant-to-Nonredundant Number Convertor (R-NNC)

As shown in Figure 4.1, the results of the 1-D IDCT (R) in radix-4 signed-digit
format need to be stored and transposed in the transpose memory. Directly memorizing the
data in the redundant format requires the size of the transpose memory be twice the size
when it is the two’s complement format. Thus, a redundant to nonredundant number con-
vertor (R-NNC) is employed to convert the results from the radix-4 redundant signed-digit
format into the two’s complement format. The conversion in MSDF mode is essential for
the on-line algorithm. In [21], a scheme of redundant to nonredundant number conversion
is given for the input digits in radix-2 redundant signed-digit format. Here we extend this

technique to the input digits that are in radix-4 signed-digit format.

59



Chapter 4. Hardware Architecture

The most obvious scheme to realize such a convertor for a redundant number X

would be to perform the subtraction X" — X . In this case, due to the carry propagation, it
is not possible to know the value of any nonredundant digit of the conversion result, before
the least significant digit of the redundant number becomes available. Thus, this scheme

can not be used in our design

In order to perform the conversion in the MSDF mode, a priori knowledge of the
carry-in signal at each digit is needed. Therefore, the two possible output digits are com-

puted assuming carry inputs of -1 and 0, and the final output corresponding to the carry

\
input 0 is selected as the output. The convertor takes two radix-2 redundant digits ( xi'+,

tJ

- I+ {- . . , .
x; ., x; and x; ) and generates two-bit of a two’s complement numbers in each clock

cycle. It takes B/ 2 clock cycles to perform B -bit redundant number conversion. Table 4.3
shows how the output is obtained from the decoded values of the given input digits and

two possible values of carry-in.

Table 4.3 Conversion mapping of a radix-4 redundant
number to two’s complement number

Decoded _
~value| 3
Carry-in

0 o1 @10 Mii | oo | Ppt |[lo | Pl
1 oo | ot |[tio |[ftr |[olo | Pt | [ofio

1 0 l 2 3

1

60



Chapter 4. Hardware Architecture

. . . 0 1 . : :
In this conversion, two partial results, X,; and X,; (-1 <i<B/2), are obtained itera-
. . . . : L 0
tively assuming the carry input to be 0 and -1, respectively, with the initial value X_; = 0

and Xll = 1. Here, the superscript of the symbol of the partial result indicates the

assumed value of the carry input and the subscript indicates the step of the conversion. The

_— 0 : L . 0 1
final result is given by X 5. During the conversion, in step i, X,; and X,; are updated by

: 0 . , : o
selecting X,;_, and Xé(i_ 1) and by appending two bits according to the rule given in
. . : : 0 .
Table 4.3. This procedure of updating is summarized in Table 4.4, where X,;_,, is
selected if plus = | and Xé(i_l) is selected if minus = 1. The values of plusand

minus are determined based on the value of the input digit as shown in Table 4.4. If the

input digit is 1,2,0r3,it implies (Table 4.3) that the carry output is always equal to 1.no
matter what the carry input is. Hence. minus issetto 1 and X,;_,, is used for updating.

. i 0 i . : :
Two bits are appended to X,; _, to form X5, and X,,;, assuming the possible carry input

of 0 or -1. If the input digit is 1, 2, or 3, it implies (Table 4.3) that the carry output is

always equal to 0. Hence, plus issetto | and Xg(,-_ 1) is used for updating. Two bits are

appended to Xg(;_ 1) to form Xgi and Xéi, for possible carry input of 0 or -1. As shown in

the fifth column in Table 4.3, when the input digit is equal to 0, it implies that both cases of

carry output, -1 and 0, are possible. Hence, minus and plus are both set to 0 and Xg(,-_ 1

61



Chapter 4. Hardware Architecture

and Xé( i—1) are kept and updated as Xéi and Xg,. by appending the two corresponding

bits to Xg(i_ 1y and Xé(i_ 1) respectively.

Table 4.4 Computation of the output digit during the conversion of a radix-4
redundant to a nonredundant number operating in the MSDF mode

Ds‘;?f:d Xgi X-_I,i Minuy Plus
3 Xi(i—l)*'o'zzi-l'*'l'z:i Xi(i-1)+0'22i_l+0-22i : 0
2 X+t 2% w0 2% | xb w020 2 ! 0
1 X;(i_l)+l.22i—l+l'221 Xi(i_”_‘_l.z?.i-l_*_o.z‘_’i L 0
° Xg(i-l)“”o'z:i_l“'o'?-:i X;(i—l)'*'l'z:i—l-*'l‘zzi 0 0
l X(z)(i-n*‘o'-?:i-l"'l'zy Xg<s-1>+0'22i“‘+0-23i 0 !
i Xy +1-277 402" Xoi_py+0-27 " e 2 0 1
3 Xg(i-l)+l.22i—l+1_22i Xg(i_l)+l_22i-l+o_22i 0 1

In order to design the converter, 2 basic cells, the COPY cell and the APPEND
cell [19] are required. Depending on the values of the input digits, the APPEND cell gen-
erates the select signals plus and minus, and two pairs of output bits based on the input

digits and the carry-in signal, as shown in Table 4.3. Depending on the values of the plus

. . . 1 . :
and minus signals, the COPY cell select either Xg(‘-_ 1y Or X5(;_,- The logic equation




Chapter 4. Hardware Architecture

of the COPY and the APPEND cells can be derived from Table 4.3 and Table 4.4 as fol-

lows

plus = 'c‘[° ?'+ t;2+.t?. +xTx +_t2'x,-++ v,-["‘.\'il.x;-l+ (+.1a)
minus = ?.r2'+?.t}+.r;'+x2_x_,-l—+xil- (4.1b)

r(-,)l = \l+v:'+.—il_;ri2+\,2'+\q’tll+x7 +:}_r‘2+? (4.2a)
r‘,’,_[ ;;?;‘12 + r,z+.r,-2' (4.2b)

\5,1 = x,.HxT-i-xin:' (4.32)

x;}_l = \,2+\l:\‘_++r_,2:?\_ll:+??r,l (4.3b)

Based on the above equations, the COPY and the APPEND cells are designed as shown

in Figure 4.6.

coprYy pius APPEND
SR 2 \L x; >
S e = A ¢ DLUS
: | Kou X . . . :
: R : X, 7| Combinational :
g D [-—/ : - : - logic ———># minus
P2 z P P
1 Xz 374 Ca § - I XIT .x- < -
: 2 DX >
: > L’ —» x:
.-_-_"-,%’"- : * Combinational " X
minus > logic .
> —H} X
(a) (b)

Figure 4.6 (a) COPY cell (b) APPEND cell used in the conversion of a radix-4

redundant number to a nonredundant number.

63



Chapter 4. Hardware Architecture

An MSDF converter to convert a radix-4 signed-digit number of wordlength B can

be constructed by serially connecting an APPEND cell and B COPY cells as shown in

Figure 4.7.
2+
%, > /_\ /\
1+ /_\ /\
X" ——e —
X2 - _ S —_— -

B COPY cells
Figure 4.7 Block diagram of B-bit MSDF redundant to nonredundant converter.

As shown in Figure 4.1, a total of eight R-NNCs are needed to perform eight con-
versions in parallel in the proposed design. Note that since the transpose memory
employed in our 2-D IDCT processor is a dual-port RAM (the details of transpose mem-
ory design is give in Section 4.6), only one word can be written in or read out in every
clock cycle. It means that we need additional registers to buffer the conversion results. [n
order to avoid the additional delay with minimum extra hardware, eight unique converters
and an 8:1 bus multiplexer is employed to perform the eight conversions and the multi-
plexing of the eight data, respectively. As shown in Figure 4.8, no buffer registers are
needed for the first converter on the top. From the top to bottom, each converter employs
one additional stage of buffer registers than the one just above it. Thus, the conversion

result xz(i — 1) will be ready one clock cycle earlier than that of xz(i), 2<i<8.



N

Chapter 4. Hardware Architecture

8:1 16-bit bus multiplexer

Vs

-oxadn[nw u-01uM VY 941 PUE SIDLIDAUOD JURPUNPIILOU-0)-URPUNPII Y31 §°p dIndLy

— — ——— — —— —1 l
[R Al [REN] T RME N I 130 T3 1o . Amv ax
o o I o o o FEIN [N tEn LEN] JXUN LY LX) BIcREN] v
L — e — “.— N - e S -
£
91 — — — — — — ——
{g)Ix Y, Y , NSV , NN ; W , B , ‘
IRER) 1. T 1. RREX 111 T Bk B e (L)X
L0 0 m o ] m LR NS L AN g JEIEN] Adiy A0 2400 E344Y b
_\ (% L — — — L ]
Vi
T —_— A — — — N
(L)ax —~——-0—+0—p0—7-0— . . + .
IRE R T ARER 114y 11y i3 . A@vhvﬁ
IO n O a m lm LR RN oy jE N Adovy A R<LEL] ¢
ﬁ - L J ~ [ —1 1
L
91 — — — — — —
(9)ax —O0——-0—1-0—1-0—
9 RN T T T T RREA] T TR (g)ax
n m m FEIA g0 o XN NS JETINY hE SN INAAAY v
_\ - L L] L] L |
y
91
E —— s — —— — — ——
(g)ax 00— 0—1p-0—r
am v T T3 (RE N T3 T3 RREN REXS] THD i A v v ax
! 0 n (=N FYT faen 140 [N e PRI =n._..<ﬁv
] L S ) B L L
91 — —— — ——
{y)ax —0—1p-0—r . ; + . -
LRER] T T4 T T3 T 30 MREN] A ﬂv ax
| 0 Iy s raon f400 o pE 1SN Aoy LR IR GU<EEL S v
_l [ [ - L
p
1 —
(g)ax 0
T Rtk N} T T30 T T " TN L A N v ax
(VR o EEUN L2 U] 240 ATy LA N pii<BLAL b
—: 0 L e o o o o T o o T o o T L, B
791 - R N — A I
A Nv ax T3 T TH T3 130 T T3 REER] . A v ax
140 EEON P Ay Adr LE LN} A4 bictELd v H
I S L L S IO
£
91
{1)3x

65



Chapter 4. Hardware Architecture

4.6 Transpose Memory

The transpose memory module shown in Figure 4.1 stores and transposes the
results of the IDCT (R) and provides the inputs for the IDCT (C). There are several ways
to implement the transpose memory. The trivial way is to use two matrices for read and
write alternatively. Another way [29], is to use a single matrix composed of 8 x 8 x W D
flip-flops to transpose the data on-the-fly. However, since the proposed design is FPGA
based, the transpose memory can be implemented with a 64-word dual-port block RAM
taking advantage of the abundance of RAM in the FPGA and still using only one-half of
the RAM required by the trivial method. A dual port block memory has two independent
ports that enable shared access to a single memory space. Both ports are functionally iden-
tical, with each port providing read and write access to the memory [28]. The symbol of

such a dual-port RAM is depicted in Figure 4.9.

Transpose memory

—» dina(15:0] doutb({15:0] pb——»
—» addra(5:0] addrb[5:0] —»
—» wea

—P>clka clkb<}—

Figure 4.9 Schematic symbol of a dual-port memory.

The ports on the left side are in write-only mode. “wea* is the write enable signal.
The ports on the right side are in read-only mode. Simultaneous reading-from and writing-

to the same memory location will result in a correct data being written into the memory.

66



Chapter 4. Hardware Architecture

but invalid data being read out of it. Therefore, in our design, “clka* and “clkb™ are

driven by two clocks which are complementary so that the operations are non-overlapping.

4.7 Summary

In this chapter, a detailed design of the hardware architecture of the proposed 2-D
IDCT processor using the DA-based CORDIC algorithm introduced in Chapter 3 has been
given. The 2-D IDCT processor is composed of two 1-D IDCT cores, a transpose memory
and a process control logic block. Since the most significant digit first (MSDF) operation
mode is adopted in the proposed design, some special arithmetic and control logic units,
particularly for the implementation of the redundant number system and on-line algo-

rithm, have been employed.

In each 1-D IDCT core, the incoming pixels are buffered and serialized into two-
bit digit streams by a parallel-in-serial-out (PISO) register in the MSDF mode for the six
downstream DA-based rotators in order to perform the operations of loading and serializa-
tion simultaneously. In the rotators, the ROMs take the two-bit digits from the PISO regis-
ter as the address and provide an unsigned binary number for the accumulators which are
composed of an adder/subtractor and a shifter. By employing the hybrid radix-2 signed-
digit adder, the accumulator can operate with a high-speed and requires a small area. Fur-
thermore, the accumulators can also shift out to the butterfly adder array the two most sig-
nificant digits of the intermediate results of accumulation in radix-2 signed-digit format in

each clock cycle. This way, the butterfly adder array which employs sixteen on-line adders

67



Chapter 4. Hardware Architecture

is able to perform the operation of addition in radix-4. Eight redundant-to-nonredundant
number convertors (R-NNC), which can convert a redundant number into the two’s com-
plement format in the MSDF mode on-the-fly, are adopted to convert the final results of 1-
D IDCT computation without the use of an otherwise double size transpose memory. The
8:1 bus multiplexer at the last stage has been used to provide a stream of output pixels seri-

ally for each image block.

In the next chapter, the problem of implementation of the hardware architecture for

the proposed 2-D IDCT processor will be undertaken.

68



Chapter 5

Implementation

The overall hardware architecture of the 2-D IDCT processor based on CORDIC
algorithm and the distributed arithmetic was presented in the previous chapter. The hard-
ware designs of the various building blocks employed in the processor were also pre-
sented. An implementation of the proposed scheme is essential in order to evaluate the
performance and the hardware cost of the proposed 2-D IDCT processor. There are two
approaches of the hardware implementation. the application specific integrated circuit
(ASIC) and the field programmable gate array (FPGA). Among the two approaches, the
FPGA is widely used for the evaluation of a prototype design because of its low cost and
short development cycle. Thus, in this chapter, this approach is used for the implementa-

tion of the proposed design.

In this chapter, an exact-bit simulation scheme recommended by the I[EEE standard
is chosen to test the specification of the accuracy of the 2-D IDCT processor. The pro-
posed design is also implemented and tested on a Xilinx Virtex XC2V1000 FG256-4
FPGA board [32]. A test is carried out for the validation of the FPGA implementation of

the proposed IDCT processor.

69



Chapter 5. Implementation

In Section 5.1, a brief introduction of the [EEE standard 1180-1990, which has
been specifically proposed for the accuracy compliance of the [IDCT implementation, is
explained. The setup of the exact-bit simulation and the simulation results of the proposed
design are also given. The procedure of the FPGA implementation and the scheme for the
validation of the FPGA implementation of the proposed IDCT processor are presented in
Section 5.2. Finally, the results of the FPGA implementation of the proposed IDCT pro-

cessor and a comparison with the existing dedicated designs are presented in Section 5.3.

5.1 IEEE 1180-1990 Compliance Standard for the 8 x 8 IDCT

Because of the continuous growth of audiovisual services since the late 1970s. cus-
tomers have expected and demanded standards with which the video terminal equipments
can be compatible. The IEEE standard 1180-1990 is one such standard developed by
Commité Consultatif International de Telecommunications et Telegraphy (CCITT). This
standard specifies the numerical characteristics of the 8 x 8 inverse discrete cosine trans-

form for use in visual telephony and similar applications where the IDCT results are used

in a reconstruction loop [13].

5.1.1 IDCT accuracy test procedure [13]

The setup for measuring the accuracy of an IDCT processor is shown in Figure 5.1.

The procedure to test the accuracy of the IDCT consists of the following steps: (1) gener-

ate random data in a specified range, and form 8 x 8 data blocks, (2) perform a DCT on

70



Chapter 5. Implementation

each blocks, (3) perform an IDCT on the result of the DCT using both the proposed IDCT
and a mathematical IDCT model with a 64-bit floating point accuracy, and (4) measure the
peak, mean, and mean square errors between the output of the IDCT processor under con-
sideration and the mathematical IDCT model.

The errors as mentioned in item (4) above can be defined as follows. Let e.(i, j)
be the error between the output of the mathematical IDCT model and that of the IDCT
processor under consideration, where i, j = 0,...,7 and & = [, ..., 10000. The peak
error ppe(i, j) at pixel location (i, j) is defined as the peak value of e,(i, j). The mean
square error pmse(i, j) is defined as

! 10000
pmse(i, j) = mkgl e (i), .j=0,..,T7. (5.1

The overall mean square error, omse, is defined as

) 77 10000
_ 2., <A
omse 51 10000 10000_2 Z 2 e.(i,]). (5.2
i=0j=0%k=1
The mean error, pme(i, j), is defined as
1 10000
pme(i, j) = mk§l e(i,j), 4,j=0,..,7. (5.3)
The overall mean error, ome, is defined as
1 7 7 10000
ome = m .zo .Zo kzl ek(lv ]) . 5.4
1 = j - . =

71



Chapter 5. Implementation

To be the standard compliant, the following conditions must be met:

* Forany (i, j) (i,j=0,...,7),the peak error ( ppe(i, j) ) should be less than or
equal to 1.0, the average error (pme(i, j) ) (over 10,000 blocks) should be less

than or equal to 0.015, and the mean square error ( pmse(i, j) ) should be less

than or equal to 0.06.

* Overall, ome should be less or equal than 0.0015, and the omse should be less

equal than 0.02.

« All-zero input must produce all-zero output.

*REFERENCE"

REFERENCE 8X8 IDCT: 10CT SuTRUT
SEPARABLE, CRTHCGCNAL, o 3
e . o/ RCUND /
MULTIPLY WITH AT — scrcp [
LEAST 64-BIT FCATING POINT o
REFERENCE 8X8 FDCT: ACCURACY
3 - g
SEPARABLE, ORTHOGONAL, [ rowvo EST
—4» MULTIPLY WITH AT v scL1p IDCT SUTPUT
LEAST 64-BIT FOATING POINT - a
ACCUPACY PREPASED L ACUND e
3X8 IDCT 7 &cLle

Figure 5.1 Setup for measuring the accuracy of a proposed 8x8 IDCT [13].

5.1.2 Exact-bit simulation results

According to the IEEE 1180-1990, the test should be carried out by an exact-bit
simulation. A C program is developed for modeling the proposed IDCT processor with
exactly the same data path bandwidth, truncation, and operation precision as those of the
design. As described in Section 5.1.1, several error figures defined in the standards must
be computed from the simulation result and compared with the given specification. For the

sake of the completeness of this thesis, the definition of them error figures are given below.



Chapter 5. Implementation

Based on the simulation scheme described in Section 5.1.1, the error figures of the
proposed design are calculated and compared with the specifications of the standard. As
seen from Table 5.1, all the error figures given in the third column which are computed
from the simulation results meet the specifications of [EEE 1180-1990 standard given in

the second column.

Table 5.1 Compliance of IEEE 1180-1990 Standard

Item

Specification

Simulation results

ppe(i, j) (max)

1

l

pmse(i, j) (max) 0.06 0.013
pme(i, j) (max) 0.015 0.008
omse 0.02 0.0084
ome 0.0015 0.0008

All-zero input

All-zero output

All-zero output

5.2 FPGA Implementation of the Proposed Design

As mentioned earlier, there are two available choices for the hardware implementa-
tion of the proposed design, the ASIC and the FPGA. The FPGA is particularly attractive
because of its capability of providing rapid prototyping of systems and low-cost develop-
ment. The implementation procedure of the IDCT processor follows the standard FPGA
design flow with the HDL (hardware design language) entry [32]. The first step of the

implementation is developing an RTL (register transfer level) circuit description of the

73



Chapter 5. Implementation

IDCT processor using VHDL language. Then, the VHDL description is used as the input
to the Synopsys tools which synthesize the design into a netlist of logical gates based on

the library of the target technology. The last step is loading the netlist to the target FPGA

device.

The development and test of the proposed design was carried out on an INSIGHT
VIRTEX II reference board, which contains a Virtex XC2V1000 FG256-4 FPGA chip,
user switches, on-board 100 MHz clock generator, LED displays and other peripheral
components [32]. Based on the static timing analysis of the design, the FPGA implemen-
tation of the 2-D IDCT processor can be assumed to run with an operation speed of 100
MHz. For such a high speed clock, the setup of the testbench becomes a very challenging
task, due to the strict speed requirement for the interface between the device under test
(DUT) and the testbench. In order to avoid the interference of the interconnection of the
testbench, and the fact that in most applications the IDCT processor is encapsulated inside
a video processing IC, a built-in testbench, which is implemented inside the same FPGA
of the IDCT processor, is developed for the testing of the proposed design. The block dia-

gram of the testbench along with the DUT is shown in Figure 5.2.

The test control logic block controls the procedure of the test. The RAM-T stores
the testvectors randomly generated by the C-program provided in the IEEE standard. The
RAML-E stores the corresponding results generated by the exact-bit model discussed in
Section 5.1.2. The comparator performs the comparison of the actual results generated by
the proposed 2-D IDCT processor, and the expected ones stored in the RAM-E. The user
switch triggers the commencing of the test. The LED displays are used to show the results

74



Chapter 5. Implementation

of the test. The clock generator provides two complementary clocks for the testbench. In
order to avoid potential timing violation, the DUT is driven by CLOCKB, which is a com-

plementary version of CLOCKA driving the testbench.

| 1
I | o o
| Lot ' Inside the FPGA |
i _ : . I
luser switehl I | , U _
| TEST START ' |
| ADDR_IN | Test |

— - control .
l ~ | |
| START READY ADDR_OUT |
| ’ |
: DIN 12 :
1AM DUT R |
RAM-T o B ¢ RAM-E
cLockal 71 (2-D IDCT .
It CLOCKB | processor}) CLOCKA[ |
I L . . . .. . R R - s l
N ‘ N
o pour M7 | N9 |
L
l COMP_RES DOUT_EXP |
| _ CLOCKA Comparator f‘ |
Lol S e
CLOCKA CLOCKB
LED
display

100 MHz Clock generator]

Figure 5.2 Blockdiagrm of the testbench for the 2-D IDCT processor.
The test procedure, with the timing diagram shown in Figure 5.3, can be described

as follows. After a positive pulse is given from the user switch, ‘TEST_START’, the test

75



Chapter 5. Implementation

-0anpasosd 1591 oy jo weadeip Suiwuiy, ¢S aandyy

) ) S34dWOD
G 9o el zoec §f (2ot (e f l0:8ldx3"Lnoa
o000 v §f ez ! 1no"Haay

D D DD o o« (x o @x (I S (0:¢L10a
w w 3 AQv3d
ff {s | - 8%9010

0 0 0 : : 0 000" 0" 0" 0" : C(EX (WX X @X (X (0:1 4N
-0 0 0 ¢ {0 0 0 00" 0" o0 e s oy ez NI"Haay
: 3 14vis
w w “ w 1dv1s71s3lL

f f 15
m M wm 7 ¥M0010

76



Chapter 5. Implementation

control block generates the read enable signal along with the ‘ADDR_IN" to the RAM-T.
It also generates a positive pulse ‘START’ which is aligned with the first pixel value on the
DIN port provided by the RAM-T. The "ADDR_IN’ continues to increment until all the
pixels of an 8 x 8 block are loaded into the DUT. A high-level signal on the ‘READY"
port of DUT is asserted when the first data of the 2-D IDCT results is available on the
DOUT port. This signal also triggers both the test control block to generate the "ADDRB’
for the RAM-E as well as the comparator to start the comparison operation. The compara-
tor compares each pair of the actual and expected results of the IDCT computation of the
image block. If no error were found, the external LED display is turned on by the compar-

ator.

5.3 Implementation Results and Comparison with Dedicated Designs

The hardware cost and the test results of the FPGA implementation of the pro-
posed 2-D IDCT processor using Xilinx XC2V 1000 FP256-4 are shown in Table 5.2. The
processor operates on image blocks of 8 x 8 pixels, with 12-bit and 9-bit precision for
inputs and outputs, respectively. The test results [32] show that the proposed 2-D IDCT
processor provides the functional behavior as expected at a frequency of 100 MHz, with a
throughput of 80 Mpixel/s. The total FPGA resource usage of the implementation of the
proposed processor is 1580 slices. A block RAM, which is embedded inside the FPGA, is

used for the implementation of the transpose memory.

77



Chapter 5. Implementation

Table 5.2 Characteristic of the 2-D IDCT processor

Inputs 12 bits
Qutputs 9 bits
Internal wordlength 16 bits
Device Xilinx XC2V1000 FG256-4
No. of slice 1580
Special features 1l Block RAM
Clock rates 100 MHz
Throughput 80 Mpixels/sec
Block size 8% 8

There have been many FPGA DCT/IDCT implementations reported in the litera-
ture. The comparison of different implementations may not be as realistic as one may
desire due to the different technology adopted in different designs. Also. since in some
cases, not all specifications of a specific implementation are available from the reported
literature, the task of comparison becomes even more difficult. Thus, only the designs with
the similar implementation approach as ours are chosen for comparison. The specifica-
tions of several recent high-performance DCT/IDCT FPGA implementations. which all
employ the Xilinx FPGA, are summarized in Table 5.2. All the designs use row-column
decomposition approach. Chaudhary's IDCT processor [6] is based on the distributed
arithmetic and it is a highly parallel structure. Data corresponding to 64 pixels are pro-
cessed at a time. It has the highest throughput but requires the largest area. The parallel

vector multiplier is adopted in the DCT/IDCT processor of CSELT [7]. This design pro-

78



Chapter 5. Implementation

cesses 8 pixels at a time and is implemented on the fastest family of Xilinx FPGA. The bit-
serial multiplier based DCT/IDCT core of XENTEC [27] uses the smallest resource of the
FPGA. However, its operation speed is relatively low. Comparing our design with these
other designs, it can be seen from Table 5.3 that by taking into account both the area and

the speed, the proposed design provides a better performance.

Table 5.3 Comparison with dedicated designs

Operation
Designs Functions FPGA type Sftr;::: speed (g{hr&iﬂ}s:é )
(MHz) P
Chaudhary IDCT Xilinx XCV600 6140 55.6 271.36
[6] BG560-5
CSELT [7] DCT/ Xilinx Virtex 1802 78 78
IDCT V200-6
XENTEC DCT/ Xilinx Virtex 1140 32 28
[27] IDCT V100-6
Proposed IDCT Xilinx Virtex2 1580 100 80
design XC2V1000
FP256-4
5.4 Summary

This chapter has started with a discussion on the issues concerning the implemen-
tation of the proposed 2-D IDCT processor, including a simulation on the compliance of
the IEEE 1180-1990 standard and an FPGA implementation. An exact-bit model of the
processor required by the IEEE standard which is especially defined for the IDCT accu-
racy by the CCITT has been developed in C language. The simulation results have shown

79



Chapter 5. Implementation

that the accuracy of the proposed 2-D IDCT processor meets the requirement of the stan-
dard. The proposed design has also been implemented and tested on a Xilinx XC2V 1000
FP256-4. In order to validate the FPGA implementation of the processor, a built-in test-
bench, which is downloaded to the same FPGA chip as the designed IDCT processor, has
been developed and implemented. The implementation and test results have shown that
considering the area and speed together, the proposed design provides a better perfor-

mance than other comparable designs and FPGA implementations found in the literature.

80



Chapter 6

Conclusion

6.1 Concluding Remarks

In this thesis, a novel algorithm for the computation of the 1-D inverse discrete
cosine transform (IDCT) using the distributed arithmetic (DA) and the CORDIC algo-
rithm, and an FPGA implementation of a 2-D IDCT processor that employs the proposed

algorithm have been presented.

Two of the existing schemes, the DA based DCT/IDCT algorithm and the
CORDIC based DCT/IDCT algorithm, have constituted the basis of the study carried out
in this thesis. The former is the DA-based method in which the IDCT computation has
been implemented using ROM accumulators (RAC) by pre-computing the intermediate
results of IDCT and storing them in lookup tables. However, the size of the ROMs used in
each RAC is an exponential function of the size of the image block. Thus, the overall
speed of the DA-based IDCT implementation could be limited by the access time of the
ROM s. In the latter scheme, a high speed IDCT implementation has been proposed using
CORDIC rotators, each realized by a structure comprising a number of stages. In this

approach, the use of a deep pipeline structure needed for the implementation of the

81



Chapter 6. Conclusion

CORDIC rotators makes it require a large silicon area. The proposed method of develop-
ing and implementing a scheme for the IDCT computation has been an attempt to reduce
the large access time of the ROMs as well to decrease the area requirement by bringing

together the distributed arithmetic and the CORDIC approach within the same scheme.

With a view of achieving the above objective, a 1-D IDCT core comprsing DA-
based CORDIC rotators and butterfly adders are designed. In the proposed design, the
complexity of each CORDIC rotator has been made independent of the size of the image
block. The rotators have been implemented by ROM accumulators based on the distrib-
uted arithmetic. The intermediate results of the rotation operation are stored in lookup
tables and accumulated in each clock cycle. Thus, no deep pipeline structure is needed. In
contrast to the conventional DA-based approach, in which the data from each pixel of a
row of the image block are needed to access the ROM, in the proposed design, each rotator
needs data only from two pixels to access the ROM. Therefore, ROMs with a size of only
four words are needed in each rotator. As a consequence, the ROM access time is no
longer a dominating factor for the speed of the proposed scheme. Furthermore, the pro-
posed design has been modified to process two bits of a pixel at a time by taking advantage
of the requirement of only small-sized ROMs. Thus, an architecture for the IDCT compu-
tation to double the processing speed and yet to require an area which is smaller than that

in the conventional DA-based approach has been achieved.

Based on the 1-D IDCT core, a hardware architecture for a 2-D IDCT processor
has been designed. The processor consisting of two 1-D IDCT cores, a transpose memory
and a control logic block computes the 2-D IDCT by using a row-column decomposition

82



Chapter 6. Conclusion

approach. In order to achieve a good compromise between the performance and the hard-
ware complexity of the processor, an implementation scheme using a digit-serial bit-level
architecture employing the redundant number system and an on-line structure has been

developed.

In terms of the area, two advantages have been achieved by such an architecture.
First, no additional hardware for parallel to serial conversion, as needed in the bit-parallel
architecture, is required here. Second, since each adder in the butterfly adder array inside
the IDCT core has been implemented by a one-digit on-line adder, unlike the bit-parallel

adder, the size of the butterfly adder array is independent of the internal wordlength.

In terms of the speed, since the digit-serial architecture processes multiple bits
each clock cycle, a higher throughput has been achieved compared with the design of the
bit-serial architecture. By using the redundant number system, the carry propagation delay
of the adders used in the IDCT core has been limited to a few bit positions with almost no
hardware increment. Thus, a high-speed operation has been achieved in the proposed
design . Furthermore, the on-line algorithm makes it possible to pass on part of the results
from the accumulator of a rotator to the butterfly adder array before completing the accu-
mulation operation. Thus, the accumulators can be directly connected to the subsequent
adder array without requiring an in-between buffer that carries out the operation of re-seri-

alization.

In order to verify the compliance of the proposed design of the 2-D 8 x 8 IDCT

processor with the IEEE 1180-1990 standard, which is a dedicated standard for the accu-

83



Chapter 6. Conclusion

racy requirement of the implementation of an 8 x 8 IDCT, an exact-bit model of the IDCT
processor has been developed in C language and simulated based on the scheme provided
by the standard. The simulation results have shown that the accuracy specifications of the

proposed design meets the requirement of the standard.

The 2-D 8 x 8 IDCT processor has been implemented and tested on a Xilinx Vir-
tex XC2V 1000 FG256-4 FPGA board. A testbench, which is implemented in the same
FPGA as the designed IDCT processor, was developed and used to validate the proposed
design. By comparing the results of the proposed design with those of the recent ones
using similar technology, it has been shown that the design and the implementation under-
taken in this thesis provides a better performance in terms of area and speed considered

together.

6.2 Suggestions for Future Investigation

It has been shown that the implementation of the IDCT computation using the DA-
based CORDIC algorithm provides a better performance than the designs using the con-
ventional approaches employing the distributed arithmetic or the CORDIC algorithm indi-
vidually. A study on the implementation of a processor combining the functions of both

DCT and IDCT using the proposed scheme could be undertaken as a future study.

It is known that the trigonometric functions of some orthogonal transforms, such

as discrete sine transform (DST), have also the symmetry property. Consequently, the pro-

84



Chapter 6. Conclusion

posed algorithm can be modified for the implementation of such other orthogonal trans-

forms.

Finally, it may be worthwhile to undertake a study for the ASIC design and imple-
mentation of the proposed 2-D IDCT processor, in view of the significance of DCT and

IDCT functions in audio, video and communication applications.



References

[1] A. Avizienis, “Signed digit number representation for fast parallel arithmetic,” /RE

Trans. on Electronic Computers, vol. EC-10, pp.389-400, Sept. 1961

[2] N. Ahmed, et al., “Discrete Cosine Transform”, [EEE Trans. on Computer, Vol, C-23,

pp.90-93, 1974.

[3] V. Bhaskaran, K. Konstantinides, /mage and Video Compression Standards: Algo-

rithms and Architectures. Kluwer Academic Pub., 1995.

(4] W. H. Chen, C. H. Smith, and S.C. Fralick., A fast computational algorithm for the

discrete cosine transform”, [EEE Trans. on Communications, September 1977.

{51 N. L Cho, S. U. LeeJ. Duprat, “Fast algorithm and implementation of 2-D disrete

cosine transform”, /[EEE Trans. Circuits Syst.. Vol. CAS-38, pp.297-305, Mar. 1991.

[6] K. Chaudhary, H. Verma and S. Nag, "“An Inverse Discrete Cosine Transfo-m (IDCT)
[mplementation in Virtex for MPEG Video Applications,” Xilinx Application Note,

1999.

[7] “FIDCT Forward/Inverse Discrete Cosine Transform,” CSELT S.p.A’s product specifi-

cation, Sept. 2000.

[8] T. Chang, C. Kung, C. Jen, “A Simple Processor Core Design for DCT/IDCT", [EEE

Trans. Circuits Syst. Video Tech, Vol. 10, No. 3, pp.439-447, April. 2000

86



[9] P. B. Denyer and D. Renshaw, VLSI Signal Processing: A Bit-Serial Approach, Addi-

son-Wesley, 1986.

[10] Milos D. Ercegovac and thomas Lang, “On-Line Arithmetic, A Design Methodology

(11]

[12]

(13]

and Applications in Digital Signal Processing”, VLSI Signal Processing, 111, 1988.

C.-Y.Hung and P. Landman, “Compact inverse discrete cosine transform circuit for
MPEG video decoding,” in Proc. I[EEE Workshop Signal Processing Systems, 1997,

pp. 364-373.

R. I. Hartley and K. K. Parhi, Digit-Serial Computation. Kluwer, 1995.

“[EEE Standard Specifications for the Implementation of 8 x 8 Inverse Discrete

Cosine Transform”, IEEE Standard [180-1990, March, 1991.

[14] S.C. Knowles, J. G. McWhirter, R. F. Woods, and J. V. McCanny, “Bit-level systolic

(15]

[16]

architectures for high performance IIR filtering,” Journal of VLSI signal Processing.

pp.207-212, 1980.

Y. Katayama, T. Kitsuki, and Y, Ooi. “A block processing unit in a single-chip
MPEG-2 video encoder LSI,” in Proc. [EEE Workshop Signal Processing Svstems,

1997, pp.459-468.

Weiping Li, “A New Algorithm to Compute the DCT and its Inverse”, I[EEE Trans.

on Signal Processing, Vol. 39, No. 6, pp.1305-1313, June 1991.

87



(17]

(18]

(19]

(20]

[21]

(23]

Yung-Pin Lee, T. Chen, L. Chen, M. Chen, C. Ku, “A Cost-Effective Architecture
for 8 x 8 Two-Dimensional DCT/IDCT Using Direct Method”, IEEE Trans. Circuits

Svst. video Tech., Vol. 7, No. 3, June 1997

A. Madisetti, A. N. Willson, “A 100 MHz 2-D 8 x 8 DCT/IDCT Processor for

HDTV Applications,” I[EEE Trans. on Circuits and Svstems for Video Technology,

Vol. 5, No.2, pp.158-164, April. 1995.

L. Montalvo and A. Guyot, “Combinational digit-set converters for hybrid radix-4
arithmetic,” in Proc. of IEEE International Conference on Computer Design

ICCD’94, pp.498-503, Oct. 1994.

A. Peled and B. Liu, “A New Hardware Realization of Digital Filters”, IEEE Acous-

tics Speech and Signal Processing, ASSP-22, December 1974.

Keshab K. Parhi, VLSI digital signal processing systems: design and implementa-

tion, Wiley, 1999.

R. Rambaldi, A. Ugazzoni, and R. Guerrieri, “A 3.5 uW 1.1V gate array 8x8 IDCT

processor for video-telephony,” Proc. IEEE ICASSP, 1998, vol. 5, pp. 2993-2996.

D. Slawecki and W. Lee, “DCT/IDCT Processor Design for High Data Rate Image
Coding”, [EEE Tran. on Circuits and Svstems for Video Tech., vol. 2, No. 2, pp. 135-

146, June 1992.

[24] M. J. S. Smith, Application-Specific Integrated Circuits, Addison Wesley, 1997.

88



[25] J.E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans. on

Electronic Computers, Vol. EC-8, No.3, pp.330-334, Sept. 1959.

[26] Stanley A. White, “Applications of distributed arithmetic to digital signal processing:

A tutorial review”, [IEEE ASSP Magaczine, July 1989.

[27] “X_DCT_IDCT Forward and Inverse Discrete Cosine Transform,” Xentec’s product

specification, Feb. 2000.

[28] Logicore product specification, Xilinx Inc., 2000.

[29] T. Xanthopoulos, A. Chandrakasan, “A low-power IDCT macrocell for MPEG2
MP@ML exploiting data distribution propertier for minimal activity,” in Proc, Symp.

VLSI Circuits, 1998, pp. 38-39

[30] Y. Yang, C. Wang, M.O. Ahmad. M.N.S. Swamy, “An On-Line CORDIC Based 2-D
IDCT using Distributed Arithmetic,” Proc. Sixth International Svmposium on Signal

Processing and its Applications, Kuala-Lumpur, Malaysia, Aug. 2001.

[31] Y. Yang, C. Wang, M.O. Ahmad, M.N.S. Swamy, “An On-Line Radix-4 CORDIC 2-
D IDCT Core,” The Ist I[EEE International Svimposium on Signal Processing and

Information Technology, pp. 56-59, Cairo, Egypt, Dec. 2001.

89



[32] Y. Yang, C. Wang, M.O. Ahmad, M.N.S. Swamy, “An FPGA Implementation of an
On-Line Radix-4 CORDIC 2-D IDCT Core,” Proc. IEEE International Symposium

on Circuits and Systems, Scottsdale, Arizona, May 2002.

[33] F. Zhou and P. Kornerup, “High Speed DCT Using a pipelined CORDIC Algorithm.”

Proceedings of the 12th IEEE Svmposium on Computer Arithmetic, Bath, UK, July,

1995, pp.180-187.

90





