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ABSTRACT

Optimal Lot Streaming and Scheduling of Multiple Jobs in
Two-Machine No-Wait Flow Shops

Ming Li

In this thesis, a heuristic method is developed to optimize the sublots sizes of a
number of jobs and to sequence these jobs simultaneously in two-machine no-wait flow
shops. The objective is to minimize the production cost.

A no-wait manufacturing system is a production environment in which each job
must be processed from start to finish, without any interruption either on or between
machines. Such situations can be found in many manufacturing systems as in iron and
steel production as well as in the process of anodizing products and components. In a
manufacturing flow shop, there normally are several jobs with multiple identical items to
be processed by a set of machines. Lot streaming is to create sublots so that machine
operations can be overlapped. This thesis work devotes to the development of a heuristic
method to find optimal discrete-sized sublots for each job and sequence multiple jobs
efficiently in a two-machine no-wait flow shop.

Simulated annealing based heuristic search is used to search for a global optimal
solution of the problem. The heuristic method is extended to solve three-machine flow
shop problems. The efficiency and the effectiveness of this method are illustrated using

several numerical examples.
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Chapter 1

Introduction

1.1 Background

1.1.1 Production System and Production

A production system takes inputs and converts them into outputs. Here, inputs are raw
materials, personnel, machines, buildings, technology, cash, information, and other
resources; outputs are products and services. This conversion process is the heart of what

is called production and is the predominant activity of a production system.

1.1.2 Different Types of Production System

There are many different viewpoints one may take in looking at a production
system. Perhaps the most obvious characteristics of a production facility are the volume
of items produced and the variety of different products made using the same resources. In
this sense, according to Anderson (1994), production systems can be categorized into
three types, i.e., mass production, batch production and one-oft production.

Mass production involves producing a small number of different products in great
quantity. An example might be the production of chocolate bars, where a dedicated
production line will continue to produce the same product perhaps for years at a time.
One characteristic of a mass production process is that operations are linked together in a

line: when one operation is finished on a product it moves directly to the next operation.



Sometimes the product in question is a liquid or powder, for example, in the manufacture
of a chemical fertilizer.

Batch production is used when there is a greater variety of products being
produced, with correspondingly smaller volumes. In this situation it is usual to have
machinery and equipment which can be used to carry out operations on a number of
different products. A single machine will carry out an operation on a whole batch of
items of one kind and then be set up to carry out a similar operation on a whole batch of
items of another kind. An example of this type of production occurs in the manufacture of
components for the aerospace industry. The number of items in a batch may depend
partly on the expense associated with setting up machinery to process different parts, and
partly on the size of individual customer orders.

One-off production is used when individual customers each requires an individual
product, which is different from any product the company has made in the recent past.
This implies low volumes but the greatest possible variety. With very large and
complicated items the manufacturing process may be project based. This indicates that
the manufacturing process is sufficiently complex, and over a long enough time-scale,
that the major difficulties are associated with planning how the various different
operations and activities will fit together. The most obvious examples of this type of
manufacture occur in civil engineering projects.

Finally, it should be pointed out that large numbers of manufacturing facilities fail
to fit neatly into any category. In reality, it can often be found that a manufacturing

facility is a hybrid of more than one production style.

1~



Since scheduling problems are often encountered in a batch production system, we

assume that in this research batch production is the background of our study.

1.1.3 Production Planning and Scheduling

Now we know that production can be viewed as a transformation process in which
raw materials are transformed into end products. However, these transformations are not
possible without production resources and their planning.

Crucial to controlling production operations is the detailed scheduling of various
aspects of the production function. We may view the production function in a company
as a hierarchical process. First, the firm must forecast demand for aggregate sales over
some predetermined planning horizon. These forecasts provide the input for determining
the aggregate production and workforce levels for the planning horizon. The aggregate
production plan then must be translated into the master production schedule (MPS). The
MPS results in specific production goals by product and time period.

Materials requirements planning (MRP) is one method for meeting specific
production goals of finished-goods inventory generated by the MPS. The MRP system
“explodes™ the production levels one obtains from the MPS analysis back in time to
obtain production targets at each level of assembly by time period. The result of the MRP
analysis is specific planned order releases for final products, subassemblies, and
components.

Finally, the planned order relcases must be translated into a set of tasks and the due
dates associated with those tasks. This detailed planning results in the shop floor
schedule. Because the MRP or other lot scheduling system usually recommends revisions

in the planned order releases, shop floor schedules change frequently.



Shop floor control means scheduling personnel and equipment in a work center to
meet the due dates for a collection of jobs. Often, jobs must be processed through the
machines in the work center in a unique order or sequence.

Both jobs and machines are treated as indivisible. Jobs must wait, or queue up, for
processing when machines are busy. This is referred to as discrete processing. Production
scheduling in continuous-process industries, such as sugar or oil refining, has a very
different character.

Although there are many problems associated with operations scheduling, our
concemn in this thesis will be job sequencing. Given a collection of jobs remaining to be
processed on a collection of machines, the problem is how to sequence these jobs to
optimize some specified criterion. Properly choosing the sequencing rule can affect

dramatic improvements in the throughput of the job shop.

1.1.4 Typical Production Scheduling Objectives

One of the difficulties of scheduling is that many objectives are present. More

unfortunately they are often conflicting. The goals of different parts of the firm are not

always the same. Some of the most common objectives are

e Meet due dates.

¢ Minimize work-in-process (WIP) inventory.

e Minimize the average flow time through the system.

¢ Provide for high machine/worker time utilization. (Minimize machine/worker idle
time.)

e Provide for accurate job status information.



e Reduce setup times.

e Minimize production and worker costs.

1.1.5 Job Shop Scheduling and Flow Shop Scheduling

Normally, in a shop floor, there are a number of machines. Each of them is able to
finish a unique operation. It is a common scene that, in line with the last level production
planning, there are a number of jobs that have to be processed on these machines.
Limited by the capacity of each machine, these jobs cannot be processed on these
machines at the same time. To achieve the goal as optimal or approximately optimal as
possible, we have to schedule these jobs through these machines under some criteria. The
procedure of making the decisions about scheduling jobs through machines is called shop

floor control, sometimes is called job shop scheduling.

1.1.5.1 Some Important Characteristics of Job Shop Scheduling Problems

In Nahmias (2001). significant issues for determining optimal or approximately
optimal scheduling rules are the following:

The job arrival pattern: We often view the job shop problem as a static one in
which we take a “snapshot™ of the system at a point in time and proceed to solve the
problem based on the value of the current state. Although many of the solution
algorithms we consider view the problems as being static, most practical shop scheduling
problems are dynamic in nature.

Number and variety of machines in the shop: A particular job shop may have
unique features that could make implementing a solution obtained from a scheduling

algorithm difficult. For example, it is generally assumed that all machines of a given type



are identical. This is not always the case, however. The throughput rate of a particular
machine could depend upon a variety of factors, such as the condition of the machine or
the skill of the operator. Depending on the layout of the shop and the nature of the jobs,
constraints might exist that would make solutions obtained from an *“all purpose”
procedure infeasible.

Particular flow patterns: The solutions obtained tfrom the scheduling algorithms
require that jobs be completed in a fixed order. Each sequence of jobs through machines
results in a pattern of flow of materials through the system.

Evaluation of alternative rules: The choice of objective will determine the
suitability and effectiveness of a sequencing rule. It is common for more than one
objective to be important, so that it may be impossible to determine a unique optimal

rule.

1.1.5.2 Terminologies on Job Shop Scheduling

Flow shop. In a flow shop each of the n jobs must be processed through the m
machines in the same order, and each job is processed exactly once on each machine.
This is what we typically think of as an assembly line.

Job shep. A general job shop differs from a flow shop in that not all jobs are
assumed to require exactly m operations, and some jobs may require multiple operations
on a single machine. Furthermore, in a job shop each job may have a different required
sequencing of operations. General job shop problems are extremely complex. All-purpose
solution algorithms for solving general job shop problems do not exist.

Sequential processing and parallel processing. Most of the problems that we will

consider involve sequential processing. This means that the m machines are



distinguishable, and different operations are performed by different machines. In parallel
processing we assume that the machines are identical, and any job can be processed on
any machine.

Flow time. The flow time of job i is the time that elapses from the initiation of the
first job on the first machine to the completion of job i. Equivalently, it is the amount of
time job i spends in the system.

Makespan. The makespan is the flow time of the job that is completed last. It is
also the time required to complete all n jobs. Minimizing the makespan is a common
objective in multiple-machine sequencing problems.

Tardiness and lateness. Tardiness is the positive difference between the
completion time and the due date of a job. A tardy job is one that is completed after its
due date. Lateness refers to the difference between the job completion time and its due
date, and differs from tardiness in that lateness can be either positive or negative.
Minimizing the average tardiness and the maximum tardiness is also a common

scheduling objective.

1.1.5.3 Scheduling Jobs on Single Machine

Assume that n jobs are to be processed through one machine. As there is only one
machine, every schedule can be represented by a permutation of the integers 1, 2, .. ., n.
There are exactly n! different permutation schedules.
7> Some Specific Sequencing Rules

SPT (shortest processing time). Jobs are sequenced in increasing order of their
processing times. The job with the shortest processing time is first, the job with the next

shortest processing time is second, and so on.



EDD (earliest due date). Jobs are sequenced in increasing order of their due dates.
The job with the earliest due date is first, the job with the next earliest due date is second,
and so on.

CR (critical ratio). Critical ratio scheduling requires forming the ratio of the
processing time of the job, divided by the remaining time until the due date, and
scheduling the job with the largest ratio next.

» A Comparison Among These Specific Sequencing Rules

For sequencing jobs on a single machine, it is shown that SPT optimized several
objectives, including mean flow time. However, SPT sequencing could be problematic.
Long jobs would be constantly pushed to the rear of the job queue and might never be
processed. For that reason, pure SPT scheduling is rarely used in practice. CR attempts to
balance the importance placed on processing time and the remaining time until the due
date. However, there is little evidence to suggest that critical ratio scheduling pertorms
well relative to the common optimization criteria such as mean flow time. As one would
expect, EDD scheduling performs best when the goal is to minimize the maximum

tardiness.

1.1.5.4 Scheduling Jobs on Multi-Stage Machines

Assume that n jobs are to be processed through m machines. The number of
possible schedules is staggering, even for moderate values of both n and m. For each
machine, there are n! different orderings of the jobs. If the jobs may be processed on the
machines in any order, it follows that there are a total of (n/)™ possible schedules.
Obviously, according to French (1982), it is a Non-deterministic Polynomial (NP) hard

problem to find an optimal sequence for this situation.



After identifying the difference between the job shop and the flow shop from their
definitions, we can understand that scheduling problems concerned with a job shop are
much more difficult than those in a flow shop. To make a scheduling problem tractable,

we take a two-machine tflow shop as the production environment in this study.

1.2 Important Considerations in Manufacturing Flow Shop
1.2.1 Setup, Batching, and Lot Streaming

In some manufacturing systems significant setups are required to change
production from one type of products to another. Normally, setups depend on the
technological characteristics of the machine. A setup may for instance involve the
preparation, cleaning or heating of a machine before production can start; after the sctup,
the machine is in a certain setup state and a certain product can be produced. Normally,
setups incur setup times and setup costs. They consume the limited capacity of the
machine without contributing to production. So, we should do the best of our ability to
avoid or reduce setups.

One obvious approach is to omit a setup if two groups of same product are
produced in one run, i.e., both groups of product are arranged in one production batch.
Like this, a production strategy called batching is devised. This can explain, from an
economical viewpoint, why many products are manufactured in batches.

However, people noticed that batching strategy also brought a shortcoming —
extending the production cycle time. In multi-stage manufacturing systems, such as flow
shops, open shops or job shops, if people insist on the batching policy at each stage, a
production lot can be transferred to the next machine only when it is completed on the

current machine. Apparently, a significant part of time of some items completed on a



machine is wasted on waiting for other items to be processed on the same machine.
Naturally, people devised another production strategy. In this strategy, some items (a
sublot) in a production lot can be transferred to the next machine and processed, while
other items from the same lot, but of a different sublot, are processed on the current
machine. We refer to this process of allowing overlaps through the creation of sublots as
lot streaming. The creation of sublots permits the overlapping of different operations on

the same production lot and may theretore reduce throughput time.

1.2.2 Terminologies on Lot Streaming

Lot streaming. Lot streaming is the process of splitting a production lot that
consists of many identical items into sublots, and then scheduling those sublots in
overlapping fashion, in order to accelerate the progress of an order in production.

Discrete version and continuous version. According to Trietsch and Baker
(1993), discrete version of lot streaming means that there are discrete numbers of units in
each sublot, i.e., the value of each sublot size always is an integer. and continuous
version of lot streaming means that sublot sizes can be fractional.

Variable sublots, consistent sublots and equal sublots. According to Trietsch
and Baker (1993), vanable sublots means that the sublot size between machines ¢ and (i
+1) may differ from that between machines (i+1) and (i+2), i.e., sublot sizes may change
between machines; and consistent sublots means sublot sizes keep same between
machines. A special case of consistent sublots is that all sublot sizes are equal, i.e., equal
sublots.

Preemption and nonpreemtion. In this context, preemption means the sublots of a

job are mingled with those of other jobs when they are processed on machines; on the

10



contrary, nonpreemtion means the sublots of a job are processed successively on

machines without mingling with sublots of other jobs.

1.2.3 Johnson’s Algorithm

Assume that n products must be processed through two machines and that each
product must be processed in the order machine 1 then machine 2. Furthermore, assume
that the optimization criterion is to minimize the makespan. The problem of scheduling
on two machines turns out to have a relatively simple solution.

A very efficient algorithm for solving the two-machine problem was discovered by
Johnson (1954). Following Johnson's notation, denote the machines by A and B. It is
assumed that the products must be processed first on machine A and then on machine B.
suppose that products are labeled i, for 1 < < n, and define

A, = processing time of product / on machine A.
B, = processing time of product / on machine B.

Johnson's result is that the following rule is optimal for determining an order in
which to process the products on the two machines.

Rule: product i precedes product i + 1 if min (A;, B,.;) < min (A;,1, B)).

An easy way to implement this rule is as follows:

e List the values of A; and B; in two columns.

e Find the smallest remaining element in the tow columns. If it appears in column

A, then schedule that product next. If it appears in column B, then schedule that
product last.

¢ Cross off the products as they are scheduled. Stop when all products have been

scheduled.

11



Now, let us see an illustrative example of exerting Johnson’s algorithm. There are
eight products to be scheduled on two machines. The processing time of each product is
given in Table 1.1.

Table 1.1 The Illustrative Example of Exerting Johnson’s Algorithm

Job 1 2 3 4 5 6 7 8
A 52 1 7 6 3 7 5
B 2l 6 2 5 6 7 2 1

According to Johnson’s algorithm, we obtain the optimal sequence:
3-2-6-5-4-7-1-8
The value of the makespan is 37. The Gantt chart for the optimal scheduling is pictured

as Figure 1.1.

.\ll"‘l[f’ISl"l’I‘[“]
T TS T [ 8

! 37

Figure 1.1  Gantt Chart By Johnson’s Method

1.2.4 Interrelation Between Lot Streaming and Scheduling

It is well known that, when we deal with multiple single products, the length of the
whole duration is concerned with not only the processing time of each of them but also
the sequence of these products. For example, in a multi-product scheduling problem in a
two-machine flow shop, any sequence which differs from the one obtained by using

Johnson’s method cannot be optimum. Similarly, when multiple single products are



replaced by multiple lots (each lot comprises many identical items) and lot streaming is
allowed for each lot, sequence still is a significant factor that affects the length of
makespan. In addition, in this situation, any change on the size of sublots to any product
may result in change on its ranking in a sequence. Thus, when the decomposition of the
production lot is allowed, a solution procedure requires the creation of sublots through lot
streaming, as well as the scheduling of sublots. Actually, in an environment of computer
integrated manufacturing (CIM), lot streaming and scheduling decisions have to be taken
concurrently, i.e., they are integrated and computer-controlled.

From the discussion above, it should be clear that lot streaming and scheduling

decisions are strongly interrelated.

1.2.5 Inventories

When we consider inventories in the context of manufacturing, there is a natural
classification scheme suggested by the value added from manufacturing or processing.

Raw materials. These are the resources required in the production or processing
activity of the firm.

Components. Components correspond to items that have not vet reached
completion in the production process. Components are sometimes referred to as
subassemblies.

Work-in-process. Work-In-Process (WIP) is inventory either waiting in the system
for processing or being processed. Work-in-process inventories include component
inventories and may include some raw materials inventories as well. The level of WIP
inventory is often used as a measure of the efficiency of a production scheduling system.

The Just-In-Time (JIT) approach is aimed at reducing WIP to a minimum.

13



Finished goods. Also known as end items, these are the final products of the
production process. During production, value is added to the inventory at each level of

the manufacturing operation, culmination with finished goods.

1.2.6 Material Handling

In a manufacturing system, accompanying the procedure of transformation, all raw
materials, components, and final products have to be moved from one place to another.
This function is carried by a material handling system.

A material handling system is the entire network of transportation that receives
matenals, stores materials in inventories, moves them between processing points within
and between buildings, and finally deposits the finished products into vehicles that will
deliver them to customers. Popular material handling equipment includes: conveyors,
cranes, elevators, forklifts, handcarts, and pallets. Automated guided vehicles (AGVs)
can be found in FMS systems.

Since the subject in this study is job scheduling, we confine our attention on the
material handling activities in the area of shop floor, i.c.. thec movement between

machines.

1.2.7 Related Production Costs
7> Inventory Cost

All inventory costs can be placed into one of three categories: holding cost, order
cost, or penalty cost. Here, as a result of converging on WIP inventory, only holding cost

is considered.

14



Holding cost. Holding costs are the costs that accrue as a result of having capital
tied up in inventory. Holding costs can be assumed to be linear to the number of units
being held for a particular time period.

» Material Handling Cost

In this context, material handling cost actually comprises two components: 1)
material handler cost; 2) pallet and fixture cost.

Material handler cost. According to Langevin (1999), material handler costs are
expenditures on operating and maintaining material handlers, e.g., AGVs, forklifts, etc.
Matenal handlers are used to transfer parts among machines. Generally, material handler
cost is a function of its running distance.

Pallet and fixture cost. According to Langevin (1999). this cost evaluates the
expenses associated with the preparation and utilization of the pallets and fixtures.
Normally, parts are positioned on pallets with fixtures for pick-up and drop-off. Similar
to material handler cost, pallet and fixture cost is also a function of the distance traveled.

From now on, in this context, the total cost indicates the sum of holding cost and

material handling cost.

1.2.8 No-Wait and Blocking Process

In Hall and Sriskandarajah (1996), the authors make a survey about scheduling
problems with no-wait and blocking in process. A no-wait scheduling problem occurs in
a production environment in which a job must be processed from start to finish, without
any interruption either on or between machines. Blocking scheduling problems arise in
serial manufacturing processes where no intermediate buffer storage is available. In such

situations a job that has completed processing on a machine may remain there until a
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down-stream machine becomes available, but this prevents another job from being
processed there.

The main reason for the occurrence of a no-wait or blocking production
environment lies in the production technology itself. In some processes, for example, the
temperature or other characteristics of the material require that each operation follow the
previous one immediately.

Such situations arise in the production of steel, where molten steel undergoes a
series of operations such as molding into ingots, unmolding, reheating, soaking, and
preliminary rolling. Similarly, in the plastic molding production industries, a series of
processes must follow one another immediately to prevent degradation. Further examples
occur in the chemical and pharmaceutical industries. For similar reasons, the anodizing of
metal products such as pipes, trim, and truck grilles has to be performed as a no-wait
process. Moderm manufacturing environments such as JIT, FMS, and robotic cells
provide a highly coordinated manufacturing process which can trequently be modeled as
a no-wait scheduling problem. Indeed, traditional scheduling models fail to address the
need to meet demand requirements while simultaneously minimizing inventory. Finally, a
no-wait environment may occur in service industries, where the customer has a
prohibitively high cost of waiting in process.

The other reasons of a no-wait or blocking production environment is a lack of
storage (or buffer) capacity between intermediate machines or work stations. In no-wait
scheduling, a job must leave a machine immediately after processing is completed. The
less restrictive case known as “blocking” permits a job to remain on a machine after

processing if the next machine is busy, but no other job can be processed on that machine
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at that time. In-line robotic cells, in which robots are located along an in-line conveyor or
other transport system, as used for spot-welding and assembling car bodies, may present
a no-wait scheduling environment. Blocking may occur in JIT production lines
maintaining a fixed limit on in-process inventory. A scheduling problem with blocking
may be thought of as a relaxation of a similar scheduling problem with the no-wait
assumption.

On the boundary of the no-wait/blocking scheduling environment are a number of
interesting issues. For example, a flowshop problem with finite buffer capacity between
operations is a very common scheduling environment. Much can be learned about this
problem by studying the blocking environment, which is an extreme case of the finite
capacity problem. As another example, the study of the blocking and no-wait
environment has relevance to JIT systems and robotic cells. Furthermore, there are many
industrial settings (for example, the steel industry) where the processing time of an
operation is an increasing function of the wait because of material cooling and hardening.
The no-wait scheduling environment is equivalent to a situation where this function

increases very rapidly.

1.3 Different Approaches For Solving Flow Shop Scheduling Problems

Different methods have been developed and applied to solve various scheduling
problems. Some of them are briefly discussed below.
~ Optimization

In general, an ideal optimization approach means after a production system is
described correctly and precisely by a mathematical model, operations research

techniques are used and the optimality of the obtained solution is guaranteed.
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However, in reality, this approach often encounters great difficulties. Those
difficulties can be summarized below.
e It is difficult to formulate some manufacturing problems as optimization
models.
e The solution to the optimization model, if it exists, may be difficult to obtain in
a reasonable computation time, i.e., the time complexity of the problem is NP-
hard.
¢ The solution to the model, if obtained, has to be interpreted before
implementation. It may be difficult to use on-line.
~ Heuristics
Heuristic techniques are efficient and practical methods that can be used to find
good (but not necessarily optimal) solutions to a wide variety of difficult combinatorial
problems. Such techniques are employed to find acceptable solutions to problems
efficiently, while otherwise the optimal algorithms for finding optimal solutions take far
too much computation time to be usable in practice.
~ Simulation
Real-world scheduling problems are often too complex to be amenable to
mathematical analysis. Computer-based simulation is a valuable tool for comparing
various scheduling strategies and scenarios. A computer simulation is a computer
program that accurately reflects a real-world situation. As with a mathematical model,
variables are defined to represent real quantities and expressions developed to describe

the relations among these variables. Although both deterministic and stochastic problems
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are amenable to simulation, simulation has been applied more in problems with some

element of randomness.

1.4 Research In This Thesis

In the area of manufacturing management, it is important that to make production
plans properly so as to keep production costs at a lower level and to deliver products in
time. In this research, we study how to sequence multiple products in a two-machine no-

wait flow shop in order to minimize the sum of holding cost and material handling cost.

1.4.1 Motivation

Along with the development of sophisticated manufacturing facilities and the
progress of advanced production control approaches, people now take more care of
holding cost and material handling cost than ever. It is well known that holding cost is a
positive function of duration in which products have to be treated according to the
production plan. Material handling cost is a positive function of the frequency of
transferring products between machines. From the concept of batching and lot streaming,
we can learn that two factors, duration and frequency, are conflicting in contributing to
the production cost. In other words, to reduce holding cost would increase material
handling cost; and vice versa.

In this research, we study how to partition a production lot into several sublots and
sequencing all production lots simultaneously in order to minimize the sum of holding
cost and material handling cost in a two-stage no-wait flow shop.

In manufacturing systems, a machine may represent a workstation, a line or a

whole factory. If we consider a single facility, it is a single-machine case, otherwise it is a
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multi-machine case. A machine processes or produces different types of products. A
production lot of each product is referred to as a job. Here, the word job has twofold
implications. First, a job represents a type of product; second, a job is an aggregate of

several pieces of identical units, called items. Setups arc required in between these jobs.

1.4.2 Objectives and Main Contributions

For survival and development, manufacturers always do their best to keep
production costs as low as possible. On the other hand, market demands for
manufacturing quality, flexibility and fast product delivery are getting stronger. Job shop
scheduling plays significant roles to meet this demand.

This thesis focuses on a static, deterministic, multi-job, two-machine tlow shop
where the objective is to minimize the total cost while satistfying the constraint of no-
wait. While the attribute of this problem is NP-complete, a heuristic method was adopted
to solve it. We focus our attention on minimizing the production cost as well as the
makespan in a flowshop environment. In order to solve the NP-hard problem efficiently,
a search method based on simulated annealing was chosen to search for an optimal result.
Numerical examples were developed to test the effectiveness and efficiency of the

developed method.

1.4.3 Thesis Organization

Chapter 2 presents an overview of literature on scheduling problems with lot
streaming and lot streaming methods. Chapter 3 presents a formulation of the problem
studied in this research and its solution procedure. Simulated Annealing (SA) algorithm

is used to search for a global optimal solution of the problem. This is also presented in

20



Chapter 3. In Chapter 4, numerical examples are presented to illustrate the heuristic
method. In addition we take experimental analysis and some discussions concerned with
the problem. In Chapter 5, with some numerical experiments, we explore the effect of the
heunistic method used in a three-machine no-wait flow shop. In Chapter 6, we present our

conclusions and suggest directions for future work in this area.



Chapter 2

Literature Review

2.1 a/p/y Descriptor
When we discuss issues of lot streaming, there always are two or more machines in the
manufacturing system because sublots of jobs have to be transferred between machines.
If there is only one machine, transfer is meaningless. However, the number of jobs in the
manufacturing system may vary from one job to multiple jobs in different studies. In this
situation, each job contains several or many identical items. Different criteria can be used
to measure job schedules. Minimizing the maximum makespan and minimizing the total
cost are most popular optimal criteria.

To make the description to each problem more abbreviated, we adopt a three-field
descriptor a/B/y to describe each situation as shown in Table 2.1. For example. I/Fm/C,,..
stands for a problem in which there is a single job, which comprises many of the same

units, to be processed in a multi-stage flow shop. The technique of lot streaming is

allowable. The goal of the problem is to minimize the makespan.

2.2 Single-Job Lot Streaming
Apparently, it is relatively simple when there is only one job to process in a
manufacturing system. In fact, many research papers on lot streaming begin their studies

from discussing one-job lot streaming. Various analytical and numerical results from

these studies are produced.
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Table 2.1 uo/f/y Descriptor

a: number of jobs 1: single job

N: multi-job

B: number of machines and its configuration  2: two-machine
3: three-machine
m: m-machine
F: flow shop
J: job shop
O: open shop

v: problem objective Comae: minimizing makespan

TC: minimizing total cost

Szendrovits (1975) discusses a problem of //Fm/Cpy,.. A single job is processed in
a multi-stage flow shop with only one setup at each stage. The inventory system assumes
a constant and continuous demand of products. Since the output rate from production is
greater than the demand rate, equal-sized sublots are produced periodically which results
in a finished product inventory. Moreover, during the manufacturing cycle time a WIP
inventory must be carried until products are finished at the last operation. The author
develops a functional relationship between job size, manufacturing cycle time and
average WIP inventory. By minimizing total manufacturing cost, economic production
quantity (EPQ) can be calculated. Here, the total cost is the sum of the fixed cost per job
and the holding cost of the average finished product and WIP inventories. A cost
sensitivity analysis reveals the large potential savings from using the suggested EPQ
model instead of the conventional economic production lot quantity (ELQ) model in

multi-stage production systems.



Potts and Baker (1989) study a problem of I/Fm/Cp,.. The study shows that, to
obtain an optimal makespan value (i.e.,, the minimum makespan), it is sufficient to
consider sublot sizes which are the same on the second machine as they are on the first
machine and are the same on machine m as they are on machine /-1. On this basis, the
following important conclusion is drawn: When there are only two or three machines in a
flow shop, consistent sublots are sufficient to minimize the makespan. The solutions
remain valid when there is more than one job. Actually, it becomes a benchmark for
many succeeding studies.

In a two-machine system, efficient direct optimal computations can be derived
when the number of sublots is predetermined. The computations can be used to calculate
both sublot sizes and makespan. Further, improvement bounds are derived. The bounds
might be useful in determining the number of sublots.

Baker and Pyke (1990) study the same problem. i.e.. / /Fm/C . In this study, the
job is divided into only two sublots. On one hand, more sublots is better than fewer
sublots to reduce manufacturing cycle time; on the other hand, the benefits due to
increased number of sublots show diminishing marginal retumns. In fact, conclusions in
Potts and Baker (1989) show that the two-sublots solution can achieve up to 50% of the
potential benefit attainable from multiple sublots.

In Trietsch and Baker (1993), the problem of I/Fm/C,,. is studied in detail. The
authors provide an overview of the basic models and solution algorithms for the lot
streaming problem. They also provide both continuous and discrete versions of the
problem formulation. For a discrete version of the problem, it is pointed out that the

problem can be formulated as an integer programming model. However, it may be



difficult to solve. In addition, it is pointed out that the optimal makespan in the
continuous version serves as a lower bound for the optimal makespan in the discrete
version. The makespan produced by rounding the continuous solution serves as an upper
bound.

In the same paper, the authors also study 2/Fm/Cp,, problems. The two-machine
problem (i.e., m = 2) and its solution are clearly building blocks for larger lot streaming
problems. They show how to solve the continuous and discrete cases of the two-machine
problems. They then proceed to the three-machine problem (i.e., m = 3) with consistent
sublots, where they show how linear programming formulations (for the continuous
version) and integer programming formulations (for the discrete version) could be
applied to find optimal solutions.

All studies surveyed as above do not consider material handling. However, in a
real manufacturing system, material handling cost or time is often unavoidable.

On the basis of the model developed by Szendrovits (1975), Goyal (1976) further
points out that manufacturing cycle time is a function of not only the job size but also the
number of sublots. By adding fixed costs of moving sublots through all machines as a
new cost component into the original total cost, the author obtains a modified EPQ
function. Finally, the optimal sublot sizes can be found by an iterative search procedure.

Egbelu (1990) addresses a problem of I/Fm/TC. Cost factors considered in the
model are labor/machining cost, tool cost, material handling cost, and overhead cost. Two
main time consuming activities encountered in batch manufacturing are operations at the
workstations and material handling. Both activities are influenced mostly by the

machining parameters at each workstation and the material flow plan respectively. Based



on this idea, the author developed a methodology to integrate the selection of machining
rates and the number of parts to transport between workstations. This is to create an
overall production plan to minimize production costs. This procedure can be adapted to
describe any production system that uses stationary and mobile material handling system.
However, the model only considers production systems for which there is only one unit
of the material handling equipment between adjacent workstations in the product route. A
dynamic programming algorithm embedded in a univariate search algorithm is used in
seeking solutions to the model.

Egbelu (1991) studies a problem of I/Fm /Cpy,,. Differing from those production
systems discussed in above papers, a multi-stage manufacturing system discussed here is
a flexible flow shop. There are multiple, not necessarily identical, machines at each stage
of production in the system. In this paper, the machines in any given stage are assumed to
be spatially separated; thus inter-machine handling time is considered explicitly for every
pair of machines in adjacent stages. A model is proposed for planning and controlling
production in a batch manufacturing system. Here. a single job exists as equal-sized
sublots. Besides the time of moving sublots between machines, machine setup times and
unit-load preparatory time on each machine are also considered. A heuristic algorithm
based on dynamic programming is developed for seeking a solution to the model.
Sensitivity analysis is performed. The conclusions point out that both larger sublot sizes
and longer material handling time can cause longer makespan.

As an extension of the work in Szendrovits (1975), Steiner and Truscott (1993)
study a situation of //Om/ TC. In this study, an open shop replaces the original flow shop.

Since complete flexibility in operation sequencing is permitted, a study on the effect of



sequencing decisions becomes necessary. In addition, a new measure of performance
replaces the original one. Here, the total cost includes not only the WIP inventory

carrying cost but also the sublots transportation cost.

2.3 Multi-Job Lot Streaming and Scheduling

On the bausis of the studies concerning one-job lot streaming, researchers obtained
many insights about lot streaming and extended studies from one job to multiple jobs.
The latter situations can be found in many manufacturing systems.

[t is well known that the sequence of multiple jobs to be processed can affect the
makespan greatly. When lot streaming is allowed, the effect of sequencing still exists.
However, the problem of sequencing in a lot streaming environment is more difticult than
that in a classical production environment.

For N/Fn/C,..., a reasonable approach might be to sequence the jobs without lot
streaming and then simply to split each job into optimal sublots. However, a counter-
example in Potts and Baker (1989) shows that it is not possible to solve the N-job
problem simply by the hierarchical scheme.

Differing tfrom classical permutation scheduling problems, when lot streaming of
each job is permitted, scheduling problems of N jobs through a two-machine or three-
machine flow shop are studied in Vickson and Alfredsson (1992). The objective is to
minimize the makespan. Under the assumption of 1) all transfer batches incur zero cost,
2) there are unlimited buffers between machines. 3) there are no setup times between
different jobs on any of the machines, and 4) preemption of either items or sublots is not
permitted, the optimality of unit-sized transfer batches (i.e., one item per transfer batch)

is proven for general flow shop problems with regular performance measure. If
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preemption among all sublots is permitted, then some important results in classical
scheduling theory hold as well. For instance, with consistent sublots, to obtain an optimal
permutation schedule of N jobs, it is sufficient to only consider certain schedules. In these
schedules, sublots order is same on the first pair and the last pair of machines. Under the
same condition, an algorithm similar to Johnson's is derived to optimize two-machine
problem and certain special three-machine problems. Examples are presented to show
that, although all setup times are equal to zero, lot streaming can yield a better value of a
regular performance measure than that without splitting jobs.

As we have seen from the example in Potts and Baker (1989), if preemption
among sublots is permitted, there is a complex relationship between scheduling and lot
streaming even when there are only two jobs. On the other hand, the lot streaming
scheme of unit-sized sublots can rarely be found in real manufacturing systems. Two
main reasons are: 1) when material handling cost is considered, this scheme will cause
high material handling cost, 2) too many sublots are hardly being tracked and controlled.
Hence, many studies have been conducted under the condition of non-preemptive and
batch availability (i.e., any sublot is a batch rather than an item).

Vickson (1995) studies the problem of N/F2/Cpg.. This paper extends the optimal
lot streaming analysis of Potts and Baker (1989) to the case of multiple jobs with job
setup and sublot transfer times in a two-machine flow shop. It shows that lot streaming
problem can be decoupled from job sequencing problem when performance measure is
regular and jobs are not preempted. For this reason, the makespan minimization problem
with lot streaming is reduced to an equivalent two-machine makespan problem without

transfer batches or setup/transfer times. It then can be solved by Johnson's algorithm.



Closed-form solutions are given for the continuous lot sizing problem, and a fast
algorithm is presented to solve its integer version. When setups are detached from the
transfer lots, the linear programming solution is similar to that in Potts and Baker (1989)
for the problem without setup times. When the setups are attached to the first transfer lot,
a more complex situation is present.

The results reveal that a limited capacity to transfer parts between machines can
be utilized effectively: significant benefits accrue even each unit of a job is not
transferred when it becomes available.

Sriskandarajah and Hall (1996) review scheduling literature in no-wait and
blocking production environment. They point out that no-wait and blocking scheduling
problems provide an important direction of research. This importance is likely to increase
because of the variety of no-wait and blocking scheduling applications arising in modemn
manufacturing. They discuss many applications in detail and present the first detailed
summary of computational complexity of these problems. They also describe optimal and
heuristic algorithms for solving certain deterministic flow shop, job shop, and open shop
problem.

Langevin et al (1999) study how to optimize transfer batch size in order to
minimize the total cost. The problem belongs to 2/F2/TC. The two-machine FMS system
studied in the paper is actually a blocking manufacturing system. Cost components
include material handling cost, pallet cost, holding cost, and machine cost. Without
considering preemption, the optimal sequence between jobs is determined by Johnson's
algorithm with respect to maximize machine utilizations. Mathematical programs are

developed to minimize total cost.



Sriskandarajah and Wagneur (1999) develope an algorithm to simultaneously deal
with lot streaming and scheduling problem of multiple jobs in two-machine no-wait flow
shops to minimize makespan. The problem is solved for a fixed number of sublots for
each job. Closed-form solutions are given for the lot streaming problem in continuous
version, then an efficient polynomial heuristic procedure is used to solve its discrete
version. By exerting the algorithm of Gilmore and Gomory (1964), it is shown that the
problem of sequencing and lot streaming of multiple products with continuous-sized
sublots can be solved in O(NlogN) time. Computational results indicate that this heuristic
consistently delivers close to optimal solutions. Afterwards, the solution procedures are

extended to a traditional and more general lot streaming model.

2.4 Concluding Remarks

Lot streaming problems have been studied for several decades by many researchers.
As we have seen, there are many studies exploiting the effectiveness of lot streaming to
shorten manufacturing cycle time and cut down WIP inventory.

Lot streaming can reduce makespan effectively. In Trietsch and Baker (1993), an
example of //F3/Cpq. reveals that, by splitting a job into two sublots and accepting the
intermittent idling of machines, the value of makespan can be dropped to 360 minutes
from the original 504 minutes. Saved time takes as much as 28.6% of thc original flow
time.

Lot streaming can also be implemented to cut down WIP inventory. The example
in Szendrovits (1975) illustrates that a marginal saving of 25% in total cost can be

obtained by using the EPQ model. In fact, the core of EPQ is lot streaming.
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When we deal with multiple jobs while lot streaming is allowed, the issue of
scheduling is unavoidable. As illustrated by a simple example in Potts and Baker (1989),
preemption among jobs may bring in a complex circumstance. When the problem size is
large, an optimal schedule will be difficult to generate. Hence, most studies assume non-
preemption.

Many research papers consider manufacturing systems with unlimited
intermediate buffers between machines. Studies on manufacturing systems without
intermediate buffers are less. However, as shown in Hall and Sriskandarajah (1996), this
type of manufacturing system exists in many industrial enterprises. Moreover, results
from the former studies cannot be directly applied to the latter. For this reason, we focus
our study on manufacturing systems with no-wait process, and use production cost as the

performance measure.

2.5 Model and Solution Method Developed in This Thesis

[n this thesis the problem of finding economic trunsfer batch size of each job as
well as sequencing total N jobs simultancously in a two-machine no-wait flow shop is
studied. The goal is to minimize the production cost of manufacturing these N jobs. Here
production cost is the sum of holding cost and material handling cost. It is a typical
combinatorial optimization problem.

Most combinatorial optimization problems are NP-hard. For an NP-hard problem,
computational effort rises exponentially with the problem size, or the number of variables
in the problem. Although there exist optimal solutions, we may not be able to determine
one in a reasonable computational time. Therefore, we encounter the computational

difficulty in solving this problem.
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To resolve NP-hard problems, many heuristic methods have been invented. A
heuristic method is able to obtain satisfactory solutions in reasonable computational times
but the obtained solutions are not guaranteed to be optimal. In this thesis, we use a
heuristic method based on that in Sriskandarajah and Wagneur (1999). With this method,
when a scheme of number of sublots assigned to each job is made, results like discrete-
sized sublots, optimal sequence of jobs to be processed, and makespan can be obtained
simultaneously. Having the initial scheme of number of sublots and the makespan
corresponding to it, we can obtain an initial TC. With these initial results as starting point,
we then use simulated annealing (SA) to search for the optimal scheme of number of
sublots. The solution is to minimize production cost associated with lot streaming and job
sequence. The efficiency and effectiveness of this method are investigated using several

numerical examples presented in Chapter 4.



Chapter 3

Model Development and Solution Procedure

3.1 Problem Description

3.1.1 Problem Features

Assume that in a manufacturing flow shop, N different jobs are ready to be processed on
two machines. Every job comprises many identical items, and each job has its own
processing time on each machine. Since each job contains many identical items. lot
streaming can be used to accelerate the machining process and to reduce work-in-process
(WIP) inventory level. Also assume that each job should be processed on the machines
with the same sequence, i.e., from first machine (M;) to second machine (M-) due to
technical requirements. Furthermore, every job must be processed on both machines in
no-wait style, i.e., when a sublot finishes its treatment on the first machine, it must be
processed on the second machine immediately. There is no idle time between the two
successive treatments.

The problem we intend to resolve is how to process these jobs to minimize the
sum of material handling cost and inventory holding cost. It should be pointed out that
although we do not consider the time of transferring items between the two machines,
there do exist a sum of material handling cost for passing sublots from the first machine
to the second one. Since there are N jobs, arranging the order of these jobs to be

processed is necessary.
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J.1.2 Assumptions

With the general problem description presented above, we give the following

specific problem assumptions shown below.

l.

[88)

All jobs are available at time zero. This assumption limits the analysis to the static no-
wait flowshop for which the quantities of the products to be processed for a planning
horizon are known in advance.

No machine can process more than one sublot of any job at a time.

The processing mode of sublots is no-wait. [t means that each sublot of a job must be
processed from start to finish, without any interruption either on or between
machines. There is no buffer between the two machines in a no-wait environment.

No preemption is allowed. Preemption in this context means that sublots of a job are
intermingled with those of other jobs. This assumption means that all sublots of a job
are produced consecutively.

The processing of a sublot is proportional to its size, i.e., pry; = pik, and p2y, = pak,.
Setup times are independent of the sequence of job processing on the machines. An
off-line setup can be performed on a machine as soon as this machine becomes
available even without the physical presence of the arriving sublot of a job.

Unit holding cost is same for all items.

Unit material handling cost is same for all sublots.

Holding costs are directly proportional to holding time.
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3.1.3 An lllustrative Example
Example 3.1

In a two-machine flow shop, there are four jobs J;, J», J; and Jy. Each job
comprises Q; (j = 1, 2, 3, 4) items. These jobs are waiting to be processed by the two
machines with no-wait in process. The setup time, s, processing time, p, and the number
of items, Q, of each job are given in Table 3.1.

Table 3.1 The Given Data in Example 3.1

Job sy 53 pi p:2 Q
(min.) (min.) (min.) (min.) (unit)
J, 4 5 2 3 10
J> 2 1 4 3 20
J3 4 6 2 4 25
Jy 4 2 5 6 15

Our aim is to process these jobs with minimum production cost, TC, consisting of
holding cost and material handling cost. Assume unit holding cost C, = 0.05 and unit
material handling cost C,, = 5.00 in this example.

Consider the following two different cases. These two cases show that if the
scheme of number of sublots assigned to each job or the sequence of jobs to be processed
changes, then the production cost will vary as well.

Case 1: Same Processing Sequence but Different Number of Sublots

Assume that two schemes of number of sublots {5, 6, 8,5} and {5, 6, 8, 6} are used
in two production plans. The four numbers in each scheme are the number of sublots
assigned to Jy, J2, J3 and J; respectively. We then can calculate two groups of sublot sizes

for each job. If the same processing sequence J; - J>» - J; - J; is used, the values of
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makespan and TC for each scheme can be calculated. The results are presented in Table
3.2. The difference due to the two schemes is clear.
Case 2: Same Sublot Number Arrangement but Different Processing Sequence

In this case, the scheme of number of sublots, n = {5, 6, 8, 5}, keeps unchanged.
Sublot sizes are the same as those in Table 3.2. Two different processing sequences, J; -
Jy-Jy-Jyand J;3 - Jy - Jp - J», are used. Two different results in Table 3.3 reveal the
difference due to the two different processing sequences.

In Tables 3.2 and 3.3, there are some notations. Nj; is the number of sublots assigned
to job j, Y; are the sublot sizes of job j, and F is the makespan. The formal definitions of

these notations are given in the next section.

Table 3.2 Two Groups of Y}, F and TC Corresponding to Two Different Scheme of n;
(When Sequence Is: J;- J>-J,- Jy)

Job i I i [dob T
Scheme lofn; 15 6 8 5 |Schemelofn, 5 6 7 5
I 6 1 2 I 6 1 2
s 12 I s 1 2
23 13 > 3 13
v 23 1 4 v 2 03 1 4
4 2 1 4 4 2 3 4
L 2 | L 6
6 12
12
F 311imin. F 309min.
TC $1208.50 TC $1196.50
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Table 3.3 Two Groups of F and TC Corresponding to Different Job Sequence

(When Scheme of n; Is {5, 6, 8, 5})

Job Sequence ® Sequence I: Sequence 2:
Js=da=Ji=ds Js=Ji=J; -T2

F : 31 1min. 324min.

TC . $1208.50 $1254.00 i

From the above two tables, we can observe that both the change in the number of
sublots and the change in the processing sequence will cause the change on makespan
and TC values. Thus, it is necessary to decide sublot numbers for each job and, at the
same time, to choose the processing sequence in order to minimize the total cost.

In the next section, we present a mathematical model to minimize the total cost of
processing multiple jobs in a two-machine no-waii flow shop followed by a procedure to

solve this model.

3.2 Model Development

We first present the notations used in the model.

3.2.1 Notations
m machine index, m = [, 2;

M, M, the two machines in the flow shop;

N total number of jobs to be processed;
J jobindex,j=1, ..., N;
n; maximum allowable number of sublots for job j;
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total number of items of job j in its kth sublot, where Xj; is a non-negative real
number to allow formation of continuous-sized sublots, i.e., X > 0;

the total number of items of job j in its kth sublot, where Y, is a positive
integer, i.e., Y > I;

the vector of continuous-sized sublots for job j, i.e., (X;; . X3 ..., Xy). Index j
will be dropped for the single job case;

the vector of integer-sized sublots for job j, i.e., (Y4, Y3 ..., V). Index j will
be dropped for the single job case;

setup times of job j on M, and M3, respectively:

processing times of one item in job j on machines M, and M- respectively, py,
>0, p2>0;

processing times of sublot & of job j on machines M, and M-, respectively:

the jth job in the sequence o to be produced;

the value of makespan of single-job problem and multi-job problem,.
respectively;

cost for holding one item in job j in a unit time period (such as, an hour, a
week, etc.);

cost of operating material handling equipment, pallets and fixtures to transfer
one sublot of job j between machines each time;

holding cost;

material handling cost;

total cost; the sum of holding cost and material handling cost;

number of items consisted in job j.
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Decision variables:
Ui desirable number of sublots for job j, I <u; <nj;

o the sequence of jobs to be processed.

3.2.2 The Cost Function
» Cost Components
e Material Handling Cost (MHC)

The material handling cost accounts for the fixed and variable operating costs to
use the material handling equipment, such as, AGV/forklift, pallet and fixtures. When the
route for transferring one sublot is determined, the material handling cost can be
evaluated by the number of times of the material handling equipment to be used
muitiplying the unit material handling cost. This unit material handling cost can be
estimated considering maintenance, energy, depreciation, and system operation.

If we transfer one sublot of job j with one pallet every time, the number of times of
operating material handling equipment during processing job j equals to the total number
of pallets used. Thus we can get the following expression of material handling cost for ali

jobs.

N
MHC = Z"/th-/

1=l

e Holding Cost (HC)
The holding cost corresponds to the opportunity cost (lost interest) of the capital
required for the work in progress and other intangible cost associated with WIP

inventory. The unit holding cost Cj; of product j is calculated by multiplying the
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percentage of the inventory value per time period and the value of the item. In this study,
we use makespan to measure the duration of the parts in the system.

The holding cost is calculated by:

N
HC=FxY Q,C,,

7=l

» Cost Function
In this study, the total cost is the sum of holding cost and material handling cost.

Hence, we obtain the cost function as following:

N N
TC=HC+MHC =Fx) Q.C, +>nC,, (3.1)

=1 s=l

Based on assumptions 7 and 8 discussed in Section 3.1.2, we can rewrite Equation
(3.1) as following:

TC=FxQxC, +nxC,, (3.2)

where

Q:iQ, and n=§in/.
7=l j=1

3.2.3 Cost Function Analysis

To achieve the minimum makespan in order to reduce holding cost, one way is to
transfer sublots more frequently. Vickson and Alfredsson (1992) point out that the
minimum makespan can be obtained by using unit-sized sublots. However, this solution
is based on the assumption of no transferring cost. When material handling cost is
considered. the solution will lead to increased material handling cost due to increased

number of times of part transfer. Obviously, intentions of minimizing holding cost and
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material handling cost are in conflict.

From Equation (3.2), it is clear that TC is a function of the makespan F and the
total number of sublots n, i.e., TC = TC (F, n). From above discussion. we know that to
minimize the total cost, we have to make a suitable trade-off between the makespan and
the number of sublots.

In the example at the beginning of this chapter, we noticed that the makespan
changes while either the processing sequence of jobs or the sublot size of jobs changes. It
is clear that makespan depends on both sublot size (decided by the number of sublots)
and sequence of jobs to be processed on the machines. From Potts and Wassenhove
(1992), we know that the makespan problem under lot streaming belongs to NP-hard

problems.

3.3 Solution Procedure

We can infer from Equation (3.2) that once n is given in advance, TC = TC (F, n)
becomes TC = TC (F). Since F = F (n, o), it is apparent that F now is only associated
with sequence . The problem of how to minimize the total cost then is to sequence the
Jjobs in order to minimize the makespan. Once we obtain the minimum makespan, we can
calculate the total cost.

Similarly, we then can change the number of sublots to obtain another total cost.
Comparing these two cost values, we can decide which scheme of sublots is better one.
Iteratively like this, we can finally find the best combination of sublots for each job to
obtain the minimum total cost. To search for the optimal total cost systematically, we

implement simulated annealing (SA) in this study.
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In a real manufacturing environment, pallets normally are limited resource. In other
words, the number of pallets can be assigned as maximum #; for job j before the job is
processed. We need to decide the optimal number of pallets g; (1 < g; < n;) for job j. We
now briefly describe our solution procedure.

First, with specification of each nj, we need to calculate discrete-sized sublots Y; of
each job j and then to sequence all jobs. The goal is to minimize the makespan. With this
makespan, we can calculate an initial total cost. Next, simulated annealing is used to
search for the global optimal number of sublots, g; (1 < g; < n;), of job j. During euach
search, sublots size of each job is recalculated and the sequence of all jobs is reallocated.
Finally, we can obtain the discrete-sized sublots of each job, the sequence of jobs to be

processed, the value of makespan, and the minimized total cost.

3.3.1 Makespan: Model and Solution

To study the makespan problem of multiple jobs with discrete-sized sublots going
through a two-machine tlow shop with no-wait in process, we need to start from a single
job with continuous-sized sublots. By studying the single-job problem, we can obtain
more valuable insight about the multi-job problem.

We define sequence S as the ordered set of the sublot indices. Without loss of
generality, assume the order of the sublot indices being S = {1, 2, ..., n}. Let 7 be the
schedule obtained from § as shown in Figure 3.1.

Let A; be the idle time on machine 2 (M>) before processing sublot i and I be the
idle time on machine I (M;) after processing sublot i. Since we are considering a single

job, the job index j is dropped at the moment.
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Figure 3.1 Schedule 7 of Sublots of a Single Job

The makespan C(X) can be written as:

CiX)=s2+p:Q+max{0.s; — s2 + p;X; }+ > max{0, p X, - p. X, } (3.3)

=2

or,

C(X)=s1+pQ+max{0.5: — s/ - p1X| }+Zmux{0.p:X,_l -p X 1+ pX, (34)

1=2
In Equation (3.3), the makespan is given as a function of the idle time on M2, while
in Equation (3.4) it is given as a function of the idle time on M,. We will first solve the
minimum makespan problem by allowing continuous sublots and then find the optimal

discrete sublots.

LetZ= ) A, ,where A =max {0, s;— 52 + piXi}, and & = max {0, piX; - paXia ),

=1
(=2 ...

Note that minimization of the makespan C(X) is equivalent to the minimization of

total idle time (Z:Ai ) on M>.

=1
The minimum makespan problem in Equation (3.3) can be solved by the following

linear programming model.
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mnZ= Y A, (3.5)

1=l

subject to
> X, =0 (3.6)
=1

A Zs;-5> +p|X[
Ai Zplx,'—szH. [ = 2, Lo n
X;20, i=1,....,n

AZ20,0i=1L,....n

H

In Sriskandarajah and Wagneur (1999), an optimal solution X" =(X,,X:,....X,)to

Equations (3.5) and (3.6) is given by

Xx. = p:_‘plz-l H—_Q——— i l, ceey M (3'7)
> pitp
k=1

Sriskandarajah and Wagneur (1999) also study N-job makespan problem in a two-
machine no-wait manufacturing environment. We use their method (S & W method) to
develop the solution procedure in our research. For this reason, we show the S & W

method with an example.

Example 3.2
There are three jobs J,, J> and J; to be processed on two machines in a flow shop
with no-wait in process. Data are given in Table 3.4. The problem is to decide the sublot

size for each job and the processing sequence of these jobs to minimize the makespan.



Table 3.4 The Given Data in Example 3.2

5] 5> Pi p2 Q
Job n
(hour) (hour) (hour) (hour) (unit)
Ji 2 3 l 2 10 3
Js 3 0 2 1 15 3
J3 5 5 4 3 20 3

The procedure and the result of using S & W method to solve this problem are

illustrated below.
e Calculate Continuous-Sized Sublots of Every Job
With formula (3.7), continuous-sized sublots of cach job can be calculated.
X[ =1{1.429,2.857,5.714)}
.= {8.571, 4.286, 2.143}
X, ={8.649, 6.486, 4.865}

e Calculate Discrete-Sized Sublots of Every Job
With a heuristic approach developed in Sriskandarajah and Wagneur (1999), the

continuous-sized sublots are transferred into the discrete-sized sublots as follows.

Y, =(1,3.6)
Y- = {9, 4, 2)
Y;={9,6,5)

¢ Calculate the A, B and T (see figure 3.1) of Every Job
H1=O.Bl= 12, T[-_- 12
Hy=21,B,=13,T>=2

H;=36,B;=52,T;=15
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e Sequencing Jobs And Calculating The Makespan
With the algorithm in Gilmore and Gomory (1964) (G & G method), the optimal
sequence of these jobs can be obtained according to the values of Head and Tail of
each job. Then, the optimum makespan can be calculated.
Sequence o: J; - J3 - J>
Makespan F: 136 (hours)

The schedule of the three jobs is shown in Figure 3.2.

Mi H3 H:
M2 T T3 I

|
. 4

Figure 3.2  The Schedule ¢ of Example 3.2

3.3.2 Minimizing Total Cost
From Equation (3.2), we can calculate the total cost TC because makespan £ hus
been obtained. However, this initial TC may not be the best one. We can replace n; with

another number of sublots n'/ to compute another TC'. Comparing 7C’ with the initial

TC, we can make a decision to keep n; or rz;. To minimize total cost, we can do this

iteratively to finally find the best number of sublots for each job, y; (1 <y <nj).
To find y;, one obvious way is to solve our model repeatedly of every possible

sublot number between 1 and n; for job j. This means we have to repeat calculation up to
ﬂ‘;; n times, which is very inefficient for large size problems. For this reason, we search

for 4; using simulated annealing (SA).
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3.4 Simulated Annealing Search for Optimal Solutions
3.4.1 Introduction

Simulated Annealing (SA) is a numerical optimization technique based on the
principles of thermodynamics. Physical annealing refers to the process in which a solid is
heated until all particles randomly arrange themselves in the liquid state, followed by a
slow cooling, spending a relatively long time near the freezing point. The particles of the
material attempt to arrange themselves in a low energy state during the cooling process.
The energy states of the collection of particles can be considered the configuration of the
solid. The probability that a particle is at any energy level can be calculated using
Boltzmann distribution. As the temperature of the material decreases, the Boltzmann
distribution tends toward the particle configuration that has the lowest energy.

Metropolis er al. (1953) first realized that the thermal equilibrium process could
be simulated for a fixed temperature by Monte Carlo methods to generate sequences of
energy states. During this process. the system is perturbed to yield a new configuration.
The energy level before perturbation (£;) and the energy level after perturbation (E;) are
compared. If E; is greater than E; (i.e., JE < 0), the new perturbed system is accepted as
the new configuration of particles. If JE > 0, the probability of accepting the perturbed
system is calculated in following equation.

p = exp(-AE/KT) (3.8)
Where k is the Boltzmann constant and T is a fixed temperature. Using this
criterion, the material will eventually reach its equilibrium configuration.

This basic concept can be applied to numerical optimization problems.

47



3.4.2 The Procedure of SA

Simulated Annealing applies Equation (3.8) to a series of variable configurations
for the system to be optimized. The new variable settings are obtained by perturbing the
current configuration. For numerical optimization, the objective function (C) replaces the
energy term (E). The concept of temperature is retained and used as an important control
factor. The probability of accepting an unfavorable step (i.e., 4C > 0, assuming
minimization) is governed by Equation (3.9).

p = exp(-dC /T) (3.9)

A random number, P, is drawn from a uniform random distribution on the interval
[0,1]. If P > p, the unfavorable step is rejected and a new step is taken from the current
position. If P < p, the unfavorable step is accepted and the new configuration replaces the
old one. A new step is then taken relative to this configuration. This criterion allows the
possibility of the current configuration to be replaced by an inferior configuration. This
feature allows the algorithm to escape from local optima. New steps like this are taken

iteratively until a termination criterion is reached.

3.4.3 Features of SA

The primary advantage of SA is the ability to move from local optima. Thus, the
ability to find the global optimum is not related to the initial conditions (i.e., the starting
point). In addition, the implementation process of SA is easy and fast. The primary
disadvantages to SA are the subjective nature of choosing the SA configuration
parameters (e.g., T and step size) and that it typically requires more objective function

evaluations than other optimization approaches.
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SA is a generic optimization technique of wide applicability. It has found wide
application in many fields. For example, digital image processing, VLSI design, location
of missile units, and heuristic approaches in Operations Research. Kirkpatrick er al.
(1983) and Cemy (1985) independently pointed out the relevance of simulated annealing
technique to combinatorial optimization problems. In this research, our goal is to find y;
(I <y < nj) and finally to minimize TC. n; is given before searching procedure. This

means that n; is finite if there are finite jobs to be processed.

3.4.4 The Implementation of SA in This Thesis

To solve a particular combinatorial optimization problem by the SA algorithm, a
number of decisions have to be made. They include:
= Initial Temperature (7).

« Final temperature (7));

* Temperature function (7(r)); Where, ¢ represents the number of times the temperature
parameter has changed.

* Number of iterations (V,);

* Neighbor generation;

= Stop criterion.

The initial temperature T; should be sufficiently high to make search moves away
from local optima; and, the final temperature T should be sufficiently low to ensure that
the system is “frozen”. If T; is too high, we might waste time trying to abolish the results
of a long search process accepted because of the high starting temperature. If T; is too
low, we might waste time trying to get out of a local minimum at the end of the search.

which may not be possible.
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In the SA algorithm, temperature decreases according to the temperature function.
At each value of temperature T(r) (T(¢) is between Ty and T;), search is taken N, times
iteratively. The more iterations the better the results, and obviously, the longer search
time. Therefore, an appropriate trade-off between solution quality and search time should
be made. A stopping criterion needs to be determined.

The search neighbor is crucial to the final results. In our study, we try to minimize
TC by deciding the best scheme of sublots size of each job and then sequencing all jobs
optimally. From the preceding discussion, we know that once the sublot size of each job
is determined and assigned to the job, the optimal sequence of these jobs can be obtained
by G & G method in a polynomial times. Therefore, different scheme of number of
sublots assigned to the jobs will result in different 7C. By scarching for the best
combination of the number of sublots assigned to every job, we can find the minimum
TC. Since decrease by even one from the number of sublots assigned to any job would
change the TC, the search neighbor is set by one sublot.

The implementation of the SA and its pseudo-code is presented as below.

Step O: Initialization of SA:

Initial temperature: 7, = H (H is a constant)

Final temperature: 7y = L (L is a constant)

Temperature Function: T(¢) = T(¢-1) - C (C is a constant, T, < T(r) <T,)

Number of Repetitions: N, = R (R is a constant)

Neighbor generation: one sublot

Stopping Criterion: T(¢) < Ty

Constants A, L, C, and R vary in different problems.
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Step L: Input Sp = {ny, n, ..., ny} and the initial value of TCy;
Set Sy as the starting point, so S; = So, TC; = TCy.
Step 2: Let T(¢) = T;;
T(r) is reduced according to the temperature function. That means 7T(z) is
decreased by C each time.
Step3: Let N, = 1;
Each time, N, is increased by one. When N, > R, go to step 2.

Step 4: Generate a new state S> = {n;’, n2', ..., ny'} as the neighbor of S;:

N N
Here, an = an —1.80,5,%#£55;

=l =1

Calculate A4TC = TC> - TC,; in moving from S, to S>:

_.\T('
Ty

Calculate the acceptance probability: p = ¢
Step 5: If ATC <0, accept the new state S». Let S; = S2. Then, go to step 3:

If p > P (P is a random number, 0 < P < 1), accept the new state S>. Let §; = S-.

Then. go to step 3: otherwise, keep the former state as the current state, i.c.. set S;

= §;. Then, go to step 3.

Step 6: If T(¢) < T}, stop.

3.5 The Application Program

In this research, to solve the problem of minimizing the 7C in a two-machine no-
wait flow shop efficiently, we develop an application program in C language. The
program code is attached in the Appendix.

The program comprises two parts. The first part is designed to achieve the
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function of the S & W method. Given all known data of every job in advance, this
function module can supply initial results of sublots size of every job, processing
sequence, and makespan. The second part is designed to accomplish the function of the
SA algorithm. Given the makespan and the initial number of sublots, this function
module calculates the initial TC. Then, with this initial TC as the starting point, the SA
algorithm is implemented to search for the optimal TC and associated sublots size. The

flow diagram of the application program is showed in Figure 3.3.



Stant

Initialize SA parameters

\ 4
Input given data of job j: Create a new scheme of

st sy, pin pa. Qs and ny Sublots number n’;

Calculate sublots size (1),
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with S & W method
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Calculate TC with Equation (3.2) Calculate TC' with Equation (3.2)

Y
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active?

Output the results of
TCand related y, ¥, 0. F

Figure 3.3 Flow Chart of the Program

53



Chapter 4

Numerical Examples and Computational Aspects

4.1 Numerical Examples

Example 4.1

In this example, the flow shop and the jobs to be processed are the same as in
Example 3.2. However, the objective of this example is to decide lot streaming and
processing scquence to minimize TC. Here, C, = 0.04 ($ per hour per piece) and C,y, =
11.00 ($ per transference).
Solution Procedure
e Cualculate Initial TC

In Example 3.2, we have obtained the makespan F = 136 hours. It corresponds to
the given number of sublots n; =9. We now calculate TC using Equation (3.2).

TC =136x45x0.04+9x11.00=343.80%
e Scarching for u; With SA

With n; = {3, 3, 3} as the starting point, we begin to search for y,. Our final goal is
to find the optimal or near-optimal T'C. In each searching step, we arbitrarily create a new
n; by decreasing the number of sublots of any job by 1. For example, we can first create n;
={2,3,3}. Weuse S & W method to obtain the makespan corresponding to this new ;.

and calculate the TC. SA method is then used. We can accept {2, 3, 3} as the current



state of the system or keep {3, 3, 3} as the current state of the system by comparing the
old and new TCs. This search process continues until the stopping criterion of the SA
method is reached.

The reduction of TC values for a number of SA search iterations is shown in
Figure 4.1 and Figure 4.2. The SA parameters set in this example are: Initial Temperature
T; = 300, Final Temperature Ty = 0, Number of Iteration N, = 20, and Cooling Speed C =

L.

350 e e ————— e e ——————— o ... —_—— s

325

320

sl
310 \
305

300

Total Cost (I'C)

300 299 293 297 296 295 290 285 230 240 200 160 120 80 40
Temperature (T')

Figure 4.1  TC-T Relationship in Searching Procedure
The final results of the number of sublots y; and the sublot size Y; for each job j in
this example are presented in Table 4.1. In addition, we obtain the optimal sequence a: J,
— J3 = Js, the makespan F = 145 hours, and the minimum total cost TC = 305.00$

concurrently.

In this example, the objective function value is reduced from 343.8 to 305 after

6000 times of iterations.
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Figure 4.2  TC-En; Relationship When T = 300

Table 4.1 The Final Results of Example 4.1

Job J;  J2 s

Hj l l 2
Y, 10 15 1l
9

e To Verify the Optimality of the Results
Since there are only three jobs and total nine sublots in this example problem, it is

possible to verify the effectiveness of our method by taking an exhausted search. The

results of the exhausted search are listed in Table 4.2.
Comparing the final TC obtained with SA algorithm with those in Table 4.2, we

can see that the results corresponding to TC = 305 are the optimal solutions.
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Table 4.2 TCs of Exhaustive Search of Example 4.1

n; TC($) n; TC (%) n, TC (3)
{3.3.3} 343.80 {2.3,.3} 332.80 {1,3,3} 321.80
{3,3.2} 338.20 {2,3,2} 327.20 {1,3,2} 316.20
{3.3,1} 386.60 {2,3,1} 375.60 {1,3,1} 364.60
{3,2.3} 336.40 {2.2,3} 325.40 {1,2,3} 314.40
{3,2,2 327.20 {2,2,2 316.20 {1,2,2 305.20
{3.2,1} 375.60 {2,2,1} 364.60 {1,2,1} 353.60
{3,1,3} 343.40 {2,1,3} 332,40 {1.1,3} 321.40
{3,1,2} 327.00 {2,1,2} 316.00 {1,1,2} 305.00
{3,1,1} 364.60 (2,1,1} 353.60 (1,11} 342.60

Example 4.2

[n this example, we consider 20 jobs to be processed by two machines in a flow
shop with no-wait in process. All data s;;, 52, pij. p2j. Q), and n, tor each job j are given in
Table 4.3. The objective is to minimize TC. In this example, C;, =0.10 and C,;, = 8.00 are
used.

[n this problem, all data are created randomly. The ranges of the data are: 0 < s,
53<10:0<pyupy <10;10<Q;<110;and 3 <m; < 7.

Solution Procedure

Asequenceo: 1 -19-17-4-9-2-13-12-18-16-6-14-8-11-15-7
-5 ~3 - 10 - 20 and a makespan F = 7528 hours is obtained by S & W method. The o
and F correspond to the given number of sublots n;. At the same time, discrete-sized
sublots Y; are obtained. They are shown in Table 4.4.

Having F and n;, we can calculate the initial TC by Equation (3.2). That is

TC =7528x1194x0.10+99x8.00 = 899,635.20 ($)
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Table 4.3 Input Data for Example 4.2

Job (hglur) (hgzur) (h[c)):lr) (hgixr) (ugit) "
7, 6 8 1 10 103 6
75 8 2 6 2 71 1
I 8 8 7 2 51 6
s 5 7 7 9 12 4
s 3 0 3 8 17 7
s 3 6 4 4 103 4
J7 3 1 5 3 49 7
Js 3 3 9 7 24 5
Js ! 1 3 5 33 3
J1o 6 6 1 7 19 6
J1 l 5 5 7 26 4
Jis 9 1 10 7 102 6
I3 9 3 2 14 95 6
Jis 7 3 7 4 81 3
Jis 6 L 10 8 58 5
Jis 2 6 7 6 103 7
e 9 1 | 2 17 3
Jis 4 5 8 8 43 6
Ji9 6 8 9 2 96 4
Jxo 3 7 9 1 61 3
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Table 4.4 Initial Results of ¥; Corresponding to »; in Example 4.2

Job n; Y
Ji 6 IL,1,1,1,891

J> 4 48,16,5.2
J3 6 36,10,2.1,1,1

Js 4 2,3,3,4

Js 7 LILLLLLL3,9

Js 4 25, 26. 26, 26

J7 7 20,12,7.4,3.2.1

Jy 5 7.6,5.3.3

Jg 3 6,10,17

Jiw 6 L1 L1 441

Ji 4 457,10

Jio 6 35.24.17.12.8.6

Jiz 6 2,3,6.12.24.48

Jis 3 43,2414

Jis 5 17140 11.9,7

Jis T 22,19,17. 14,12, 10,9
Ji; 3 2.5.10

Jig 6 7,7,7,7.7,8

Ji9 4 75,16,4,1

Jo 3 54,6,1




Following the initial results, SA method is used to search for the final results. The
SA parameters set in this example are: Initial Temperature T; = 1000, Final Temperature
Ty = 100, Number of Iterations N, = 50, and Cooling Speed C = 1. Reduction of TC with
SA method is shown in Figures 4.3 to 4.5. In this example, the TC value is decreased
from 899,635.203 to 852,397.803 after 45000 times of iteration. Corresponding to 7C =
852,397.803%, the sequence 6: 17-5-13-2-7-18-9-8-14-4-11-3-1-12-
16 — 19 — 10 — 6 — 15 =20 and the makespan F = 7137 hours are obtained. The final

results of y; and Y; are given in Table 4.5.

905000 - - -
900000
895000
890000 1
885000
880000
875000 +
870000
865000 1
860000
855000
850000 i- ——-- - -
845000
840000 . ‘ . 4 . —— : , \

1000 998 964 943 921 853 827 8§13 742 687 566 504 501 434 210 160 110

Total Cost (TC)

Temperature (T')

Figure 4.3 TC-T Relationship During Searching Procedure
(Example 4.2)
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Total Cost (TC)

899800 7 - -—-

899400
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Total Cost (TC)
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864000
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44 TC-En; Relationship When T = 1000 (Example 4.2)

863500

863000

862500

862000

861500

73 72 7t 70 69 68
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Figure 4.5  TC-ILn; Relationship When T = 827
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Table 4.5 Final Results of 4; and Y; in Example 4.2

Job u Y;
Ji I 103
J> 171
J; 1 51
J 112
Js I 17
Js 1 103

J7 2 31,18

Jy 1 14
Jo I 33
Jio I 49
Ji 126
Ji2 I 102
J13 I 95

e 30 43,24, 14

Jis I 58
Jis 1 103
Ji7 117

Jis 4 10,11, 11,11
Jio 3 75,17,4

Jo 3 54,6,1




4.2 Computational Experiments

Simulated Annealing based search procedure requires a number of parameters
such as the range of temperature, the cooling speed, and the number of iterations. The
appropriate values of these parameters can be determined through a number of
experiments for a specific problem. In this research, several such experiments were

performed to investigate and to find the best values of these parameters.

Example 4.3
In this example problem, there are 10 jobs to be processed in a two-machine no-
wait flow shop. The data 545, s3, py;, p2j. Q. and n; for the jobs are shown in Table 4.6.
These data are created randomly. The ranges of each type of parameter is: 0 <, 52, <
10: 0 < pyj. p2; < 10: 10 € Q5 < 100; and 3 <n; < 7. We assume that G, = 0.80 and G,y =
8.00. We compare results by changing tollowing parameters:
e Temperature Range
¢ Cooling Speed
¢ Number of Iterations
[n Experiment 1, we first let the temperature range be (100, 1000], the cooling
speed be |, and the number of iterations be 30. The relationship of 7C and temperature
and the final search results are shown in Figure 4.6.
A new experiment (Experiment 2) is set by changing the temperature range from
(100, 1000] to (100, 500]. Other parameters are the as in Experiment 1. The search effect
is shown in Figure 4.7.
We conducted several other experiments. The values of the parameters used in

these experiments, including Experiments 1 and 2, are summarized in Table 4.7.
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Corresponding search results (reduction of TCs) are shown in Figures 4.6 to 4.9.

Table 4.6 Input Data in Example 4.3

Job 51 52 pi p2 Q
(hour) (hour) (hour) (hour) (unit)

Ji 8 9 1 5 58 6
J> 1 7 6 8 71 4
J3 3 9 7 5 42 6
Js 6 8 7 6 57 4
Js 9 10 3 10 35 7
Js 4 5 4 5 31 4
J; 5 5 5 8 67 7
Js 0 7 9 6 60 5
Jy 2 9 3 9 96 3
Jio 6 5 1 2 13 6

Table 4.7 SA Parameters Set in Different Experiments

SA Parameters Experiment 1  Experiment2 Experiment3  Experiment 4
[nitial Temperature 1000 500 1000 1000
Final Temperature 100 100 100 100
Cooling Speed \ 1 5 1
Number of Iteration 30 30 30 10
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Comparing Figure 4.6 and the other three figures, we can find that the latter three
search results are not better than the first one. It demonstrates an outstanding feature of
SA, i.e., SA demands extensive experimentation. To obtain high quality solutions, we
have to adjust ecach parameter carefully. It often requires conducting a series of

experiments.

4.3 Comparison of Two Influent Factors: Makespan and Number of Sublots

In our study, the 7TC is the sum of two cost components: holding cost (HC) and
material handling cost (MHC). This decides that, to a given problem, we search for the
optimal value of TC by either shortening the manufacturing duration or cutting down the
times of conveyance, which equals the number of sublots. The relative level of values
between HC and MHC decides the priority of decreasing makespan or number of sublots.
We will compare these two factors in this section.

To a given problem, the total number of units Q is a constant. The variation
between HC and MHC is decided by the variation between C, and C,,u. To reflect the
change, we introduce a coefticient A (0 < < 1) into Equation (3.2). Then we have

TC=QXFxAxC, +nx(1-A)xC,, +.1)

From Equation (4.1), when XA changes from 0 (TC = HC) to | (TC = MHC), we
can observe the influence of makespan and number of sublots on TC.

Consider a problem with data given in Table 4.8. Since in most cases Cpy > C,
we assume that the upper limits of Cpy, = 10.00 and C, = 1.00.

The initial makespan of the schedule corresponding to n; = 17 is 178. The initial

TCs corresponding to different 4 and the final results obtained by using SA algorithm are
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presented in Table 4.9. The impact of different A on makespan and number of sublots is

plotted in Figures 4.10 and 4.11.

Table 4.8 Input Data of Each Job in the Example of Comparing Two Influent

Factors: Makespan and Number of Sublots

51 52 pi p: Q
Job n
(hour) (hour) (hour) (hour) (unit)

Ji 5 5 1 2 10 3
J> 5 7 2 3 20 4
J3 7 5 2 1 30 5
Jy 4 5 2 3 10 5
Total - - - - 70 17

Table 4.9 The Variation Tendency of Values of F and Xn; With Different i

‘; [nitial Results Final Results ATC% =
" TC F S 4 TC, (TC; - TCy) / TC,
00 .  170.00 182 4 1000 76.47
0.1 1399.00 165 0 124500 | 11.01
03 | 3857.00 164 11 3521.00 9.28
05 . 631500 164 11 5795.00 8.42
0.7 | 8773.00 164 11 8069.00 8.11
09  11231.00 164 1 10343.00 7.96
1.0 ©  12460.00 164 [ 11480.00 7.87
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From the computational results of this example, we have the following
observations.

e  When A =0, the only cost component is MHC in Equation (4.1). This means that we
can minimize 7C by decreasing the number of sublots. In fact, this result was
obtained when Xy; = 4. This is to process the four jobs without lot streaming. It is
noticed that in this situation F = 182 in the final state is larger than F = 178 in the
initial state.

e When A = [, the only cost component is HC in Equation (4.1). In this situation, only
the value of F decides the TC. Because the upper limit of the number of pallet is 17.
we may infer that the minimum TC can be obtained when Zyu; = 17. However, we find
that the minimum TC is obtained while Xx; = 1. The reason is the no-wait
production, i.e., when jobs are processed with no-wait in duration, increase in the
number of sublots may extend the duration.

¢ Generally, a better TC more depends on makespan when C, increases. Similarly,
when C,y, is far large, decrease on the number of sublots will cut 7C.

e From values of ATC% in Table 4.9, we observe that TC can be reduced significantly

by using SA search. The effectiveness of this method is clear.

4.4 Comparing Johnson’s Method and Gilmore & Gomory’s Method
Johnson’s optimal sequence depends only on the values of the assembled numbers

puiand pa, i =1, 2, ..., N. Any change in these numbers does not change the optimal

sequence.

However, in the method devised by Gilmore and Gomory, the sequence of N jobs
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comes from a permutation of N+1 jobs. To minimize the total cost, which happens while
changing the initial state of a machine from one to another in order to process different
product economically, they transform the problem into a Traveling Salesman Problem
(TSP). p;;i and p»; are distances between cities.

The result of the following example shows the differences of these two types of

problems.

Table 4.10 Jobs and Their Processing Times on Two Machines

Job I 2 3 4 5 6 71 8
pp S5 2 I 1 6 3 7 5
p» 2 6 2 5 6 71 2 |

e Sequence by exerting Johnson's method is:3-2-6-5~-4-7-1-8.
¢ Secquence by exerting Gilmore and Gomory’s methodis: | - 7-6-3-2-5-4-8.

¢ Two Gantt charts are shown in Figures 4.12 and 4.13.
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Figure 4.12 Gantt Chart by Johnson’s Method
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Figure 4.13  Gantt Chart by Gilmore and Gomory’s Method

Comparing the two schedules, we can see that Johnson’s method cannot replace
Gilmore and Gomory's method because the sequence from Johnson's method cannot

satisfy the constraint of no-wait.

4.5 Blocking situation

Finally, we discuss the validity of our results under the processing of sublots as
blocking instead of no-wait.

The blocking mode of processing occurs when there are no buffers between the
machines. When a sublot has completed processing on the first machine, it must remain
on the machine until the second machine becomes available. In this case two types of
detached setup can occur depending on the processing technology.

Type 1: the setup cannot be performed in anticipation of the arriving product until the
sublot previously processed is removed from the machine.

Type 2: setup can be performed as soon as the previous sublot is completed on the
machine even if it stays on the machine until the downstream machine becomes available.

It is easy to show that the makespan problem studied in Sriskandarajah and



Wagneur (1999) is equivalent to the problem with blocking under Type 1 setup. Thus, the
heuristics methods developed in that paper are also valid for solving two-machine flow
shop problems with blocking under Type 1 setup.

It was proven in Logendran and Snskandarajah (1993) that the two-machine
problem of simultaneous lot streaming and scheduling with blocking under Type 2 setup
is NP-hard even if the number of sublots for each product is one. Because Type 2 sctup is
less restrictive than Type | setup, the heuristics presented in Sriskandarajah and Wagneur
(1999) can also be used.

The method developed in this thesis can also be applied to solve multi-job two-

machine flow shop scheduling problems with blocking.
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Chapter 5

Solving Three-Machine Problems

5.1 Motivation
In Chapter 1. we discussed Johnson’s algorithm. It is an optimal scheduling method for
multiple jobs in a two-machine flow shop where there are buffers between the two
machines. Under certain conditions, Johnson’s algorithm can also generate optimal
schedules for threc-machine flow shop problems.

The method developed in this research can also be modified for three-machine
problems. The three-machine problem is first transformed to a two-machine problem. und

then the same method is used.

5.2 Prerequisite of Transformation

In Chapter 1, variable and consistent sublots were discussed. In a two-machine
problem, it is not necessary to differentiate between variable sublots and consistent
sublots. However, for a three-machine problem, they must be differentiated. The method
developed in Chapter 3 for two-machine problems can be used to solve three-machine
problems if sublots size of each job is the same in transferring between machine 1 and

machine 2 as well as between machine 2 and machine 3.
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5.3 Problem Transformation
To apply the two-machine algorithm, we first transform a three-machine problem

to a two-machine problem by allocating the second machine processing times to the first
and the third machines.
There are two approaches to allocate py (j = 1, 2, ..., N). The first approach is

splitting py; into two parts, p;, and p3,. p3, is the product of ps;and a numberr (0 <r <

1), i.e., pt =r xps. pi=psy- p. .Like this, in a transformed two-machine problem,
p-] p 7} p-/ p ] p-] p

processing time on M; and M- of job j can be expressed respectively as: p;l =py +p;/,

P.,= p3j + p1,. The second approach is adding py; to py; and py; respectively, i.e., p, =py,

+ p2j, p;j = py; + p2j. We adopt the second allocating approach in this study.

5.4 Numerical Example

In this three-machine flow shop example, we assume 10 jobs to be processed on
three machines in a flow shop with no-wait. Each job is to be processed on M, first and
then on M- and finally on Af;. The setup times. processing times, quantity of items, and
initial number of sublots for each job are given in Table 5.1. The objective is again to
minimize the total cost TC. Here, TC is the sum of material handling cost from M, to M-,
and then from M> to M;, and holding cost. In this example, we let C, = 0.10 and C,y, =

8.00.
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Table 5.1 Given Data for Three-Machine Problem

Job S 2 53 pi p2 ps Q .
(hour) (hour) (hour) (hour) (hour) (hour) (unit)
Ji 9 4 1 20 2 14 78 6
J> 3 3 2 I 9 7 75 6
J3 3 5 8 5 7 17 44 4
Js 6 8 4 16 20 12 78 5
Js 0 l 0 2 12 15 31 3
Js 7 5 1 2 5 5 13 3
J7 0 l 2 10 15 3 75 6
Js 6 3 6 7 12 14 33 4
Jo 2 7 2 l 17 12 92 7
Jio 6 8 3 5 2 12 78 8

The processing times on the second machine are allocated to the first and third
machines. A new set of data was gencrated for the transformed two-machine problem.
These data are shown in Table 5.2. When there are no setup times on the second machine.
the data for transformed two-machine problem are shown in Table 5.3.

Applying the two-machine scheduling method with SA search, the tinal results for
both situations, i.e., 52; # 0 and 53 = 0, are shown in Tables 5.4 and 5.5 respectively.

The scheduling method developed in the previous chapters is applied to solve this
problem. TC reductions are shown in Figures 5.1 and 5.2. Figure 5.1 shows T'C values in
the search process when setup time on the second machine, sz;, is considered, Figure 5.2

shows TC values in the search process when s5; = 0 for all jobs is assumed.
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Table 5.2 Transformed Data for Two-Machine Problem When s # 0

Si s> 53 Pi P.: Qo

Job n
(hour)  (hour) (hour) (hour) (hour) (unit)
J; 9 4 1 22 16 78 6
J> 3 3 2 10 16 75 6
J3 3 5 8 12 24 44 4
Jy 6 8 4 36 32 78 5
Js 0 l 0 14 27 31 3
Js 7 5 l 7 10 13 3
J7 0 | 2 25 18 75 6
Js 6 3 6 19 26 33 4
Jo 2 7 2 18 29 92 7
Jio 6 8 3 17 14 78 8

Table 5.3 Transformed Data for Two-Machine Problem When s =0

St s2 53 P P Q

Job n
(hour)  (hour) (hour) (hour) (hour) (unit)
Ji 9 0 | 22 16 78 6
J2 3 0 2 10 16 75 6
J3 3 0 8 12 24 44 4
Js 6 0 4 36 32 78 5
Js 0 0 0 14 27 31 3
Js 7 0 1 7 10 13 3
J7 0 0 2 25 18 75 6
Js 6 0 6 19 26 33 4
Jo 2 0 2 18 29 92 7
Jio 6 0 3 17 14 78 8
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Table 5.4 Final Results When 55 # 0

Job y Y,

Ji 6 25,18,13,10,7,5
J> 1L 75

J; 1 44

Js 3 29,26,23
Js 1 31

Js I 13

J7 1L 75

Js 2 14,19

Jy 2 35,57

Jin I 78

¢ The sequence and makespan are obtained concurrently as: 6: 6 -8 -5-3-9-7 -
10-2 -4~ 1and F=8339.

Table 5.5 Final Results When s, =0

Job u Y

Ji 6 25.18,13,10.7,5
J> I 75

J3 O

Js 3 29.26,23
Js I 3l

Js 113

J7 L 75

Js 2 14,19

Jo 2 35,57
Jio 1 78

¢ The sequence and makespan are obtained concurrently as: 6: 6 ~8 ~5-3-9-7 -

10-2-4~-1and F=8329.
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5.5 Conclusion

This example shows that the heuristic method developed in this research for
solving two-machine flow shop problems can be applied to solve three-machine
problems. Since the developed algorithm is heuristic in nature, it is a heuristic method in
solving three-machine problems. It may be expanded to solve general multi-machine flow

shop problems.
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Chapter 6

Conclusions

6.1 Summary

In this research, multi-job two-machine flow shop scheduling problems are studied. The
objective of the scheduling is to minimize the sum of material handling cost and the cost
related to makespan. This study is limited to manufacturing systems in which jobs have
to be treated with no-wait in process.

Chapter | presents an introduction to the systems and the problems considered in
this research. A literature survey of lot streaming and scheduling methods was given in
Chapter 2. In Chapter 3, a cost model to minimize the sum of holding cost and material
handling cost, in a two-machine flowshop with no-wait in process, is built. Because of
computational complexity of the problem, a heuristic method (S & W method) is
modified and used. The core of this heuristic method is the algorithm due to Gilmore and
Gomory to obtain optimal solutions for its sub-problems in polynomial time. Based on
the heuristic method, simulated annealing search is used to find the best combinations of
the number of sublots to minimize the total cost.

With three numerical examples in Chapter 4, we can observe that the heuristic
method is effective in reducing the total cost. We also studied the relationship between
the makespan and the number of sublots.

In Chapter 5, we extend the application of the heuristic method to three-machine
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no-wait flow shops. A numerical example demonstrates the effectiveness of this method

in solving three-machine problems.

6.2 Conclusions

In an advanced job shop-type manufacturing system, there may be several
computer numerically controlled (CNC) machining centers or workstations served by
industral robot arms. To reduce production costs, job shop production is normally carried
out in batches due to machine setup and material handling costs. On the other hand,
market demands for cutting down delivery time require short makespan. Effective
operations management leads to minimization of work-in-process (WIP) inventory. This
however may increase material handling costs. Consequently, a new cost control
technique should be developed to meet the challenge.

When there are multiple jobs to be processed, the sequence of these jobs plays an
important role in reducing the makespan. The complex interrelationship between lot
streaming of each job and job sequencing makes the scheduling problem NP-hard. It is
NP-hard for a flow shop problem even with only two machines.

Research in this thesis concentrates on minimization of the total cost in a
deterministic multi-job two-machine flow shop. The solutions are to decide the best
sublots size of each job and the best job processing sequence. A mathematical model is
formulated to achieve this purpose. The main assumptions used in developing the model
are 1) the analysis is confined to the static flow shop: 2) jobs are processed with no-wait;
3) jobs are non-preemptive; 4) the number of sublots of each job is known in advance:
and 5) setups of jobs are independent of the sequence.

We achieve our goal through two steps.
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First, we relax the original problem of cost minimization to the problem of
makespan minimization by giving the number of sublots before lot streaming. We
analyze the lot streaming of a single job in a two-machine flow shop with no-wait in
process. With linear programming, we obtain the closed expression of its sublot sizes in
continuous version. The S & W method was used to solve the problem.

Following the first step, we implemented the Simulated Annealing (SA) technique
to search for the global optimal solution. Each search neighborhood is obtained by
changing the value of the number of sublots by one. Finally, the optimal or near-optimal
results are found. Because the G & G algorithm is embedded in the heuristic method,
each search step will reveal the best processing sequence of jobs.

Our heuristic method is coded in C language. Several numerical examples are
solved with the program. The effectiveness of the method is shown. In addition, we
studied the performance of our method in a three-machine flow shop with no-wait in
process. We showed that in a three-machine flow shop, our method can be used to
generate reasonable results.

Although we include only holding cost and material handling cost in the total
cost, many other akin cost components can be included conveniently because
manufacturing cycle, quantity of pallets and fixtures as well as the frequency of
dispatching material handlers can be calculated accurately. Furthermore, if an additional
job amrives while the current production plan is being carried out, we may adjust the
current production plan dynamically with our method. We can combine the new job and
those unprocessed jobs into a new job group. A new production plan can be obtained by

running the application program. By comparing the original plan with the new one, we
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can choose to carry out the original production plan continuously or to modify the

sequence of those unprocessed jobs according to the new production plan.

6.3 Suggestions for Future Work

The numerical examples in this study show that the searched total numbers of
sublots are normally less than the given total number of sublots. It means that sublots
should be transferred and processed in larger size. In a real manufacturing system, this
result may exceed the capacity of either material handling equipments or processing
machines. For this reason, we suggest that factors concerned with capacity of both
material handling equipments and machines should be considered in future work in this
area. Extending the method developed in this research to solve multi-machine tlow shop
problems should also be considered for future research. In addition, use of other search
methods such as Tabu search and genetic algorithm for solving similar problems should

be studied.
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Appendix

Code for the Program

#include
#include
#include

#include

tdefine

#define

tdefine

tdefine

kdefine
#define
#define
#define
#define
#define
#define

#define

struct j

"stdlib.h"
"stdio.h"
"math.h"

"time.h"

LEN sizeof (struct job)

INPUT_JOB scanf("%d %d %d %d %d %d %d %4 %d\n",&«pl-
>num, &pl->sl, &pl->s2,&pl->s3,&pl->a,&pl->b,&pl-
>c,&pl->q, &pl->n)

job_size (the number of jobs)

sublot_size (the number of the maximum number of
sublots)

total_sublot_size(the number of total sublots)

tmp_h (the value of initial temperature)

tmp_1 (the value of final temperature)

Ch (the value of unit holding cost)

Cmh (the value of unit material handling cost)

col_spd (the value of cooling speed)

v (the value of number of iteration)

seed {random number between 0, 1)

ob

{int num;

int sl;
int s2;

int s3;
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int a;
int b;
int c;
int q;
int n;
struct job *next;
}:
int N;
int M:
int arr_job3[job_size] [9]1={0};
int arr_job(job_size] [11]=(0};
int arr(job_size] [13]=(0};
double arr_X[total_sublot_size]={0}, *p_X=arr_X;
int arr_Y([total_sublot_sizel={0}, *p_Y=arr_Y;
int Y[(job_size] {sublot_size]=(0};
int cm(4]1{4)=(0};
int arr_T[total_sublot_size]=(0}, *p_T=arr_T;
int arr_n{total_sublot_size]={0}, *p_n=arr_n;

double arr_TC(total_sublot_size]={0}, *p_TC=arr_TC;

struct job *creat();

void print(struct job *head);

void H_ll(int a,int b,int gq,int n,double arr_x([sublot_size], int
arr_ylsublot_sizel]);

int *H_gl(struct job *head);

int H(int s,int t,int a,int y1);

int T(int b,int yn);

int *GG(int *array, int n);

int max(int a, int b);

int min(int a, int b);

int alpha(int e,int g,int h);

int msp(int a,int b,int g,int n,int s,int t,int

arr_y[(sublot_sizel);

int *MSP{(int *array):;

int *sim_anl (double TCO);
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void main()

{struct job *head:;
int 1i,3j,*p.,*ty,cyc=0,plt=0,qut=0;
double TC, *tx;

head=creat () ;

print (head) ;

printf("\nThe total number of jobs is: N = %d\n",N);
p=H_gl (head) ;

printf ("\nThe total number of machines is: M = %d\n",6M);

p_X=arr_X;

p_Y=arr_Y;

printf ("\nThe original sublots size and H,B,T of each job are
those as following:\n");

for(j=1;j<=N; j++)

(
printf("job%d:\n", j);
tx=p_X;
ty=p_Y;
for(p_X=tx+1,p_Y=ty+l;p_X<=tx+arr_job(j](6],p_Y<=ty+arr_job
[(J1(6]:p_X++,p_Y++)
{
printf ("\eX=%f", *p_X);
printf("\ty=%d\n", *p_Y);
}
printf ("\tH=%d\tB=%d\tT=%d\n",arr_job(j](7].arr_job[j] (8],
arr_job(j](9]);
}

for(i=1;i<=N;i++)

(
cyc=cyc+* (p+(1i*13+5))+* (p+(1*13+10));
plt=plt+*(p+(1i*13+11));
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qut=qut+* (p+(i*13+12));
}
if (M==2) cyc=cyc;
1f(M==3) cyc=cm[3][3];
TC=cyc*qut*Ch+plt*Cmh;

printf ("MSP=%d\ tPLT=%d\ tQUT=%d\£OTC=%f\n",cyc,plt,qut, TC) ;
printf ("The original sequence is:\t");
for(i=1;i<=N;i++)
printf("$d->", *(p+(i*13+9)));
printf("\n");

p=sim_anl (TC) ;

p_Y=arr_Y;
printf ("\nThe final sublots size and H,B,T of each job are those
as following:\n");

for(j=1;j<=NM;j++)

{
printf("job%d:\n", j);:
ty=p_Y;
for(p_Y=ty+l;p_Y<=ty+arr_job[j] (6] ;:p_Y++)
printf("\tY=%d\n", *p_Y);
printf ("\tH=%d\tB=%d\tT=%d\n",arr_job(jl{7]),arr_job(j] (8],
arr_job(jl{91]);
}
cyc=0;
plt=0;
qut=0;

for(i=1l;i<=N;i++)

{
cyc=cyc+ (* (p+(1*13+45) ) )+ (*(p+(i*13+10)));
plt=plt+* (p+(1*13+11));
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qut=qut+* (p+(1*13+12));

}
if (M==2) cyc=cyc;
1f (M==3) cyc=cm(3](3];

TC=cyc*qut*Ch+plt*Cmh;

printf ("MSP=%d\tPLT=%d\tQUT=%d\tFTC=%f\n", cyc,plt, qut, TC) ;
printf ("The final sequence is:\t");
for(i=1;i<=N;i++)
printf ("%d->", *(p+(i*13+9)));
printf("\n");
}

struct job *creat()

{struct job *head;

struct job *pl, *p2;

N=0;

pl=p2=(struct job *)malloc (LEN);
INPUT_JOB;

head=0;

while (pl->num!=0)

(
N=N+1;
if(N==1) head=pl;
else p2->next=pl;
p2=pl;
pl=(struct job *)malloc(LEN);
INPUT_JOB:;
}

p2->next=0;
return (head) ;

}



void print(struct job *head)

{struct job *p;

printf("\nThe given data of all jobs are:\n");

p=head;
if(p!=0)
do
{
printf("\tjob=%d: sl=%d s2=%d s3=%d a=%d b=%d c=%d
ag=%d n=%d\n", p->num,p->sl,p->s2,p->s3,p->a,p-
>b,p->¢,p->q.,p->n};
p=p->next;
}
while(p!=0);

int *H_gl(struct job *head)

{struct job *p;
int i,dvd2_1=0,sum=0,arr_mu{job_size]=(0};

int *pp:

p=head;

for(i=1;p!'=0;1i++)

{
arr_job3[i][0]=p~->num;
arr_job3([i][l]=p->s1;
arr_job3 (il [2]=p->82;
arr_job3{i] [(3]=p->s3;
arr_job3{i] [4]=p->a;
arr_job3[i] [S]=p->b;
arr_job3{i]l[6]l=p->c;
arr_job3(i] [7]=p->q:
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arr_job3 (1] ([8])=p->n;
p=p->next;

}

for(i=1;i<=N;i++)
sum=sum+arr_job3[i] [5];

if (sum==0) M=2;

else M=3;

for(i=1;i<=N;i++)

{
arr_jobl[i][0)=arr_job3([i]) [0];
arr_job[i][1l])=arr_job3[i][1]);:
arr_job(i] [2]=arr_job3([(i]([3];
arr_job(i] [3]=arr_job3[i] [4]+arr_job3(i])[(S];
arr_jobli] (4]l=arr_job3(i])[(6]+arr_job3(i]([5}];
arr_job(i]l(S)=arr_job3(i](7];
arr_job[i][6]=arr_job3(i](8]:

}

for(i=1;i<=N;i++)
arr_muf{il=arr_job[i][(6];

pp=MSP(arr_mu) ;

return(pp) ;

}

int *MSP(int *array)

{double arrx([sublot_size], *pl=arrx, *tx;
int arry{sublot_sizel]l, *p2=arry;

int i,£, *p, *ty, *p_arr;

p=array;
p_X=arr_X;
p_Y=arr_Y;
for(i=1;i<=N;i++)

{
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}

arr_job([i] [6]=*(p+i);
H_ll(arr_jobl[i]) [(3],arr_jobli][4],arr_job[i] [5],
arr_job[1][6],arrx,arry) ;
arr_job([i] [7)=H(arr_job[i][1l],arr_job(i]([2],arr_job[i][3],
arry(l]);
arr_job(i] [9]=T(arr_jobli] [4],arrylarr_jobl[i]l[6]]);
arr_job[i] [10])=msp(arr_job([i][3],arr_job(i} (4],
arr_job[i] [{5]),arr_job{i]l[6],
arr_job({i][1],arr_job(i] (2],arry);
arr_job[i] [8]=arr_job[i][10]-arr_jobli][7]-arr_job([i]l[9];
tx=p_X;
Ly=p_Y;
for (p_X=tx+l,pl=arrx+l;p_X<=(tx+arr_job[i]([6]).pl<=(arrx+
arr_job(i][6]) ;p_X++,pl++)
*p_X=*pl;
for(p_Y=ty+l,p2=arry+l, £f=1;p_Y<=(ty+arr_job(i] [61]),
p2<=(arry+arr_job[i][6]), f<=arr_job[il[6];
p_Y++,p2++, £++)

rp_'{zwpz :
Y{i] (E]=*p2;

p_arr=GG(*arr_job, N};

return(p_arr) ;

}

int max(int a, int b)

{int t;
if (a>=b) {t=a;a=b;b=t;}
else t=b;

return(t) ;

}

95



int min(int a, int b)
{int t;

if (a<=b) {t=a;a=b;b=t;}
else t=b;
return(t) ;

}

int alpha(int e, int g,int h)
(int alpha;

if(e!=h&&g==h) alpha=e;
1f (e==h&&g!=h) alpha=g;
i1f(e!=h&&g!=h) alpha=h;
return{alpha) ;

}

void H_1l1l(int a,int b,int q,int n,double arr_x([sublot_size],

int arr_vylisublot_size])

{int h,i,y,w0=0,wl=g,maxo;
double maxd=0.0,sigma=0.0;
int arro[sublot_size];

double arrd(sublot_size];

for(i=1l;i<=n;1i++)
sigma=pow(a,n-1l)+b*sigma/a;

for(i=1;i<=n;1i++)

{

arr_x[i]=(pow(a.n-1i) *pow(b,i-1)) *{(g/sigma) ;

arrol[i]l=i;
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y=((int) arr_x[i])+1;
wO=w0+y;
arr_ylil=y;
arr_yl(i)>1?arrd(i]l=arr_ylil-arr_x(i):arrd{i)=0.0;
}
wl=wl-wl;
while (w0>0)
{
for(i=1l;i<=n;i++)
{
if (maxd>=arrd(i}]) continue;
maxd=arrd(i];
maxo=i;
}
if(i==(n+1)&&maxd==0.0)

{
for(h=1;h<=n;h++)
(
if (arrd(h]==0) continue;
maxd=arrd(h];
maxo=h;
break;
}
for(h=1;h<=n;h++)
{
if (arrd(h]==0) continue;
else if (maxd>=arrd(h]) continue;
else {maxd=arrd(h];maxo=h;}
}
}
i=maxo;

arr_vyl(il=arr_yi(i]-1;
if(arr_y(i]l==1) arrd(i]=0.0;

else arrd{il=arr_yl([il-arr_x([i];

97



maxd=0.0;
wl=w0-1;

int H(int s,int t,int a,int yl)

{int h,H;
h=s-t+a*yl;
H=max (h,0) ;
return H;

}

int T(int b,int yn)

{int T;
T=b*yn;
return T;

}

int msp(int a,int b,int q,int n,int s,int t,

int arr_ylsublot_size])

{int i,maxl,c=0,max2,C;

maxl=s-t+a*arr_vy(1];

maxl=max(maxl1l,0);

for (i=2;i<=n;i++)

(
max2=a*arr_vy[(i]-b*arr_vy(i-1];
max2=max(max2,0);
c=max2+c; }
C=t+b*g+maxl+c;
return C;
}
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int *GG(int *array, int n)

{int *p;
int edgel[job_size]l {5}={0},gljob_size][4]1={0)},cm(4][4]=(0};
int group([job_size+l][job_size+l]=(0};

int £,hl1,h2,i,3,s,t,.k,m,v,q.,ql,92,ng,.gpl,gp2, count;

p=array;

for(i=1;i<=n;i++)

{
arr{i] [0]=*(p+(1*11+0));
arr(i][4)=arr[i][1]=*(p+(i*11+7));
arr{i] [2]=*(p+(1i*11+9));
arr(i] [10]=*(p+(i*11+8));
arr(i][1l]="(p+(1*11+6});
arr{i][(12]=*(p+(i*11+5));

for (j=1;j<n;j++)

for (i=1l;i<=n-j;i++)

if(arr(i](2)>arr(i+1]{2}])

({
arr {0} ([Ol=arr[i] [0];
arrf[0){l]=arr[i])([1];
arr(0}([2]=arr[i] (2];
arr[0}([10})=arr([i] [10];
arr(0](Ll]=arr(i] (11];
arr{0][12]=arr(i] [12];
arr(i] {O]=arr(i+1]([0];
arr(i][l]l=arr(i+1]([11;
arr{i][2}l=arr{i+1]1[2];
arr(i][10]=arr([i+1] (10];
arr{ij(ll]=arr(i+1][11];
arr(il[12]}=arr{i+1] (12];
arr(i+1] (Ol=arr(0]([0];
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arr{i+l} (l)=arr(0]{1l};
arr(i+l}(2]=arr(0](2];
arr{i+1) [10])=arr (0] [10};
arr(i+l][1ll)=arr[0][11};
arr{i+l][l2]=arr([0]j(12];

for (j=1;j<n;j++)
for (i=1l;i<=n-j;i++)

if(arr(i]) [(4]>arr[i+1][4])

{
t=arr(i] (4] ;
arr(i)(4]l=arr(i+1](4];
arr(i+l] [4])=¢t;

}

for (j=1;j<=n;j++)

(
for (i=l;arr(jl(l]'=arr(i]{4];1i++)
continue;
arr(i][3]=3;
arr[i] [(4]=-1;
}
p=array;

for(i=1;i<=n;i++)

arr[(i] [(4]="(p+(1*11+7));
for (j=1:j<n;j++)
for (i=1l;i<=n-j;i++)

if(arr{i] [4]>arr(i+1]{4}])

{
t=arri] (4];
arr{i](4)=arr{i+l}1(4];
arr{i+l]([4]=t;

}
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for(i=0;1<=12;1i++)

arr[0][i]1=0;

for(j=1:j<n;j++)

{
m=max (0, {(min(arr(j+1)[(2].,arr{j+1])(4]) -
max(arr{jl(2],arc(jl[4])));
edge(j} (0] =m;
}

for(i=1;i<=n;i++)

arr[i])([6]=0;

for(j=1;j<=n;j++)
(
if(arr(j]l (6] !=0) continue;
if(arr(j][(3]==3)
{
for(i=1l;group{i]) (1] !=0&&i<=n;1i++)
continue;
group(il(1]=3;
arr[jl(6]=1;

else

for(i=1;group(i}[1]!=0&&i<=n;i++)
continue;

m=1i;

s=3;

y=1;

while(arr[(s][3]!=3)

({
arr(s}(6]=1;
group(m] (y]=s;
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for(i=1;i!=arr(s) [3);:i++)
continue;
s=i;
y=y+1;
}
arr{s] [6]=1;

group (m] [y]=s;

for(i=1;i<=n;i++)

arr[i][6]=0;

for(i=1;group(i}[(1]!=0;1i++)
continue;

ng=i-1;

if(ng==1) goto step7;

count=0;
while (count<ng-1)
{
for (m=1;m<=ng;m++)
{
for(y=1;group(m] [y]!=0;y++)
continue;
group(m] [0]=y-1;
for(j=1;j<=group(m] [0]-1;j++)
{

for(y=1;y<=group(m] (0] -J;y++)

{

if (group[m] [yl>group(m] [y+1])

(
t=group[m] {y];

group[m] [y]=group[m] (y+11];
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group(m] [y+1]=t;

for(i=1;i<=ng;i++)
(
if(group[i] [1] !=0) continue;
for(y=0;y<=group{i+1]([0];y++)
group(i] {yl=group(i+1l][y];
for(j=0;j<=n; j++)

group[i+1] (j]1=0;

for(i=1l;i<=n-1;1i++)

{

edge{i] [1]=0;

edge([i] [3]=1;

edge[i] [4])=888888888;
}

for (m=1;m<=ng;m++)

(
for(y=1;group(m] {y] !=0&&group(m] (y] !=n;y++)
{
if(group(m] (y+l]l==group(m] [y]+1) continue;
else edgef{group(m](y]l]([1l]l=1;
}
}
m=1;

for(y=1;group(m] [y] !'=0;y++)
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continue;
gpl=group(m] (y-1};
for(y=1;group[m+1l][y] !=0;y++)
continue;

gp2=group{m+1] [y-1];

hl=max(gpl.,gp2):
h2=group[m+1] [1];

for(i=h2-1;i<hl;i++)

{
if((edge(il[1]1==0)]]| (edge(i] [2]==1)) continue;
else edge(i](4)=edge[i] [0];

for(j=1;j<n-1;j++)
{
for(i=1l;i<=n-1-j;i++)
{
if (edgel(i]j(4])>edgeli+l]([4])
{
t=edgel[il[4];
edge(i][4])=edge(i+1](4];
edge[i+l](4]=t;
s=edge[i] [3];
edge(i] [3]=edge(i+1][3];
edge(i+1l] (3]=s:

k=edge([1](3];
edge(k] [2]=1;
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if(arr(k] [4]>=arr([k]([2])

(
for(g=1:;glq]{0]!=0&&g (gl [1]!=0;qg++) continue;
glql{0]=k;
glal [1]=k+1;

}

else

{
for(g=1l;glq] (2] '!'=0&&g(qg)[3]!=0;g++) continue;
glgl{2]=k;
glql [31=k+1;

}

count=count+1;

if (count==ng-1) break;

for(i=1;i<=ng;i++)

(
for(y=1;y<=group(i] [0} ;y++)
{
if(group(i] (y]!=k) continue;
ql=i;
}
}

for(i=1;i<=ng;i++)

{
for (y=1;y<=group(i] [0];y++)
{
if(group(i] [y]!=k+1) continue;
q2=1i;
}
}

for(i=1;i<=group(g2] {0];i++)
group{ql] [group(qgl] [0]+i]l=group(qg2](i];
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for(i=0;i<=n;i++)

group(q2][i]1=0;

step7: for(i=l;i<=n-1;i++)
{
gl0] [(0]=g(0])[0]+g(i](0]}:
gl0][2]=g(0][2)+g(i][2];
}
gln][0]=0;g(n][1l]=1;
s=g(0][0];
t=g(0](2];

if(s==0) s=1;
for(j=1;Jj<n+l;j++)
for(i=1;i<=n+1-Jj;i++)

if(gli](l]<g(i+1][1])

(
gl0][0]=g(i][0]:
glOj(Lll=g(i]l[1];
glil (0)=g[i+1][0];
gli] (1]=g(i+1](1];
gli+1][0]=g[0][0];
gli+1](1]=g(0](1];

if(fe==1) t£=0;
else
{
for(j=1;j<n-1;j++)
for(i=1;i<=n-1-j;i++)
if(glil(2]>g(i+1][2]&&(!g[i+1]1([2])==0)
{
gl0i(2]=gli](2];
gl0](3]=gli]([3];
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glill[2]=gli+1](2];
glil[3]=gli+1](31];
gli+l](2]l=gl0](2];
gli+1][3]=g(0])(3]);

j=0;
if(t==0&&s==0)

{
for(k=1;k<=n;k++)
arr(kl(8]=arr(arr{k](3]1](0];
goto order;
}

for(i=1;g(i)(2)'=0;i++)
continue;

t=i-1;

for(i=1;g(i][0}!=0;1i++)

continue;

while(j<=n)

(
y=3;
if(t==0)
{
i=s;
goto step85;
}

else 1i=t;

while(i>=1)
{
y=alpha(g(i] [2],g[1](3].y):
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if(s==0) goto step86;

else i=s;

step85: while (i>=1)
{
y=alpha(g[i] [0].,g{i](1],y):

i=i-1;

step86: arr(j]l[8l=arrlarr(y]}(3]][0]);
j=j+1;

order: arr{0][9]=arr(0](0];
arr{l]{9]l=arr(0][8];

Eor(j:l;j(:n;j++)

({
for(i=0;arr(j]l{9]'=arr[1i]{0];i++)
continue;
arr{j+1]1[9]=arr{i][8];:
if (arr(j+1]{9]==arr(0](0])
break;
continue;
}
if (M==2)
{

for(j=2;j<=n;j++)
{
for(i=1;i<=n;i++)
{
if(arr{i] {O]l==arrl(j][9]) break;
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else continue;

}

s=arr{i] [1];

for (m=1;m<=n;m++)

({
if(arr(m] [0)==arxr[j-1]1(9]) break;
else continue;

}

t=arr(m] [2];

arr[jl[S]=max(s,t);

for(i=1;i<=n;i++)

(
if(arr(i} [{0]l==arr(11(9]) break;
else continue;

}

s=arr([i]([1];

for(i=1;i<=n;i++)

{
if(arr[i] {0)==arr(n]{9]) break;
else continue;

}

t=arr[i]([2];

arr (1] {5]=s+¢t;

if (M==3)
{
for(j=1;j<=N;j++)
{
for(i=1;Ylarr(j]1[91]1([1i]'=0;1i++)
(
if(i==1) {
for(f=1;f<=3; f++)
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cm{f]{l]=arr_job3
farr{j](9]][£E};

else {
for(f=1;f<=3; f++)
cm(£] [11=0;
}
for(f=1;f<=3;f++)
(

cm(f] [2]=arr_job3(arr(jl (9]} [£+3]*Y{arr(jI1(9]][i];
if(f==1)
cm{f£)(0)=cm(£] (3]+cm([£][1]+cm[E])(2];
else cm{f] [0]=cm[£] [3]+em(E] (1];
}
if(em{1] [{0]>=cm([2](0])
{
1f((em(2] [0} +em(2]{2))>=cm([3]([0])
{
cm(1] [3]=cm[1]([Q];
cm(2] [3]=cm(1][3]+cm[2](2];
cm(3] [(3)=cm([2][3]+cm([3](2];

else

if((em[3][0)-cm(1](0])>=cm(2](2])

(
cm{3]) [(3]=cm[3][0]+cm(3]([2];
cm(2] (3]=em([3] (0];
cm(1l] [3]=cm(3] [0]-cm([2][2];
}
else

cm[l] [3]=cm{1][0];
cm[2] {3]=cm{1] [3]+cm([2][2];
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cm (3] [3]=cm[2] [3]+cm([3][2];

else

if((cm(2]({0}+cm(2][2])>=cm[3][0])
(
em{2] [3]=em({2] [O)+cm([2][2}];
em[3)([3]=cm(2] [3]+cm([3])[2];
cm{1l] [3]=cm(2][0];

else

cm(3]{3]=em(3] [Q]+cm[3][2];
cm(2][3]=em([3]([0];
cm{1] [(3}=cm(2] [3]-cm{2][2]:

return{(*arr) ;

}

int *sim_anl(double TCO)

{int mu(job_size)l={0},mul[job_size]=(0},mu2(job_size]={0};
int v,i,j,.k,t=0, tmp;

int cyc=0,plt=0,qut=0;

double r=0,pro,delta,x,TCl,TC2;

int *p;
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TC1=TCO;

for(i=1;i<=N;i++)

mul(i)=arr_job{i][(6];

p_T=arr_T;

p_n=arr_n;

p_TC=arr_TC;

tmp=tmp_h;

while(tmp>tmp_l&&tmp<=tmp_h)

{
v=1;

reproduce:

srand(time (NULL)) ;
j=(l+rand () %N) ;

while(v<=V)

{
printf ("\ntmp=%d\nv=%d\t", tmp, v) ;
princf("j=%d\t", j);

for(k=1;k<=N;k++)

{
if(mul(jl>1)
{
if(k==7) mu2 [k]=mul([k]-1;
else mu2 (k] =mul[k];
}
else (v=v+l;goto reproduce;}
}

srand (seed) ;

r=((double)rand()/ (double) (RAND_MAX+1)) ;
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mu2 (0]=0;

for(i=1;i<=N;i++)

({
mu2 [0)=mu2 (0] +mu2{i];
printf("%d, ", mu2([i]);

p=MSP (mu2) ;

cyc=0;
plt=0;
qut=0;

for(i=1;i<=N;i++)

(
cyc=cyc+* (p+(1*13+5))+*(p+ (1*13+10}) ) ;
plt=plt+*(p+(1*13+11));
qut=qut+* (p+(1*13+12));

1f(M==2) cyc=cycC;

1f(M==3) cyc=cm({3](3];

TC2=cyc*qut*Ch+plt*Cmh;

printf ("TCl=%f TC2=%f\t",TC1l,TC2);

delta=TC2-TC1l;

x=delta/tmp;
pro=1l/exp(x) ;

if (delta<=0) {
TC1=TC2;
*p_TC=TC1;

p_TC=p_TC+1;
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else ({

for(i=1;i<=N;i++)
mul[i}=mu2[i];

*p_n=mu2[0];

p_n=p_n+1;

=3

t=tmp;

*p_T=t;p_T=p_T+1;

if(r<pro) {

else

}

printf ("random=%£",r);

v=v+l;
}
tmp=tmp-col_spd;
}
printf ("\ntemperature=%d\n",t) ;
return(p) :

}

TC1l=TC2;
*pn_TC=TC1l;
p_.TC=p_TC+1;
for(i=1;i<=N;i++)
mul [(i]=mu2(i];
*n_n=mu2{0];
p_n=p_n+1l;
i=3;
t=tmp;
*p_T=t;p_T=p_T+1;
}
p=MSP(mul) ;
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