INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Teaching Assignment Planner

Wei Qi Zhang

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fultillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal. Quebec. Canada

March 2002

© Wei Qi Zhang. 2002

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
3385 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68492-X

Canadi

Bibliothéque nationale

services bibliographiques

385, rue Wellington
Ottawa ON K1A ON4

Your fle Votre rétérence

Our fla Notre rétéranca

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

THE TEACHING ASSIGNMENT PLANNER

Wei Qi Zhang

The focus of this thesis is the development. design and implementation of a Teaching
Assignment Planner project.

[t can. with some constraints. be used in organizing teaching assignment. It ofters
suggestions about course assignment based on information about the instructor teaching
experience. With the two views in the main window of Teaching Assignment Planner. the
interface conveniently performs assignments and displays reports.

The application consists of instructor. course and section management subsystems.
assignment views and reports. database management and ODBC connection. The
application manages the TAP database developed with the Microsolt Access.

The design and implementation of the database is based on Microsoft MFC framework
and Access database. The application is implemented in VC++ version 6.0. which
provides a powerful set of developing and debugging tools in an integrated environment

for developing object-oriented application.

ACKNOWLEDGMENT

[would like to give special thanks to Dr. Peter Grogono tor his kind support and
cncouragement in getting me started. for his valuable suggestions and instructions while

in the process of writing this thesis. It could not have been completed without his help.

Table Of Contents

LASUOF FIGURES ..o e vi
Chapter I Introductionoceeeeeioieieooeoeeeeeeeeeeee 1
1.1 What is a Teaching Assignment Planner?................ooooi 1
1.2 How the Teaching Assignment Planner worksooooooooveoe 3
1.3 Organization of this RePOT...........o.oiimiioiie oo 7
Chapter 2 Backgroundccocoooiiiooioieeeeeeeeeeeee 9
2.1 Platform and development 100IS ..o 9
22 Constraints Consideration.............ooocoeoveiie oo 15
23 Components in The User Interface ... 16
24 SUMMANY OF SUFVEY oot 18
Chapter 3 Design of the Teaching Assignment Planner ..o 20
3.1 SYSIEM AFCRIICCIURC .o 20
3.2.1 E-Rimodel o 24
322 The schema 0F COURSE Lo 25
323 The schema oF SECTEON Lo 26
3.24 The schema oF INSTRUCTOR ..o 28
3.2.5 The schema off COURSESECTION 29
326 The schema of TEACHINGASSIGNMENT 29
3.2.7 The schema o ECRELATION Lo 30
328 The schema of CCRELATION oo 31
3.2.9 DA INCLRILY e 31

3.3 Application architeClure ... 33
3.3.1 Document View architeCture ..o 33
3.5.2 Splitter Window and List VIeWoooooovioiooieeeooe 39
3335 CRecordSet inheritance ..o 40
Chapter 4 Implementation of the Teaching Assignment Planner ..o 44
4.1 Fhe Application ArchiteCtureo.ooooooo e 45
4.1 Programming Language and ©00ISoo.oooiiieeeo 45
4.1.2 The Application Frameworkooooevvovoooiinoooeeeoeoooo 43
413 MESSALRE MAP e 47

4.2 Document View Implementation........oo.ooooovooioooiieiooeooo 50
4.2.1 The clone of application...........co.oooeieioiiiioeeeeee 50
4.2.2 SPItter Windows ... 32
4.235 The association of Document View ¢lasses.........oocooooooo 4

4.3 Main classes INrOdUCTION ..o 56
4.3.1 The CTAPApp class and CMainFrameo.ooooooooeeo 36
432 The CTAPView and CSUbCULISt w...o.ov.owovoeeeeoooe 39
433 The CTAPDOC Class.......oveteeeeee e 62
434 The CCOUrSESEl CIASS ...t 65
435 The CCourseTableFontSheet €lass ..o 69
Chapter 3 ConclUSION ..o 72
APPENAIN e 74
RELCIeNCes ..o 78

List Of Figures

Figure I: The architecture of ODBC........................ 21
Figure 2: The E-R model of TAP............ 24
Figure 3: The layout of Teaching Assignment Planner........... ... 44
Figure 4: MFC framework intertace............................. 47
Figure 5: The applications intertace of executing three times of clone function. 51
Figure 6: The splitter Windows. ... 34
Figure 7: The objects are associated in Document/View architecture. ...ooooo........55
Figure 8: Components in the application interface..............................._. 74
Figure 9: The menu Table with items................... 75
Figure 10: The menu View withitems..........o. 75
Figure 11: The menu Report with items.................. 76
Figure 12: Course subsystem dialog box interface................................... .. 76
Figure 13: Section subsystem dialog box intertace. 76
Figure 14: Instructor subsystem dialog box interface. ... 75

vi

Chapter 1 Introduction

The Teaching Assignment Planner is an application that can be used to building
schedules for university teachers. It allows the management of data such as instructor
experience and workload. as well as all the sections™ schedules. Constraints are
automatically checked when a new assignment is entered. An update is then given
based on the new assignment. If the current assignment meets some constraints. an
error message is displayed and no changes will occur.

The current status of all assigned and unassigned courses. sections. and the current
coordination are all reported in the report list along some statistics provided in the

summary list.
1.1 Whatis a Teaching Assignment Planner?

The Teaching Assignment Planner stores the information about instructors. courses.
sections and all assignments in the TAP database. which is a relational database. built

with Microsoft Access and is managed by an ODBC connection.

The goal of this application is to provide assistance in managing the teaching
assignment plan. It can provide some suggestions for assignments or give out some
options based on the information already stored in the database.

The Teaching Assignment Planner consists of course. section and instructor
management subsystems as well as views and reports. It manages the basic data of

courses. instructors. sections. and the assignment relationship between them. Each

subsystem consists of a set of functions to load. update and store data. Any addition
and cancellation of assignments is performed in these subsystems. The three
subsystems perform all data management based on the records of the TAP database.
These records. which can be added. deleted and updated. are managed in the database
table. However. new data isn’t stored in the database until confirmed. Records can be

searched based on the information in the subsystem.

When entering a new assignment. the program will automatically check for constraints

and notify the user of any found on conflicts. The tollowing are some constraints:

Not more than two difterent coordinators can be assigned to one course.
- Each section requires. at least. one instructor with adequate experience.
- Each course has zero or some sections. which must be scheduled in ditferent
terms. days. and must have different starting and finishing times.
- The instructor’s teaching time should be well planned so that two sections
connect occurring at the same time and they are not ¢lose one to another.
- One or two coordinators assigned to some course. which may or may not be
assigned to a section.
Depending on which constraint is met. the Teaching Assignment Planner will cither
continue or abort a new assignment. If for example. an instructor is assigned as a
coordinator for a course. even it the instructor’s workload exceeds the pre-assigned
workload value the assignment will be contirmed. Whereas other assignments will
abort if. for example. an instructor is assigned to a section. which takes places at the

same time as another section to which the instructor has already been assigned. The

9

assigned and unassigned list of course to section. section to instructor. coordinator to a
course. unassigned course. unassigned section. workload and instructor’s teaching
experience as well as the summary of some statistics are provided in reports which

also give an overview of all the information.

1.2 How the Teaching Assignment Planner works

Data operations are divided into two parts. Ordinary operations. such as the database
connection (opening) and disconnection (closing) are done automatically. Other
operations. such as updating the data. making new assignments and storing new data

are only executed once contirmed and updated in the database. [T1][12]

The Teaching Assignment Planner automatically loads all the data in the TAP
database whenever the application is launched. The event list window displays the
state of database operations. The information message box is launched it the Teaching
Assignment Planner can’t connect to the database or it some records in the database

table aren’t accessible.

Subsystem operations are activated whenever the user changes data by means of
dialog box tunctions. A message box intorms the user ot any operational errors. For
cach updated data item. a default value is provided by the subsystems. With the copy
and paste tunctions. usable within different dialogs in the same subsystem. adding and
deleting data to update the operation’s record. is made casier. Subsystems also have

commit and rollback functions to protect all the data. The data stored in the database

(99}

remains unaftected until the commit operation is performed. On the other hand. data
changes in the views are immediately stored in the database without any confirmation.

Whenever a new assignment is entered. the Teaching Assignment Planner verifies it
there are any constraints. The verified elements are: term. date. assignment’s starting
and finishing times. assigned workload. actual workload of the instructor. and the
number of assigned coordinators for a course. It a conflict is found. a message box will
inform the user. If. for example. the instructor subsystem finds a time conflict between

two sections taught by one instructor. a warning will be given.

Subsystem operations are performed in the dialog windows with different functions
like Find. Add. Update. and Delete. which are some of the usual ones. Additional
functions manage information such as teaching experience. teaching assignment. and

coordinator assignment. and can be found in cach individual subsystem.

The instructor subsystem manages the information about instructors such as the
instructor’s name. ID. expericnce. course coordination list. the number of courses that
should be taught. and the assigned and actual workloads. The operations performed in
this subsystem tind available instructors. to add new instructors. delete or update any
instructor data in the database (such as instructor experience). teaching and

coordination assignments.

The course subsystem manages all the information about courses such as course code.

number. title. credits. sections and information about the necd of coordinators.

Operations performed in this subsystem are to find. add. delete. and update course

information.

The section subsystem manages the information about the sections like section ID.
session. code. teaching days. and start and finish times. The operations pertformed in

this subsystem are to find. add sections. and update the information of sections.

The views operation allows the user to have a visual idea of all assignments.
Information such as which course is assigned to which section. course coordinator
assignments. teaching assignments. and suggestions for instructor teaching
assignments. are provided in this operation. Colored icons identify the state of each

item.

There are two separated views in the application frame. The left view is used mainly
to display data. such as sections left to be assigned. The right view displays possible
options for this new assignment such as instructor information. The right view also
displays reports and summaries of statistics. Assignments usually end in a cooperation
of the two views. New and cancelled operations are theretore resumed in the right

view.

Views also provide reports on different combinations of courses. sections. instructors
and ccordinators. These reports provide summaries and data details such as the

number of instructors. courses. courses requiring coordination. courses with an

wn

assigned coordinator. sections. and sections with an assigned instructor. Other reports
list courses and sections including their assigned coordinator and instructors assigned

to each section.

A message box is used to notify the user of an internal event. or of the state of the
application’s execution. All message boxes display the information with standard
Window operating system icons.

The information message boxes can be divided into three categories.

Stop: Notities the user that an error was detected by the application. therefore
the current operation aborts.

Information: Notilies the user that an error or event was detected by the application
so the current operation may or may not be performed properly. It may
also just abort.

Selection: The user can decide whether to continue or to cancel the current

operation before the procedure goes on.

Colored icons are displayed and help identify the state of the item presently in the
view. These colored icons can be divided into 6 categories.
Red: [t the instructor’s workload is exceeded.
If the section remains unassigned (with no instructor).
[f the course needing a coordinator remains unassigned.
Green: [f the instructor’s workload is just right.

[t the instructor has been assigned for the section.

If (a) coordinator(s) has (have) been assigned for a course.
Yellow: If the instructor’s workload is incomplete.
[t the section has not yet been assigned to an instructor.

If the course has not yet been assigned to a section.

Blue: If the instructor has teaching experience in this course
Gray: [t the instructor is assigned to the section.
Purple: [f the instructor is assigned as coordinator of the course.

The Teaching Assignment Planner manages all the data stored in the TAP database. a
relational database built in the Microsoft Access database. connected by ODBC. This
architecture benefits from the flexibility and etliciency ot ODBC API [10] and
framework MFC [9}. Classes can hence be managed in association with the records of

the TAP database.

1.3 Organization of this Report

This report is organized as follows:
Chapter I introduces the Teaching Assignment Planner application. which can be used

to assist the assignment of University courses. instructors and coordinators.

In Chapter 2. gives a breakdown of the development of the Teaching Assignment

Planner database done by analyzing some tools used to build this application.

Chapter 3 reviews the design issues that were considered to implement this project.
The architectural design of the Teaching Assignment Planner is explained and an E-R

model of the TAP database given.

Chapter 4 explains the implementation of this project and details are given in the form

of codes. figures and tables.

Chapter 5 is the conclusion on developing this project.

The Appendix presents menu structure that can help the user to understand how to use

the application.

Finally. the reference indicates helpful documents. which were used.

Chapter 2 Background

In this chapter. the basic development of the Teaching Assignment Planner project is
presented. The design. implementation and strategies to deal with some of the
constraints occurring in the teaching. coordinating and section assignments are also
discussed. Finally. some issues in relation with the project’s environment and

development tools provided or available in the platform are also discussed.

2.1 Platform and development tools

The first issue in designing and implementing Teaching Assignment Planner was to tind
an appropriate platform. [2][3] The application for the Teaching Assignment Planner
must: (1) enable the user to access data in the database. (2) make logical reasoning. (3)
verity it there are constraints caused by new assignments. give out the final result on the
screen. and store it in the database. All functions implemented should be intertaced with

the end-user. and with the database.

The Windows operating system is the best platform to develop and implement this

project [4] [5]. Here are the reasons why the Windows operating system was chosen.

1. The Microsoft Access database is available.

The Access database is the most popular and powerful database management
system (DBMS) provided by Microsoft. Access is a relational database. which

can be used for developing the TAP database.

ODBC is very flexible and powerful.

ODBC is the database portion of the Microsofi Windows Open Services
Architecture (WOSA). an interface that allows Windows-based desktop
applications to connect to multiple computing environments without rewriting

the application tor cach platform.

ODBC is a call-level interface that allows applications to access data in any
database for which there is an ODBC driver. Using ODBC. database applications
can access any database tor which the end-user has an ODBC driver. ODBC
provides an API that allows the application to be independent of the source
database management system (DBMS). The Access driver is already installed in

ODBC when published by Microsoft.

The following are components of ODBC:
e ODBC API

A library of function calls. a set of error codes. and a standard Structured Query

Language SQL syntax for accessing data on DBMSs.

e ODBC Driver Manager

A dynamic-link library (ODBC32.DLL). it loads ODBC database drivers on

behalf of an application. This DLL is transparent to application.

e ODBC database drivers

One or more DLLs that process ODBC function calls for specific DBMSs.

e ODBC Cursor Library

A dynamic-link library (ODBCCR32.DLL). it resides between the ODBC Driver

Manager and the drivers and allows scrolling through the data.

o ODBC Administrator

A tool used to configure a DBMS and to make it available as a data source tor an

application.

An application achieves independence from DBMSs by working through an
ODBC driver written specifically for a DBMS rather than working directly with
the DBMS. The driver translates the calls into commands its DBMS can use.
simplifying the developer’s work. and making it available for a wide range of

data sources.

The database classes any data source that has an ODBC driver. This might. tor
example. include a relational database. an Indexed Sequential Access Method
(ISAM) database. a Microsoft Excel spreadsheet. or a text file. The ODBC
drivers manage the connections to the data source. and SQL is used to select

records from the database.

3. MFC provides the classes to manage the database and create user interfaces.

Some classes are listed below:

CBDatabase:

A CDatabase provides improved support ftor transactions. Its objects represent
the connection to a data source. which allows the applications to operate on it.
Data source is a specitic instance of data hosted by a database management
system (DBMS) on of which is Microsoft Access is one of the available DBMS.
Applications can have more than one CDatabase objects active at a time.

With the class of CDatabase. commit or rollback functions are available and

enable transactions.

CRecordSet:

2\ CRecordset object represents a set of records selected from a data source.
Known as “recordsets.” CRecordset objects are typically used in two forms:
dynasets and snapshots. A dynaset stays synchronized with data updates made by

other users. A snapshot is a static view of the data. Each form represents a set of

records fixed at the time the recordset is opened. When an application is scrolled
to a record in a dynaset. it reflects changes subsequently made to the record.
either by other users or by other recordsets in the same application. CRecordSet
encapsulates a set of records selected from a data source. Recordsets enable
scrolling from record to record. updating records (adding. editing. and deleting
records). qualifving a selection with a filter. sorting the selection. and
parameterizing the selection with information obtained or calculated at run time.
CRecordView:

A CRecordView provides a torm view directly connected to a recordset object.
The dialog data exchange (DDX) mechanism exchanges data between the
recordset and the controls of the record view. Like all form views. a record view
is based on a dialog template resource. Record views also allow moving from
one record to another in the recordset. updating records. and closing the
associated recordset when the record view closes.

CDBExcption:

A CDBException object represents exceptions arising from the database classes.
The class includes two public data members. which applications can use 1o
determine the cause of the exception or to describe it by means of a text message.
CDBException objects are constructed by member functions of the database
classes. An exception results from failures in data access processing. This class
serves the same purpose as other exception classes and in the same way as the
class library.

CFieldExchange:

The CFieldExchange class supports the record field exchange (RFX) and the
bulk record field exchange (Bulk RFX) routines used by the database classes.
This class is used if data exchange routines are needed for custom data types or
when bulk row searching is being implemented. Otherwise. this class is not used
directly. RFX and Bulk RFX exchange data between ficld data members of a
recordset object and the corresponding fields (table columns) of the current

record on the data source.

A great number of interface controls or components can be available in

MFC classes.

The MFC is a Microsott product used as a framework to develop Window-based
desktop applications. There are many classes available to implement GUL Some
of them are listed below:

CDialog:

The CDialog class is the base class used to display dialog boxes on the screen.
Two types of Dialog boxes exist: modal and modeless. The user must close a
modal dialog box before the application can continue whereas a modeless dialog
box allows the user to display a dialog box and to return to another task without

canceling or removing it.

A dialog box. like any other window. receives messages from Windows. In a

dialog box. applications can handle messages trom the dialog box"s control.

CPropertySheet:

An object of class CPropertySheet represents property sheets. otherwise known
as tab dialog boxes. A property sheet consists of a CPropertySheet object and of
one or more CPropertypage objects. A property sheet is displayed. by the
framework. as a window with a set of tab indexes by means of which the user

can select the current page. and an area tor it.

CPropertyPage:

o

An object of class CPropertyPage represents individual pages of a property sheet.
As with standard dialog boxes. it can classify cach page in property sheet of the

CPropertyPage. [1]

2.2 Constraints Consideration

Before active data in the database is updated by a new assignment and displayed on the
screen. constraints should be checked in a logical manner. I the assignment meets any
constraints. the operation should be aborted or canceled. Following are a list of aspects
that should be considered so to avoid constraints.

1. IF more than one section is assigned to the same instructor. a different time is
required for each assignment. Also. an appropriate period of time should be left
between sections.

2. It is suggested that a course section should be assigned to an instructor with

adequate teaching experience.

I

9.

10.

2.3

The workload of an instructor can increase by three points if a new section is
assigned and can decrease by three points if an assigned section is cancelled.

If a teacher is assigned as a coordinator to a course. the workload differentiates
by only one point (increase/decrease).

As an instructor’s workload shouldn’t exceed 16 points and the total workload
should be recalculated before the new assignment is activated in the database. [f
the instructor’s workload exceeds 14 points. the user should get notified.

Not more than two coordinators can be assigned to one course. if (a)
coordinator(s) is (are) needed for the course.

I two coordinators are nceded by one course. they should be two ditterent
instructors.

Courses can be assigned as teaching sections in one. two or three terms or not at
all. In any case. the course information should be saved in the database.

A course can be assigned to one or more sections. However. only one instructor
can be assigned to a section.

One section can be taught once or twice cach week but at different times.

Components in The User Interface

The interface of the Teaching Assignment Planner consists mainly of Perportysheet.

dialog. message box. and list view. all used in difterent subsystems and for ditterent

uses. Next are all the components of the interfaces:

Menu

The menu includes items. which allow the user to perform ditterent operations. Any
selection will cause an event passing through the message map mechanism of MFC
by Windows operating system.

There are three main categories ot operations included in the menu.

* Table operations. The table operations include all operations of the
course table. the section table. and the instructor table. These three
subsystems functions manage the data in the TAP database. Each
subsystem can update. add or delete data in these tables.

* Views operations. There are two views in the main frame of the
application of the Teaching Assignment Planner: left view and right
view. These two views are driven from the CListViews class. The left
view provides mainly the view functions which display some basic data
retrieved from the database. The right view provides cooperation with the
left view for assignment functions. It also displays some lists and reports
data.

* Reports operations. This type of operations reports data displaved on
the right view. Reports provide an overview of the application’s managed
data and some numbers of courses. sections and instructors.

2. Dialog box.
The dialog boxes are used for interactions between the end-user and the applications.
The subsystems use the dialog to get the user’s data key in and to display the data

from the database to the user. In these dialog boxes there are some controllers. which

are buttons. list boxes. or edit windows. Dialog boxes and controllers offer user-
triendly intertace and functional pertormance for the user’s operations.

3. Message box.

The message box is used to notify a user of an event that occurred in the application.
The three categories of message boxes are described in Chapter 1. Usually the
information of a message box informs the user of a wrong doing in the current
operation.

4. List views,

The list views provide help to the user in assignment operations by allowing the
selection of different items on different views. Also. it displays lists and reports with
flexible formats (column width. position and row arrangements). Displayving the
results of statistic is hence. more flexible and effective.

5. lcons.

The icons are used to identify the state of an item in the list view. There are 6
different icon colors used to identify the state of a course. a section. or an instructor.

The description of these icons is made in the Chapter 1.

2.4 Summary of Survey

Further analysis and study on database related applications and topics [13][14][15] were
made. [1]{2][3] The database applications should all have at least three parts. or. layers.
which cooperate together to perform the functions provided by the application [16][17].
For the Teaching Assignment Planner project. the three layers built as application

architecture are the following.

Database management layer.

This layer is in charge of managing data in the database. It is used as an interface
between the database and the application document layer. which manages the
data that will be saved in the database or which has been retrieved from it. The
CRecordSet and CDatabase derived classes are in this layer.

The document/Data management layer.

This layer is in change of managing and re-organizing data into logical
categories. [t interfaces both the database management laver and the user
interface layer. The Cdocument class. which will be introduced in Chapters 3 and
4. belongs to this layer.

The user interface layer.

This layer interfaces applications with end users. It is in charge of displaying
data to the user. in the window. The displayed data depends on the document
layer. and on user activities in interfaced components. which communicate with
the application. The user interface is divided into two parts in the Teaching
Assignment Planner. one part is dialog box. used in the subsystem. and the other
is ListViews. used to report and make some assignments. Both can display the

data and get user action to the application.

Chapter 3 Design of the Teaching Assignment Planner

The design of the Teaching Assignment Planner consists of svstem architecture.
database design and application architecture. Figures and tables are used in this chapter
to explain the design of the Teaching Assignment Planner. All design issues are solved
in the system architecture. the database design. and the object-oriented design of

application classes.
3.1 System Architecture

I'he system consists of three parts: application. ODBC. and database.

In this project. the DBMS of Access. developed by Microsoft. is connected at the low
level to the ODBC. The TAP database is built in Access and the E-R model explains the

details about it.

Open Database Connectivity (ODBC) was Microsoft’s first cohesive effort to design an
API that could be used by C programmers. ODBC provides its own flavor ot SQL. The
application passes ODBC SQL to ODBC. which translates the ODBC SQL into the

tlavor of SQL appropriate for the used DBMS. [11] [12] [10]

ODBC is a proven interface. which makes it possible for an application to access
relational data from a variety of database management systems. and therefore ODBC is

used to build many database applications.

The ODBC architecture consists of a top-level driver manager (odbc32.dll) and many
DBMS-specific DLLs. known as drivers. The driver manager loads and unloads the
native drivers. receives. requests from the application. and manages the subsequent
driver actions. The driver handles the communication between the driver manager and

the data source.

MFC database ODBC32.DLL
application Driver manager
ODBCJT32.DI.L ODBCCR32.DL.L
Jet Controller Cursor library
MSJT3032.DLL SQL Server
Jet database ODBC driver
engine
MSXB3032.DLL SQL Server
Xbase driver

Remote
Local MDB Shared database

Figure I: The architecture of ODBC

In the application part. MFC (Microsoft Foundation Classes) provides two wrapper

classes for the ODBC API. The CDatabase class represents the database source. and the

CRecordSet class represents the data itself. All the details about the results from these

two classes will be discussed in the following chapters.

3.2

Database Design

After analyzing the requirements for the Teaching Assignment Planner. three entities

and four relations were involved in this application design [13] and are listed below:

Entities

19

LI

Course:

[t records all the information about a course. such as the code. the number. the
title. the credits and. it needed. the coordinators. The course code and number are
two attributes in the combination ot the primary key.

Section:

[t records all information about a section. such as the session. the session code.
the starting time. ete. The primary key for this entity is Section_ID built with the
combinations of course code and number. session and session code.

Instructor:

It records all information about an instructor. such as the name. the

instructor_ID. the workload. ete. The primary key of this entity is the instructor

ID.

Relations:

1.

9

(93}

Teaching experience:

It records the teaching experience for each instructor. presented by course code
and number. The instructor’s ID represents the instructor. All the attributes in
this table are primary key.

Coordination assignment:

[t records the coordination assignments to a course for cach instructor. The
course code and number represent the course. the instructor’s ID represents the
coordinator and all attributes in this table are primary key elements.

Section assignment:

[t records all the sections assigned to cach course. The course code and number
represent the course. the section is represented by the section D and once again.
all the attributes in this table are primary key.

Teaching assignment:

It records all the courses assigned to instructors. The course code and number
represent the course. the instructor’s [D represents the instructor and all the

attributes in this table are primary key.

1t
(V7]

3.2.1 E-R model

COURSE _NUMBER

FINISHI

/ COURSE SECTION /—.
! STARI2

18]

—.

N INSTRUCTOR

Figure 2: The E-R model of TAP

3.2.2 The schema of COURSE

COURSE (COURSE CODE. COURSE _NUMBER, TITLE, CREDITS.
NEEDS_COORDINATOR)

Description:

FIELD DATA TYPE KEY EXAMPLE
COURSE CODE Varchar(4) PRIMARY COMP
COURSE NUMBER Varchar(4) 6451

TITLE Varchar(30) DATA DESIGN
CREDITS Varchar(8) 4.0

NEED COORDINATOR | BOOI. YES

* The Primary key is the combination of COURSE_CODE and COURSE_NUMBER.

e This table is in relationship with the sections.
The table defines some courses. which may not be assigned to any sections in the
current term. or not in any terms. Some courses may only be assigned to one section.
and others may be assigned to more than one. The relationship between course and
section is 1 to many (0 - N). The relation of COURSESECTION defines the
relationship between course and section.

e This table is in relationship with instructors and defines their experience teaching
this course.
Instructors have their course teaching experience presented in a list of courses.
defined in this course table. Normally. instructors have experience in teaching some
courses. and therefore some courses are taught by only one instructor. Finally. it is
also possible that no instructor has the experience of one specific course. The
teaching experience of instructors varies so the relationship between course and
instructor on teaching experience is many to many (N - M). The relation of

ECRELATION detines the relationship between teaching experience and course.

® This table is in relationship with instructor and the role of coordinator if assigned so.
Defined in this table are the courses where instructors act as coordinators.
The relationship between course and instructor as coordinator is (N — M) because
one course can have more than one coordinator and each instructor can coordinate
more than one course. The relation of Coordination defines the relationship between

the instructor and the course. CCRELATION is the relation name.

3.2.3 The schema of SECTION

SECTION(SECTION_ID. SESSION, SESSION_CODE, DAYS. START. FINISH)
Description:

SECTION(SECTION_ID, SESSION, SESSION_CODE, DAYS, START. FINISH)

Description:

FIELD IDATA TYPE KEY EXAMPLE
SECTION ID Varchar(11) PRIMARY COMPO645312AX
SESSION Varchar(1) 2
SESSION_CODE Varchar(2) AX

DAYSI Varchar(1) M for Monday
STARTI Varchar(3) 10:20
FINISH1 Varchar(3) 12:20

DAYS2 Varchar(1) F for Friday
START2 Varchar(3) 10:20
FINISH2 Varchar(5) 12:20

This schema defines the table of section. which describes the information needed for
sections assigned to the course. defined in the course table.

e The primary key is SECTION _ID.

o This table is in relationship with course.

Each section defined in this table can be assigned with only one course defined in the
course table. The relationship between course and section is 1 to many. because one
section can only be assigned to one course. but one course can have more than one
section.

The table COURSESECTION defines the relationship between course and section.

o This table is in relationship with the instructor.

Only one instructor can teach a section but each instructor can teach more than one
section. The relationship between instructor and section is 1 to many (1 - N).

The relation TEACHINGASSIGNMENT defines the relationship between section and
instructor.

e There are some constraints on this table.

More than one section can be assigned to the course defined in the course table but the
sections must be defined as different sessions or in the same session. but with different
session codes. That means that in one term. one course can be assigned to more than one

section with different session codes.

The session should only exist if the course exists. If no course is defined in the course

table. no session should be detined in the section table for that course.

3.2.4 The schema of INSTRUCTOR

INSTRUCTOR(ID, NAME, NUMBER_COURSE, WORKLOAD. ACTUAL_WORKLOAD)

Description:

FIELD DATA TYPE KEY EXAMPLE

ID Varchar(8) PRIMARY 00000001

NAME Varchar(50) Soheila Kersuova
NUMBER OF COURSE | Int 4

WORK_LOAD Int 16
ACT_WORKLOAD Int 10

This schema defines the table of instructor.

e The primary Kkey is instructor ID.

e This table is in relationship with the course and defines the teaching experience and
coordination ot an instructor.

One instructor can have teaching experience for more than one course. More than one

instructor can have teaching experience for the same course. The relationship between

teaching experience ol a course and instructor is N-M.

As an instructor can be coordinator for more than one course and that more than one

instructor can be coordinator for one course. the coordination relationship between

course and instructor is N-M.

o This table is in relationship with section and teaching assignment.

Only one instructor can be assigned to teach each section but one teacher can be
assigned to teach more than one section. The relationship of teaching assignment

between instructor and section is 1 to many.

3.2.5 The schema of COURSESECTION

TEACHING_ASSIGNMENT(SECTION _ID. ID)

Description:

FIELD DATA TYPE KEY EXAMPLE
COURSE_CODE Varchar(4) PRIMARY COMP
COURSE_NUMBER Varchar(4) PRIMARY 6401
SECTION_ID Varchar(11) PRIMARY COMPO40ITA

This schema defines the relationship between course and section (1 - N). One course

can be assigned to many sections but one section can only be assigned to one course.

All atributes are Primary key. Details are from the scheme of COURSE and

INSTRUCTOR.

3.2.6 The schema of TEACHINGASSIGNMENT

TEACHING_ASSIGNMENT(SECTION _ID. ID)

Description:

FIELD DATA TYPE KEY EXAMPLE
SECTION ID Varchar(11) PRIMARY COMP64512AX

ID Varchar(8) 10000011

This schema defines the relationship between the instructor and a section (1 = N). One

instructor can teach more than one section in the same term but cach section can only be

taught by one instructor.

Primary key is SECTION_ID. Other details are found in the scheme of COURSE.

INSTRUCTOR.

3.2.7 The schema of ECRELATION

ECRELATION(ID. COURSE_CODE., COURSE_NUMBER)

Description:

FIELD DATA TYPE KEY EXAMPLE
ID Varchar(8) PRIMARY 10000001
COURSE_CODE Varchar(4) PRIMARY COMP
COURSE_NUMBER Varchar(+4) PRIMARY 6451

This relation defines the relationship of teaching experience between instructor and

course (N-N).

All the attributes in the table are Primary key. Other details are found in the scheme of

COURSE. INSTRUCTOR.

3.2.8 The schema of CCRELATION

CCRELATION(ID, COURSE_CODE, COURSE_NUMBER)

Description:

FIELD DATA TYPE KEY EXAMPLE
ID Varchar(8) PRIMARY 10000001
COURSE_CODE Varchar(4) PRIMARY COMP
COURSE_NUMBER Varchar(4) PRIMARY 6451

This relation defines the relationship of coordination between instructor and course (N-

N).

All the attributes in the table are Primary key. Other details are given in the scheme of

COURSE.INSTRUCTOR.

3.2.9 Data integrity

To keep data integrity. the TAP database is equivalent to the Access Referential
[ntegrity. Referential Integrity is a system of rules. which makes sure that the
relationship between rows in related tables are valid and that user cannot accidentally
delete or change related data. Data changes in the database only occur if they respect the

Referential Integrity svstem.

The following rules are observed with referential integrity.

® User cannot enter a value in the foreign keyv column of the related table if that
value doesn’t exist in the primary key or in the related table except a null. For
example. a user cannot assign a course to an instructor it that course does not
exist in the course table. or if the instructor does not exist in the instructor table.
But a user can enter an instructor or a course individually into the database
betore assigning a course to an instructor.

e User cannot delete a row from a primary key table if there are rows matching in a
related table.

e User cannot change a primary key value in the primary key table it that row has

related rows.

For more secure operations and for data protection. TAP also follows the cascading

update and cascading deletes.

For relationships in which referential integrity is enforced. TAP automatically follows
cascade update and cascade delete related records. Setting these options allow delete and
update operations. which are normally prevented by referential integrity rules. When the
user deletes records or change primary key values in a primary table. TAP makes the

necessary changes to related tables in order to preserve referential integrity.

TAP automatically updates the primary key in all related records any time a user makes

some changes because of cascade update and cascade delete. which define the

|99
9

relationship. For example. if a user changes an instructor’s ID in the Instructor table. the
instructor ID field in the teaching experience table is automatically updated for each
course taught by this instructor so that the relationship doesn’t break. TAP cascades

updates without displaying any message to the users.

When a user deletes records in the primary table. TAP automatically deletes related
records in related table. For example. if user deletes a course record from the course
table. the teaching experience records of that course are automatically deleted from the
teaching experience table (this includes records in the SECTION. CCRELATION table

related to the COURSE records).

3.3 Application architecture

3.3.1 Document/View architecture

The documenvview architecture is the basic programming model of MFC for building a
window-based application. Document/view implementation in the class library separates
data from its display and from most user operations on the data. In this model. an MEC
document object reads and writes data into permanent storage. The document may also
provide an interface to the data wherever it resides (such as in a database). A separate

view object manages data display. from rendering the data in a window to user selection

L
(93]

and editing of data. This view displays data tfrom the document and communicates it

back to the document for any changes.

Document is associated with views. A document template creates the frame windows
that frame the views and is responsible for creating and managing documents of the

same type.

The CDocument class provides the basic functionality for programmer-detined
document classes. A document represents the unit of data that the user typically opens
with the Open command of the File menu and saves with the Save command of the File
menu. In the Teaching assignment Planner. the document class manages all data access
to the TAP database for views and reports. The open and close database source is
automatically done when the user selects these functions. All changes to the data are
managed through the document class. The view uses this interface to access and update

the data.

The CListView class provides the basic functionality for programmer-defined view
classes. A view is attached to a document and acts as an intermediary between the
document and the user. It renders an image of the document on the screen and interprets
user input as operations upon the document. The CListview provides a lot of functions

for displaying lists and reports. Some member functions are basically available tor the

user to click on the screen and the items. Inheritance of the base class CListView. are the
two derived classes (CTAPView and CSubCtrolList) developed to display all the
information and to get user actions applied to the items. so that the item operation

benetits the user operation on the view.

MFEC’s documentview architecture makes it casy to support multiple views. single

document interface. splitter windows. and other valuable user-interface teatures. At the

heart of document/view of the application are five key classes:

e CTAPDoc:

This class derives from CDocument and is used 1o store or control the program’s
data. CTAPDoc gets two pointers to point to the CTAPView object and

CSubCtrlList object.

e CTAPView:

This class derives from CListView and is used to display a document’s data and
manages user interaction with items operation. It is different from other views.
because the item unit is the basic operation element on the screen. CTAPView
can activate three other objects. ClnstructorTableFontSheet.
CCourseTableFontSheet and CSectionTableFontSheet. These three objects serve
as interfaces to the user and hold CProportypePage objects to implement three

subsystems.

W
W

CSubCtrlList:

This class derives from CListView and is also used to display the document’s
data and to manage user interaction with items operation. Additional functions
distinguish this view from CTAPView. However. for assignment operation.

cooperation exists with the object of CTAPView for view and report display.

ClFrameWnd:

CFrameWnd. is a class used to provide the frame which contains the two views,
The CFrameWnd class provides the tunctionality of a Windows single document
interface (SDI) overlapped or with a pop-up frame window. along with members
for managing the window. If a CFrameWnd object contains views and
documents. the framework would indirectly create them. The CDocTemplate
object orchestrates the creation of the frame. the creation of the containing views.
and the connection of the views to the appropriate document. The parameters of
the CDocTemplate constructor specity the CRuntimeClass of the three involved
classes (document. frame. and view). New frames are dynamically created by the

framework using a RuntimeClass object.

A CFrameWnd contains default implementations to perform the following

functions needed by a typical Windows application:

e A CFrameWnd frame window keeps track of a currently active view

independent of the active window or of the current input focus.

36

Command messages and many common frame-notification messages.
including those handled by the OnSetFocus. OnHScroll. and OnVScroll
functions of CWnd. are brought by a CFrameWnd frame window to the

currently active view.

The currently active view can determine the caption of the frame window.
Turning the FWS_ADDTOTITLE styvle bit of the frame window off can

disable this feature.

A ChrameWnd frame window manages the positioning of the control bars.
the views. and other resulting windows inside the frame window's client
arca. A frame window also updates toolbars and other control-bar buttons
and also has default implementations of commands for putting the toolbar

and status bar on and off.

A CkrameWnd frame window manages the main menu bar. When a pop-up
menu is displayed. the frame window uses the UPDATE_COMMAND Ul
mechanism to determine which menu items should be cnabled. disabled. or
checked. When the user selects a menu item. the frame window updates the

status bar with the message string for that command.

A ClrameWnd frame window has an optional accelerator table that

automatically translates kevboard accelerators.

e A CFrameWnd frame window has an optional ID help set with a LoadFrame
used tor context-sensitive help. The frame window is the main orchestrator of
semi modal states such as context-sensitive help (SHIFT+F1) and print-

preview modes.

e CDocTemplate:

CDocTemplate is an abstract base class. which defines the basic functionality tor
document templates. The application usually creates one or more document
templates in the implementation of the Initlnstance function. A document

template defines the relationships among three types of classes:

* A document class. with an application deriving from CDocument.

A view class. displaying data from the document class listed above.

A frame window class. containing the view. For a single document intertace

(SDI) application. the class is derived trom CFrameWnd.

¢ The document template stores pointers to the CRuntimeClass objects tor the
document. view. and frame window classes. These CRuntimeClass objects

are specitied when constructing a document template.

The document template contains the ID of the resources used with the document type.
The document template also has strings containing additional information about its

document type. These include the name of the document tvpe and the file extension. [9)]

In a running application. these objects cooperatively respond to user actions. bound
together by commands and other messages. A single application object manages one
document template. Document template creates and manages one or more documents.
The user views and manipulates a document through a view contained inside a frame

window.

3.3.2 Splitter Window and List View

A splitter window is used in the Teaching Assignment Planner to display the views and
reports and to perform some operations in relation to an assignment. The splitter window
benefits the user by splitting the window into two or more scrollable panes. A splitter
control in the window frame next to the scroll bars allows the user to adjust the relative

sizes of the panes. Each pane is a view on the same document.

A view can be attached to only one document. but a document can have multiple views
attached to it. For example the document is displayed in a splitter window. an
application can support different tvpes of views for a given document type. These
different types of views can be placed in separate frame windows or in separate panes of

a single frame window if a splitter window is used.

A view may be responsible handling several different types of input. such as kevboard

input. mouse input or input via drag-and-drop. as well as commands from menus.

toolbars. or scroll bars. A view receives commands forwarded by its frame window. If
the view does not handle a given command. it forwards the command to its associated

document. Like all command targets. a view handles messages via a message map. [8]

The Teaching Assignment Planner uses static windows with views created by different
classes. and starts with a window split into two panes. cach with a different purpose. The
left pane displays view's results or the data to be assigned and the right pane displays

reports and cooperation assignments.

lhe CView class provides the basic functionality for user-defined view classes.
CListView is derived from Cview and makes it casy o integrate a control list in the
MEC document/view architecture. encapsulating the control as much as CEditView

encapsulates an edit control. This control fills the entire surtace area of an MEC view.

3.3.3 CRecordSet inheritance

In the MFC. several classes are provided to manage the database. One row of stored data
in the database table is called record. A set of record can be retrieved through Structured
Query Language (SQL). After a set of record gets into the memory. or controlled by the
application. update. delete. and add functions become available. For each record set.

FMC provides the CRecordSet class to manage it.

40

A CRecordset object represents a set of records selected from a database. C Recordset
objects are typically used in two torms: dynasets and snapshots. A dynaset stays
synchronized with data updates made by other users. A snapshot is a static view of the
data. Each form represents a set of records fixed at the time the recordset is opened. but
when scrolled to a record in a dynaset. it reflects the changes subsequently made to the

record. cither by other users or by other recordsets in the application.

The application takes an application-specific recordset class from CRecordset to work

with it. Recordsets select records from a data source. and the application can then:

e Scroll through the records.

e Update the records and specify a locking mode.

e Filter the recordset to constrain which records it selects trom those available on

the data source.

e Sort the recordset.

e Give parameters to the recordset to customize its selection with information.

which remains unknown until run time.

The derived class in the application is used to be connected to the database and to build
a recordset object. giving the constructor a pointer to CDatabase object. The user may
then select the recordset’s Open member function if the application specities whether the

object is a dynaset or a snapshot. Selecting the Open function pulls out data from the

41

data source. After the recordset object is opened. member functions and data members

can be used to scroll through the records and to operate on them.

To refresh records that may have been changed or added since the Open selection. the
object’s Requery member function can be selected. The Close member function is used

to destroy the object when the application is finished with it.

In a derived CRecordset class. record field exchange (RFX) or bulk record field
exchange (Bulk RFX) is used to support reading and updating record tields.
Listed below are the classes derived from CRecordSet for the Teaching Assignment
Planner.
e C(CCourseSet
The object of this class manages the records retrieved from the Course table
database. It manages the operations ot adding. updating and deleting course records.
e (SectionSet
The object of this class manages the records retrieved from the Scction table
database. It manages the operations of adding. updating and deleting sections
records.
e ClnstructorSet
The object of this class manages the records retrieved from the Instructor table
database. It manages the operations of adding. updating and deleting records of
instructors. instructors’ teaching experience. coordinating and teachin

g assignment.

=

e CandCRelationSet

The object of this class manages the records retrieved from the CCRelation table
database. It manages the operations of adding. updating and deleting coordination
records.

e CEandCRelationSet

The object of this class manages the records retrieved from the ECRelation table
database. It manages the operations of adding. updating and deleting teaching
experience records.

e (CCourseSectionSet

The object of this class manages the records retrieved from the CourseSection table
database. It manages the operations of adding. updating and deleting records of
section assignment.

e CCTeachingAssignmentSet

The object of this class manages the records retrieved from the Teaching Assignment
table database. It manages the operations of adding. updating and deleting records of
teaching assignment.

Details will be discussed in Chapter 4.

Chapter 4 Implementation of the

Planner

The design of the Teaching Assignment Planner includes a database presented as a

window-base related application. which inherits some classes from MFC. The TAP

Teaching Assignment

database runs on the Window Microsoft Access operating system as DBMS and

therefore the implementation directly and clearly inherits from classes in MFC. The

application intertace is shown below:

e TGTTE
e CONTUTE,

e EIRENTR

R ZIeL1] B
R I8 1 P

R RN

i
.

QL)
ey e o e COEOOOF, are WIATE
e 1y
Sewch Jady | Upcete | Delete |
Couse Code ICDT'— Couse Nurbae |p.uu
Coucs This p:uur«s 40, A CLOUECEY,
v P TITREER
Cieclls IR Neods Coodneios (7.,
| | 2 |
MoeFir | Movere | MoveNet| Moveles | Costi | oD Puce "
Coagie)tde by Seen ogwmned os ogEvalan Lo TN
The c1aes: hrve Denr foega 1om the ose T e
] ax l Carcsl l
o } aileg |
Ready) W

Figure 3: The interface of theTeaching Assignment Planner

44

4.1 The Application Architecture

4.1.1 Programming Language and tools

The Microsoft Visual C++ is the best language.

VC++ includes:

VC++ IDE provides programmer with a framework that they can extend using

other C++ sources and tools.

e VC++incorporates ANSI C. necessary tor Object -Oriented programming.

* MFC class wizard includes and integrates development environment (IDE) to
create a main frame and to develop the application.

e All the components to create menus. toolbars. icon edit and other elements are

included in the VC++ IDE.

® The MFC library is used to develop applications. [7]

4.1.2 The Application Framework

MFC provides reusable codes in the form of pre-written C++ classes. The application
uses a class library. and applies the classes to specific problems. which the application
has to solve. The MFC libraries provide such utility classes. it also implement an
application framework. In addition to the functionality normally presented by simple

class libraries. this framework offers a backbone for applications. The application

b
L)

framework built into MFC manifests itself in classes and data structures designed to help

the creation of an application and its fundamental features. [8]

The application framework helps initializing and running application with the capability
to respond to messages sent by Windows at runtime. and to adequately terminates the
application. It also allows the implementation of OLE. as well as other large-scale
application feathers such as print preview. When using the MFC framework to develop
an application. some steps must be followed. Parameters must be assigned in cach step
to configure the application. The frame of an application is available after each step of

the setting.

The details about MFC framework can be found in. [TI[7]18]

The following figure is the interface of the VC++ environment to develop this

application with MFC frame.

46

. VAP Miciosolt Vaual Cee - |T1APVIew cpp)
B Be EX You pitn Brisct Bkt Took Wrow Heo o . T el
VeaD s oD

E - EEY Rmice o W OB e e e e

— == e te w4 TrachinGASS tSnaEnt St
- w_p i Teschinghssy inaent St o NULL g
- OB 1AP lies = '
N Sasce Fims ~
2) ContFeldynio oo :: ©oa_pilecticnTet

2} Comzeletcop

2] Coszel stdef cre” heet 20
2] Cirteat cpg

2} EsnaCRetanon et cro

) tmhcrcSet coo !
2] tetnctaal stdef nedS et oy

n_pllecriinlet + jev

2 Maréimate I » pllecrticnSer - sonazet)

2] Sectasiet cro {

2 Sl ek waSrewt P'.r'.'..::"&tl'rr‘ﬂ:!l._\r} *abim san nCt feeen spen NOoanw SQeration can e 1w ai.able ©
temLmte W eIt panTer

j(i:;:' d a_pllecticnZer - HULL

> et g et orn

2 TP 0 }

*) TAP ¢

j“ﬁ'wvcm p’t@!(!\:uunl:l S B_ R et LIn et - et Revanidoount

e > 1t Reccrilcunter 1

_t APV cpp) {

2) Tewtepinymente o Peraaiebox. HO war~ recorin ante fount 0 Csection it BRI HST B owg g ol

Y Hemser Fée l"‘\alc'\"rllp-p-,

¥ ConCFmimns e b - .IlE e """"f’,’l,ﬁ.

2] Casrtimn T pm

2] Couel sief oviree n)

J) Civentny

T’Jcm”‘ s _pleschinTAssianaentler + nau Teachinakzsia

8] E yCReluxnlet b e

- 7 ne ¢ Recordeer
3] Inimucteeeth - .. =

A} iremateal tirF o rdS beet 0

table can Bt tewn L fen Nuooaney Frrsti noan fee Ay

‘-.nv- n_se T-w rar<A ;r-.-nl‘--z

"?,U.t\havl) Rascuace... | 5] Fiaview Lel L C T U D e N ;]’:'
Ml na

Cresting hravee int- 1yl

TAF ~xe tomrTor o T warniseg -

Ready

e T

Figure 4: MFC framework intertace
4.1.3 Message Map

Message Map is a way to associate Windows and user messages with the functions
handling them. By implementing mess sage maps. MFC avoids the problems associated

with those brutishly large vtables.

Message maps are casier to use than the “Switch™ statements. Message maps clearly
indicate that a given message is being handled by a certain function within an MFC class
or within the user defined class deriving from CCmdTarget class of MFC. Because this
information directly comes trom the me essage map. the particular function responsible

for responding to a specitic message as well as the intent in a central location is clearly

47

given. Any MFC class derived from CCmdTarget (including CCmdTarget class) accepts

a message map. [8]

In the Teaching Assignment Planner. some classes can accept the message from

&

message map. These are CTAPDoc. CTAPView. CSubCtrList.
CSectionTableFontSheet. ClnstructorTableFontSheet. CeourseTableFontSheet and all
CPerportyPage derived classes included in the CSectionTableFontSheet.
ClnstructorTableSheet. CCourseTableFontSheel. As an example. the message map built

in the CTAPView class included in the TAPView.C file is showing below:

BEGIN MESSAGE _MAP(CTAPView. CListView)
WAFX MSG MAP(CTAPView)
ON_COMMAND(ID TEST LIST. OnTestlList)
ON_NOTIFY REFLECT(NM DBIL.CLK. OnDblclk)
ON_NOTIFY REFLECT(NM RCLICK. OnRclick)
ON_COMMAND(ID VIEW INSTRUCTOR. OnViewInstructor)
ON_COMMAND(ID_VIEW SECTION. OnViewSection)
ON_COMMAND(ID VIEW UNASSIGNEDSECTION. OnView Unassignedsection)
ON_COMMAND(ID VIEW CLEAR. OnViewClear)
ON_COMMAND(ID_VIEW _SUGGEST INSTRUCTOR. OnView SuggestInstructor)
ON_COMMAND(ID VIEW _ADD ASSIGNMENT. OnViewAddAssignment)
ON_COMMAND(ID_VIEW ADD COORDINATION ASSIGNMENT.
OnViewAddCoordinationAssignment)
I AFX MSG MAP
Standard printing commands
ON_COMMAND(ID_FILE PRINT. CListView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT DIRECT. CListView::OnFilePrint)
ON_COMMAND(ID FILE PRINT PREVIEW. CListView::OnFilePrintPreview)
END_MESSAGE MAP()

To start a message map in the application and in a class. some special macros should be
used. which normally are "BEGIN_MESSAGE _MAP()™ and
"END_MESSAGE_MAP()". Other macros are also used to indicate exactly what

message will be mapped.

18

CCcmdTarge takes care of implementing the message map. which searches and links

codes. while CWinThread has the code. which sends the m ssage and gets it routed to

the appropriate area in the corresponding CCmdTarget-derived object. There are three

main categories of messages

I.

19

L2

Windows messages

These primarily include messages beginning with the WM_ prefix. except the
WM_COMMAND. Windows messages are handled by windows and views and

often have parameters used to determine how to handle the message.
Control notifications

Includes WM_COMMAND notification messages between basic (parent) and
added (child) windows. For example. an edit control sends its parent a
WM_COMMAND message containing the EN_CHANGE control-notification
code it the user took action. which may have altered text in the edit control. The
window message handler responds to the notification me sage by retrieving the

text in the control.

The framework routes control-notification messages such as other WM _
messages. The only exception is the BN_CLICKED control-notification
message sent by buttons the user clicked. This message is treated s specitically as

a command message and routed like other commands.

Command messages

19

This includes WM_COMMAND notification messages from user-interface
objects such as: menus. toolbar buttons. and accelerator keys. The framework
processes commands differently from other messages. and they can be handled

by many Kinds of objects. [9]

4.2 Document/View Implementation

The Teaching Assignment Planner application is designed in such a way a request of the
application’s document class is created tor cach document object with two views

displayving data.

4.2.1 The clone of application

The clone functionality allows the user to create as many instances of the application as
needed. The clone function can be activated by clicking the clone menu item included in
the View menu. Below are the results after executing the clone tunctions three times.

Each application executes difterent functions.

h
(=)

10 | towme | | ComeCode [Cormbumber | SectinSestion_| SectonCose |
@1!&!1(‘1 Gekem 1 gy COmF 407
anan: Aamedt (g (T MF 41
Uity ny n OO0 ComE =401 N]
TN CE, name (CALEGEF, [LEE]{ LM ComE i 1y M A
WOUF g - L L b
atecerns
aoacce
T
(oo 2ian
(e
rcoroner M=
e e
@
o [are T ¥eerbes Of Causva | Woskioad <]
‘:T‘;:} 0000006t et < L
@ o L;‘ ALK eIl) ‘.
SR [Ci1atein] (& . »
I :"" OOXCE rame X0ONXE «
et ETITIETS rame LLULEE | *
o At o, rome OOUG? 4 S
F el I8 At (-TheroTa rame UIGH 4 Kl
wien 22 R 07XEN0 nare FRGECO 4 Ry
ittt 1 L e ramerragres 4 "
il tar e OO % Kl
PMwledd
LLLELED roaere CTEOILEY 4 3
§" s 000003 e *OUUCES =
sl JTOE rome TOAN; 4 "
1 e TR v
L1 r T 4 'k
[RTIRT - . '
T - 4 3
10 e, * . - -
© AL “ v
) 1 i et P [¥
o s 2 E) 1o o v eds is
Ready ®» n o . » .
1 S| dld _'r‘
] Reay Hum
1 — 2]
Reaty

Figure 3: The applications layout after executing the clone function three times.

NUM

In the Document/View architecture. more than one request for a particular view may be

associated with a given document and more than one view can be associated with the

same document. This is the inherent power of the document/view architecture. As the

application is running. a clone of it can be created or destroyed. This teature allows the

user to view and compare data from the same data source. To implement the clone

function. one member function should be added into the maintrame class. The tfollowing

is the piece of code implementing the clone function in the Teaching Assignment

Planner.

void CMainFrame::OnViewClone()

STARTUPINFO si:

wh

PROCESS_INFORMATION pi:

Initialize the STARTUPINFO structure.
memset{&si. 0. sizeol(si)):
si.cb = sizeof(si);

CreateProcess(
NULL. pointer to name of executable module
(LPTSTR) AfxGetApp()-'m_pszAppName. ° pointer to command line string
NULL. pointer to process security attributes
NULL. pointer to thread security attributes
FALSE. handle inheritance flag
0. creation flags
NULL. pointer to new environment block
NULL. pointer to current directors name
&si. pointer to STARTUPINFO
&pi pointer 1o PROCESS INFORMATION

4.2.2 Splitter Windows

[n a splitter window. the window can be split into two or more scrollable panes. A
splitter control (or "split box") in the window frame next to the scroll bars allows the
user to adjust the relative sizes of the panes. Each pane s a view of the same document.

In the Teaching Assignment Planner project. there are two views in the main frame.
combined with PropertySheet objects. which give the user a triendly interface. The code
added to create the splitter windows in a member function of the mainframe class is

listed below:

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT Ipcs.

CCreateContext* pContext)
P

'
]

create a splitter with | row. 2 columns
if (!m_wndSplitter.CreateStatic(this. 1. 2))
'
t
TRACEO("Failed to CreateStaticSplitter n"):
return FALSE:

N
[}S]

add the first splitter pane - the default view in column 0
if (!m_wndSplitter.Create View(0. 0.
pContext-*m_pNew ViewClass. CSize(200. 50). pContext))

TRACEO("Failed to create first pane n"):
return FALSE:

“add the second splitter pane - an input view in column |
if (!m_wndSplitter.Create View(0. |.
RUNTIME CLASS(CSubCtrList). CSize(0. 0). pContext))

]
1

TRACEO("Failed 1o create second pane n™):
return FALSE:

activate the input view
SetActiveView((CView*)m wndSplitter.GetPane(0.0)):

return TRUE:

W
Lo

The figure below shows the layout of the interface with two views sharing the same

frame.

PEL- RN X)] T

Cousse Code Consre Nuswbes [| Name | thmber 01 Courrn | Weskined | ActoWokioed | AcksWoskinad]
COme w1 @muun Cogws e 1 F i 4
el g s ung romesl. i .
Come A O00C00e o« € 3 N
COme A [CEIYL YY) rote ALLEVRS ¥) i
LOME -4 GUR rowre ATLCRER . s N

‘AR [EeRanpIng rawne 1OMCDT7] ¥ 1

CImP A L0000 rame JACALE 8 R y X

LmE K] tredatal) ot TOEAN 4 a1 ' a

COmMF [Inrerrey e FREXTE 4 -) \G

100000 rame SAOANEOC < X 3 X

10000 roare TICCONCT : € ¥ ¥

IRV (LT fowte TLRTREL N t N

IR e CRIOIEY: 4 . i i

< R ' X

[" 3 ‘&

MY] ~

4 r ' *

B ¥) €

T 1l o

4 M3 1 Tk

M3 ¥ T

3 1 x

Sy) “r

Al i) Al

v ' r

1 Rl) r

“r 1 e

) M| L]

Ready NUM

Figure 6: The splitter Windows

4.2.3 The association of Document/View classes

To support the Document/View architecture. the application should be built in such a
way that classes separate and cooperate together to manage all functions in the
application. The figure below shows which classes support a simple SDI with two views

used in the application of the Teaching Assignment Planner implemented around MFC.

Each object of a class in the higher level creates the object of a class in the lower level
(sold line). The pointer is used to access the data members or member functions in cach

object (dashed line).

Application Object
CWinApp

A Create
Pointer to

....... » Document Template
CSingleDoctemplate

Pointer to

i
' -~
N ' Create
Create :
'
|
1
Document Object q------- Frame Window
CDocument €-------~ CFrame Wnd
]
'
R T
Pointer to | Vo Pointerto __
: s Vo o .
i ~a '] - |
' S 1 . '
' So ' - '
' <.i 1 Create __- '
) AR} Pae |
H Vet .
v :',1" V
-]
TAPView Object P SubCtrlList Object
CListView ro CListView
Vo
Pointerto ____ | ______ S Pointer to

Figure 7: The associated objects in the Document/View architecture

w
w

4.3 Main classes introduction

A set ot all classes is introduced in this section to clarify the architecture of the Teaching
Assignment Planner application. Some main functions are introduced in each section to

explain the main feature of that class.

4.3.1 The CTAPApp class and CMainFrame

The CTAPApp class derives from the MFC CWinApp class. which is the base class
from which an application takes a Windows application objcct. An application object
provides member tunctions to initialize and to run the application (and cach instance of

it).

The application using the Microsoft Foundation classes can only contain one object
derived from CWinApp. This object is constructed when other €+~ global objects are
constructed and is already available when Windows uses the WinMain function.
supplied by the Microsoft Foundation Class Library. CTAPApp derives trom the

CWinApp object at the global level.

When the application derives an application class from CWinApp. it overrides the

[nitlnstance member function to create the application’s main window object.

To derive a class and implement an Initlnstande function by an application the following

steps must be taken:

CTAPApp initialization

BOOL. CTAPApp::Initinstance()
]

t
AfxEnableControlContainer():

Standard initialization

If' you are not using these features and wish to reduce the size

of your final executable. vou should remove from the tollowing
* the specific initialization routines you do not need.

sifdet AFXDLL

Enable3dControls(): Call this when using MFC in a shared DLL
zelse

Enable3dControlsStatic(): Call this when linking to MFC statically
=endif

Change the registry kev under which our settings are stored.
TODO: You should modity this string to be something appropriate
such as the name ot your company or organization.

SetRegistry Kes (_T("Local AppWizard-Generated Applications™)):

LoadStdProfileSettings(): Load standard INI file options (including MRU)

Register the application’s document templates. Document templates
serve as the connection between documents. frame windows and views,

CSingleDocTemplate* pDoc Template:
pDocTemplate = new CSingleDoc Template
IDR_MAINFRAME.
RUNTIME _CLASS(CTAPDoc).
RUNTIME_CLASS(CMainFrame). main SDI frame window
RUNTIME _CLASS(CTAPView)):
AddDocTemplate(pDocTemplate):

“Parse command line for standard shell commands. DDE. file open
CCommandLinelnto cmdinto:
ParseCommandLine(cmdinto):

Dispatch commands specitied on the command line
if (!ProcessShelCommand(ecmdinfo))
return FALSE:

' The one and only window has been initialized. so show and update it.
m_pMainWnd->ShowWindow(SW_SHOW):
m_pMainWnd->Update Window():

return TRUE:

This class cooperates with the CMainFrame class to control all the views created in the
application. With the CMainFrame class. the clone application can be created and

splitter views can be built in the CMainFrame class with the following steps:

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT Ipcs.
CCreateContext* pContext)
1
t
create a splitter with | row. 2 columns
if (!m_wndSplitter.CreateStatic(this. 1. 2))

TRACEO("Failed to CreateStaticSplitter n”):
return FALSE:

add the first splitter pane - the detault view in column 0
i (!'m_wndSplitter.Create View(0. 0.
pContext-‘m pNewViewClass. CSize(200. 50). pContext))
]
)
TRACEO("Failed to create first pane n"):
retumn FALSE:

add the second splitter pane - an input view in column |
if (!m_wndSplitter.Create View(0. 1.
RUNTIME _CLASS(CSubCtrList). CSize(0. 0). pContext))

TRACEO("Failed to create second pane n™):
return FALSE:

activate the input view
SetActiveView((CView*)m _wndSplitter.GetPane(0.0)):

return TRUE;

4.3.2 The CTAPView and CSubCtrList

These are two views built to display data on the screen and to perform or cancel
assignment operations. The pointers point to the CTAPDoc class to get data and call

some functions implemented in CTAPDoc class.

The CTAPView class derives from CListView class. It implements and overrides some

functions.

HAFX MSG(CTAPView)
afx msg void OnTestList():
afx msg void OnDblcIk(NMHDR* pNMHDR. LRESULT* pResult):
afx_msg void OnRelicktNMHDR* pNMIHDR. LRESULT* pResult):
afx_msg void OnView Instructor():
afx_msg void OnViewSection():
afx_msg void OnView Unassignedsection():
afx_msg void OnViewClear():
afx_msg void OnViewSuggestinstructor():
alx_msg void OnViewAddAssignment():
atx_msg void OnView AddCoordinationAssignment():
HAFX MSG

3

]

3

(r

=)

3

[§f

3

]

3

lf}

i}

Some message handlers are built in the class to respond to the user action on the screen.

Initially at the class. some parameters are assigned to control the view properties.

BOOL CTAPView::PreCreate Window(CREATESTRUCT& cs)

TODO: Modity the Window class or styles here by modifving
the CREATESTRUCT cs
cs.style & = «(LVS_LIST: LVS_ICON!LVS SMALLICON):
cs.stvle 1= LVS REPORT:
cs.styvle = LVS_SINGLESEL:
return CListView::PreCreate Window(cs):

To see this view as a List view with small icons. the view must be initialized as report

tvpe and single selection item.

The message map is below:

BEGIN_MESSAGE _MAP(CTAPView. CListView)
HAFX_MSG_MAP(CTAPView)
ON_COMMAND(ID_TEST LIST. OnTestList)
ON_NOTIFY_REFLECT(NM_DBLCLK. OnDblclk)
ON_NOTIFY_REFLECT(NM RCLICK. OnRclick)
ON_COMMAND(ID_VIEW_INSTRUCTOR. OnViewlinstructor)
ON_COMMAND(ID_VIEW _SECTION. OnViewSection)
ON_COMMAND(ID_VIEW _UNASSIGNEDSECTION. OnViewUnassignedsection)
ON _COMMAND(ID_VIEW CLEAR. OnViewClear)
ON _COMMAND(ID VIEW SUGGEST _INSTRUCTOR. OnViewSuggestinstructor)
ON_COMMAND(ID _VIEW_ADD f\SSIGNMENT OnViewAddAssignment)
ON_COMMAND(ID VIEW ADD _COORDINATION ASSIGNMENT.
OnVlc\\AddConrdlnduonf\sswnmcm)
1TAFX_MSG MAP
Slandard printing commands
ON_COMMAND(ID FILE_PRINT. CListView::OnFilePrint)
ON_COMMAND(ID_FILE _PRINT DIRECT. CListView::OnFilePrint)
ON COMMAND(ID FILE PRINT PREVIEW. CListView::OnFilePrintPreview)
END MESSAGE MAP()

All messages created in the view are sent to the mess sage map and handled by this class.

Based on the same principle. the CSubCtriList class has a similar structure.
The main member tunctions of the CTAPView class are listed below:

* OnDblclk(): this function is a message’s handler which responds to the action on
the screen double clicking. The event will cause the NM_DBI.CLK to activate.
the corresponding reaction of the application will take place based on the
following statement.

ON_NOTIFY REFLECT(NM DBLCLK. OnDblclk)
Then the OnDblclk() will be executed. to identify which tunction should be

launched by this action from the user. To deal with the double clicking. many

switch codes in the function have to be dealt with.

60

switch (m_WhichFunctionForLDBCLK)

case |:

case 2:

case 3:

case 4:

Suggest instructor for unassigned section

Result = GetDocument()->m pCSubCtrlL.ist-- SuggestinstructorForSection(
buf[4]. but]0]):

it (Result == 1)
MessageBox("Database errores foundn. No any operation can be
available.". "Suggest and Add instructor”.MB ICONSTOP
MB OK):

break:

" Delete one assignement section

Result - GetDocument()- -DeleteOneAssignedSectiony but]0]. str. m nitem):
it (Result 1)

MessageBox("Database errores foundn. No any operation can be
available.”. "Delete Assigned Section”. MB ICONSTOP MB OK):

break:
Add a coordinator to a course

Result : GetDocument()---m _pCSubCtrL.ist- -
AddCoordinatorOnCourseSeletion(but]0]):

if (Resuit == 1)

MessageBox("Database errores foundn. No any operation can be
available.”. "Delete Assigned Section”.MB ICONSTOP MB OK):

break:
Delete one coordinator trom a course

Result = GetDocument()--DeleteOneCoordination(butl6]. buf[t]. str
m_nltem):
if (Result == 1)

MessageBox("Database errores foundn. No any operation can be
available.”. "Delete Coordination”.MB_ICONSTOP MB OK):

Break: H

61

e OnViewlnstructor(): this function is the message’s handler to display a view of
instructors. When the user clicks on the Instructor menu item under the View
menu. the message ID_VIEW_INSTRUCTOR will be launched and 2o into the
message map. Afier being launched. the message arrives at the CTAPview

messag

&

(¢’

map. The corresponding statement 1s:

ON_COMMAND(ID VIEW INSTRUCTOR. OnView Instructor).

4.3.3 The CTAPDoc class

The CTAPDoc class is derived trom the CDocument class. which provides the basic

functionality for user-detined document classes.

Users access CTAPDoc via the two views associated with the object explained before. A
view renders an image of the document in a frame window and interprets user input as

operations to the document. CTAPDoc document class has two views associated with it

CTAPDoc is a part of the framework’s standard command routing and consequently
receives commands from standard user-intertace components. [t receives commands
forwarded by the active view of each CTAPView or CSubCtrlList. If it doesn’t handle a

given command. it forwards it to the document template managing it.

The tunctions overridden by the CTAPDoc are listed below:

{ tAFX_VIRTUAL(CTAPDoc)
public:
virtual BOOL OnNewDocument():
virtual void Serialize(CArchive&: ar):
VAFX VIRTUAL

The message map of CTAPDoc is listed below:

BEGIN_MESSAGE_MAP(CTAPDoc. CDocument)

UAFX MSG MAP(CTAPDoc)
ON_COMMAND(ID REPORT_TEST. OnReportTest)
ON_COMMAND(ID EDIT_COURSE TABLE. OnEditCourseTable)
ON_COMMAND(ID EDIT_SECTION TABLE. OnEditSectionTable)
ON_COMMAND(ID EDIT INSTRUCTOR TABLE. OnEditlnstructor Table)
ON _COMMAND(ID VIEW_CLEAR ALL _VIEWS. OnViewClearAllViews)
ON_COMMAND(ID DELETE _TEACHING ASSIGNMENT. OnDelete TeachingAssignment)
ON _COMMAND(ID DELETE COORDINATION _ASSIGNMENT.

OnDeleteCoordinationAssignment)

HAFX_MSG MAP

END MESSAGE MAP()

I'he main functions of the class with associated view tunctions are explained below:

SuggestinstructorForUnassignedSection:

This function gives the user all unassigned sections and instructor’s data from the
TAP database. then the CTAPView displays all the unassigned sections for the
uscr to select. The user selects an unassigned section by double clicking on the
unassigned section’s first item. the course code with the red colored icon
(displayed on the left view). CSubCtrlist view then displays all the experienced
instructors who can be assigned to teach this section. The colored icon which is
the first item in the instructor data indicates the instructor's actual workload
(displayed on the right view). The user selects an instructor to be assigned to this

section by double clicking the instructor's first item. The application will

automatically check for any conflicts for the current assignment. If a contlict
occurs. an information box will be launched and this assignment will be

canceled.

AddInstructorForCoordinator:

This function gets all courses and instructor’s data from the TAP database.
Then. the course’s data is displayed on the CTAPView for the user to make a
selection. The user selects a course by double clicking the course’s first item
with the green icon. CSubCtriList view will then display all the instructors who
can be assigned to coordinate this course. The colored icon. which is the first
item of the instructor’s data. indicates the actual workload assigned to the
instructor. The user then selects an instructor to be assigned as coordinator of this
course by double clicking the instructor’s first item. The application then checks
the actual workload to sce whether it is exceeds the normal 14 points. An
information box is launched if the workload is exceeded. The user can chose
between two options. If OK is selected. the assignment is done: otherwise the

application aborts the current assignment.
UpdatelnstructorWorkload:

This function is used to update the instructor’s workload value. This function
isn’t directly launched by the user through an action on the view. but by other
functions. which take care of the maintenance of the database. For example.
when the user assigns a course to a coordinator. the coordinator's workload

should be updated to indicate the newly assigned workload.

64

e DeleteOneAssignedSection:

This tunction deletes an instructor’s teaching assignment. After this operation is
completed. the updatelnstructorWorkload function should be selected to update

the actual workload of that instructor.

4.3.4 The CCourseSet class

The CCourseSet class derives from the CRecordSet class. A CRecordset object
represents a set of records selected from a data source. CRecordset objects are typically
used in two forms: dyvnasets and snapshots. CCourseSet stays synchronized with data
updates made by other objects of RecordSet. Each class in the Teaching Assignment
Planner deriving form the CRecordset represents a set of records fixed at the time when

the corresponded table was opened.

The main functions of this class are:
Open:

The application selects this member function to run the query defined by the
object. The object connection to the data source depends on how the application
constructs the CCourseSet before selecting the Open tunction. If the application

sends a CDatabase object to the CCourseSet constructor. which has not been

connected to the data source. this member function uses GetDefaultConnect to
attempt opening the database object. hence making the commit and rollback

functions available.

Committing an operation means saving current updated changes in the
database. All the updated data will be saved in the database after the last
commit operation. To rollback an operation means to abort all updated data and
not making any changes in the database up to the last commit operation. The
rollback operation gives the user the opportunity to cancel all changes atfectin
the database. so that the database is secure. Commit and Rollback operations
are only available in the subsystems through dialog boxes and aren’t provided

on the views operations.

The user can select items on the views and can finish the assignment without
selecting the Commit and Rollback tunctions since updated data is saved in the

database immediately after items trom the views are selected or deleted.

MoveFirst:

This function allows making the first record in the first position of the current
record set. Regardless it bulk row searching was implemented. this will always

make the first record in the CCourseSet available in first position.

MoveNext:

66

This function member allows making the first record in the next position of the

current record set. MoveNext simply moves to the next record. if existent.
MovePrev:

This function member allows making the first record in the previous position of
the current record set. MovePrev simply moves to the previous record. if it

exists.
MoveLast:

This function member allows putting the first record in the last position of the

current record set. MoveLast simply moves it to the last record in the recordset.
Close:

This function member closes the CCourseSet. The ODBC HSTMT and all the
memory of the framework allocated for the CCourseSet are cancelled. Usually
after the Close function is selected. the application deletes the C++ CCourseSet

object if'it was allocated with a new C++ operator.
Addnew:

This function member allows adding a new record to the table. The application
must connect to the Requery member function to see the added record. The
record’s fields are initially Null. (In database terminology. Null means “having

no value™ and is not the same as NULL in C++.) To complete the operation. the

67

application must then call the Update member function. Update saves the

changes to the data source.
Edit:

This function member allows changing the current record. After the application
selects Edit. the application can change the field data members by directly
resetting their values. The operation is completed when the application
subsequently selects the Update member function to save changes on the data

source.
Delete:

This tunction member allows deleting the current record. After a successtul
deletion. the CCourseSet’s field data members are set to a Null value. and the
application must explicitly call one of the Move functions in order to move oft
the deleted record. Once the application moves off the deleted record. it is not
possible to return to it. It the data source supports transactions. the application

can make the Delete selection part of a transaction.
Update:

This function member is used after selecting the AddnNew or Edit function
member and is required to complete these operations. As for the Delete function.

Update is not required.

68

4.3.5 The CCourseTableFontSheet class

The CCourseTableFontSheet class derives from the CPropertySheet class included in
MFC. The objects deriving from the CPropertySheet represent property sheets.
otherwise known as tab dialog boxes. A property sheet consists of a CPropertySheet
object and one or more CPropertyPage objects. A property sheet is displaved by the
framework as a window with a set of index tabs. from which the user selects the current

page as well as the new area for it.

Even though CPropertySheet is not derived from CDialog. managing a CPropertySheet
object is similar to managing a CDialog object. For example. the creation of
CCourseTableFontSheet requires a two-part construction: creates the object. and then
calls DoModal for a modal property sheet. Below is a part of the code used in the

CTAPDoc to create CCourseTableFontSheet.

void CTAPDoc::OnEditCourse Table()

m_CourseFontSheet.SetTitle("Course Table"):

ift m_CourseFontSheet. DoModal() !'= IDOK)

m_CourseFontSheet.Cancel():

For each CPropertyPage class included in the CPropertySheet creation and deletion. the

class derived from the CPropertySheet should take care. The objects of the

69

CPropertyPage should be added into the sheet to activate them. Here are some parts of

the code in the CCourseTableFontSheet to create the CcoursePages objects.

m_pCourse_pagel = new CCoursePage I (this);
m_pCourse_page2 = new CCoursePage2(this):
m_pCourse_page3 = new CCoursePage3(this):
m_pCourse_page4 = new CCoursePaged(this):
AddPage(m_pCourse pagel):
AddPage(m_pCourse page2):
AddPage(m_pCourse page3):

AddPage(m _pCourse paged):

After CCoursePage objects are created and added into the CCourseTableFontSheet
object. all functions can be selected from other objects or interfaces. just like normal

dialog box object.

The following part of a code from CCoursePagel shows how the message map works:

BEGIN_MESSAGE_MAP(CCoursePagel. CProperty Page)
AFX_MSG_MAP(CCoursePagel)

NOTE: the ClassWizard will add message map macros here
ON_BN_CLICKED(IDC_COURSE FIND COPY. OnCourseFindCopy)
ON_BN_CLICKED(IDC_COURSE_FIND_PASTE. OnCourseFindPaste)
ON_BN_CLICKED(IDC_COURSE FIND FIRST. OnCourscFindFirst)
ON_BNﬁCLlCKED(IDC_COURSE_FIND_GO. OnCourseFindGo)
ON_BN_CLICKED(IDC_COURSE _FIND PRE. OnCourseFindPre)

ON_BN_CLICKED(IDCACOURSE_FIND_N EXT. OnCourseFindNext)

70

ON_BN_CLICKED(IDC_COURSE_FIND LAST. OnCourseFindLast)

ON_BN_CLICKED(IDC_COURSE FIND CLEARDIALOG. OnCourseFindClearDailog)

ON_BN_CLICKED(IDC_COURSE_FIND_CLEAR_LIST. OnCourscFindClearList)
IVAFX MSG MAP

END_MESSAGE MAP()

71

Chapter 5 Conclusion

In this report. we discussed how the Teaching Assignment Planner was been
implemented using an object-oriented programming environment (VC++ and MFC) .
The architecture is the most important part. [2] Detailed explanations of design and
implementation can only be done after the architecture design phase. By using ODBC
and the framework MFC. a desktop database related application can be developed easily
and quickly. A good design allows the creation of codes. and. since code are reusable for
classes. the application easily reuses the existing classes to build new ones. With this
tframework. the application can casily be integrated into an existing architecture suitable

tor the application to solve problems.

The advantages in using framework are listed below:

® The architecture is clear and stable.
There are available architectures to develop applications using MFC. whether
SDI or MDI. The association between all document. frame and views classes is
already done. All the member functions of the basic class are available to the
resulting class. The application finds the solutions to the specific problems.

¢ The components of GUI in the interface of an application are standard.
The framework provides a lot of components based on the Windows standards.
By selecting these objects users identify them and allow the user to start using
the application. The message maps provide a useful way to handle all intertace

events making the application handling easy for the user.

* Rcusable codes and inherence makes the development period shorter.
It takes a longer time to develop an application from scratch. Taking the
advantage of existing classes or codes asks fewer ecfforts to develop an
application. It also brings fewer bugs. so the total amount of efforts put into
designing and developing a new application is smaller but the performance of the

application is enhanced.

The disadvantages when using a framework in the object-oriented programming are:

e The extra time spent studyving the framework when starting the design and
development of an application.
Steps as well as some parameters have to be tollowed to build an application
using a framework. Getting familiar with these settings takes time and eftorts.
especially for beginners. The understanding of the FMC message map and
inherence takes time to study. practice and to get familiar with. MFC is a huge
topic of class inherence. As it includes many difterent classes to develop
applications. and as so many classes are handled it's harder to study all the

information in such a short time.

Appendix

Application interface and Menu structure

¢ Main interface of the application

Left view ltems in the Right view

s e AT
a sone LLTITR ~are IDIT
1 v A -~ e TATTILY. N
. M 4 2 2
L > L ™
oMb -4 - e FLITLED
e a0 & s
Colored Y] e 3 e LUNOF e AU
[x] s
Code 7 3ep Courze Number I

Menu RS “ae s
e TUITHCY
[tedtodue [e |

Uois | bompe | Mowtimt| Moeiw | Onate } Cretun] Pun
A

e nnn’

“

e e R Teey et) G e iy
'I‘uh Tt nk herer b U Item e gt g

Edit / //
Event List / // | oo |

re : . o ls
Window e / b / == 4

Dialog box

=

Button

Figure 8: Components of the application layout

e Normal operation in Windows by interface component. Each function can be
selected from the menu.

74

e The Course. Section and Instructor subsystems are activated from the menu item
of Table.

Eie:f' 'lébié' f!lew Report Help | i

Figure 9: The menu Table with items

e All view functions are activated torm the View menu item,

File Table View ‘Repot Help | z

Toolbar
Status Bar

Instructor

Assigned Section
Unassigned Section
Suggest Instructor

Add Teaching Assignment
Delete Teaching Assignment
Add Coordination Assignment
Delete Coordination Assignment

Clear Lift View
Clear Right View
Clear All Views

Clone

esrosen-
—_—

Figure 10: The View menu with items

¢ All report tunctions are activated torm the menu item of report.

~J
h

Fie Table View Report “Help [~

Instructor
Assignment »
Summaries

Figure 11: The menu Report with items

e Course subsystem dialog box layout.

}

Saoxch | Add | Update | Delota |
Cowe Code Iumb' Course Mumbe: F0.

Cowsse Tile [(._.u,.g.,.;- Commayn

Crexlis [Meeds Coordinator Iu., Copy l

MMthI Move Pre I anul NML-:&] Chres List l ChaD-‘hol Parite l

1Lcnmm EAbAm Fias bimees Cmrwmt] 14« ot vin s
Fhar torcats lave Brero borngnt boan ham 1 g o Tt

Figure 12 : Course subsystem dialog box layout
 Section subsystem dialog box layout.

Fid Jass | Updee | Deieewe |
Coxase Code COMFY Couve Tate
And Numbes

Iﬁuu-. Ui tramtacn Cetagn
Dt F Stat Time [trehlee [Go l
Oo2 [T— Slast Tive [“—— Foieh Tive W— Cop l

MovaFen | MovePre | Movetiot | MoveLew | Coartie | Cow Dinkog Puse |

CQpesation Evert Lint

[The T mcien T o hr toeer cpeeem

Lo) o |

Figure 13: Section subsystem dialog box lavout

76

* Instructor subsystem dialog box lavout.

S |

' Frd [ads | pdual Dukew] Ecoesance| Teaching Assipwere | Coonration .
o [— s |
Name I'.:ni Cooy I
fobed [T ied [fond Pae |
Movefex | MovePre | MoveMae MoveLsn | Dispay s | Caas Doy | . Comrtos |
Expenance Lat Teaching Lisl Coordi Lint

Uit Latde Nt e UGS oy Coe e
The 1ar o2t A e bven lourad hom e ncartoe | stee

Lo J_ e |

Figure 14: Instructor subsystem dialog box layout

77

References

{9

|9}

I

Obhject oriented development with ¢+ - By Kjell Nielsen 1997 International

Thomson computer press

A practical introduction to sofiware design with C - - By Steven P. Reiss

Object-oriented design with C - - By Ken Barclay John savage
Object-Oriented Sofhware Design and Construction with ¢ - - By Dennis Katura

Object-Oriented Design with Applications. By Grady Booch

An Introduction 1o Object-Oriented Design in C - -, By .Jo Ellen Pernv Harold

Dd.Levin

Design Patterns: Elements of Reusable (dhject-Oriented Software. By Addison-
Wesley

Programming Microsofi Visual - -. By David Kruglinsk: George Shepherd and
Scot Wingo. Microsoft Press 1998

Professional MEC with UVisual C - - 6. By Mike Blaszezak. Wrox Press. 1999

- MSDN Library Visual Studio 6.0. By Microsoft

. C= = unleashed. By Jesse Liberty with Vishwajit Akecha. Steve Haines. Steven

Mitchell. Alexander Nicholov. Charles Pace. Meghraj Thakkar. Michael J. Tobler.

Donals Xic. Steve Zagicboylo. Sams press 1999

- Teach Yourself Database Programming with Visual -~ 6 in 21 days. By ? Sams

Press. 1999.

- Database and expert system application /4™ international conference. DEXA 93,

Prague. Czech Republic. September 6-8. 1993

78

- Database and expert system application /3" international conference. DEXA "94.

Athens. Greece. September 7-9. 1994, proceedings/Dimitris Karagiannis. ed.

- Database and expert system application /8" international conference. DEXA 797,

Toulouse. France. September 1-3. 1997 Abdelkader Hameurlain. A Min Tjoa

. Database modeling & Design. By Toby J. Teorey 1999

. Database Processing: Fundamentals. design. and implementation. By Kroenke.

David 19935

79

