INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submiitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charls) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Usability Patterns-Assisted Design for
Web User Interfaces

Ning Li

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

December 2001

©Ning Li, 2001

i+l

National Library Bibliothéque nationale
of Canada du Cana
isitions and isitions et
Gﬁi%gtaprt‘l?c Services ::qwl:tl:es b?gli%graphiques
385 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Sle Votre réédrence
Our e Notre réidrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-68471-7

Canada

ABSTRACT

Usability Patterns-Assisted Design for Web User Interfaces

Ning Li

Many Web design and usability problems have a tendency to recur in various projects.
Web designers often try to reinvent solutions from scratch, because the current Web
design guidelines are hard to remember, and difficult to use effectively by novice Web
designers or software engineers who are not familiar with user interfaces and Web design
principles. Furthermore, current Web authoring tools have long been available to assist
developers in integrating many aspects of Web applications, although the majority of
these environments do not provide a mechanism for explicitly ensuring the usability of
the developed Web user interfaces. For our research, we will describe a pattern language
supported by an innovative tool for Web applications design. Using this tool, the patterns
are shown to be more than an alternative design tool to current Web design guidelines
and tools. We perceive them as an ideal vehicle for gathering best design practices, and
transferring by means of Web authoring tools the knowledge of usability experts to

software engineers unfamiliar with usability engineering.

Keywords: Design Pattern, Usability Pattern, Patterns-Assisted Design, Web-based

Interactive Software, Java, HTML, XML.

iii

Acknowledgements

[sincerely thank my supervisor, Dr. Ahmed Seffah, who introduced me to Web
application usability and design, inspired me during this work and offered me valuable

guidance.
I would also thank all the people who contributed to make this thesis achievable.

Finally, I am grateful to my family for the endless love and support.

iv

Table of Contents

List Of FIBUIes.......ooninitiiii it ettt e ee e viii

LiSE OF TablEs.ouoiieeiiiitietiti ettt et eeee s eeaeseeesaaeenessessaesnnsnnesss Vill

Chapter 1INtrodutionc.coooiiiiiiiiiiiiiic et et e eene |

1.1 Challenges and Problems in Web Application Designcoceeceecreeenereecnennenn. 1
1.2 Current Design TOOLScoiiieiiriiiieiecctnreerecceeeresneeeseosessesressesseesessseeseseasenees 2
1.2.1 Web Scripting and Programming Tools...........ccccceeveeercenrmnrinercccnrecnncrscnennnens 3
1.2.2 Low Fidelity Prototyping TOOIScccceeiereinrrrsecreercranecsereeesnsenencescsssesneerens 4
1.2.3 Design GUIAEIINESooueviuieiiiiiceeirtreereeeesen e seseteseeseestenaseeesaresescsnsaes 5
1.3 Objective Of This RESEAICHc..coceeecivereeeeeerrrteeeeeseseveeeseenseeseseseeseesesesnens 6

Chapter 2 Patterns - An Alternative Design Approach to Current Tools and

GUIAEHIMES ... e et ereee e e eeeres e nee e e s D)

2.1 Design Pattern — The OTiZiN.......c.cccevceininerrinerierrenreeneeessesseesesseseesesessesecaesassnsene 9
2.2 Patterns in Software Engineering........ccccceuvverirerieeeererveseneesresersaeseessreneesesssesenns 10
2.2.1 Software Patterns Definitions and Categories.coocvrceveeetnserervenescruncns 11
2.2.2 Forms for Documenting Patternsccccceeuveveeeecveecceerereessereseesenencesessnessenes 1
2.3 Patterns in Human Computer INteraction.............cccceveeeceeereesesercesnerceecscsacennnene 13
2.3.1 Collections of Patterns and Pattern Languages for HCIcccccueueneeee. 13

2.3.1.1 Common Ground: An Example of Pattern Language for HCI................14
PACHS B 25,472 5 15 1 o TR PO 16
2.3.1.3 The Brighton Usability Pattern Collection...........cccccoovrveemeerrceeveennnn .17
2.3.1.4 The Amsterdam Collection of Patterns in User Interface Design..........17
2.3.1.5 Other Pattern Organizations in HCL...............cccevviieevcceneeen.... 18
2.3.2 Patterns for Web Applications Design..........ccocevurveercececrcnmncninerncricenrcncnene 21

2.4 Benefits of Usability PatteIns.........coocceuivveericmvecessneninsrneesnneonessessnesssssanessssnsesses 26
2.4.1 Benefits of Patterns and Pattern Languages for HCIccccercnneceeee. 26
2.4.2 Usability Patterns vs. GUIEIINESccueveriremrnninieensnenceenernrenernesenseeecenees 26

2.5 Tools for Patterns-Assisted DeSign.occoooioierireenie e e e 27

2.6 CONCIUSION.coceuneinneieeeeeeneeeieetteeeriteeeeransecenarenneeenesessnssasssesssennssnser 30

Chapter 3 UPADE Web - A Usability Pattern Language for Web Applications......31

3.1 Overview of UPADE Web Languagecoueeeueemeeecnniieeetccenecceceecnaenne 32
3.1.1 Patterns COlLECHONcocviiiiiiiiniiiisicnetessnnecsanresse s inesnne s aseansesnneas 32
3.1.2 Patterns Definition.......ccoccieveriiicricirsceniincnneeesesiinitissssecnresesnesssassssessasnssnees 33

3.1.2.1 Product Oriented Patternscccceeveeciereiniinrccinsiinseennsniiseensneeraseesens 35
3.1.2.1.1 Architectural Patterns.........c.ccooevcerivirmennennnieenieineereceneneneseeesaeees 35
3.1.2.1.2 Structural Patterns.c.coovviiiiiniiiiiiiiiii e 38
3.1.2.1.3 Navigation Support Patterns.........cccccoevvrevrererrineeriennnssennriesssierasneas 42

3.2 Format for Documenting Patterns.ocmeeeeeecnrenenireenniccneneneevnnnnnnn 43
3.2.1 UPADE FOrmat........cociiiiiiiiiiiiiiiiiiiiiie s ireiicie st srer e s e e e e e e 43
3.2.2 EXAMPIES ..uoooeiiiriitiitticecntnnnenecetitese e setssssnessn e sas s aesanessaasssiasesae s 43

Chapter 4 UPADE Editor - A Design and Prototyping Tool............................353

4.1 Overview of UPADE Editor 1.0c.ccoviviiiriioiiiieniineineeneeneecntentesiesseeenne 53
4.1.1 Functxonahty53
4.1.2 INterface.......c.oninniiii i e e S5
4.1.3 Collected Usability Patterns.c..oouveniniencneneieiaienerenienineneninenenn 37

4.2 Scenarios of Using UPADE Editor 1.0.....c.ccovvvvvmivnnnienirnientiecenieseennesnncnnes 58
4.2.1 Browse FUNCHONccccevimirreintircnicinniicssneieeitesssesnesnesstessssesssssnsssasnes 58

4.2.2 Design FUNCHON.evueiiieniiie e e e eeeee e e eeeeeeeeeecernecaeees e nneen s 03
4.2.3 Other Features DemONSIAtION . o.uveverereeeeemneieeieeeeeeesniensessnneensnnseseesO8

vi

Chapter 5 Conclusion and Future Investigations.........................c.ccccovviinrnnn 70

5.1 CONCIUSION.cuuaneeeeceeeeiieiecerseeeeneeeeeeeresessroseeesrssessessssssssssasasssenssessssssesnsssatnssasnnsnenesss 70
5.2 Further INVEStIZAtiONS........cccieeruerecrerrerenrecrerasesonseccssesssssssnnsirsssnsresseresssssnsssseessssesses 71
ROIOIEIICES ... vieiitiieiieiiiitiitieieietieeteesiasessseseessnsassnnsnsannsssesensesannnoussesss 72

Appendix A: UPADE Web Patternsc.cooionne e eein e e e 19

A.l
A2
A3
A4
AS
A6
AT
A8
A9
A.10
A.ll
A.12
A.13
A.14
A.15
A.16
A.17
A.18

Sequential Pattem........oveiiiiiiiccieientrrnennenrcteerrenr e 79
Hierarchical Pattermooevuiinuiieeiiiieiininericnttrecrrcnecce st nenene 80
Grid PAEIMoonneeiiniiiiiiiiiinniessaiecseerseeenssscsetesssssessesssassessssaessasesssssansssnssessenss 81
Composite PAttEIMcoccviriiiriiicrccnnintreisnsssenssieesreensesiestessresnsessensnsssssssesens 82
Focus Page Patternc.cccoviiieiiviiniiccirtnecnnencennntcnncsnecnessesssssnssaesnssnnes 83
Utility Page Patternc.oouieiioiiinticniicccnttcenrcerccenenasnsnecssesnsesensssnsenees 85
Navigation Page Pattemccccouivimrinceinimniinrenceniectneiecennes e cncnene 86
Tiled Page Pattemn ...ttt creese et 88
Stack Page Patternoicivciceiiceneniinnninenenc ettt ss e e sassneanne 89
Executive Summary Pattemmn ..o cteeeeesnnes e 90
On Fly Description Patternccccooveeevininnicnecnminiicienncientesctee e sensneninaees 91
FOrm Patterncooiiiciiiinieneinineccntisstccsne e sesst s e sss s sennssassenes 92
Bullet PAttermcoovmiiiiiireiiirncnicinieseensincsseessnnssisssnsssssssessesssasssesssenensnnses 94
ShOrteut PAtEIMuviiiiiiiinicnncietntcietcntinneeesn et en s ae s s san e snasrenes 95
Convenient Toolbar Pattermnc.ccoccovierveercieiicriinnenneinicectrciesnseeeenesensenns 96
Path Patternoevceeiciiiiiiiiiiicicintninnccte ettt s e 98
Map Patterncoeiviiiiiictnetiicitienreeest ettt e s seas 99
Browsing Index Patternc.coovviiivciecnccniteniintccectenier s 100

vii

List of Tables

Table 2.1 Alexandrian Pattern FOIM........ccceeveveveenrennueneerneeseteseeeeese e sesessssens 12

Table 2.2 Usability Pattern Category ClassifiCations...........c.c.evevevereverevereesererereeeesssseenes 19

Table 3.1 UPADE Web Language Attributes and Possible Values..........cccccevrrveveneee.. 48

Table 3.2 Hierarchical Pattern...........cccoeereeueeeererecnnneneineeresesesaesenssesssesessnsssssssssssesses 49

Table 3.3 Focus Page Patternc.ccououeueeeeveeeereeeeieieteeeeesrecei e seseessessesesssens 50

Table 3.4 Convenient Toolbar PAttermcceceeeeerereervereieeeneereseeeseeeressseessscsesens 51
List of Figures

Figure 3.1 A Schematic View of the UPADE Framework Architecture and Process 31

Figure 3.2 An Overview of UPADE Web Language..............o.ceucueeeureeeeememcncnenererenesennns 32
Figure 3.3 An Overview of IBM-UPADE Design Process............ccoeeueeeeveneverrerecnenns 33
Figure 3.4 A Diagram of Sequential Patterm...........c.ccoeeuereeurrereeneeeiesnsesscsstsnessssossesseeens 36
Figure 3.5 A Diagram of Hierarchical Patternccceevmueeereieinesneereesenesnensissesesssnenens 37
Figure 3.6 A Diagram of Grid PAtterncoceeeiereeceercrerenrrennseaeneeesssessssnenssesssssssssssons 37
Figure 3.7 A Composite Pattern combining Sequential Pattern, Hierarchical Pattern and
Grid PAEIT .coocuvrreeeeeceeceectc st seee et et e e s e e sessesbssesesssosoneneene 37
Figure 3.8 Focus Page Patterno.ccoeeveeeeeerieieeeeecceecec e teresneseseneseseesessans 38
Figure 3.9 A Diagram of Tiled Page Patterncccceevmmmrerccrerereecreneeereseeeneneesnsens 40
Figure 3.10 A Diagram of Stack Page Patternccccocvumemrennrerreerenrereeeseeseesesesssesesnsens 40
Figure 3.11 An Example of On Fly Description Patternccoeeeeveereerenererererenerenene 41
Figure 4.1 Main Interface of UPADE Editor 1.0c.ecevevueueceremieeeececneeerteeneeeseesenenes 56
Figure 4.2 “Browse” Mode is Enabled When UPADE Editor is Initiated 59
Figure 4.3 Four Design Steps of IBM-UPADE PrOCESScocoveveeememeeeerersrsreneeensnnes 59
Figure 4.4 “Web Site Architecture” Step Relates to Information Architecture Patterns.61
Figure 4.5 “Page Structure” Step Relates to Page Managers Patterns..............cccceueeeen... 61
Figure 4.6 *“Navigation Elements” Step Relates to Navigation Support Patterns........... 61

Figure 4.7 “Information Elements” Step Relates to Information Containers Patterns.... 61

Figure 4.8 An Example of Pattern Description Window for Home Page Pattemn 62

viil

Figure 4.9
Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

An Example of Initiating Design Function.........ccceeeeeeeeieerecccecesccencenecenne 64
An Example of Applying Hierarchical Architecture Pattern in a Web

APPHCAUON ...cneeiiiiicieierictentnrnsetscstnnesassnesstesssasessesansessnsantssessnrones 65
A Blank Surface is Created for Further Web Page Design, Along with the
Refreshed Page Structure Patterns in the Product Patterns Box 66

A Web Page Combining Home Page Pattern, Information Containers
Patterns and Navigation Support Patternscceccovvececereceinscrssnencencnne 67
An Example of Pattern Compatibility Checkcccoveecevcrnernurnnnininnnenee 69

ix

Chapter 1: Introduction

“When a technology turns mature, the corresponding market changes. It is
not driven by the needs of technically sophisticated consumers anymore,
since the technology is commonplace enough that many competitors can
produce roughly equivalent performance. Now, to improve products,
companies need a design philosophy that targets the human user, not the

technology (Norman, 1987).”

1.1 Challenges and Problems in Web Application Design

The first generation of Web applications has been a succession of HTML pages. The
interaction was essentially a static navigation through hypertext links. Today, the
convergence of the Internet, mobile telephony, and personal digital assistants (PDAs) has
led to the emergence of highly interactive Web-based applications. Because of the
availability of tools, the development of these Web applications is not a research
challenge; however the usability issues are still an open research question [Nielsen,
1999]. The following are some of the problems and challenges in Web application
usability:
- Most current Web applications adopt a layered approach to segment the different
layers of Web application architecture and to isolate platform specifics from
remaining issues. However, this method requires a consistent approach to applying

both cognitive and social factors to user interface design and that also requires

independent developers to coordinate their activities, but unfortunately, cooperating

at this level may be beyond the abilities of the industry.

- More and more Web applications will offer different platforms and devices. As
computing devices exhibit drastically different capabilities, coping with such drastic
variations implies much more than mere layout changes. For example, the small
screens available on many PDAs only provide coarse graphic capabilities and would

not be suitable for photo editing applications.

- Although many design guidelines have been issued to Web application designers,
these guidelines differ from one platform or device to another. When designing a
Web application with multi-devices the varying guidelines can be a source of many
cross-platform inconsistencies. Even if some cross-platform guidelines have been
published, they still do not take into account the particularities of a specific device,
especially the device constraints and capabilities, so this can also be problematic for
a user utilizing different kinds of devices to interact with the same server side service

or information.

1.2 Current Design Tools

Tidwell pointed out that the latest technology and design tools can help the designer to
build much more creative Web applications than in the past, but there is still room for

improvement in the design process and in usability issues [Tidwell, 1999]. In particular,

we would like to integrate more efficient and cost-effective design in the development

process and tools.

1.2.1 Web Scripting and Programming Tools

HTML (Hypertext Markup Language) defined a set of tags itself. HTML files can be
created and processed by a wide range of tools, from simple plain text editors to
sophisticated WYSIWYG (What You See Is What You Get) authoring tools. However,
different browsers running on different platforms may have different styles for mapping

and presenting Web page elements.

Other Web scripting languages have been introduced recently to overcome this problem.
For example, XHTML (Extensible Hypertext Markup Language) provides diversity to
Web pages on a range of browser platforms including desktops, mobile phones,
televisions and cars. DHTML (Dynamic HTML) combines several built-in browser
features that enable a Web page to be more dynamic. XML (Extensible Markup
Language) is the universal format for structured documents and data on the Web. It
allows developers to define their own mark-up formats, whereas HTML does not. XML
is used increasingly for data. The latest version of XML allows developers to utilize the
Web to exchange data among tools, applications, and repositories. It also helps to create

secure and distributed applications built in a team development environment.

In addition to the trend of Web scripting tools, Java Integrated Development
Environments such as Visual Age, Web Sphere and JBuilder have become more popular.

IBM VisualAge for Java supports the complete cycle of Java program development.

VisualAge can build and test Java applets, servlets, and Enterprise JavaBeans. Borland
JBuilder is also a visual development environment for building applications, applets,
JSP/Servlets, JavaBeans, EJB and distributed J2EE applications for the Java 2 Platform.

IBM WebSphere is a tool suite that helps designers to visually create a Web site.

Today, the evolution of Web scripting and programming tools enables the designer to
have more power to develop heterogeneous Web applications. The latest Web user
interface is a sophisticated mixture of markup tags (HTML, PHP, XML, WML), style
sheets (CSS, XSL), scripts (JavaScript, VBScript) as well as embedded objects such as

Java applets, ActiveX and plug-ins.

1.2.2 Low Fidelity Prototyping Tools

An alternative approach to Web scripting and programming environments is low fidelity
prototyping tools such as DENIM (Design Environment for Navigation and Information
Models) and SILK (Sketching Interfaces Like Krazy). DENIM and SILK are developed
by GUIR (Group for User Interface Research at university of California at Berkeley).

Both are low fidelity prototyping tools for early design of Web sites.

SILK is a pen-based electronic sketching tool for user interface design [UCB, 2001]. It
supports the designer to roughly draw an interface using an electronic pad and stylus.
Compared with traditional paper sketch, SILK has more interaction capability to facilitate

the designer.

DENIM supports Web site design in the early stages, rather than creating finished Web
sites [Lin et al., 2000]. DENIM is based on the original SILK project [UCB, 2001]. It
allows sketching input from electronic devices. However, DENIM can support design
activities at five different refinement levels (Overview, Site map, Storyboard, Sketch and
Detail) and integrate these levels through zooming, while SILK can not, but DENIM does

not recognize the widgets drawn by the designer, whereas SILK does.

1.2.3 Design Guidelines

Guidelines aim to capture the design knowledge into small rules, which can then be used
when designing new user interfaces. Guidelines represent the middle level of design

guidance in a progression from abstract principles to specific conventions [[BM, 2001a].

Yale guidelines were compiled in the book “Web Style Guide™ written by Patrick J.
Lynch and Sarah Horton [Lynch & Horton, 1999]. The authors described basic design
principles for creating Web sites. Lynch and Horton intended to combine user interface
design, graphic design, technical skills and traditional editorial principles into Web site
design. Yale guidelines are classified into five categories; Interface Design, Site Design,
Page Design, Web Graphics and Web Multimedia. Each category consists of several
sections, which grouped the guidelines into several specific aspects. Each guideline is

illustrated by a textual description, some figures, references and examples.

IBM Web Guidelines [IBM, 2001a,b] were developed by IBM Ease of Use Group for

constructing ease of use Web interfaces. Although most of these guidelines aim to help

novice and intermediate level Web designers, experienced designers can still benefit from
them. The majority of IBM Web guidelines are presented according to the Web design
process including “Planning”, “Design”, “Production”, and “Maintenance” phases. In
addition, there is a set of guidelines particularly grouped by the E-commerce topic. [BM
proposed five steps at the “Design” phase of Web design process. They are “Structure”,

“Navigation”, “Text”, “Visual Layout and Elements”, and “Media” steps.

It has often been reported that guidelines have a number of problems when used [Martijn
et al., 2000] in that it is difficult to select appropriate guidelines that apply to a particular
design problem. Moreover, occasionally guidelines may seem to contradict each other
and consequently the designer may still not solve the design problem. In addition,
Tidwell pointed out that it was hard for a novice designer to even remember all the
guidelines, let alone use them effectively [Tidwell, 1999]. Sometimes it is difficult to
make the trade-off among these principles when they come into conflict. The designer

frequently has to determine the best solution by guessing, or by resorting to other means.

1.3 Objective of This Research

In this research, we are exploring usability patterns as a design tool to capture best
practices on the design of usable Web applications. We aim to define a usability pattern

language for Web applications and develop a tool to support that pattern language.

1. Define a usability pattern language

This usability pattern language should feature the following characteristics:

It should contain a set of usability patterns that gather and disseminate the design
knowledge related to the user interfaces of Web applications.

All the patterns should share the same format. We need to define a unified pattern
format for documenting all the usability patterns.

Patterns are interrelated. It is critical for a pattern language, as pattern language only
exist when there is relationship between patterns.

Patterns are related to Web design process. To help the designer know when to apply
patterns during the Web application design, we should define the relation between

patterns and design activities.

2. Develop an editor tool

In order to make our usability pattern language usable, especially for novice user

interface designers or software developers who are not familiar with HCI design, we need

to develop an editor tool to support usability pattern engineering. This tool should

provide the following functionality:

Collect all the patterns that have been defined in our usability pattern language.
Browse the description of each pattern: The editor should provide just in-time
information of each pattern for users.

Combine existing patterns: Users of the editor tool can select appropriate patterns and
combine or glue them at an abstract level.

Establish a low fidelity prototype of Web applications: The tool should support the

user in creating a prototype employing existing usability patterns at an abstract level.

- Demonstrate the relationship between patterns and the design process: The tool
should illustrate the relevant patterns according to the design process and assist users

in applying appropriate patterns during the design activities.

Chapter 2: Patterns - An Alternative Design Approach to

Current Tools and Guidelines

“A pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice (Alexander, 1977)"

2.1 Design Pattern - The Origin

Design Pattern, a popular concept in the software engineering community, was derived
from the writings of the architect Christopher Alexander in the 1970s. In his book *“The
timeless way of building”, Alexander described the term Pattern as “a three-part rule,
which expresses a relation between a certain context, a problem and a solution”.
Alexander emphasized that each pattern is a relationship between a certain context, a
certain system of forces which occurs repeatedly in that context, and a certain
configuration which allows these forces to resolve themselves in that context [Alexander,

1979].

On the basis of Alexander’s writing, Doug Lea suggested that a good design pattern

should have six properties [Lea, 1993]:

- Encapsulation: Each pattern encapsulates a well-defined problem and solution.

- Generativity: Each pattern contains a local, self-standing process prescription

describing how to construct realizations.

- Equilibrium: Each pattern identifies a solution space containing an invariant that

minimizes conflict among forces and constraints.

- Abstractior:: Patterns represent abstractions of empirical experience and

everyday knowledge.
- Openness: Patterns may be extended down to arbitrarily fine levels of detail.

- Composibility: Patterns are hierarchically related. Most patterns are both upwardly

and downwardly composible.

2.2 Patterns in Software Engineering

Patterns have been used in many different fields such as architecture, biology, chemistry
and physics, recently blossoming in the software engineering community. Software
patterns were first popularized by software engineering researchers in the wake of the
Gamma book “Design Patterns: Elements of Reusable Object-Oriented Software”
[Gamma et al., 1994]. Grady Booch claimed that patterns are very useful to object-
oriented realms because they represent a higher leverage form of reuse [Rising, 1998].
Like Alexandrian patterns, the object-oriented software patterns provide concrete design
solutions that not only can be put into practice right away, but good results can be
obtained immediately. These patterns are sufficiently abstract as well so they can be

applied to innumerable situations [Tidwell, 1999].

10

2.2.1 Software Patterns Definitions and Categories

The goal of software patterns is to create a body of literature to help software developers
resolve recurring problems encountered throughout the entire software development
lifecycle. Researchers have described software patterns and patterns language into
heterogeneous definitions. Jim Coplien defined a pattern language as a structured
collection of patterns and the rules to combine patterns into an architectural style
[Coplien, 1996]. He stated that each pattern works in a certain context and can transform

the system to produce a new system in a new context.

In the software engineering community, patterns have been largely applied to software
architecture and design, and lately on software development processes and organizations.
As different theoretical and philosophical ideas are applied in software patterns, patterns
have been defined and categorized into varied classifications, such as

- Design Patterns [Gamma et al, 1994; Bayle et al, 1998]

- Process Patterns [Coplien 1995; Ambler, 1998]

- Activity Patterns [Bayle et al, 1998]
Other pattern categories include Organizational Patterns, Analysis Patterns, Framework

Patterns and Anti-Patterns.

2.2.2 Forms for Documenting Patterns

A number of forms have been proposed in order to document patterns.

Table 2.1 describes the structure of Alexandrian form [Alexander et al., 1977].

11

Notation Description

Title It briefly describes the solution that the pattern offers.

Asterisks It marks the significance of the pattern.

Picture It depicts an archetypal example of the pattern.

Introductory paragraph It sets the context and links to higher level or larger
patterns.

I8 o} To mark the beginning of the problem

Headline It summarizes the essence of the problem.

Body of the problem It describes the empirical background of the pattern,
the evidence for its validity, range of variation of
manifestation.

Solution It describes the physical and social relationships,
which are required to solve the stated problem in the
stated context.

Diagram It is the illustrated diagram of the solution, along with
certain labels indicating the main components.

o To mark the end of the main body of the pattern

Connections to smaller

patterns

It is required to complete the pattern to connect to

lower level or smaller patterns.

Table 2.1 Alexandrian Pattern Form

12

Other pattern forms include:
1) The GOF Form [Gamma et al., 1994];
2) Portland Form [Portland, 2001];

3) Coplien Form [Coplien, 1996].

2.3 Patterns in Human Computer Interaction

HCI researchers began to widely explore the utility of pattern languages for human
computer interaction design after the CHI'97 workshop. They defined the Interaction
Design Pattern as a pattern that describes a connection between a repeatedly encountered
problem and a proven solution particularity in the HCI field [Bayle et al., 1998]). Hence,
Interaction Design Patterns started to affect the reliable HCI design and appeared to be an
alternative approach to current guidelines. In that workshop, HCI researchers also
observed that it was difficult to distinguish among patterns, as there was a continuum of
HCI patterns across various levels. The higher level patterns were more robust over time
than lower level patterns, while lower level patterns changed more rapidly along with the

evolution of technology.

2.3.1 Collections of Patterns and Pattern Languages for HCI

In the HCI community, there have been vigorous discussions on patterns and pattern
languages worldwide since 1997, and there are many research groups devoting time to
the development of pattern languages. Among these heterogeneous collections of HCI

patterns and pattern languages, “Common Ground”, “Experience”, “Brighton” and

13

“Amsterdam” play a major role and have had a significant influence on the exploit of

HCI patterns and pattern languages.

2.3.1.1 Common Ground: An Example of Pattern Language for HCI

Among pattern languages, Common Ground is one of the earliest, largest-scale and most
influential HCI pattern collections [Tidwell, 1999]. Common Ground was defined and
collected by Jennifer Tidwell. It contains a set of interrelated patterns sharing the uniform

format.

Goal and objectives
Common Ground aims to assist various users in their routine work including HCI
designers, GUI developers, usability engineers and test engineers. Furthermore, its

intention is to benefit the whole industry and UI design practitioners.

Pattern form

The elements of the pattern form adopted by Common Ground are Pattern Name,
Examples, Bad Examples (if any), Context, Problem, Forces, Solution, Resulting Context
and Notes. The description of each pattern contains a context of use, a problem that
needs to be solved, a set of forces in that context, and a primary rule or secondary rules
(sometimes) on how those forces solve the particular problem. Both good and bad
examples are given. The bad examples illustrate the misusage of the pattern or certain

situations in which the pattern should have been used but was not.

14

Pattern categories

Patterns in Common Ground are interrelated. They are grouped into several major sets:
Primary Patterns, Information Organization, Posture, Working Surface Organization,
Actions and so on. Each set may contain different categories according to various
characteristics. There are in total 10 categories and 61 specific patterns in Common

Ground including:

- Primary patterns for contents: Contains Narrative, High-density Information

Display and Status Display.

- Primary patterns for actions: Contains Form, Control Panel, WYSIWYG Editor,

Composed Command and Social Space.

- Information Organization: Describes how to present the content or information to
the user. It contains Navigable Spaces, Overview Beside Detail, Step-by-Step
Instructions, Small Groups of Related Things, Series of Small Multiples, Hierarchical
Set, Tabular Set, Chart or Graph, Optional Detail On Demand, Disabled Irrelevant

Things, Pointer Shows Affordance and Short Description.

- Posture: Contains Sovereign Posture, Helper Posture and Background Posture.

- Working Surface Organization: Describes how to organize the content or action
into working surfaces. It contains Central Working Surface, Tiled Working Surfaces,

Stack of Working Surfaces and Pile of Working Surfaces.

15

Navigate Techniques: Describes the means that the user navigates through the
artifact. It contains Map of Navigable Spaces, Clear Entry Points, Color-Coded

Sections, Go Back One Step and Go Back to a Safe Place.

Actions: Describes various specific actions that the user may take. It contains
Convenient Environment Actions, Localized Object Actions, Actions for Multiple
Objects, Choice from a Small Set, Choice from a Large Set, Sliding Scale, Editable

Collection, Forgiving Text Entry, Structured Text Entry and Toolbox.

How can the user modify the artifact? Contains User Preferences, Personal Object

Space, Scripted Action Sequence, User’s Annotations and Bookmarks.

How can the artifact be made visually clear and attractive? Contains Iconic

Reference, Calm Grid, Repeated Framework, Few Hues and Many Values.

How else can the artifact actively support the user? Contains Good Defaults,
Remembered State, Interaction History, Progress Indicator, Important Message,

Reality Check, Demonstration, Quick Access and Familiar Quantity.

Common Ground does not provide any clear diagram or coherent paths to depict the

interrelationship among those patterns, and it does not address issues regarding

implementation of such patterns.

2.3.1.2 Experience

Experience, as a pattern language for user interface design, emphasizes on the user’s

experience within software systems. It was developed by Todd Coram and Jim Lee

[Coram & Lee, 1996). Experience concentrates on the interactions between the user and

16

the interfaces of software applications. All the patterns are grouped by areas of focus
including Interaction Style, Explorable Interface, Sound and Symbols. In Experience,
there is a clear connection map to illustrate the relationship among the patterns; however

all the patterns are described in a narrative form using a natural language.

2.3.1.3 The Brighton Usability Pattern Collection

The Brighton usability pattern collection was compiled by members of the Usability
Group at the University of Brighton, UK [Brighton UK, 2001]. This collection utilizes a
matrix map to present the relationship among the patterns. So far, 21 patterns have been
addressed in this collection, though only 10 patterns have been fulfilled completely.
Compared with Experience, the Brighton pattern collection does not disclose the
particular rationale for the sequence in which patterns are discovered and written up.
Moreover, the patterns in Brighton collection adopt a narrative pattern form. It is not so

structured and formal as Common Ground [Martijn et al, 2000].

2.3.1.4 The Amsterdam Collection of Patterns in User Interface Design

This collection was mainly established by Martijn van Welie. It is a collection of patterns
in user interface design that strictly focus on problems of the end-user when they interact
with systems, rather than the problems of designers [Martijn, 2000]. The Amsterdam
pattern collection, taking user’s perspective, makes an explicit distinction between the
user perspective and the designer perspective. All the patterns are described in a uniform

pattern form, which contains Problem, Principle, Context, Forces, Solution, Rationale,

17

Examples, Known Uses and Related Patterns. The Amsterdam collection does not

address the implementation issues of user interfaces.

2.3.1.5 Other Pattern Organizations in HCI

In addition to the above four prominent pattern collections or languages, other pattern
collections exist. Although these collections are not complete, they are a good starting

point for the emergence of a unified pattern language for user interface design. Table 2.2

illustrates the classifications of usability patterns suggested by several research groups.

Reference Patterns Comments
Pattems are classified into 5 - Compared with other
categories: collections that focus on
1. Business Domain patterns: screen design issues, PSA
To describe the type of business, suggests a wider scope for
PSA: goals, the actors and business the use of patterns by
processes. looking at the overall user-
A Pattern-Supported oriented UT design
2. Business Process patterns: process.
Approach to the User To describe typical processes

Interface Design

and actors involved in the
delivery of services/goods in
compliance with the business
goals.

The first three categories
are domain specific; the
latter two are generic.

Process - The authors proposed a
3. Task patterns: pattern- supported Ul
[Granlund & To capture the knowledge about design process:
Lafreniére, 1999]) the task, typical users and their 1) System Definition step:
work context from previous Business domain and
similar projects. Business process patterns.
2) User Profiling and Task
4. Conceptual Design patterns: Analysis step: Task
To describe a way to optimally patterns.
arrange information and 3) Conceptual Design step:
activities to support the user’ s Conceptual patterns
task. 4) Design step: Design

S. Design patterns:
These patterns are based on
Common Ground.

patterns.

Pattern format: Name,
Context, Problem, Forces,
Solution, Examples.

18

Pattern Languages
for Usability
[Mahemoff &

Johnston, 1998]

Patterns are collected into 4
categories:

1.Patterns of tasks:
To identify the user actions and
suggest the appropriate support
mechanisms.
Example: “Open Existing
Document”.

2. Patterns of users:
To ensure the products are
meeting the demands of all users.
Example: “Intermediate User,
Domain Expert”.

3. Patterns of user-interface
elements:
To be applied by designers of
user interface and software
architecture.
Examples: “Scrollbar”, “Show
Status™.

4. Patterns of entire systems:
To capture the issues involved in
the development.
Example: “Document
Manipulator”.

Y

2)

Focus on pattern meta-
collections, rather than
specific collections of
patterns.

Proposed that patterns for
usability are relevant at
two levels of abstraction:

Higher-level patterns can
solve problems related to
user- interface and task
support.

Lower-level patterns may
suggest detailed design
and implementation of
usable software.

Notes on a Pattern
Language for
Interactive Usability

[Casaday, 1997]

Identified three types of usability
patterns:

1.Simple Patterns:
One usability attribute dominates.

2. Intrinsic Patterns:
Multiple usability attributes
conflict or support.

3.Circumstantial Patterns:
Usability attributes must be
achieved, but exteral factors
constrain the solutions.

The pattern language is
based on traditional
usability attributes:
Leamable, Memorable,
Efficient, Reliable,
Flexible, Automated,
Understandable,
Subjectively Satisfying.

Table 2.2 Usability Pattern Category Classifications

19

Although interest in patterns for User Interface Design has existed for several years, there

is still no uniform pattern language or pattern form accepted by the whole HCI

community so the pattern language for user interface design has not yet been established.

Different usability groups collect the patterns and develop the languages according to

their own understanding and criteria. Many usability pattemns defined by different

research groups are similar, even overlapped. For example,

“Progress Indicator” in Common Ground, “Progress” in Amsterdam and “Time to do
something else” in Brighton are exactly the same patterns. All of them aim to indicate

to the user how much time remains or how far along the process is.

“Show the format required” in Brighton and “Unambiguous format” in Amsterdam

are identical in assisting the user to input the data in a correct syntax.

“Reality Check” in Common Ground, “Shield” in Amsterdam and “Think twice” in
Brighton are similar solutions for the same problem occurring in similar context. For
example, in order to protect the user from some irreversible and dangerous situation,
*“Reality Check” Pattern tells the user the side effects and asks the user to confirm
his/her action; “Shield” Pattern also suggests to add an extra protection layer and thus
asks the user to confirm the action; Similarly, “Think Twice” Pattern proposes a
protection of confirmation such as requiring the user to complete a simple dialogue in

certain irreversible situations, so as to indicate to the user the potential problems.

In addition to the patterns mentioned, the patterns underneath have similar declarations:

“Tiled working surfaces” in Common Ground and “Container Navigation” in

Amsterdam;

20

e “Stack of working surfaces” in Common Ground and “Navigation spaces” in
Amsterdam;
® “Short description” in Common Ground and “Hinting” in Amsterdam;

e *“Overview beside detail” in Common Ground and “Preview” in Amsterdam;

® “Convenient environment actions” in Common Ground and “Goal oriented areas” in

Experience.

In contrast to the patterns enumerated above, some patterns have the same or similar
pattern name; however, their declarations and intrinsic contents are quite different,
therefore it may confuse the user under some circumstances. For example, “Give a
wamning” in Brighton seems literally like “Wamning” in Amsterdam. In fact, “Give a
warning” suggests giving users a warning message without breaking down the workflow,
whereas “Warning” intends to interrupt the task and warn the user before continuing his

task.

2.3.2 Patterns for Web Applications Design

Among all the patterns illustrated in the above section, the following patterns can be

particularly suitable for Web application design.

1) Common Ground: Narrative, High-density Information Display, Status Display,
Form, Navigable Spaces, Overview Besides Detail, Small Groups of Related Things,
Hierarchical Set, Tabular Set, Chart or Graph, Optional Detail On Demand, Disabled
Irrelevant Things, Pointer Shows Affordance, Short Description, Helper Posture, Central

Working Surface, Tiled Working Surfaces, Stack of Working Surfaces, Map of

21

Navigable Spaces, Clear Entry Points, Color-Coded Sections, Go Back One Step, Go
Back to a Safe Place, Convenient Environment Actions, Choice from a Small Set, Choice
from a Large Set, Sliding Scale, Editable Collection, Structured Text Entry, Bookmarks,

Repeated Framework, Good Defaults, Important Message and Reality Check.

2) Experience: Interaction Style, Explorable Interface, Multiple Settings, Command
Control Center, Garden of Windows, Goal Oriented Areas, Modeless Feedback Area,

Visual Symbols.

3) Brighton: Give a Warning, Interaction Feedback, Just Looking, Show Computer is

Thinking, Show the format required, Time to Do Something Else.

4) Amsterdam patterns collection: Command Area, Container Navigation, Contextual
Menu, Focus, Hinting, List Browser, Navigating Space, Preview and Unambiguous

Format.

Meanwhile, there are several other usability research groups that particularly emphasize

the study of patterns for Web applications:

S) Usability Patterns for World Wide Web Applications (PloP *99 Conference)

This set of Web usability patterns, identified by Kimberly Perzel and David Kane,
focuses on the context of Web applications [Perzel & Kane, 1999). These patterns
represent Circumstantial Patterns suggested in Casaday Usability Pattern language

[Casaday, 1997] and can be categorized into User Interface Widget (UI) and System

22

Based (Sys.) classifications according to the criteria of Mahemoff’s classifications of

usability patterns [Mahemoff & Johnston, 1998]. The patterns collected in this set are:

e Carrot and a Stick (Sys.): Offers the users something valuable and free at first and

then induces the users to provide information that they might be unwilling to share.

¢ Policy Statement (Sys.): Provides a detailed description of how the information will
be used and establishes sufficient trust with users in order to acquire personal

information from them.

¢ Required Field Markers (UI): Labels the essential information clearly in order to

ensure the user provides correct information.

e What They See is All They Get (UI): Displays the most critical content of a Web
page in the upper left area of the screen to ensure the user will see the most important

contents of a Web page.

e Plan B (UD: Provides an optional solution to the disabled people who present the

information without graphics.

In addition, there are other candidate patterns in this set including Client-Side Validation
(Sys), Server-Side Validation (Sys), Three Clicks or You're Out (Sys.), Site Context
(UD), Location, Location, Location, You Are Here (UI), Flag Planting (Sys.), Universal
Navigation (UI/Sys.), Searching the Web (Sys.), Web Registration Forms (UI), Links,

Jumps and Suicide Leaps (Ul/Sys.), Query Forms (UI) and Data Entry Forms (UT).

23

6) HPR- Hypermedia Design Patterns Repository
HPR, standing for Hypermedia Design Patterns Repository, intends to provide useful
design patterns for hypermedia and Web applications [HPR, 2001]. There are 28 design

patterns in this repository currently. The patterns have been classified into 3 categories:

° Interface and Layout Pattern category: Arranges the objects on the screen
physically. It contains Active Reference, Behavioral Grouping, Behavior
Anticipation, Here I am, Index Navigation, Info-Interaction Decoupling,
Information Factoring, Information on Demand, Information-Interaction Coupling,
Process Feed-back, Selectable Keywords, Selectable Search Space and Simple

Search Interface pattern.

e Structure/Navigation Pattern category: Provides the schema to assist the user
navigation through the Web application. It contains Collection Center, Complex
Entity, Guided Tour, Hybrid Collection, Index Navigation, Navigation Strategy,
Navigational Context, News, Node as a Navigational View, Opportunistic Linking,

Selectable Search Engine, Set-Based Navigation, and Structured Answer pattern.

e Content Oriented Pattern category: Organizes the information of the Web
application in general. It contains Advising, Analyse Organize Synthesize and

Complex Entity pattern.

HPR patterns don’t adopt the Alexdarian pattern form. All the patterns are not described
into unified format either. The elements of the pattern template used are: Pattern Name,

Keywords (sometimes), Problem Statement, Motivation, Forces (only 5 patterns have),

24

Solution, Consequences (occasionally), Known Uses (sometimes), Discussion

(sometimes), Examples, Implementation and Related Patterns.

7) Three Hypermedia Design Patterns

This set of patterns was developed by D.M. Germéin and D.D. Cowan, who proposed
three design patterns for hypermedia design. These design patterns intended to give the
designer the foundation to cope with problems, rather than provide a specific process to

solve a particular problem [German & Cowan, 1999].

This collection documents the patterns using the pattern form of Gamma [Gamma et al,
1994], which contains Name, Intent, Motivation, Applicability, Structure, Participants,
Collaborations, Consequences and Known Uses. There are 3 design patterns proposed in

this collection:

e Hyper-book: Transfers a traditional textual document into a hypertext version and
organizes the content in the most effective way.

e Hyper-map: Organizes certain kind of information, which is related to two-
dimensional data.

¢ Virtual product: Provides and organizes effective information of virtual products in

order to present the product in the electronic catalog attractively to the user.

8) Hierarchical Structure Through Navigation Side Bars

One design pattern -“Side Bar Navigation” was suggested for hypertext in this paper

[Dstebye, 1999]). This pattern intends to organize the layout of the navigation

information by applying the hierarchical structure to the hierarchical navigation links and

the direct linking to cross-references links.

2.4 Benefits of Usability Patterns

2.4.1 Benefits of Patterns and Pattern Languages for HCI

Usability is a critical factor for successful Web applications. Web application
development often involves the IT professionals with widely various backgrounds. A
usability patterns language, which provides a common language for communicating
usability concerns among diverse participants, has the capability to enhance the
communication and facilitate the Ul design process. The advantages and benefits of
communication provided by the usability patterns are much more valuable than in
conventional software applications, as HCI is an interdisciplinary field. Thus, usability
patterns can obviously assist the user-centered design process [Mahemoff & Johnston,

1998] and particularly benefit the Web application design [Perzel & Kane, 1999].

2.4.2 Usability Patterns vs. Guidelines

Guidelines have been shown to have problems concerning selection, validity and
applicability [Martijn et al, 2000; Tidwell, 1999]. Most guidelines suggest a general
absolute validity, but in fact, they can only be applied in a specific context. Guidelines
have no intrinsic way of stating the context for which they apply and also it is often

difficult to see what the problem is and why the guideline is set up in a particular way.

26

Patterns have appeared as a possible solution to solve certain problems which guidelines
have suffered. Compared with guidelines, patterns have more advantages [Martijn et al.,

2000; Brighton UK, 2001]:

- Guidelines are usually described in two forms: “do this” or “do not do this”, whereas
patterns only emphasize the “do this” aspect and the descriptions of patterns are much

more constructive.

- Patterns clearly depict the context and tell the designer when, how and why the
solution can be applied. The context and problem are explicit, as well as the solution
based on a rationale. Furthermore, solutions in patterns are very concrete and thus it

will not raise new problems.

- Patterns represent proven design solutions in a much richer context than guidelines,
and patterns contain a great deal of explicit information, that guidelines do not. This
makes patterns altogether a richer resource for the designer than guidelines. Patterns
contain more complex design knowledge than guidelines, whereas several guidelines

are integrated into one pattern.

- Patterns are problem oriented and are potentially more usable for designers than

guidelines.

2.5 Tools for Patterns-Assisted Design

Developers have often found it difficult to translate the narrative pattern descriptions into

a particular implementation. Even if some people have no trouble translating the pattern

27

into code, they still find it inconvenient when they have to do it repeatedly [Budinsky et

al, 1996].

Furthermore, with the booming of patterns and pattern languages in the software
engineering community, more recently in the HCI field, patterns assisted tools are being
more frequently demanded by the system developers and usability engineers, regardless
of their experience or inexperience. A particular pattern language tool can enhance the
user’'s comprehension, decrease the complexity of the language, and eliminate the
ambiguity of all the terminology, while putting the language into practice in a real

environment, which is a critical issue for the pattern language exploit.

However, there is a lack of tool support for usability patterns engineering in the human
computer interaction community. Only few tools for software patterns exist in the

software engineering realm, such as:

1. Tool Support for Object-Oriented Patterns [Florijn et al., 1997]

This is a prototype tool that aims to support developing object-oriented programs using

design patterns in three ways:

- To generate program elements for a new instance of a pattern that is taken from an
extensible collection of "template" patterns.

- To integrate pattern occurrences with the rest of the program by binding program
elements to a role in a pattern.

- To check whether occurrences of patterns still meet the invariants governing the

patterns and repairing the program in case of problems.

28

This tool provides three level views in a program: the pattern level view, the design level
view and the code level view. However, some research groups found this approach
difficult for large designs and also found those design views cumbersome [Yacoub &

Ammar, 1999].

2. IBM- Automatic Code Generation from Design Patterns [Budinsky et al., 1996]

This is a tool for generating design pattern code automatically from application-specific

information supplied by the user. It also integrates on-line references to design patterns.

The architecture of the tool has three components:

- The Presenter: Implements the user interface specified by Presentation Descriptions.

- The Code Generator: Interprets Code Generation Descriptions and then generates the
code for a given pattern.

- The Mapper: Interprets Mapping Descriptions that specify how the other two

components cooperate.

This tool is limited to system design and implementation; it does not support domain

analysis, requirement specification, documentation and debugging.

3. POAD- Pattern-Oriented Analysis and Design [Yacoub, 1999; Yacoub & Ammar,
1999]

POAD is a structure composition approach to build constructional design patterns. The
tool supports three design models for composing patterns. The three model views are:

- Pattern-Level view: Models the application as a visual composition of patterns at a

high design level.

29

- Pattern Interfaces view: A refinement of the Pattern-Level view using pattern
interfaces and explicitly defining relationships between interfaces.
- Detailed Pattern-Level view: Shows the details of the pattern, and reveals the

internals of the pattern and the connection between interfaces and internals.

In addition to the above tools, there are other tools to support patterns in the software
engineering community:

- FACE: Framework Adaptive Composition Environment [Meijler et al, 1997];

- PSiGene CASE tool [Schuetze et al., 1997];

= The Pattern-Lint [Sefika et al, 1996).

2.6 Conclusion

In this chapter, we traced the history of patterns, software engineering patterns and
patterns for HCL. On the basis of our observations, we argued that patterns are a more
cost-effective tool than Web guidelines. We observed that although there have been a
number of patterns and pattern languages available for user interface design, most of the
existing pattern languages don’t address implementation issues; instead they emphasize
the user’s perspective, therefore, they cannot be used by novice developers. Moreover,
most of the patterns are described using natural languages, which makes them difficult to
use effectively and efficiently. Our investigations also showed lack of tools for
supporting pattern-oriented design, in particular HCI design. Furthermore, we found that

there were no particular usability pattern languages for Web applications.

30

Chapter 3: UPADE Web - A Usability Pattern Language for

Web Applications

UPADE - Usability Patterns-Assisted Design Environment is an ongoing research
project. For this research, we are investigating the original solution of employing
usability pattems as a framework for integrating usability in CASE tools while increasing

the usability of systems.

Figure 3.1 depicts the whole structure of UPADE framework.

UPADE
Language

Usability Patterns XML Usability Patterns
Representation Implementation
Markup Language Markup Language

Usability Patterns {g— v
Database
XSLT | CSS
UPADE IDE
UPADE UPADE
Editor Generator
(Presentation Markup) | Programs/Scripts
WMLl XHTMLl lVoiceXML Java lecmsmnt, VBScript
Mobile Web Voice lication
Devices Browsers Browsers Aggnders

Figure 3.1: A Schematic View of the UPADE Framework Architecture and Process

Within the UPADE framework, at the present stage, we are exploring how to establish an
UPADE language for Web applications (UPADE Web language) and developing an

editor tool (UPADE Editor) for browsing, editing and combining UPADE Web patterns.

31

3.1 Overview of UPADE Web Language

UPADE Web language is a usability pattern language. It contains a set of interrelated
patterns whereby each of the usability patterns provides a proven solution for a common

usability problem that occurs in a specific context of use for Web applications.

3.1.1 Patterns Collection

UPADE Web language defines three categories of product-oriented patterns.

l 1

Architectural Structural Navigation Support
Patterns Patterns Patterns
I
C]
Information Page Information
Managers Containers
L Sequential - FPocus || Executive —{ Shorteut
age Summary
|| Convenient
Utility
. . | OnFly Toolbar
Hierarchical Page Description
Navigation - Path
|| Grid page - Form
Tiled Page L1 Bullet [Map
L | Composite
Browsing
L Stack Page Index

Figure 3.2: An Overview of UPADE Web Language

32

So far, we have collected and identified 18 product-oriented patterns. The above figure

3.2 depicts the hierarchical structure of product-oriented patterns in UPADE Web

language. Product-oriented patterns (Product patterns) are a set of specific and functional

patterns that include the following categories:

1) Architectural Patterns: Describe different schemes for organizing the content of a
Web application.

2) Structural Patterns: Define the physical and logical layout of commonly used Web
pages and also suggest how to group information in a cognitively respectable
structure and to display them.

3) Navigation Support Patterns: Provide navigation between a set of pages and chunk

of information.

3.1.2 Patterns Definition

[]
We exploited IBM Web design guidelines [IBM,] DcfthcbihcA::hmm- | Web Site
2001a] to show how our patterns are used. Figure | | L orwtforseomm] Aeniess®
3.3 illustrates the design steps and the ---------------- > T

D] | Defie Page Suructze] .

. : age
corresponding activities in [BM-UPADE design ——— Layout
process. [Litdamemss osctipage |

l Sopp m; - I Elements

l v I : Layout
(o]

Figure 3.3: An Overview of IBM-UPADE Design Process

33

1.Web Site Architecture
The first step of IBM-UPADE design process intends to define the general information

architecture of the Web site. It includes two major activities:

1) Define Web Site Architecture: On the basis of the collected information from the user
and task analysis, the designer can pick up an appropriate pattern from the

Architectural Pattern category for the Web site architecture.

2) Create a Flow Diagram: A flow diagram can identify all Web pages within the Web

site and show the pathways linking each page.

2. Page Layout
This design step aims to define the physical and logical structure of Web pages. It

includes the following three major activities:

1) Define Page Structure: According to the usage and function of a page, the designer

can apply a suitable Page Managers pattern of Structural Pattern category into the

Web page structure.

2) Adjust Boundaries: Due to diversified screen resolution settings and monitor sizes,

the designer should define a dimension to satisfy the “safe area” requirement.

3) List Elements of Each Page: Make an itemized list of the contents of each page then

organize the items into categories that distinguish them that will appear on every

page, on certain pages or on individual pages only.

34

3. Elements Layout
During this design step, the designer can arrange specific product patterns to support

navigation or information grouping. It includes two major activities:

1) Support_Navigation: Select navigation element patterns from Navigation Support
Pattern category and locate them on the appropriate place to support navigation

between pages.

2) Construct Information Container: To support the organization of chunk of
information, the designer can pick up relevant product patterns from the Information

Containers Pattern category.

3.1.2.1 Product Oriented Patterns

3.1.2.1.1 Architectural Patterns

A logical site organization allows users to make successful predictions about where to
find things. Consistent methods of grouping, ordering, labeling, and graphically arranging
information allow users to extend their knowledge from pages they have visited to pages
they are unfamiliar with. If the designer misleads users with a structure that is not logical
(or has no comprehensible structure at all), users will be constantly frustrated by the

difficulties of finding their way around.

This category describes different schemes for organizing the content of a Web application

across pages, directories, etc. The goal of most organizational schemes is to keep the

number of local variables the reader must keep in short-term memory to a minimum,

35

using a combination of graphic design and layout conventions along with editorial

division of information into discrete units.

Information Architecture Patterns
1) Sequential: The pages are organized in a sequence, where the contents of the pages are
presented in a linear narrative (Figure 3.4). Information that naturally flows as a

narrative, time line or in logical order is ideal for this pattern.

Figure 3.4: A Diagram of Sequential Pattern

We observed this pattern covers the “Sequence” guideline of Yale guidelines [Lynch &
Horton, 1999]. It is similar to “Step by Step Instructions” pattern in Common Ground

[Tidwell, 1999].

2) Hierarchical: All the pages are organized in a hierarchical model. The user can easily
go through from the most general overview of the Web site, such as home page, down to
the most specific or optional topics. The pattern contains a “Hierarchy” guideline
stemming from Yale guidelines and is similar to “Hierarchical Set” pattern in Common

Ground. Figure 3.5 illustrate the diagram of Hierarchical Pattern.

36

Hajor |
Submenus :

i
Content :
Peges |

Figure 3.5: A Diagram of Hierarchical Pattern

3) Grid: This pattern organizes the pages into two

dimensions (Figure 3.6). The contents of the pages | == = &=l 1= = ;'TE
e

must share a highly uniform structure of topics and ===

sub-topics. This pattern covers the “Grid” guideline ===

suggested in Yale guidelines.

Figure 3.6: A Diagram of Grid Pattern

4) Composite: A complex and large Web application is generally organized using a

combination of several architectural patterns (Figure 3.7).

Hierarchical Pattemn

Figure 3.7: A Composite Pattern combining Sequential Pattern, Hierarchical
Pattern and Grid pattern

37

3.1.2.1.2 Structural Patterns

This set of patterns establishes a consistent physical and logical screen layout of pages. It
allows a designer to quickly "plug in" chunk of information for pages without having to
stop and rethink the basic design approach for each new page. Patterns of this category
also suggest different ways for presenting, grouping and organizing information. This
category includes two kinds of patterns: Page Managers patterns and Information

Containers patterns.

1. Page Managers Patterns

1) Focus Page: This pattern aims to help the designer build a Web page that is the
fountainhead and center of the Web site. Such a page pattern should balance aesthetics
and practicality to attract users from their first glance. Figure 3.8 depicts the diagram of

this pattern.

Site title & paging buttons —
Page title ——-
Link to site home —9

Local context links —p

Center logo —p
Jump-~to-top link —

Footer with name, copyright, —p
revision date, paging buttons

Figure 3.8: Focus Page Pattern

38

This pattern is similar to “Navigable Space” and “Central Working Surface” patterns
collected in Common Ground. Moreover, this pattern can combine the “News” pattern in
Hypermedia Design Patterns [HPR, 2001] and “What They See is All They Get” usability
pattern defined by Kimberly Perzel and David Kane {Perzel & Kane, 1999]. In addition,
this pattern can contain several guidelines suggested in Yale guidelines: “Balanced
Pages”, “Design Grids for Pages”, “Graphics Safe Areas”, “Consistency” and *“‘Page

Length”.

2) Utility Page: This pattern helps the designer organize extra information and provide
additional explanation or assistance to the user. Good applications can be bookmarks and
help information. The pattern can embrace “Helper Posture” and “Bookmarks” pattern

defined in Common Ground.

3) Navigation Page: This pattern groups the information and directs the users to the
appropriate information they are looking for and then leads them to the proper page or
area. The pattern is similar to “Navigable Space” described in Common Ground and can

also contain the guideline “Image Maps” of Yale guidelines.

4) Tiled Page: This pattemn provides a paralleled structure of working surfaces and the
contents of each surface are related. Thus, it can show the contents to the user from
general to specific at the same time. As shown in figure 3.9: Pane “A” for viewing the
menu list or catalogues, pane “B” for viewing the brief introduction for that selected

catalogue, and pane “C” for viewing detailed information of “B” part.

39

Figure 3.9: A Diagram of Tiled Page Pattern

This pattern stems from “Tiled Working Surfaces” pattern in Common Ground. It is
similar to “Overview Beside Detail” pattern in Common Ground, “Garden of Windows”
pattern in Experience [Coram & Lee, 1996] and “Container Navigation™ pattern in

Amsterdam collection [Martijn, 2000].

5)_Stack Page: This pattern provides an overlapped structure of working surfaces. The
information elements are grouped in separate surfaces and it allows the user to select only
one surface at a time. Each surface should be labeled with the name of the category and

navigation areas should be placed at the top or left of the surfaces.

Figure 3.10: A Diagram of Stack Page Pattern

This pattern originates from *Stack of Working Surfaces” pattern in Common Ground. It
is also similar to “Navigating Spaces” pattern in Amsterdam Collection and “Garden of

Windows” pattern in Experience.

2. Information Containers

1) Executive Summary: This pattern gives users a preview of underlying information
before time is spent in downloading and reading large amounts of information. It is an
especially critical design issue for small devices. The pattern is similar to “Preview”

pattern defined in Amsterdam collection.

2) On Fly Description: This pattern shows a short (one sentence or shorter) description of
a target object. When the mouse focuses on one object, the pattern presents the additional
information to the users, in the form of clarifying data or explanations of possible actions
(Figure 3.11). The pattern is similar to “Short Description” pattern suggested in
Common Ground and it is also similar to “Hinting” pattern in Amsterdam Patterns

Collection and “Behavior Anticipation” pattern in HPR [HPR, 2001].

O O q *This & a Bar.”

Figure 3.11: An Example of On Fly Description Pattern

3) Form: This patterns intention is to collect complete information from the user and it is
widely applied in on-line registration and surveys. This pattern is similar to “Form”
pattern in Common Ground and it can also contain or implement the following patterns:
“Forgiving Text Entry”, “Structured Text Entry”, “Good Defaults”, “Remembered State”

in Common ground; “Show the Format Required” pattern in Brighton; “Focus!” pattern

41

in Amsterdam; “Required Field Marker” pattern and “What They See is All They Get”

pattern defined by Kimberly Perzel and David Kane [Perzel & Kane, 1999].

4) Bullet: Bullet pattern collects small amounts or simple information from users. It

presents the information into groups and labels the content with bullets. This pattern is
similar to “Small Groups of Related Things” pattern and “Choice From A Small Set”

pattern defined in Common Ground.

3.1.2.1.3 Navigation Support Patterns

Patterns of this category implement techniques for navigating among a set of pages or a

chunk of information.

1) Shortcut: This pattern is normally located on the homepage, which lists all the
frequently visited pages in a list box. Thus, the experienced users can directly find their
favorite pages by using this pattern. This pattern can contain the other patterns described

in Common Ground: “Choice From A Small Set” and “Choice From A Large Set”.

2) Convenient Toolbar: This pattern aims to assist the user to reach the most useful and
frequently visited pages promptly. The pattern groups the frequently used actions
together, labels these actions with meaningful icons or notations and locates them on a
consistent place throughout the Web site. The pattern is similar to “Convenient
Environment Actions” pattern defined in Common Ground, as well as being similar to

“Goal Oriented Areas” pattern in Experience, “List Browser” pattern in Amsterdam and

42

“Guided Tour” pattern in HPR [HPR, 2001]. Moreover, this pattern contains the

guidelines of “Basic Interface Design™ and “Links & Navigation” in Yale guidelines.

3) Path: The path pattern indicates the whole path since the user accesses into the Web

site. It reduces the user’s memory load.

4) Map: This pattern depicts a map of all navigable pages in a Web site. It can support
the user to reach any page directly. This patiern is fairly similar to “Map of Navigable
Spaces” pattern in Common Ground and it contains patterns such as “High-Density
Information Display” pattem and “Tabular Set” pattern defined in Common ground;
“Hyper-Map” pattern suggested by D.M. German and D.D. Cowan [German & Cowan,

1999].

5) Browsing Index: This pattern allows the user to navigate directly from one item to

another by using a natural ordering. The ordering is based on a ranking and the ordering
criterion is visible to the user. This pattern is similar to “Index Navigation” pattern

suggested in HPR [HPR, 2001].

3.2 Format for Documenting Patterns

3.2.1 UPADE Format

In general, HCI patterns are documented using software engineering pattern forms.

Most of the HCI pattern forms suggest no concerns on the relationship between patterns

43

and design process. However, the UPADE Web language emphasizes the designer
perspective and the patterns are presented according to the design process. Therefore, the
existing pattern forms are not suitable for UPADE Web language. In UPADE Web
language, we describe the patterns using the following form:
Usability Pattern Name = Name
Alias = Alias
Intent = Intent /*Applicability and Goals
{
If the user find himself
As for Examples = Examples
With Usability Problem = Problems
In the Context of Use = Context
Entailing Forces = Forces
Then Based on the Rationale = Rationale /*Justifications and Design Principles
Apply Solution = Solution
Use Implementation = Implementation
Leading to
Consequence = Consequence /* Measurable Usability Attributes
Where Other Usability Patterns Can Apply = Patterns
For further information and understanding
Reference = List_Reference

}

The following table 3.1 summarizes the language attributes and possible values:

Characteristic

Definition

Attributes and possible values

Name and Alias

Each pattern should have a
meaningful name that represents
the problem it is addressing. We
entitle the pattern according to
Alexander’s name principles.

Intent

This section is an abstract, which
describes the goals and the
applicability of the usability
patterns.

Context

It defines the context in which
the problem occurs including
user characteristics, tasks and
technical, physical and
organizational environment.

- User = {Novice, Intermediate,

Expert, Occasional }

Task = { Duration,
Frequency, Flexibility }

Workplace = {Hardware,
Software, User Posture,
Location, Group Working }

Problem

This section describes the
usability problems that the
pattern attempts to solve within
the given context and constraints
of the problem.

Forces

The notion of force generalizes
the kinds of criteria that we use
to justify the usability of a
product.

Patterns deal with the larger,
harder-to-measure, and
conflicted sets of goals and
constraints encountered in the
development of every artifact
you ever create.

This section gives instance(s) of
situations where the pattern is
used. Examples help usability

45

Examples

engineers understand the scope
and domain of applicability of
the pattern. This also enforces
the fact that the pattern describes
a proven solution. Examples can
be provided in several ways:
prose, diagrams, pictures (hand
sketches or photographs) that
illustrate the use of the pattern.

Rationale

This section describes, in a
solution-independent manner,
the reasoning (design rationale)
behind and suitability of the
pattern as a justified choice
towards solving the usability
problem in different context of
use. The rationale assists a
usability engineer in making an
appropriate choice by describing
how and why the pattern works,
with an insight into the internal
structure and key mechanisms of
the system.

Solution

This section describes the actual
solution provided by the pattern
to solve the usability problem. It
describes the solution approach
briefly and the solution
elements, which identify the
pattern’s structure, presentation,
logic and behavior.

Implementation

This section includes:

-Structure: A description of a
pattern at a high level abstraction
using a graphical notation. It is
supplemented by a detailed
explanation of the participants
and collaborations.

- Strategies: Describe different
ways a pattern can be
implemented.

This section describes usability-
related impact and trade-off from
the application of the pattern.

Consequences should refer to the

Identified measurable aspects of
Usability:

{Learnablity, Task Completion,
Error Analysis, Performance,
Satisfaction}

Other usability factors and

Consequences relevant factors and criteria that | criteria:

we used to justify the usability of | Factors = {Efficiency,

a design solution. Effectiveness, Satisfaction,
Productivity, Safety,
Accessibility, Universality }
Criteria = {Understandability,
Operability, Aesthetics,
Compliance, Consistency,
Flexibility, Minimal Action,
Minimal Memory load, Guidance,
Accuracy, Completeness,
Required Resources, Helpfulness,
Controllability }

This section gives all the related

patterns, which are either super-

ordinate, sub-ordinate,

competitor, or neighboring

patterns.

Super-ordinate pattern: It is

the superior of the described

pattern, which can contain the

Related Patterns | target pattern and other patterns.

Sub-ordinate pattern: It can be
embedded into the described
pattern.

Competitor pattern: It can
provide the same or competitive
function as the described pattemn
and cannot be used together with
the described pattern.
Neighboring pattern: It belongs
to the same pattern category as
the described pattern.

47

This section provides references

References (with an annotated bibliography,
if necessary) for further
understanding about the design
principles underlying the pattern
as well the pattern itself.
Table 3.1: UPADE Web Language Attributes and Possible Values
3.2.2 Examples

In this thesis, we haven’t described all the sections of the pattern form for each UPADE

pattern. We utilize a simple version of UPADE format for documenting patterns. Here,

we extract three specific patterns from each category. The following table 3.2 describes

Hierarchical Pattern.

Name HIERARCHICAL
Identification Catego Product-Oriented Patterns=> Architectural
gory Patterns—> Information Architecture Patterns
User Novice and expert
Context Task Tasks are structured into a hierarchy. All the sub-
tasks stem from one original center.
Workplace Web applications
- The user can easily go through from the most general overview of the
Problems tV;’;ilZssue, such as home page, down to the most specific or optional
- Have more flexibility than sequence structure.
- Efficiency
- Effectiveness
Forces - Satisfaction
- Understandability
- Completeness
- Flexibility

48

Examples Most of the current Web
sites are utilizing the
hierarchical structure.

. - Causality
Rationale - Population stereotypes
- All the pages are organized in a hierarchical cascade model. The sub-
branches expend from one generic center. There is no intersection
Solution among sub-branches.
- Certain constraints should be applied on the width, depth of the
structure.
Super-ordinate Composite
P Focus Page, Utility Page, Navigation Page, Tiled
Patterns Sub-ordinate Page, Stack Page
Neighboring Sequential, Grid
Competitor Sequential, Grid
References Hierarchy” guideline in Yale guidelines.

“Hierarchical Set” pattern in Common Ground.

Table 3.2: Hierarchical Pattern

Table 3.3 describes Focus Page Pattern:

Name FOCUS PAGE
Identification C Product-Oriented Patterns—>» Structural Patterns=>
ategory
Page Managers Patterns
User Novice and expert
The Web page is the fountainhead and center of a
Web site. It must balance aesthetics and practicality
Context Task to attract the user, especially the novice, at first
glance.
Workplace Web page
- The novice shows interests on the Web site and may be willing to
continue exploring.
Problems

- The expert user can find the useful information easily and reach the
target topics promptly.

49

Efficiency

Forces Effectiveness
Understandability
Attractiveness
ike title & pogtng buttans — 1 e S 3 j::i::;::‘.__, Domon Conree °""_°::'_"
. OCLC U Qe v
Lacal sentout Yoks — ¢ * ' PR, P Tab 1BAAS TS Ut N TIA WD
Examples wﬂmmmmcw.mﬂ
:ﬁ“‘:‘:;:“’ nw::::;-w‘»::
BEHIES e v 0.C s ke
- STIMTIIAA e s b 6T Tl a0
I oL
Affordance
. Causality
Rationale
Transfer effects
Population Stereotype
Deploy a utility toolbar, an index of major topics, a shortcut menu, push
information sections and maintenance support information section on
Solution the WCb. page. . .
Apply dimension constraints on the width and length of a page.
Avoid frames, big size images, irrelevant applets, blinking texts and
banners.
Super-ordinate Sequential, Hierarchical, Grid, Composite
. Executive , On Fly Description, Shortcut,
Patterns Sub-ordinate cutns Summary y P
Convenient Toolbar, Browsing Index
Neighboring Tiled Page, Stack Page
Competitor Tiled Page, Stack Page
“Navigable space” and “Central Working Surface” patterns in Common
Ground.
“News” in HPR (HDPR, 2001)
References

“What they see is all they get” defined by Kimberly Perzel and David
Kane (Kimberly et al., 1999)

“Balanced pages”, “Design grids for pages”, “Graphics safe areas”,
“Consistency” and “Page length” in Yale Guidelines.

Table 3.3: Focus Page Pattern

50

Table 3.4 illustrates Convenient Toolbar Pattern.

Name CONVENIENT TOOLBAR
Identification C Product-Oriented Patterns=> Navigation Support
ategory
Patterns
User Expert
Assist the user to reach the most useful and
Context Task frequently visited pages at any time throughout the
Web site.
Workplace Web site
- The user can easily find the most commonly used pages regardless of
Problems the current state of the artifact.
- The user can reach these convenient pages promptly.
- Efficiency
- Safety
- Consistency
Forces - Minimal Action
- Minimal Memory
- User Guidance
- Helpfulness
§| @ocicume Gaoocr Bsiense Swiars mw Brunsa © site naip
Examples LN ENE N Onnive Cnauaneie
4 home)
- Affordance
Rationale - Mapping
- Causality
- Group the most convenient action links, such as home, site map, help
Solution anq etc.
- Utilize meaningful metaphors and accurate phases as labels.
- _Locate it at the consistent place throughout the Web site.
Super-ordinate Focus Page, Tiled Page, Stack Page, Navigation
P Page, Utility Page
Patterns Sub-ordinate
Neighboring Shortcut, Path, Map, Browsing Index
Competitor Shortcut

51

References

“Convenient environment actions”, “Go back to a safe place” in
Common Ground.

“Goal oriented areas” in Experience.

*“List Browser” in Amsterdam

“Guided tour” in HPR.

“Basic interface design” and “Links & navigation” in Yale guidelines.

Table 3.4: Convenient Toolbar Pattern

52

Chapter 4: UPADE Editor - A design and Prototyping Tool

In order to make UPADE Web patterns language usable, especially by developers who
are not familiar with HCI design as well as novice designers, we embedded the patterns
into a tool (UPADE editor). The UPADE editor provides a pattern box containing
product-oriented patterns. The designer can not only browse the detailed description of
each pattern in UPADE editor, but can also pick up a product pattern from the pattern

box and combine patterns to develop low fidelity prototypes.

4.1 Overview of UPADE Editor 1.0

As part of our thesis, we have built the first version of UPADE editor. It is implemented

inJ.D.K 1.2.

4.1.1 Functionality

UPADE editor 1.0 can fulfill Browse and Design functions as following:

1. Browse:

UPADE editor can provide software developers and pattern engineers with just-in-time
details and information on product-oriented patterns. The information is depicted in
unified format consisting of pattern name, a description of the pattern, some illustrated

diagrams and several practical examples.

The designer can acquire the pattern information at any circumstance whether in

“Browse” or “Design” mode of UPADE editor. When UPADE editor is in “Browse”

53

mode, once the designer clicks on any specific pattern in the Product Pattern box, a pop-
up window appears and related just-in-time information is given inside the window. Also,
when UPADE editor is in “Design” mode, the designer can still get the information

support only if he utilizes the right button of the mouse on the target pattern.

Furthermore, UPADE editor can demonstrate the interrelationship between product
patterns and the design process. When the designer selects any step of the design
process, the relevant product patterns will be enumerated immediately in the Product

Pattern box.

2. Design:
First of all, UPADE editor supports design process starting from a more general to a more

specific level. Three different levels are provided to the designer:

— Web Application level: The designer can establish a prototype of a Web
application, which characterizes certain architecture containing Web pages and

specific elements on each page.

— Web Page level: In this level, the designer can select a suitable Page Managers
pattern for the Web page structure, then embeds required page elements into the

page to establish a prototype of a Web page.

— Elements level: The designer can pick up certain page element patterns including
Navigation Support patterns and Information Containers patterns from the

Product Pattern box and combine them to establish a prototype.

54

Secondly, UPADE editor can illustrate appropriate product patterns in the Product
Patterns box according to circumstances. For example, when the designer triggers the
section titled “Navigation Area” in a Page Managers pattern, all the Navigation Support

patterns will be presented immediately in the Product Patterns box.

Thirdly, UPADE editor supports combination and organization of existing patterns. The
designer can embed Page Managers patterns into Information Architecture patterns. (S)he
can also insert Navigation Support patterns and Information Containers patterns into Page
Managers patterns. Moreover, the designer has the capability to organize Navigation
Support patterns and Information Containers patterns within Page Managers patterns. The
designer can add, move and even delete the patterns of the former two categories inside
the latter patterns. The purpose of these activities is to explore the way that organize and

combine the existing patterns to customize and generate the new patterns.

Finally, UPADE editor provides a mechanism to check the usage of patterns. It can
automatically examine the compatibility of certain patterns and then give the related

instruction to the designer.

4.1.2 Interface

The main interface of UPADE editor is separated into five areas (Figure 4.1)

55

ADE Editor 1.0

Figure 4.1: Main Interface of U

Process Patterns Box: Illustrates all the suggested Web design processes. The
corresponding design steps of each design process are organized into a hierarchical

structure.

Product Patterns Box: All the product patterns are presented in this area and

grouped in accordance with their categories.

Working Area: The major operation surface for designers. The designer can fulfil

the “Browse” and “Design” activity in this area.

56

4. Awareness Information Area: This area aims to display constructive suggestions to
the designer, in order to indicate to the designer the correct use of UPADE Web
patterns. Please note that this function hasn’t been implemented completely in the

current version of UPADE editor. It will be realized in the future.

5. Button Bar: Composed of four buttons, titled “Browse”, “Design”, “Add” and
“Generate”, which represents the functionality of UPADE editor. The two latter
buttons are dimmed, because “Add” and “Generate” functions are not intended to

be implemented in UPADE editor 1.0

4.1.3 Collected Usability Patterns

In the Process Patterns box of UPADE editor 1.0, we have implemented four major
design steps of the IBM-UPADE process. They are Web Site Architecture, Page
Structure, Navigation Elements and Information Elements. Each step is tightly related to

a certain category of Product patterns.

For the Product Patterns box, we have collected the most representative patterns from
each category of product-oriented patterns and presented them inside the box. For

example,

- Information Architecture Patterns category: Sequential Pattern, Hierarchical

Pattern, and Grid Pattern.

57

- Page Managers Patterns category: Home Page (Focus Page) Pattern, Tiled Page

Pattern, and Stack Page Pattern.

- Information Containers Patterns category: Quick Summary (Executive

Summary) Pattern and On Fly Description Pattern.

- Navigation Support Patterns category: Shortcut Pattern, Index (Browsing
Index) Pattern, Convenient Actions toolbar (Convenient Toolbar) Pattern, Map

Pattern and Path Pattern.

4.2 Scenarios of Using UPADE Editor 1.0

In this section, we offer detailed examples to depict the functionality of UPADE editor.

4.2.1 Browse Function

“Browse” is the default mode when UPADE editor is initiated. As shown in Figure 4.2,
the “Browse” button is automatically enabled on the button bar, while the Process
Patterns box illustrates all the available design processes such as IBM-UPADE process.
Each design process is symbolized by a folder and all the relevant design steps are

packed into the folder correspondingly.

58

s Assisted [

Awareness Infomation

Figure 4.2: “Browse” Mode is Enabled When UPADE Editor is Initiated

Step 1: Select appropriate package of design process

Suppose we decide to choose “IBM-UPADE” design process. A double click on the
folder will spread the contents organized into a tree structure. As illustrated in Figure 4.3,

four steps of design process are embraced inside this folder.

- D Web Site Architecture
----- - [Y Page Strueture

- [) Navigation Elements
- [} information Elements

Figure 4.3: Four Design Steps of IBM-UPADE Process

59

Step 2: Acquire the interrelationship between product patterns and design process

steps

When the designer selects any specific step of design process in the Process Patterns box,
the corresponding product pattems are enumerated in the Product Patterns box. Each

product pattern is represented by a distinct icon and an accurate short notation.

The following four diagrams (Figure 4.4-Figure 4.7) exemplify how the product patterns

accord with each step in the Process Patterns box.

This mechanism automatically reveals the interrelationships between steps of design

process and product patterns. It reduces the complexity of UPADE WEB language.

w&w
‘-a"u...mmﬂsm
= BM-UPADE Process

8 Web See &?}"}/

- [) Newgasan Euments i
") information Elemants i

1 19M-UPLOE Pmcon
O viet Sae Avchitecture

1BM-UPADE Process

-) web site Archatecture

D) Page structure

[} Navigation Elements
FoswsepiaBeptonus Pe

Figure 4.7: “Information Elements” Step Relates to Information Containers Patterns.

61

Step 3: Browse the pattern information

When the designer (especially the novice designer) wants to acquire the interpretation of
certain patterns and to understand how to utilize each pattern properly, (s)he can browse
the detailed pattern information from a Pattern Description window. The description
window helps the designer reduce the memory load and enhance the understandability of
UPADE WEB language. Figure 4.8 shows when the designer clicks on the icon of
“Home Page” pattern, a pop-up Pattern Description window appears on the working
surface, that contains all the information concerning Home Page pattern, such as the

pattern name, the definition of the pattern and one practical example.

ical logjcal organization of a home page includes a utility toolbar, an index of majors topics, a
artéuts menu, push information sections, maintenance support information, and etc. as shown below:

Example:

2% Yevrenty veroun of Suv page.

- Pocicnee Gien Doy Quurice Greonns Pinsy

OCL ™ ONLINE COMPUTER .
p s Lingary CEXTER, IxC. 40 32 2iAiKAA 4= Jote T2

PROVARNG HERYICES Y<d GRNATHS AROXND PiE WIssD

[— R e I
Register online to attend OCLC evants at
- ALA Annuat
o ry Surt glawing your shedsde fae ALA Anoad,
Sy 6-12 o Clacago, L, USA. Go o e
OCIC Reb wx to waw 3 hae of 2CLC
actindes 4t ALA avd sy wp Kt Be oces that
iesest you
T Al reservabcrs are doe by Tunsdag, fame 22

Hays breskiast with COLE 53 ALA ARl

Figure 4.8: An Example of Pattern Description Window for Home Page Pattern.

62

4.2.2 Design Function

Step 1: Choose a proper design level

Before starting the design process, the designer should above all determine an appropriate
design level for his task. For instance, to establish a prototype of a Web application, (s)he
can begin the design process from “Web Site Architecture” level; to establish a prototype
of a Web page, (s)he needs only to start the process from “Page structure” level. Thus,
the designer should select a specific design step from the Process Patterns box to initiate

his or her design activity.

As illustrated in Figure 4.9 below, no.2 notation shows that the designer begins his design

process from the top level-“Web Site Architecture”.

Step 2: Initiate design function

To enable the design function of UPADE editor, the designer should select the “Design™
button on the button bar, and then the editor will switch the default “Browse” mode to

“Design” mode.

In the following Figure 4.9, no.l notation shows that the designer clicks on the “Design”
button to initiate the design function. No.3 depicts the subsequent image: A blank
operation surface appears in the Working Area, while the Product Patterns box

enumerates all the Information Architecture patterns.

63

Figure 4.9: An Example of Initiating Design Function

Step 3: Apply an appropriate Information Architecture Pattern

The design process starts with the description of the information architecture. We defined
three basic information architecture patterns for organizing the content of a Web
application and all these patterns are illustrated in the Product Patterns box. The designer
should choose one pattern to suit the Web application. Here we use Hierarchical
Architecture pattern as an example, which is the most popular scheme in Web sites

because Web sites should always be organized as offshoots of a single home page.

64

As shown in Figure 4.10, once the designer picks up the Hierarchical pattern from the
Product Patterns box, a tree-based hierarchical diagram is portrayed on the operation

surface immediately.

BN
s Tan

Figure 4.10: An Example of Applying Hierarchical Architecture
Pattern in a Web Application

Step 4: Apply Page Managers patterns

The next step of design process is to apply the page structure in establishing a consistent

physical and logical screen layout. In the previous picture (Figure 4.10), once the

65

designer triggers any node of the hierarchy tree in the operation surface, a blank surface
will be created for further development on the Web page. Meanwhile, the Information
Architecture patterns in the Product Patterns box will be replaced by Page Managers
patterns accordingly, which contains Home Page pattern, Common Page pattern, Stack

Page pattern and Tilted Page pattern (Figure 4.11).

RGNS

Figure 4.11: A Blank Surface is Created for Further Web Page Design, Along with

the Refreshed Page Managers Patterns in the Product Patterns Box.

The designer should then afterwards choose a specific Page Managers pattern for the
Web page from the Product Patterns box. Suppose the designer selects the “Home Page”
pattern for the current Web page. Figure 4.12 illustrates the consequences of applying a

Home Page pattern: The newly page operation surface is composed of Navigation area

and Information area.

S P

Figure 4.12: A Web Page Combining Home Page Pattern, Information Containers

Patterns and Navigation Support Patterns.

67

Step 5: Embed Information Containers and Navigation Support patterns

The last step of the design process is to embed Information Containers and Navigational
Support patterns into the Web page. When the designer triggers the Navigation Area or
Information Area on the page operation surface, the corresponding Navigation Support
patterns or Information Containers patterns will refresh the Product Patterns box. The
designer can then select a specific pattern from the Product Patterns box, combining with
other patterns, to form a Web page (Figure 4.12). In addition to add Navigation Support
patterns and Information Containers patterns to the Web page, the designer has the

capability to move any of these patterns or even delete useless ones.

4.2.3 Other Features Demonstration

UPADE editor supports the designer in looking through a Web application at different
levels in that the designer can have an overview of the Web application, while (s)he can
also acquire detailed information of each Web page. As pointed by no.3 notation in the
above Figure 4.12, by enlarging the minimized architecture surface, the designer can get

the whole structure of the Web application.

Moreover, UPADE editor provides a mechanism to check the usage of certain patterns. It
can automatically verify the compatibility of the patterns to the circumstances according
to their contexts of use. For example, if a novice designer is not familiar with the
attributes of Shortcut pattern, (s)he might decide to add a Shortcut pattern into a common
page instead of the home page. However, with our checking mechanism, UPADE editor

will kindly inform the designer that it is not appropriate for the task (Figure 4.13).

68

Figure 4.13: An Example of Pattern Compatibility Check

69

Chapter S: Conclusion and Future Investigations

5.1 Conclusion

In this thesis, we explored a usability patterns-assisted design approach for Web user
interfaces. We developed a usability pattern language for Web applications (UPADE

Web language) and an editor tool (UPADE editor) to support that language.

Our investigations revealed that Web design and prototyping tools, such as Web
scripting, programming tools and low fidelity prototyping tools, are not concerned with
usability issues. We also found that usability patterns are an alternative design approach
to current Web guidelines and Web authoring tools. However, we discovered that the
_current pattern languages or collections for user interface design such as Common
Ground, Experience, Brighton Usability Pattern Collection and Amsterdam Collection,
unfortunately, are described in natural languages. It is hard for developers especially the
novice designers to use these patterns in real design activities effectively and efficiently.
Furthermore, none of the existing usability pattern languages are dedicated to Web

application design.

This limitation motivated us to define and develop a usability pattern language for Web
applications (UPADE Web language) and a tool to support pattern-oriented design
(UPADE editor). We defined 18 usability patterns and these patterns are categorized into

Architectural Patterns, Structural Patterns and Navigation Support Patterns. In addition to

70

browsing and searching, UPADE editor allows a Web designer to combine existing

patterns and to create a new user interface.

5.2 Further Investigations

The UPADE Web language and the editor presented here are part of a long-term research
project. The expectation is that UPADE will first enable clear communication between
usability experts, user interface pattern writers (and ultimately pattern users), and second
will enable CASE tool support for design patterns, permitting the novice designer
(pattern user) to operate at a higher level of abstraction when building multi-platform and

device-independent design.

As a next step, we suggest the implementation of usability patterns using an XML-based
markup language. XML facilitates the generation of a complete and operational user
interface. Meanwhile, to make the outcome of our research beneficial to the industrial
world, Web designers, software developers and pattern researchers have to test and
evaluate the UPADE language for Web applications and UPADE IDE, including the

UPADE editor.

71

References

[Alexander, 1964] Alexander, Christopher, “Notes on the Synthesis of Form”, Harvard
University Press, 1964.

[Alexander, 1975] Alexander, Christopher, “The Oregon Experiment”, Oxford
University Press, 1975.

[Alexander et al., 1977] Alexander, Christopher, Ishikawa, S., Silverstein, M., Jacobson,
M., Fiksdahl-King, L., & Angel, S. A. “A Pattern Language’. New York: Oxford
University Press. 1977.

[Alexander, 1979] Alexander, Christopher, “The timeless way of building”. New York:
Oxford University Press, 1979.

[Ambler, 1998] Scott W. Ambler, “An Introduction To Process Patterns”, 1998.

http://www.ambysot‘t.com/processPattcmsPaper.html

[Apple Inc., 1992] Apple Computer, Inc. (1992) “Macintosh Human Interface
Guidelines” Addison-Wesley Publishing Company.

[Bayle et al., 1998] Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S.,
Grinter, B., Gross, B., Lehder, D., Marmolin, H., Potts, C., Skousen, G. &
Thomas, J. “Putting It All Together: Towards a Pattern Language for
Interaction Design. Summary Report of the CHI '97 Workshop” SIGCHI
Bulletin, ACM, January, 1998.
http://www.pliant.org/personal/Tom_Erickson/Patterns.erShpRep.html

[Brighton UK, 2001] Brighton UK, “The Brighton Usability Pattern Collection”, The

Usability Group at the University, 200].
http://www.it.bton.ac.uk/cil/usability/pattems/

72

[Budinsky et al., 1996] F. J. Budinsky, M. A. Finnie, J. M. Vlissides_and P. S. Yu
‘“Automatic code generation from design patterns”, IBM Vol. 35, No. 2, 1996
- Object technology.
http://www.research.ibm.com/journal/sj/budin/budinsky.html

[Carlow Inc., 1992] Carlow International Incorporated (1992) “NASA Human-

Computer Interface Guidelines”.
http://groucho.gsfc.nasa.gov:80/Code_520/Code_522/Documents/HCI_Guidelines/

[Casaday, 1997] George Casaday, “Notes on a Pattern Language for Interactive
Usability”’, Marcam Corporation, CHI 97.
http://www.acm.org/sigchi/chi97/proceedings/short-talk/gca.htm

[Coplien, 1995] James O. Coplien, “A Generative Development-Process Pattern
Language”, PLoPDI, 1995

[Coplien, 1996] James O. Coplien, “Software Patterns”, Bell Laboratories, Naperville,
Illinois, SIGS Books ISBN 1-884842-50-X, 1996.
http://hillside.net/patterns/definition.htm!
http://www | .bell-labs.com/user/cope/Patterns/WhitePaper/SoftwarePatterns.pdf

[Coram & Lee, 1996] Todd Coram and Jim Lee, “Experiences -- A Pattern Language
for User Interface Design”, PloP conference, 1996.

http://www.maplefish.com/todd/papers/experiences/Experiences.html

(Florijn et al., 1997] Gert Florijn, Marco Meijers, Pieter van Winsen “Tool support for
object-oriented patterns” Utrecht University ECOOPY7, pp.472.
http://www.serc.nl/people/florijn/work/patterns.html

[Gamma et al, 1994] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
“Design Patterns Elements of Reusable Object-Oriented Software”, Published

73

October 1994, ISBN 0-201-63361-2.

[German & Cowan, 1999] D.M. German, D.D. Cowan, DCS, Waterloo, Canada, “Three
Hypermedia Design Patterns”, Proceedings of the HT99 Workshop on
Hypermedia Development.
http://www.eng.uts.edu.auw/~dbl/HypDev/ht99w/submissions/GermanHT99W orks
hop.pdf

[Granlund & Lafreniére, 1999] Asa Granlund, Daniel Lafreniére, “PSA-A Pattern-
Supported Approach to the User Interface Design Process”, June 1999.
http://www.gespro.convlafrenid/PSA.pdf

(HPR, 2001] Hypermedia Design Patterns, an initiative of ACM-SIGWEB in
collaboration with the University of Italian Switzerland, 2001.
http://www.designpattern.lu.unisi.ch/PatternsRepository.htm

[IBM, 2001a] IBM-ease of use-web design guidelines-Design, 2001 July.
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/574

[IBM, 2001b] IBM Web Design Guidelines, 2001 July.
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/572

[Kant et al., 1998] Maarten van de Kant, Stephanie Wilson, Mathilde Bekker, Hilary
Johnson and Peter Johnson. “PatchWork: A Software Tool for Early Design”.
In Proceedings of Human Factors in Computing Systems: CHI'98. Los Angeles,
CA. pp.221-222, April 18-23 1998.

(Lea, 1993] Lea, D. Christopher Alexander: An Introduction for Object-Oriented

Designers. 1993.
http://g.oswego.edu/dl/ca/ca/ca.html

74

[Lin et al., 2000] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay.
“DENIM: Finding a tighter fit between tools and practice for web site
design”. CHI Letters: Human Factors in Computing Systems, CHI 2000, 2000.
2(1): pp. 510-517.
http://guir.berkeley.edu/pubs/denim/denim-chi-2000.pdf

[Lynch & Horton, 1999] Patrick J. Lynch, Sarah Horton, ¢ Web Style Guide”, Yale
University Press; ISBN: 0300076754, March 1999.

http://info.med.yale.edu/caim/manual/index.htmi

[Mahemoff & Johnston, 1998] Mahemoff, M. I. and Johnston, L. J. “Pattern Languages
for Usability: An Investigation of Alternative Approaches” In Tanaka, J. (Ed.),
Asia-Pacific Conference on Human Computer Interaction (APCHI) 98
Proceedings, 25-31. Los Alamitos, CA: IEEE Computer Society. In Shonan
Village, Japan, July 15-17, 1998.

http://www.cs.mu.oz.au/~moke/papers/candidate/

[Martijn, 2000] Martijn van Welie , “The Amsterdam Collection of Patterns in User
Interface Design’’, April 2000.
http://www .cs.vu.nl/~martijn/patterns/index.html

[Martijn et al., 2000] Martijn van Welie, G.C. van der Veer, A. Eliéns, “Patterns as
Tools for User Interface Design”: In: International Workshop on Tools for
Working with Guidelines, pp. 313-324, 7-8 October 2000, Biarritz, France.
http://www.cs.vu.nl/~martijn/gta/docs/TWG2000.pdf

[Martijn & Hallyard, 2000] Martijn van Welie, Hallyard Traetteberg, “Interaction

Patterns in User Interfaces”, PloPD 2000.
http://www.cs.vu.nl/~martijn/patterns/PLoP2k-Welie.pdf

75

[Martijn et al.,1999] Martijn van Welie, van der Veer, G.C., and Eliéns, A. “Breaking
down Usability”. Human-Computer-Interaction Interact99 Conference
(Edinburgh, 30th August - 3rd September 1999). IOS Press, pp.613-620.

[Meijler et al., 1997] Meijler, T. D., S. Demeyer, and R. Engel, "Making Design
Patterns Explicit in FACE, A Framework Adaptive Compesition
Environment", in Software Engineering Notes, ESEC/FSE, Vol. 22, No 6, Nov
1997, pp.94-110.

[Microsoft, 1987] Microsoft Corporation (1987) “The Windows Interface: An

application design guide”. Microsoft Corporation.

[Nielsen, 1999] Nielsen J. “Designing Web Usability: The Practice of Simplicity”.
New Riders, 1999.

[NIST, 2001] NIST, “Web Metrics Testbed”, 2001.
http://zing.ncsl.nist.gov/WebTools/

[Dstebye, 1999] Kasper Ostebye, Norwegian Computing Center, Norway,
“Hierarchical structure through navigation side bars”, Proceedings of the
HT99 Workshop on Hypermedia Development.
http://www.eng.uts.edu.au/~dbl/HypDev/ht99w/submissions/Oesterbye HT99Work
shop.pdf

[Perzel & Kane, 1999] Kimberly Perzel, David Kane, SRA International, “Usability
Patterns for Applications on the World Wide Web”’, PloP '99 Conference.

http://jerry.cs.uiuc.edu/~plop/plop99/proceedings/Kane/perzel_kane.pdf

[Portland, 2001] Portland Form, 2001
http://c2.com/cgi/wiki?PortlandForm

76

[Rising, 1998] “The patterns handbook”, collected and introduced by Linda Rising,
Cambridge University, 1998, pp.237.

[Schuetze et al., 1997] Schuetze, M., J. P. Riegel, and G. Zimmermann, "A Pattern-
Based Application Generator for Building Simulation", in Software
Engineering Notes, ESEC/FSE, Vol. 22, No. 6 Nov 1997, pp.468-482.

[Sefika et al., 1996] Sefika, M., A. Sane, R. Campbell, "Monitoring Compliance of a
Software System with its high-Level Design Models", Proc. of ICSE96, 1996.

[Tidwell, 1999] Tidwell, Jenifer, “ Common Ground: A Pattern Language for
Human-Computer Interface Design ”, 1999.

http://www.mit.edw/~jtidwell/common_ground.html

[TO U., 1990] The Open University in association with the Department of Trade and
Industry (1990) “Usability Now! A Guide to Usability”, The Open University,
ISBN 0749243449

[UCB, 2001] “DENIM and SILK?”, Group for User Interface Research, University of
California at Berkeley, 2001 July.
http://guir.berkeley.edu/projects/denim/

[Yacoub et al., 2000] Sherif Yacoub, Hengyi Xue, and Hany Ammar , ‘“Automating the
Development of Pattern-Oriented Designs”, in Proc. of Application Specific
Software Engineering Technology ASSET 2000, [IEEE Computer Society, Dallas,
Texas, March 2000

http://www.csee.wvu.edu/~ammar/
[Yacoub, 1999] Sherif M. Yacoub, West Virginia University , “Pattern-Oriented

Analysis and Design (POAD)”, 1999.

http://www.csee.wvu.edu/~yacoub/phd.htm

77

[Yacoub & Ammar, 1999] Sherif M. Yacoub and Hany H. Ammar ,West Virginia
University, “Tool Support for Developing Pattern-Oriented Architectures”,
In Proceedings of the st Symposium on Reusable Architectures and Components
for Developing Distributed Information Systems (RACDIS99), Orlando, Florida,
August 2-3, 1999, Vol I, pp. 665-670.

http://www.csee.wvu.edu/~ammar/

78

Appendix A: UPADE Web Patterns

A.1 Sequential Pattern
) ' Name SEQUENTIAL
Identification Catego Product-Oriented Patterns=> Architectural Patterns
cgory -> Information Architecture Patterns
User Novice and expert
Task is composed of consecutive steps. There is a
Context Task narrative time line or logical order among the
contents.
A small Web site or sub-branch of a comprehensive
Workplace .
Web application.
- The user can easily follow a narrative, time line or other logical order to
Problems find all the relevant information.
- It is the simplest method to organize basic content and training
materials.
- Effectiveness
- Efficiency
Forces - Understandability
- Consistency
- User Guidance (legibility)
Broadly applied into the
Examples e B I e B L B e organization of Index,
B B B [tutorial, encyclopedias and
glossaries.
Rationale - Causality
- Population stereotypes
. Organize the pages in a sequence, where the contents of the pages are
Solution . . h
presented in a linear narrative.
Super-ordinate Composite
P Focus Page, Utility Page, Navigation Page, Tiled
Patterns Sub-ordinate Page, Stack Page
Neighboring Hierarchical, Grid
Competitor Hierarchical, Grid
“Sequence” guideline of Yale guidelines.
References “Step by step instructions” pattern in Common Ground.

79

A.2 Hierarchical Pattern

Name HIERARCHICAL
Identification Product-Oriented Patterns=> Architectural

Category Patterns-> Information Architecture Patterns

User Novice and expert
Context Task Tasks are structured into a hierarchy. All the sub-

tasks stem from one original center.

Workplace Web applications

- The user can easily go through from the most general overview of the
Problems t\(")/;i:m, such as home page, down to the most specific or optional

- Have more flexibility than sequence structure.

- Efficiency

- Effectiveness

- Satisfaction
Forces - Understandability

- Completeness

- Flexibility

:w = Most of the current Web
Examples somna | sites are utilizing the
hierarchical structure.
Cagx .

Rationale - Causality

- Population stereotypes

- All the pages are organized in a hierarchical cascade model. The sub-

branches expend from one generic center. There is no intersection

Solution among sub-branches.

- Certain constraints should be applied on the width, depth of the

structure.
Super-ordinate Composite
. Focus Page, Utility Page, Navigation Page, Tiled

Patterns Sub-ordinate Page, Stack Page

Neighboring Sequential, Grid

Competitor Sequential, Grid
References “Hierarchy” guideline in Yale guidelines.

“Hierarchical Set” pattern in Common Ground.

80

A.3 Grid Pattern

Name GRID
Identification Product-Oriented Patterns=> Architectural
Category Patterns=> Information Architecture Patterns
User Expert
Topics and contents are fairly correlated with each
Context Task other. Moreover, there is no particular hierarchy of
importance.
Workplace Web applications
- The user can find all the related information organized into multiple
dimensions.
- It can benefit the experienced user who already has some basic
Problems
knowledge on the topic and interrelationship.
- More complicate than sequence structure.
- Productivity
F - Effectiveness
orces
- Completeness
- Accuracy
Applications: Procedural manuals,
Examples lists of university courses, medical
case descriptions
Rationale - Causality
- Establish a coordinate system to organize the contents, such as a time
Solution line versus several categories of the technology evolution.
- Make each unit to share a highly uniform structure of topics and sub-
topics.
Super-ordinate Composite
o Focus Page, Utility Page, Navigation Page, Tiled
Patterns Sub-ordinate Page, Stack Page
Neighboring Sequential, Hierarchical
Competitor Sequential, Hierarchical
References - “Grid” guideline in Yale guidelines.

81

A.4 Composite Pattern

Name COMPOSITE

Identification Cateso Product-Oriented Patterns-> Architectural
gory Patterns-> Information Architecture Patterns
User Novice and expert
Tasks and topics may have very different structures

Context Task and usage.

Workplace Web applications

- Heterogeneous information can be well and completely organized.

- Itis easy and understandable for user to surf at a complex Web site
Problems . !

where topics and contents may have various structures.

- Effectiveness

- Efficiency
Forces - Hlexibility

- Understandability

- Compieteness

Most comprehensive
Examples Web sites apply such a
structure.
. - Causality

Rational - Affordance

Apply appropriate structure model according to the interrelationship of the
Solution contents. It can combine sequential, hierarchical and grid architectural

pattems.

Super-ordinate
Patterns Sub-ordinate Sequential, Hierarchical, Grid

Neighboring Sequential, Hierarchical, Grid

Competitor Sequential, Hierarchical, Grid
References

82

A.S5 Focus Page Pattern

Name FOCUS PAGE
Identification Product-Oriented Patterns-» Structural Patterns—>
Category
Page Managers Patterns
User Novice and expert
The Web page is the fountainhead and center of a
Web site. It must balance aesthetics and practicality
Context Task . .
to attract the user, especially the novice, at first
glance.
Workplace Web page
- The novice shows interests on the Web site and may be willing to
continue exploring.
Problems Th . . .
- e expert user can find the useful information easily and reach the
target topics promptly.
- Efficiency
Forces - Effectiveness
- Understandability
- Attractiveness
u-m-&m-:::: :E“ :“-?:;::._ Qowon Conme Ormnat Binme
[ty OCLCEGERNE.. ~ene e
Losal santent Wk —p [PRI S RN RO EIMAATS Mot Y 130 PAMood
Examples 5 mﬁmmmdmcm-wr
’u‘ Alwa::::-w&.‘a-;i
Qarg-te-tog W —1 - : Lepanr ootow kit €0 AT Tpboar heouaBiur a3
T =
- Affordance
. - Causality
Rational
- Transfer effects
- Population Stereotype
- Deploy a utility toolbar, an index of major topics, a shortcut menu, push
information sections and maintenance support information section on
. W .
Solution the eb. page. . .
- Apply dimension constraints on the width and length of a page.
- Avoid frames, big size images, irrelevant applets, blinking texts and
banners.

83

Patterns

Super-ordinate

Sequential, Hierarchical, Grid, Composite

Sub-ordinate

Executive Summary, On Fly Description, Shortcut,
Convenient Toolbar, Browsing Index

Neighboring

Tiled Page, Stack Page

Competitor

Tiled Page, Stack Page

References

- “Navigable space” and “Central Working Surface” patterns in Common

Ground.

- “News” in HPR [HPR, 2001]

- “What they see is all they get” defined by Kimberly Perzel and David
Kane [Perzel & Kane, 1999]

- “Balanced pages”, “Design grids for pages”, “Graphics safe areas”,
“Consistency” and “Page length” in Yale Guidelines.

84

A.6 Utility Page Pattern

Name UITILITY PAGE
Identification Catego Product-Oriented Patterns—> Structural Patterns->
gory Page Managers Patterns
User Novice and Expert
Context Task Pr.ovide extra mf9rmatxon or assistance to the user
without interrupting the workflow.
Workplace Web applications
- The user can organize his favorite Web links or items in the utility page.
Problems - The user can acquire all the commonly helpful information in this page.
- It can enhance the understandability of the user on the target object
through an extra explanation window.
- Efficiency
- Productivity
- User Guidance
Forces - Helpfulness
- Required Resources
- Consistency
Applications:
Interior Accessaries - Bookmarks;
Weed Shift Kneb, Mahegany
e bhamagery st - Pop-upinfo
Examples " rompomeets o g sppesent windows;
* Frecition-machined trim ring metches-
. oy st s comfont] - FAQ pages.
hendle
r M.MI.I N;::xwu::r-'.}
I™ 3hid Ko, Mshogany e
Rationale - Affordance
- Mapping
- Group all the frequently asked questions in one page; make an index at
Solution the top of the page.
- Make the additional explanation consistent to the selected items.
Super-ordinate Sequential, Hierarchical, Grid, Composite
Patterns Sub-ordinate _ .
Neighboring Focus Page, Navigation Page, Tiled Page, Stack
Page
Competitor
References - “Helper Posture” and “Bookmarks” patterns in Common Ground.

85

A.7 Navigation Page Pattern

Name NAVIGATION PAGE
Identification Catego Product-Oriented Patterns-> Structural Patterns=>
gory Page Managers Patterns
User Novice and expert
- All the information is grouped and condensed
into a page.

Context Task - Each item in this page directs the user to reach
the appropriate topic and acquire further detailed
information.

Workplace Web page

- The user can have an overview on the whole allocation of the
Problems information.

- The user can find and reach the target topic promptly.

- Efficiency

- Satisfaction
Forces - Unde.rstandabxhty

- Consistency

- Minimal Action

- User Guidance

Applications:
Examples - World weather
forecast;
- Geographical Maps.
- Affordance
. - Mapping

Rationale - Transfer effects

- Popular stereotype

- Group the relevant topics.
Solution - Utilize meaningful pictures or metaphors to hint the user the proper area

- Provide labels, on fly description and other extra information on the

target object to allow the user to know what it is.
Super-ordinate Sequential, Hierarchical, Grid, Composite
. Map, Form, On Fly Description, Executive

Patterns Sub-ordinate Summary

Neighboring Focus Page, Navigation Page, Tiled Page, Stack

Page
Competitor

86

References

“Navigable space” described in Common Ground.
“Image Maps” of Yale guidelines.

87

A.8 Tiled Page Pattern

Name TILED PAGE

Identification Catego Product-Oriented Patterns=> Structural Patterns->
gory Page Managers Patterns
User Expert and Novice
The contents are well structured and presented to the
Context Task .
user from general to specific level.

Workplace Web page

The user can easily look through the introductions of the topics and find the
Problems o .

relevant detailed information on the same page.

- Efficiency
Forces - Productivity

- Understandability

- Completeness

A 8
Examples p
. - Mapping

Rationale - Causality

- Divide the page into several surfaces.

Solution - Pane “A” is the menu list or catalogues, pane “B” is the brief
introduction for the selected catalogue and pane “C” is detailed
information of “B”’ part.

Super-ordinate Sequential, Hierarchical, Grid, Composite
Executive Summary, On Fly Description, Shortcut,
Patterns Sub-ordinate Convenient Toolbar, Browsing Index, Path,
Tutorial Toolbar
Neighboring Focus Page, Stack Page
Competitor Focus Page, Stack Page
“Tiled Working Surfaces”, “Overview beside detail” in Common
Ground
References

“Garden of windows” in Experience
“Container navigation” in Amsterdam collection

88

A.9 Stack Page Pattern

Identification

Name

STACK PAGE

Category

Product-Oriented Patterns—=> Structural Patterns=>
Page Managers Patterns

Context

User

Novice and Expert

Task

- Contents are grouped into categories.
- No obvious hierarchical structure exists amongst
those categories or topics.

Workplace

Web page

Problems

- All the information is clearly grouped.

- The user can easily navigate the information through switching the tabs
of the working spaces.

- _The user can only access one category each time.

Forces

- Effectiveness

- Understandability

Examples

Rationale

- Constraints
- Affordance

- Mapping

Solution

- Utilize several surfaces stacked together to group information and label
them by the name of the categories.

- Locate the navigation area at the top if the number of surfaces is less
than 8; otherwise, put the navigation area on the left side.

Patterns

Super-ordinate

Sequential, Hierarchical, Grid, Composite

Sub-ordinate

Executive Summary, On Fly Description,
Browsing Index

Neighboring

Focus Page, Tiled Page

Competitor

Focus Page, Tiled Page

References

“Stack of Working surfaces” in Common Ground.
“Navigating spaces” in Amsterdam Collection
*Garden of Windows” in Experience.

89

A.10 Executive Summary Pattern

Name EXECUTIVE SUMMARY
Identification Catego Product-Oriented Patterns=> Structural Patterns—>
gory Information Containers Patterns
User Novice
Context Task Provide preview of the underlying information for
the user.
Workplace Web page
- Help the user determine if the topic has the relevant information.
Problems - Avoid the user spending time downloading and reading large amounts
of information on irrelevant topics.
- Efficiency
- Effectiveness
Forces - Safety
- User Guidance
- Helpfulness
ﬂ Documents that best match your search
dengn pouticns How We Stay Inkrrmed Usabidty Wiabloj. .
Examples C.-;:;:a: ;:;I::-M:aw
%amwmh- sbout webs usalrity
camprahwngive colfection of usehd lnks” Jakad Nosisen. Last
Rationale - Mapping
- Causality
. - Summarize the contents by using concise sentences beneath or beside
Solution . .
the underlying topics.
Super-ordinate Focqs nge, Tiled Page, Stack Page, Utility Page,
Navigation Page
Patterns Sub-ordinate Browsing Index
Neighboring On Fly Description, Form, Bullet
Competitor On Fly Description
References “Preview” in Amsterdam collection

A.11 On Fly Description Pattern

Name ON FLY DESCRIPTION
Identification Catego Product-Oriented Patterns->» Structural Patterns=>
gory Information Containers Patterns
User Novice
Context Task Provide the usera short description of the objects
that the mouse is focused on.
Workplace Web applications
- The user can get additional information on the target object.
Problems - The user may feel confident to acquire extra confirmation before next
possible actions.
- Satisfaction
- Safety
Forces - Effectiveness
- Helpfulness
- User Guidance
- Accuracy
Examples O O q The s 3 Bar! m to Home P
- Mapping
Rationale - Causality
- Transfer effects
- Give an accurate and short phrase or sentence in close spatial or
Solution temporary proximity to the target object.
Super-ordinate Focgs Pfige, Tiled Page, Stack Page, Utility Page,
Navigation Page
Patterns Sub-ordinate
Neighboring Executive Summary, Form, Bullet
Competitor Executive Summary
- “Short description” in Common Ground
References - “Hinting” in Amsterdam

“Behavior Anticipation” in HPR.

91

A.12 Form Pattern

Name FORM
Identification Catego Product-Oriented Patterns=> Structural Patterns—>
gory Information Containers Patterns
User Novice and Expert
Context Task Collect information from the user
Workplace Web applications
- Allow the user to input complete information in the format of characters
Problems or the Arabic numerals.
- The user knows clearly how to use the form.
- The user can check all the input information before submission.
Forces - Effectiveness
- Understandability
Registratioh' |
§ © weoquind information Applications:
Title: (selecy) EI - SUl‘VCy‘
First Naer® } ’
Midele Indtial I - Online
Examples Last Nazme: |
£ mail Addrees® — registration.
i Puswend® | o :
comyuwﬂ-‘ I P
Adrdvwee | # H
- Transfer effects
Rationale - Affordance
- Visual Constraints
- Provide some list-boxes to reduce the user’s work.
. - Apply constraints on the fields or provide certain format checking
Solution
mechanisms for the information correction.
- Allow the user to clear or cancel his action
Super-ordinate Utility Page, Tiled Page, Stack Page
Patterns Sub-ordinate Bullet

Neighboring

Executive Summary, On Fly Description, Bullet

Competitor

92

References

“Form”, “Forgiving text entry”, “Structured text entry”, “Good
defaults”, “Remembered state” in Common ground;

“Show the format required ” in Brighton;

“Focus!” in Amsterdam;

“Required field marker” and “What they see is all they get” defined by
Kimberly Perzel and David Kane.

93

A.13 Bullet Pattern

Name BULLET
Identification Catego Product-Oriented Patterns-> Structural Patterns—>
gory Information Containers Patterns
User Novice, Expert
Context Task Collect small amount or simple information from the
user
Workplace Web applications
- The user may feel easily to do the action.
Problems - The user only needs to click on the mouse to select the items.
- Itis clear and easy for the user to utilize the bullets.
- Efficiency
Forces - Minimal Action
- Understandability
Examples
Applications: Survey, Searching engine, on-line shopping
- Mapping
Rationale - Visual Constraints
- Accuracy
Solution - Group the information according to the contents or categories
- Label the contents by accuracy phrases or sentence
Super-ordinate Focus Page, Utility Page, Navigation Page, Tiled
Page, Stack Page
Patterns Sub-ordinate
Neighboring Executive Summary, On Fly Description, Form
Competitor Form
“Small groups of related things” and “choice from a small set” in
References

Common Ground.

94

A.14 Shortcut Pattern

Name SHORTCUT
Identification C Product-Oriented Patterns—> Navigation Support
ategory
Patterns
User Expert
Context Task Help the user reach his favorite or frequently visited
pages
Workplace Web page, mainly used on Homepage
Problems - The user can reach the target pages directly
- The user can avoid extra time on looking for the relevant pages.
- Efficiency
- Productivity
Forces - Minimal Action
- Minimal Memory Load
- User Guidance
Examples i
- Causality
Rationale - Constraints
- Transfer effects
- Locate on the homepage
Solution - Provide the collection of all the frequently visited pages links in a list
box
Y Focus Page, Tiled Page, Stack Page, Navigation
Super-ordinate Page, Utility Page
Patterns Sub-ordinate
Neighboring Convenient Toolbar, Path, Map, Browsing Index
Competitor Convenient Toolbar
“Choice from a small set”, “Choice from a large set” in Common
References
Ground.

95

A.15 Convenient Toolbar Pattern

Name CONVENIENT TOOLBAR
Identification C Product-Oriented Patterns~> Navigation Support
ategory
Patterns
User Expert
Assist the user to reach the most useful and
Context Task frequently visited pages at any time throughout the
Web site.
Workplace Web applications
- The user can easily find the most commonly used pages regardless of
Problems the current state of the artifact.
- The user can reach these convenient pages promptly.
- Efficiency
- Safety
- Consistency
Forces - Minimal Action
- Minimal Memory
- User Guidance
- Helpfulness
l @occume Qs Bairney Owrars w Greetracs © sitanery
Examples N LN Owanive Craneto
4 home P
- Affordance
Rationale - Mapping
- Causality
- Group the most convenient action links, such as home, site map, help
Solution anc} ete. .
- Utilize meaningful metaphors and accurate phases as labels.
- Locate it at the consistent place throughout the Web site.
. Focus Page, Tiled Page, Stack Page, Navigation
Super-ordinate Page, Uti%i ty Page g & &
Patterns Sub-ordinate
Neighboring Shortcut, Path, Map, Browsing Index
Competitor Shortcut

96

References

“Convenient environment actions”, “Go back to a safe place” in
Common Ground.

“Goal oriented areas” in Experience.

“List Browser” in Amsterdam

“Guided tour” in HPR.

“Basic interface design” and “Links & navigation” in Yale guidelines.

97

A.16 Path Pattern

Name PATH
Identification Product-Oriented Patterns=> Navigation Support
Category
Patterns
User Novice and Expert
Context Task Indicate the user his current location
Workplace Web applications
The user is pleased to acquire the whole path explicitly, which makes
the user feel more confident and controllable on the Web site.
Problems . . .
The user can conveniently navigate between pages by using the path.
The user does not need extra memory for the pages’ allocation.
Effectiveness
Safety
Satisfaction
Forces Consistency
Minimal Memory load
User Guidance
Controllability
Examples useit.com - Alertbox —» June 2000 Customers as Designers
. Mapping
Rationale Causality
Utilize accurate words as labels and meaningful icons as directions to
Solution indicate each stage of the process since the user accessed the Web site.
Locate it consistently at the top of the Web pages
. Focus Page, Tiled Page, Stack Page, Navigation
Super-ordinate Page, Utility Page
Patterns Sub-Ordinate
Neighboring Shortcut, Convenient Toolbar, Map, Browsing
Index
Competitor
References

98

A.17 Map Pattern

Name MAP
Identification Product-Oriented Patterns-> Navigation Support
Category p
atterns
User Novice and Expert
Context Task Collect complete links of all the Web pages.
Workplace Web applications
- The user can easily acquire the skeleton of the whole Web site and the
collection of the complete page links.
Problems .
- The user may reach any page directly.
- The user can search the target page manually.
- Efficiency
F - Flexibility
orces
- Completeness
- User Guidance
Examples
- Mapping
Rationale - Causality
- Population stereotype
- Transfer Effects
- Group the information according to the alphabetical sequence or
Solution categories.
- Illustrate the index or topic list using a stable form or a dynamic tree
format
Super-ordinate Tiled Page, Stack Page, Navigation Page
Patterns Sub-ordinate .
. . Shortcut, Convenient Toolbar, Path, Browsing
Neighboring
Index
Competitor
- “Map of navigable spaces” , “High-density information display” and
“Tabular set” in Common ground;
References

“Hyper-Map” pattern defined by D.M. German and D.D. Cowan

99

A.18 Browsing Index Pattern

Identification

Name

BROWSING INDEX

Category

Product-Oriented Patterns-> Navigation Support
Patterns

Context

User

Novice

Task

Present visible and structured items and sub-items to
the user and allow the user to switch directly from
one item to another.

Workplace

Web applications

Problems

- The user can easily and promptly navigate amongst the items from the

menu.

- The user is able to know the interrelationship of items.

Forces

- Efficiency
- Effectiveness
- User Guidance

Examples

> Bacherche-dtvalppement
Au o de is R-D su CRIM, 6y ¢
udares

o M
Erngs-

Lo Cardéranca Longoges ¢
SAOGDANY ¢4 CHRY renc:
ond 14hcad Toaupe srgam
RCF 8V, <. - %

Rationale

- Affordance
- Mapping
- Causality

Solution

- Provide dynamic list of the items due to constraints of the space.
- The order of the index might be based on a ranking and the ordering
criterion must be visible.

Patterns

Super-ordinate

Focus Page, Tiled Page, Stack Page, Utility Page,
Navigation Page

Sub-ordinate

Executive Summary, On Fly Description

Neighboring

Shortcut, Convenient Toolbar, Path, Map

Competitor

References

“Index navigation” pattern in HPR

100

