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Abstract

Random Vibration and Fracture of Tapered Composite Laminates

Chen Hai

Polymer-matrix tapered composite laminates with internal taper are
considered in the present thesis. Appropriate finite element models for the
tapered laminates are developed using quadratic isoparametric elements.
Both the rectangular and triangular isoparametric elements are employed in
the model in order to obtain accurate solutions. Singularity elements are
used to model the vicinity of the crack tip in the laminate. Appropriate
computational methods including the displacement extrapolation method and
virtual crack extension method are employed for the determination of the
following fracture parameters: stress intensity factor, energy release rate, and
J-integral. In order to determine the response to random excitation, the
normal mode method is employed in conjunction with the finite element
method. The associated computer programs are developed using

FORTRAN® and MATLAB?® programming languages.

The fracture behavior and the dynamic response to stationary random
excitation of different types of internally tapered laminate are investigated
based on the finite element model. The locations of delamination initiation
are predicted based on the stress analysis results and the Von Mises failure
criterion. The energy release rates and J-integral values corresponding to the
delamination at the critical location of the laminate are computed. The

effects of taper angle and the laminate configuration on the fracture behavior
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and the random vibration of the laminate are determined. The probability of
failure is then calculated and the use of this information in determining the

location of failure initiation is demonstrated.
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Chapter 1

Introduction

1.1 Composite Materials and Structures

The use of composite materials in mechanical components and structures
has increased in the past two decades. Phenolic resin reinforced with
asbestos fibers was introduced in the beginning of the twentieth century. The
first fiberglass boat was made in 1942; reinforced plastics were also used in
aircraft and electrical components at this time. Filament winding was
invented in 1946 and incorporated into missile applications in 1950s. The
first boron and high strength carbon fibers were introduced in the early
1960s. with applications of advanced composites to aircraft components by
1968. Metal matrix composites such as boron/aluminum were introduced in
1970. Dupont developed Kevlar fibers in 1973. Starting in the 1970s
applications of composites expanded widely in industries. The 1980s marked

a significant increase in the utilization of high modulus fiber.

The composites have unique advantages over monolithic materials: high
strength, high stiffness, long fatigue life, low density. and adaptability to the
intended function of the structure. Composites afford the unique possibility
of designing the material and structure in one unified and concurrent
process. The large number of degrees of freedom available enables material

optimization under several given constraints simultaneously, such as



minimum weight and maximum dynamic stability. It is usually desirable to
tailor the material to match the localized strength and stiffness requirements
in order to minimize the weight, when composite materials are used in

aircraft components.

1.2 Tapered Composite Structure

Many aircraft structural components made from composite materials
incorporate taper in their design. Design using tapered laminate structure has
been studied extensively in recent years: most of the works have focused on
parameters of the tapered structure. A composite tapered structure of a
helicopter yoke is a good example of the application of taper to the design of
a composite structure. A helicopter main rotor yoke is a helicopter structural
part made of laminated composite material. Delamination failure of the main
rotor yoke under loading conditions has been investigated analytically by
many researchers. Analysis of tapered structure, many times, is conducted
employing the finite element method. The computation is able to accurately
predict the failure location, energy release, stress intensity factor, and fatigue
life under a random excitation, which mostly correspond to the interlaminar
shear stress concentration predicted by the stress analysis. The test for
delamination of tapered laminate used random response technique to
determine the location of the delamination. The test is limited to transverse
loading and is performed on representative specimens cut out of actual

yokes.

[ ]



Laminate

Resin

Figure 1.1 A type of tapered laminate

One type of the tapered laminates made of graphite/epoxy composite
materials is described in Figure 1.1, which is formed by terminating some
plies. This creates geometry and material discontinuities, which are sources
for delaminating initiation and propagation. In this thesis. the following

research works are conducted on tapered laminates.
1.3 Scope and Objectives of the Thesis
1.3.1 Delamination Prediction for Tapered Laminated Composites
This research work aims at the development of a methodology that may
be used to accurately predict delamination location and energy release rate in

laminated composite structures. The research consists of three primary tasks:

Determination of the mode-I and mode-II stress intensity factors for the

laminate.

The laminate with delaminations at certain locations is used to determine

the energy release rates of the laminated composite.

(V)



The energy release rate analysis involves the development of a two
dimensional analysis that can be used for rapid determination of energy

release rates for delamination in practical structural geometry.

1.3.2. Random Vibration of Tapered Laminate

This research work aims at the development of a procedure. that
accurately and efficiently predicts delamination growth in composite
components. Delamination in this geometry typically initiates at ply drop-off
location within the tapered region of the structure. This research consists of

two primary tasks:

A crack propagation analysis of the tapered structural geometry involving

a two-dimensional crack tip stress analysis.

Random vibration analysis of the tapered laminate with and without

delamination.

1.4 Organization of the Thesis

The Chapter | provided a brief introduction and described the aim of the

research work of the thesis and the scope and objectives of the thesis.

A recent literature survey is provided in Chapter 2. This survey
encompasses the detailed studies on the effects of dropping some plies in the

tapered composite. The application of the finite element method in this area,



particularly in the computation of fracture parameters and response to
random excitation is also investigated.

In Chapter 3. the finite element formulation is given. A fully three-
dimensional problem is reduced to a two-dimensional problem. The
quadratic iso-parametric and triangular elements are introduced and used.
The singularity element, virtual crack extension method and J integral are all
described in this Chapter. The equations of motion are obtained using
Newton's second law of motion. The equations of motion for the finite
element model. proportional damping, eigenvalues and eigenvectors, natural
frequencies and normal modes, and transformation function are all described
in Chapter 3. The aspects of response to random excitation are described in
this Chapter. The numerical results and comparisons with reference results
are presented in Chapter 3. The program construction is also described in

this Chapter.

In Chapter 4, the parametric study using the finite element model is
presented. The interlaminar stress distribution between resin and laminate is
obtained and analyzed. The area of stress concentration is determined, and
the crack is assumed to initiate in this area. The energy release rates and the
stress intensity factors for different loading positions are calculated. The
mean values and the standard deviations of the displacements are determined
based on the frequencies and modes of free vibration of the tapered
structure. The conditional probability of failure that can be used to determine

when the tapered laminate would fail is calculated.



Chapter 2

Literature Survey

2.1 Introduction

The delamination in composite laminates has been studied extensively in
recent years. This thesis focuses on the kind of tapered composite laminate
(see Figure 1.1). for which the three-dimensional stress analysis is reduced

to a two-dimensional analysis using the assumption of plane strain.

2.2 Tapered Structure

Detailed studies on the effects of dropping some plies in tapered
composite laminate have resulted in many publications. Because of the
advantages of a tapered structure in the engineering design, the tapered
structure has widely been introduced into manufacturing. Recent works on

tapered composite structures were engaged in two major areas:

1) The stress analysis of the vicinity of the generated crack, and crack
propagation using energy release rate. The works on tapered composite
structures in this area were carried out by Adams er a/ [1], Curry et al [2],
Fish and Lee [3], Kemp and Johnson [4], Mukherjee and Varughese [5],
Murri et al [6]. Ochoa and Chan [7], Poon er a/ [8], Harrison and johnson
[9], Vizzini [10], Rhim and Vizzini [11], Salpekar ez a/ [12], Vizzini and Lee
[13], and Wisnom er al [14].



2) Another set of works focussed on the optimal design of a tapered
structure. The parametric studies on tapered composite laminates were
conducted by Botting er a/ [15], Cairns er al [16], Cui er a/ [17]. Fish and
Vizzini [18]. and Llanos er a/ [19].

The basic types of tapered structure can be separated into three forms:
External. Mid-plane, and Internal Longitudinal or Transverse (see Figure

2.1).

EEE—— external

mid-plane %

—

—— internal ] ]

Figure 2.1 Three types of tapered structures

The Internal-ply-drop-off tapers, in which the dropped plies are on a
surface of the laminate, were examined by Daoust and Hoa [20], Hoa ez al/
[21], Miravete [22], and Wu and Webber{23].

The Mid-plane-ply-drop-off tapers, in which the dropped plies are at the

Mid-plane of the laminate, were examined by Hofman and Ochoa [24].



In Internal-transverse-ply-drop-off tapers, the dropped plies are in the
interior of the laminate. Usually, the tapered angles are about 2-15 degrees,
the tapered structures are symmetric, and the materials used are

graphite’/epoxy or glass/epoxy.

Reference [3] presented a three-dimensional model of a tapered composite
laminate. The size of the model is given in close relationship with the part of
tapered laminate. In the model, due to the symmetry of the problem, only
one quarter of the tapered section needed to be modeled. The interply resin
region surrounding the ply drops was modeled. The dimensions of the model
are in terms of the ply thickness H and the resin layer thickness R. The

model can be sorted as an internal taper laminate (see Figure 2.2).

SH-R
5.71°

- N ’
- \/ 7+
T F

Figure 2.2 Geometry of a type of tapered laminate

X

The internal forms were separated into three forms in reference [25]. The
authors considered that the internal forms could cause a significant weakness
from a manufacturing point of view. To avoid dropping a number of plies in
a single block, a staircase arrangement may be used where the dropped plies
are together, but successive drops are spaced apart, as shown in Figure

2.3(a). A variation of this is to overlap the ends of the dropped plies as in



Figure 2.3(b). Another possibility is to place continuous interleaving plies

between the dropped plies, as shown in Figure 2.3{c).

a) Staircase arrangement of multiple dropped plies

b) Overlapping dropped plies

g | i ¢) Continuous plies interspersed

Figure 2.3 Schematic illustration of different taper configurations

2.3 Finite Element Method

The key features of the finite element method can be found in many of the
existing works. Clough [26] first used the term "finite element" in 1960.
Since then, the literature on finite element applications has grown

exponentially.

Fully three-dimensional displacement formulation was used in the
analysis by Hoa et a/ [21]. In this paper, the three-dimensional mesh at the

ply drop region was obtained by the refinement technique. Some of the



works employed Quasi-3D displacement formulation by reducing the three-
dimensional problem into a two-dimensional problem, which is based on the
assumption of plane strain. All of the deformations are in the plane. Material
properties and stresses are transformed from Quasi-3D into a two-
dimensional plane strain problem. These applications of Quasi-3D
approaches can be seen in the works of Kemp and Curry [2, 4]. In Curry's
paper, sixteen-ply graphite-epoxy laminates. containing four contiguous
plies terminated at the mid-plane, were studied. The analysis assumed a state
ot generalized plane deformation [27] for which the width-direction strain
was set to zero, and the finite element method was applied to determine the
three-dimensional stress state. A three-dimensional finite element model was
used by Fish et al [3] to calculate the stress state in the ply drop region of the
tapered laminate. The finite element model was reduced since only one-

quarter of the tapered section needed to be modeled.

2.4 Computational Fracture Mechanics

Stress intensity factor solutions for literally hundreds of configurations
have been published: the majority of which were inferred from numerical
models. Elastic-plastic analyses to compute the J integral and crack tip
opening displacement are also becoming relatively common. The domain
integral approach enables one to generate K and J solutions from finite
element models with surprisingly coarse meshes. It is often necessary to
determine the distnbution of stresses and strains in a body that is subjected
to external loads or displacements. In limited cases, it is possible to obtain a
closed-form analytical solution for the stresses and strains. William [28]

used such an approach to derive solutions for the stresses and strains near the

10



tip of a sharp crack in an elastic material. A variety of numerical techniques
have been applied to problems in solid mechanics. including finite difference
[29]. finite element [30] and boundary integral equation methods. The vast

majority of analyses of cracked bodies utilize the finite elements.

The traditional methods in computational fracture mechanics can be
divided into two categories: point matching and energy methods. The point
matching technique entails inferring the stress intensity factor from the stress
or displacement fields in the body, while energy methods compute the
energy release rate in the body and relate energy release rate to stress
intensity. One advantage of energy methods is that they can be applied to

nonlinear material behavior.

Stress and Displacement Matching considers a cracked body subjected to
pure Mode I loading. On the crack plane, the stress intensity factor is related
to the stress in the horizontal x direction. The stress intensity factor can be
determined by plotting the quantity in the first part of equation (3.42) [see
Ref. 31] against the distance from the crack tip. and extrapolating to r=0.
Alternatively, the stress intensity factor in the second part of equation (3.42)
can be estimated from a similar extrapolation of crack opening displacement.
The stress intensity factor obtained using opening displacements tends to
give more accurate estimates of stress intensity factor than using stresses.
These extrapolation approaches require a high degree of mesh refinement for

reasonable accuracy [31].

The energy release rate can be calculated from the rate of change in global

potential energy with crack growth. Two separate numerical analyses of a



given geometry are performed. one with crack length a. and another with
crack length a+Aa. and the energy release rate is given by (-A(potential
energy)/Aa). This technique requires minimal post-processing and is more
efficient than the point matching methods. and further the computation of

global energy estimates does not require refined meshes.

Contour integration, J integral, can be evaluated numerically along a
contour surrounding the crack tip. This method can be applied to both linear
and nonlinear problems. and the path independence (in elastic materials)
enables the user to evaluate J at a remote contour. This method has a good

numerical accuracy.

The virtual crack extension method [31] is separated into a stiffness

derntvative formulation and continuum approach.

In 1974, Parks [32] and Hellen [33] independently proposed the finite
element method for inferring energy release rate in elastic bodies. Parks [34]
extended this method to nonlinear behavior and large deformation at the

crack tip. Under fixed load condition. the energy release rate can be written

as:
_ran]
k‘:’“ load
K/: _ 1y IT'::[K]I 1
==y =
E 2 ca



where [T is the potential energy, [K] is the stiffness matrix, and K, is the
stress intensity factor. Sometimes, it would not be necessary to change all of
the elements in the mesh; moving an element near the crack tip and leaving
the rest of the mesh intact could accommodate the crack growth. The energy

release rate is related to this change in element stiffness:

where [k,°] are the elemental stiffness matrices and N, is the number of
elements. [f the elemental stiffness matrices of changed stiffness are between
two contours [y and [}, Parks demonstrated that this quantity is equivalent
to the J integral. The value of the energy release rate and J integral are

independent of the choice of the inner and outer contours.

DeLorenzi {35, 36] improved the virtual crack extension method by
considering the energy release rate of a continuum. The main advantages of
the continuum approach are; the methodology is not restricted to the finite
element method, and the approach does not require large numerical

calculations.

Shih, et al [37, 38] have formulated the energy domain integral
methodology, which is a general framework for numerical analysis of the J

integral. This approach is extremely versatile, as it can be applied to both

13



quasi-static and dynamic problems with elastic, plastic, or viscoplastic
material response. as well as thermal loading. This approach is very similar

to the virtual crack extension method.

The Griffith's criterion states that the strain energy is released when a
crack grows. The amount of released energy depends on the size of the crack
extension and the material constants. Irwin's crack closure integral, energy

release rate G, can be written as

G = lim

-Auda
Ada—0 2Aa P

(2.3)

where p. a vector, represents the surface forces per unit area that are required
to close the crack, and u, a vector, represents the displacements of the crack
surface. One can evaluate Irwin's crack closure integral numerically for
finite crack extensions using the finite element method. In reference [12], the
Rybicki's method was used to obtain the strain energy release rate
components. The total strain energy release rate was the sum of the strain

energy release rate components.
2.5 Response to Random Excitation

The response of a deterministic structure to stationary random excitation
will be described in this section. It has been assumed that parameters of the

structure are known constants, and power spectral density is calculated as a

14



function of the external excitation. The treatment of a linear MDOF system
subjected to stationary random excitations is based on the differential
equations of the structure, and the stationary random excitation is a vector of
random forces; usually the power spectral density matrix defines these
forces. For lightly damped systems. | H(c))| is a function whose values are
very small over most of the frequency axis, with large values only in the
vicinity of the resonance frequency. In solving the problem, the main interest
has been the determination of the mean square value E(f®) of the response at
each point and its standard deviation. The mean square of the response is
obtained by integrating over the frequency range. When the excitation has
zero mean, the mean square value E(fz) is equal to the variance of f, and the

standard deviation of response is given by o= [E(f})]"".
2.6 Discussion

A three-dimensional state of a tapered laminate is reduced to a two-
dimensional state using the assumption of plane strain. All of the
deformations are in the plane. Material properties and stresses are

transformed from Quasi-3D into a two-dimensional plane strain problem.

Recent works on tapered composite structures were engaged in two major
areas: the stress analysis of the vicinity of the generated crack and the
optimal design of a tapered structure. The basic types of tapered structure
can be separated into three forms: External, Mid-plane, and Internal
Longitudinal or Transverse. The internal forms were separated into three
forms: staircase arrangement of multiple dropped plies, overlapping dropped

plies, and continuous plies interspersed. The interply resin region

—
n



surrounding the ply drops was modeled. The dimensions of model are in

terms of the ply thickness H and the resin layer thickness R.

The traditional methods in computational fracture mechanics can be
divided into two categories: point matching and energy methods. The point
matching technique entails inferring the stress intensity factor from the stress
or displacement fields in the body, while energy methods compute the
energy release rate in the body and relate energy release rate to stress

intensity.

In the response of a deterministic structure to stationary random
excitation, the mean square value E(f®) of the response at each point and its

standard deviation are of interest to designers and engineers.



Chapter 3

Formulation and Solution Methodology

3.1 Introduction

The finite element formulation for the static fracture and the random
vibration analyses of tapered laminates is provided in this chapter. The fully
three-dimensional problem is reduced to a two-dimensional problem using
plane strain theory. The quadratic and triangular shape functions are
introduced. and the three-dimensional stress-strain relationships are
modified into two-dimensional relationships. Numerical results are then
obtained and comparisons with the results given in reference works are

made.
3.2 Finite Element Formulation
3.2.1 Finite Element for Plane Strain

A fully three-dimensional problem reduces to a two-dimensional problem
if all quantities are independent of one of the coordinate directions, which is
assumed here to be the y-axis. The normal strain in the y direction (thickness
direction), €,. is zero and shear strains v, and y,, are zero. Then a plane
strain condition is said to exist. The element stiffness matrix 1s then

correspondingly determined.

17



(K1= [ (BY (D1BIY
(3.1)
In fact, a typical sub-matrix of [K®] corresponding to nodes i and j can be

evaluated from the expression

¢ _ : l T =
K = L L B,T[D]B, hdet[J1ddn
(3.2)

where h is the element thickness, [J] is the Jacobian matrix and [D] is the

matrix of elastic constants. Further

dxdz=det[J] d&dn
(3.3)

3.2.2 Strain Displacement Matrix B

The use of the natural coordinate system (Z,n) allows us to use elements
with curvilinear shapes. The coordinate values x(&,n) and z(Z,n) at any point

(2.n) within the element are defined by the expressions

MEm =D NG,

=l

.-(;.m=i NoE.m-z,
=1

(3.4)



The displacements u(3,n) and v(Z.n) at any point are given by

w(i.m = Z NG o,
=i

"

WEm =Y NEm,

i=1

3.5)
Let f be some function of x and y. then the chain rule yields
A
& X EE & éd
I g g
¢n &¢én &= cn
(3.6)
so that the derivatives of f (E,n) can be written as
{Ef] [ ¢x &z | f )
jed | ¢d iy ex
cr| Cx &z crf
¢n | cn én |Léz )
(3.7)

where the Jacobian matrix [J] is written according to the equation (3.4) as
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[N, én,
n E‘ - ‘[ 6‘ = :‘
[V} = Z a\:l c";\:',
=t —=. x z
L cn ! én
(3.8)

and inverse Jacobian matrix 1s

c= c=
/] = 1 {67] cé
dery| &
cn ¢S
(3.9)

The strain-displacement relationship for most problems can be written in

the form
(3.10)

{et=[L]1u]

1
!

is the displacement vector, and [L] is the

where {g} is the strain vector, {u
matrix of displacement differential operators. {€} can be written as



RKY, 7
¢V, 0
n (?',\' [
N u,
ey = 0 . 1 }
G- v
1=t | - ikt '
¢V, cN,
| ¢z cx |
n
= Blol

(3.11)

The stress-strain relationship for an elastic material, in the absence of

initial stresses and strains, may be written in the form

{c]=[D] g}
(3.12)

where [D] is the matrix of elastic constants. For plane stress situation

(3.13)

and for plane strain situation



P = 0o
; - %
- [
(D] = E(l -v) ' 1 0 |
(L= )l=-vy I -v

) 0

(3.14)

3.2.3 Quadratic Iso-Parametric Element

The quadratic shape functions are given in reference [39]. The equation

(3.2) can be evaluated using Gaussian numerical integration.

Iy = [ll[llf(:.n)d;m;

=iiu‘, w,f(,:,.r]‘)

=t =l

(3.15)

where w, and w, are the weighting factors, £, and n, are the i Gauss points.

They are given in Table 3.1.

Table 3.1 Gauss points and weights for the quadratic elements

L or] Location & or 1 Weight w;or w,

1 -0.77459666924 1483 0.5555555555555356
2 0.0000000000000000 0.8888888888888889
3 +0.774596669241483 0.5555555555555556

[29)
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3.2.4 Triangular Element

Consider a triangle that is divided into three sub-areas A, A, and A;. Let

A be the total area of the triangle. A=A ,+A-+A;. Then,

A, A A;
a=-—, =—, y=—
A A== A

(3.16)

Consequently.

at+B+y=1

(3.17)

where o, B, and v are natural coordinates used to define the shape functions

N, for the triangular element as in the following.

Ni=a 2a-1)

N-=4a3

N;=B(2p-1)

Ny=4Bv

Ns=1(27-1)

Ne=47at (3.18)

In evaluating K® and det J, one may directly use the expressions given in

equations (3.7), (3.8) and (3.9). Denoting that a=&, B=n, y=1-&-n



&F  Gx ¢ c=cd
_&f & of &x . ¢f &z &f ¢z
éxCa Cx¢y &z Ca ¢z Oy
(3.19a)
and
¢f & & ¢&f c=
¢n ¢&x¢cn c=¢n
&f &x &f & of ¢ of c=
e —— e — e ——— e T——
Cxéf CxCy ¢E=éB &=y
(3.19b)

Now the equation (3.2) can be evaluated using the Gaussian numerical

integration as
I3 = ”: fla.B.7)dadf

- %Z W‘.f(a,.ﬂ, e )
= =l
(3.20)

where n=7. The Gauss quadrature points and weights corresponding to the

triangular elements are given in Table 3.2.



Tabie 3.2 Gauss points and weights for the triangular elements

Integration Location «, Location f8, Location v, Weight w,
points
1 0.33333333333333 | 0.33333333333333 1 0.33333333333333 | 0.22500000000000
2 0.79742698333309 | 0.10128650732346 | 0.101286350732346 | 0.12593918054483
3 0.10128630732346 | 0.79742698535309 | 0.101286350732346 | 0.12593918054483
4 0.10128630732346 | 0.10128630732346 | 0.79742698535309 | 0.12593918054483
5 0.05971387178977 | 0.47014206410512 | 0.47014206410512 | 0.13239415278851
6 l 0.47014206410512 | 0.059713587178977 | 0.47014206410512 | 0.13239413278851
7 | 0.47014206410512 | 0.47014206410512 | 0.05971587178977 | 0.132394135278851

3.2.5 Properties of Composite Laminate

Consider a small element of a lamina of constant thickness t, wherein the

principal material axes are labeled as 1 and 2, that 1s direction 1 is parallel to

the fibers, the direction 2 is normal to them. The lamina geometric axes are x

and y as depicted in Figure 3.1. The equations relating oy, o, and oy, to G|,

G,, and G,,, are given below in matrix form.

{ O’, O'(
A [T](.'L Oy
Lo o
where

139
w

(3.21)
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(3.22)

e

Figure 3.1 Lamina coordinate systems

where m =cosB, n=sin6, and 6 is defined positive as shown in Figure 3.1.
The subscripts CL refer to the classical two-dimensional case only, that is, in
the 1-2 plane or the x-y plane only. Analogously, a strain relationship also

follows for the classical 1sothermal case:

El er
€ |= [T]CL £,
€2 “:n

(3.23)

The two-dimensional relationships can be modified into the following

three-dimensional transformation equation.



g,
g2
Til=[r)
g4
Cs
\o-b
wherein
"t
n-
0
Tl=
- °
0
_—-mn

If one systematically uses these expressions, and utilizes Hooke's Law
relating stress and strain, the general equations for a lamina made of a fiber

reinforced composite material in terms of the principal material directions

mn

and

[=]

-n
m

0

(1,2,3) can be obtained:
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(3.24)

(3.25)

(3.26)



To transform these relationships to the x-y-z coordinate system, equation

(3.24) has been used and the result is given below.
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When we only consider the plane strain case (see Figure 3.2), the strains

€, € vz, € v are equal to zero.

Figure 3.2 Plane strain case

Correspondingly, the three-dimensional stress-strain relationships can be

reduced to the two-dimensional form:



O" {(-—)-H Q—ll 0 ‘l"“-\' l
G: =| é—ls 5 0 g:
O'\,: L 0 0 2655 g\:
(3.28)
In addition, one can write the equation:
g, (51: (.—jzs 0] €
O"_- = 0 0 2(_345 £
0“. Q_Xo aio 0 ":r:
(3.29)
The stiffness coefficients are given by:
an =0,m* + 20, +20,6)m 0" +Qyan’
012 =(0), + 01 =40 ) n* + Qi1 (m* +n*)
é—u =Q|3"’2 +Q13":
Qo = —mn’Q:: +n13nQ” -mn(m: -n:)(le +20.0)
@:3 =Q13": *‘Q:s"’:
0Oy =053
Q}o = (le _Q:3 ymn
Qis =(Qss Q3 )mn
555 = st’": +Q44”:
(3.30)

Consider that the lamina is transversely isotropic, that is to have the same

properties in both the 2 and 3 directions, then v>=Vv,3=V1:=V;s, V1=V,

G,>=G3:=G»=G3,, G21= G341, E2o=E;; with resulting simplification:



Qui=Epi(l-vazvia)/A =En(1-viavia)/A
Q2= Eif(vartvava )/ A =Ej(vartvavin)/A
Q= En(vytvava)/A  =Ej(vartvavia)/A
Q2= Exs(l-vyviz)/A =Esa(1-vavia)/A
Q2= Eaa(viatviava )/ =Eaa(viatviava /A
Q35=Es3(1-viavi2)/A =Eax(l-vizvia)/A
Qu1=G23=G>

Qs55=G13=G2

Qs6=G12

Azl'Vlz\’:l'\':svsz'vs1V13'2V:1V:«2V13=1‘Vle:er:Vl:-V:lV1:°2V:1 Vi2Viz
(3.31)

The shear strains in all the equations refer to the tonsorial (on

mathematical) shear strains.
3.2.6 Coordinate Transformation Matrix

Consider the global coordinate and element coordinate (local coordinate)
systems. Further, ¢ denotes the angle between the global coordinate and the

element coordinate. So we can obtain the transformation matrix as

Cos@  sinQ |
(Tl =[ | |
-sing cosg|

(3.32)



and

[T, = [Ty Ty T To Ty Ty J dgiag for triangle element
[T]s = I-T(, Ty Ty Ty Ty Ty Ty Ty ] gug for rectangle element
(3.33)

The element stiffness matrix in the local coordinate system can be

transformed into the global coordinate system:

[K1=[T]"[K][T]
(3.34)

where [K].® is the element stiffness matrix in the local coordinate, [K]," is

the element stiffness matrix in the global coordinate, and further [T] is [T¢]or
[Ts].

3.2.7 Singularity Element

The nature of the singularity at the crack tip is known to be of type (stress
c )~ o' for stresses, and (displacements u,v) ~ r'? for the displacements,
where r is the distance from the crack tip. If the cracks correspond to Mode [
and Mode II, and the matenal is linearly elastic and isotropic, the stresses
and displacement are as given in Ref. [31, pp. 54]. Stress intensity factors K;
and K;; depend on the geometry of the structure, and the distribution and

magnitude of random excitation. A crack propagates when the stress



intensity factor reaches a critical value. The critical value is a material

property.

[rwin [31] defined the energy release rate, d[1/da. which is a measure of
the energy available for an increment of crack extension. It can be shown

that for the plane strain case with unit thickness in an isotropic material,

an 1
da E

5
(3.35)

The energy release rate is the rate of change in potential energy with crack
area, which is also called the crack extension force or the crack driving

force.

The six-node plane triangle element can display r'*? type singularity in its
strain field if its side nodes are moved to quarter points near the crack tip.
The quarter-point sides should be straight and the side node opposite the

crack tip should be at mid-side.

Another effective singulanty element can be formed from a four-sided

quadratic element by collapsing one side to produce a triangle.

Rectangular Quarter-Point Elements with the quarter points also display
singularity only along two sides and the diagonal. They are less accurate

than triangular Quarter-Point Elements.

(V)
9



Consider a quadrilateral element with the mid-side nodes at the quarter
point. For convenience. let us evaluate the element shape functions along the

boundary between nodes | and 2. and further node 3 is the quarter point. The

shape functions along the line are given in Ref. [31],

Ny = -s -9

(3.36)

-

1
[, = —5(] -
Ny =<3

-~

‘VS ==

The x coordinate along the side 1-2 is related to & coordinate by

t= -t A= L A= Py - -
(3.37)

Setting x,=0, x,=L. and x;=L/4, and considering the relation

[»

’l: ' 4'
]
R

ER
) L

one can show that

(3.38)



(3.39)
Solving for the strain in the x coordinate leads to
: T o i
IR P lrsq\/z -+ -1-4JI !zu -zsrl—z = 'u,L
e Rl RN S i T
(3.40)

: -2 12
Thus, the strain changes at a rate of (xL)"* as x”' * approaches zero along

-1.2

side 1-2. So we can obtain a x

elements are used in the present work.

singularity at node 1. The singularity

Quarter-Point Elements can be made to display a stress or strain

singularity by appropriate definition of its geometry. A common approach to

calculate stress intensity factors trom a finite element analysis is the crack-

opening displacement method. From displacements of nodes along the line

with 8 = £7. the Mode [ and Mode II stress intensity factors are given by, as

in Ref. [39].



P
K== {—‘] (g —v )= (g —v)]

5 N
= (7—) [(ug —uy) = (Jug —u )]

Ky= -
A+ 1

(3.41)

where L is the side length of element, B is quarter point, C is the vertex of
element. These equations are applicable only for an element obtained by
collapsing one side. Many analyses have used a rate of L/a ~ 0.1, where a is

the crack length.

In another method. K| is estimated from a cracked body subjected to pure
Mode [ loading. On the crack plane, K| is related to the stress in the crack
opening direction. K; can be obtained following an extrapolation scheme that

uses the following equations:

-

K, = lin})(d:aﬁ;)l i

r—.

26 L. (zﬂ

,
I\”zm-xr-.-)‘_' r|

(3.42)

3.2.8 Virtual Crack Extension Method

Parks and Hellen [31] independently proposed the finite element method
for determining the energy release rate in elastic bodies. Consider a two-
dimensional cracked body, which is subjected to load. The potential energy

of the body, in terms of the finite element solution, is given as



r[/\ ],u, .u:r :/

(3.43)

where [1 is the potential energy, {u} is the matrix of displacements. and [K]
is the stiffness matrix. The energy release rate is the derivative of [T with
respect to crack area. for both fixed load and fixed displacement conditions.

Under fixed load condition, the energy release rate is

I[/\} lf t‘i"d“u .

- ca ca

C’:“:ru "n_ I, )r L[I\] ,rc[j]
Ca

(3.44)

The first term must be equal to zero, the third term must also vanish, since

loads are held constant. The energy release rate can be written as:

(3.43)

It can be shown that for plane stress case and plane strain case,

respectively, and for unit thickness:

(3.46)



where, K| is the stress intensity factor. Sometimes, it would not be necessary
to change all of the elements in the mesh: one could accommodate the crack
growth by moving the element near the crack tip and leaving the rest of the
mesh intact. The energy release rate is related to this change in element

stiffness:

(3.47)

where [k°] are the elemental stiffness matrices and N, is the number of
elements. If the elemental stiffness matrices of changed stiffness are between
two contours [y and I'y, Parks demonstrated that this quantity is equivalent
to the J integral. The value of the energy release rate and J integral are

independent of the choice of the inner and outer contours.

The equation (3.47) can be expressed as:

1 (i l i,
4TI .-, —3:“:: [/\:}{“:}‘E{“:} [’\l}{"x:
da  hla+da-a) hda

(3.43)

where [T, is the potential energy corresponding to the crack length a, and IT»

is the potential energy for the crack length a+Aa, AIT is the difference



between the two potential energy quantities, h is the thickness of the finite

element model.

3.2.9 J Integral

[t can be shown as in Ref. [40] that the J integral is independent of the
actual path and is given by the integral below, provided that the initial and

end points of the contour [" are on opposite faces of the crack and that the

contour contains the crack tip.

J= J:(L'.)d:—f sy
: X

(3.49)

where U, is the strain energy density, f, is the traction vector, u, is the

displacement vector, ds is an element of arc along the integration contour I.

For the linear elastic case it can be shown. for each particular mode of
deformation, that the energy release rate equals the J integral. The J integral

can be written for an individual element as in the following:




The above equation (3.50) can be evaluated using Gaussian numerical

integration.



3.3 Equations of Motion for a System

The dynamic analysis of any structure starts with the formulation of the
equations ot motion. The equations of motion of any dynamic system can be
written down using Newton's second law of motion. The equations of
motion of the system can be derived using Lagrange's equations. These

equations are also applicable to tapered composite structures.
3.3.1 Lagrange's Equations

For a svstem of N masses. which are free to move in three dimensions. the

Kinetic energy is given by [41]

I =" M4} (3.51)

where [M] is a matrix of inertia coefficients. Similarly the strain energy of

the system can be expressed as
U =gV (Kllq) >
=5l q (3.52)

where [K] is a matrix of stiffness coefficients. Defining dissipation function

as

D =247 [C1g] (3.53)
3 DI

where [C] is a matrix of damping coefficients. the equations of motion of the

system are derived using Lagrange's equations as

40



d(aT) D AW

- = +— =
de\dgq, | dq, dq,

(3.54)

where q is a column matrix of system displacements and Q, is a generalized

force.
3.3.2 Equations of Motion for Finite Element

The main ideas behind FEM approach to structural modal analysis are
employed. The dynamic system will be a plane strain problem based on
which a model is built up in discrete system format corresponding to the

composite laminate.

Consider a multi degree of freedom system represented by mass, stiffness
and damping matrices. [M], [K], and [C] respectively. When it is excited by
a deterministic force f (t). the differential equations of motion can be written

in the form of a coupled system.

(M i} + [CHu} + [K]{u} = { £}
(3.53)

The dynamic system is made up of two dimensional parabolic

isoparametric elements. The plane elements have continuously distributed

41



mass and stiffness properties. A method of solving this equation subject to

the relevant boundary conditions is now described.

3.3.3 Proportional Damping

One of the easiest methods for representing damping is that based on the

concept of proportional damping. We define a damping matrix as

[C] = a,[M]+B,[K] (3.56)

This method is also advantageous because it i1s often mathematically
convenient to have the damping matrix proportional to the mass and stiffness
matrices. The values for the two constants are assumed as «, = 0.0001 and
B; = 0.00002. Parameters o, and 3, should be obtained using modal testing
and system identification technique. Since this is a complex work, it is not
carried out in the present thesis. Therefore, to demonstrate the overall
procedure, some representative values of «; and 3, have been estimated in
comparison with similar matenals and by experience. Therefore, the resuits

have corresponding limitation.

3.3.4 Computation of Eigenvalues and Eigenvectors

The eigenvalues/eigenvectors (modal parameters) are determined for the

system based on an analytical technique and free vibration analysis.

3.3.4.1 Natural frequencies and normal modes



Let us assume that displacement vector {u!={U'e"", and consider the free
vibration of the multi degree of freedom system. Substituting displacement

ot

vector {u}={U'e™ into equation (3.53), we obtain

(&)~ o (v} = o}

(3.57)

Denoting that A=, the standard form of eigenvalue problem is

([AJ-A[T)IUS=10;
(3.58)

where [A]=[M]'[K].
[t is possible to compute the eigenvectors using the eigenvalues.
3.3.4.2 Transformation Function

Once the eigenvectors have been obtained, the generalized mass and
stiffness matrices and generalized force vector can be obtained. The
displacement coordinate will be translated to modal coordinate, so that one

can get the equations of motion in modal coordinates and in terms of the

generalized mass and the stiffness matrices and the force vector.



77 )= [T [v Io]

(3.59)
)=k Is]
(3.60)
El-bTlls]
e [T )- s R
(3.61)
F1=bT U}
(3.62)

where [¢] is the modal matrix consisting of eigenvectors.

The dynamic behavior of a structure can be characterized in terms of
natural frequencies. mode shapes and damping. The response in frequency
domain will be calculated using equations (3.57-3.62). The motion equations

can be written as



o]+ olc]+ Rt = 1)

(3.63)

The eigenvectors [¢] are orthogonal to each other, and we get n number of

uncoupled equations. Denoting the jth line of the matrix [¢] by a row vector

. one can get the j™ response of the dynamic system. The transformation
] g J P y

function (the frequency response function) H () is,

H(cu)=[— M ch K]]—

(3.64)

The frequency response function of the coupled system can be written as

Hw) = [ o*[m]+ olc] K]

(3.653)



3.4 Response to Random Excitation

The crack propagation depends on the response to the random excitation
of the tapered laminate. In the case of random forces, there is no way of
predicting an exact value of response at a future instant of time. Such forces
and corresponding response can only be described by means of stochastic

processes.

3.4.1 Representation of the Excitation

The probability of realizing a value of f(t) that is less than some specified

value f;, which is denoted as P(f;). is given by

P(f5)=Prob[f(t)<fy]
(3.66)

Now, when the value of f; is changed within the range of the random
process, one can set P(f). The function P(f) is known as the probability
distribution function which increases as f increases. The probability density

function is denoted by p(f), according to

_dP())

p(f) o

(3.67)

Various parameters are used to describe the shape of a probability density
curve. The most important one is the expected value or mean, which is given

by
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ELF1= [ pesidr
(3.68)

The value E[t] is called the first moment of t and is given the notation L.

The second central moment is the variance, which is

E(f-u;) =0}

(3.69)

where oy is the standard deviation of f. It is a measure of the dispersion or

spread about the mean.

A particularly important probability distribution is the Gaussian or normal

distribution, the probability density of which is given by

ptf)=

! 250
oy Tg, SR uy) 2y
-t ] /‘

(3.70)

The Gaussian distribution is completely defined by its mean p¢ and

standard deviation cy. It is symmetrical about the mean.



3.4.2 Power Spectral Density Function

A random excitation is essentially a non-periodic function. Such a

function can be represented by means of a Fourier integral, namely,

fl)y= [jF(iw)e""dw

(3.71)

where

Fliw) = ['t fye ™ dr
(3.72)

where © denotes the cycle frequency.

A random excitation can not be represented directly by means of Fourier
transforms. To have stationary properties a random signal must be assumed
to continue over an infinite period of time. There is no difficulty in
determining the Fourier transform of the signal fr(t) which is identical to f(t)

within the interval -T<t<+T and zero at all other times.

fr(0)= L Fr(iw)e'™ dw

(3.73)

and



Friiw) = [ ‘f,-({)u-“w([[

(3.74)
The mean square of f(t) is, therefore
SRy = lim fF )
= [T iim ZiF G de
e FT== T r
= -[”:S,- (w)dw
(3.75)
where
S /(@) = lim Z|F;(iw)|
yl@)=nm —|Fr
(3.76)

This is called as the power spectral density function.

The power spectral density function, S{w), is an even function which is
defined over the range -x<w©<+x. When making practical measurements it 1s
more convenient to deal with positive frequencies. In this case a one-sided

power spectral density function, G{w), is introduced such that
GH®)=2S{w) for ® >0

(3.77)

and
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[ = JTG,-((U):[::)
(3.78)



3.5 Response of a Multi-degree of Freedom System

In the equation (3.55), {t} is the applied force vector which is assumed to
be a weakly stationary, ergodic process having a Gaussian probability
density distribution with a zero mean. The probability density function is,

therefore

(3.79)

If both the functions u(t) and f(t) in equation (3.55) are truncated so that
they are zero outside the interval (-T,T). then they can be expressed in terms

of their Fourier transforms, namely,

up(c) = f:(,'r (iw)t.’“"'dw
(3.80)

frin)= L Frliwle™ de
(3.81)

where Uq(io) and F (iw) are the Fourier transforms of u 1(t) and f 1(t)
respectively. The Fourier transform of the response in r-th degree of freedom

is therefore



U.(io)=[H (1) F(io)
(3.82)

where

H (io)=[K-0"M+ioC]"
(3.83)

is the receptance matrix. Here [H(io)], indicates row r of H. Note that degree
of freedom r will represent one of the degrees of freedom at a particular
node. The power spectral density function of the response in degree of

freedomr s

T ._7_, . g 2
S, (w)= rh_‘.T}- T L8 ,(lw)l
(3.84)

[t can be shown that

S, (@) ={H (io)},S,(iw){H(iw)]

(3.85)
where S{iw) is the cross-spectral density matrix of excitation. In the case of

a multi-degree-of-freedom system equation (3.86) gives

S, (w)y=1{H o). H IS (iw)

[H (iw)}

H, (iw)

(3.86)



-

H, (iw)
S, (w)={H (w).H S (iw) :

H, (i)
(3.87)
with
Sii Sit,
Sf(z'w): : :
5./211 S.f‘,/
(3.8%)
where
-tux 1aX
o J:f,(z)e dt [-rfj(t)e dt
S, =lim—
2y ToxT 27 2T
(3.89)

If the two forces arise from independent sources, then they will be un-

correlated. This means that

Rﬁf,(r)zozRf,ﬁ(r)

(3.90)

The equation for the cross-spectral density is

W
L]



S, twn = L [‘“R. (DT
. 27t
(3.91)

[he inverse relationship is
l = e
R, ..(r)=—‘[ S, e de
LA L - M2

(3.92)

where i#j and i.j=1.2.3.....r. Substituting equation (3.90) into equation (3.91)

gives

(3.93)

Equation (3.87) therefore reduces to
S, (@) =|H, (oS, (@) +--+|H, () S ;. ; (@
(3.94)

The power spectral density of the response is. therefore. equal to the sum

of the power spectral densities obtained with the forces acting separately.

The mean square response is given by



0'5 = f4S“ (w)dw

(3.93)
The spectral moments of this system can be calculated using
O, = [:Su(w)xlw
or, = [:cuSu(w)dw
o, = ‘[nw:Su(w)«lw
(3.96)

The first expression is the mean square of the displacement and the last

one is the mean square of the velocity.

The standard deviations of the response are

X7 .

(3.97)



3.6 Numerical Results and Comparison

3.6.1 Comparison for a Two-dimensional Model of a Cylinder

A two-dimensional solid example considered is the case of a thick circular
cylinder conforming to plane strain conditions that is also considered in Ref.
[42]. In figure 3.3 the geometrical dimensions and the matenal properties are

shown:

Elastic Modulus E = 1000
Poisson Ratio v =0.3
Thicknessh =1.0
Normal Pressure p=10

Figure 3.3 Reference model

The material property values and dimensions were given in Ref. [42] and
they represent normalized values [42]. The element subdivision employed 9
parabolic isoparametric elements. The loading considered is the application
of an internal pressure of 10, with the external boundary being unloaded.
Both the displacements and stresses obtained in the present work are



compared with the results given in Ref. [42]. The comparisons are provided
in tables 3.3, 3.4, 3.5 and 3.6. Excellent agreement between the results is
observed. C-R refers to the present results, and R-R refers to the reterence
results.

Table 3.3 Comparison between the displacements

node C-R R-R

x-disp. | v-disp. x-disp. y-disp.
1 0.0710 | 0 0.0710 0
2 0.0542 0 0.0542 0
J | 0.0444 0 0.0444 0
4+ | 0.0361 0 0.0361 0
5 | 00311 0 0.0311 j 0
6 0.0267 0 0.0267 I 0
7 0.0242 0 0.0242 ! 0
S 0.0685 0.0183 | 0.0685 l 0.0183
9 0.0429 0.0115 0.0429 0.0115
10 0.0300 0.0081 0.0300 0.0081
11 0.0234 0.0063 0.0234 0.0063
12 0.0615 0.0355 0.0614 0.0355
13 1 0.0469 0.0271 0.0469 0.0271
14 0.0385 0.0222 0.0385 0.0222
15 0.0313 0.0181 0.0313 i 0.0181
16 0.0270 0.0156 0.0270 0.0156
17 | 0.0231 0.0133 0.0231 0.0133
18 0.0210 0.0121 0.0210 0.0121
19 0.0501 0.0501 0.0501 0.0501
20 0.0314 0.0314 0.0314 0.0314
21 0.0220 0.0220 0.0220 0.0220
22 0.0171 0.0171 0.0171 0.0171
23 0.0355 0.0615 0.0355 | 0.0614
24 0.0271 0.0469 0.0271 I 0.0469
23 0.0222 0.0385 0.0222 0.0385
26 | 0.0181 0.0313 0.0181 0.0313
27 0.0156 0.0270 0.0156 0.0270
18 0.0133 0.0231 0.0133 | 0.0231
29 0.0121 0.0210 0.0121 | 0.0210
30 0.0183 0.0685 0.0183 0.0685
31 0.0115 0.0429 0.0115 0.0429
32 | 0.0081 0.030 0.0081 0.0300
33 | 0.0063 0.0234 0.0063 0.0234
34 0 0.0710 0 | 0.0709
35 0 0.0542 0 0.0542
36 0 0.0444 0 0.0444
37 0 0.0361 0 0.0361
38 0 0.0311 0 0.0311
39 0 0.0267 0 0.0267
40 0 0.0242 0 0.0242




Table 3.4 Comparison between total nodal forces

Element no. Node no. C-R R-R
X Y X Y
1 1 4.460 .0167 4.460 .0195
12 3.873 2.217 3.873 2217
8 16.67 4.467 16.67 4.467
4 12 3.857 2.243 3.857 2.243
23 2243 3.857 2.243 3.857
19 12.20 12.20 12.20 12.20
7 23 2.217 3.873 2217 3.873
34 0167 4.460 .0195 4.460
30 4.467 16.67 4.467 16.67

Table 3.5 Comparison between the reactions

node C-R R-R
x-force | y-force x-force y-force

1| 0 -6.1267 0 -6.1287
2 0 -15.0690 0 -15.0710
3 0 -5.8100 0 -5.8089
4 0 -9.4652 0 -9.4642
5 0 -4.2696 0 -4.2695
6 | 0 -7.7360 0 -7.7352
7 0 -1.5235 0 -1.5229
34 | -6.1268 0 -6.1287 0

35 | -15.0690 | 0 -15.0710 0

36 | -5.8100 | 0 -5.8089 0

37 | -9.4652 | 0 -9.4642 0

38 | 42696 | 0 -4.2696 0

39 | -7.7360 0 -7.7352 0
40 | -1.5235 0 -1.5223 0




Table 3.6 Comparison between the stresses

Element no. ! C-R R-R

| X-stress y-stress | Xy-stress | X-stress | y-sfress | Xy-stress
1 | -5.1827 5.5287 -3.0918 | -5.1816 5.5287 -3.0918
2 | -1.5547 2.5970 -1.1985 | -1.5542 2.5970 -1.1983 |
3 | -0.2575 1.4753 -0.5002 | -0.2575 j 1.4751 -0.5002
4 | 0.1751 0.1751 -6.1835 | 0.17355 | 0.1734 -6.1836
3 | 0.5215 0.5215 -2.3968 0.5214 0.5214 -2.3967
6 | 0.6089 0.6089 -1.0005 | 0.6088 | 0.6088 -1.0003
7 | 5.5287 -5.1827 | -3.0918 5.5287 | -5.1820 | -3.0918
8 | 2.5970 -1.5547 | -1.1985 | 2.5970 l -1.5540 | -1.1983
9 | 1.4753 -0.2575 l -0.5002 1.4751 | -0.2570 | -0.5002




3.6.2 Comparison of Eigenvalues

3.6.2.1 Comparison Between the 6-node and 8-node Elements

In Figure 3.3, a two-dimensional solid example, the case of a thick
circular cylinder conforming to plane strain conditions is considered. Now,
the quadratic elements of Figure 3.3 are changed to triangular elements for
the comparison of the 6-node and 8-node Elements. The first six
eigenfrequencies are obtained and provided in Table 3.7.

Table 3.7 Comparison between different elements

Mode Eigenvalues Eigenvalues % Difference
8 -nocde Element 6-node Element
1 | 0.0682 0.0678 0.57
2 0.3629 0.3863 6.06
3 0.4203 0.4228 0.59
4 0.8692 0.8664 0.32
5 1.2809 1.2834 0.18
6 1.721¢9 1.7385 0.95

From this table. it can be observed that the eigenvalues of the 6-node and
8-node elements are in excellent agreement; the differences are less than
6.06 % and the 6-node elements can be used.

3.6.2.2 Comparison Between Finite Element and Analytical Solution
Consider a cantilever shear wall shown in Figure 3.4, which can be treated

as a deep beam. The beam is 60.96 m long, 15.24 m wide, and the thickness
is 0.2289 m. The material properties are:
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Young's modulus E=34.474x10° N/m”
Poisson's ratio v=0.11

Mass per unit volume p=568.2 kg/m’

There are two degrees of freedom at each node. In the Ref. [39]. 32 linear
triangular elements and 27 nodes have been used. The left end of the deep
beam was fixed. We only used two elements of 8-node rectangular element
and 13 nodes. The results obtained are compared with the analytically

derived results that are given in Ref. [39], in Table 3.8.

1524 m

60.96 m

\/[\\\\\ N

Figure 3.4 A cantilever shear wall

As can be seen from the comparison in Table 3.8, the differences are less
than 13.60%. Here, we only used 2 elements of 8-node element, and the
accuracy of the result was better than that obtained using 32 elements of

linear triangular element in Ref. [39].
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Table 3.8 Comparison of the frequencies

Mode | Analvucal | Ref. [40] % Difference Present 9, Difference
Solution Computation
l 4.9730 6.392 28.53 5.0988 2.53
2 26.3910 32.207 22.04 29.1388 10.41
3 31.9440 32.010 0.21 32.1840 0.21
4 62.0660 74.843 20.59 70.5085 13.60
5 95.8320 | 96.900 1.11 98.1080 237




3.6.3 Analysis of a Tapered Laminate

The tapered structure chosen is 200 mm long. and 10 mm wide. The
length is 30 mm between the two tapered ends. the tapered angle is 5.71
degrees. The thick section configuration of the laminate is [0./245,/+454/-
455]s, and the thin section configuration of the laminate is [0,/+45,],. Each

ply 1s 0.125 mm thick.

The resin pockets of the tapered structure are shown in Figure 3.5. The
resins (Epoxy) are present due to the laminate structure tailoring of the
Graphite/Epoxy material. The distribution of resin areas are shown in Figure
3.5, and these areas are named separately as Area I, Area II, and Area III.
The regions between the resin and ply are crack generating areas when the

loading is applied at the thin end of the tapered structure.

Angle 5.71°

Area [II
Area I
AN
z / Areal
- >
V - X
< 60 mm +30mm + 110 mm >

Model A

Figure 3.5 Model A with 5.71° aper



3.6.3.1 Meshing

Considering that the mesh size must be compatible with the generated
crack size and that the domain of mesh reflects the behavior of a region with
cracks, we only refine those domains included in the resin areas. In order to
ensure the precision of the computation, 616 nodes and 189 elements are
used for this tapered structure (see Figure 3.6 (a) and (b)). For checking the
mesh a small program which can plot each node position (see the Figure 3.6
(a) and (b)) is written. In Figure 3.6, the symbol "o" represents a node and
the coordinate unit is mm. Further details about the mesh are given in

Appendix IV.

With initial crack After crack propagation

Figure 3.6 (a) Finite element mesh at crack tip

For comparison purpose, those points that are at the thin end (at x = 200
mm) and that are between ply and resin (between 60-80 mm) are chosen.
Those points can be seen in Table 3.9, and these points between 60 and 80

mm can be found from the Figure 3.6 according to the coordinate values.
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z (mm)

15t
- -
35 -
3 .
2 5- 3 -
1 5 : 2 1
0 5: - <
0} I .':- i i s - >
50 65 70 75 80 8s 90
X (mm)
Figure 3.6 (b) A part of the finite element model
Table 3.9 Chosen comparison points
Node no. At x=200 mm Node no. At x=80 mm
l z= 0.00 mm 122 z= 0.000 mm
2 z=0.25 mm 126 z=0.500 mm
3 z=0.50 mm 130 z= 1.000 mm
4 z=0.75 mm
5 = 1.00 mm
6 z=1.25 mm
7 z=1.50 mm
Node no. At x=70 mm Node no. At x=60 mm
242 z=1.000 mm 414 z=2.000 mm
246 z=1.500 mm 418 z=2.500 mm
230 z=2.000 mm 422 z=3.000 mm




The elements for comparison are chosen from the following regions: the
regions where the ply elements connect to the resin elements; the central
coordinates of the elements are shown in Table 3.10.

Table 3.10 Central coordinates of chosen elements

Thin section end Near Areal (mm) Near Area [ (mm) Near Area [II (mm)
x=135mm x=78.75 | x=81.25 x=68.75 x=71.23 x=38.00 | x=61.23
z=0.25mm z=0.125 | z=0.125 | z=1.125 =1.125 | z=2.125 | z=2.125
z= 0.75mm z=0.375 | z=0.375 | z=1.375 z=1.375 z=2.375 | z=2.375
=1.23mm | z=0.625 | z=0.625 | z=1.625 | z=1.625 | 2=2.625 | z=2.625

3.6.3.2 Comparison Between the Displacements

According to the maximum strain theory, failure occurs when at least one
of the strain components along the principal material axes exceeds the
corresponding ultimate strain in that direction. The ultimate strain of the
graphite/epoxy material in its longitudinal tensile direction is about 0.002.
When the length of the Model-A is 200 mm, the maximum displacement is
limited to 0.4 mm. If the cross-section area of Model A is 15 mm?, and a
uniformly distributed tensile load is chosen as 1800 N (1200x10° N/m?)
along the x direction at the thin section end, and the modulus of elasticity
E=139 GPa (the tapered structure is considered as a beam), the estimated
stress 1s about 120 MPa, and the estimated displacement is about 0.19 mm at
thin section end. The computed displacements are given in Table 3.11. The
reference results were obtained from the Ref. [43], and they have been
obtamned using a 3D modeling and further, those results have in turmn been

compared with the results obtained using ANSYS software.
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Table 3.11 Displacements at the chosen points

Present results Corresponding Reference results
Node Displacements(mm) Node no. Displacements(mm)
no. u | v in Reference u | v
] 0.2808 0.0000 22 0.2403 | 0.0000
2 0.2806 -1.5523e-4 146 0.2489 | -4.562e-4
3 0.2803 -3.0824e-4 181 02436 | -3.874e-4
4 0.2795 -4.6440e-4 216 0.2398 -5.432e-4
3 0.2787 -6.1361e-4 228 0.2508 -3.456e-4
6 0.2780 | -7.8973e-4 270 0.2467 -5.076e-4
7 0.27786 -9.6045e-4 282 0.2553 | -5.643e-4
122 0.0698 0.0000 11 0.0581 | 0.0000
126 0.0704 -6.8953e-4 12 0.0581 | -1.345e-4
130 0.0728 -1.3168e-3 37 0.0592 | -1.456e-4
242 0.0516 -4.2144e-4 81 0.0471 | -4.512e-4
246 0.0516 -8.6451e-4 89 0.0472 -1.253e-4
230 0.0512 -1.4303e-3 99 0.0469 -2.354e-4
414 0.0469 -9.2322e-4 97 0.0428 -3.496e-4
418 0.0461 -1.2205e-3 103 0.0426 -4.521e-4
422 0.04676 -1.5625e-3 111 0.04208 -5.213e~

3.6.3.3 Comparison Between the Stresses

Between resin and ply areas, the displacement can be continuous, but the
stresses are not continuous. The chosen areas for comparing stresses are
those regions that are between ply and resin. The computed stresses at the
chosen points are given in Table 3.12. From these stresses, the area which is

the most critical one among the three areas can be determined.

As the tensile loading of the tapered structure is increased, a point is
eventually reached at which changes in geometry are no longer entirely
reversible. Using the Maximum Distortion Energy Theory (Von Mises

Theory, see Ref. 56, pp. 155), it can be shown that failure occurs at a point
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hl hl hl G . .
when 26,+26,” - 206,6,+61,” = 20y, where G,;, is the yield stress. When &
. o) 2 2 2
1s greater than o, . where 67=((20,"+20,” - 20,G,+6T ,7)/2), the structure

will be at failure. This way the load at the first failure in area I can be

estimated using the results given in Table 3.12.

Table 3.12 Stresses in the chosen elements

Areal

Present
lamu

Stresses in the
nate (MPa)

Reference Stresses in the
laminate (MPa)

Cenrral coordinate
atx=81.25mm

x direction

z direction

x direction

Z direction

z=0.123mm 31.423 0.8305 29.353 1.321
z=0.375mm 33.335 0.7999 30.249 1.312
z=0.623mm 38.419 0.5532 32.789 | 1.321

Present stresses in the resin

(MPa)

Reference stresses in the resin

(MPa)

Central coordinate
at x=73.73mm

X direction

z direction

x direction

z direction

|
|
!
i
|
|
t
|
l

laminate (MPa)

z=0.125mm 15.365 -2.5432 13.365 -1.375

z=0.375mm 15.034 -2.5209 12.265 -1.362

z=0.625mm 14.323 -2.3325 12.189 -1.243
Area {I Present stresses in the Reference stresses in the

laminate (MPa)

Central coordinate
atx=71.25mm

x direction

z direction

X direction

z direction

laminate (MPa)

z=1.375mm | 28.296 1.1171 25.54 2.13
z=1.625mm | 29.074 1.1012 27.89 2.35
Present stresses in the resin Reference stresses in the resin
{MPa) (MPa)
Central coordinate | x direction z direction x direction z direction
at x=68.73mm
z=1.625mm | 8.5742 -1.2242 10.12 -2.16
Area Il Present stresses in the Reference stresses in the

laminate (MPa)

Central coordinate |
atx=58.00mm !

x direction

z direction

x direction

z direction

z=2.375mm

24.848

0.2026

23.42

0.217

Zz= 2.625mm

25.022

0.2103

24.56

0.201

'

Present stresses in the resin

(MPa)

Reference stresses in the resin

{MPa)

Central coordinate
at x=61.25mm

x direction

z direction

x direction

z direction

z= 2.625mm !

6.4699

-1.7284

7.25

-2.12
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3.6.3.4 Comparison Between the Values of Energy Release Rate

The initial crack length is considered as 0.25 mm and the crack width is
0.002 mm. The crack propagates to an incremental distance da=0.25 mm and
the crack width is 0.004 mm when the stress intensity factor reaches a

critical value. The energy release rate is given in Table 3.13.

Table 3.13 Energy release rate

Model A Strain-energy (Inital crack Strain-energy (atter the crack Energy-release
with Angle width 0.002 mm and initial propagation. the crack width and rate
5.71° crack length 0.25 mm) length are 0.004 and 0.50 mm)
Present 0.2515 N.m 0.2516 N.m 33.9520 Pa.m
results
Reference 0.2413 N.m 0.2413 N.m 44.0872 Pa.m
results

3.6.3.5 Comparison of Stress Intensity Factor and J Integral

The stress intensity factor K can be estimated from the energy release rate.
As shown in Figure 3.7, for obtaining more accurate estimates of K,
singularity elements are used at the crack tip. A high degree of mesh
refinement is made for getting a reasonable accuracy. The method detailed
in section 3.1.7 has been used. The resin layer near the crack is refined into
very small finite elements, such that the side length of the six-node triangle

element is 0.001 mm. The plies with same angle are modeled as one ply. The
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mesh refinement is mostly enforced in the region surrounding the crack,

wherein the maximum interlaminar stresses are present. The results are

presented in Table 3.14.

Table 3.14 Stress intensity factor

Model A with Angle Initial crack length Ininal crack length Initial crack length
5.71° a=0.1 mm a=0.05 mm 2 =0.0l mm
Stress intensity 6.578x10° Pam'"~ 5.604x10° Pam'~ 4932<10°Pam' -
factor

Eight Singularity Elements; the
symbol "o” denotes 9 quarter points

/

’ Crack length >
0.0 mm

Figure 3.7 Vicinity of the crack

The critical value of the stress intense factor, Kic is a material property

that can be found in handbooks. If K¢ is less than K, the crack will grow.



Figure 3.8 shows the J contour. The computed values of J integral for

different contours are seen to be not constant but the difference in values is

only 30 %.

Laminate
The contour

\ Resin area |

V1l

Crack tip

Figure 3.8 A part of the mesh showing J contour

Table 3.15 J integral

Model A with Radial distance Radia! distance ' Radial distance
Angle 5.71° r= 22916 mm r= 27083 mm r= 4.7916 mm
J integral 39.0675 Pa.m 45. 7123 Pa.m | 55.2620 Pa.m
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3.6.4 Program Construction

In this program. all routines are written in either Fortran or Matlab
Language. The finite element program can solve the static problem as well
as the dynamic problem. The structure of the program developed is

described in detail in Figure 3.9.

CHECK
Nodexy
Input
GAUSSQ
CHECK2
MODPS
SFR
STIF JACOB
BMAT ————
{
Common Block DBE _____’:
I
|
: Data files
I
LOAD {
!
|
|
|
ASSEMB v
STATIC
Data files :
REDUCE e~ » :
v
DYNAMI

Figure 3.9 Program organization
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3.6.4.1 Routines in Fortran Language

INPUT subroutine is subdivided into two functions: one (Input)
subroutine inputs a data file and sorts the inputted data according to the data
properties, another (Inputl) subroutine stores the sorted data and outputs the

data (the format ot an input data file can be seen in Appendix III).

NODEXY generates the coordinates of mid-side nodes that lie on a
straight line connecting adjacent comer nodes. In generating singularity

element, the NODEXY subroutine will not be used.

GAUSSQ generates the Gauss point positions and weighting factors

according to the order of integration rule specified.

CHECK and CHECK2 subroutines scrutinize the inputted data and check

any errors that are signaled by diagnostic messages.

MODPS evaluates the elasticity matrix for plane strain problem according

to the given material property values.

SFR calculates the shape functions and their derivatives for 2D elements.

JACOB calculates the coordinates of Gauss points. the Jacobian Matrix

and its determinant and the inverse for 2D elements.

BMAT calculates the strain matrix for plane strain problem using the

Cartesian shape function derivatives; the results will be written in one file.
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DBE simply multiplies the elasticity matrix and the strain matrix, the

results will be written in one file.

STIFP calculates the element stiffness matrix.

LOAD calculates the loading.

ASSEMB is a subroutine using which the individual element stiffness
matrices and load vectors are assembled into the overall structural stiffness

matrix and load vector respectively.

REDUCE is a subroutine that can omit the constrained degrees of

freedoms. the results will be written in one file.

All these subroutines are provided in the disk attached.

3.6.4.2 Routines in Matlab Language

STATIC calculates the displacements, stresses and strains. These results

can be used to calculate the energy release rate (see Appendix I).

DYNAMI calculates the eigenvalues, eigenvectors, and the random

response (see Appendix II).
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3.7 Discussion

[n this Chapter, the finite element formulations of a two-dimensional
plane strain problem have been given. The element stiffness matrix and
strain matrix B are calculated based on the quadratic and triangular shape
functions. A three-dimensional problem of composite material 1s
transformed into a two-dimensional problem. The singularity elements for
obtaining the stress intensity factor are discussed, and it is found that
rectangular quarter-point elements are less accurate than triangular quarter-
point elements. The virtual crack extension method was introduced. In this
method, the energy release rate is related to the change in the potential
energy, and further this energy release rate is related to the change in the

element stiffness.

The dynamic analysis of any structure starts with the formulation of the
equations of motion. The damping is considered to be proportional damping.
The frequency response function of coupled system and natural frequencies
were considered that will be used to calculate the response of the system and

the frequencies of the system.

The mean and standard deviation of the response to random excitation 1s
calculated. A particularly important probability distribution is the Gaussian
distribution that is completely defined by its mean and standard deviation.
The power spectral density function is an even function that is defined over
the range -x<o<+x. When making practical measurements it is more
convenient to deal with positive frequencies. In this case, a one-sided

spectral density function is introduced.
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Comparisons have been made for a two-dimensional model of a cylinder
and it has been observed that the results are in excellent agreement.
Comparisons between the 6-node and 8-node elements have shown that the
6-node elements do not have any problem. Comparisons between finite
element and analytical solution indicate that the accuracy of the result was
better in the case of triangular element. Analysis of a tapered laminate has
been performed. The analysis results are in excellent agreement with the
reference results. Comparison between the values of energy release rate
indicates that the computational results of energy release rate are in very
good agreement with the reference results. Comparison of stress intensity
factor and J integral indicates that the stress intensity factors can be
computed easily and that there are very little differences between J integral

and energy release rate.
All routines were written in either Fortran or Matlab Language that can

solve the static problem as well as the dynamic problem. The Fortran

program connects to the Matlab program through the data.
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Chapter 4

Parametric Study

4.1 Introduction

In the present work, the laminate deformation is determined based on
plane strain theory. The strains can be obtained at any through-the-thickness
location of the laminate, where the strains are continuous through the
thickness. But the stresses can be discontinuous from one layer to another

layer, depending on the material properties and orientation of the layer.

In the failure analysis of a tapered laminate, three different types of failure
are involved: initial or first-ply failure, ultimate laminate failure, and inter-
laminar failure. In the first case, the laminate is considered to have failed
when any one laver fails. In the second case, the laminate is considered to
have failed when the maximum load is reached or exceeded. The last failure
is a result of separation between individual layers. The first two levels in the
failure process, the initial and ultimate, are analogous to the failures at yield
and ultimate stresses in materials. The resin can be considered as an
isotropic material. The Von Mises yield stress approach can be used with a
low safety factor. The crack is initiated when a cntical stress level is

reached.

The design of the tapered structure considers stiffness, static strength,
dynamic stability, and damage tolerance. A major consideration in the

tapered structure is the laminate configuration, the ply orientation and taper
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angle of the tapered laminate. The laminate configuration involves the
stacking sequence and the ply composition. The composite material
considered here is selected as a graphite/epoxy material for which the
properties are given in Table 4.1. Each ply made of graphite/epoxy material
is assumed to be transversely isotropic with principal material axes along
and perpendicular to the direction of the fibers. The inter-laminate resin
material is epoxy. The resin is considered as an isotropic matenal, the

properties of which are given in Table 4.2.

Table 4.1 Properties of unidirectional graphite/epoxy material

Density( p, kg/m’) 1480
Longitudinal modulus(E;, GPa) 113.9
Transverse modulus(E,, GPa) 7.985
E. is equal to E,

In-plane shear modulus(G,, GPa) 3.137
In-plane shear modulus(G.,;, GPa) 2.852

G-, 1s equal to Gj,

G»; 1s equal to G,

Poisson's ratio(v;,) 0.288

Poisson's ratio(v-;) 0.018

Poisson's ratio(v-3) 0.4

In-plane shear strength(F¢, MPa) 333 |
Longitudinal tensile strength(F,,, MPa) 1621 |
Transverse tensile strength(F,,, MPa) 48.28 |
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Table 4.2 Properties of isotropic resin material

Elastic modulus(E,GPa) 3.93
Shear modulus(G,GPa) 1.034
Poisson's ratio(v) 0.37
Tensile strength(F, MPa) 62.055

Three different types of tapered structures are considered as three models:
Model-A. Model-B, and Model-C (see Figure 4.1). All the models of the
tapered structure are 200 mm long, and 10 mm wide. All the models of
tapered structure are 30 mm long from the right end of the thick section to
the left end of the thin section. All the models are symmetric about x-

direction. The shaded regions in the three models, shown in Figure 4.1, are

resin areas.

Model A

| N | Model C

Figure 4.1 Tapered structures
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The thick section of the tapered laminate consists of plies that are from 24

to 52 plies and the thin section of the tapered laminate consisted of 12 plies.

Each ply is 0.125 mm thick. The taper angles are in the range of 2.86 to

14.04 degrees. The configurations for the thick section of the laminates are

given in Table 4.3. The configuration for the thin section is [04/£45,4] , and

the thickness of sub-laminate 1s 1.5 mm.

Table 4.3 Configurations for the thick section

Angle

Model A

Model B |

Model C

2.86°

[0y/245,/£45/-454]

[04/445/445/-454] 5 |

[04/+454/-45,/£452/+45,/-45,] ¢

4.29°

(04245 5456/-456] s

[04/£45/2456/-456]

[0u/+45¢/-45/£453/+454/-456] 5

5.71°

[0y/£45£45¢/-454]

[0y/x45./%45¢/-453] s

[O/+45¢/-45/245/+45/-454]

7.13°

[0y/£45/%45,0/-4510]) s

04/%45/£35,0/-3510) s

[0y +45,0/-45/2455/+45./-4510] 5

8.53°

[04/+45/%4512/-4512] 5

0y/+45/+45,2/-351]

[04/+45,2/-45/+45/+454/-452] 5

9.93°

[Oy/£45/£45,4/-4514] s

[0y/+45,4/-45,/245-/+45/-3514] s

11.31°

[0y/£45/£45,6/-4516] s

0/+45/+45,6/-4516] s

[04/+4516/-452/4454/+45./-4516] s

12.68°

[0y/245/%453/-4513] s

0/+45,/%45,5/-453] s

[0y/+d5 g/-35./+450/+45,/-45 5] 5

14.04°

[04/245/%430/-43 3] 5

(
(
[04/245./%45,/-454] ,
(
(
(

0./2454/24520/-4520] 5

[0y’+4530/-45.u/i45l0/+45"/'4510] 3

The three models have resin pockets at different positions as shown in

Figure 4.1. The resin areas are arranged in Model A as shown in Figure 4.2,

and these areas are named as area-I. area-II, and area-III as shown in Figure

4.2.

The areas between the resin and the sub-laminate cause stress

discontinuities when the loading is applied at the thin end of tapered

structure.
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Area [II Area Il

A

Areal

Figure 4.2 Distribution of resin areas

The growths of delaminations are assumed to be along the interfaces a-b,
b-c. c-d. d-e. and e-f between shaded resin regions and sub-laminate as
shown in Figure 4.3. The initial delamination is assumed to form at point a.

and it grows along the line a-b.

Figure 4.3 Typical delamination

4.2 Finite Element Model

The finite element mesh is determined considering the assumed crack size
and the possible regions for crack generation. The cracks are located

between sub-laminate and resin where the stress distributions are analyzed.
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The finite element meshes are refined in the resin areas and the sub-laminate
areas that connect with the resin. In other domains. the meshes of the finite
elements are so coarse that the accuracy of computed results is not affected.
There are about 616 nodes and 189 elements. The mesh configuration in one

resin region is shown in Figure 4.4.

One layer, 0.123 mm

Figure 4.4 Finite element mesh for resin area

For each finite element mesh a small program has been written which can
check each node position (see the Figure 3.6). In Figure 3.6, the symbol "o"

is used to represent a node.

The side length of the finite element around the crack was considered as
matching the crack length. The crack form can be designed as tapered form.
When the crack was propagated along the z-direction, the crack form is also

presented as tapered form (see the Figure 4.5)



Lamnate area Resin area

\ .

[nitial crack

Laminate area Resin area

Crack after propagation

Figure 4.5 Crack in the tapered laminate

w
[PF]



4.3 Static Load. Constraints, and Displacements

The loads are separated into two cases: the first case. a uniformly
distributed load with a magnitude ot 1800 N (the distributed loading is
1200x10° N.m") along the x direction applied at the thin section end (see
Figure 4.6). The second case, a concentrated load with a magnitude of 1800
N along the x direction applied at different positions on the thin section end
(z=0.00. 0.25. 0.30. 0.75, 1.00, 1.25, 1.50 mm and x =200 mm). In models.

the left ends of the thick section are fixed.

Area [I1
N\

Area (]

Areal Load. 1800 N

v
Thick section L
is tixed =

NSO S

X

Figure 4.6 Static loading

The computed displacements in Model A with angle 5.71° are shown in
Table 3.11 and Figure 4.7. From Figure 4.7, the change in the displacement
can be found to be larger near x=80 mm (the same conditions have happened
in Model B and Model C, and corresponding to the taper angles from 2.86 to
14.04 degrees). The results indicate that the largest z-direction displacement

area is at the area. near x=80 mm.
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X-direction displacement Z-direction displacement

displacement {(mm}

displacement (mm)

30 40 40 10 e 12 148 143 3¢ CC IR

x-direction (mm) x-direction (mm)

Figure 4.7 Displacements in model A. angle 5.71°

4.4 Interlaminar Stresses

The computed interlaminar stresses between resin and sub-laminate areas
are not continuous and are shown in Tables 4.4, 4.5, and 4.6, wherein the
values of the stresses at the chosen central points of each element are given.

In Tables 4.4, 4.5, and 4.6, c-stress denotes the Von Mises equivalent stress.

In the Tables 4.4, 4.5, and 4.6, the Von Mises equivalent stresses are
different along lines a-b, b-c, and e-f between the sub-laminate and the resin.
In the Table 4.4, the tapered angle is 5.71 degrees, the peak value of Von
Mises stress in the laminate is observed at z=0.625mm, and the peak value
of Von Mises stress in resin is at z=0.125mm (see the left side of Figure
4.8). From Figure 4.8, it can be observed that the largest Von Mises stress
occurred at the transition point-a, which is located between the sub-laminate

and the resin.
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From the computed results given in Tables 4.4, 4.5, and 4.6, it can be seen
that the stresses in resin become smaller and the stresses in laminate become
higher when the taper angle becomes higher for the same loading. Near
point-a. the ratio of laminate and resin Von Mises stresses is 1.848
(31.065/16.805 and at z=0.125) for angle 5.71°, the ratio is 2.252 for angle
4.29°, and the ratio is 2.994 for angle 2.86°. The ratios are higher when the
taper angle becomes smaller from angle 14.04 to 2.86 degrees for Model A,

Model B. and Model C.
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Table 4.4 Stresses in chosen elements (model A, angle=5.71°)

Atend Stresses ( MPa)
x=18S3mm x direction | zdirection xz-shear G-stress
z=0.25mm 70.6381 -0.5120 0.2791 70.940
z=0.75mm 69.458 -0.3395 0.5818 69.649
z=1.25mm 218.22 -0.1032 0.6591 218.27
Area | Stresses in ply (MPa)
x=78.75 mm | x direction | z direction xz- shear | G-stress
z=0.125 mm 31.423 0.8305 1.0091 31.065
z=0.375 mm 33.335 0.799% 3.1124 33.380
z=0.625 mm 38.419 0.5532 5.3883 39.270
Stresses in resin (MPa)
x=81.25 mm | x direction z direction Xz~ shear G-Stress
z=0.125 mm 15.365 -2.5432 0.5089 16.805
z=0.375 mm 15.034 -2.5208 1.5447 16.656
z=0.625 mm 14.323 -2.3325 2.5689 16.242
Area Il Stresses in ply (MPa)
x=68.75 mm | x direction z direction xz- shear G-stress
z=1.125 mm 33.213 0.3955 -2.3325 33.263
z=1.375 mm 28.296 1.1171 -0.8474 27.793
z=1.625 mm 29.074 1.1012 1.4405 28.648
Stresses in resin (MPa)
x=71.25 mm | x direction z direction xz- shear G-stress
= 1.125 mm 7.7220 -0.6228 0.004686 8.0515
z=1.375 mm 8.4432 -1.0997 0.3422 5.0628
z=1.625mm | 8.5742 -1.2242 0.86853 9.3985
Area III Stresses in plv (MPa)
x=58.00 mm | x direction z direction | xz- shear G-stress
=2.125 mm 27.790 -0.2040 -1.8552 28.077
z=2.375 mm 24 .848 0.2026 -1.3673 24 .861
z=2.625 mm 25.022 0.2103 -0.4378 | 24 .929
Stresses in resin (MPa)
x=61.235 mm | x direction z direction Xxz- shear G-stress
z=2.125 mm 5.8114 -1.2471 -0.5321 6.5898
z=2.375 mm 6.3726 -1.6340 -0.2320 7.338%
z=2.625 mm 6.4699 -1.7284 0.2652 7.4994
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Table 4.5 Stresses in chosen elements (model A, angle=4.29°)

Area [ | Stresses in ply (MPa)
x=78.73mm | «xdirection | zdirection | xz-shear | G-stress
2=0.09375 mm 33.697 1.4801 | 0.96254 33.024
z=0.28125 mm 35.570 1.3513 | 2.8997 35.273
z=0.46875 mm 40.276 0.9456 | 4.6759 40.627

Stresses in resin (MPa)
x=81.25 mm x direction | zdirection | xz- shear o-stress
z=0.09375 mm 13.278 -2.4358 | 0.39%02 14.664
z=0.28125 mm 13.001 -2.3613 | 1.1602 14.468
z=0.46875 mm 12.410 -2.1011 | 1.8231 13.945

| Area [l | Stresses in ply (MPa)

' x=68.75mm | xdirection | zdirection | xz-shear | o-stress
z=0.84375 mm 37.173 0.5079 | -1.4696 37.009
z=1.03125 mm 32.965 1.1413 | -.3765 32.416

| z=1.21875mm | 33.606 1.1094 | 1.3981 33.154

| Stresses in resin (MPa)
x=71.25mm | xdirection | zdirection | xz- shear G-stress
z=0.84375 mm 7.5937 -.69792 | 0.3361 7.98638
z=1.03125mm | 8.1147 -1.0773 | 0.4552 8.7391
2=1.21875mm | 8.1795 -1.1412 | 0.9693 | 8.9113

Area 11 Stresses in ply (MPa)
x=58.00 mm x direction | zdirection Xz- shear G-stress
z=1.59375 mm 32.714 -.0649 -1.1850 32.811
z=1.78125 mm 30.378 0.2703 | -.9080 30.285
z=1.96875 mm 30.643 0.2644 | -0.3057 30.516

Stresses in resin (MPa)
x=61.25mm | xdirection | z direction xz-shear |  o-stress
z=1.59375 mm 6.0266 -1.3082 -.10259 | 6.7785
z=1.78125 mm €.4671 -1.6386 .0400 | 7.4236
2z=1.96875 mm 6.5424 -1.6984 | .3231 | 7.5573
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Table 4.6 Stresses in chosen elements (Model A, angle=2.86°)

Area [ | Stresses in plv (MPa)
x=78.75mm | xdirection | zdirection | xz- shear G-stress
2=0.0625mm | 37.594 1.8796 | 0.7574 36.713
z=0.1875 mm 39.267 1.6923 | 2.1945 38.636
2=0.3125 mm 43.112 1.2445 | 3.2496 42.875
Stresses in resin (MPa)
x=81.25 mm X direction z direction | xz- shear o-stress
z=0.0625 mm 11.072 -2.0972 | 0.2010 12.261
z=0.1875mm | 10.891 -2.0079 | 0.6030 12.067
z=0.3125mm | 10.513 -1.7475 | 0.8640 11.584
Area [l Stresses in plv (MPa)
x=68.75 mm X direction zdirection | xz-shear o-stress
z=0.5625 mm 42 .965 0.5331 | -~-.4310 42.678
2=0.6875 mm 39.985 | 1.0491 | 0.0972 39.471
z=0.8125 mm | 40.414 | 1.013% | 1.0592 39.958
Stresses in resin (MPa)
x=71.25 mm x direction z direction | xz- shear G-stress
z=0.5625 mm 7.5837 -0.6979 | 0.3361 7.9868
=0.6875 mm 8.1147 -1.0773 | 0.4552 8.7391
2=0.8125 mm 8.1795 -1.1412 | 0.9693 8.9113
Area [l | Stresses in plv (MPa)
x=58.00 mm X direction z direction | xz-shear o-stress
z=1.0625 mm 40.226 0.06178 | -0.4321 40.202
z=1.1875 mm 38.638 0.29359 | -0.4268 38.500
z=1.3125 mm 38.828 0.28673 | -0.2702 38.689
Stresses in resin (MPa)
x=61.25 mm X direction zdirection | xz- shear o-stress
z=1.0625 mm 6.3499 -1.2618 | 0.2492 7.0780
z=1.1875 mm €.6299 -1.4925 | 0.2119 7.4975
z=1.3125 mm 6.6798 -1.5192 | 0.2368 7.5680
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Figure 4.8 Von Mises equivalent stress in z-direction

The Von Mises stresses along the line o-f (see Figure 4.8) were
distributed as 7.7332 (point-o0), 6.6055, 11.453, 22.384 (point-b), 10.784,
7.4871, 7.0235(point-d), 13.392, 5.9261, 5.0339, 5.2268, 9.4592 (point-f)
MPa (see Figure 4.9 for the Von Mises stress along the line o-f). The highest
stress (22.384 MPa) is at point-b in resin area I, and the second highest stress
(16.805 MPa) is at point-a. From the distribution of the stresses. the initial

crack may seem to occur along the line o-b.

Comparison between Figures 4.8 and 4.9 shows that the crack will be
initiated in resin area [ and near x=80 mm. So the initial crack can be
assumed along the line a-b. Two possible conditions of crack propagation
can be estimated: one is from point-a to point-b, another from point-b to
point-a. Here, the first condition i1s assumed: the crack propagates from
point-a to point-b. The highest stress (22.384 MPa) is at point-b in resin area

[, and the second highest stress (16.805 MPa) is at point-a.
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The Von Mises equivalent stress
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Figure 4.9 Von Mises equivalent stress along the line o-f

In the strain energy release rate study, the crack propagation process is not
considered to compute the strain energy release rate. The objective is to
obtain the strain energy release rate of initial crack corresponding to the
different taper angles of the laminate and to apply a reasonable strain energy

release rate criterion for these models.
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4.5 Energy Releases Rate

The mode-I and mode-II components of the strain energy release rate
under static loading and the total strain energy release rate for fatigue
loading can be used to predict delamination growth in a laminated composite

structure.
4.5.1 Possible Weak Factor

From the shown stress distribution in resin area, the initial crack may be
happened in the resin area-I. It is most possible that the initial crack may be
happened along the line a-b. The Von Mises stress at point-b was higher
than that at point-a according to the stress values. It is reasonable to assume

the initial crack at point-b.

In Figure 4.10, laminates are tailored into a tapered laminate. The
processes are assumed as the step-I, step-II, and step-III. The place where
the point-a can be assumed is the weakest place. A possible weak factor can

be estimated according to the tapered structure tailoring.

Weaker place

v VvV v e .
| | IENIINS A 4 4
! [HRSY
{ > {
! [ ! 4 4 4 4 ‘A+
R

Step Step 11 Step III

Figure 4.10 Tailoring of the tapered laminate



The possible weak factor has a distribution that is proportional to the
stress distribution. the values are assumed as in Figure 4.11. The weak factor
1s assumed to be | for point-b. and it is assumed to be 0.7 for point-a. The
resin area-l can be separated into ten sub-areas, and each sub-area will be

given a possible weak factor.

Point-b
0.97
1
0.94
090
0.90
0.80 0.87
0.70 0.86 0.83
Point-a Point-o

Figure 4.11 Weak factor distribution

In the Table 4.6, the given resin tensile strength is 62.055 MPa, and the
computed Von Mises stress is 16.805 MPa at the point-a. In the Table 4.7,
considered safety factor is 2.5, and the design tensile strength is 17.375 MPa
(62.055 x0.7+2.5=17.375). If the safety factor is assumed as 3.3, the design
tensile strength is only 13.031 MPa (62.055x0.7+3.3=13.031). This value is
less than the computed stress 16.805 MPa. The cracking may occur at this
stress level. The computed Von Mises stress is 22.384 MPa at the point-b.
The design tensile strength is 24.8 or 18.626 MPa (62.055x1+2.5=24.8,
62.055x1+3.3=18.626). The proportion between strength and stress is 1.080
(17.375/16.805) or 0.775(13.031/16.805) that is lower than the proportion



1.107 (24.822/22.384) or 0.832(18.626/22.384). It is reasonable that the

initial cracking may occur at point-a.

Table 4.7 Proportion between the strength and stress

The resin tensile strength is 62.055 MPa, the safety factoris 2.5

Positions in tapered Von Mises Design tensile Proportion between the
laminate (weak factor) | stress (MPa) strength (MPa) strength and stress
Point-a ( 0.7 ) [ 16.805 17.375 ] 1.080
Point-b ( 1.0) 22.384 24.822 ‘ 1.107
Point-0 ( 0.9) 7.7332 22.340 | 2.889

The resin tensile strength is 62.055 MPa, the safety factor is 3.3

Position in tapered | Von Mises Design tensile Proportion between the
laminate (weak factor) | stress (MPa) strength (MPa) strength and stress
Point-a ( 0.7) ' 16.805 13.031 0.775
Point-b ( 1.0) , 22.384 18.626 0.832
Point-0 ( 0.9) 7.7332 16.755 2.167

4.5.2 Energy Release Rate for the Three Models

The inital crack length will be considered to be equal to the element side
length. In the last section it was mentioned that area-I was the area with the
highest stress among the three resin areas, and further point-a had the highest
value of Von Mises stress in resin area-I. Therefore, the delamination was
assumed to initiate at this point-a. The initial crack length is considered as
0.25 mm, its width is 0.02 mm, and further the crack propagates to an

incremental distance da=0.25 mm, and the crack width is 0.004 mm. The
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strain energy release rate is given in Tables 4.7, 4.8, and 4.9 for taper angle

in the range of 2.86-14.03 degrees.

In Figure 4.12 and Tables 4.7, 4.8. and 4.9. the energy with initial crack or
after crack propagation is increasing when the taper angle is decreasing. In
Figure 4.13, the energy release rate is increasing when the taper angle is

Increasing.

Table 4.8 Energy release rate for model A

Taper Energy with initial Energy after crack Energy release
angle crack propagation rate
2.86° 0.2669 m.N 0.2670 m.N 6.4280 Pa.m
4.29° 0.2575 m.N 0.2576 m.N 28.8680 Pa.m
5.71° 0.2515 m.N 0.2516 m.N 38.9520 Pa.m
7.13° 0.2475 m.N 0.2477 m.N 93.8560 Pa.m
8.53° 0.2450 m.N 0.2454 m.N 152.0080 Pa.m
9.93° 0.2435 m.N 0.2441 m.N 227.1560 Pa.m
11.31° 0.2426 m.N 0.2435 m.N 322.4880 Pa.m
12.68° 0.2422 m.N 0.2433 m.N 438.6240 Pa.m
14.03° 0.2423 m.N 0.2438 m.N 566.7640 Pa.m
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Table 4.9 Energy release rate for model B

Taper Energy with Energy after crack Energy release
angle initial crack propagation rate
2.86° 0.2662 m.N 0.2663 m.N 6.9480 Pa.m
4.29° 0.2573 m.N 0.2574 m.N 10.6040 Pa.m
5.71° 0.2516 m.N 0.2517 m.N 28.6360 Pa.m
7.13° 0.2474 m.N 0.2475 m.N 53.4200 Pa.m
8.53° 0.2447 m.N 0.2449 m.N 74.1160 Pa.m
9.93° 0.2432 m.N 0.2434 m.N 101.3440 Pa.m
11.31° 0.2422 m.N 0.2426 m.N 136.9560 Pa.m
12.68° 0.2418 m.N 0.2423 m.N 191.0920 Pa.m
14.03° 0.2418 m.N 0.2424 m.N 239.1640 Pa.m
Table 4.10 Energy release rate for model C
Taper Energy with Energy after Energy release
angle initial crack crack propagation rate
2.86° 0.2670 m.N 0.2671 m.N 6.9280 Pa.m
4.29° 0.2575 m.N 0.2576 m.N 22.5560 Pa.m
5.71° 0.2515 m.N 0.2516 m.N | 40.1520 Pa.m
7.13° 0.2475 m.N 0.2477 m.N 94.1880 Pa.m
8.53° 0.2449 m.N 0.2453 m.N { 150.0200 Pa.m
9.93° 0.2433 m.N 0.2439 m.N 220.8320 Pa.m
11.31° 0.2423 m.N 0.243l m.N | 309.8280 Pa.m
12.68° | 02419 mN 02430mN | 18.3800 Pam
14.03° 0.2418 m.N 0.2432 m.N f 536.3360 Pa.m
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Energy change for Model A
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Figure 4.12 Energy change for Model A
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Figure 4.13 Energy Release Rate
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4.5.3 Energy Release Rate for Concentrated Loading

When the loading 1s changed to concentrated loading and applied at
different positions. the energy release rates are not changed appreciably (see

the Tables 4.11, 4.12, and 4.13).

Table 4.11 Energy release rate for different loading positions
(Model A with angle 5.71°)

Loading Energy with initial | Energy after crack Energy release
Position crack propagation rate

0.00 mm 0.2613 m.N 0.2614 m.N 38.9520 Pa.m
0.25 mm 0.2569 m.N 0.2570 m.N 38.9560 Pa.m
0.50 mm 0.2555 m.N 0.2556 m.N 38.9560 Pa.m
0.75 mm 0.2526 m.N 0.2527m.N 38.9560 Pa.m
1.00 mm 0.2525 m.N 0.2526 m.N 38.9520 Pam
1.25 mm 0.2520 m.N 0.2521 m.N 38.9560 Pa.m
1.50 mm 0.2552 m.N 0.2553 m.N 38.9520 Pa.m

Table 4.12 Energy release rate for different loading positions

(Model B with angle 5.71°)

Loading Energy with initial | Energy after crack Energy release
Position crack propagation rate

0.00 mm 0.2614 m.N 0.2615 m.N 28.6360 Pa.m
0.25 mm 0.2570 m.N 0.2571 m.N 28.6360 Pa.m
0.50 mm 0.2556 m.N 0.2557 m.N 28.6360 Pa.m
0.75 mm 0.2527 m.N 0.2528 m.N 28.6400 Pa.m
1.00 mm 0.2526 m.N 0.2527 m.N 28.6360 Pa.m
1.25 mm 0.2522 m.N 0.2523 m.N 28.6400 Pa.m
1.50 mm 0.2553 m.N 0.2554 m.N 28.6400 Pa.m

98




Table 4.13 Energy release rate for different loading positions

(Model C with angle 5.71°)

Loading Energy with tnitial | Energy after crack Energy release
Position crack propagation rate

0.00 mm 0.2614 m.N 0.2615 m.N 40.1520 Pa.m
0.25 mm 0.2569 m.N 0.2570 m.N 40.1520 Pam
0.50 mm 0.2555 m.N 0.2556 m.N 40.1520 Pa.m
0.75 mm 0.2527 m.N 0.2528 m.N 40.1520 Pa.m
1.00mm | 0.2526 m.N 0.2527 m.N 40.1520 Pam
1.25 mm 0.2521 m.N 0.2522 m.N ‘ 40.1520 Pa.m
1.50 mm | 0.2553 m.N 0.2554 m.N ! 40.1520 Pa.m

4.5.4 Stress Intensity Factor

One-ply steps were used to produce the taper, the loading is in the x
direction. In this condition, inter-laminar cracking or delamination of the
tapered structure can occur under two basic modes: opening (or peel) mode
(mode I), forward sliding shear mode (mode II), or under mixed mode. The
resistance to delamination growth is expressed in terms of the interlaminar
fracture toughness, which has two values corresponding to the two basic
delamination modes. The interlaminar fracture toughness is measured In
terms of the strain energy release rate, which is the energy dissipated per

area of delamination growth.

For a material, the energy release rate is the rate of change in potential
energy with crack area, which is also called as the crack extension force or

the crack driving force.
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The approaches of fracture mechanics can be used through using equation
(3.33) if we consider the resin material as isotropic material, for which the

elastic modulus E and Poisson's ratio v are constants. In Tables 4.14, 4.13,

and 4.16 the computed results are given.

Table 4.14 Stress intensity factor for model A

| Taper Energy release Stress intensity factor

* angle ’ rate (x10° Pam"?)

| 2.86° | 6.4280 Pa.m 1711 |
129° |  28.8680 Pam 3.626 |
3.71° 38.9520 Pa.m 4.211 [
7.13° | 93.8560 Pa.m 6.537
8.53° | 152.0080 Pa.m 8.320
9.93° 227.1560 Pa.m 10.170
11.31° 322.4880 Pa.m 12.118
12.68° 438.6240 Pa.m 14.132
14.03° | 566.7640 Pa.m 16.064

Table 4.15 Stress intensity factor for model B

Taper Energy release Stress intensity factor
angle rate (x10° Pam'?)
2.86° | 6.9480 Pa.m 1.779
4.29° | 10.6040 Pa.m 2.197
5.71° | 28.6360 Pa.m 3.611
7.13° | 53.4200 Pa.m 4.932
8.53° | 74.1160 Pa.m 5.809
9.93° | 101.3440 Pa.m 6.793
11.31° 136.9560 Pa.m 7.897
12.68° 191.0920 Pa.m 9.328
14.03° | 239.1640 Pa.m 10.436
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Table 4.16 Stress intensity factor for model C

Taper | Energy release Stress intensity factor
angle rate (x10° Pam'?)
2.86° 6.9280 ! 1.776
4.29° | 22,5560 | 3.205
5.71° 40.1520 i 4.276
7.13° | 94.1880 | 6.549
8.53° | 150.0200 ] 8.265
9.93° | 220.8320 | 10.028
11.31° | 309.8280 | 11.878
12.68° | 418.3800 ! 13.802
14.03° | 536.3360 | 15.627
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4.6 Natural Frequencies and Normal Modes

In order to determine the frequencies and modes of free vibration of the
tapered structure, it is necessary to solve the linear eigenproblem. The
calculated results are given in Table 4.17 for Model-A. The biggest
difference between the eigenfrequencies of the laminate with crack and
without crack is about 60 Hz in the first five modes. The integral domain can
be chosen as 240 Hz for one given eigenfrequency, the integral accuracy can
be satisfied when the frequencies of the random excitation have been chosen

as the eigenfrequencies.

Table 4.17 Eigen frequencies(Hz)

Taper Mode | Mode 2 Mode 3 Mode 4 Mode 5

angle

2.86° Without crack | 1169.480 | 2650.253 3350.577 4900.201 7564.735

With crack | 1169.004 | 2639.613 3339.013 4887.133 7548.294

4.29° Without crack | 1159.048 | 1463.163 2759.098 3470.036 43999.551

With crack 1159.405| 1483.909 | 2757.282 3462.256 4996 .713

5.71° Without crack | 1170.617 | 2804.155 3592.114 5121.744 8537.601

With crack 1172.702 | 2805.245 | 3598.560 5139.365 8539.808

7.31° Without crack | 1115.797 | 1229.272 2859.758 3744 .275 $376.725

With crack 1140.212 | 1283.700 2860.907 3742 .565 5376.420

8.53° Without crack | 1155.945 | 1382.679 | 2879.551 3816.800 5586 .704

9.93° Without crack | 1152.800 | 1328.966 | 2900.292 4042 .688 5752.104
With crack | 1148.205 | 1291.638 | 2897.307 4035.967 £740.878
11.31° | Withoutcrack | 1173.281 | 2907.218 | 4089.967 5889.148 9411.0%7
With crack 1173.448 | 2903.498 | 4080.767 5€87.541 8359.606

l
|
|
|
|
With crack l 1155.219| 1370.039 | 2877.144 3913.6256 5580.181
f
|
|
|

12.68° | Withoutcrack | 1162.891 | 1597.511 | 2925.983 4213.421 6170.839

With crack 1162.463 | 1562.555 | 2921.632 4200.520 6161.561

14.03° | Withoutcrack | 1160.554 | 1457.295 | 2935.096 | 4253.9&7 6€354.460

With crack 1159.913 | 1433.772 ! 2929.644 4235.065 6349.116




The first five mode shapes along the x coordinate can be seen in Figure 4.14.

Mode shapes

—&—No-1
—&—No-2
No-3

04

—=—Nog-4
0.3 ~¥—No-5 l

Figure 4.14 The first five mode shapes

In the mode shapes. we should pay particular attention to the peak value

area. The five modes of the tapered laminate are same as the modes of a

beam with one end fixed.
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4.7 Random Excitation

The random excitation is considered by containing some of eigenvalues
(frequencies, Hz) in the forcing frequencies, and is constrained by limit time;

it 1s with zero-mean.

Filt,)= > Fysin2a,t,)

1=l

(+.1)

where Fy 1s a constant (loading with a magnitude of 5 N), f, is the eigen
frequency, and i = 1,2....,n for n eigen frequencies. Further t, denotes time, j
= 1,2,...,m for the time separating value (here, the m is taken as 10000).
When n is taken as 1, the first eigen frequency (1170.617 Hz) is considered

for Model-A (angle 5.71°), the excitation is shown in Figure 4.15.

Excitation
. ———gxcitation

004 400 0 pog 0048 [}

Magnitude (N)

Time (sec)

Figure 4.15 The excitation whenn =1
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The random excitation can be expressed as

F.te)=F, (r,)+ Rurumln(si:e(ll ))

(4.2)

where, R, is a constant, 10 N. The function "randn" in Matlab will generate a

random number and F will generate a random excitation(see Figure 4.16).

Random excitation

——R-excitation

T

Magnitude (N )

Time (sec)

Figure 4.16 A random excitation

4.7.1 Discrete Fourier Transform and Power Spectral Density

When 10000 points are considered to obtain the Fast Fourier Transform,

power spectral density is given as below (see Figure 4.17).
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(4.3)

[n equation (4.3), frequency f, is equal to f, and i = j = 1, circular
frequency o, is equal to ©, and i =j =1 also. The M was taken as 10000. The
power spectral density is a complex conjugate function in general. In the
computation for Model A without crack (Taper angle 5.71°), the first
eigenfrequency f; is 1170.617 Hz. When we take the Fast Fourier Transform
of 10000 points, the first peak value of the power spectral density function is
reached at 1170.617 Hz; another peak value of the power spectral density is

at 8829.383 Hz (10000-1170.617=8829.383).

12000 - Pawer spectral derruty (N Nsec)

10000 -

8000 -

4000 -

s
) 1000 2000 000 4000 €000 6000 7000 2000 9000 10000
Frequency. ™2

Figure 4.17 Power spectral density function
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4.7.2 Mean Square Value and Standard Deviation

The mean square response is given by

S, (w) = [H,l (tw )I: Spilw)+ ..+ |H,, (lw )|: S, (w)
(4.4)
and
0': = rxSu((u)dw
(4.5)
The standard deviation values of the response are given by
— 2 —-17
G(.u - o-i.u L= l'-’3
(4.6)

The results of the standard deviations are shown in Tables 4.18 and 4.19
corresponding to node | (x =200 mm and z = 0 mm), and node 2 (x = 80

mm and z =0 mm).
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Table 4.18 Standard deviation of the displacement for Model A

Taper angle At node 1. (mm) At node 2. (mm)
Without crack With crack Without crack With crack
2.86° 0.2359 0.3560 0.0335 0.2476
4.29° 0.2205 0.3475 0.0262 0.2074
5.71° 0.2124 0.3117 0.0219 0.1812
7.31° 0.1964 0.2859 0.0277 0.1790
8.53° 0.1961 0.2734 0.0261 0.1621
9.93° 0.1848 0.2601 0.0247 0.1560
11.31° 0.1717 0.2519 0.0245 0.1562
12.68° 0.1717 0.2512 0.0239 0.1451
14.03° 0.1690 0.2328 0.0229 0.1381

Table 4.19 Standard deviation of the velocity for Model A

Taper angle At node |, (mm/sec) At node 2, (mm/sec)
Without crack With crack Without crack With crack
2.86° 9.3040 14.0405 1.3213 9.7662
4.29° 8.6974 13.7031 1.0347 8.1780
5.71° 8.3786 12.2948 0.8629 7.1448
7.31° 7.7458 11.2738 1.0941 7.0576
8.53° 7.7320 10.7830 1.0306 6.3926
9.93° 7.2877 10.2573 0.9726 6.1513
11.31° 6.7719 9.9342 0.9646 6.1584
12.68° 6.7722 9.9062 0.9435 5.7235
14.03° 6.6656 9.1831 0.9050 5.4448

108




4.8 Probability of Failure for a Tapered Laminate

The response of a tapered laminate to stationary random excitation was
discussed in the previous section for a deterministic structure. The
parameters of the tapered structure are taken to be deterministic constants.
and the power spectral density was calculated as a function of the structural
parameters and the external excitation. The computed response has been the

displacement at any given point in the tapered laminate.

A stationary Gaussian excitation process with zero mean represents the
excitation that is commonly encountered by tapered structure. This case,
which results in a stationary Gaussian response process, can be solved

thereby leading to closed form expressions for response statistics.
4.8.1 A Stationary Gaussian Process

A certain tapered structure response S(t) (which is a displacement or
velocity) can be described by a stationary Gaussian process with zero mean
and a power spectral density function in the positive frequency domain, 0 <
® < . The absolute maximum value of this process during a period, T, is

defined by a variable S;:

S, = max|S(s)|
(+.7)
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S(t) can be a function of {ul, a vector of structure random variables.
Assume that s is a threshold value that may be a random variable, so that
when the response is higher than s, the tapered structure will be at failure. In

Ref. [44]. the equation for the conditional probability of failure has been

determined:

_ v(u)r

=P o(u
Pr(u) =1-[1=-Pyy(u)le roti)

(4.8)

[n the above, Py is the conditional probability that., at time t = 0, S(t) is
higher than s. Given the value of {u}, v(u) is the rate of the response process

crossing the value s upward. It was also shown in Ref. [44] that

S:
2 2
PfO =e 0
(4.9)
U(U) ——I_. E;..e-:‘;'):
T ar o
(4.10)

where ) and . are defined in equation (3.97). The above equation
describes the conditional probability for the event that process S(t) has a

value higher than a prescribed value s, which is defined as a failure.
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The spectral moments are functions of the power spectral density of the
response which is a stationary Gaussian process, which also is a function of
the power spectral density of the excitation and other structural parameters.
Because the spectral moments are functions of the components of the
random vector {u] of the tapered structure, including the random excitation,

the above equations yield

st ]:lx exp{— ,/03 oy rexp(—sz /20, )q

Pj,(u) = [—FL, = 1—{1 -C-\'P[_ 20_0 2‘7(1 _exp(—sz /20'() ))

(4.11)

where F; is the conditional probability of failure of the maximum value S..
For model-A with taper angle 5.71° and without crack, the spectral moments
corresponding to displacements at point-a are (x = 80 mm, z = 0 mm, see

Tables 4.13 and 4.14)

5y=0.021878 mm
5-=0.862862 mmv/sec

In static analysis, the computed result for Von Mises equivalent stress was
16.805 MPa at the point-a for model-A with angle 5.71°. Considered safety
factor is 2.5 and the corresponding design tensile strength is 17.375 MPa. If

the safety factor is assumed as 3.3, the design tensile strength is only 13.031
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MPa. So the threshold value s can be taken to be in the range 13.031~17.375
MPa.

4.8.2 Discussion of the Conditional Probability

From equation (4.11) and Figure 4.18, it can be shown that: the maximum
value of the conditional probability is | for the curve of the 1000 sec at the
threshold value 0.0701 mm (at this displacement level, the stress is
calculated as 16.87 MPa at point-a). The conditional probability is 0.019 for
the curve of the 1000 sec at the threshold value 0.1101 mm (at this
displacement level, the stress is calculated as 26.49 MPa at point-a). The
maximum value of the conditional probability is | for the curve of the 10000
sec at the threshold value 0.0851 mm (at this displacement level, the stress is
calculated as 20.47 MPa at point-a). The maximum value of the conditional
probability is 1 for the curve of the 10000 sec at the threshold value 0.1101
mm (at this displacement level, the stress is calculated as 26.49 MPa at

point-a).

Because the maximum value of the conditional probability is 1 for the
curve of the 10000 sec at the threshold value 0.0851 mm (at this
displacement level, the stress is calculated as 20.47 MPa at point-a), and the
stress 20.47 MPa is higher than 17.375 MPa, the failure will happen
absolutely after 10000 sec. The maximum value of the conditional
probability is 1 for the curve of the 1000 sec at the threshold value 0.0701
mm (at this displacement level, the stress is calculated as 16.87 MPa at
point-a). The stress 16.87 MPa is between 13.031 and 17.375 MPa, so the

failure may happen. The maximum value of the conditional probability is



0.961 for the curve of the 1000 sec at the threshold value 0.0851 mm (at this

displacement level, the stress is calculated as 20.47 MPa at point-a). The

stress 20.47 MPa is higher than 17.375 MPa, so the failure will happen with

the conditional probability of 96.1%.

It is evident from Figure 4.18 that the conditional probability for a short

duration, which is higher than a relatively low threshold, is a small value.

This conditional probability of failure increases as the process continues in

time. The variations of conditional probability values with the threshold

value. s. are plotted in Figure 4.18.
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Figure 4.18 Conditional probability

In Figure 4.19, the CDFs of the maximum values of S, are shown for

different periods. As time increases, the probability that the maximum value

of the process is lower than a certain threshold value increases.
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Figure 4.19 CDF of the maximum values of S(t)

In the calculation process for the probability of failure of a tapered
laminate, failure is defined as the case when a certain response
(displacement or velocity) is higher than a given threshold. The probability
of failure is calculated by using equation (4.11), and the spectral moments
are calculated by using equation (3.97) and the results are shown in Tables

4.13 and 4.14. The analysis of the random process is limited to this case in

which the mode shapes are deterministic.
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4.9 Discussion

In this Chapter, the composite material considered is a graphite/epoxy
material and the resin material is selected as epoxy. Each ply made of
graphite/epoxy material is assumed to be transversely isotropic. The resin is

considered as an isotropic material.

Three different types of tapered structures were considered as three
models: Model-A. Model-B, and Model-C. All the models of the tapered
structure were 200 mm long, and 10 mm wide. All the models of tapered
structure were 30 mm long from the right end of the thick section to the left
end of the thin section. All the models are symmetric about x-direction. The
thick section of the tapered laminate consists of plies that are from 24 to 52
plies and the thin section of the tapered laminate consisted of 12 plies. Each
ply is 0.125 mm thick. The taper angles are in the range of 2.86 to 14.04

degrees.

The finite element meshes are refined in the resin areas and the sub-
laminate areas that connect with the resin. In other domains, the meshes of
the finite elements are so coarse that the accuracy of computed results is not
affected. There are about 616 nodes and 189 elements for each finite element

model.

The loads are separated into two cases: a uniformly distributed load with a
magnitude of 1800 N (the distributed loading is 1200x 10° N/m") along the x

direction applied at the thin section end. The second case, a concentrated



load with a magnitude of 1800 N along the x direction applied at different

positions on the thin section end.

Near the point located at x = 80 mm and z = 0 mm, the ratio of laminate
and resin Von Mises stresses was higher when the taper angle becomes

larger for Model A, Model B, and Model C.

The largest Von Mises stress 22.384 MPa in the resin area [ occurred near
the transition point x = 80 mm and z = | mm. The second largest Von Mises
stress 16.805 MPa in the resin area I occurred near the transition point x =

80 mm and z =0 mm.

The initial crack may seem to occur along the line from the point x = 80
mm and z = | mm to the point x = 80 mm and z = 0 mm or along the line
from the point x = 80 mm and z = 0 mm to the point x = 80 mm and z = |

mm.

The random values of the possible weak factor had been assumed to be 1,
near point X = 80 and z = 1 mm, and assumed to be 0.7 near point x = 80 mm

and z=0.

The given resin tensile strength is 62.055 MPa. The computed Von Mises
stress is 16.805 MPa at the point x = 80 mm and z = 0 mm. The considered
safety factor is 2.5, and the design tensile strength is 17.375 MPa. If the
safety factor is assumed as 3.3, the design tensile strength is 13.031 MPa.
This value is less than the computed stress 16.805 MPa. The cracking may

occur at this stress level. The computed Von Mises stress is 22.384 MPa at
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the point X = 80 mm and z = | mm. The design tensile strength is 24.8 or
18.626 MPa. The proportion between the design tensile strength and stress
was 1.080 or 0.775 tor point x = 80 mm and z = 0 mm that was lower than
the proportion 1.107 or 0.832 for point x = 80 mm and z = | mm. It was
reasonable that the initial cracking may occur from point x = 80 mm and z =

0 mm to point x =80 mm and z= | mm.

The initial crack length was considered as 0.25 mm, its width was 0.02
mm, and further the crack propagates to an incremental distance da=0.25
mm, and the crack width was 0.004 mm. The energy with initial crack or
after crack propagation was increasing when the taper angle was decreasing.
The energy release rate was increasing when the taper angle was increasing.
The energy release rates were calculated for Model A, Model B and Model
C.

When the loading was changed to concentrated loading and applied at

different positions, the energy release rates were not changed appreciably.

The resin material was considered as isotropic material, for which the
elastic modulus E and Poisson's ratio v were constants. The computed results

ot the stress intensity factor were given for Model A. Model B and Model C.

The random excitation was considered by containing some of eigenvalues
in the forcing frequencies, and was constrained by limit time and with zero-
mean. When [0000 points were considered to obtain the Fast Fourier
Transform. power spectral density was given. The mean square response and

the standard deviation values of the response were given.
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The parameters of the tapered structure were taken to be deterministic
constants, and the power spectral density was calculated as a function of the
structural parameters and the external excitation. The computed response
had been the displacement at any given point in the tapered laminate. A
stationary Gaussian excitation process with zero mean has been used to
represent the excitation. thereby leading to closed form expressions for

response statistics.

A threshold value was assumed that may be a random variable, so that
when the response was higher than s, the tapered structure will be at failure.

The conditional probability of failure has been determined.

The conditional probability was 1 at the threshold value 0.0851 mm at
point x = 80 mm and z = 0 mm for the curve of the 10000 sec. At this
displacement level, the stress was calculated as 20.47 MPa at this point. The
stress 20.47 MPa was higher than the design tensile strength 19.85 MPa, so
the failure will be happened absolutely after 10000 sec. The conditional
probability is 1 at the threshold value 0.0701 mm at point x =80 mm and z =
0 mm for the curve of the 1000 sec. At this displacement level, the stress
was calculated as 16.87 MPa at this point. The stress 16.87 MPa is between
the design tensile strengths 13.031MPa and 17.375 MPa, so the failure may

OoCcCur.

118



Chapter 5

Conclusion and Recommendation

A tapered composite laminate subjected to tension load was analyzed
using the finite element method. The different stacking sequences of the
laminate were considered. The groups of tapered laminates, with the tapered
angles of 2.86° to 14.03°, were analyzed. A two-dimensional plane strain
analysis was performed to determine the Von Mises stress distributions in
these tapered laminates without a delamination. The interlaminar Von Mises
stress distributions along the tapered interface were computed. The initial
crack was assumed at the point-a that is near the intersection of the tapered
interface and the thin region of the tapered laminate. Delamination growth in
the finite element model was assumed along the z-direction. The total strain-
energy-release-rates were computed at the delamination tip using the virtual

crack closure technique.

l. Interlaminar Von Mises stresses existing at the points of material and
geometric discontinuities were calculated. The highest level of
interlaminar Von Mises stress appears to occur at the intersection of

tapered interface and thin region of the laminate.

[§S]

A possible weak factor distribution has been considered and the safety
factor has then been determined. The site where a delamination would

initiate is determined.
3. The strain energy release rates were computed for a delamination

initiating at point-a, located at the intersection of the taper and the thin

laminate.
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+. The strain energy release rates tor tapered laminates with taper angles
between 2.86° to 14.04° were computed. The strain energy release

rates increase when the tapered angles were increased.

The response of a deterministic structure to stationary random excitation
has been computed for tapered laminates (Model-A. angles 2.86° to 14.03°).
[t has been assumed that parameters of the structure are known constants,
and power spectral density is calculated as a function of the external
excitation. The response of the linear tapered structural system to stationary
random excitation 1s determined based on the differential equations of the
tapered structure. For lightly damped systems. |H ()| is a function whose
value is very small over most of the frequency axis, with large values only in
the vicinity of the resonance frequency. In solving the tapered structure
problem, our main interest is on the mean square value and the standard
deviation of the response at each nodal point. From the computed standard
deviation value, we can determine where the initial crack will occur.

. The mean square of the response is obtained by integrating the
response power spectrum over the frequency range: here excitation
frequency is same as the first order eigen-frequency.

(O]

When the excitation has zero mean, the calculated mean square values
and the standard deviations of response can indicate where the initial

delamination will occur.
A calculation process for the probability of failure of a vibrating tapered
structure 1s introduced. Failure is defined as the case where a certain

response, displacement or stress. is higher than a certain given threshold.

1. Expressions for this probability of failure were given for a stationary

Gaussian response process with zero mean. which is a common and
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useful case in structural dynamics. The analysis of tapered laminate
(Model-A, angle 5.71°) has been conducted for which the mode shapes

are deterministic.

9

The spectral moments are defined and computed, these moments are

functions of the natural frequencies.

. By adding an extra standard Gaussian variable, a failure function was

(V8]

built. The conditional probability of having a response, which is higher
than a prescribed threshold. has been calculated. This information can
be used to predict when the delamination of tapered laminate will

occur.

The present work can be extended so as to include the nonlinear behavior
of the resin rich regions and the interleaving plies. Also, the stochastic
nature of laminate material properties and strength parameters has to be
included in the analysis, so that the reliability-based design of tapered

laminates can be achieved.
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Appendix I (Static Analysis Routine)

STATIC

2% % Matlab routine for static
REE=1128;NCERQO=104 neleml=177;Ncdelel=

cMK1=0.001;cMKZ=0.0002;RF1=300,;RF0=0.010

£13=¢

ocpen('outgut.txT', 'w');

% cpen the file tem08 and read the K, M, P, N matries

£31 = fopen('c:/Chen-Ha:/theses/fatiguel/tem08',6 'c');
K = fscanf(£01,'%g’, [NFREZ NFREE]) ;M = fscanf(£01l,'%g', [NFREE NFREE]);
P = fscanf(£0l,'%g', (1 NFREE]); N = fscanf(£0l,'%d', [) NFREE]);

fclose(£01);

¥ Sclve the problem for static problem

Plcad=czercs (NFREE, 1) ;Displ=zeros (NFREE, 1) ;Disp0d=zeros (NZERO, 1) ;
for iP=1:5;Pload(iP*2l)=RFl;end;Pload(l)=RF1/2;Pload(12)=RF1/2;
Disp=inv(K) *Pload;
Dispa={Disp0; D'spool
for inu=1:NFREE; Dispa(N(inu))=Disp(inu);end

fprinci(€13, stp u w\n')

for 1Disp=1:2:1232;

iDis=iDisp- (iDisp-1)/2;
fprincf (€13, '%4g %12.5e %12.6e\n’,iDis,Dispa(iDisp),Dispa(iDisp+l));
end:;

xnl= (590 §72 543 525 496 478 449 431 402 384):
xdl=(0 16 32 40 48 S2 56 S3 60 61.25];
xn2s (357 340 3is 299 27 261 240 226 207 1947
xd2=(62.5 63.75 65 66.25 67.5 68.75 70 71.25 72.5 73.7S5};
xn3=[177 165 159 139 126 1ll6 105 96 87 1]
xd3= (7S 76.25 77.5 78.75 80 81.25 82.5 B83.75 85 87.5];
xn4d= ({58 S3 47 42 36 31 as 20 14 9 3];
xd4= (90 92 94 102 110 125 140 155 170 185 200]:

xn=(xnl xn2 xn3 xnd);
xd=[xdl xd2 xd3 xd4];
for iyd=l:41
yd(iyd) =Dispa(xn(iyd) *2-1);
end
plot(xd,yd.'-*");

% The lccal cartesian stresses
£ll=£fcpen('c:/Chen-Hai/theses/fatiguel/temS1', 'r') ;frewind(£11)
€ll2=fopen('c:/Chen-Hai/theses/fatiquel/temSI', 'r'); frewind(£12);

¥ Stress for each element of the element
syp=62.055e9;

Flc=1280.0e6;%F2t=49.0e6;F5=69.0e5;F1lc=-630.0e6;F2c=-158.0e6;
£€£1=1/Flt-1/Flc ;££2=1/F2c-1/F2c;

€€11=1/(Flt-Flc) ;££22=1/(F2t+F2c);
££12=-3qru(££811€£22)/2;:££66=1/F6"2;

¥ QUALD element
for ielem=l:neleml;

ENOQ=£scanf (£12, '3g\n’, (10])} ;Dispst=zeros(1l6,1);
Nulli={(ENOQ(3)-1)*2+1 ;Nul2=gNCQ(3)*2:

-,

W21=(ENCQ(4) -1) *2+1 ;Nu2l=ENOQ(4})°*2;
Nu31-\ENOQ(=)-l)'2°l ;Nu32=ENCQ(S5) *2
Nu4l={ENOQ(6) -1} "2+i ;Nu42=ENOQ(6)°*2;
NuSI=(ENCQ(7)-1)*2+1 ;NuS2=ENCQ(7)*2

Nu6l=(ENOQ(8)-1)*2+1 ;Nu62=ENOQ(8)*2;
Nu71=(ENOQ(9)-1)*2+1 ;Nu72=ENOQI(9)*2;
Nugl=(ENOQ(1Q) -1)*2+1;Nu82=ENCQ(10)*2:;
Displ=Dispa(Null:Nul2) ;Disp2=Dispa(Nu2l:Nu22);
Disp3=Dispa(Nu3l:Nu32) ;Dispd4=Dispa(Nuil:Nu42);
DispS=Dispa(NuS1:Nu52) ;Disp6=Dispa(Nu6l:Nu62);



DispT=Dispa (Nu?l:Nu7l);Disp8=Dispa(Nudl:Nus2);
Dispst=[Displ; Displ; Disp3; Di p4; CispS: Dispé; Disp7; Disp8];
forincf(£13, 'QUAD element %$4g\a’', ielem);
fprinti(£13, 'stresses x-dir z-dir xz-dir vp-stress\n', ielem! ;
for ismat=1l:Nodelel«l
Skmat=£scani(fll,'sg ¥g %g\a', [1§,3]);
s
s “le(strl(2)-strl(l)) 2.6+sTri(3)2)/2);
£ 12.4e ¥12.4e ¥%12.4e\n’',iBmat.scrl,scoyp)l;

en
end

% TRIA element
for ielemsleneleml:neleml+nelem2:
ENOQ=£fscanf(£12, '%§g\n’', (8] ) ;Dispst=zeros(12,1
Null=(ENCQ(3)-1)*2+1 ;Null=ENCQ(3)*2:
Null=(ENOQ(4) -1)*2+1 ;Null=8NCQ(3)*l;
Nu3l=(ENCQ(S)-1)*2+1 ;Mu32=ENCQ(S5)*Z
Nu4dl=(ENOQ(6) -1) *2+1 Nudl2=ENCQ(6)"2;
NuS1l=(ENOQ(7)-1)*2+1 ;NuSI=ENCQ(T)*Z;
Nugl=(ENOQ(8)-1)*2+1 ;Nu8l=ENCQ(B)*Z:
Displ=Dispa(Null:Null) ;Displ2=Dispa(Null:Null);
Disp3=Dispa(Nu3l:Nu3l) ;Dispi=Dispa(Nu4l:Nu4l);
Disp5=Dispa(Nu5S1:NuS2) ;Dispé=Dispa(Nusl:Nus2) ;
Dispst={Displ; Disp2; Disp3:; Disp4; Disp5S; Disps];
fprintf(£13, 'TRIA element %4g\n’', ielem);
fprintf(£13, 'stresses x-dir z-dir xz-dir Yyp-stress\n', lelem);
for iBmat=l:Ncdelel«+l
Sbmat=£fscanf(£11, ‘3g $g %tg\n', {12,3]);
strl=Sbmat'*Dispst;
stryp=sqre((strl(l) "2+scxl(2) *2+(strl(2)-8trl(l)) "2+6°sLrl(3)°2)1/2);
fprintf(£13, 'nodeidg ¥1l2.4e ¥12.4e %12.4e %12.4e\n’', iBmat,stcrl,strvp);
if stryp »>= syp
fprintf{fl3,'** F1 ** %12.4e\n',scyp):
end
en
end

% close all files
£close(£11) ;fclose(£12) ;fclose(£13);



Appendix II (Dynamic Analysis Routine)

DYNAMI

%34 Maclab routine for dimamic

¥ cpen £ile and parameters are given
EE=30;NIERQ=5
EE=1170:NCERQ=52 ;neleml=177 :Ncdelel=8;nelem2=12;Ncdelel=§5;
MK1=0.001;cMK2=0.0002;RF1=18C0;RF0=0.01000*RFL;
£l3i=fcpen('cuzput.oxs’,'w');
% cpen the file tem08 and read the X, M, P, N matries
£01 = fcpen('c:/Chen-Hai/theses/fat: aue’/:emOE' 't
K = £scanf(£01,'%g’, [NFREE NFREE]) M = £scanf (£01,'¥g’', [NFREE NFREE));
P = fscanf(£01,'3g', {1 MNFREE]); H = f£scanf(£01, 'ad’, (1 1)
fclese(£01)
nnubs=1
reg= {29 7.048000e-002];
¥ reg={Z9 2040}
3 Form a load centa:ining 270.35-5406.19 Hz (<1000) and corrupt it

% with scme zero-mean randcm
£=0:0.001:1.0;:1lcad=0;
for ilocad=1l:nanub
load =load+RF0* (sinil*pir*regiiload,2)*t))/(nnub);
end
plot{load(1:1000)) ;
Dloadl = load+RFO°*randn(size(t));
plot (Dload2(1:100));

% The discrete Fourier transform of the load Dload2 is found by taking
% the 1000 time (to frequency) points fast Fourier transform FFT
F = ££t(Dload2, 10000} ;

% The power spectral density, a measurement of the energy at
% var:ious frequencies

Time=10000;

PY{ = F.*conj(F)/{pi*Time);

£ = 1000°(0:9999)/100C00;

plot (£, PrY(1:10000)) ;

f£5ma=10000./10000;

¥ The ith point (frequency ,fama, Hz) of the system is
input=zeros (NFREE, NFREZE) ; SoutsO=zeros (NFREE, 1) ;
Soutsl=zeros(NFREE,1l) ;Sinpsl=zeros(NFREE,1l);
CC=cMKL*M+cMKI*K;
for ith=l:nnub
for jthl=0:30
fsmal=reg(ith,2)-15+jthiy;
integ=uint3Z(fsmal*10) ;
PYY(inteqg);
Hf: eqgs= inv(-(2*pi*fsmal; "2*M«2*pi*fsmaleCCrsqre(-1) +K);
for jth2=1:NFREE
3 SoutsC (jthl! =conj (Hfreq(jth2, 2)) *Hfreq(jth2,2) *PYY/inteq) ;
Souts0(jthl) =cenj (Hfreg(jth2, 2) ) *HEreqg(jth2, 2) *PYY(integ) ;
end
3 The mean square EZ(x) of the resgcnse at point.
Scutsl=Scutsl-ScutsQ@+*l*pi*fsmal;
end
for jechl=0:30
£smal=1000.-reg(ith,2) -15+jchi*i;
integ=uint32(£smal~1Q) ;
BYY(inteqg);
Hfreg=inv(-(2*pi*fsmal) "2+*M+2*pi*fsmal*CC*sqrt (-1} +K):

for jth2=1:NFREE



H
Scutsd(jchl) =conj (Hfreq(

encd
¥ The mean square E{x)
Scursl=ScutsleScursoel
end
end
¥ The standart dewviaticn of
Scutsl=sgrt(Soutsl) ;Displ=z
Dispas={Scucs2;Disgd];
fprinzi{fl3, 'Deviaticn u
€or iDisp=1l:2:NFREE;
iDis=iDisp- (iDisp-1}/2
fprincf(f13, '¥4g ¥12.6e
end;

Souts0{jthl) =conjy(Hfreq(jthl, K 2)) *Hfreq(3

jeh2,2) ) *HEreg(jch2,2

of the response at poinc.
*pi*fsmal;:

vAn');

.6e\n’,1iDis,Dispas(iDisp),Dispas(iD:



Appendix III (Data file)

l)Data File Names

A2301.1xt AZSO2.nt A2S03 it
Ad201.xt AL202.n AL203 e
ASTOLaxt ASTO2.axt AST03 it
AT7301 AT302axt AT303axt
ASS0L 1t ASI02 e ASS03 it
A9901 txt A9902.1xt A9903 I\t
AL1301.1xt All302.axt Al1203.1xt
Al2601 txt Al2002.1xt Al2003.1xt
AT4001.xt Al4002.1xt Ald003.1xt
B2801!.txt B2802.1xt B2803 tat
B4201.xt B4202.1xt B3203.1xt
B3701 ixt B3702.1xt B3703 wxt
Ti0laxt BTi02wa T3
B8301 .txt B3I02.1xt BY303 1xt
B9901 txt BY902.1xt BY90O3 txt
B11301 1xt BI1302.1xt BI1303 xt
B12601 txt B12lo02.txt B12603 txt
B14001 txt B 14002 txt B14003 txt
C2301 txt C2302.1xt C2803.1xt
C1201.1xt C3202.1xt C4203.txt
C5701.txt C5702.1xt C5703.1xt
C7301.1xt C7302.4xt C7303 xt
C8301 .1t C8302.txt C83023 it
C9901.txt C9902.1xt C9903 xt
C1130% 1xt C11302.txt Cl1303.1xt
C12601.1xt C12602.txt C12603.1xt
C14001 .txt C14002.txt C14003.txt

2) The Format of a Data File

SPARA1 TITLE

S 6>>84

S

PARA1 This is a real tapered structure No. A5701

S

S except the NPOINT, the parameters only for quad element

S

S  NPOIN NELEM NVFIX NCASE NTYPE NNODE NDOFN NMATS NPROP NGAUS NDIME NSTRE NEVAB
$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6

S

PARA2 616 177 31 1 3 8 2 4 8 3 2 3 16
S

SLOAD1 IPLOD IGRAV IEDGE ITEMP ICASE NEDGE

S 6 6 6 6 6 6 6

LoGADY 0 0 1t 0 1 1

S

SLOAD2 6 6 6 6

SLOAD3 8 8 8 8 8 8

S

LOAD2 112 8 1

LOAD3 10.0 10.0 10.0 0.0 0.0 0.0
S

S the element nodal. connections, and the property numbers
$4 6 6 6 6 6 6 6 6 6 6

S

QUAD 1 4 12 8 1 2 3 9 14 13
QuaAD 2 3 14 9 3 4 5 10 16 15
QUAD 3 1 16 10 5 6 7 11 18 17
QUAD 4 4 23 19 12 13 14 20 25 24
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QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD

PEPWWWW2WLWENNNWLWWWSLWENNWWWWSWANWWWWALAWLWAEAWWWLWWAWENNN2AWENNAWREN 2WHLEAWLEAWRSWE=2L

173
178
177
179
181
185
187
189
203
205
207
209
211
213
217
219
221
236
238
240
242
244
246
248
252
254
256
272
274

278
280
282
284

137
138
139
140
142
143

163
164
165
166
167
169
170
17
192
193

195

262
263
264
265

124
126
128
130
132

146
148
150
152
154
156
158
160
173
175
177
179
181
183
185
187
189
203
205
207
209
211
213
215
217
219
221
236
238
240
242

246
248

180
182
184
186
188
190
204
206
208
210
212
214
216
218

222
237
238
241
243
245
247
249

130
132
134
136
148
150
152
154
156
158
160
162
175
177
179
181
183
185
187

230
231
233
234
235
260
261
262
263
264
265
266

238
240
242

246
248
250
254
256
258
274
276
278
280
282
284
286

174
176
178
180
182
186
188
190
204
206
208
210
212
214
218
220
222
237
239
241
243
245
247
249
253
255
257
273
275
277
279
281
283
285



QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD
QUAD

142
143

WWWWEHE PR LWWWWAWHERWWRWWERLEAWWWWSWENNNG &R EOUWWWSWERNNEEERPLLOLLOLLENEELEOLLL LR

286
290
292
294
KRR
313
315
317
319
321

325
327
331
333

383
355
357
359

363
365

369
371
375
377
79
398
400
402
404
406
408
410
412
414
416
418

424
426
445
447

451
453
455
457
459
461
463
465
467
469
471
473
492

496
498
500
502
504
506
508
510
512
514

266
268
269
270
297
298
299
300
301

303
304

307
308
308
338
339
340
341
342
343
344
345
346
347
349
350
51
382
383
384
385
386
387
388
389
390
391
392
394
395
386
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
476

478
479
480
481
482
483
484
485
486
487

359
361
363
365
367
369
3N
373
375
377
379
398
400
402

463
465
467

251
253
255
257
273
275
277
279
281
283
285

289
291

295
312
314
316
318
320
322
324
326
328
330
332
334
336

356
358
360
362
364
366
368
370
372
374
376
378

331
333
335
337
355
357
359
361
363
365
367
369
371
373
375
377

267
269
270
27
298
299
300
301
302
303
304
305
306
308
309
310
339
340
341
342
343
344
345
346
347
348
350
351
352
383

385
386
387
388
389
330
391
392
392
385
396

288
292

296
313
315
317
319
321
323
325
327
329

335
337
355
357
359
361
363
365
367
369
371

377
379
381
400
402
404
406
408
410
412
414
416
418
420
424
426
428
447

451
453
455
457
459
461
463
465
467
469
471
473
475
494
496
493
500
502
504
506
508
510
512
514
516

287
291
293
295
312
314
316
318
320
322
324
326
328

334
336
354
356
358
360
362
364
366
368
370
372
376
378
380
399
401
403
405
407
409
411
413
415
417
419
423
425
427
446

450
452
454
456
458
460
462
464
466
468
470
472
474
493
495
497
499
501
503
505
507
509
511
513
515
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171

130
156
185
217
252

290
3N
375
422

489
490
491
524
525
526
527
528
529
530

532
533
534
535
536
537
538
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

129
155
184
216
251

289
330
374
421

QUAD 145 4 516 3188 469 470
QUAD 146 3 518 489 471 472
QUAD 147 1 520 490 473 474
QUAD 148 3 539 523 492 493
QUAD 149 3 541 524 494 495
QUAD 150 3 543 525 496 497
QUAD 151 3 545 526 498 499
QUAD 152 4 547 527 500 501
QUAD 153 4 549 528 S§02 503
QUAD 154 4 551 529 504 S05
QUAD 155 4 553 530 506 507
QUAD 156 3 555 531 508 509
QUAD 157 3 557 532 510 511
QUAD 158 3 559 533 512 513
QUAD 153 3 581 S34 514 515
QUAD 160 4 563 S35 516 517
QUAD 161 3 565 536 518 S19
QUAD 1682 1 567 537 520 521
QUAD 163 3 586 570 S39 5S40
QUAD 164 3 588 571 541 542
QUAD 165 3 590 572 543 544
QUAD 168 3 592 573 545 546
QUAD 167 4 594 574 547 S48
QUAD 168 4 586 575 S49 S50
QUAD 169 4 598 576 551 552
QUAD 170 4 600 577 S53 554
QUAD 171 3 602 S78 555 556
QUAD 172 3 604 578 557 558
QUAD 173 3 606 580 559 560
QUAD 174 3 608 581 561 562
QUAD 175 4 610 582 563 564
QUAD 176 3 612 583 S65 566
QUAD 177 1 614 584 567 568
S

TRIA 178 2 68 63 56 64 70 69
TRIA 179 2 85 78 70 79 87 86
TRIA 180 2 105 96 87 97 107 106
TRIA 181 2 128 117 107 118
TRIA 182 2 154 141 130 142
TRIA 183 2 183 168 156 168
TRIA 184 2 215 198 185 189
TRIA 185 2 250 231 217 232
S

TRIA 186 2 288 267 252 268
TRIA 187 2 329 306 290 307
TRIA 188 2 373 348 331 349
TRIA 189 2 420 393 375 394
S

S gnd and tne nodal coordinates

$4 6 12 12

S

GRID 1 0.20000000 0.00000000
GRID 2 0.20000000 0.00025000
GRID 3 0.20000000 0.00050000
GRID 4 0.20000000 0.00075000
GRID § 0.20000000 0.00100000
GRID 6 0.20000000 0.00125000
GRID 7 0.20000000 0.00150000
GRID 8 0.18500000 0.00000000
GRID 9 0.18500000 0.00050000
GRID 10 0.18500000 0.00100000
GRID 11 0.18500000 0.00150000
GRID 12 0.17000000 0.00000000
GRID 13 0.17000000 0.00025000
GRID 14 0.17000000 0.00050000
GRID 15 0.17000000 0.00075000
GRID 16 0.17000000 0.00100000
GRID 17 0.17000000 0.00125000
GRID 18 0.17000000 0.00150000

GRID

19 0.15500000 0.00000000

518

536

599
601
603
605
607
608
611
613
615



GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

0.15500000
0.15500000
0.15500000
0.14000000
0.14000000
0.14000000
0.14000000
0.14000000
0.14000000
0.14000000
0.12500000
0.12500000
0.12500000
0.12500000
0.11000000
0.11000000
0.11000000
0.11000000
0.11000000
0.11000000
0.11000000
0.10200000
0.10200000
0.10200000
0.10200000
0.09400000
0.09400000
0.09400000
0.09400000
0.08400000
0.09400000
0.08400000
0.09200000
0.09200000
0.09200000
0.09200000
0.08000000
0.09000000
0.08000000
0.09000000
0.09000000
0.09000000
0.09000000
0.08875000
0.08875000
0.08875000
0.08875000
0.08875000
0.08750000
0.08750000
0.08750000
0.08750000
0.08750000
0.08750000
0.08750000
0.08750000
0.08750000
0.08625000
0.08625000
0.08625000
0.08625000
0.08625000
0.08625000
0.08500000
0.08500000
0.08500000
0.08500000
0.08500000
0.08500000
0.08500000

0.000s0000
0.00100000
0.00150000
0.00000000
0.00025000
0.0n050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00000000
0.00050000
0.00100000
0.00150000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00000000
0.00050000
0.00100000
0.00150000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00000000
0.00050000
0.00100000
0.00150000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00000000
0.00012500
0.00062500
0.00112500
0.00162500
0.00000000
0.00012500
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00000000
0.00025000
0.00037500
0.00087500
0.00137500
0.00187500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00075000
0.00100000
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

147
148
149
150
151
152
153
154
155
156
157
158
159

0.08500000
0.08500000
0.08500000
0.08500000
0.08375000
0.08375000
0.08375000
0.08375000
0.08375000
0.08375000
0.08375000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.08250000
0.0825C000
0.08250000
0.08125000
0.08125000
0.08125000
0.08125000
0.08125000
0.08125000
0.08125000
0.08125000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.08000000
0.07875000
0.07875000
0.07875000
0.07875000
0.07875000
0.07875000
0.07875000
0.07875000
0.07875000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000
0.07750000

0.00125000
0.00150000
0.00175000
0.00200000
0.00000000
0.00025000
0.00050000
0.00062500
0.00112500
0.00162500
0.00212500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000
0.00000000
0.00025000
0.00050000
0.00075000
0.00087500
0.00137500
0.00187500
0.00237500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000
0.00250000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00112500
0.00162500
0.00212500
0.00262500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.001125Q00
0.00125000
0.00150000
0.00175000
0.00200000
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRIO
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

0.07750000
0.07750000
0.07750000
0.07625000
0.07625000
0.07625000
0.07625000
0.07625000
0.07625000
0.07625000
0.07625000
0.07625000
0.07625000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.07500000
0.67500000
0.07500000
0.07500000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07375000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07250000
0.07125000
0.07125000
0.07125000
0.07125000
0.07125000
0.07125000

0.00225000
0.00250000
0.00275000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00137500
0.00187500
0.00237500
0.00287500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00175000
0.00200000
0.00225000
0.00250000
0.00275000
0.00300000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00162500
0.00212500
0.00262500
0.00312500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00200000
0.00225000
0.00250000
0.00272000
0.00300000
0.00325000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRIO
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

230
23
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

295
296
297
298
298

0.07125000
0.07125000
0.07125000
0.07125000
0.07125000
0.07125000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.07000000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06875000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06750000
0.06625000
0.06625000
0.06625000

0.00150000
0.00175000
0.00187500
0.00237500
0.00287500
0.00337500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
0.00225000
0.00250000
0.00275000
0.00300000
0.00325000
0.00350000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00212500
0.00262500
0.00312500
0.00362500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087s00
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
0.00212500
0.00225000
0.00250000
0.00275000
0.00300000
0.00325000
0.00350000
0.00375000
0.00000000
0.00025000
0.00050000
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

300
301
302
303
304
305
306
307
308
309

3N
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

351
352
383
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
368

0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06625000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06500000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06375000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000

0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000
0.00237500
0.00287500
0.00337500
0.00387500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00122000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
0.00212500
0.00225000
0.00237500
0.00250000
0.00275000
0.00300000
0.00325000
0.00350000
0.00375000
0.00400000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000
0.00250000
0.00262500
0.00312500
0.00362500
0.00412500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

370
371
372
373
374
375
376
377
378
379

381
382
383
384
385
386
387
388
389
3380
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06250000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06125000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.06000000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000
0.05800000

0.00212500
0.00225000
0.00237500
0.00250000
0.00262500
0.00275000
0.00300000
0.00325000
0.00350000
0.00375000
0.00400000
0.00425000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000
0.00250000
0.00275000
0.00287500
0.00337500
0.00387300
0.00437500
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
0.00212500
0.00225000
0.00237500
0.00250000
0.00262500
0.00275000
0.00287500
0.00300000
0.00325000
0.00350000
0.00375000
0.004000C0
0.00425000
0.00450000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000
0.00250000
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

463

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

485
486
487
488
489

491
492
483
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

0.05800000 0.00275000
0.05800000 0.00300000
0.05800000 0.00350000
0.05800000 0.00400000
0.05800000 0.00450000
0.05600000 0.00000000
0.05600000 0.00012500
0.05600000 0.00025000
0.05600000 0.00037500
0.05600000 0.00050000
0.05600000 0.00062500
0.05600000 0.00075000
0.05600000 0.00087500
0.05600000 0.00100000
0.05600000 0.00112500
0.05600000 0.00125000
0.05600000 0.00137500
©.05600000 0.00150000
0.05600000 0.00162500
0.05600000 0.00175000
0.05600000 0.00187500
0.05600000 0.00200000
0.05600000 0.00212500
0.05600000 0.00225000
0.05600000 0.00237500
0.05600000 0.00250000
0.05600000 0.00262500
0.05600000 0.00275000
0.05600000 0.00287500
0.05600000 0.00300000
0.05600000 0.00325000
0.05600000 0.00350000
0.05600000 0.00375000
0.05600000 0.00400000
0.05600000 0.00425000
0.05600000 0.00450000
0.05200000 0.00000000
0.05200000 0.00025000
0.05200000 0.00050000
0.05200000 0.00075000
0.05200000 0.00100000
0.05200000 0.00125000
0.05200000 0.00150000
0.05200000 0.00175000
0.05200000 0.00200000
0.05200000 0.00225000
0.05200000 0.00250000
0.05200000 0.00275000
0.05200000 0.00300000
0.05200000 0.00350000
0.05200000 0.00400000
0.05200000 0.00450000
0.04800000 0.00000000
0.04800000 0.00012500
0.04800000 0.00025000
0.04800000 0.00037500
0.04800000 0.00050000
0.04800000 0.00062500
0.04800000 0.00075000
0.04800000 0.00087500
0.04800000 0.00100000
0.04800000 0.00112500
0.04800000 0.00125000
0.04800000 0.00137500
0.04800000 0.00150000
0.04800000 0.00162500
0.04800000 0.00175000
0.04800000 0.00187500
0.04800000 0.00200000
0.04800000 0.00212500
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GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID

510

24

523

530
531
532
533
534
535
536
537
538
539
540
541
542
543

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
§73
574
575
576
577
578
579

0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04800000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.04000000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.032¢0000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.03200000
0.01600000
0.01600000
0.01600000
0.01600000
0.01600000
0.01600000
0.01600000
0.016000300
0.01600000
0.01600000

0.00225000
0.00237500
0.00250000
0.00262500
0.00275000
0.00287500
0.00300000
0.00325000
0.00350000
0.00375000
0.00400000
0.00425000
0.00450000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.0022£000
0.00250000
0.00275000
0.00300000
0.00350000
0.00400000
0.00450000
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
0.00212500
0.00225000
0.00237500
0.00250000
0.00262500
0.00275000
0.00287500
0.0030C000
0.00325000
0.00350000
0.00375000
0.00400000
0.00425000
0.00450000
0.00000000
0.00025000
0.00050000
0.00075000
0.00100000
0.00125000
0.00150000
0.00175000
0.00200000
0.00225000



GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
S

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
539
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

0.01600000
0.01600000
0.01600000
0.01600000
0.01600000
0.01600000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

S the fixed values

S 4

3
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
$SPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
SSPC1
$SPC1

1

8

272

6 6 6 6

coboco0c0000000R00000Cc000000OCR

b b A —d b b e kb A b ok o

b b ok ok b ed mk —d oA b A b
o
o
o
o

0.00250000
0.00275000
0.00300000
0.00350000
0.00400000
0.00450000
0.00000000
0.00012500
0.00025000
0.00037500
0.00050000
0.00062500
0.00075000
0.00087500
0.00100000
0.00112500
0.00125000
0.00137500
0.00150000
0.00162500
0.00175000
0.00187500
0.00200000
0.00212500
0.00225000
0.00237500
0.00250000
0.00262500
0.00275000
0.00287500
0.00300000
0.00325000
0.00350000
0.00375000
0.00400000
0.00425000
0.00450000

6

1 00 00
1 00 00
0.0 0.0
0.0 0.0
0.0 0.0



§SPCt 297 0 1t 00 0O
SSPCY 311 0 1 0.0 00
SSPCt 338 0 1t 00 00
SSPCt1 353 0 1 0.0 00
SSPCt 382 0 1 00 00
SSPC1 398 0 1 00 00
SSPCt1 429 0 1 0.0 00
SSPCt1 445 0 1 0.0 00
SSPC1 476 0 1 00 00
SSPC1 492 0 1 00 00
SSPC1 523 0 1 0.0 00
SSPC1 539 0 1 0.0 0O
SSPC1 570 0 1t 0.0 00
S

SPCY 886 1 1 00 00
SPCt1 887 1 1 00 00
SPCt 588 1 1t 0.0 0.0
SPCt 589 1 1t 0.0 0.0
SPCt 580 1 1t 0.0 00
SPCt 881 1 1t 0.0 0.0
SPCt §92 1 1 0.0 0.0
SPCT 533 1 1 00 0.0
SPCt 584 1 1 0.0 0.0
SPCt 585 t 1 00 00
SPCt 886 1 1 00 00
SPCY 587 1 1 0.0 00
SPCt 588 1 1 0.0 00
SPCt 589 1 1 0.0 0.0
SPCt 600 1 1 00 00
SPCt 60t 1 1 00 0.0
SPCt 802 1t 1 00 00
SPC1 603 1 1 0.0 00
SPCt 804 t 1 0.0 0.0
SPCt 805 1 1 0.0 0.0
SPCT 606 1 1 0.0 0.0
SPCt 607 1 1 0.0 0.0
SPCt 608 1 1 00 0.0
SPC! 608 1 1 00 00
SPCt1 8610 1+ 1 0.0 00
SPCt 811 1 1 00 00
SPCt 612 1t 1 00 00
SPCt 613 1 1 0.0 0.0
SPCt 614 1 1 0.0 0.0
SPCt 615 1 1 0.0 0.0
SPCt 816 1 1 00 0.0
S

S matenat card

S elastic-m poisson1 thickness shear-mod m-density efastic-m poisson2 ang

$4 8 10 10 10 10 10 10 10 10

S Grapniterepoxy Et vi2 ™ Gi2 De E2 V21 m-ang

MAT! 112943E+9 0.3322 0.01 428E+9 1.48E-3 7.99E~9 0.0205 0.0
MAT! 2 3.93E+9 0.30 0.01 428E+9 1.48E+3 7.99E-9 0.0205 2.0
MAT1 3 12943E+9 0.3322 001 428E+S 148E+3 7.99E+9 00205 50
MAT? 3 129.43E+9 03322 0.01 428E-S 1.48E+3 7.99E+8 0.0205 450
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Appendix I'V (For Problem in Figure 3.6 (a))

The detailed mesh can not be shown in one figure. so meshes that
correspond to difterent parts of the laminate shown in Figure 3.6 (a) are
given in Figure 2. Figure 3. Figure 4. Figure 3. and Figure 6.

Part 4

Part 3

Part |

VY

SONNANANNNNN

Fieure | Parts 1-5 of the laminate
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Figure 3 Mesh in Part 2
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Figure 5 Mesh in Part 4
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