INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additionai charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Design and Implementation of a Chess-Playing Program
in the Java Programming Language

Frangois Dominic Laramée

A Major Report
in
The School
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2001

© Frangois Dominic Laramée, 2001

ivi

National Library
of Canada

Bibliothéque nationale

du Canada
uisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68470-9

Canada

Ottawa ON K1A ON4

Your fle Votre rédérence

Our e Notre rélrance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

Design and Implementation of a Chess-Playing Program in the Java

Programming Language

Frangois Dominic Laramée

This project describes the design and implementation of an object-oriented
chess-playing program, based on current software engineering practice, recent
advances, including the MTD(f) search algorithm, and time-honored techniques
perfected by artificial intelligence pioneers since the late 1960’s, like the
transposition table, the history heuristic and an evaluation function slanted

towards material advantage.

Where appropriate, a comparative survey of alternative algorithms not

implemented in this project is also included.

iii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1
LLEPREAMBLEoetveeeeeeeteeeeeeeeeeeeeeseeee s caeeeesaesssssenessssseesssesssseasseasesessassenmnesesenns 1
1.2 CHESS TERMINOLOGY AND NOTATION.eeueeieeeeeeeeeeeeeeeteeeseeseeeesssnesseseseesssanneesses 2
1.3 GAME TREES AND CHESS PROGRAMMINGoveinttieeteeeeeeeeeeeeseeeeeseeeeseesssesssaessssanes 4
1.4 CHESS PROGRAMMING DATA STRUCTUREScuvveeieeeeeeeeeeeeeeeeeeeeesseesssssssessssnneesseses 8
LS SUMMARY ...ttt eeesseesessseassssasssssssesssssssssssesssennsesosunssssssstssessssnesnss 9

CHAPTER 2: PROGRAM COMPONENTS 10

CHAPTER 3: BOARD REPRESENTATION TECHNIQUES 12
3.1 EARLY EFFORTSoeeeeeiieeeeeeeeeteeeeeeeeeeeeeeeeseasesnesseessasesesseeseenseaassssssssssnnnnnnsssnesasasasnns 12
.2 BITBOARDSueeeeieeeeeeieeteeeete s eeeuaeeessessessessesessesssesessssesessaseessssenessnsenesseenssaessssnes 13

CHAPTER 4: MOVE GENERATION 16
4.1 JUSTIFICATION ..ottt cteeeeeeeeeeeeeseesasasssessntaesessnesessnssaesssnsanesassaneaseaaessesnnmanens 16
Q.2 THE CHOICESuvveteeieneireseeeeeeeeseeesasseseaeassesasassmsasesassaesassaeassssssesssssnnsnnsssssssnssssees 17
4.3 FORWARD PRUNINGccoottireieeereeeeerseeeeeesesessasssesessessesssssessesssssssesssssesessssessessassssns 18
4.4 GENERATING ALL MOVES AT ONCE eeeeeeieeeeeeeeeeeeeeeeeeseeessneeeessasasenssaessssenaanens 19
4.5 INCREMENTAL MOVE GENERATIONcceieeeeeeeeeeeeeeeeeeeeeeeeseeeeeesssesesesnnnsnsesesesssoasnes 20
4.6 JAVACHESS MOVE GENERATION......ccccvttieuteeeeeereeeseessesasessssesaeesassesssesssessessnssenns 21

CHAPTER 5: AUXILIARY DATA STRUCTURES 22
S.1 TRANSPOSITION TABLES «..euvtieeeeeeeeeeeeeeeeesereeeesesteeseesmeesesaneesessesasasseaseesammeaseseens 22
5.2 GENERATING HASH KEYS FOR CHESS BOARDSoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeaesasaeennes 24
S.3 HISTORY TABLES ...ttt eteeeseervaesssssssasssasasssenaessesenmaaseaeaeesesmanaeessnnns 25
5.4 JAVACHESS DATA STRUCTURES.oocieeeeeeeeeeeeeeeeeeeeteseeeseeeesaseeseeseesnaseseeaaesenmessaseens 27

CHAPTER 6: EVALUATION FUNCTIONS 28
6.1 MATERIAL BALANGE ..ot eteeeeeeeeeeeeeesaeeseeessssanssasssaesesaenneenas 28
6.2 MOBILITY .coeeeeteieieeieiieienriiieettereaeteseeeeessseonmmeatesesssesaameaeeeeessssesesssssssssanssnnsssssnnnnssnees 28
6.3 DEVELOPMENT.....ccounetieeeictieieeteseeeetese et eeesesssassosssassasessesesaneessesesnasesaeseeeesmenaesesns 29
6.4 PAWN FORMATIONSooiitiiiieeeeeeeeeeeeeeeeesseeeesssstsssssseessaasessessannessssasaesameassaseenne 29
6.5 TROPISMceenrereeeeeeeeeeeereeteeeteeeeeseeeeeeeeeeeeeesssnateesssaeassaaneeeesseessasssnsaessssassssssesesasans 30
6.6 JAVACHESS' EVALUATION FUNCTIONoeeiieieeeeeeeeeeeeeeeeeeseeseeessnaaesesssssssansasesssnns 30

CHAPTER 7: SEARCH TECHNIQUES 31
Tl MINIMAX oottt et eeeteeeeaeeaesesesssaanasasssasemasessessssnnasaaeasasssaeneseeansssns 31
7.2 JUSTIFICATIONS FOR SEARCHccoeneneeeteeeeeeeeeeeeereeteesesseseseresesessssssssassssssnsssasesssesses 33
7.3 THE ALPHABETA ALGORITHMcuuuevtieeeeeerereeseersreeeeesessatesaseesssssssssessessssassassassssens 33
7.4 ORDERING MOVES TO OPTIMIZE ALPHABETA......veeveveeeeeerrereeeseeeessesssssesssssmssssssssseses 34
7.5 ITERATIVE DEEPENING ALPHABETA (SLATE AND ATKIN [1983])...ccvvvvvriinnecnnene. 35

7.6 ASPIRATED SEARCHooeceeeeeeeeeereresreeesssreessrasessernreessssssessssessssssssssssssssssessesssesensen
TT MTDU(F) ceeeeeeeeeecteeeeeeeeeeeereeessaeessae s seaessassssssassaaasseesrssesssessssnnsssensnnssrseanssses
7.8 QUIESCENCE SEARCHcouueevveeeeeereereeeenreeeesseeesessseeensnsessssssesssssosssssssssssessssssesssnses
7.9 THE NULL-MOVE HEURISTICcccocoeeettiieeereeeeeneeeserreessseesessserssssssesssssssssssesssssnsensen
7.10 JAVACHESS' SEARCH ALGORITHMcuuvviieereieeentveeieesseeesssseeessseessssssssssmssessssssessnes

CHAPTER 8: DESIGN OF JAVACHESS

8.1 BOARD REPRESENTATIONueeviiieeeenmeeenrereersreeerersneeesssnsesrsssesesssssessssssssnnsessesnsssnnn
8.2 MOVE GENERATION.........ooeeeereernereesesernreessrereesrssssesssseesessssssssssessssnssssssssssssssssssssnsesns
8.3 DATA STRUCTURES..........oueeeenrereeerreeeerveressensseeessseresasessessssssssssesssessssssssessssseesssenns
8.4 SEARCH TECHNIQUEScoooeeuunereeeeeerreeeerneeeeensreeessneressssseesssssssssssse sesesssnnnsesessassns
8.5 SINGULAR EXTENSIONScooeuuevvrireeeeerrrererseeeeesnreeesssnesessssssesssssssnsesossasssssssnsessnsesns
8.6 EVALUATION FUNCTIONccoueieeeeeeeeeeeteeeteeteetseeeeete e s eesessseeeseesssssseessnnsasnsasssssnnns
8.7 USER INTERFACEuooueeeenereeeereeeerrveeesnsessaeeessssessesessnressnsesssssseessssssnsssesnseessesans

CHAPTER 9: JAVACHESS BEHAVIOR

BIBLIOGRAPHY

APPENDIX: USER’S GUIDE

GETTING STARTED ...uuviiienieeerieeeeeeeeesneeceeaessaeesseessasessssesssasessssassssesssasansssssessssnesssesons
ENTERING MOVEScoumitiirieeecteeresterenteeeesssessessnssaseasssssssesssessnsensesssenssesassssassussseerane

CHAPTER 1: INTRODUCTION

1.1 Preamble

JavaChess is a text-only chess-playing program written in Java. Based on an
extensive survey of the literature on chess software, this game includes features
pattemed after several of the most successful programs of all time, including
Chess 4.5 (Slate and Atkin [1983]), Belle (Condon and Thompson [1981]) and
Cray Blitz (Hyatt [1983]), as well as some recent innovations (notably in the

search algorithm).

Whenever the two are incompatible, the JavaChess architecture favors ease of
understanding and extensibility over pure performance. The justification for this

decision is threefold:

< The project is open-source. Its code was released as part of a six-part
article series published on gamedev.net, a web commu:ity for
professional and hobbyist game developers; a re-tooled version of the
series will appear in print in 2001, as a major chapter of Magma

Publishing’'s Game Programming HOWTO book.

<+ The program will be extended into a graphical application and used as a

test-bed for new ideas and new games in the future.

% The author has no intention of ever entering the program in any type of

competition, so that pure speed is of little consequence.

The project is limited in scope to the development of a sound, reasonably
effective chess-playing engine, along with the necessary “hamess” software
required to play with it. No specific goals have been set in terms of the
program'’s strength (in comparison to other software packages or human players)

or suitability for tournament play.

JavaChess was developed on a Pentium Il 333 MHz PC equipped with 64
megabytes of RAM and running under Windows 98, and compiled using the

Borland Jbuilder 3.5 development environment.

The preliminary literature search, performed over a period of approximately eight
months between October 1999 and May 2000, required approximately 25 days of
work. Application design, development and documentation (including the present
document and the aforementioned article series and book chapter) took 67 days,

which is about 10% less than initially estimated.

1.2 Chess Terminology And Notation

The following chess-specific terms and expressions are used in this report.

** File: A column on the chess board. Files are numbered from left to right.
For example: the initial positions of the two kings are located at opposite

ends of the fifth file.

Rank: A row on the chess board. Rows are numbered from bottom to top.
For example, a player's pawns begin the game on the second rank, while

his opponent’s begin on the seventh rank.
Minor Piece: A knight or a bishop.
Major Piece: A rook or a queen.

Pawn Ram: Two pawns of opposite colors located on adjacent squares in

the same file, where they block each other's forward movement.
Doubled Pawns: Two or more pawns of the same color on a single file.
Isolated Pawn: A pawn without friendly pawns on either adjacent file.

Passed Pawn: A pawn which has advanced beyond the positions of any

opposing pawns on its own file or either adjacent files.
Open File: A file without any pawns on it.

Half-Open File: From a player's perspective, a file without any friendly

pawns on it.

* Chess Notation: By convention, chess boards are usually printed with

White's starting position at the bottom. Files are identified by the letters A
to H, starting at the left side of the board (or White’s Queen’s Rook's file).

Ranks are numbered 1 through 8 beginning with White's back rank. Also

by convention, squares are identified by file and then by rank; for example,

White's King begins the game on E1.

)
0.0

Opening: The first part of the game, where most of the pieces are still on
the board. Chess literature often defines the opening as the phase of the
game for which there exists recorded analysis of the best moves to play

from a position.

< Middle Game: The phase of the game between the opening and the
endgame. The middle game is characterized by the presence of
numerous pieces on the board and by the absence of systematic and

encyclopedic knowledge about the moves to play from a position.

< Endgame: The last phase of the game, during which few pieces remain on
the board. During the endgame, the king typically becomes an offensive
piece. Thompson [1986] has used retrograde analysis to build complete
databases of the best moves to play from every position in scveral simple

endgames, including king and rook vs king.

1.3 Game Trees and Chess Programming

For purposes of mathematical analysis and programming, games are commonly
represented as trees (Shinghal [1992]). Each of the tree’s nodes represents a
"state” of the game. In chess, a state is defined by the positions of the pieces on

the board, the identity of the current player and castling rights. The tree's root

represents the state of the game prior to the search. Each edge represents a
move performed by one of the players. The depth of a node is the distance
between the node and the root, measured in number of edges. The term ply
refers to one move by a player. Thus, a node at depth 4 corresponds to 4 plies
(or 4-ply for short) and represents a state resulting from two moves by each

player.

When a program has to select a move, it builds the game tree, searches each
path to a pre-determined length, determines how advantageous the resulting
position is by applying an evaluation function, and picks the move leading to the
most favorable outcome. By convention, a position in which the moving piayer
obtains checkmate is valued at "plus infinity", while one in which he is

checkmated is worth "minus infinity". A draw is worth zero.

A leaf is a node with no outgoing edge. Ideally, we would like each leaf to
represent a position where the game is over and a winner (or a draw) can be
determined with certainty; in practice, this would be too time-consuming, and the
program must terminate a search along a path as soon as it reaches a node

where a likely outcome can be assessed.

Unfortunately, the size of the game tree grows exponentially with depth. If the
average number of moves available to a player in a given position, also known as
the branching factor, is b, and the tree is searched to depth n, the cost of the

search is O(b"). Since b is about 35 during the middle game in chess, searching

every path is expensive. Therefore, techniques which reduce the total number of
nodes to visit or the amount of work performed at each visited node must be

implemented.

The number of nodes to be visited during search can be reduced using a number
of pruning techniques. In the 1960’s, several programs used selective forward
pruning to eliminate some of a node's children from consideration without
searching them at all by using heuristic evaluation techniques to determine which
were the most and least promising. Unfortunately, such heuristics risk
eliminating strong moves from consideration because their consequences would

only become evident at a deeper level in the search tree.

Contemporary programs have abandoned this approach in favor of full-width
search, in which every node is examined until proven worse than a previously
searched alternative. In chess, most positions present the player with a small
number of strong moves and several poor altematives. The alphabeta search
algorithm (Shinghal[1992]) and its variants identify such weak moves after a
partial search of the sub-trees rooted at their nodes. A refutation is a move
which proves that the opponent's previous move was a mistake; for example, in
many situations, capturing the opponent's queen would refute a move which
leaves the queen in danger. Discovery of a refutation begets a cutoff of the
search sub-tree, which stops the search along a branch before all of its

descendants have been examined.

Since cutoffs reduce the effort required by a search without compromising its
quality, algorithms seek to generate as many of them as possible. Provided that
a strong move is searched early, a condition which can be met if an effective
node ordering technique is employed, alphabeta can reduce the total number of
nodes visited during a search to approximately twice the square root of the total
size of the game tree (Shinghal [1992]). This document will discuss standard

alphabeta, iterative-deepening alphabeta and the MTD(f) search algorithm.

More gains can be made by noticing that branches of the game tree can

transpose into identical positions after different sequences of moves. Since a
position's evaluation does not depend on the path taken to reach it, storing the
results of a search in a transposition table will eliminate the need for duplicate

searches of identical positions.

Finally, it has been demonstrated that not all chess positions can be evaluated
properly. Since evaluation functions in most computer programs favor material
advantage, in which one player has captured more pieces than his opponent,
positions where the material balance is likely to change in the near future can not
be assessed properly. Quiescent positions, in which the evaluation function is
deemed unlikely to undergo drastic changes in the near future, must be sought to
ensure proper evaluations. Determining which positions are quiescent is a
difficult problem, and the effectiveness of this analysis has crucial impact on the

search efficiency.

1.4 Chess Programming Data Structures

The following data structures employed in chess programs are discussed or

mentioned in the text:

¢/
0.0

o

Opening Book: A repertoire of positions and moves which can be made
immediately if these positions are encountered, without search or analysis.
The purpose of an opening book is to simulate a strong player's
knowledge of opening theory; its contents are usually drawn from chess

literature, for example the Encyclopedia of Chess Openings.

Endgame Database: Similar in structure and purpose to the opening book,
but for positions in the endgame. An endgame database ensures that the
program will always play flawlessly in any position covered by the

database.

Transposition Table: A large array of positions which have recently been
searched by the program and the results thereof. The transposition table
is used to avoid duplicating search efforts when two or more branches

lead to identical positions.

History Table: A repository of information about the moves which have
recently been effective at generating cutoffs during the search. The
argument justifying the history table is that many chess positions are

similar in overall concept, and that moves which generated cutoffs in the

recent past are likely to do so again in the near future. The history table is
used to order a node’s children prior to a search, in the hope that a cutoff

will be generated quickly.

1.5 Summary

This document describes the development of a chess-playing program in Java.
Based on the architecture of the successful Northwestem University chess
program and on results obtained by the developers of several other programs of
the past, Javachess implements an advanced search algorithm known as
MTD(f), as well as a transposition table and a history table to accelerate the
search. Chapter 2 of this report surveys the program's components. Chapter 3
describes the techniques used to represent the chess board. Chapter 4
discusses move generation. Chapter 5 covers auxiliary data structures, such as
the history and transposition tables. Chapter 6 describes the evaluation function
used to assess advantage in a chess position. Chapter 7 discusses search
techniques. Finally, chapters 8 and 9 describe Javachess' architecture and

behavior.

Experimentation with the program has demonstrated its strength in endgame
situations and in solving chess problems. However, its speed and memory

management are insufficient to guarantee good resuits in the middle game.

CHAPTER 2: PROGRAM COMPONENTS

Any chess-playing program requires certain software components (Welch

[1984]). At the very least, these include:

< Some way to represent the current state of the chess board in memory.

0,
..

L)

A move generator, which identifies the legal moves given a board position.
This is required to ensure that the computer will play lawfully and be able

to verify that its human opponent does so, as well.

% A search algorithm which examines legal moves and their consequences

in tum.

% A position evaluation function, which allows the computer to assess the
relative strengths of the various possible states of the game resulting from

several variations and allows it to pick a sensible move during a search.

% A screen interface allowing the user to enter moves and examine the

board.

This project adds a number of auxiliary data structures which enhance the
computer's playing ability by accelerating move generation (the pre-processed
move database), avoiding costly duplication of search effort (the transposition

table) and ordering moves for optimal search efficiency (the history table).

10

However, since the current user interface is a mere test hamess, intended to be
replaced by a graphical application at a later date, little effort has been expended

to make it ergonomically satisfying.

11

CHAPTER 3: BOARD REPRESENTATION TECHNIQUES

3.1 Early Efforts

In the early days of chess programming, memory was expensive. The utmost
efficiency was required, as some of the pioneering programs (especially those
running on early personal computers) had to make do with 8K of main memory or

even less (Weich [1984)).

Given these limitations, it is hardly surprising that early programmers adopted a
straightforward scheme to represent their boards intemally: a 64-byte (or 32-
byte) array, where each byte (or 4-bit nibble) represents a single square on the
board and contains an integer constant representing the piece located in that
square. (Any chess board representation also needs a few bytes of storage to
track down en passant pawn capture opportunities and castling privileges.) For
example, an empty square was aliocated value 0, a black king could be

represented by the number 1, etc.

A few refinements on this technique, cited by Welch [1984], soon became

popular:

< The original SARGON extended the 64-byte array by surrounding it with
two layers of sentinel squares containing values marking them as illegal.
This trick accelerated move generation: for example, a bishop would
generate moves by sliding one square at a time until it reached an illegal

12

square, then stop. (The second layer of protection is required by knight
moves: for example, a knight sitting on a comer might attempt to jump two

squares out of the board.)

< MYCHESS reversed the process and represented the board in only 32
bytes, each of which was associated with a single piece (i.e., the white
king, the black King's Knight's pawn, etc.) and contained the number of the
square where that piece was located, or a sentinel value if the piece had
been captured. This technique had a serious drawback: it was impossible
to promote a pawn to a piece which had not already been captured. Later

versions of the program fixed this problem.

3.2 Bitboards

Slate and Atkin [1983] credit the KAISSA team from the Soviet Union with the
invention of the bit board in the late 1960’s. The bit board is a 64-bit word
containing boolean information about a particular aspect of the game state, at a

rate of 1 bit per square.

For example, a bitboard might contain the answer to “Is there a white piece
here?" for each square of the board, while others might implement “the set of
squares to which a queen on e3 can move", or "the set of white pieces currently

attacked by black knights". A set of 12 bitboards, one each for the presence of

13

white pawns, white rooks, black pawns, etc., would therefore be sufficient to

represent the whole chess board in this binary fashion.

While a bit board representation consumes more memory than the square array
presented earlier, its usefulness lies in the fact that, with 64-bit bitboards and a
64-bit processor, a number of interesting chess operations can be implemented
as a short sequence of (often single-cycle) logical operations. Most bitboard-
based programs maintain a database of all positions which a certain piece
located on a certain square can move to; as a result, logical operations can

implement move generation in the fastest possible way.

For example, verifying whether the white queen is checking the black king would

require the following expensive computation in a square-array program:

 Find the queen's position, which requires a linear search of the array and

may take 64 load-test cycles.

< Examine the squares to which it is able to move, in all eight directions, until
the black king is encountered or the procedure has looked at all possible

moves.

This algorithm's most damaging characteristic is that it requires maximum
running time when there is no check to be found, which is the most frequent
case. With a bitboard representation, the same operation can be implemented

as the following sequence of machine instructions:

14

< Load the "white queen position" bitboard.

< Use it to index the database of bitboards representing squares attacked by

queens. This yields a list of squares where a king isn't safe from this

queen.
> Logical-AND that bitboard with the one for "black king position*“.

If the result is non-zero, the white queen may be threatening the black king's
position, and the program will need to inspect the squares located between them
and look for a blocking piece. Otherwise, the work is done; assuming that the
attack bitboard database is in cache memory, the entire operation may have

consumed as little as 5 clock cycles.

Because of its efficiency, the bitboard technique has been selected as the basis

for Javachess' board representation.

15

CHAPTER 4: MOVE GENERATION

4.1 Justification

Move generation (i.e., deciding which moves are legal given a specific position)
is, with position evaluation, the most computationally expensive part of chess
programming. In any given situation, a player may have 30 or more legal moves
to choose from, some good, some suicidal. For trained humans, it is easy to
characterize the majority of these moves as foolish or pointless, and chess
masters know (more through instinctive pattern matching than by conscious

effort) which one or two moves are likely to be the strongest in the position.

Coding this information, especially the unconscious type, into a computer has
proven spectacularly difficult. Despite considerable effort, programs based on
selective pruning (i.e., examination of a few likely moves) have never achieved
much success. The strongest programs, except, to some extent, Hans Berliner's
Hitech (Berliner [1989]) and its siblings, have given up on this approach, instead
relying on a brute force approach: analyze all possible moves as fast as possible
and search their consequences as far into the future as resources allow. It may
not matter that the program has no clear idea of what it is trying to accomplish,

because it will stumble upon a good move eventually.

Brute force requires that move generation and search be made as fast as

possible. Since move generation is extremely repetitive, some execution time

16

can be saved by storing a database of all possible moves for all pieces on all
squares and reducing the process to a table lookup (Goulet [1986]); this is the

approach taken by this project.

4.2 The Choices
Historically, three major move generation strategies have been used:

< Selective generation: Examine the board, come up with a small number of

"likely" moves and discard everything else.

< Incremental generation: Generate a few moves, hoping that one of them

will trigger a cutoff before generating the others is required.

< Complete generation. Generate all moves at once, hoping that the

transposition table will contain enough information about one of them to

prove that there is no need to search anything at all.

Selective generation (and its associated search technique, called forward
pruning) have all but disappeared since the mid 1970's. As for the other two,
they represent two sides of the same coin, trading off effort in move generation
for more work during search. Both strategies are sound; however, in games like
Othello and GoMoku, where move generation is easy and/or there are lots of

ways to transpose into the same positions, complete generation may be most

17

efficient, while in games where move generation rules are complicated,

incremental generation will usually get the job done faster.

4.3 Forward Pruning

In a seminal paper originally published in 1949, Claude Shannon described two

ways to build a chess-playing algorithm (Levy [1984]):

< Look at all possible moves, and all the possible moves resulting from

each, recursively.

< Only examine the "best" moves, as determined from a detailed analysis of

a position, and then only the "best" replies to each, recursively.

At first, the second aitemative seemed more likely to succeed, because it closely
mimics the way grandmasters play the game and because looking at only a few
moves at each ply will result in a deeper search. Unfortunately, the results
disproved the theory: at best, selective programs achieved low to mid-level club
player ratings, often committing humiliating blunders at the worst possible time.
Beating a world champion (or even playing reasonably well on a consistent

basis) was beyond their reach (Levy [1984]).

The problem (Welch [1984))is that a "best move generator” has to be almost
perfect to be of any value. For example, if a plausible-move generator selects

the objective best move 95% of the time at the first ply (which is a risky

18

assumption in itself), the probability that it will never eliminate a best move from
consideration during a 40-move game is (0.95)* or less than 13%. Even a
nearly-perfect generator with 99% accuracy will blunder at least once in about a
third of its games, as (0.99)*° = 0.669 is the probability that it will not miss the

best move once.

When the Northwestemn chess team (Slate and Atkin [1983]) decided to forgo the

best-move generator and switch to full-width search, it turned out that the time

saved by avoiding costly analysis during move generation was sufficient to cover

the expense: it was possible to look at all legal moves in the time previously

allocated to the top N. For all intents and purposes, this discovery buried forward

pruning for good.

4.4 Generating All Moves At Once

The most straightforward way to implement full-width searching consists of:
 Finding all the legal moves available in a position.

» Ordering them according to a strategy designed to speed up the search.

< Searching them one at a time, until all moves have been examined or a

cutoff occurs.

When this move generation scheme is combined with transposition tables, a

search may occasionally be averted: if one of the moves has already been

19

searched to a satisfactory depth before, and if its evaluation (as retrieved from
the table) is such that it triggers a cutoff, there will be no need to search
anything. Obviously, the larger the transposition table, and the higher the
probability of a transposition given the rules of the game, the bigger the average
payoff. In chess, it tums out that this technique is extremely valuable in the
endgame, where this project often gains 3-4 extra plies thanks to the high

number of transpositions.

4.5 Incremental Move Generation

CHESS 4.5 (Slate and Atkin [1983]) adopted the opposite strategy: it generates a
few moves at a time, searches them, and avoids generating the others if a cutoff
can be found. Programs of the 1970's had to make do with small transposition
tables and could not afford the memory expense required by pre-processed
move databases, which made the complete generation scheme described above

computationally prohibitive.

A common incremental move generation heuristic is to look at captures first,
often starting with those of highly valuable pieces, and look for a quick cutoff.
The “killer move” heuristic is another: it relies on the hypothesis that many

pointless moves in a position can be refuted by the same counterattack.

20

4.6 Javachess Move Generation

Javachess' move generation algorithm, described in more detail in Chapter 8, is
based on a database of possible moves for each piece type in each square on
the chess board. Because this database reduces the computation time required
by move generation to a minimum, Javachess generates all possible moves at

the same time.

21

CHAPTER 5: AUXILIARY DATA STRUCTURES

This section describes two techniques which, aithough not absolutely required for
the computer to play legal chess, speed up the search and therefore improve the
quality of the machine's play: the transposition table (Slate and Atkin [1983]) and

the history table (Marsland and Schaeffer [1990], Hartmann [1991]).

5.1 Transposition Tables

One way to speed up search is to take advantage of the fact that chess' search

graph is not, strictly speaking, a tree.

In most positions, there are several continuations which lead to the same game
state. For example, the openings "1. e2-e4 e7-e5 2. d2-d4" and "1. d2-d4 e7-e5
2. e2-e4" result in identical positions. Reaching the same game state through

different continuations is called transposing.

If transpositions occur frequently, the program could waste a considerable
amount of effort searching the same position multiple times. This is why all
chess programs, since at least Richard Greenblatt's Mac Hack VI in the late
1960's, have incorporated a transposition table, i.e., a hash table storing recent
search results. Whenever a new position is examined by the program, the table
is queried first; if it contains suitable data (i.e., a previous search of the same
position to a depth equal to or larger than the one needed), then no effort need

be expended.

22

Transposition table collisions are handled by a simple mechanism: new data
overwrites old data if it results from a deeper search, or if the old data is deemed
obsolete. Otherwise, the new data is ignored. Results of relatively shallow
searches are never stored in the table, because repeating these searches is not

expensive enough to warrant overwriting the results of deeper examinations.
There are numerous advantages to this process, including:

% Speed. The more results retrieved from the transposition table, the faster

the overall search process.

% Increased search depth. For example, if the transposition table already
contains a six-ply result for a position which the program needs to search
to a depth of 4-ply, not only does it avoid the search, but the stored results
are actually more accurate than those which would have been obtained by

doing the work.

< Versatility. Every chess program has an “opening book" of some sort, i.e.,
a list of well-known positions and best moves selected from the chess
literature and fed to the program to allow it to play a reasonable game in
the opening stages. Since the opening book's modus operandi is similar
to the transposition table, it is possible to re-use the transposition table's

code for this purpose.

23

The transposition table's only serious drawback is its voracity in terms of
memory. To be of any use whatsoever, the table must contain several thousand
to a few million entries. At 16 bytes or so per entry, this can become a problem

in memory-starved environments.

5.2 Generating Hash Keys for Chess Boards

The following scheme, used to generate hash keys from chess positions, was

described by Zobrist in 1970 (Welch [1984)):

< Generate 12x64 N-bit random numbers (where the transposition table has
2N entries) and store them in an amay. Each random number is
associated with a given piece on a given square (i.e., black rook on H4,

etc.) An empty square is represented by a null word.
< Start with a null hash key.

% For each piece on the board, XOR the random number associated with

this piece on its square to the current hash key.

An interesting side effect of the scheme is that it is very easy to update the hash
value after a move, without re-scanning the entire board. For example, if a white
rook on H1 captures a black pawn on H4, updating the hash key merely requires

three XOR operations on the hash key, using the "white rook on H1" and "black

24

pawn on H4" to erase them from the board and the "white rook on H4" to add it to

the position.

This project uses the same method, with different random piece signatures, to
generate a second key (also known as a “lock™; see Standish [1980]) which is
stored in the transposition table along with a position's data. This helps to detect
collisions: if two boards hash to the exact same key and collide in the
transposition table, the locks will be used to differentiate between them. Odds
are extremely low that two boards with the same key will also hash to the same
lock; specifically, for a transposition table of size N entries, the probability of a
key collision is 1/N, while the probability of collisions involving independent keys

and locks at the same time is 1/N2.

Note that, in the event of a collision, the results of the deeper search (or, in the
event of a collision between searches of equal depth, the most recent results) are
stored in the table and the others are discarded. Chaining, double hashing and
other canonical hash table algorithms (Standish [1980]) would be of little value
here; the transposition table is a time-saving trick which would lose much of its

effectiveness if it had to support linear-time searches.

5.3 History Tables

The "history heuristic" is a descendant of the “killer move" technique. In both

cases, the basic idea is the following: in any given position, most moves are

25

either pointless or self-defeating, and if a refutation can be found for one, it is

likely to refute others as well.

For example, if White's queen is in danger, pushing pawns at the opposite end of
the board is likely to be ineffective. Suppose that, during a search, Black
discovers that "Bishop takes Queen" is an effective refutation for White's "King's
Rook's Pawn to King's Rook's 3". Then, trying “Bishop takes Queen" again when
White tries instead to push the pawn to King's Rook's 4 may immediately prove
that this White move is just as bad, reducing the search effort for this move to

almost nothing.

A history table compiles statistics on the moves which have generated cutoffs in
the recent past and should therefore be tried again at a later time. Its
implementation is very simple: it consists of a 64x64 array of integer counters,
indexed by a pair of squares (the source and the destination for a move.) When
the search algorithm detects that a certain move has generated a cutoff, its entry
in the history table is incremented. During move generation, history values are
used to sort moves and make sure that more "historically powerful* ones will be

tried first.

26

5.4 Javachess Data Structures

Javachess uses a transposition table containing 2'” entries and a standard
history table. The size of the transposition table was determined by the amount

of RAM available on the development machine.

27

CHAPTER 6: EVALUATION FUNCTIONS

One of the key aspects of a chess-playing program is its evaluation function,
which it uses to assess who is winning and who is losing in a given position and

to guide its move selection.

Chess programmers can and do spend years refining their evaluation functions
(Hartmann [1989]). The one implemented in this project is rather primitive by
contemporary standards; it incorporates elements drawn from such successful
programs of the past as CHESS 4.5 (Slate and Atkin [1983]), Belle (Condon and
Thompson [1981]) and Cray Blitz (Hyatt [1983]) and simplifies them to provide a

“coarse-grained” evaluation well-suited to the MTD(f) search algorithm.

Features often found in evaluation functions include the following:

6.1 Material Balance

The dominant factor in the evaluation functions of most chess programs is
material. Slate and Atkin [1983], for example, state that the combination of all
other factors included in CHESS 4.5’s evaluation function account for less than

1.5 times the material value of a pawn.

6.2 Mobility

One of the characteristics of checkmate is that the victim has no legal moves

left. Intuitively, it also seems better to have a lot of options available: a player is

28

more likely to be able to find a good line of play if he has 30 legal moves to
choose from than if he is limited to 3. However, it tums out that this metric is
worthless, for several reasons. For one thing, in any given position, most of the
moves are pointiess (Fischer et al [1972]), and awarding a mobility bonus for
aimless moves is obviously incorrect. For another, trying to limit the opponent's
mobility at all costs may lead the program to destroy its own defensive position in
search of "pointless checks": since there are usually few ways to evade check in
any given position, a mobility-oriented program would be likely to make
incautious moves to put the opponent in check, and after a while, it may discover
that it has accomplished nothing and has dispersed its forces all over the board.
More importantly, stalemate, which occurs when a player who is not in check is

unable to move without putting his king in check, is by rule a draw and not a loss.

6.3 Development

An age-old maxim of chess (Znosko-Borovsky [1935]) states that minor pieces
(bishops and knights) should be brought into the battle as quickly as possible,
that the King should castle early and that rooks and queens should stay hidden

until an opportunity for a decisive attack presents itself.

6.4 Pawn Formations

Chess literature mentions several types of valuable or dangerous pawn features,

including pawn rams, doubled or isolated pawns, and passed pawns.

29

6.5 Tropism

Tropism is a measure of how easy it is for a piece to attack the opposing king,
and is usually measured in terms of distance. The exact rules to compute
tropism vary by piece type.

6.6 Javachess' Evaluation Function

Javachess uses variants of all of the features described in this chapter. We shall

discuss the details of the implementation in Chapter 8.

30

CHAPTER 7: SEARCH TECHNIQUES

To a computer, discriminating between good and bad moves is far from obvious.
Human players can draw on experience, pattern recognition and intuition, none
of which are particularly well-suited to algorithmic codification. Instead,

numerous algorithms based on game trees have been developed.

7.1 Minimax

One way to compare a set of moves is to look at their consequences. For
example, if Black takes White's queen's pawn with his rook, what responses will
be available to White? Will he be able to take the rook, capture another piece
which was guarded by the rook before his move but is now vulnerable, or occupy

an important square? And then, what can Black do to regain the advantage?

This is the crucial insight underlying the Minimax tree search algorithm, which is
at the root of all game-playing programs: look at every continuation until it leads
to a terminal position (i.e., one player has won or the game is tied) or at least to
one stable enough to allow for a reasonable assessment of the situation, and

decide which of the initial moves led to the most favorable consequences.
Minimax can be summarized as follows:

< Given a way to evaluate a board position as a probable or certain win for
Player 1 (whom we will call Max), for Player 2 (whom we will call Min), or
whether the position will lead to a draw. This evaluation takes the form of

31

a number: a positive number indicates that Max is leading, a negative
number, that Min is ahead, and a zero, that neither has acquired an

advantage.

()
0.0

Max's strategy is to make moves which will increase the board's

evaluation (i.e., he will try to maximize the evaluation).

< Min's strategy is to make moves which decrease the board's evaluation

(i.e., he will try to minimize it).

% The algorithm assumes that both players always make the moves which

optimize the evaluation from their own point of view.

Therefore, if Max is forced to choose between a move which is certain to resuit in
a marginal advantage and one which might lead to a quick win if Min made a
mistake but to a draw if Min discovered an obscure and convoluted continuation,

Minimax will favor the former.

Minimax' complexity is exponential: O(b"), where b is the game’s branching
factor and n is the depth of the search. This is a considerable problem in chess,
where the branching factor in the middle game is usually around 35. Fortunately,
it tums out that a lot of the work performed by minimax is unnecessary and can
be eliminated at no risk; several algorithms have been developed to do so (Slate
and Atkin [1983], Althéfer [1990]), and this project implements a state-of-the-art

minimax variant known as iterative deepening MTD(f) search (Plaat [1987]).

32

7.2 Justifications for search

Deep searches are an easy way to "teach” the machine about relatively
complicated tactics, because a full-width search of a game tree to depth N will by
definition examine every move combination of depth n or less, however subtie.
For example, consider the knight fork, a move which places a knight on a square
from which it can attack two different pieces. Finding a way to represent this type
of position logically would require some effort, more so if we also had to
determine whether the knight was itself protected from capture. However, a
simple 3-ply search will discover the forking opportunity on its own, by moving
the knight to the forking square at ply 1, developing all of the opponent’s replies
at ply 2, and capturing an undefended piece with every move at ply 3. If the
program’s evaluation function places a high value on material advantage, the

forking move will be considered highly advantageous.

A full-width search will never miss an opportunity, assuming that it is apparent
within its search depth. Therefore, the deeper the search, the more complicated
the "plans" which the machine can stumble upon.

7.3 The Alphabeta Algorithm

Fortunately, there are sound search algorithms which only need to examine a

fraction of the nodes visited by Minimax. For example, the Alphabeta algorithm

33

takes advantage of the fact that poor moves can quickly be eliminated from

consideration once a much better one has been found.

For example, let us suppose that Max has already examined a move A and
determined that it leads to a position with a value of +5. He now begins
searching another move B, to which Min's first response leads to a value of -3.
Therefore, there is no need to look at any other branch resuiting from this B,
because the temporary search results have already demonstrated that it will end

up being worse than the current best choice.

7.4 Ordering Moves to Optimize Alphabeta

Alphabeta’s efficiency depends heavily on the order in which moves are
searched. As alphabeta can cut off searching a given move only if it already
knows of a provably better one. Cutoffs occur more often when good moves are
examined early. The gains and losses related to the ordering are not trivial: a
perfect ordering, defined as one which will cause the largest possible number of
cutoffs, will result in a search of about twice the square root of the number of
nodes in the tree associated with the worst possible ordering (Shinghal [1992]).
For example, a 6-ply search in the middle game (when the average branching
factor is 35) will examine 35° nodes, or roughly 1.8 billion, while a perfectly

ordered alphabeta will only need to visit approximately 2 * 352 or 85,000 nodes.

34

Achieving the absolute best case is hard, but luckily it is not necessary. It tums
out that Alphabeta performs well as long as it can quickly find a reasonable move
to compare others to. This means that it is important to search a good move
first; the best case happens when we always look at the best possible moves
before any others. If the moves are ordered in such a way that each one is
better than anything examined before, alphabeta will be unable to prune anything

and the search will reduce to Minimax.

Several move ordering techniques have been developed, including the history
table described earlier in this text. It turns out that the most effective method is
one which flies in the face of human intuition, because of the fact that it seems to

duplicate an enormous amount of effort on purpose: iterative deepening.

7.5 lterative Deepening AiphaBeta (Slate and Atkin [1983])

When searching a position to depth 6, the ideal move ordering would be the one
yielded by a prior search of the same position to the same depth. Since that is
obviously impossible, how about using the results of a shallower search, say of

depth 5?

This is one of the justifications for iterative deepening: begin by searching all
moves arising from the position to depth 2, use the scores to reorder the moves,

search again to depth 3, reorder, etc., until the desired depth has been reached.

35

This technique seems tremendously wasteful, because nodes located at shallow
depths will be re-searched several times. However, given a large branching
factor, the last ply dominates a search to such an extent that the rest becomes

virtually insignificant.

Consider the size of a search tree of depth d with branching factor B. The tree
has B nodes at depth 1, B*B at depth 2, B*B*B at depth 3, etc. Therefore,
searching to depth d yields a tree B times larger than searching to depth d-1.
The number of non-leaf nodes in the tree, N, is about BD - 1, while the number
of leaves is (B — 1) BD. The ratio of non-leaf nodes to leaf nodes is
approximately 1/ (B — 1); for chess, with a branching factor of 35, itis 1 /35 or
less than 3% (Shinghal [1982]). Therefore, the added expense linked to re-
searching interior nodes in iterative deepening alphabeta is dwarfed by the effort

required to visit the leaves.

However, using the results of a shallow search to order the moves prior to a
deeper one also produces a significant increase in the alphabeta cutoff rate.
Therefore, iterative-deepening alphabeta actually examines far fewer nodes, on
average, than a non-iterative alphabeta search to the same depth. When a
transposition table enters the equation, the gain is even more impressive: the
work required to duplicate the shallow parts of the search disappears because

the results are already stored in the table and need not be computed again.

36

This project uses iterative deepening to fill up the transposition table with useful
resuits, but not to reorder moves during search. That job is left exclusively to the
history heuristic, to keep the code simple and to allow easy and predictable

experimentation with various history variants.

7.6 Aspirated Search

Alphabeta assumes nothing about a position's ultimate minimax value. However,
given a reasonable estimate of the uitimate value (for example, the results of a
shallower search in an iterative-deepening scheme), the algorithm may be able

to evaluate a line of play faster without loss of precision.

Aspirated Search is a variant of alphabeta in which a small window centered on
the expected value is used to bound the search. If the position’s actual value
falls within the window, the extra cutoffs enable the algorithm to find it much
faster. If not, it will be necessary to search again with a wider window.
Obviously, the more accurate the initial estimate of the position's minimax value,
the more useful this technique is. A poor estimate will result in numerous repeat
searches and consume whatever gains the extra cutoffs in each search may

provide.

37

7.7 MTD()

Plaat [1997] extended aspirated search into the MTD(f) (Memory-enhanced Test
Driver) algorithm. This algorithm consists of a binary search into the space of
possible game state value, and works by repeatedly calling an aspirated
alphabeta routine with a very narrow search window centered on a current

estimate of the position's evaluation.

If one of the calls to aspirated alphabeta succeeds, the retumed value is the real
evaluation and MTD(f) retums. However, if the real evaluation is not within the
search window (that is, it is not the current estimate), aspirated alphabeta will fail,
but will do so very quickly because it will cutoff every search path in the game
tree almost immediately. A failed aspirated alphabeta search retums a value
equal to one of the bounds of its search window; if the retumed value is equal to
the lower bound of the search window, the actual value of the game tree is less

than the lower bound of the search, and vice versa.

For example, suppose that a position’s real evaluation is +5, and that the current
estimate (possibly retumed by a shallower MTD(f) search in an iterative scheme)
is +20. MTD(f) would begin by calling an aspirated alphabeta search on the
position, with a search window of, say, +19.99 to +20.01. The aspirated search
will “fail low”, indicating that the true value is between -INFINITY and +19.99; a

new estimate will then be selected, and the process started anew.

38

Layered on top of an alphabeta implementation equipped with a transposition
table, MTD(f) is extremely efficient and supports a high level of concurrency.

(The gain over ordinary iterative alphabeta is not as spectacular in a sequential

implementation.)

Additionally, MTD(f) converges on a value faster when working with a coarse-

grained (and therefore simpler and faster to compute) evaluation function.

7.8 Quiescence Search

In chess, a full-width search to a fixed depth is insufficient to guarantee good

results, because a great many positions cannot be evaluated accurately.

For example, suppose that Max captures a pawn at ply 5. An evaluation applied
at this point would yield resuits indicating that Max is ahead. Howaver, a 6-ply
search might have revealed that the pawn capture left Max' queen vuinerable to
capture, and that the position resulting from it was in fact very bad. This is a very
simple example of the “horizon effect” initially described by Berliner [1973];

because of the horizon effect, fixed-depth searches are flawed.

An evaluation function can only be applied effectively to "quiet" (or quiescent)
positions (Beal [1989], Beal [1990], Kaindl [1983]) where nothing of consequence
is likely to happen in the immediate future. The definition of a quiescent position
depends on the rules of the game being programmed; in chess, since most

evaluation functions are heavily biased towards material balance, any position in

39

which the side to move has no capture, pawn promotion or checking move
available is usually considered quiet. Unfortunately, performing a full-width
search until every continuation leads to such a quiet position is rarely feasible. A
reasonable compromise is to begin with a full-width search to a fixed depth, to
continue each line of play selectively by searching captures (and possibly other
"non-quiescent” moves) until a quiescent position is reached, and only then apply

the evaluator.

7.9 The Null-Move Heuristic

Beal [1989] describes an additional refinement to quiescence search known as
the null-move heuristic. While performing quiescence search on a position, Beal
examines a null-move first, that is, his program skips a turmn and lets the opponent
play twice in a row. This technique presents several advantages, including the

following:

< Quick detection of overwhelming advantages. For example, if Max's
advantage in a position is so overwhelming that alphabeta generates a
beta cutoff below the null move (i.e., Min can't defend himself
appropriately even with two consecutive moves), the cutoff has effectively
been found after a search one-ply shallower than expected, and therefore

at a fraction of the cost.

40

< If the null move’s evaluation is better than those of all other non-quiescent
moves (for example, if each capture move leaves the queen en prise),
then the real best move would be a quiet one. The position can then be

considered quiescent and quiescence search terminated along the current

continuation.

7.10 Javachess' Search Algorithm

Early versions of Javachess used iterative-deepening alphabeta as their search
algorithm. A quiescence search algorithm (which only examines null moves and
captures) was added later. Currently, Javachess implements MTD(f), which calls
the iterative-deepening alphabeta with quiescence search extensions during

each of its iterations. More details can be found in Chapter 8.

41

CHAPTER 8: DESIGN OF JAVACHESS

Javachess adopts many of the techniques developed by the creators of CHESS
4.5 and Cray Blitz and packages them into an object-oriented form. This section

briefly describes the highlights of its architecture.

8.1 Board Representation

The jcBoard class encapsulates Javachess’ board representation. Core data is
stored in a set of twelve bitboards, each of which contains the list of squares
where a given piece of a given color are located. Two supplemental bitboards,
containing the lists of all squares occupied by Black and by White, are added to
speed up move generation; for example, when generating moves for the white
queen, all squares currently occupied by other white pieces are off-limits, so
testing a possible move against a single board containing all white pieces will

save time compared to checking with all types of white pieces separately.

8.2 Move Generation

Javachess includes a detailed, pre-processed list of all possible moves for all
pieces on all squares, pattermed after Goulet [1986] and based on the following

principles:

< For move generation purposes, piece color is irrelevant except for pawns

which move in opposite directions.

42

L <4

®,
0.0

There are 64 x 5 = 320 combinations of pieces (excluding pawn) and
squares from which to move, 48 squares on which a black pawn can be
located (they can never retreat to the back rank, and they get promoted as
soon as they reach the eight rank), and 48 where a white pawn can be

located.

Let us define a “ray” of moves as a sequence of moves by a piece, from a

certain square, in the same direction.

For each piece on each square, there are a certain number of rays along
which movement might be possible. For example, a king in the middle of
the board may be able to move in 8 different directions, while a bishop

trapped in a comer only has one ray of escape possible.

When generating moves for a piece on a square, scan each of its rays

until either the end of the ray or a piece is encountered.

With a properly designed database, move generation is reduced to a simple,

mostly linear search which requires very little computation. The database

requires less than 30K of memory and saves considerable time during

search. Special rules for castling and en passant captures complement the

procedure.

43

8.3 Data Structures

In addition to the move generation database, Javachess includes a history table
and a transposition table containing 2'7 entries. The results, at the current depth
of search, are satisfactory: the transposition table usually contained suitable
results for about 10% of positions in the middle game and over 75% (sometimes
90% or more) in the endgame; this high success rate accounts for much of the

added search depth in endgame situations.

Experiments with larger transposition tables (up to 2%° entries) have shown

significant speed improvements on machines which can store the entire table in

core memory.

8.4 Search Techniques

Javachess implements an iterative-deepening MTD(f) algorithm whose maximum
depth is determined dynamically, according to how much work has been
expended during the earlier parts of the search. Currently, MTD(f) iterates until it
reaches an iteration which visits over 100,000 nodes during its last call to an
aspirated, iterative-deepening alphabeta search with quiescence and null-move
augmentations. Typically, this results in searches of 4-ply (plus quiescence
search to an unlimited depth) in the opening and middle game, and 7- or 8-ply in

the endgame.

44

Javachess' quiescence search only examines captures and pawn promotions.
Some other programs also look at checks in this phase; however, since it is
possible to generate long and possibly cyclic sequences of checks and check
evasions, adding this feature to the program would have cost a significant

amount of processing power. It may be added in the future.

Experimentation has shown that the branching factor in the quiescence search is
small (usually less than 2 on average) and that its depth usually reaches 6- to 8-
ply before the program runs out of captures to try. Quiescence search typically
consumes 50% to 75% of the total search effort in most positions; improvements
which would reduce this expenditure (i.e., depth limits) without reducing search

efficiency would definitely be welcome.

Experiments have shown that the null-move heuristic saves between 20% and
50% of the effort required by a given search, at the cost of a minimal amount of

code.

8.5 Singular Extensions

Initially, JavaChess was to implement a version of Deep Blue's singular
extensions (Anantharaman et al [1990]), a technique which consists of adding a
ply of search to continuations where one move seems vastly superior to all

others, in order to verify that this apparent superiority is not a mere artifact of the

45

horizon effect. Singular extensions add an extra “safety” factor to the search

results, at a cost of roughly doubling the size of the search tree.

However, on the development computer, the program is limited to a depth of 4-
ply (plus a quiescence search of unlimited depth) in the middle game, and adding
the extensions made testing impractical. They were therefore removed from the

code.

8.6 Evaluation Function

Javachess’ evaluation function is twofold: a “quick evaluator” based exclusively
on material balance is computed first, and only if the result is close to the current
best move's will the other factors by included. “Close”, in this case, means that
the difference between the quick evaluation and the current best move's value

must be less than twice the material value of a pawn.

Material balance term

The dominant factor in the evaluation function implemented in Javachess is
material. The material evaluation function is a direct adaptation of the one in

CHESS 4.5 and embodies the following principles:

<+ The queen is worth 900 points, the rook is worth 500, the bishop 350, the

knight 300 and the pawn 100.

< A bigger numerical advantage in material is always desirable.

46

% When a player is ahead on material, he should exchange pieces of equal

value (but not pawns).

CHESS 4.5's creators estimate that an enormous advantage in position, mobility
and safety is worth less than 1.5 pawns; this is approximately the numerical
relationship between material and the sum of the other factors in this project as
well. There are positions where a material sacrifice is required to obtain an
advantage in momentum or position; these, however, are best discovered

through the search.

Javachess' actual material balance function, from the point of view of the player

in the lead, is the following:

MB = MatDiff + (MatDiff * InciteSwaps * Pawns) / (Pawns + 1)

Where:

< MatDiff is the minimum between 2,400 points and the actual material
advantage of the player in the lead (the limit of 2,400 is over 2.5 times the
value of a queen; pursuing any further material advantage would be

pointless)

% InciteSwaps is (12,000 — Total value of all material on board) / 6,400; it
embodies the fact that once a side has achieved material advantage,

swapping pieces of equal value is usually a good idea

47

% Pawns is the number of pawns the winning side has on the board. The
(pawns / (pawns + 1)) ratio indicates that swapping pawns is rarely a good
idea for the winning side, because a material advantage can often resuit in

queening during the endgame if enough pawns are available.

If neither player has an advantage, for example at the beginning of the game,

material balance is equal to zero.

Mobility factor
Javachess implements a few mobility evaluation features:

< Bad bishops: A Bishop's value is reduced by an amount equal to 8% of
the material value of a pawn times the number of friendly pawns located

on squares to which it is allowed to move.

+« Rooks sitting on open files receive bonuses of 10% of the value of a pawn.

Rooks on semi-open files receive bonuses of 4% of the value of a pawn.

Development factor
This project implements a development metric in the following ways.

< First, it penalizes the King's and Queen’'s pawns by 15% of their value if

they have not moved at all.

48

« It also penalizes knights and bishops located on the back rank, where they

hinder rook movement, by 10% of a pawn.

()
L4

it tries to prevent the queen from moving until all other (non-pawn) pieces
have done so, by penalizing a queen not sitting on its home square by 8%

of a pawn for each friendly bishop, knight or rook still on its original square

* [f the opponent’s queen is still alive, it gives a bonus of 10% of the value of
a pawn to positions where the king has castled. It also penalizes
positions where the king has not yet castled and where castling rights
have been lost; the penalty varies from 40% to 120% of the value of a

pawn, depending on whether some castling rights are still available or not.

The result is that the program plays very defensively in the first few moves
following its first forays outside of the opening book, and attempts to castle as

quickly as it can.

The development factor is important in the opening, but quickly loses much of its

relevance. After ten to twelve moves, it tends to even out.

Pawn features factor

The pawn features used by this program include:

49

)
O..

0
0.0

0.0

o,

>

()
0.0

Doubled or tripled pawns. Two or more pawns of the same color on the
same file are penalized by 8% of a pawn’s value, because they hinder

each other's movement.

Pawn rams. Two opposing pawns blocking each others forward
movement each receive an 8% penalty because they hinder each other's

movement.

Passed pawns. Pawns which have advanced so far that they can no
longer be attacked or rammed by enemy pawns are very strong, because
they threaten to reach the back rank and receive promotion. Passed
pawns receive bonuses inversely proportional to their distance to the
opponent’s back rank (where they will be promoted); a passed pawn on
the 5™ rank is worth 1.25 pawns, while one on the seventh rank is worth
1.5 pawns. An extra 25% of a pawn is awarded when a passed pawn is

protected by a friendly rook located on the same file.

Isolated pawns. A pawn which has no friendly pawns on either side is
vulnerable to attack and should seek protection; it is penalized by 15% of
its value because of the likelihood that pieces will have to be tied up

defending it.

Eight pawns. Having too many pawns on the board restricts mobility;
opening at least one file for rook movement is a good idea. Positions in

which a side still has its eight pawns are penalized by 10% of a pawn.

50

Tropism factor
Only three types of pieces are evaluated for king tropism in Javachess:

> Arook is penalized by 2% of the value of a pawn for each square of
distance between its position and the opposing king's rank or file,
i.e., if the rook is on the king’s rank, it is not penalized at all, no

matter how many files separate them.

“ A queen receives only half the penalty assessed to a rook at the

same distance, because of its higher mobility.

A knight receives a penalty of 1% of a pawn for each square on the

shortest path between it and the enemy king.

Final notes on evaluation

Again, it must be stated that the relative weights of the various terms included in
an evaluation function are usually assigned by trial and error over a long period
of time. Some of those used here have been taken from the literature, while
others were selected to influence the program'’s playing style. No assertion is

made regarding their suitability in a competitive setting.

51

8.7 User Interface

JavaChess' current text-based user interface is intended as a mere test hamess
for the artificial intelligence functionality, which will be connected to a full-fledged
graphical application at a later time. Therefore, its user-friendliness is primitive
by any current standards: for example, the player must follow a very strict format
when entering moves, and any deviation from the norm will result in a rejection

and a request for re-entry..
The input/output system consists of three components:

% Keyboard input: Human players communicate their moves to the system
by specifying the source and destination squares as integer numbers
between 00 and 63. Attempts at illegal moves are detected and reported

to the player.

L>

% Screen output: The state of the game is printed as an 8x8 array of
squares, each of which may contain a piece tag (i.e., “WQ” for the white

queen).

< Game loading: The game can load positions from disk, using a simple
ASCIt file. The file’s structure is designed to make manipulation and
modification by the user easy. Creating a new Javachess file in a

standard text editor takes a few minutes at most.

52

The jcBoard class, which encapsulates chess board functionality, is also
equipped with a game-save feature, but the user interface does not expose it as

of yet.

53

CHAPTER 9: JAVACHESS BEHAVIOR

Experiments with the program have shown it to perform very well when analyzing
chess problems. Twenty-five positions from Reinfeld [1955] were randomly
selected and fed to the program; it solved most in seconds and all of them in less

than five minutes, sometimes searching as deep as 9-ply to do so.

To informally assess Javachess’ strength in competitive play, the author stored
four endgame positions on disk and played each of them against it, from both
sides. Javachess won 4 games, drew 2 and lost 2. The same test set was then
used to evaluate Javachess against Chessmaster 3000; when facing
Chessmaster at the “beginner” setting, Javachess won 7 games and tied 1, while
against the highest setting, it won only 1 game, drew 3 and lost 4. As expected,

the program plays passable chess, but provides no threat to strong players.

However, the program’s performance quickly breaks down in middle game
situations. Due to the size of the game tree searched by the quiescence search
algorithm, Javachess usually exhausts its work allotment for a move at ply 4,
sometimes even at ply 3. While some of this degradation is due to a very small
allotment (100,000 nodes total) designed to make the program play in 30
seconds or less, it seems likely that spending such an overwhelming majority of
the search effort in quiescence is counter-productive, and that gaining an
additional one or two plies of full-width search at the cost of some accuracy in

quiescence would improve the program’s play.

54

Finally, while Javachess supports muitiple opening books of various sizes, its
current book contains a mere 38 positions and moves taken from Znosko-
Borovsky [1935]'s discussion of the Ruy Lopez opening. The program is
therefore helpless in the opening, except when the player is careful to stay within
these restrictive boundaries. Further, not enough time was available to analyze
the program’s playing style and to determine whether the Ruy Lopez is even a

suitable opening for it; the author's chess skills may be insufficient to determine

this accurately in any event.

55

CHAPTER 10: CONCLUSION

For decades, chess has served as the major test bed of artificial intelligence
research, much like the fruit fly in genetics. Thankfully, the techniques developed
by the research community apply to a wide variety of games and in many other

domains.

This project succeeded in implementing an object-oriented, muiti-platform chess-
playing program which, if weak by contemporary standards, provides a serious
challenge to casual players and a useful didactic tool for new game

programmers. Further work on the program will include:

< Continuing experimentation with new search algorithms and evaluation

function features.

< Development of several opening libraries to transform the program into a

training tool.

< Integration of endgame position databases freely available over the

intemet.

< Extension of the code base to cover other strategy games.

56

BIBLIOGRAPHY

Althéfer, I. (1990), An incremental negamax algorithm, in Artificial Intelligence

v. 43, pp. 57-65.

Anantharaman, T., Campbell, M.S. and Hsu, F.-H. (1990), Singular
extensions: adding selectivity to brute-force searching, in Artificial

Intelligence v. 43, pp. 99-109.

Beal, D.F. (1989), Experiments with the null move, in Beal, D.F. ed.,

Advances in Computer Chess 5, Elsevier Science Publishers, North-Holland.

Beal, D.F. (1990), A generalised quiescence search algorithm, in Artificial

Intelligence v. 43, pp. 85-98.

Berliner, H. (1973), Some Necessary Conditions for a Master Chess
Program, in Proceedings of the Third International Joint Conferences on Artificial

Intelligence, Stanford, AAAI, Menlo Park (Califomia).

Berliner, H. (1989), Some innovations introduced by Hitech, in Beal, D.F. ed.,

Advances in Computer Chess 5, Elsevier Science Publishers, North-Holland.

Condon, J.H. and Thompson, K. (1981), BELLE chess hardware, in Advances

in Computer Chess 3.

Fischer, B., Margulies, S., Mosenfelder, D. (1972), Bobby Fischer teaches

Chess, Bantam, New York.

57

Goulet, J. (1986), Data structures for chess programs, McGill University

thesis.

Hyatt, R. (1983), Cray Blitz: a chess-playing program, University of Southem

Mississipi thesis.

Hartmann, D. (1989), Notions of evaluation functions, in Beal, D.F. ed.,

Advances in Computer Chess 5, Elsevier Science Publishers, North-Holland.

Hartmann, D. et al (1991), Sundry computer chess topics, in Beal, D.F. ed.,

Advances in Computer Chess 6, Elsevier Science Publishers, North-Holland.

Kaindl, H. (1983), Quiescence search in computer chess, in Bramer, M.A.,

Computer game-playing theory and practice, Ellis Horwood.
Levy, D. (1988), Computer chess compendium, Springer, New York.

Marsland, T. and Schaeffer, J. editors (1990), Chess, Computers and

Cognition, Springer-Veriag, New York.

Plaat, A. (1997), MTD(f), a minimax algorithm faster than Negascout,

published on the author's web page.
Reinfeld, F. (1955), 10017 Brilliant ways to checkmate, Sterling, New York.

Shinghal, R. (1992), Formal concepts in artificial intelligence, Chapman &

Hall, London.

58

Slate, D.J. and Atkin, L.R. (1983), Chess 4.5 - The Northwestern University
chess program, in Frey, P. ed., Chess skill in man and machine, 2" ed.,

Springer-Verlag.
Standish, T. (1980), Data structure techniques, Addison-Wesley, Reading.

Thompson, K. (1986), Retrograde analysis of certain endgames, International

Computer Chess Association Journal, vol. 9, issue 3.
Weich, D.E. (1984), Computer chess, W.C. Brown, Dubuque (lowa).

Znosko-Borovsky, E.A. (1935), How to Play the Chess Openings, Sir Isaac

Pitman & Sons, London.

59

APPENDIX: USER’S GUIDE

Getting started

To invoke Javachess from the command line, type the following:

~ <java> javachess:jcApp <openings> [<starting position>] : - - :

Where <java> is the complete command line required to start java on your
system, <openings> is a text file containing the opening book, and [<starting

position>] is an optional “saved game” text file to load prior to beginning play.

Javachess begins by asking the user to decide whether a human player or
Javachess will control each side. It is possible to use Javachess for a two-player

game between humans, or to have the program play itself.

Entering moves

Javachess' current test hamess user interface expects moves to be provided in a
very strict and somewhat awkward format. Each move is exactly 5 characters

long, and contains:

< The move’s source square as a two-digit number between 00 and 63.
The top comer of the chess board (Black's Queen’s Rook’s starting
square) is defined as square 00, Black's back rank contains squares 00 to

07, and other squares are numbered rank by rank.

60

> A blank space.

< The move's destination square, using the format described for the source

square.

For example, if White wants to castle kingside, he would enter “60 62" for the

king’s move; javachess would handle the rook’s move itself.

The only exception to the scheme described above is for resignation: if the player
wants to quit the game, he must type “RESIG”, again in exactly five characters.

Javachess is unable to offer resignation of its own at this point.

61

APPENDIX: SOURCE CODE

/""""""""'t""'""'.'."""""""""'..""""'.'"""""""'

* jcApp.java - The JavaChess main program
* by F.D. Laramée

*

Purpose: Entry point, and not much else!

07.06.00 Initial build.

'Qt"'t"t""t'-t"""'tt"t"""t"'t"'."t"tt""'t""""t"'ttt"'/

*
-
* History:
*
-

package javachess;

import javax.swing.UIManager;
import java.awt.®*;
import javachess.jcGame;

/""""""Q""'"""""""""."""""'l""".""t""""""'tt'

* public class jcApp
The application-level class, surrounding everything else.

to re-formatting it to make it legible, and to add the jcGame calls at the

end of the main program.

*

L 4

* Most of this code has been auto-generated by JBuilder; my role was limited
4

L 4
'Q""'"'Q'".'.'"'."'t'"'."""""'"'"'.""""""'.."""'""'/

public class jcApp
{
// Constructor
public jcApp()

{
// Make the window, since Java needs one
// We won't be making much use of it, though; all of the i/o
// will pass through the console
jcFrame frame = new jcFrame();
frame.validate() ;
Dimension screenSize = Toolkit.getDefaultToolkit () .getScreenSize();
Dimension frameSize = frame.getSize():;
if (frameSize.height > screenSize.height)
{
frameSize.height = screenSize.height;
}
if (frameSize.width > screenSize.width)
{
frameSize.width = screenSize.width;
}
frame.setLocation({screenSize.width - frameSize.width) / 2, (screenSize.height - frameSize.height) /
2);
frame.setVisible(true);
}

// Main method
// Initialize and launch the jcGame object
public static void main({ String(] args)

// Extract the parameters

String openingBook = args{ 0];

String startingPos = "NONE";

if (args.length > 1)
startingPos = args{ 1];

// Make the application

try
{

UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName() };

catch(Exception e)

62

{

e.printStackTrace();
new jcApp();

// Initialize the game controller
jcGame theGame = new jcGame();
try

{

theGame.InitializeGame(openingBook, startingPos);

catch(Exception e)

{

e.printStackTrace();

}

// Run the game
try
{
theGame .RunGame () ;
catch(Exception e)

e.printStackTrace() ;

}

System.exit(0);

63

/t"""""'"""""Q""'"Q"""""""."'"".'Q"""'""""""

* jcFrame.java - GUI for JavaChess
by F.D. Laramée

Purpose: Sometime in the very distant future, I may graft a true GUI onto

class will only contain the absolute bare minimum functionality required
by Java: an empty window with a "close box" allowing quick exit.

-

-

»*

* this game (i.e., drag-and-drop pieces to move, etc.) In the meantime, this
-*

*

*

"""""""t"'""""""""""'""'t""t"'"""""""""."/

package javachess;

import java.awt.*;
import java.awt.event.®;
import javax.swing.*;

/""'."'"""'"""""""""""""""""""""'t""""""""

* public class jcFrame

""""""""""""""""""".""""""""""""""""."'/

public class jcFrame extends JFrame

// GUI data members
JPanel contentPane;
BorderLayout borderLayoutl = new BorderLayout();

// Constructor
public jcFrame()

enableEvents(AWTEvent .WINDOW_EVENT_MASK);
try

jbInit () ;

}

catch(Exception e)

e.printStackTrace(};

}

// GUI Component initialization

private void jbInit() throws Exception

{
contentPane = (JPanel) this.getContentPane();
contentPane.setLayout (borderLayoutl };
this.setSize(new Dimension(400, 30C));
this.setTitle("Java Chess 1.0" };

}

/"t"QQQ"t"ttt"t"tt'tt't"t't'Q"'tt"tttt"t""t't"""QQQ'Qttt"tt

* Event handlers

t""""""""'t.t""""""""'"""""""t"""'.""""t"'/

// processWindowEvent: Overridden so we can exit when window is closed
protected void processWindowEvent (WindowEvent e)

{
super .processWindowEvent (e };
if (e.getID() == WindowEvent .WINDOW_CLOSING)

System.exit (0) ;

64

/'

L 4

N R A P T N N T N N P N N I N T A N N P AN I AN N TN N E P T E N R I N R TR TR T TN RN CECTCRTETY

jcGame.java - The JavaChess game controller

* by Fran¢ois Dominic Laramée

1 4
-
-
-
-
-
1 4
-
*
-

pa

Purpose: Coordinate the efforts of all other game-related objects. This
work has been separated from the jcApp (application-level object) because
the latter may come to take on more message-passing and related duties

if I ever add a GUI to the game, and I didn't want interface and game
mechanics to get mixed up in a single class.

History
08.06.00 Created

't""'t'c"'tt""t't"t'tt'.'Q't"tt't'tt"'t"'t"""tt""""""'./

ckage javachess;

import javachess.jcPlayer;
import javachess.jcBoard;
import javachess.jcMovelListGenerator;

im
im,
/t

-

port javachess.jcOpeningBook;
port java.io.*;
2222222222 X222 22222 222222222 A2 R22 X222 iR 222222222 22X X2 2 R RXE X

public class jcGame

tt'ttottt'Q"t'tt"t'tﬁt't".'tttt'tttt't"'ttt't't't""t'ttt"""t"'/

public class jcGame

{

// The two players involved in the current game
jcPlayer Players(]:

// The state of the game
jcBoard GameBoard;

// The opening book
jcOpeningBook Openings;

// A wrapper for the keyboard
InputStreamReader kbd;

// Constructor
public jcGame ()
{
}

// boolean InitializeGame ()
// Select the players, create subsidiary objects and prepare to play

public boolean InitializeGame(String openingBook, String startingPos) throws Exception

// Read the opening book
Openings = new jcOpeningBook () ;
Openings.Load(openingBook };

// Load the initial position, if any
GameBoard = new jcBoard();
if (startingPos.equalsIgnoreCase("NONE"))
GameBoard.StartingBoard () ;
else
GameBoard.Load(startingPos);

// Initialize the keyboard
kbd = new InputStreamReader(System.in);
int key:;

// Identify the two players
Players = new jcPlayer[2 };

key = 'C*;
System.out.println("Welcome to Java Chess. Who plays white: [H]Juman or [C]omputer? ");
try

do

{

65

key = kbd.read();

while((key != 'H') && (key != 'h') && (key != 'c' } && {(key != 'C') };
} catch(IOException e) {}

if ((key == 'H') || (key == 'h'))

{

Players[jcPlayer.SIDE WHITE | = new jcPlayerHuman(jcPlayer.SIDE_WHITE, kbd);

else

{

Players[jcPlayer.SIDE_WHITE |
new jcPlayerAI{(jcPlayer.SIDE WHITE, jcAlISearchAgent . AISEARCH_MTDF, Openings);
}

System.out .princln("And who plays black: [H]uman or [C]omputer? ");
try {
do

{
key = kbd.read(};

}

while((key != 'H') && (key != 'h') && (key != 'c')} && {(key != 'C' } };
} catch(IOException e) {}
if ((key == 'H') || (key == *h*))

Players [jcPlayer.SIDE_BLACK] = new jcPlayerHuman(jcPlayer.SIDE BLACK, kbd);
else

{
Players{ jcPlayer.SIDE_BLACK] =
new jcPlayerAI(jcPlayer.SIDE_BLACK, jcAISearchAgent .AISEARCH_MTDF, Openings);
}

return true;

!

// boolean RunGame ()
// A simple loop getting moves from the current player until the game is over

public boolean RunGame{) throws Exception

jecPlayer CurrentPlayer;
jcMove Mov;

do
{

// Show the current game board
GameBoard.Print () ;

// Ask the next player for a move

CurrentPlayer = Players(GameBoard.GetCurrentPlayer() |;

Mov = CurrentPlayer.GetMove(GameBoard };

System.out.print(jcPlayer.PlayerStrings(GameBoard.GetCurrentPlayer()]);

System.out.print(" selects move: " };
Mov.Print ()

// Change the state of the game accordingly
GameBoard.ApplyMove(Mov };

// Pause
Thread.currentThread () .sleep(2000);

} while((Mov.MoveType != jcMove.MOVE_RESIGN)} &&
(Mov.MoveType != jcMove.MOVE_STALEMATE));

System.out .println("Game Over. Thanks for playing!") ;
return true;

}
}

66

/'

»

N T R T R A N N I R P P N S R R P T P S P P N AR E N P R AR AN AN T T C A N E N A NN E N RPN C RN CERTS

jcBoard.java - Encapsulation of a chess board

* by Francois Dominic Laramée

L 4
L
L 4
-
-
*
-
-
*
[
»

pa
im
im|
/'

.

-
»
-
[
*
*
-

Purpose: This object contains all of the data and methods required to
process a chess board in the game. It uses the ubiquitous "bitboard"
representation.

History:
08.06.00 Created
14.08.00 Made "HashLock" a relative clone of "HashKey"; the java
Object .hashCode method is unsuitable to our purposes after all,

probably because it includes memory addresses in the calculation.
""""""Q"""""""'.".""'t"'Q""""'t'""'.""".""""/

ckage javachess;
port java.util.Random;
port java.io.r*;

2 A2 2 2 R 22 a2 R R 2 a2 2R a2 e 2 e X e R R e A R e R e R A AR R s

public class jcBoard

Notes:
1. The squares are numbered line by line, starting in the corner occupied by
Black's Queen's Rook at the beginning of the game. There are no constants
to represent squares, as they are usually manipulated algorithmically, in

sequences, instead of being explicitly identified in the code.
""""""'t't"t'"'""""""""""""""t'""t"""".'t..."/

public class jcBoard

{
/c

-

*

[222222 2R 2 2 22 22222 222l i A a iRl a 222 st ddsisdlialtlisdrizsld)

CONSTANTS

"""'Q".""""t'""""""""".".t"""'.'"""."""""'t'/

// Codes representing pieces
public static final int PAWN = 0;
public static final int KNIGHT
public static final int BISHOP
public static final int ROOK = 6;

public static final int QUEEN = 8;

public static final int KING = 10;

public static final int WHITE_PAWN = PAWN + jcPlayer.SIDE WHITE;
public static final int WHITE_KNIGHT = KNIGHT + jcPlayer.SIDE_WHITE;
public static final int WHITE_BISHOP = BISHOP + jcPlayer.SIDE_WHITE;
public static final int WHITE_ROOK = ROOK + jcPlayer.SIDE_WHITE;
public static final int WHITE_QUEEN = QUEEN + jcPlayer.SIDE_WHITE;
public static final int WHITE_KING = KING + jcPlayer.SIDE_WHITE:
public static final int BLACK_PAWN = PAWN + jcPlayer.SIDE_BLACK;
public static final int BLACK_KNIGHT = KNIGHT + jcPlayer.SIDE_BLACK;
public static final int BLACK_BISHOP = BISHOP + jcPlayer.SIDE_BLACK;
public static final int BLACK _ROOK = ROOK + jcPlayer.SIDE_BLACK;
public static final int BLACK_QUEEN = QUEEN + jcPlayer.SIDE_BLACK;
public static final int BLACK_KING = KING + jcPlayer.SIDE_BLACK;
public static final int EMPTY SQUARE = 12;

2;
4;

// Useful loop boundary constants, to allow looping on all bitboards and
// on all squares of a chessboard

public static final int ALL_PIECES = 12;

public static final int ALL_SQUARES = 64;

// Indices of the "shortcut" bitbcards containing information on "all black
// pieces" and "all white pieces"

public static final int ALL _WHITE PIECES = ALL_PIECES + jcPlayer.SIDE_WHITE;
public static final int ALL_BLACK PIECES = ALL_PIECES + jcPlayer.SIDE_BLACK;
public static final int ALL _BITBOARDS = 14;

// The possible types of castling moves; add the "side" constant to

// pick a specific move for a specific player
public static final int CASTLE_KINGSIDE = 0;

67

public static final int CASTLE_QUEENSIDE = 2;

/"t't"""""t""'ttt't"ttt""'Qt""""tt'tt"t""""'t""'t"'t'

* DATA MEMBERS

"""'Q".""""""t"."""""""'""'."'t'""""""Q"""tt/

// An array of bitfields, each of which contains the single bit associated
// with a square in a bitboard
public static long SquareBits({];

// Private table of random numbers used to compute Zobrist hash values
// Contains a signature for any kind of piece on any square of the board
private static int HashKeyComponents(] [];

private static int HashLockComponents{] (}];

// Private table of tokens (string representations) for all pieces
public static String PieceStrings(};

// Data needed to compute the evaluation function
private int MaterialvValue{];

private int NumPawns{];

private static int PieceValues(];

// And a few flags for special conditions. The ExtraKings are a device

// used to detect illegal castling moves: the rules of chess forbid castling
// when the king is in check or when the square it flies over is under

// attack; therefore, we add "phantom kings" to the board for one move only,
// and if the opponent can capture one of them with its next move, then

// castling was illegal and search can be cancelled

private long ExtraKings(}:;

public static long EXTRAKINGS WHITE_KINGSIDE;

public static long EXTRAKINGS_WHITE_QUEENSIDE;

public static long EXTRAKINGS BLACK_KINGSIDE;

public static long EXTRAKINGS_ BLACK_QUEENSIDE;

public static long EMPTYSQUARES_WHITE_KINGSIDE;

public static long EMPTYSQUARES_WHITE_QUEENSIDE;

public static long EMPTYSQUARES_BLACK_KINGSIDE;

public static long EMPTYSQUARES_BLACK_QUEENSIDE;

// static member initialization
static

// Build the SquareBits constants
SquareBits = new long[ALL_SQUARES };
for(int i = 0; i < ALL_SQUARES; i++)}

// Note: the 1L specifies that the 1 we are shifting is a long int
// Java would, by default, make it a 4-byte int and be unable to
// shift the 1 to bits 32 to 63

SquareBits[i] = (1L << i);

// Build the extrakings constants

EXTRAKINGS_WHITE_KINGSIDE = SquareBits[60] | SquareBits([61];
EXTRAKINGS_WHITE_QUEENSIDE = SquareBits([60] | SquareBits[59];
EXTRAKINGS_BLACK_KINGSIDE = SquareBits[4] | SquareBits[5 |;
EXTRAKINGS_BLACK_QUEENSIDE = SquareBits[4] | SquareBits[3]:
EMPTYSQUARES_WHITE_KINGSIDE = SquareBits{ 61] | SquareBits| 62 |;
EMPTYSQUARES_WHITE_QUEENSIDE = SquareBits[59] | SquareBits[58] | SquareBits[57];
EMPTYSQUARES_BLACK_KINGSIDE = SquareBits[5] | SquareBits[6 |;
EMPTYSQUARES_BLACK_QUEENSIDE = SquareBits([3] | SquareBits[2] | SquareBits[1];

// Build the hashing database

HashKeyComponents = new int[ALL_PIECES] [ALL_SQUARES];
HashLockComponents = new int [ALL_PIECES] [ALL_SQUARES]:
Random rnd = new Random();

for(int i = 0; i < ALL_PIECES; i++ }

{

for(int j = 0; j < ALL_SQUARES; j++)

HashKeyComponents{ i }J[j] = rnd.nextInt();

68

HashLockComponents(i][j | = rnd.nextInt(};

}

// Tokens representing the various concepts in the game, for printint
// and file i/o purposes

// PieceStrings contains an extra string representing empty squares
PieceStrings = new String{ ALL_PIECES + 1];

PieceStrings(WHITE_PAWN] = "WP";

PieceStrings[WHITE_ROOK] =
PieceStrings{ WHITE_KNIGHT | = "WN";
PieceStrings(WHITE_BISHOP }
PieceStrings|[WHITE QUEEN] = "WQ";
PieceStrings[WHITE_KING] = "WK";
PieceStrings(BLACK PAWN | =
PieceStrings(BLACK ROOK | =
PieceStrings[BLACK_KNIGHT | = "BN";
PieceStrings{ BLACK_BISHOP]
PieceStrings(BLACK QUEEN] = “BQ";
PieceStrings(BLACK_KING |
PieceStrings(ALL_PIECES | = ;

"

3
w
o}

// Numerical evaluation of piece material values
PieceValues = new int[ALL PIECES];

PieceValues [WHITE_PAWN | = 100;
PieceValues[BLACK_PAWN] = 100;
PieceValues(WHITE_KNIGHT] = 300;
PieceValues(BLACK_KNIGHT] = 300;
PieceValues [WHITE_BISHOP] = 350;
PieceValues [BLACK_BISHOP] = 350;
PieceValues| WHITE_ROOK | = 500;
PieceValues[BLACK_ROOK] = 500;
PieceValues BLACK _QUEEN] = 900;
PieceValues[WHITE_QUEEN] = 900;
PieceValues|{ WHITE_KING]| = 2000;

PieceValues [BLACK KING] = 2000;

}

// The actual data representarion of a chess board. First, an array of
// bitboards, each of which contains flags for the squares where you can
// find a specific type of piece

private long BitBoards(];

// And a few other flags

private boolean CastlingStatus(];
private boolean HasCastled(];
private long EnPassantPawn;

// Whose turn is it?
int CurrentPlayer;

/t'ttt""t't'"'ttt't"'.ttt"'tt'tt'"""""t'tt"t't'ttt"'t"t'ttt't'

* METHODS

t"t't'Qttt"""t""'t"ttt.t'tttt"'t't""t't'""tt"'t't""tttt"'t/

// Accessors

public boolean GetCastlingStatus(int which) { return CastlingStatus[which]; }
public boolean GetHasCastled(int which } { return HasCastled[which]; }

public long GetEnPassantPawn() { return EnPassantPawn;

public long GetExtraKings({ int side) { return ExtraKings[side]; }

public void SetExtraKings(int side, long val)

// Mark a few squares as containing "phantom kings" to detect illegal
// castling

ExtraKings(side] = val;
BitBoards[KING + side | |= ExtraKings[side };
BitBoards(ALL_PIECES + side] |= ExtraKings[side];

}

public void ClearExtraKings(int side)

-

BitBoards ([KING + side | “= ExtraKings(side];

69

BitBoards{ ALL_PIECES +

side] “= ExtraKings[side];

// Note: one of the Extra Kings is superimposed on the rook involved in

// the castling, so the
// forgetting about the

next step is required to prevent ALL_PIECES from
rook at the same time as the phantom king

BitBoards ([ALL_PIECES + side | |= BitBoards[ROOK + side];

ExtraKings[side | = 0;

public int GetCurrentPlayer() ({ return CurrentPlayer; }
public long GetBitBoard(int which) { return BitBoards[which]; }

// Look for the piece located on a specific square

public int FindBlackPiece(int square)

{
// Note: we look for kings first for two reasons: because it helps
// detect check, and because there may be a phantom king (marking an
// illegal castling move) and a rook on the same square!

if ((BitBoards[BLACK_KING | & SquareBits[square]) t!= 0)
return BLACK_KING:
if ((BitBoards|[BLACK_QUEEN]| & SquareBits(square }) != 0)
recturn BLACK_QUEEN;
if ((BitBoards[BLACK_ROOK | & SquareBits[square] } ‘= 0)
return BLACK_ROOK;
if ((BitBoards[BLACK_KNIGHT] & SquareBits(square]) != 0)
return BLACK_KNIGHT:
if ((BitBoards({ BLACK BISHOP] & SquareBits|[square])} != 0)
return BLACK_BISHOP;
if ((BitBoards[BLACK PAWN]| & SquareBits([square]) != 0)
return BLACK_PAWN;
return EMPTY_ SQUARE;
}
public int FindWhitePiece(int square)
{
if ((BitBoards[WHITE_KING] & SquareBits{ square] } != 0)
return WHITE_KING;
if ((BitBoards[WHITE_QUEEN] & SquareBits([square]) != 0)
return WHITE_QUEEN;
if ((BitBoards|[WHITE_ROOK] & SquareBits([square |) != 0)
return WHITE_ROOK;
if ((BitBoards|{ WHITE_KNIGHT] & SquareBits(square])} != 0)
return WHITE_KNIGHT;
if ((BitBoards[WHITE_BISHOP] & SquareBits(square]) != 0)
return WHITE_BISHOP;
if ((BitBoards[WHITE_PAWN]| & SquareBits([square]) != 0)

return WHITE_PAWN;
return EMPTY_SQUARE;

// Constructor
public jcBoard()

BitBoards = new long(ALL_BITBOARDS];
CastlingStatus = new boolean{ 4];
HasCastled = new boolean{ 2];
ExtraKings = new long{ 2]:

NumPawns = new int[2];
MaterialvValue = new int[2);
StartingBoard();

}

// public boolean Clone

// Make a deep copy of a jcBoard object; assumes that memory has already

// been allocated for the new object, which is always true since we

// "allocate" jcBoards from a permanent array

public boolean Clone(jcBoard target)

{
EnPassantPawn =
for(int i = 0;

target .EnPassantPawn;
1 < 4; i++)

CastlingStatus[i] = target.CastlingStatus(i }:

70

for(int i = 0; i < ALL_BITBOARDS; i++)

BitBoards(i] = target.BitBoards{ i]:

}
MaterialValue(0] = target.MaterialvValue(0];
Materialvalue[1] = target.MaterialValue(1];

NumPawns [0]
NumPawns [1 |}
ExtraKings[0
ExtraKings([1
HasCastled[0
HasCastled[1
CurrentPlayer
return true;

}

// public boolean Print
// Display the board on standard output
public boolean Print()

{

for(int line = 0; line < 8; line++ }

{
System.out.println("----------o-coccmomonooe e ")
System.out.println(*| | | | | | | | [;
for(int col = 0; col < 8; col++)

{

long bits = SquareBits[line * 8 + col };

target .NumPawns([0];
target .NumPawns[1];
target .ExtraKings(
target .ExtraKings [
target .HasCastled|(
target .HasCastled [
target.CurrentPlayer;

= O+ o
— et —

W oottt e

// Scan the bitboards to find a piece, if any

int piece = 0;

while ((piece < ALL_PIECES) & ((bits & BitBoards(piece]) == 0))
piece++;

// One exception: don't show the "phantom kings" which the program places
// on the board to detect illegal attempts at castling over an attacked

// square
if ((piece == BLACK KING) &&
{ (ExtrakKings[jcPlayer.SIDE_BLACK | & SquareBits([line * 8 ¢« col]) != 0)

piece = EMPTY_SQUARE;
if ((piece == WHITE_KING) &&
((ExtraKings(jcPlayer.SIDE_WHITE | & SquareBits[line = 8 + col]) !=0))
piece = EMPTY_SQUARE;

// Show the piece
System.out .print("| * + PieceStrings{ piece | + " " };
}
System.out.println{ *|* };
System.out.println{ "| |] | | | | | [");
}
System.out.println{ M------------emccooommmeccmcme oo e ")
if (CurrentPlayer == jcPlayer.SIDE_BLACK)
System.out.println("NEXT MOVE: BLACK ");
else
System.out.println{ "NEXT MOVE: WHITE");

return true;

}

// public int SwitchSides
// Change the identity of the player to move
public int SwitchSides()

if (CurrentPlayer == jcPlayer.SIDE_WHITE)
SetCurrentPlayer(jcPlayer.SIDE_BLACK);
else
SetCurrentPlayer(jcPlayer.SIDE_WHITE) ;

return CurrentPlayer;

}

// public int HashKey

71

// Compute a 32-bit integer to represent the board, according to Zobrist (70]
public int HashKey()
{
int hash = 0;
// Look at all pieces, one at a time
for(int currPiece = 0; currPiece < ALL_PIECES; currPiece++)
{
long tmp = BitBoards|[currPiece };
// Search for all pieces on all squares. We could optimize here: not
// looking for pawns on the back row (or the eight row), getting out
// of the "currSqaure" loop once we found one king of one color, etc.
// But for simplicity's sake, we'll keep things generic.
for(int currSquare = 0; currSquare < ALL_SQUARES; currSquare++)
{
// Zobrist's method: generate a bunch of random bitfields, each
// representing a certain "piece X is on square Y" predicate; XOR
// the bitfields associated with predicates which are true.
// Therefore, if we find a piece (in tmp) in a certain square,
// we accumulate the related HashKeyComponent.
if ((tmp & SquareBits(currSquare]) !'= 0)
hash "= HashKeyComponents{ currPiece][currSquare];
}
}

return hash;

// public int HashLock

// Compute a second 32-bit hash key, using an entirely different set
// piece/square components.

// This is required to be able to detect hashing collisions without
// storing an entire jcBoard in each slot of the jcTranspositionTable,
// which would gobble up inordinate amounts of memory

public int HashLock()

int hash = 0;
for{ int currPiece = 0; currPiece < ALL_PIECES; currPiece++)
{
long tmp = BitBoards|[currPiece] ;
for(int currSquare = 0; currSquare < ALL SQUARES; currSquare++)

if ((tmp & SquareBits[currSquare]) != 0)
hash “= HashLockComponents[currPiece] [currSquare |;
'
}

return hash;

}

// public boolean ApplyMove

// Change the jcBeuard's internal representation to reflect the move

// received as a parameter

public boolean ApplyMove(jcMove theMove)

{
// If the move includes a pawn promotion, an extra step will be required
// at the end
boolean isPromotion = (theMove.MoveType >= jcMove.MOVE_PROMOTION_KNIGHT) ;
int moveWithoutPromotion = (theMove.MoveType & jcMove.NO_PROMOTION_MASK) :
int side = theMove.MovingPiece % 2;

// For now, ignore pawn promotions
switch(moveWithoutPromotion)
{
case jcMove.MOVE_NORMAL:
// The simple case
RemovePiece(theMove.SourceSquare, theMove.MovingPiece) ;
AddPiece(theMove.DestinationSquare, theMove.MovingPiece);
break;
case jcMove .MOVE_CAPTURE_ORDINARY:
// Don't forget to remove the captured piece!
RemovePiece(theMove.SourceSquare, theMove.MovingPiece);
RemovePiece(theMove.DestinationSquare, theMove.CapturedPiece);
AddPiece(theMove.DestinationSquare, theMove.MovingPiece);

72

break;
case jcMove.MOVE_CAPTURE_EN_PASSANT:
// Here, we can use our knowledge of the board to make a small
// optimization, since the pawn to be captured is always
// "behind" the moving pawn's destination square, we can compute its
// position on the fly
RemovePiece (theMove.SourceSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, theMove.MovingPiece);

if ((theMove.MovingPiece ¥ 2) == jcPlayer.SIDE_WHITE)

RemovePiece(theMove.DestinationSquare + 8, theMove.CapturedPiece);
else

RemovePiece(theMove.DestinationSquare - 8, theMove.CapturedPiece) ;
break;

case jcMove.MOVE_CASTLING QUEENSIDE:
// Again, we can compute the rook's source and destination squares
// because of our knowledge of the board's structure
RemovePiece(theMove.SourceSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, theMove.MovingPiece);
int theRook = ROOK + (theMove.MovingPiece % 2);
RemovePiece(theMove.SourceSquare - 4, theRook };
Addpiece(theMove.SourceSquare - 1, theRook);
// We must now mark some squares as containing "phantom kings" so that
// the castling can be cancelled by the next opponent's move, if he
// can move to one of them
if (side == jcPlayer.SIDE_WHITE)
{

SetExtraKings (side, EXTRAKINGS_WHITE_QUEENSIDE)} ;

}

else

{

SetExtraKings(side, EXTRAKINGS BLACK_QUEENSIDE) ;

HasCastled[side] = true;
break;
case jcMove.MOVE_CASTLING_KINGSIDE:
// Again, we can compute the rook's source and destination squares
// because of our knowledge of the bcard's structure
RemovePiece (theMove.SourceSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, theMove.MovingPiece);
theRook = ROOK + (theMove.MovingPiece % 2);
RemovePiece(theMove.SourceSquare + 3, theRook) ;
AddPiece(theMove.SourceSquare + 1, theRook);
// We must now mark some squares as containing "phantom kings" so that
// the castling can be cancelled by the next opponent's move, if he
// can move to one of them
if (side == jcPlayer.SIDE_WHITE)

SetExtraKings(side, EXTRAKINGS_WHITE KINGSIDE);

else

{

SetExtraKings(side, EXTRAKINGS_BLACK_KINGSIDE) ;

HasCastled{ side] = true;
break;
case jcMove.MOVE_RESIGN:
// FDL Later, ask the AI player who resigned to print the continuation
break;
case jcMove .MOVE_STALEMATE:
System.out .println("Stalemate - Game is a draw.");
break;

}

// And now, apply the promotion
if (isPromotion)

int promotionType = (theMove.MoveType & jcMove.PROMOTION _MASK) ;
int color = (theMove.MovingPiece % 2);
switch(promotionType)

case jcMove.MOVE_PROMOTION_KNIGHT:

73

RemovePiece(theMove.DestinationSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, KNIGHT + color);
break;

case jcMove.MOVE_PROMOTION_BISHOP:
RemovePiece(theMove.DestinationSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, BISHOP + color):
break;

case jcMove.MOVE_PROMOTION_ROOK:
RemovePiece(theMove.DestinationSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, ROOK + color };
break;

case jcMove.MOVE_PROMOTION_QUEEN:
RemovePiece(theMove.DestinationSquare, theMove.MovingPiece);
AddPiece(theMove.DestinationSquare, QUEEN + color };
break;

}
}

// If this was a 2-step pawn move, we now have a valid en passant
// capture possibility. Otherwise, no.
if ((theMove.MovingPiece == jcBoard.WHITE_PAWN) &&
(theMove.SourceSquare - theMove.DestinationSquare == 16))
SetEnPassantPawn(theMove.DestinationSquare + 8 };
else if ((theMove.MovingPiece == jcBoard.BLACK_PAWN) &&
(theMove.DestinationSquare - theMove.SourceSquare == 16))
SetEnPassantPawn(theMove.SourceSquare + 8);
else
ClearEnPassantPawn () ;

// And now, maintain castling status

// If a king moves, castling becomes impossible for that side, for the
// rest of the game

switch(theMove.MovingPiece)

case WHITE_KING:
SetCastlingStatus(CASTLE_KINGSIDE + jcPlayer.SIDE_WHITE, false };
SetCastlingStatus{ CASTLE_QUEENSIDE + jcPlayer.SIDE_WHITE, false);
break;

case BLACK_KING:
SetCastlingStatus(CASTLE_KINGSIDE + jcPlayer.SIDE_BLACK, false);
SetCastlingStatus(CASTLE_QUEENSIDE + jcPlayer.SIDE_BLACK, false);
break;

default:
break;

}

// Or, if ANYTHING moves from a corner, castling becomes impossible on
// that side (either because it's the rook that is moving, or because

// it has been captured by whatever moves, or because it is already gone)
switch(theMove.SourceSquare)

case 0:
SetCastlingStatus(CASTLE_QUEENSIDE + jcPlayer.SIDE_BLACK, false);
break;

case 7:
SetCastlingStatus(CASTLE_KINGSIDE + jcPlayer.SIDE_BLACK, false);
break;

case 56:
SetCastlingStatus(CASTLE_QUEENSIDE + jcPlayer.SIDE_WHITE, false);
break;

case 63:
SetCastlingStatus(CASTLE_KINGSIDE + jcPlayer.SIDE_WHITE, false);
break;

default:
break;

}

// All that remains to do is switch sides
SetCurrentPlayer((GetCurrentPlayer() + 1) % 2);
return true;

74

// public boolean Load
// Load a board from a file
public boolean Load(String fileName) throws Exception
{
// Clean the board first
EmptyBoard() ;

// Open the file as a Java tokenizer

FileReader fr = new FileReader(fileName) ;
StreamTokenizer tok = new StreamTokenizer{ fr);
tok.eollsSignificant(false);
tok.lowerCaseMode(false };

// Whose turn is it to play?

tok.nextToken() ;

if (tok.sval.equalsIgnoreCase(jcPlayer.PlayerStrings(jcPlayer.SIDE_WHITE]))}
SetCurrentPlayer(jcPlayer.SIDE_WHITE) ;

else
SetCurrentPlayer(jcPlayer.SIDE_BLACK):

// Read the positions of all the pieces

// First, look for the number of pieces on the board
tok.nextToken(} ;

int numPieces = (int) tok.nval;

// Now, loop on the pieces in question
for(int i = 0; 1 < numPieces; i++)

// What kind of piece is this, and where does it go?
tok.nextToken ()} ;
String whichPieceStr = tok.sval;

int whichPiece = 0;
while (!whichPieceStr.equalsIgnoreCase(PieceStrings{ whichPiece] })}
whichPiece++;

tok.nextToken () ;
int whichSquare = (int) tok.nval;

// Add the piece to the board
AddPiece (whichSquare, whichPiece };

}

// Now, read the castling status flags
for(int 1 = 0; 1 < 4; i++)
{
tok.nextToken() ;
if ("TRUE".equalsIgnoreCase(tok.sval) }
SetCastlingStatus{ i, true);
else
SetCastlingStatus{ i, false);

}

// And finally, read the bitboard representing the position of the en
// passant pawn, if any

tok.nextToken(} ;

SetEnPassantPawn((long) tok.nval);

fr.closel(};
return true;

}

// public boolean Save
// Save the state of the game to a file
public boolean Save{ String fileName) throws Exception

// Open the file for business

FileWriter fr = new FileWriter(fileName);
BufferedWriter bw = new Bufferedwriter(fr);

75

// Whose turn is it?
bw.write(jcPlayer.PlayerStrings[CurrentPlayer |);
bw.newLine() ;

// Count the pieces on the board
int numPieces = 0;
for(int i = 0; i < ALL_SQUARES; i++)

if ((squareBits[i] & BitBoards{ ALL_WHITE_PIECES |) !=0)
numPieces++;

if ((SquareBits{ i] & BitBoards([ALL_BLACK_PIECES | } != 0)
numPieces++;

}

bw.write(String.valueOf(numPieces));
bw.newLine () ;

// Dump the pieces, one by one
for(int piece = 0; piece < ALL_PIECES; piece++)

for(int square = 0; square < ALL_SQUARES; square++ !
{
if ((BitBoards(piece | & SquareBits|[square }) != 0)
{
bw.write(PieceStrings|[piece] + " " + String.valueOf(square)):
bw.newLine () ;
}
}
}

// And finally, dump the castling status and the en passant pawn
for(int i = 0; i < 4; i++)
{
if (CastlingStatus[i])
bw.write("TRUE");
else
bw.write(®"FALSE");
bw.newLine () ;

}

bw.write(String.valueOf(EnPassantPawn));

bw.close();
return true;

// public int EvalMaterial

// Compute the board's material balance, from the point of view of the "side"
// player. This is an exact clone of the eval function in CHESS 4.5

public int EvalMaterial(int side)

{

// If both sides are equal, no need to compute anything!

if (MaterialvValue[jcPlayer.SIDE_BLACK | == Materialvalue[jcPlayer.SIDE_WHITE])
return 0;
int otherSide = (side + 1) % 2;

int matTotal = MaterialValue([side] + MaterialvValue{ otherSide];

// Who is leading the game, material-wise?
if (Materialvaluel jcPlayer.SIDE_BLACK] > MaterialValue([jcPlayer.SIDE_WHITE])
{
// Black leading
int matDiff = Materialvalue{ jcPlayer.SIDE_BLACK] - MaterialvValue[jcPlayer.SIDE_WHITE |;
int val = Math.min(2400, matDiff) +
(matDiff * (12000 - matTotal) * NumPawns[jcPlayer.SIDE_BLACK])}
/ (6400 * { NumPawns | jcPlayer .SIDE_BLACK | + 1)):
if (side == jcPlayer.SIDE_BLACK)
return val;
else
return -val;
}

else

76

// White leading
int matDiff = MaterialvValue(jcPlayer.SIDE_WHITE]| - MaterialValue(jcPlayer.SIDE_BLACK];
int val = Math.min(2400, matDiff) +

(matDiff * (12000 - matTotal) * NumPawns[jcPlayer.SIDE_WHITE])

/ (6400 * (NumPawns|[jcPlayer.SIDE WHITE] + 1));

if (side == jcPlayer.SIDE_WHITE)
return val;

else
return -val;

}
}

// public boolean StartingBoard

// Restore the board to a game-start position
public boolean StartingBoard()

{

// Put the pieces on the board

EmptyBoard () ;

AddPiece(0, BLACK_ROOK):
AddPiece(1, BLACK_KNIGHT);
AddPiece(2, BLACK_BISHOP) ;
AddPiece(3, BLACK_QUEEN);
AddPiece(4, BLACK_KING):
AddPiece(5, BLACK BISHOP);
AddPiece(6, BLACK_KNIGHT);
AddPiece(7, BLACK_ROOK);
for(int 1 = 8; i < 16; i++)

AddPiece(i, BLACK_PAWN)

}
for(int i = 48; 1 < 56; i++)
AddPiece(i, WHITE_PAWN);

AddPiece(S6, WHITE_ROOK):
AddPiece(57, WHITE_KNIGHT);
Addpiece(58, WHITE_BISHOP);
AddPiece(59, WHITE_QUEEN);
AddPiece(60, WHITE_KING);
AddPiece(61, WHITE_BISHOP);
AddPiece(62, WHITE_KNIGHT);
AddPiece(63, WHITE_ROOK):

// And allow all castling moves
for(int i = 0; i < 4; i++)

{

CastlingStatus|[i] = true;
HasCastled[0 | = false;
HasCastled[1 | = false;

ClearEnPassantPawn() ;

// And ask White to play the first move
SetCurrentPlayer{ jcPlayer.SIDE_WHITE);
return true;

}

/"""""'.Q"."""""'Q"".""'tt'""""""t"t"""'""""""Q'

* PRIVATE METHODS

""""""""'tt"'t""""""'tt""'tt"'tt""t't".'t"""""""'/

// private boolean AddPiece
// Place a gpecific piece on a specific board square
private boolean AddPiece(int whichSquare, int whichPiece)

// Add the piece itself
BitBoards[whichPiece] |= SquareBits[whichSquare };

77

// And note the new piece position in the bitboard containing all

// pieces of its color. Here, we take advantage of the fact that

// all pieces of a given color are represented by numbers of the same

// parity

BitBoards| ALL_PIECES + (whichPiece % 2)] |[= SquareBits[whichSquare];

// And adjust material balance accordingly
MaterialValue{ whichPiece ¥ 2] += PieceValues|[whichPiece];
if (whichPiece == WHITE_PAWN)
NumPawns [jcPlayer.SIDE_WHITE }++;
else if (whichPiece == BLACK_PAWN)
NumPawns [jcPlayer.SIDE_BLACK]++;

return true;

}

// private boolean RemovePiece

// Eliminate a specific piece from a specific square on the board

// Note that you MUST know that the piece is there before calling this,
// or the results will not be what you expect!

private boolean RemovePiece(int whichSquare, int whichPiece)

// Remove the piece itself
BitBoards{ whichPiece] “= SquareBits[whichSquare];
BitBoards [ALL_PIECES + (whichPiece % 2)] “= SquareBits[whichSquare];

// And adjust material balance accordingly
MaterialValuel whichPiece % 2] -= PieceValues[whichPiece |;
if (whichPiece == WHITE_PAWN)
NumPawns [jcPlayer .SIDE_WHITE]--;
else if (whichPiece == BLACK_PAWN)
NumPawns [jcPlayer.SIDE_BLACK] --;
return true;

// private boolean EmptyBoard
// Remove every piece from the board
private boolean EmptyBoard()

for(int 1 = 0; i < ALL_BITBOARDS; i++)

{

BitBoards([i] = 0;
ExtraKings[0] = 0;
ExtraKings[1] = 0;

= 0;

EnPassantPawn :
Materialvalue{ 0] = 0;
Materialvalue[1] =
NumPawns[0] = 0;
NumPawns[1 | = 0
return true;

}

// private boolean SetCastlingStatus
// Change one of the "castling status" flags
// parameter whichFlag should be a sum of a side marker and a castling
// move identifier, for example, jcPlayer.SIDE_WHITE + CASTLE_QUEENSIDE
private boolean SetCastlingStatus{ int whichFlag, boolean newValue)
{

CastlingStatus| whichFlag] = newValue;

return true;

// private boolean SetEnPassantPawn

// If a pawn move has just made en passant capture possible, mark it as
// such in a bitboard (containing the en passant square only)

private boolean SetEnPassantPawn(int square)

ClearEnPassantPawn () ;
EnPassantPawn |= SquareBits([square };

78

}

return true;

private boolean SetEnPassantPawn(long bitboard)

{

//
//
!/
//
//
//
//

EnPassantPawn = bitboard;
return true;

private boolean ClearEnPassantPawn

Indicates that there is no en passant square at all. Technically, this
job could have been handled by SetEnPassaantPawn(long)} with a null
parameter, but I have chosen to add a method to avoid problems if I ever
forgot to gpecify OL: using 0 would call the first form of the Set method
and indicate an en passant pawn in a corner of the board, with possibly
disastrous consequences!

private boolean ClearEnPassantPawn()

{

}

/!
/1

EnPassantPawn = 0
return true;

private boolean SetCurrentPlayer
Whose turn is it?

private boolean SetCurrentPlayer(int which)

{

CurrentPlayer = which;

}

return true;

79

/tt't"t"t'Q"'ttt""tttt't't"ttt'."""""'ttt't"tt""'t'ﬁ't'tt""t'

* jcMove.java - An encapsulation of a chess move and its consequences
by Frangois Dominic Laramée

Purpose: This class is used all over the place. It contains a move's
source and target squares, a type identifier (i.e., a normal move, a pawn
promotion, etc.) and a score, whether an actual evaluation of the position
which would result from the move or a value taken from the history table.

History

11.06.00 Creation

09.07.00 Added fields MovingPiece and CapturedPiece; while not absolutely
needed, they do accelerate move processing and help to make code
easier to understand, so I gladly keep them around as optimizations

14.08.00 Added "search depth" field, so that we can determine whether a

- transposition table entry should be used or not.

"'t"'ttt""tttttt't"t't""t"'tto"t"t"t"t'tt'ttt""'t'""'tt"t'/

package javachess;

* % % % % % % % 3 % % % @

public class jcMove

{

/"'.""'Q""."""'."""t"""""."""t""t"""""""""'

* CONSTANTS

"'."""""""".""""""""'"""""""'"""""""""/

// The different types of moves recognized by the game
public static fipal int MOVE_NORMAL = 0:

public static final int MOVE_CAPTURE_ORDINARY = 1;
public static final int MOVE_CAPTURE_EN_PASSANT = 2;
public static final int MOVE_CASTLING _KINGSIDE = 4;
public static final int MOVE_CASTLING_QUEENSIDE = 8;
public static fipal int MOVE_RESIGN = 16;

public static final int MOVE_STALEMATE = 17;

public static final int MOVE_PROMOTION_KNIGHT = 32;
public static final int MOVE_PROMOTION_BISHOP = 64;
public static final int MOVE_PROMOTION ROOK = 128;
public static final int MOVE_PROMOTION_QUEEN = 256;

// A pair of masks used to split the promotion and the non-promotion part of
// a move type ID

public static final int PROMOTION MASK = 480;

public static final int NO_PROMOTION_MASK = 31;

// Alphabeta may return an actual move potency evaluation, or an upper or
// lower bound only (in case a cutoff happens). We need to store this

// information in the transposition table to make sure that a given

// value is actually useful in given circumstances.

public static final int EVALTYPE_ACCURATE = 0;

public static final int EVALTYPE_UPPERBOUND = 1;

public static final int EVALTYPE_LOWERBOUND = 2;

// A sentinel value used to identify jcMove fields without valid data
public static final int NULL_MOVE = -1;

/."'t"""'."t'""""""""t""""""'"t."t't""""""t't'
* DATA MEMBERS
* Note: this class is intended as a C++ structure, so all data members

* have public access.
"'"""Q""""""""'"."""t"'""'t't"""'t""'"""""/

// The moving piece; one of the constants defined by jcBoard
public int MovingPiece;

// The piece being captured by this move, if any; another jcBoard constant
public int CapturedPiece;

// The squares involved in the move
public int SourceSquare, DestinationSquare;

// A type ID: is this a regular move, a capture, a capture AND promotion from
// Pawn to Rook, etc. Move generation determines this, by definition; storing

80

// it here avoids having to "re-discover" the information in jcBoard.ApplyMove
// at the cost of a few bytes
public int MoveType;

// An evaluation of the move's potency, either as a result of an alphabeta
// search of some kind or of a retrieval in the transposition table
public int MoveEvaluation;

public int MoveEvaluationType;

public int SearchDepth;

/.""""."""""""""t'"".""""""t""'"""""""".'.'

* PUBLIC METHODS

"""""."."""""""""""'t'.""."'.'"""""""""""'/

public jcMove ()

this.Reset () ;

}

public void Copy(jcMove target)

MovingPiece = target.MovingPiece;

CapturedPiece = target.CapturedPiece;
SourceSquare = target.SourceSquare;
DestinationSquare = target .DestinationSquare;
MoveType = target .MoveType;

MoveEvaluation = target.MoveEvaluation;
MoveEvaluationType = target.MoveEvaluationType;
SearchDepth = target.SearchDepth;

}

// public boolean Equals(jcMove target)

// Check whether two jcMove objects contain the same data (not necessarily
// whether they are the same object in memory)

public boolean Equals(jcMove target)

if (MovingPiece != target.MovingPiece)
return false;
if (CapturedPiece != target.CapturedPiece }

return false;
if (MoveType != target .MoveType)
return false;

if (SourceSquare != target.SourceSquare)
return false;
if (DestinationSquare != target.DestinationSquare)

return false;
return true;

}
public boolean Reset()

MovingPiece = jcBoard.EMPTY_SQUARE;
CapturedPiece = jcBoard.EMPTY_SQUARE;
SourceSquare = NULL_MOVE;
DestinationSquare = NULL_MOVE;
MoveType = NULL_MOVE;

MoveEvaluation = NULL_MOVE;
MoveEvaluationType = NULL_MOVE;
SearchDepth = NULL_MOVE;

return true;

}

public void Print()

System.out.print{ "Move: " };
if (MoveType == MOVE_STALEMATE)

{

System.out.println("STALEMATE!!!");

if (MoveType != MOVE_RESIGN)

{

81

System.out .print(jcBoard.PieceStrings{ MovingPiece]);
System.out.print(* [" };
System.out .print (SourceSquare) ;
System.out.princ(", " };
System.out.print (DestinationSquare);
System.out.print("] TYPE: ");
System.out.println(MoveType);
}

else

{
System.out.println("RESIGNATION!" };
}
}
}

82

/"'"""'"'"'t""""'""'.""""""""""'.""""""'"""""'

-
-

-

L4
-
»
-
-

jcMoveListGenerator.java - Find all pseudo-legal moves given a board state
by F.D. Laramée

Purpose: Identify a list of possible moves

History:
27.07.00 Creation

't""'tt""tt.t.to..'t.t"'t'tt'tt"t"""'t"'t'""'ttt"t"tt"tt"tt'/

package javachess;
import javachess.jcBoard;
import javachess.jcMove;
import java.util.e;

public class jcMoveListGenerator

{

/""'."""'"""."""""""'"'""""'""."'."""""""""

*+ INSTANCE VARIABLES

""""t"'t"Q'Q"""""'Q'Qt't"t'Qt"tt'tt"ttt'ttt't"tott"t""'/

// The list of moves, implemented as a java collection class, namely the
// ArrayList (dynamic array!

ArraylList Moves;

Iterator MovesIt;

/'t"""""'""."'"'"'tt""."""'.""""""""""""""""

* PUBLIC METHODS

'Qttt't"tt't'ttt"c't"t't'tt't't'tt"'t'ttttttt'tt"'t't'"'0"""""/

// Construction
public jcMoveListGenerator ()

Moves = new ArrayList{(10)
MovesIt = null;
ResetIterator() ;

}

// public void ResetIterator
// Prepare an iterator for scanning through the list of moves
public void ResetlIterator()

{

// Mark the old iterator, if any, for garbage collection
if (MovesIt != null)
MovesIt = null;

// Make a new iterator ready for scanning
MovesIt = Moves.iterator();

}

// Accessors
public ArrayList GetMoveList({)} { return Moves; }
public int Size() { return Moves.size(); }

// public boolean Find{ jcMove mov)
// Look for a specific move in the list; if it is there, return true
// This is used by the jcPlayerHuman object, to verify whether a move entered
// by the player is actually valid
public boolean Find(jcMove mov)
{
ResetIterator();
jcMove testMove;
while((testMove = Next ()) != null)

if (mov.Equals(testMove))
return true;

return false;

83

// public jcMove FindMoveForSquares(int source, int dest)
// look for a move from "source" to "dest" in the list
public jcMove FindMoveForSquares(int source, int dest)}

ResetIterator();
jcMove testMove;
while((testMove = Next()) != null)}
{
if ((testMove.SourceSquare == source) && (testMove.DestinationSquare == dest)

return testMove;

return null;

}

// public jcMove Next ()
// Find the next move in the list, if any
public jcMove Next ()

if (MovesIt.hasNext ())
return (jcMove) MovesIt.next();
else
return null;
}

// public boolean ComputeLegalMoves
// Look at the board received as a parameter, and build a list of legal
// moves which can be derived from it. If there are no legal moves, or if
// one of the moves is a king capture (which means that the opponent's
// previous move left the king in check, which is illegal), return false.
public boolean ComputeLegalMoves(jcBoard theBoard)
{
// First, clean up the old list of moves, if any
Moves.clear () ;

// Now, compute the moves, one piece type at a time

if (theBoard.GetCurrentPlayer() == jcPlayer.SIDE_WHITE)

{
// Clean up the data structures indicating that the last white move
// was a castling, if any
if (theBoard.GetExtraKings(jcPlayer.SIDE_WHITE) != 0)

{

theBoard.ClearExtraKings(jcPlayer.SIDE_WHITE };
}
// Check for white moves, one piece type at a time
// if any one type can capture the king, stop the work immediately
// because the board position is illegal

if (!ComputeWhiteQueenMoves(theBoard)) return false;

if (!ComputeWhiteKingMoves(theBoard)) return false;

if (!ComputeWhiteRookMoves(theBoard, jcBoard.WHITE_ROOK)) return false;

if (!ComputeWhiteBishopMoves(theBoard, jcBoard.WHITE_BISHOP)) return false;
if (!ComputeWhiteKnightMoves(theBoard)) return false;

if (!ComputeWhitePawnMoves(theBoard)) return false;

else // Compute Black's moves
if (theBoard.GetExtraKings(jcPlayer.SIDE_BLACK) != 0)

theBoard.ClearExtraKings(jcPlayer.SIDE_BLACK };

}
if (!ComputeBlackQueenMoves(theBoard }) return false;

if (!ComputeBlackKingMoves(theBoard)) return false;

if (!ComputeBlackRookMoves{ theBoard, jcBoard.BLACK_ROOK)}) return false;

if (!ComputeBlackBishopMoves(theBoard, jcBoard.BLACK_BISHOP)) return false;
if (!ComputeBlackKnightMoves(theBoard))} return false;

if (!ComputeBlackPawnMoves(theBoard)) return false;

}

// And finally, if there are no pseudo-legal moves at all, we have an
// obvious error (there are no pieces on the board!); flag the condition
if (Moves.size() == 0 }

84

)

return false;
else

{

ResetIterator();
return true;

}

// public boolean ComputeQuiescenceMoves
// Find only the moves which are relevant to quiescence search; i.e., captures
public boolean ComputeQuiescenceMoves(jcBoard theBoard)

ComputeLegalMoves (theBoard);
for(int i = Moves.size() - 1; i >= 0; i--)
{
jeMove mov = (jcMove) Moves.get(i);
if ((mov.MoveType != jcMove.MOVE_CAPTURE_ORDINARY) &&
(mov.MoveType != jcMove.MOVE_CAPTURE_EN_PASSANT))
Moves.remove(i });
}
ResetIterator();
return{ Moves.size() > 0 };

}

// public void Print()
// Dump the move list to standard output, for debugging purposes
public void Print ()

// Do not use the iterator, to avoid messing up a regular operation!
for(int it = 0; it < Moves.size(); it++)

jcMove mov = (jcMove) Moves.get({ it);
mov.Print(};

}
}

/"tt""""."'"""t""""'""'.Qtt""""""""""'t'"""'.'

* PRIVATE METHODS

* For move generation
""""""""""'."t"""I"""""""""""t""""""tt".'/

private boolean ComputeWhiteQueenMoves{ jcBoard theBoard)

{

if (!ComputewWhiteBishopMoves(theBoard, jcBoard.WHITE_QUEEN)) recturn false;
if (!ComputeWhiteRookMoves(theBoard, jcBoard.WHITE_QUEEN)}) return false;
return true;

}

private boolean ComputeWhiteKingMoves(jcBoard theBoard)

{

// Fetch the bitboard containing position of the king
long pieces = theBoard.GetBitBoard(jcBoard.WHITE_KING);

// Find it! There is only one king, so look for it and stop
int square;
for(square = 0; square < 64; square++)

{

if ((jcBoard.SquareBits[square] & pieces) != 0)
break;

// Find its moves
for(int i = 0; i < KingMoves|[square].length; i++)

// Get the destination square
int dest = KingMoves|[square][i };

// Is it occupied by a friendly piece? If so, can't move there
if ((theBoard.GetBitBoard(jcBoard.ALL WHITE_PIECES) &

85

jecBoard.SquareBits([dest] } != 0)
continue;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.WHITE_KING;

// Is the destination occupied by an enemy? If so, we have a capture
if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) &
jcBoard.SquareBits|[dest]) != 0 }

mov.MoveType = jcMove . MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindBlackPiece(dest);

// 1f the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.BLACK_KING }

{

}
}

// otherwise, it is a simple move
else

{

mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;

return false;

// And we add the move to the list
Moves.add(mov);

}

// Now, let's consider castling...
// Kingside first
if (theBoard.GetCastlingStatus(jcBoard.CASTLE_KINGSIDE + jcPlayer.SIDE_WHITE))

{

// First, check whether there are empty squares between king and rook

if (((theBoard.GetBitBoard(jcBoard.ALL WHITE_PIECES)} &
jcBoard.EMPTYSQUARES _WHITE_KINGSIDE) == 0) &&
((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) &
jcBoard.EMPTYSQUARES WHITE_KINGSIDE) == 0 } }

jcMove mov = new jcMove();

mov.MovingPiece = jcBoard.WHITE_KING:
mov.SourceSquare = 60;

mov.DestinationSquare = 62;

mov.MoveType = jcMove.MOVE_CASTLING_KINGSIDE;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov) ;

}

if (theBoard.GetCastlingStatus(jcBoard.CASTLE_QUEENSIDE + jcPlayer.SIDE_WHITE))}

if (((theBoard.GetBitBoard(jcBoard.ALL_ WHITE_PIECES) &
jcBoard.EMPTYSQUARES _WHITE_QUEENSIDE) == 0 } &&
((theBoard.GetBitBoard(jcBoard.ALL_ BLACK_PIECES)} &
jcBoard.EMPTYSQUARES_WHITE_QUEENSIDE) == 0))

jcMove mov = new jcMove();
mov.MovingPiece = jcBoard.WHITE_KING;
mov.SourceSquare = 60;
mov.DestinationSquare = 58;
mov.MoveType = jcMove.MOVE_CASTLING_QUEENSIDE;
mov.CapturedPiece = jcBoard.EMPTY_ SQUARE;
Moves.add(mov) ;
}
}

return true;

86

}

// private boolean ComputeWhiteRookMoves

// Receives an extra "pieceType" parameter, because the queen AND the rook
// need to use this function

private boolean ComputeWhiteRookMoves(jcBoard theBoard, int pieceType)

{

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(pieceType)

// If there are no pieces of this type, no need to work very hard!
if (pieces == 0)

{
}

// This is a white piece, so let's start looking at the bottom
// of the board
for(int square = 63; square >= 0; square-- }

return true;

if ((pieces & jcBoard.SquareBits([square]) != 0)

// There is a piece here; find its moves
for(int ray = 0; ray < RookMoves{ square].length; ray++)

for(int i = 0; i < RookMoves[square][ray }.length; i++)
{

// Get the destination square

int dest = RookMoves|[square J{ ray I[1];

// 1Is it occupied by a friendly piece? If so, can't move there
// AND we must discontinue the current ray
if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) &
jcBoard.SquareBits[dest]) t= 0)
break;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = pieceType;

// Is the destination occupied by an enemy? If so, we have a capture

if ((theBoard.GetBitBoard(jcBoard.ALL BLACK_PIECES } &
jcBoard.SquareBits[dest]) != 0)

{

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindBlackPiece(dest };

// If the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.BLACK_KING)

{

return false;

Moves.add(mov)
break;

// otherwise, it is a simple move

else

{
mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov);

}

}

// Turn off the bit in the temporary bitboard; this way, we can
// detect whether we have found the last of this type of piece
// and short-circuit the loop

87

-

pieces “= jcBoard.SquareBits[square |;
if (pieces == 0)
return true;
}
}

// We should never get here, but the return statement is added to prevent
// obnoxious compiler warnings
return true;

}

private boolean ComputeWhiteBishopMoves{ jcBoard theBoard, int pieceType)

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(pieceType);

// 1f there are no pieces of this type, no need to work very hard!
if (pieces == 0)
{

return true;

}

// This is a white piece, so let's start looking at the bottom
// of the board
for(int square = 63; square »>= 0; square--)

{

if ((pieces & jcBoard.SquareBits{ square |) != 0)

// There is a piece here; find its moves
for(int ray = 0; ray < BishopMoves|[square].length; ray++)
{
for(int 1 = 0; i < BishopMoves| square][ray].length; i++)
{
// Get the destination square
int dest = BishopMoves[square J{ ray][i];

// Is it occupied by a friendly piece? If so, can't move there
// AND we must discontinue the current ray
if ((theBoard.GetBitBoard{(jcBoard.ALL_WHITE_PIECES) &
jcBoard.SquareBits([dest]) != 0)
break;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = pieceType;

// Is the destination occupied by an enemy? If so, we have a capture

if ((theBoard.GetBitBoard{ jcBoard.ALL_BLACK_PIECES) &
jcBoard.SquareBits[dest]) != 0)

{

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindBlackPiece(dest };

// Lf the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.BLACK KING)

{

return false;

Moves.add (mov) ;
break;

// otherwise, it is a simple move

else

{
mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov };

88

}

}
}
// Turn off the bit in the temporary bitboard; this way, we can
// detect whether we have found the last of this type of piece
// and short-circuit the loop
pieces “= jcBoard.SquareBits[square];
if (pieces == 0)

return true;

}

}

// We should never get here, but the return statement is added to prevent
// obnoxious compiler warnings
return true;

}

private boolean ComputeWhiteKnightMoves(jcBoard theBoard)

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(jcBoard.WHITE_KNIGHT) ;

// If there are no pieces of this type, no need to work very hard!
if (pieces == 0)

{

return true;

}

// This is a white piece, so let's start looking at the bottom
// of the board
for(int square = 63; square >= 0; square--)

if ((pieces & jcBoard.SquareBits[square]) != 0)

// There is a piece here; find its moves
for(int i = 0; i < KnightMoves|[square].length; i++)
{

// Get the destination square

int dest = KnightMoves|[square][i];

// Is it occupied by a friendly piece? If so, can't move there

if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) &
jcBoard.SquareBits[dest]) !'= 0)
continue;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove() ;

mov.SourceSguare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.WHITE_KNIGHT;

// Is the destination occupied by an enemy? If so, we have a capture

if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) &
jcBoard.SquareBits([dest]) t= 0)

{

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindBlackPiece(dest);

// 1f the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.BLACK_KING)

{

}
}

// otherwise, it is a simple move

else

{
mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;

return false;

89

// And we add the move to the list
Moves.add{ mov };

}

// Turn off the bit in the temporary bitboard; this way, we can
// detect whether we have found the last of this type of piece
// and short-circuit the loop
pieces “= jcBoard.SquareBits|[square |;
if (pieces ==)
return true;
}
}

// We should never get here, but the return statement is added to prevent
// obnoxious compiler warnings
return true;

}

private boolean ComputeWhitePawnMoves(jcBoard theBoard)

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(jcBoard.WHITE_PAWN) :

// If there are no pieces of this type, no need to work very hard!
if (pieces == 0)
{

return true;

}

// a small optimization
long allPieces = theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) |
theBoard.GetBitBoard(jcBoard.ALL _WHITE_PIECES };

// This is a white piece, so let's start looking at the bottom
// of the board... But only consider positions where a pawn can
// actually dwell!

int dest;

for(int square = 55; square >= B8; square--)

if ((pieces & jcBoard.SquareBits[square |)} == 0)
continue;

// First, try a normal pawn pushing
dest = square - 8;
if ((allPieces & jcBoard.SquareBits(dest]) == 0)

// Unless this push results in a promotion...

if (square > 15)

{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_NORMAL;
Moves.add(mov };

// 1Is there a chance to perform a double push? Only if the piece
// is in its original square
if (square >= 48)
{
dest -= 8;
if ((allPieces & jcBoard.SquareBits[dest] } =
{
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_NORMAL;
Moves.add(mov)

[}
o

90

}
}

else

// if square < 16

// We are now looking at pawn promotion!
jcMove mov = new jcMove():

mov.SourceSquare
mov.DestinationSquare = dest;
mov.MovingPiece =

mov.MoveType = jcMove.MOVE_PROMOTION_QUEEN + jcMove.MOVE_NORMAL;

Moves.add(mov };
mov = new jcMove (
mov.SourceSquare
mov.DestinationSquare = dest;
mov.MovingPiece =

mov.MoveType = jcMove.MOVE_PROMOTION KNIGHT + jcMove.MOVE_NORMAL;

Moves.add(mov };
mov = new jcMove(
mov.SourceSquare
mov.DestinationSquare = dest;
mov.MovingPiece =

mov

Moves.add(mov) ;
mov = new jcMove (
mov.SourceSquare
mov.DestinationSquare = dest;
mov.MovingPiece =

mov.MoveType = jcMove.MOVE_PROMOTION_BISHOP + jcMove.MOVE_NORMAL;

Moves.add(mov) ;

}
}

// Now
// Thr
if ((
{

dest

, let's try a ¢

ee cases: the pawn is on the 1lst file, the 8th file, or elsewhere

square ¥ 8) =

= square - 7;

= square;
jcBoard.WHITE_PAWN:
)i

= square;
jcBoard.WHITE_PAWN;
):

= square;

jcBoard .WHITE_PAWN;

.MoveType = jcMove.MOVE_PROMOTION ROOK + jcMove.MOVE_NORMAL;

)}
= square;

jcBoard .WHITE_PAWN;

apture

=0)

// Try an ordinary capture first

if ((theBoard.GetBitBoard(jcBoard.ALL BLACK_PIECES) & jcBoard.SquareBits([dest])

{
jec
mo’

Move mov = new
v.SourceSquare

jcMove () ;
= square;

mov.DestinationSquare = dest;

mo
mo
if

mo
Mo

v.MovingPiece =
v.MoveType = jc
(dest < 8)
mov.MoveType +=
v.CapturedPiece
ves.add(mov) ;

jcBoard .WHITE_PAWN;
Move .MOVE_CAPTURE _ORDINARY;

jcMove . MOVE_PROMOTION_QUEEN;
= theBoard.FindBlackPiece(dest };

// Other promotion captures

if
{

(dest < 8)

mov = new jcMove();

mov.SourcesSquar:

e = square;

mov.DestinationSquare = dest;

mov.MovingPiece
mov.MoveType =
mov.CapturedPie
Moves.add (mov

= jcBoard.WHITE_PAWN;

jcMove .MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_KNIGHT;

ce = theBoard.FindBlackPiece(dest);
);

mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;

mov.MovingPiece
mov.MoveType =
mov.CapturedPie
Moves.add(mov

= jcBoard.WHITE_PAWN;

jcMove .MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;

ce = theBoard.FindBlackPiece(dest);
)i

mov = new jcMove();
mov.SourceSquare = Square;
mov.DestinationSquare = dest;

91

o]

)

else if (

{

mov.MovingPiece =
mov.MoveType =
mov.CapturedPiece =
Moves.add(mov);
}
}

// Now,
else if (

try an en passant capture
(theBoard.GetEnPassantPawn ()

jecMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType =
mov.CapturedPiece =
Moves.add(mov };

}
(square % 8 } == 7

dest = square - 9;

// Try an ordinary capture first

if |

{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MoveType =
if (dest < 8)

mov.MoveType +=

mov.MovingPiece =
mov.CapturedPiece =
Moves.add(mov };
// Other promotion captures
if (dest < 8)

{

jcBoard.WHITE_PAWN;

mov = new jcMove();
mov.SourceSquare = sguare;
mov.DestinationSquare = dest;
mov.MovingPiece =
mov.MoveType =
mov.CapturedPiece =
Moves.add(mov);
mov = new jcMove() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece =
mov.MoveType =
mov.CapturedPiece =
Moves.add(mov);
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece =
mov.MoveType =
mov.CapturedPiece =
Moves.add(mov);
}
}
// Now,
else if (
{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MoveType =
mov.MovingPiece =
mov.CapturedPiece =
Moves.add(mov };

try an en passant capture
(theBoard.GetEnPassantPawn ()

jcBoard.WHITE_PAWN;
jcMove .MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_ROOK;
theBoard.FindBlackPiece(dest };

& jcBoard.SquareBits([dest]

jeMove .MOVE_CAPTURE_EN_PASSANT;
jcBoard.BLACK_PAWN;

jcMove .MOVE_CAPTURE_ORDINARY:;
jcMove .MOVE_PROMOTION_QUEEN;

theBoard.FindBlackPiece(dest);

jcBoard.WHITE_PAWN;
jcMove .MOVE_CAPTURE_ORDINARY + jcMove
theBoard.FindBlackPiece(dest };

jcBoard.WHITE_PAWN;
jcMove .MOVE_CAPTURE_ORDINARY + jcMove
theBoard.FindBlackPiece(dest);

jcBoard.WHITE_PAWN;
jcMove .MOVE_CAPTURE_ORDINARY + jecMove .MOVE_PROMOTION_ROOK;
theBoard.FindBlackPiece (dest);

& jcBoard.SquareBits[dest]

jcMove .MOVE_CAPTURE_EN_PASSANT;
jcBoard.WHITE_PAWN;
jcBoard.BLACK_PAWN;

92

)

)

t= 0)

[

{ theBoard.GetBitBoard(jcBoard.ALL_BLACK PIECES)} & jcBoard.SquareBits[dest]

.MOVE_PROMOTION_ KNIGHT;

.MOVE_PROMOTION_BISHOP;

)

)

t= 0)

else
{
dest = square - 7;
// Try an ordinary capture first
if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) & jcBoard.SquareBits[dest |) != 0)
{
jcMove mov = new jcMove() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
if (dest < 8)
mov.MoveType += jcMove.MOVE_PROMOTION_QUEEN;
mov.CapturedPiece = theBoard.FindBlackPiece(dest);
Moves.add(mov) ;

// Other promotion captures
if (dest < 8)
{
mov = new jcMove() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove. MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_KNIGHT:
mov.CapturedPiece = theBoard.FindBlackPiece(dest };
Moves.add{ mov);
mov = new jcMove () ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;
mov.CapturedPiece = theBoard.FindBlackPiece(dest);
Moves.add(mov };
mov = new jcMovel() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_ PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_ROOK;
mov.CapturedPiece = theBoard.FindBlackPiece(dest);
Moves.add(mov };

}
}

// Now, try an en passant capture
else if ((theBoard.GetEnPassantPawn() & jcBoard.SquareBits{ dest]) t= 0)
{
jcMove mov = new jcMove() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_EN PASSANT;
mov.CapturedPiece = jcBoard.BLACK_PAWN;
Moves.add(mov) ;
}
dest = square - 9;
// Try an ordinary capture first
if ((theBoard.GetBitBoard(jcBoard.ALL BLACK_PIECES) & jcBoard.SquareBits[dest]) t!= 0)
{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
if (dest < 8)
mov.MoveType += jcMove.MOVE_PROMOTION_ QUEEN;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.CapturedPiece = theBoard.FindBlackPiece(dest);
Moves.add(mov) ;
// Other promotion captures
if (dest < 8)
{
mov = new jcMove();
mov.SourceSquare = square;

93

mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_ PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PRCMOTION_KNIGHT;
mov.CapturedPiece = theBoard.FindBlackPiece(dest };
Moves.add(mov) ;
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;
mov.CapturedPiece = theBoard.FindBlackPiece(dest };
Moves.add(mov) ;
mov = new jcMove();
mov.SourceSquare = sqguare;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_ROOK;
mov.CapturedPiece = theBoard.FindBlackPiece(dest };
Moves.add(mov) ;
}
}

// Now, try an en passant capture
else if ((theBoard.GetEnPassantPawn() & jcBoard.SquareBits{ dest]) != 0)
{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MoveType = jcMove.MOVE_CAPTURE_EN_ PASSANT:
mov.MovingPiece = jcBoard.WHITE_PAWN;
mov.CapturedPiece = jcBoard.BLACK_PAWN;
Moves.add(mov };
}
}

// And perform the usual trick to abort the loop when we no longer
// have any pieces to look for
pieces “= jcBoard.SquareBits(square];
if (pieces == 0)
return true;

}

return true;

}

private boolean ComputeBlackQueenMoves(jcBoard theBoard)

if (!ComputeBlackRookMoves(theBoard, jcBoard.BLACK_QUEEN)) return false;
if { !ComputeBlackBishopMoves(theBoard, jcBoard.BLACK_QUEEN)) return false;

return true;

}

private boolean ComputeBlackKingMoves(jcBoard theBoard)

{
// Fetch the bitboard containing position of the king
long pieces = theBoard.GetBitBoard(jcBoard.BLACK KING)

// Find it! There is only one king, so look for it and stop
int square;
for(square = 0; square < 64; square++)

{

if ((jcBoard.SquareBits([square] & pieces) != 0 }

break;
}

// Find its moves
for(int i = 0; i < KingMoves[square].length; i++)

// Get the destination square
int dest = KingMoves({ square]J{ i];

94

// Is it occupied by a friendly piece? If so, can't move there
if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) &
jcBoard.SquareBits[dest]) != 0)
continue;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.BLACK KING:

// Is the destination occupied by an enemy? If so, we have a capture

if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) &
jcBoard.SquareBits([dest]) != 0)

{

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindWhitePiece(dest };

// If the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.WHITE_KING }

{
}

return false;

}

// otherwise, it is a simple move
else

{

mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_ SQUARE;

// And we add the move tc the list
Moves.add(mov };

}

// Now, let's consider castling...
// Kingside first
if { theBoard.GetCastlingStatus(jcBoard.CASTLE_KINGSIDE + jcPlayer.SIDE_BLACK)})

// First, check whether there are empty squares between king and rook
if { ((theBoard.GetBitBoard(jcBoard.ALL BLACK_PIECES)} &

jcBoard.EMPTYSQUARES_BLACK KINGSIDE)} == 0) &&
((theBoard.GetBitBoard(jcBoard.ALL WHITE_PIECES) &
jcBoard.EMPTYSQUARES BLACK KINGSIDE) == 0))

jcMove mov = new jcMove():;

mov.MovingPiece = jcBoard.BLACK_KING;
mov.SourceSquare = 4;

mov.DestinationSquare = §;

mov.MoveType = jcMove.MOVE_CASTLING_KINGSIDE:;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov);

}

if (theBoard.GetCastlingStatus(jcBoard.CASTLE_QUEENSIDE + jcPlayer.SIDE_BLACK })

{

if (((theBcard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) &
jcBoard.EMPTYSQUARES BLACK_QUEENSIDE) == 0 } &&
((theBoard.GetBitBoard{(jcBoard.ALL_WHITE_PIECES) &
jcBoard.EMPTYSQUARES_BLACK QUEENSIDE)} == 0))

jcMove mov = new jcMove(};

mov.MovingPiece = jcBoard.BLACK_KING;
mov.SourceSquare = 4;

mov.DestinationSquare = 2;

mov.MoveType = jcMove.MOVE_CASTLING _QUEENSIDE;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov) ;

95

}

return true;

}

private boolean ComputeBlackRookMoves{ jcBoard theBoard, int pieceType)

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(pieceType);

// If there are no pieces of this type, no need to work very hard!
if (pieces == 0)

return true;

}

// This is a black piece, so let's start looking at the top
// of the board
for(int square

{

0; square < 64; square++)
if ((pieces & jcBoard.SquareBits[square]) != 0)

// There is a piece here; find its moves
for(int ray = 0; ray < RookMoves[square].length; ray++)

for(int i = 0; i < RookMoves([square][ray].length; i++)

// Get the destination square
int dest = RookMoves|[square l[ray J[i];

// Is it occupied by a friendly piece? If so, can't move there
// AND we must discontinue the current ray
if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES)} &
jcBoard.SquareBits{ dest] } != 0)
break;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = pieceType;

// Is the destination occupied by an enemy? If so, we have a capture

if ((theBoard.GetBitBoard(jcBoard.ALL WHITE_PIECES) &
jcBoard.SquareBits([dest] } != 0)

{

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);

// If the piece we find is a king, abort because the board
// position is illegal!

if (mov.CapturedPiece == jcBoard.WHITE_KING)}

{

return false;

}

Moves.add(mov });
break;

}

// otherwise, it is a simple move

else

{
mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov) ;

}

}

// Turn off the bit in the temporary bitboard; this way, we can
// detect whether we have found the last of this type of piece
// and short-circuit the loop

a

pieces "= jcBoard.SquareBits[square];

96

}

if (pieces == 0)
return true;

}

// We should never get here, but the return statement is added to prevent
// obnoxious compiler warnings
return true;

private boolean ComputeBlackBishopMoves(jcBoard theBoard, int pieceType)

{

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(pieceType);

// If there are no pieces of this type, no need to work very hard!
if (pieces ==)
{

return true;

}

// This is a black piece, so let's start looking at the top
// of the board
for(int square = 0; square < 64; square++)

if ((pieces & jcBoard.SquareBits[square |) != 0)
{
// There is a piece here; find its moves
for(int ray = 0; ray < BishopMoves[square].length; ray++)

for(int i = 0; i1 < BishopMoves| square][ray].length; i++)
{

// Get the destination square

int dest = BishopMoves{ square ([ray I[i |-:

// Is it occupied by a friendly piece? If so, can't move there
// AND we must discontinue the current ray
if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK PIECES) &
jcBoard.SquareBits(dest | } != 0)
break;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = pieceType;

// Is the destination occupied by an enemy? If so, we have a capture

if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) &
jcBoard.SquareBits{ dest] } !'= 0)

{

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);

// If the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.WHITE_KING)

{

return false;

}

// Otherwise, add the move to the list and interrupt the ray
Moves.add(mov);
break;

}

// otherwise, it is a simple move
else

{

mov.MoveType = jcMove.MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;
Moves.add(mov };

97

}
}
}

// Turn off the bit in the temporary bitboard; this way, we can
// detect whether we have found the last of this type of piece
// and short-circuit the loop
pieces “= jcBoard.SquareBits[square];
if (pieces == 0)

return true;

}
}

// We should never get here, but the return statement is added to prevent
// obnoxious compiler warnings
return true;

}

private boolean ComputeBlackKnightMoves(jcBoard theBoard)

{

// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(jcBoard.BLACK_KNIGHT);

// If there are no pieces of this tyre, no need to work very hard!
if (pieces == 0)

return true;

// This is a black piece, so let's start looking at the top
// of the board
for(int square = 0; square < 64; square++)

if ((pieces & jcBoard.SquareBits(square | } != 0)

// There is a piece here; find its moves
for(int i = 0; i < KnightMoves[square].length; i++)
{

// Get the destination square

int dest = KnightMoves|[square J[i];

// Is it occupied by a friendly piece? If so, can't move there
if ((theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) &
jcBoard.SquareBits[dest]) != 0)
continue;

// Otherwise, the move is legal, so we must prepare to add it
jcMove mov = new jcMove() ;

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.BLACK_KNIGHT;

// 1s the destination occupied by an enemy? If so, we have a capture
if ((theBoard.GetBitBoard{ jcBoard.ALL _WHITE_PIECES)} &
jcBoard.SquareBits(dest]) != 0)}

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);

// If the piece we find is a king, abort because the board
// position is illegal!
if (mov.CapturedPiece == jcBoard.WHITE_KING)

{

return false;

}

// otherwige, it is a simple move
else

{

mov.MoveType = jcMove .MOVE_NORMAL;
mov.CapturedPiece = jcBoard.EMPTY_SQUARE;

}

98

// And we add the move to the list
Moves.add(mov) ;

}

// Turn off the bit in the temporary bitboard; this way, we can
// detect whether we have found the last of this type of piece
// and short-circuit the loop
pieces “= jcBoard.SquareBits([square];
if (pieces == 0)
return true;
}
}

// We should never get here, but the return statement is added to prevent
// obnoxious compiler warnings
return true;

}

private boolean ComputeBlackPawnMoves(jcBoard theBoard)

{
// Fetch the bitboard containing positions of these pieces
long pieces = theBoard.GetBitBoard(jcBoard.BLACK_PAWN };

// If there are no pieces of this type, no need to work very hard!
if (pieces == 0)

return true;

}

// a small optimization
long allPieces = theBoard.GetBitBoard(jcBoard.ALL_BLACK_PIECES) |
theBoard.GetBitBoard(jcBoard.ALL _WHITE_PIECES);

// This is a black piece, so let's start looking at the top

// of the board... But only consider positions where a pawn can
// actually dwell!

int dest;

for(int square = 8; square < 56; square++)}

if ((pieces & jcBoard.SquareBits(square]) == 0)
continue;

// First, try a normal pawn pushing
dest = square + 8;
if { (allPieces & jcBoard.SquareBits[dest]) == 0)
{
// Unless this push results in a promotion...
if (square < 48)
{
jcMove mov = new jcMove() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_ PAWN;
mov.MoveType = jcMove.MOVE_NORMAL;
Moves.add(mov) ;

// Is there a chance to perform a double push? Only if the piece
// is in its original square
if (square < 16)
{
dest += 8;
if ((allPieces & jcBoard.SquareBits(dest]) == 0)
{
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_ PAWN;
mov.MoveType = jcMove.MOVE_NORMAL;
Moves.add(mov) ;

99

else

{

}
}

}

// if square >= 48

// We are now looking at pawn promotion!
jcMove mov = new jcMove () ;
mov.SourceSgquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece
mov.MoveType =
Moves.add(mov);
mov = new jcMovel() ;

mov
mov

mov.MovingPiece
mov.MoveType =
Moves.add(mov);

mov = new jcMove();

mov
mov

mov.MovingPiece
mov.MoveType =
Moves.add(mov);

mov = new jcMove();
mov.SourcesSquar

mov

mov.MovingPiece
mov.MoveType =
Moves.add(mov) ;

// Now, let's try a
// Three cases: the

if |

(square % 8)

dest = square + 9
// Try an ordinary capture first

if |

{

jcMove mov = ne
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece
mov.MoveType =
if (dest >= 56

mov .MoveType

= jcBoard.BLACK_PAWN;
jcMove .MOVE_PROMOTION_QUEEN + jcMove.MOVE_NORMAL;

.SourceSquare = square;
.DestinationSquare = dest;

= jcBoard.BLACK_PAWN;
jcMove .MOVE_PROMOTION_KNIGHT + jcMove.MOVE_NORMAL;

.SourceSquare = square;
.DestinationSquare = dest;

= jcBoard.BLACK_PAWN;
jecMove .MOVE_PROMOTION_ROOK + jcMove.MOVE_NORMAL;

e = square;

.DestinationSquare = dest;

= jcBoard.BLACK_PAWN;
jcMove .MOVE_PROMOTION_BISHOP + jcMove.MOVE_NORMAL;

capture
pawn is on the 1lst file, the 8th file, or elsewhere

== 0)

‘

(theBoard.GetBitBoard(jcBoard.ALL WHITE PIECES) & jcBoard.SquareBits[dest]

w jcMove () ;

= jcBoard.BLACK_PAWN;
jcMove .MOVE_CAPTURE_ORDINARY;

)
+= jcMove .MOVE_PROMOTION_QUEEN;

mov.CapturedPiece = theBoard.FindWhitePiece(dest)
Moves.add(mov };

// Other promotion captures
if { dest >= S6

{

)

mov = new jcMove();

mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_PAWN;

mov .MoveType

= jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_KNIGHT:

mov.CapturedPiece = theBoard.FindWhitePiece(dest);
Moves.add(mov);

mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.BLACK_PAWN;

mov .MoveType

= jcMove .MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;

mov.CapturedPiece = theBoard.FindWhitePiece(dest);
Moves.add(mov) ;

mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

100

)

t= 0)

mov.MovingPiece = jcBoard.BLACK_PAWN;

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_ROOK:;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);

Moves.add(mov) ;

}
}

// Now, try an en passant capture
else if ((theBoard.GetEnPassantPawn() & jcBoard.SquareBits([dest |) != 0)
{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_EN_PASSANT;
mov.CapturedPiece = jcBoard.WHITE_PAWN;
Moves.add(mov);
}
}
else if ((square % 8) == 7)
dest = square + 7;
// Try an ordinary capture first
if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) & jcBoard.SquareBits[dest]) != 0)
{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
if { dest >= 56)
mov.MoveType += jcMove.MOVE_PROMOTION_QUEEN;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);
Moves.add(mov);
// Other promotion captures
if (dest >= 56)
{
mov = new jcMove():;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_KNIGHT:
mov.CapturedPiece = theBoard.FindwhitePiece(dest };
Moves.add(mov) ;
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);
Moves.add(mov };
mov = new jcMovel();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBcard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_ROOK:
mov.CapturedPiece = theBoard.FindWhitePiece(dest);
Moves.add(mov);

}
}

// Now, try an en passant capture
else if ((theBoard.GetEnPassantPawn() & jcBoard.SquareBits[dest] } != 0)
{

jcMove mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MoveType = jcMove.MOVE_CAPTURE_EN_PASSANT;

mov.MovingPiece = jcBoard.BLACK_PAWN;

mov.CapturedPiece = jcBoard.WHITE_PAWN;

Moves.add(mov);

101

else

{

dest = square + 9;

// Try an ordinary capture first

if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) & jcBoard.SquareBits[dest])

{

jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
if (dest >= 56)
mov.MoveType += jcMove.MOVE_ PROMOTION_QUEEN;
mov.CapturedPiece = theBoard.FindWhitePiece(dest };
Moves.add(mov) ;
// Other promotion captures
if (dest >= 56)
{
mov = new jcMove(};
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_ PAWN;

mov.MoveType = jcMove .MOVE_CAPTURE_ORDINARY + jcMove.MOVE PROMOTION_KNIGHT:

mov.CapturedPiece = theBoard.FindWhitePiece(dest };
Moves.add(mov };

mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.BLACK_PAWN;

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;

mov.CapturedPiece = theBoard.FindWhitePiece(dest }:

Moves.add(mov);

mov = new jcMove();

mov.SourceSquare = square;

mov.DestinationSquare = dest;

mov.MovingPiece = jcBoard.BLACK_ PAWN;

mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_ROOK;
mov.CapturedPiece = theBoard.FindWwhitePiece(dest);

Moves.add(mov };

}
}

// Now, try an en passant capture
else if ((theBoard.GetEnPassantPawn{) & jcBoard.SquareBits|[dest] } != 0)
{
jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MoveType = jcMove.MOVE_CAPTURE_EN_PASSANT;
mov.MovingPiece = jcBoard.BLACK PAWN;
mov.CapturedPiece = jcBoard.WHITE_PAWN;
Moves.add(mov);
}
dest = square + 7;
// Try an ordinary capture first

if ((theBoard.GetBitBoard(jcBoard.ALL_WHITE_PIECES) & jcBoard.SquareBits[dest])

{

jcMove mov = new jcMove() ;
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;
if (dest >= 56)
mov.MoveType += jcMove.MOVE_PRCMOTION_QUEEN;
mov.CapturedPiece = theBoard.FindWhitePiece(dest);
Moves.add(mov);
// Other promotion captures
if (dest >= 56)
{
mov = new jcMove():;
mov.SourceSquare = square;
mov.DestinationSquare = dest;

102

0

0

)

)

mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_KNIGHT;
mov.CapturedPiece = theBoard.FindwhitePiece(dest) ;
Moves.add(mov };
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK PAWN;
mov.MoveType = jcMove .MOVE_CAPTURE_ORDINARY + jcMove.MOVE_PROMOTION_BISHOP;
mov.CapturedPiece = theBoard.FindWhitePiece(dest };
Moves.add(mov) ;
mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY + jcMove MOVE_PROMOTION_ROOK;
mov.CapturedPiece = theBoard.FindWhitePiece(dest };
Moves.add(mov);
}
}

// Now, try an en passant capture
else if ((theBoard.GetEnPassantPawn() & jcBoard.SquareBits[dest |) != 0}

jcMove mov = new jcMove();
mov.SourceSquare = square;
mov.DestinationSquare = dest:;
mov.MoveType = jcMove.MOVE CAPTURE_EN_PASSANT;
mov.MovingPiece = jcBoard.BLACK_PAWN;
mov.CapturedPiece = jcBoard.WHITE_PAWN;
Moves.add(mov);
}
}

// And perform the usual trick to abort the loop when we no longer
// have any pieces to look for
pieces “= jcBoard.SquareBits[square |:
if (pieces == 0)
return true;

}

return true;

}

/'t""""'""'I"'t'tt""t"'t"'"'""t""'t""""""""'t"""'

* STATIC BLOCK

t"'t"""t"t""t"ttt'tttt"t"'tt"'t""""t't"t"'tt"""""tt/

// Pre-processed data structures containing all possible moves from all
// possible squares, by piece type

private static int KnightMoves|[] (];

private static int KingMoves([] {]:

private static int BishopMoves(] (] []:

private static int RookMoves(] [][];

static

{

// Define the KnightMoves data structure;
KnightMoves = new int([64] ({];

KnightMoves[0] = new int{ 2];
KnightMoves[0][0] = 10;
KnightMoves[0 J[1] = 17;
KnightMoves{ 1 | = new int(3 };
KnightMoves[1][0 } = 16;
KnightMoves[1][1] = 18;
KnightMoves[1 J[2] = 11;
KnightMoves|[2] = new int{ 4];
KnightMoves[2][0] = 8;
KnightMoves[2 J[1] = 12;
KnightMoves[2][2] = 17;
KnightMoves([2 J(3] = 19;
KnightMoves[3] = new int(4];

103

KnightMoves(3 1{ 0] = 9;
KnightMoves(3 1{ 1] = 13;
KnightMoves([3][2] = 18;
KnightMoves(3][3] = 20;

// NOTE: Many pages of similar declarations eliminated from printed version

104

/""""""'t"Q'""""."""Q'tt".".""""'Q"".""'t""""""

* jcPlayer.java - An abstract base class for all types of players
by Fran¢ois Dominic Laramée

Purpose: There are currently two types of players in JavaChess: the computer

L 4
L 4
*
* player and the human player. At a later time, other types may be added,
* including the demo player (which picks its moves from a file, in which a
* game has been recorded move by move) and a network player (an entity from
* which the game obtains moves via a socket connection).

-*

*

L4

L]

History:
08.06.00 Created

"""""""""'t'"""'.."""."'."""'"t"""""""""'""/

package javachess;

/""""."""".""'"""."'"""'""'t"""'""i"""""""t"

* abstract public class jcPlayer

"'Ot""'0.""Q't""'"t""tttt'tc't't"'tt"'"""'Qt""t"t'tt't"/

abstract public class jcPlayer

{

/""""'.""'."".""""Q".'.'."'"t"""""""""""""""t'

* Constants
N N N N T N N T N AR T P R N N C N T E R T AP T TN E R RS R S AR RO RTTICIOIRNOCICROTEIROTTSE]

public static final int SIDE_BLACK 1;
public static final int SIDE WHITE 0;
public static final String PlayerStrlngs[] = { "WHITE", "BLACK" };

// Data member: which side is this player representing?
int Side;

// Constructor
public jcPlayer()

}

// Accessors
int GetSide()

{

return Side;

void SetSide(int s)

{
}

// abstract jcMove GetMove ()
// Ask the player to provide a move, given the current board situation
public abstract jcMove GetMove(jcBoard theBoard);

Side = s;

105

/"'tt".t"t't""ttt""""'t"'t't"t""""tQt.'tt't"ttttt"ittt"'t

* jcPlayerHuman.java - Interface to a human player
by Frangois Dominic Laramée

Purpose: This object allows a human player to play JavaChess. Its only
real job is to query the human player for his move.

Note that this is not the cleanest, most user-friendly piece of code around;
it is only intended as a test harness for the AI player, not as a full-
fledged application (which would be graphical, for one thing!)

History:
11.06.00 Creation

T N T N I T N A N S S N P I R R T T N A A A N T I N NI T TN TN AN N RN TN CN TR CTCTTOCRERERNOITSCY [

* % % 2 4 % s o8

package javachess;

import javachess.jcMove;

import javachess.jcBoard;

import javachess.jcMovelListGenerator;
import java.io.r;

public class jcPlayerHuman extends jcPlayer
{

// The keyboard

InputStreamReader kbd;

char linebuf[];

// Validation help
jcMoveListGenerator Pseudos;
jcBoard Successor;

// Constructor
public jcPlayerHuman(int which, InputStreamReader syskbd)
{

this.SetSide(which);

linebuf = new char[10]:

kbd = gsyskbd;

Pseudos = new jcMovelistGenerator();

Successor = new jcBoard():;

}

// public jcMove GetMove(theBoard)
// Getting a move from the human player. Sorry, but this is very, very
// primitive: you need to enter square numbers instead of piece ID's, and
// both square numbers must be entered with two digits. Ex.: 04 00
public jcMove GetMove(jcBoard theBoard)
{

// Read the move from the command line

boolean ok false;

jcMove Mov = new jcMove() ;

do

{

System.out .println{ "Your move, " + PlayerStrings[this.GetSide()] + "2" };

// Get data from the command line
int len = 0;
do {
try{
len = kbd.read(linebuf, 0, 5);
} catch(IOException e) {}
} while (len < 3);

String line = new String(linebuf, 0, 5);
if (line.equalsIgnoreCase("RESIG")})

{

Mov._.MoveType = jcMove.MOVE_RESIGN;
return(Mov);

// Extract the source and destination squares from the line buffer
Mov.SourceSquare = Integer.parselnt(line.substring(0, 2));

106

Mov.DestinationSquare = Integer.parselnt(line.substring
if ((Mov.SourceSquare < 0) || (Mov.SourceSquare > 63

{

(3, 5)):;
))

System.out.println("Sorry, illegal source square " + Mov.SourceSquare):

continue;

}

if ((Mov.DestinationSquare < 0)} || (Mov.DestinationSquare > 63 })}

{

System.out.println("Sorry, illegal destination square
continue;

}

// Time to try to figure out what the move means!
if (theBoard.GetCurrentPlayer() == jcPlayer.SIDE_WHITE

{

" + Mov.DestinationSquare) ;

)

// Is there a piece (of the moving player) on SourceSquare?

// If not, abort

Mov.MovingPiece = theBoard.FindWhitePiece(Mov.SourceSquare);

if (Mov.MovingPiece == jcBoard.EMPTY_SQUARE)
{

System.out.println("Sorry, You don't have a piece at square " + Mov.SourceSquare) ;

continue;

}

// Three cases: there is a piece on the destination square {(a capture),

// the destination square allows an en passant capture

., or it is a

// simple non-capture move. If the destination contains a piece of the

// moving side, abort
if (theBoard.FindWhitePiece(Mov.DestinationSquare)

{= jcBoard.EMPTY_SQUARE)}

System.out .println("Sorry, can't capture your own piece!" });

continue;

}

Mov.CapturedPiece = theBoard.FindBlackPiece(Mov.DestinationSquare)} ;

if (Mov.CapturedPiece != jcBoard.EMPTY_ SQUARE)
Mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;

else if ((theBoard.GetEnPassantPawn() == (1 << Mov.DestinationSquare }) &&

(Mov.MovingPiece == jcBoard.WHITE_PAWN })
{
Mov.CapturedPiece = jcBoard.BLACK_PAWN;
Mov.MoveType = jcMove.MOVE_CAPTURE_EN_PASSANT;

}

// If the move isn't a capture, it may be a castling attempt

else if ((Mov.MovingPiece == jcBoard.WHITE_KING) &&
{ (Mov.SourceSquare - Mov.DestinationSquare
Mov.MoveType = jcMove.MOVE_CASTLING_KINGSIDE;
else if ((Mov.MovingPiece == jcBoard.WHITE_KING) &&
((Mov.SourceSquare - Mov.DestinationSquare
Mov.MoveType = jcMove.MOVE_CASTLING_QUEENSIDE;
else
Mov.MoveType = jcMove.MOVE_NORMAL;
}

else

{

Mov.MovingPiece = theBoard.FindBlackPiece(Mov.SourceSquare };

if (Mov.MovingPiece == jcBoard.EMPTY_SQUARE)

{

System.out.println("Sorry, you don't have a piece in square " + Mov.SourceSquare);

continue;

}

if (theBoard.FindBlackPiece(Mov.DestinationSquare)

{

t= jcBoard.EMPTY_SQUARE)

System.out.println("Sorry, you can't capture your own piece in square " +

Mov.DestinationSquare)
continue;

}

Mov.CapturedPiece = theBoard.FindWhitePiece{ Mov.DestinationSquare);

if (Mov.CapturedPiece != jcBoard.EMPTY_SQUARE)
Mov.MoveType = jcMove.MOVE_CAPTURE_ORDINARY;

107

else if ((theBoard.GetEnPassantPawn{) == (1 << Mov.DestinationSquare)) &&
{ Mov.MovingPiece == jcBoard.BLACK_PAWN))
{

Mov.CapturedPiece = jcBoard.WHITE_PAWN;
Mov.MoveType = jcMove.MOVE_CAPTURE_EN_ PASSANT;

else if ((Mov.MovingPiece == jcBoard.BLACK_KING) &&
{ (Mov.SourceSquare - Mov.DestinationSquare } == 2))
Mov.MoveType = jcMove.MOVE_CASTLING_KINGSIDE;
else if ((Mov.MovingPiece == jcBoard.BLACK_KING) &&
((Mov.SourceSquare - Mov.DestinationSquare } == -2))
Mov.MoveType = jcMove.MOVE_CASTLING_QUEENSIDE;
else

Mov.MoveType = jcMove .MOVE_NORMAL;

}

// Now, if the move results in a pawn promotion, we must ask the user

// for the type of promotion!

if (((Mov.MovingPiece == jcBoard.WHITE_PAWN } && (Mov.DestinationSquare < 8)) ||
((Mov.MovingPiece == jcBoard.BLACK_PAWN) && (Mov.DestinationSquare > 55))

{

int car = -1;

System.out .println("Promote the pawn to [Klnight, [R]ook, (B]ishop, [Qlueen?" };
do

{

try { car = kbd.read(); } catch{ IOException e } {}

} while ((car != 'K')} & (car t= 'k') & { car != 'b') && (car != 'B’
&& (car != 'R' } && (car != 'r') & (car !'= 'Q') && (car !'= 'g') };

if ((car == 'K' } || (car == 'k')})

Mov.MoveType += jcMove.MOVE_PROMOTION_KNIGHT;
else if ((car == 'B') || (car == 'b' })

Mov.MoveType += jcMove.MOVE_PROMOTION_ BISHOP;
else if ((car == 'R*') || (car == 'r'))

Mov.MoveType += jcMove.MOVE_PROMOTION_ROOK;
else

Mov.MoveType += jcMove.MOVE_PROMOTION_QUEEN;
}

// OK, now let's see if the move is actually legal!: First step: a check
// for pseudo-legality, i.e., is it a valid successor to the current

// board?

Pseudos.ComputelegalMoves(theBoard) ;

if (!Pseudos.Find(Mov })

{

System.out .print{ "Sorry, this move is not in the pseudo-legal list: " };
Mov.Print () ;

Pseudos.Print () ;

continue;

}

// If pseudo-legal, then verify whether it leaves the king in check
Successor.Clone(theBoard);

Successor.ApplyMove(Mov) ;

if (!Pseudos.ComputeLegalMoves(Successor))

System.out.print("Sorry, this move leaves your king in check: ");
Mov.Print () ;
continue;

}

// If we have made it here, we have a valid move to play!
System.out.println("Move is accepted...");
ok = true;

} while (tok);

return{(Mov };

108

/'t"tt"t"t'tt"tttt't't"ttt"'t't""t"t"'tt't"'.t'0"'.""""""

*

.
1 4
L]
»
[
*
.
-
-
-
1 g

jcPlayerAI.java - Interface to a computer player
by Frang¢ois Dominic Laramée

Purpose: This object allows a computer player to play JavaChess. Its only
real job is to query an AI Search Agent for his move.

History:
11.06.00 Creation
07.08.00 Association with the search agent

""'t"tt"ttttttt'tt"'t""'tt""'t"t"ttt't"'t'ot'ttt'tt""t""'/

package javachess;
import javachess.jcAlISearchAgent;

public class jcPlayerAl extends jcPlayer

{

}

/"'ttt"'."'tqtttttttt'tt't"'tt'ttt"t"'tt"'t"t"t"t't"""t'tt"

* DATA MEMBERS

.""'t'Qtt't"Q'tt"""ttt"tt'tt"t"'""'t"t'tt"t""t""t't"'/

// The search agent in charge of the moves
jcAISearchAgent Agent;

/'"""""tt"""'t'.'"""""""t"""""t""""""'."""'

* PUBLIC METHODS

'"""""""""."""Q"'"""'Q"""'""t""""'.'""""'/

// Constructor
public jcPlayerAI(int whichPlayer, int whichType, jcOpeningBook ref)
{

this.SetSide(whichPlayer };

Agent = jcAlISearchAgent .MakeNewAgent{ whichType, ref);

// Atrtach a search agent to the AI player
public boolean AttachSearchAgent(jcAlSearchAgent theAgent)

Agent = theAgent;
return true;

}

// Getting a move from the machine
public jcMove GetMove(jcBoard theBoard)

{

return{ Agent.PickBestMove(theBoard)});

}

109

/t

-

*
-
-
s
L 4
-
-
-
-

122222 R PR R R R 2 R 22 R 2 X R 2 R A R R S 2 A2 X2 222222222 22222222200l d iRl sl dddd

jcAISearchAgent - An object which picks a best move according to a
variant of alphabeta search or another

Purpose:

This is the object which picks a move for the computer player. Implemented
as an abstract class to allow multiple search strategies to be played with.
History

07.08.00 Creation

05.10.00 Added statistics and some corrections
t"."""""'"'.""""'""""".""""QQ'"""""""""""/

package javachess;
import javachess.jcBoard;
import javachess.jcBoardEvaluator;

im

port javachess.jcAISearchAgentMTDF;

import javachess.jcAISearchAgentAlphabeta:
import javachess.jcTranspositionTable;
import java.util.Random;

public abstract class jcAISearchAgent

/"""""""'t"""'""'Q"""."""'Q't"'""""t""""""""'

* DATA MEMBERS

"'t"'tt""""'"""""""""""""..tt't"'""'."'t""""."/

// A transposition table for this object
jeTranspositionTable TransTable;

// A handle to the system's history table
jcHistoryTable HistoryTable;

// How will we assess position strengths?
protected jcBoardEvaluator Evaluator;
protected int FromWhosePerspective;

// ID's for concrete subclasses; jcAISearchAgent works as a factory for its
// concrete subclasses

public static final int AISEARCH_ALPHABETA = 0;

public static final int AISEARCH MTDF = 1;

// Search node types: MAXNODEs are nodes where the computer player is the
// one to move; MINNODEs are positions where the opponent is to move.
protected static final boolean MAXNODE = true;

protected static final boolean MINNODE = false;

// Alphabeta search boundaries

protected static final int ALPHABETA_MAXVAL = 30000;
protected static final int ALPHABETA MINVAL = -30000;
protected static final int ALPHABETA_ILLEGAL = -31000;

// An approximate upper bound on the total value of all positional
// terms in the evaluation function
protected static final int EVAL_THRESHOLD = 200;

// A score below which we give up: if Alphabeta ever returns a value lower
// than this threshold, then all is lost and we might as well resign. Here,
// the value is equivalent to "mated by the opponent in 3 moves or less".
protected static final int ALPHABETA_GIVEUP = -29995;

Random Rnd;

// Statistics

int NumRegularNodes;

int NumQuiescenceNodes;
int NumRegularTTHits;

int NumQuiescenceTTHits;
int NumRegularCutoffs;
int NumQuiescenceCutoffs;

110

// A move counter, so that the agent knows when it can delete old stuff from
// its transposition table
int MoveCounter;

/"t't""t"""'tt't""'""'""'t""Q'"""""""""""'""""'

* PUBLIC METHODS

.'t"'tt't.""""'tt'tt't""t"t"tt't"".t'"t"'tt"tt'ttt"t'ttt"'/

// Construction
public jcAISearchAgent ()

{

TransTable = new jcTranspositionTable();
HistoryTable = jcHistoryTable.GetInstance();
Evaluator = new jcBoardEvaluator(};

Rnd = new Random(};

MoveCounter = 0;

}

public jcAISearchAgent(jcBoardEvaluator eval)

AttachEvaluator(eval };

// boolean AttachEvaluator(jcBoardEvaluator eval)
// Pick a function which the agent will use to assess the potency of a
// position. This may change during the game; for example, a special
// "mop-up" evaluator may replace the standard when it comes time to drive
// a decisive advantage home at the end of the game.
public boolean AttachEvaluator(jcBoardEvaluator eval)
{
Evaluator = eval;
return true;

// int AlphaBeta

// The basic alpha-beta algorithm, used in one disguise or another by

// every search agent class

public int AlphaBeta(boolean nodeType, jcBoard theBoard, int depth,
int alpha, int beta)

{

jcMove mov = new jcMove();

// Count the number of nodes visited in the full-width search
NumRegularNodes++;

// First things first: let's see if there is already something useful
// in the transposition table, which might save us from having to search

// anything at all
if (TransTable.LookupBoard(theBoard, mov) && {(mov.SearchDepth >= depth))}

if (nodeType == MAXNODE)

{

if ((mov.MoveEvaluationType == jcMove.EVALTYPE_ACCURATE) ||
{ mov.MoveEvaluationType == jcMove.EVALTYPE LOWERBOUND) }
{

if (mov.MoveEvaluation »>= beta)

{

NumRegularTTHitS++;
return mov.MoveEvaluation;

if ((mov.MoveEvaluationType == jcMove.EVALTYPE_ACCURATE) ||
(mov.MoveEvaluationType == jcMove.EVALTYPE_UPPERBOUND))

if (mov.MoveEvaluation <= alpha)

NumReqularTTHits++;
return mov.MoveEvaluation;

111

}
}
}
}

// If we have reached the maximum depth of the search, stop recursion
// and begin quiescence search
if (depth == 0)

return QuiescenceSearch(nodeType, theBoard, alpha, beta);

}

// Otherwise, generate successors and search them in turn

// If ComputelLegalMoves returns false, then the current position is illegal
// because one or more moves could capture a king!

// In order to slant the computer's strategy in favor of quick mates, we

// give a bonus to king captures which occur at shallow depths, i.e., the
// more plies left, the better. On the other hand, if you are losing, it
// really doesn't matter how fast...

jcMovelListGenerator movegen = new jcMovelListGenerator():;

if (!movegen.ComputeLegalMoves(theBoard)})

{

return ALPHABETA ILLEGAL:

}

// Sort the moves according to History heuristic values
HistoryTable.SortMoveList (movegen, theBoard.GetCurrentPlayer() };

// OK, now, get ready to search
jcBoard newBoard = new jcBoard():;
int bestSoFar;

// Case #1: We are searching a Max Node
if (nodeType == jcAISearchAgent.MAXNODE)
{

bestSoFar = ALPHABETA_MINVAL;

int currentAlpha = alpha:

// Loop on the successors

while((mov = movegen.Next()) != null)

{
// Compute a board position resulting from the current successor
newBoard.Clone(theBocard);
newBoard.ApplyMove(mov);

// And search it in turn
int movScore = AlphaBeta(!nodeType, newBoard, depth - 1, currentAlpha,
beta };
// Ignore illegal moves in the alphabeta evaluation
if (movScore == ALPHABETA_ ILLEGAL)
continue;

currentAlpha = Math.max(currentAlpha, movScore);

// Is the current successor better than the previous best?
if (movScore > bestSoFar)
{

bestSoFar = movScore;

// Can we cutoff now?

if (bestSoFar >= beta)

{

// Store this best move in the TransTable

TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE_UPPERBOUND,

depth, MoveCounter);

// Add this move's efficiency in the HistoryTable
HistoryTable.AddCount (theBoard.GetCurrentPlayer(), mov);
NumRegularCutoffs++;

return bestSoFar;

112

}
}

// Test for checkmate or stalemate

// Both cases occur if and only if there is no legal move for MAX, i.e.,

// if "bestSoFar" is ALPHABETA_MINVAL. There are two cases: we

// have checkmate (in which case the score is accurate) or stalemate (in

// which case the position should be re-scored as a draw with value 0.
if (bestSoFar <= ALPHABETA_MINVAL)}

{

// Can MIN capture MAX's king? First, ask the machine to generate

// moves for MIN

newBoard.Clone(theBoard);

if(newBoard.GetCurrentPlayer() == FromWhosePerspective)}
newBoard.SwitchSides() ;

// And if one of MIN's moves is a king capture, indicating that the
// position is illegal, we have checkmate and must return MINVAL.

// add the depth simply to "favor" delaying tactics: a mate in 5 will

// score higher than a mate in 3, because the likelihood that the

// opponent will miss it is higher; might as well make life difficult!

if (!movegen.ComputeLegalMoves(newBoard))
return bestSoFar + depth;
else
return 0;
}
}

else
// Case #2: Min Node

bestSoFar = ALPHABETA_ MAXVAL;
int currentBeta = beta;
while((mov = movegen.Next ()) != null)
{
newBoard.Clone(theBoard)
newBoard.ApplyMove(mov) ;

int movScore = AlphaBeta(!nodeType, newBoard, depth - 1, alpha,
currentBeta) ;
if (movScore == ALPHABETA_ILLEGAL)
continue;
currentBeta = Math.min(currentBeta, movScore);
if (movScore < bestSoFar)
{
bestSoFar = movScore;
// Cutoff?
if (bestSoFar <= alpha)

{

TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE_UPPERBOUND,

depth, MoveCounter };
HistoryTable.AddCount { theBoard.GetCurrentPlayer (), mov):
NumRegularCutoffg++;
return bestSoFar;

}
}
}
// Test for checkmate or stalemate
if (bestSoFar »>= ALPHABETA_MAXVAL)

{

// Can MAX capture MIN's king?
newBoard.Clone(theBoard);

if(newBoard.GetCurrentPlayer() != FromWhosePerspective)
newBoard.SwitchSides () ;

if (!'movegen.ComputelLegalMoves(newBoard) |}
return bestSoFar + depth;

else
return 0;

}
}

// If we haven't returned yet, we have found an accurate minimax score

113

//
//
//
//
//
//
//
//

// for a position which is neither a checkmate nor a stalemate
TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE_ACCURATE, depth, MoveCounter };
return bestSoFar;

int QuiescenceSearch

A slight variant of alphabeta which only considers captures and null moves
This is necesary because the evaluation function can only be applied to
"quiet" positions where the tactical situation (i.e., material balance) is
unlikely to change in the near future.

Note that, in this version of the code, the quiescence search is not limited
by depth; we continue digging for as long as we can find captures. Some other
programs impose a depth limit for time-management purposes.

public int QuiescenceSearch(boolean nodeType, jcBoard theBoard, int alpha, int beta)

jcMove mov = new jcMove() ;
NumQuiescenceNodes++;

// First things first: let's see if there is already something useful

// in the transposition table, which might save us from having to search
// anything at all

if (TransTable.LookupBoard(theBoard, mov))

if (nodeType == MAXNODE)
{
if ((mov.MoveEvaluationType == jcMove.EVALTYPE_ACCURATE) ||
(mov.MoveEvaluationType == jcMove.EVALTYPE_LOWERBOUND })
{

if (mov.MoveEvaluation >= beta)
NumQuiescenceTTHits++;
return mov.MoveEvaluation;

if ((mov.MoveEvaluationType == jcMove.EVALTYPE_ACCURATE) ||
(mov.MoveEvaluationType == jcMove.EVALTYPE_UPPERBOUND))

if { mov.MoveEvaluation <= alpha)

NumQuiescenceTTHits++;
return mov.MoveEvaluation;

}
}
}
}

int bestSoFar = ALPHABETA_MINVAL:

// Start with evaluation of the null-move, just to see whether it is more

// effective than any capture, in which case we must stop looking at

// captures and damaging our position

// NOTE: If the quick evaluation is enough to cause a cutoff, we don't store

// the value in the transposition table. EvaluateQuickie is so fast that we

// wouldn't gain anything, and storing the value might force us to erase a

// more valuable entry in the table.

bestSoFar = Evaluator.EvaluateQuickie(theBoard, FromWhosePerspective);

if ((bestSoFar > (beta + EVAL_THRESHOLD))} || (bestSoFar < (alpha - EVAL_THRESHOLD)
return bestSoFar;

else
bestSoFar = Evaluator.EvaluateComplete(theBoard, FromWhosePerspective);

// Now, look at captures
jcMoveListGenerator movegen = new jcMovelListGenerator();
if (!'movegen.ComputeQuiescenceMoves(theBoard)})

{

return bestSoFar;

}

114

jcBoard newBoard = new jcBoard():

// Case #1: We are searching a Max Node
if (nodeType == jcAISearchAgent .MAXNODE)

int currentAlpha = alpha:

// Loop on the successors

while((mov = movegen.Next ()) !'= null)

{
// Compute a board position resulting from the current successor
newBoard.Clone(theBoard };
newBoard.ApplyMove(mov) ;

// And search it in turn
int movScore = QuiescenceSearch(tnodeType, newBoard, currentAlpha, beta):
// Ignore illegal moves in the alphabeta evaluation
if (movScore == ALPHABETA_ ILLEGAL)
continue;
currentAlpha = Math.max(currentAlpha, movScore };

// Is the current successor better than the previous best?
if (movScore > bestSoFar)
{
bestSoFar = movScore;
// Can we cutoff now?
if (bestSoFar >= beta)
{
TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE UPPERBOUND, 0, MoveCounter };
// Add this move's efficiency in the HistoryTable
HistoryTable.AddCount (theBoard.GetCurrentPlayer (), mov };
NumQuiescenceCutoffs++;
return bestSoFar;

// Test for checkmate or stalemate

// Both cases occur if and only if there is no legal move for MAX, i.e.,
// if "bestSoFar" is ALPHABETA_MINVAL. There are two cases: we

// have checkmate (in which case the score is accurate) or stalemate (in
// which case the position should be re-scored as a draw with value 0.
if (bestSoFar <= ALPHABETA_MINVAL)

// Can MIN capture MAX's king? First, ask the machine to generate
// moves for MIN
newBoard.Clone(theBoard };
if{ newBoard.GetCurrentPlayer () == FromWhosePerspective)}
newBoard.SwitchSides () ;
// And if one of MIN's moves is a king capture, indicating that the
// position is illegal, we have checkmate and must return MINVAL. We
// add the depth simply to "favor" delaying tactics: a mate in 5 will
// score higher than a mate in 3, because the likelihood that the
// opponent will miss it is higher; might as well make life difficult!
if (!movegen.ComputeLegalMoves(newBoard))
return bestSoFar;
else
return 0;

}
}

else
// Case #2: Min Node
{
int currentBeta = beta;
while((mov = movegen.Next ()) !'= null)
{
newBoard.Clone(theBoard) ;
newBoard.ApplyMove (mov)

int movScore = QuiescenceSearch(!nodeType, newBoard, alpha, currentBeta);

if (movScore == ALPHABETA_ILLEGAL)
continue;

115

currentBeta = Math.min(currentBeta, movScore);
if (movScore < bestSoFar)

begtSoFar = movScore;
// Cutoff?
if (bestSoFar <= alpha)

TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE UPPERBOUND, 0, MoveCounter) ;
HistoryTable.AddCount (theBoard.GetCurrentPlayer(), mov };
NumQuiescenceCutoffs++;
return bestSoFar;
}
}
}

// Test for checkmate or stalemate
if (bestSoFar >= ALPHABETA MAXVAL)

// Can MAX capture MIN's king?
newBoard.Clone(theBoard };

if(newBoard.GetCurrentPlayer() != FromWhosePerspective }
newBoard.SwitchSides () ;

if (!movegen.ComputeLegalMoves(newBoard))
return bestSoFar;

else
return 0;

}
}

// If we haven't returned yet, we have found an accurate minimax score
// for a position which is neither a checkmate nor a stalemate
TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE_ACCURATE, 0, MoveCounter);

return bestSoFar;

// jcAlSearchAgent MakeNewAgent
// Standard "subclass factory" design pattern
public static jcAlSearchAgent MakeNewAgent (int type, jcOpeningBook ref

switch(type)
{
case AISEARCH_ALPHABETA:
return(new jcAISearchAgentAlphabeta() };
case AISEARCH_MTDF:
return{ new jcAISearchAgentMTDF(ref));
defaulc:
return null;
}

}

// jcMove PickBestMove(jcBoard theBoard)
// Each agent class needs some way of picking a move!
public abstract jcMove PickBestMove(jcBoard theBoard);

116

/"'"'"'"'""'t'""""."""""""""""'"""""""""""'.

* jcAISearchAgentAlphabeta - The most basic search agent

Purpose: Pick a best move using a simple, fixed-depth, full-width
alphabeta search, like they did in the Dark Ages ;-)

History
07.08.00 Initial writing

L
-
*
*
L4
L 4
""t""tt""'t"'.""""""""""""""""""""""""""'/
package javachess;

import javachess.jcAISearchAgent;

import javachess.jcBoard;

public class jcAlSearchAgentAlphabeta extends jcAISearchAgent
{

// Construction

public jcAISearchAgentAlphabeta ()

super() ;

// jcMove PickBestMove

// Implementation of the abstract method defined in the superclass

public jcMove PickBestMove(jcBoard theBoard)

{
// Store the identity of the moving side, so that we can tell Evaluator
// from whose perspective we need to evaluate positions
FromWhosePerspective = theBoard.GetCurrentPlayer();
MoveCounter++;

// Should we erase the history table?
if ((Rnd.nextInt() % 4) == 2)
HistoryTable.Forget () ;

NumRegularNodes = 0; NumQuiescenceNodes = 0;
NumRegularTTHits = 0; NumQuiescenceTTHits = 0;

// Find the moves

jcMove theMove = new jcMove () ;

jcMovelistGenerator movegen = new jcMoveListGenerator();
movegen.ComputelLegalMoves(theBoard };

HistoryTable.SortMovelList (movegen, theBoard.GetCurrentPlayer());

// The following code blocks look a lot like the MAX ncde case from

// jcAlSearchAgent .Alphabeta, with an added twist: we need to store the
// actual best move, and not only pass around its minimax value

int bestSoFar = ALPHABETA MINVAL;

jcBoard newBoard = new jcBoard():;

jcMove mov;

int currentAlpha = ALPHABETA MINVAL;

// Loop on all pseudo-legal moves
while((mov = movegen.Next() } != null)
{
newBoard.Clone(theBoard);
newBoard.ApplyMove(mov) ;
int movScore = AlphaBeta(MINNODE, newBoard, 5, currentAlpha, ALPHABETA_MAXVAL)
if (movScore == ALPHABETA_ILLEGAL)
continue;

currentAlpha = Math.max(currentAlpha, movScore);
if (movScore > bestSoFar)
theMove.Copy(mov);

bestSoFar = movScore;
theMove .MoveEvaluation = movScore;

117

// And now, if the best we can do is ALPHABETA_GIVEUP or worse, then it is
// time to resign... Unless the opponent was kind wnough to put us in

// stalemate!

if |

{

}

//
//
//
1/
ne
jec
ne
if

}

bestSoFar <= ALPHABETA_GIVEUP)

Check for a stalemate
Stalemate occurs if the player's king is NOT in check, but all of his
moves are illegal.
First, verify whether we are in check
wBoard.Clone(theBoard):
MoveListGenerator secondary = new jcMoveListGenerator();
wBoard.SwitchSides () ;
(secondary.ComputeLegalMoves(newBoard })

// Then, we are not in check and may continue our efforts.
// We must now examine all possible moves; if at least one resuls in
// a legal position, there is no stalemate and we must assume that
// we are doomed
HistoryTable.SortMoveList { movegen, newBoard.GetCurrentPlayer()):
movegen.ResetIterator () ;
// If we can scan all moves without finding one which results
// in a legal position, we have a stalemate
theMove .MoveType = jcMove.MOVE_STALEMATE:
theMove .MovingPiece = jcBoard.KING + theBoard.GetCurrentPlayer():;
// Look at the moves
while((mov = movegen.Next ()) != null)
{

newBoard.Clone(theBoard };

newBoard.ApplyMove(mov };

if (secondary.ComputeLegalMoves(newBoard)})

theMove .MoveType = jcMove.MOVE_RESIGN;

}

else

{

}

// We're in check and our best hope is GIVEUP or worse, so either we are

// already checkmated or will be soon, without hope of escape
theMove .MovingPiece = jcBoard.KING + theBoard.GetCurrentPlayer();
theMove .MoveType = jcMove.MOVE_RESIGN;

System.out.print(" --> Transposition Table hits for regular nodes: ");
System.out.println(NumRegularTTHits + " of " + NumRegularNodes);

System.out.princ{ "* --> Transposition Table hits for quiescence nocdes:

"

System.out.println{ NumQuiescenceTTHits + " of " + NumQuiescenceNodes)} ;

return theMove;

118

)i

/""""""."""'""."t"'.""""'t"""'"""""""""""""

* jcAISearchAgentMTDF - A sophisticated search agent

Purpose: A (mostly) state-of-the-art search agent, implementing advanced
techniques like the iterative-deepening MTDF search algorithm, transposition
table, opening book and history table.

History:
05.10.00 Completed initial version

*
-
-
L 4
-
-
-
""""""""'"""""""'"""""""""""""'.""""'t""/
package javachess;

import javachess.jcAISearchAgent;

import javachess.jcBoard;

import javachess.jcOpeningBook;

public class jcAISearchAgentMTDF extends jcAISearchAgent

// A reference to the game's opening book
private jcOpeningBook Openings;

// A measure of the effort we are willing to expend on search
private static final int MaxSearchSize = 50000;

// Construction
public jcAISearchAgentMTDF(jcOpeningBook ref)
{

super(};

Openings = ref;

}

/"""""""'"".""""'""'.""""'."""t""""""""t"""'

* PUBLIC METHODS

"'Q"""""t"'"'".""t't"'"""""""""".""'"""'t"""t/

// Move selection: An iterative-deepening paradigm calling MTD(f)} repeatedly
public jcMove PickBestMove(jcBoard theBoard)

// First things first: look in the Opening Book, and if it contains a
// move for this position, don't search anything
MoveCounter++;
jcMove Mov = null;
Mov = Openings.Query(theBoard });
if (Mov != null)
return Mov;

// Store the identity of the moving side, so that we can tell Evaluator
// from whose perspective we need to evaluate positions
FromWhosePerspective = theBoard.GetCurrentPlayer();

// Should we erase the history table?
if { (Rnd.nextInt() % 6) == 2)
HistoryTable.Forget () ;

// Begin search. The search's maximum depth is determined on the fly,

// according to how much effort has been spent; if it's possible to search
// to depth 8 in 5 seconds, then by all means, do it!

int bestGuess = 0;

int iterdepth = 1;

while(true)}

{

// Searching to depth 1 is not very effective, so we begin at 2
iterdepth++;

// Compute efficiency statistics
NumRegularNodes = 0; NumQuiescenceNodes = 0;
NumRegularTTHits = 0; NumQuiescenceTTHits =

H 0;
NumRegularCutoffs = 0; NumQuiescenceCutoffs =

0;

// Look for a move at the current depth

119

}

Mov = MTDF(theBoard, bestGuess,

iterdepth);

")

")

" + NumRegularCutoffs };

+ NumQuiescenceCutoffs);

bestGuess Mov.MoveEvaluation;
// Feedback!
System.out.print("Iteration of depth " + iterdepth + "; best move =
Mov.Print () ;
System.out.print(" --> Transposition Table hits for regular nodes:
System.out .println(NumRegularTTHits + " of " + NumRegularNodes);
System.out.print(" --> Transposition Table hits for quiescence nodes: ");
System.out .println(NumQuiescenceTTHits + " of " + NumQuiescenceNodes) ;
System.out.println(" --> Number of cutoffs for regular nodes:
System.out .println(" --> Number of cutoffs in quiescence search: "
// Get out if we have searched deep enough
if ((NumRegularNodes + NumQuiescenceNodes) > MaxSearchSize)

break;
if (iterdepth >= 15)

break;

}

return Mov;

/"'Q"'"""'t""'t""t""""""'"""""""t'"t"ti""""""'

* PRIVATE METHODS

."""t'ti'.""""t"""""""."""'""""""""'""""""'/

//
/7
/7
//
//
//

{

}

private jcMove MTDF

Use the MTDF algorithm to find a good move.

MTDF repeatedly calls

alphabeta with a zero-width search window, which creates very many quick

cutoffs.

If alphabeta fails low, the next call will place the search

window lower; in a sense, MIDF is a sort of binary search mechanism into
the minimax space.
private jcMove MTDF(jcBoard theBoard, int target, int depth)

int beta;

jcMove Mov;
int currentEstimate = target;
int upperbound = ALPHABETA_MAXVAL;
int lowerbound = ALPHABETA MINVAL;

// This is the trick: make repeated calls to alphabeta, zeroing in on the
// actual minimax value of theBnard by narrowing the bounds

do {

if (currentEstimate ==
= currentEstimate + 1;

beta
else
beta

= currentEstimate;

lowerbound)

Mov = UnrolledAlphabeta(theBoard, depth, beta - 1, beta };
= Mov.MoveEvaluation;

currentEstimate

if (currentEstimate < beta)

upperbound =

else

lowerbound =

currentEstimate;

currentEstimate;

} while (lowerbound < upperbound };

return Mov;

// private jcMove UnrolledAlphabeta

// The standard alphabeta,

with the top level "unrolled" so that it can

// return a jcMove structure instead of a mere minimax value
// See jcAlSearchAgent.Alphabeta for detailed comments on this code

private jcMove UnrolledAlphabeta(jcBoard theBoard, int depth, int alpha,

{

jcMove BestMov =

new jcMove() ;

int beta)

120

jcMovelListGenerator moveden = new jcMovelistGenerator();
movegen.ComputeLegalMoves(theBoard) ;
HistoryTable.SortMoveList (movegen, theBoard.GetCurrentPlayer());

jcBoard newBoard = new jcBoard();
int bestSoFar;

bestSoFar = ALPHABETA_MINVAL;
int currentAlpha = alpha;
jcMove mov;

// Loop on the successors

while((mov = movegen.Next()) != null)

{
// Compute a board position resulting from the current successor
newBoard.Clone(theBoard);
newBoard.ApplyMove(mov) ;

// And search it in turn
int movScore = AlphaBeta(MINNODE, newBoard, depth - 1, currentAlpha, beta };

// Ignore illegal moves in the alphabeta evaluation
if (movScore == ALPHABETA_ILLEGAL)

continue;
currentAlpha = Math.max(currentAlpha, movScore };

// Is the current successor better than the previous best?
if (movScore > bestSoFar)

BestMov.Copy (mov) ;
bestSoFar = movScore;
BestMov.MoveEvaluation = bestSoFar;

// Can we cutoff now?
if (bestSoFar »>= beta)

TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE_UPPERBOUND, depth, MoveCounter);

// Add this move's efficiency in the HistoryTable
HistoryTable.AddCount { theBoard.GetCurrentPlayer ()}, mov);
return BestMov;

}
}
}

// Test for checkmate or stalemate
if (bestSoFar <= ALPHABETA_GIVEUP)
{
newBoard.Clone(theBoard }:
jcMovelListGenerator secondary = new jcMoveListGenerator();
newBoard.SwitchSides () ;
if (secondary.ComputeLegalMoves(newBoard))

// Then, we are not in check and may continue our efforts.
HistoryTable.SortMovelList (movegen, newBoard.GetCurrentPlayer() };
movegen.ResetIterator();
BestMov.MoveType = jcMove.MOVE_STALEMATE;
BestMov.MovingPiece = jcBoard.KING + theBoard.GetCurrentPlayer();
while((mov = movegen.Next()) != null)}
{

newBoard.Clone(theBoard);

newBoard.ApplyMove(mov) ;

if (secondary.ComputeLegalMoves(newBoard))

BestMov.MoveType = jcMove.MOVE_RESIGN;
}
}
else

{

// We're in check and our best hope is GIVEUP or worse, so either we are

121

// already checkmated or will be soon, without hope of escape
BestMov.MovingPiece = jcBoard.KING + theBoard.GetCurrentPlayer():

BestMov.MoveType = jcMove.MOVE_RESIGN;

}
}

// 1f we haven't returned yet, we have found an accurate minimax score

// for a position which is neither a checkmate nor a stalemate
TransTable.StoreBoard(theBoard, bestSoFar, jcMove.EVALTYPE ACCURATE, depth, MoveCounter };

return BestMov;

122

/'"'"""""""""""'"""..""'""""""'""t"""""""'

* jcHistoryTable - A heuristic used to pick an order of evaluation for moves

The history heuristic is an extension of the old "killer move" system:
a move has caused a lot of cutoffs recently, it will be tried early in
hope that it will do so again.

Using the history table is a gamble. We could do without it entirely,
compute "successor positions" for each possible moves, look them up in
the transposition table and hope to get a cutoff this way, which would
insure fast cutoffs whenever possible. On the other hand, HistoryTable
has no knowledge of the contents of the transposition table, so it may

* % % % 2 % 2 @ =

in an immediate cutoff... However, History requires far less memory
and computation than creating a ton of successor jcBoard objects, so we
hope that, on average, it will still be more efficient overall.

History
14.08.00 Creation

't'."""""'.Q""'."'"""'"""""""""'"""t"""'.""'/

* % % % & 2 2 @«

package javachess;

import javachess.jcMovelListGenerator;
import javachess.jcMove;

import java.util.=;

public class jcHistoryTable

{

/t""""""'t"".'.."'t"'"'""'"""Q'"Q""""t""""""'

* DATA MEMBERS

t"t'tt't""""t't't"tt"tt"ttt't""c"t'tt"'tt't'.t"t""""'/

// the table itself; a separate set of cutoff counters exists for each
// side

int Historyl[l(][]:

int CurrentHistoryl(] []:

// This is a singleton class; the same history can be shared by two AI's
private static jcHistoryTable thelnstance;

// A comparator, used to sort the moves
private jcMoveComparator MoveComparator;

/""""""""""t'"t't""'tt"'""t""""""'.""tt""""?

* STATIC BLOCK

"""'."""""'"""t""""t'""""""""t""'""""""'/

static

{

theInstance = new jcHistoryTable();

}

/"""'Q""'.""'.'".""'t""""'tt""""""t""'""'t"""

* jcMoveComparator - Inner class used in sorting moves
""""""""""t""""""'""t"""""t".""""""""'/

class jcMoveComparator implements Comparator

{

public int compare(Object ol, Object 02)
{
jcMove movli = (jcMove) ol;
jcMove mov2 = (jcMove) o2;
if (CurrentHistory{ movl.SourceSquare] [movl.DestinationSquare }
CurrentHistory[mov2.SourceSquare] [mov2.DestinationSquare]
return -1;
else
return 1;
}
}

/t""t"t't't'tt""""""tt'tt'tQ't'"ttt""""t'tt.'t""t"0'00"

* PUBLIC METHODS

ttt.t'ttt'ttt'ttt""t'tt'.'tt""t"'Q-t"ttt"ﬁtt"tt"t't"tt""tt'/

123

cause a deep search of several moves even though another one would result

// Accessor
public static jcHistoryTable GetInstance()

{
}

// Sort a list of moves, using the Java "Arrays" class as a helper
public boolean SortMoveList{ jcMoveListGenerator theList, int movingPlayer)

return thelnstance;

// Which history will we use?
CurrentHistory = History(movingPlayer | ;

// Arrays can't sort a dynamic array like jcMoveListGenerator's ArrayList

// member, so we have to use an intermediate. Annoying and not too clean,

// but it works...

Arrays.sort(theList.GetMoveList () .toArray(), 0, theList.Size(), MoveComparator);
return true;

}

// History table compilation
public boolean AddCount(int whichPlayer, jcMove mov)

{

History[whichPlayer][mov.SourceSquare] [mov.DestinationSquare]++;
return true;

// public boolean Forget

// Once in a while, we must erase the history table to avoid ordering
// moves according to the results of very old searches

public boolean Forget ()

for(int i = 0; 1 < 2; i++)
for(int 3 = 0; j < 64; j++)
for(int k = 0; k < 64; k++)
Historyl i 1{ j i[k] = 0;

return true;

}

/"""""""""""""'t'"t"t't""."t""'"""""""""""

* PRIVATE METHODS

""'"'t"'."""""t'"""'""""""""""""""."."""./
private jcHistoryTable ()

{
History = new int(2][64][64];
MoveComparator = new jcMoveComparator();

124

/""'tt""t't"0"0"".."t't'tt""""t't't"t"""'t't"'t""tt't'

* jcBoardEvaluator - Analyzes and evaluates a chess board position
* by F.D. Laramee

L 4

* History

* 07.08.00 Creation

*

t'"t't'tttttttt'tt'tt"t'Q"""t'tt"tt'tt"'tttt"'ttt"""tt"tt/

package javachess;
import javachess.jcBoard;

public class jcBoardEvaluator

{

/""'t""""""'"t'.'t"""""""""Q""""""t".'.""".

* DATA MEMBERS

"""""'"t"'""'.""'."'Q"'"'""""""""."""Q"""'/

// Data counters to evaluate pawn structure
int MaxPawnFileBins{];

int MaxPawnColorBins (]

int MaxTotalPawns;

int PawnRams;

int MaxMostAdvanced({]:

int MaxPassedPawns (] ;

int MinPawnFileBins([];

int MinMostBackward([] ;

// The "graininess" of the evaluation. MTD(f) works a lot faster if the
// evaluation is relatively coarse
private static final int Grain = 3;

/".""'tt..""""""'t"""""'"""""""""'."""'t't"'

* PUBLIC METHODS

""""'Qt""'t""'"""'""""'."'"""""""""""""'/

// Construction
public jcBoardEvaluator ()

MaxPawnFileBins = new int{[8 }
MaxPawnColorBins = new int[2
MaxMostAdvanced = new int(8 |;
MaxPassedPawns = new int(8];

MinPawnFileBins = new int[8 };
MinMostBackward = new int{ 8 };

}

// int EvaluateQuickie({ jcBoard theBoard, int FromWhosePerspective)

// A simple, fast evaluation based exclusively on material. Since material
// is overwhelmingly more important than anything else, we assume that if a
// position's material value is much lower (or much higher) than another,
// then there is no need to waste time on positional factors because they
// won't be enough to tip the scales the other way, so to speak.

public int EvaluateQuickie(jcBoard theBoard, int fromWhosePerspective)

{

return ((theBoard.EvalMaterial(fromWhosePerspective) >> Grain) << Grain);

}

// int EvaluateComplete(jcBoard theBoard)
// A detailed evaluation function, taking into account several positional
// factors
public int EvaluateComplete(jcBoard theBoard, int fromWhosePerspective)
{
AnalyzePawnStructure(theBoard, fromWhosePerspective);
return(((theBoard.EvalMaterial (fromWhosePerspective) +
EvalPawnStructure(fromWhosePerspective) +
EvalBadBishops({ theBoard, fromWhosePerspective } +
EvalDevelopment (theBoard, fromWhosePerspective) +
EvalRookBonus(theBoard, fromWhosePerspective) +
EvalKingTropism(theBoard, fromWhosePerspective))} >> Grain } << Grain };

125

/ttt"QQ"'t""'t"'t't"ttt"tttt"'t"""'t'tttt"Qt"'t"ttt'ttt"ttt"

* PRIVATE METHODS

""""'.""""""."."""""""".""""""""'Q""""""'/

// private EvalKingTropism

// All other things being equal, having your Knights, Queens and Rooks close
// to the opponent's king is a good thing

// This method is a bit slow and dirty, but it gets the job done

private int EvalKingTropism(jcBoard theBoard, int fromWhosePerspective)

{

int score = 0;

// Square coordinates
int kingRank = 0, kingFile = 0;

int pieceRank = 0, pieceFile 0;
if (fromWhosePerspective == jcPlayer.SIDE_WHITE)
{
// Look for enemy king first!
for(int i = 0; i < 64; i++)
if (theBoard.FindBlackPiece(i)} == jcBoard.BLACK_KING)
kingRank = 1 >> 8;
kingFile = i % 8;
break;
}
}
// Now, look for pieces which need to be evaluated
for(int i = 0; i < 64; i++)
pieceRank = i >> 8;
pieceFile = i § 8;
switch(theBoard.FindWhitePiece(i))}
{
case jcBoard.WHITE_ROOK:
score -= (Math.min(Math.abs(kingRank - pieceRank },
Math.abs(kingFile - pieceFile)} } << 1);
break;
case jcBoard.WHITE_KNIGHT:
score += 5 - Math.abs(kingRank - pieceRank) -
Math.abs(kingFile - pieceFile);
break;
case jcBoard.WHITE_QUEEN:
score -= Math.min(Math.abs(kingRank - pieceRank),
Math.abs(kingFile - pieceFile));
break;
default:
break:;
}
}
}
else

{

// Look for enemy king first!
for(int 1 = 0; 1 < 64; i++)

if (theBoard.FindWhitePiece(i) == jcBoard.WHITE_KING)
kingRank = i >> 8;
kingFile = i % 8;
break;

}

// Now, look for pieces which need to be evaluated
for(int i = 0; i < 64; i++)

pieceRank = i >> 8;

126

pieceFile = i § 8;
switch(theBoard.FindBlackPiece(i })
{
case jcBoard.BLACK ROOK:
score -= (Math.min(Math.abs(kingRank - pieceRank),
Math.abs(kingFile - pieceFile }) << 1);
break;
case jcBoard.BLACK_KNIGHT:
score += 5 - Math.abs(kingRank - pieceRank) -
Math.abs(kingFile - pieceFile);

break;
case jcBoard.BLACK_QUEEN:
score -= Math.min(Math.abs(kingRank - pieceRank)},
Math.abs(kingFile - pieceFile));
break;
default:
break;

}
}
}

return score;

}

// private EvalRookBonus
// Rooks are more effective on the seventh rank, on open files and behind

// passed pawns
private int EvalRookBonus(jcBoard theBoard, int fromWhosePerspective)}

{

long rookboard = theBoard.GetBitBoard(jcBoard.ROOK + fromWhosePerspective);
if (rookboard == 0)
return 0;

int score = 0;
for(int square = 0; square < 64; square++)

// Find a rook

if ((rookboard & jcBoard.SquareBits([square]) != 0)
{
// Is this rook on the seventh rank?
int rank = { square >> 3);
int file = (square % 8);
if ((fromWhosePerspective == jcPlayer.SIDE_WHITE) &&
(rank == 1))
score += 22;
if ((fromWhosePerspective == jcPlayer.SIDE_BLACK) &&
(rank == 7))

score += 22;

// Is this rook on a semi- or completely open file?
if (MaxPawnFileBins[file] == 0)
{
if (MinPawnFileBins[file |} == 0)
score += 10;
else
score += 4;
}

// 1s this rook behind a passed pawn?
if ((fromWhosePerspective == jcPlayer.SIDE_WHITE) &&
{ MaxPassedPawns| file] < square))
score += 25;
if ((fromWhosePerspective == jcPlayer.SIDE_BLACK) &&
(MaxPassedPawns|(file | > square))
score += 25;

// Use the bitboard erasure trick to avoid looking for additional
// rooks once they have all been seen

rookboard *“= jcBoard.SquareBits[square];
if (rookboard == 0)
break;

127

}

return score;

}

// private EvalDevelopment

// Mostly useful in the opening, this term encourages the machine to move

// its bishops and knights into play, to control the center with its queen's
// and king's pawns, and to castle if the opponent has many major pieces on
// the board

private int EvalDevelopment { jcBoard theBoard, int fromWhosePerspective)

int score = 0;

if (fromWhosePerspective == jcPlayer.SIDE_WHITE)
// Has the machine advanced its center pawns?
if (theBoard.FindWhitePiece(S1) == jcBoard.WHITE_PAWN)
score -= 15;
if (theBoard.FindWhitePiece(52 } == jcBoard.WHITE_PAWN)
score -= 15;

// Penalize bishops and knights on the back rank
for(int square = 56; square < 64; square++)
{
if ((theBoard.FindWhitePiece(square)
(theBoard.FindWhitePiece(square)
score -= 10;

= jcBoard.WHITE_KNIGHT) ||
= jcBoard.WHITE_BISHOP))

}

// Penalize toco-early queen movement
long queenboard = theBoard.GetBitBoard(jcBoard.WHITE_QUEEN) ;
if ((queenboard != 0) && ((queenboard & jcBoard.SquareBits([59]) == 0))
{
// First, count friendly pieces on their original squares
int cnt = 0;

if ((theBoard.GetBitBoard(jcBoard.WHITE_BISHOP) & jcBoard.SquareBits[58]) t= 0)
ifc?t:*éheaoard.GetBitBoard(jcBoard .WHITE_BISHOP) & jcBoard.SquareBits{ 61 })} != 0)
ifc?tt+éheaoard.GetBitBoard(jcBoard .WHITE_KNIGHT) & jcBoard.SquareBits([57]) != 0)
ifc?c:*éheaoard.GetBitBoard(jcBoard .WHITE_KNIGHT) & jcBoard.SquareBits{ 62 }) != 0)
ifc?t:+éhesoard.GetBicBoard(jcBoard .WHITE_ROOK) & jcBoard.SquareBits[56] } = 0)
ifc?t:+éhesoard.GetBitBoard(jcBoard.WHITE_ROOK) & jcBoard.SquareBits(63]) != 0)
ifc?t:’éheaoard.GetBitBoard(jcBoard.WHITE_KING) & jcBoard.SquareBits(60]) != 0)
Cnt++;
score -= (cnt << 3 };

// And finally, incite castling when the enemy has a queen on the board
// This is a slightly simpler version of a factor used by Cray Blitz
if (theBoard.GetBitBoard(jcBoard.BLACK QUEEN) != 0 }
{
// Being castled deserves a bonus
if (theBoard.GetHasCastled(jcPlayer.SIDE_WHITE))
score += 10;
// small penalty if you can still castle on both sides X
else if (theBoard.GetCastlingStatus(jcPlayer.SIDE WHITE + jcBoard.CASTLE_QUEENSIDE) &&
theBoard.GetCastlingStatus(jcPlayer.SIDE_WHITE + jcBoard.CASTLE_QUEENSIDE))
score -= 24;
// bigger penalty if you can only castle kingside
else if (theBoard.GetCastlingStatus(jcPlayer.SIDE_WHITE + jcBoard.CASTLE_KINGSIDE))
score -= 40;
// bigger penalty if you can only castle queenside
else if (theBoard.GetCastlingStatus(jcPlayer.SIDE_WHITE + jcBoard.CASTLE_QUEENSIDE))

score -= 80;
// biggest penalty if you can't castle at all
else

128

score -= 120;

}

else // from black's perspective

{

// Has the machine advanced its center pawns?

if (theBoard.FindBlackPiece(11) == jcBoard.BLACK PAWN)
score -= 15;

if (theBoard.FindBlackPiece(12) == jcBoard.BLACK_PAWN)
score -= 15;

// Penalize bishops and knights on the back rank
for(int square = 0; square < 8; square++)

if ((cheBoard.FindBlackPiece(square } == jcBoard.BLACK_KNIGHT) ||
(theBoard.FindBlackPiece(square) == jcBoard.BLACK BISHOP))
score -= 10;

}

// Penalize too-early queen movement
long queenboard = theBoard.GetBitBoard(jcBoard.BLACK_QUEEN) ;

i€ ((queenboard != 0) && {((queenboard & jcBoard.SquareBits({ 3]) == 0))

// First, count friendly pieces on their original squares

int cnt = 0;

if ((theBoard.GetBitBoard(jcBoard.BLACK_BISHOP) & jcBoard.SquareBits(2]) t= 0)
cnt++;

if ((theBoard.GetBitBoard(jcBoard.BLACK_BISHOP) & jcBoard.SquareBits([S]) (= 0)
cnt++;

if ((theBoard.GetBitBoard(jcBoard.BLACK_KNIGHT) & jcBoard.SquareBits{ 1]) != 0)
cnt++;

if ((theBoard.GetBitBoard(jcBoard.BLACK_KNIGHT) & jcBoard.SquareBits[6 |) != Q)
cnt++;

if ((theBoard.GetBitBoard(jcBoard.BLACK ROOK) & jcBoard.SquareBits[0]) != 0)
cnt++;

if ((theBoard.GetBitBoard(jcBoard.BLACK_ROOK) & jcBoard.SquareBits[7])} != 0)
Cnt++;

if ((theBoard.GetBitBoard(jcBoard.BLACK_KING) & jcBoard.SquareBits([4]) != 0)
cnt++;

score -= { c¢cnt << 3 };

}

// And finally, incite castling when the enemy has a queen on the board
// This is a slightly simpler version of a factor used by Cray Blitz
if (theBoard.GetBitBoard(jcBoard.WHITE QUEEN } != 0)

// Being castled deserves a bonus

if (theBoard.GetHasCastled(jcPlayer.SIDE_BLACK))}
score += 10;

// small penalty if you can still castle on both sides

else if (theBoard.GetCastlingStatus(jcPlayer.SIDE_BLACK + jcBoard.CASTLE_QUEENSIDE) &&

theBoard.GetCastlingStatus(jcPlayer.SIDE_BLACK + jcBoard.CASTLE_QUEENSIDE))

score -= 24;

// bigger penalty if you can only castle kingside

else if (theBoard.GetCastlingStatus(jcPlayer.SIDE_BLACK + jcBoard.CASTLE_KINGSIDE))
score -= 40;

// bigger penalty if you can only castle queenside

else if (theBoard.GetCastlingStatus(jcPlayer.SIDE_BLACK + jcBoard.CASTLE_QUEENSIDE))

score -= 80;
// biggest penalty if you can't castle at all
else

score -= 120;

}
}

return score;

}

// private EvalBadBishops
// If Max has too many pawns on squares of the color of his surviving bishops,

// the bishops may be limited in their movement
private int EvalBadBishops(jcBoard theBoard, int fromWhosePerspective)

129

long where = theBoard.GetBitBoard(jcBoard.BISHOP + fromWhosePerspective);
if (where == 0)
return 0;

int score = 0;
for(int square = 0; square < 64; square++)

// Find a bishop
if ((where & jcBoard.SquareBits(square |) != 0)}
{

// What is the bishop's square color?

int rank = (square >> 3);

int file = (square % 8);
if ((rank $ 2) == (file % 2))

score -= (MaxPawnColorBins[0] << 3);
else

score -= (MaxPawnColorBins[1] << 3);

// Use the bitboard erasure trick to avoid looking for additional
// bishops once they have all been seen
where "= jcBoard.SquareBits[square];
if (where == 0)
break;
}
}

return score;

}

// private EvalPawnStructure

// Given the pawn formations, penalize or bonify the position according to
// the features it contains

private int EvalPawnStructure{ int fromWhosePerspective)

{

int score = 0;

// First, look for doubled pawns
// In chess, two or more pawns on the same file usually hinder each other,
// so we assign a minor penalty
for(int bin = 0; bin < 8; bin++)
if (MaxPawnFileBins(bin] > 1)
score -= 8;

// Now, look for an isolated pawn, i.e., one which has no neighbor pawns
// capable of protecting it from attack at some point in the future

if ((MaxPawnFileBins[0] > 0) && (MaxPawnFileBins[1] == 0))
score -= 15;

if ((MaxPawnFileBins[7] > 0) && (MaxPawnFileBins[6] == 0))
score -= 15;

for(int bin = 1; bin < 7; bin++)

{

if ((MaxPawnFileBins([bin] > 0 } && (MaxPawnFileBins[bin - 1} == 0)
&& (MaxPawnFileBinsg[bin + 1] == 0))
score -= 15;

}

// Assign a small penalty to positions in which Max still has all of his
// pawns; this incites a single pawn trade (to open a file), but not by

// much
if (MaxTotalPawns == 8)
score -= 10;

// Penalize pawn rams, because they restrict movement
score -= 8 * PawnRams;

// Finally, look for a passed pawn; i.e., a pawn which can no longer be
// blocked or attacked by a rival pawn
if (fromWhosePerspective == jcPlayer.SIDE_WHITE)

if (MaxMostAdvanced(0] < Math.min{ MinMostBackward(O], MinMostBackward[1]))
score += { 8 - (MaxMostAdvanced[0] >> 3)) «

130

(8 - (MaxMostAdvanced[0] >> 3));
if (MaxMostAdvanced{ 7] < Math.min(MinMostBackward[7], MinMostBackward([6 |))
score += (8 - (MaxMostAdvanced{ 7] >> 3))} ~
({ 8 - (MaxMostAdvanced[7] >> 3))
for(int i1 = 1; i < 7; i++)
{
if { (MaxMostAdvanced[i] < MinMostBackward [
{ MaxMostAdvanced[i] < MinMostBackward [
(MaxMostAdvanced[i] < MinMostBackward [
score += (B8 - (MaxMostAdvanced{ i] >> 3)
{ B8 - (MaxMostAdvanced([i1] »>> 3)

— o e
* 4+
o~

i

}

else // from Black's perspective

{

if (MaxMostAdvanced[0] > Math.max(MinMostBackward[0], MinMostBackward(1])

score += (MaxMostAdvanced[0] »>> 3)
{ MaxMostAdvanced{ 0] >> 3);
if (MaxMostAdvanced[7] > Math.max(MinMostBackward[7], MinMostBackward(6 |))
score += (MaxMostAdvanced|[7] »>> 3) =

{ MaxMostAdvanced{ 7 | >> 3);
for(int 1 = 1; 1 < 7; i++)

if ((MaxMostAdvanced[i] > MinMostBackward[i]) &&
({ MaxMostAdvanced[i] > MinMostBackward[i - 1]) &%
{ MaxMostAdvanced{ i] > MinMostBackward(i + 1]))

score += (MaxMostAdvanced[i | »> 3) ¢
(MaxMostAdvanced([i] >> 3 };
}
}

return score;

}

// private AnalyzePawnStructure

// Look at pawn positions to be able to detect features such as doubled,

// isolated or passed pawns

private boolean AnalyzePawnStructure(jcBoard theBoard, int fromWhosePerspective)

// Reset the counters
for(int i = 0; 1 < 8; i++ }

{

MaxPawnFileBins[i] = 0O;

MinPawnFileBins[i | = 0;
MaxPawnColorBins[0] = 0;
MaxPawnColorBins[1] = 0O;

PawnRams = 0;
MaxTotalPawns = 0;

// Now, perform the analysis
if (fromWhosePerspective == jcPlayer.SIDE_WHITE

{

for(int i = 0; i < 8; i++)

{

MaxMostAdvanced(i] = 63;
MinMostBackward[i] = 63;
MaxPassedPawns|[i] = 63;

}

for(int square = 55; square >= 8; square--)

{

// Look for a white pawn first, and count its properties
if (theBoard.FindWhitePiece(square) == jcBoard.WHITE_PAWN)

{

// What is the pawn's position, in rank-file terms?
int rank = square »>> 3;
int file = square % 8;

// This pawn is now the most advanced of all white pawns on its file

MaxPawnFileBins[file]++;
MaxTotalPawns++;

131

MaxMostAdvanced{ file] = square;

// Is this pawn on a white or a black square?

if ((rank § 2) == (file % 2))
MaxPawnColorBins[0]++;
else

MaxPawnColorBins{ 1]++;

// Look for a "pawn ram", i.e., a situation where a black pawn

// is located in the square immediately ahead of this one.

if (theBoard.FindBlackPiece(square - 8) == jcBoard.BLACK_PAWN)
PawnRams++;

// Now, look for a BLACK pawn
else if (theBoard.FindBlackPiece(square) == jcBoard.BLACK PAWN)

{

// If the black pawn exists, it is the most backward found so far
// on its file
int file = square % 8;
MinPawnFileBins([file]++;
MinMostBackward[file] = square;
}
}
}

else // Analyze from Black's perspective
for(int 1 = 0; i < 8; i++)

MaxMostAdvanced[i] = 0;
MaxPassedPawns([i] = 0;
MinMostBackward{ i] = 0;

}

for(int square = 8; square < S6; square++)

if (theBoard.FindBlackPiece{(square) == jcBoard.BLACK_PAWN)

{

// What is the pawn's position, in rank-file terms?
int rank = square >> 3;
int file = square % 8;

// This pawn is now the most advanced of all white pawns on its file
MaxPawnFileBins([file]++;

MaxTotalPawns++;

MaxMostAdvanced|[file] = square;

if ((rank ¥ 2) == (file % 2))
MaxPawnColorBins([0]++;

else

MaxPawnColorBins|[1]++;

if { theBoard.FindWhitePiece(square + 8)} == jcBoard.WHITE_PAWN)}
PawnRams++;
}
else if (theBoard.FindWhitePiece(square) == jcBoard.WHITE_PAWN)

{
int file = square % 8;
MinPawnFileBins(file]++;
MinMostBackward(file] = square;
}
}
}

return true;

132

/""'.'".""'""'""."""""t"""""'t"""""""".""""""

*

-
-
-
-
»
-
-
»*
-
1 4
-
-
-
-
*
-
-
-
.
”
-
-
*
.
-
L 4

jcTranspositionTable - Alphabeta's memory
by F.D. Laramee

Purpose:

There are many ways to transpose (i.e., achieve the same position)

via different move sequences in chess and in most other 2-player games.
This object allows the AISearchAgent to save its search results, so that
transpositions will not have to be searched again.

Notes:

As it is currently implemented, the transposition table is exclusive to its
AI player. Therefore, if the machine is to play against itself (for
example, to test new versions of an evaluation function against an old

one), there will be two instances of the table active. For some types of
evaluation functions, it would be easy to share a singleton table between
two AI players by adding a flag to each entry to identify from whose
perspective the evaluation was performed; if we have evaluated from Black's
perspective and need the results from White's, we could simply change the
sign of the evaluation, and voila. However, since my evaluation function is
NOT entirely symmetrical (i.e., material value depends on the number of pawns
owned by the *winning* side, not necessarily the *moving* side}, this might
introduce errors in the search process. Memory being dirt cheap these days,
this isn't much of an issue.

History
14.08.00 Creation

't"t'"t".'ttt't't""'t"""t'"t""""'t"'tt"'tt"t'tt"'tt"""'/

package javachess;
import javachess.jcBoard;

/""'""""'"'"'t"t"""""""t"""'".""'t""t"""""""'

-

* 4 % 3 a2 »

»

-

A small internal class containing an AB value for a given position, and
a "hash lock" signature used to identify collisions between board positions
with the same basic hashing values.

Note that there is no need to store the actual move leading to this value,
for two reasons: first, by the time we check on the transposition table, the
move has already been applied; second, our version of alphabeta only handles
moves themselves at the top level of the search, so this information would
be passed to non one!

"""""""""'""""'"""'""""t"'."t"t""""t".'t"""/

class jcTranspositionEntry

{

// Data fields, beginning with the actual value of the board and whether this
// value represents an accurate evaluation or only a boundary

public int theEvalType;

public int theEval;

// This value was obtained through a search to what depth? 0 means that
// it was obtained during quiescence search (which is always effectively
// of infinite depth but only within the quiescence domain; full-width
// search of depth 1 is still more valuable than whatever Qsearch result)
public int theDepth;

// Board position signature, used to detect collisions
public long theLock;

// What this entry stored so long ago that it may no longer be useful?

// Without this, the table will slowly become clogged with cld, deep search
// results for positions with no chance of happening again, and new positions
// {(specifically the 0-depth quiescence search positions) will never be

// stored!

public int timeStamp;

public static final int NULL_ENTRY = -1;

// construction
jcTranspositionEntry ()

{

133

theEvalType = NULL_ENTRY:

public class jcTranspositionTable

{

/""""""."""Q'"""""""""""'."""""""""'"""""'

* DATA MEMBERS

t""tt""'tttt""""t"tttt"ttt"t't"""0""'"'tto'ttt'tt""'tt'/

// The size of a transposition table, in entries
private static final int TABLE_SIZE = 131072;

// Data
private jcTranspositionEntry Table(];

/""""'t""""""""""t't'.""""'""""""""'""""""'

* PUBLIC METHODS

"t"'t'""""""""""'""""Q"""'".""'t"""""'""'."/

// Construction

public jcTranspositionTable ()

{
Table = new jcTranspositionEntry(TABLE_SIZE];
for { int i = 0; i < TABLE_SIZE; i++)}

Table[i] = new jcTranspositionEntry():

}

// boolean LookupBoard{ jcBoard theBoard, jcMove theMove)
// Verify whether there is a stored evaluation for a given board.
// If so, return TRUE and copy the appropriate values into the

// output parameter
public boolean LookupBoard(jcBoard theBoard, jcMove theMove)
{
// Find the board's hash position in Table
int key = Math.abs(theBoard.HashKey() % TABLE_SIZE);
jcTranspositionEntry entry = Table[key]:

// 1f the entry is an empty placeholder, we don't have a match
if (entry.theEvalType == -1) // jcTranspositionEntry.NULL_ENTRY)
return false;

// Check for a hashing collision!
if (entry.theLock != theBoard.HashLock())
return false;

// Now, we know that we have a match! Copy it into the output parameter
// and return

theMove .MoveEvaluation = entry.theEval;

theMove .MoveEvaluationType = entry.theEvalType;

theMove.SearchDepth = entry.theDepth;

return true;

}

// public StoreBoard(theBoard, eval, evalType, depth, timeStamp)
// Store a good evaluation found through alphabeta for a certain board pos
public boolean StoreBoard(jcBoard theBoard, int eval, int evalType,

int depth, int timeStamp)

{

int key = Math.abs(theBoard.HashKey() § TABLE_SIZE);

// Would we erase a more useful {(i.e., higher) position if we stored this
// one? 1If so, don't bother!
if ((Table[key].theEvalType != jcTranspositionEntry.NULL_ENTRY) &&
(Table[key].theDepth > depth) &&
(Table[key] .timeStamp >= timeStamp)})
return true;

134

// And
Table{
Table [
Table(
Table [
Table({
return

now, do the actual work

key].
key].
key 1.
key 1.
key].
true;

theLock = theBoard.HashLock();
theEval = eval;

theDepth = depth;

theEvalType = evalType;
timeStamp = timeStamp;

135

/"""""'."'Q"t""'.""'"""""t."'""""'0""""'""""""

* jcOpeningBook - A hash table of well-known positions and moves

Chess programs are notoriously bad at deciding what to do with complicated
positions, so everyone "cheats" by giving them a library of opening positions
taken from the ECO or something like that. This one is very primitive and
contains very little, but it gets the job done.

History:
19.09.00 Creation

-
-
*
-
-
»
*
-
-

"'"""'""".""".'"t"'."""'t""t"""""'""""'t""""'/

package javachess;
import javachess.jcMove;
import javachess.jcBoard;
import java.io.r*;

/""""'t""""'.'"""""""""""""'""""""""'"""""'
* PRIVATE class jcOpeningBookEntry

* A signature for a board position, and the best moves for White and Black

* in that position.

tttt't.t""."t""""""""tt""t't""t""tt.t't"""'ctt't't'tt"/

class jcOpeningBookEntry

// A signature for the board position stored in the entry
int theLock;

// Moves
jcMove WhiteMove;
jcMove BlackMove;

// A sentinel indicating that a move is invalid
public static final int NO_MOVE = -1;

// Construction
jcOpeningBookEntry ()

theLock = 0;

WhiteMove = new jcMove();
WhiteMove.MoveType = NO_MOVE;
BlackMove = new jcMove() ;
BlackMove.MoveType = NO_MOVE:

/""'."""""'."'t""tt'"."t""t"'tt"'t't'"""""Q""'""""'

* PUBLIC class jcOpeningBook
* A hash table containing a certain number of slots for well-known positions
't"""""'""'".tt"'t'""""'"'Q"'t"""""".'t""""""t"'/

public class jcOpeningBook

// The hash table itself
private static final int TABLE_SIZE = 1024;
private jcOpeningBookEntry Tablel(];

// Construction
public jcOpeningBook ()

Table = new jcOpeningBookEntry[TABLE_SIZE |
for (int i = 0; 1 < TABLE_SIZE; i++)}

Table{ i] = new jcOpeningBookEntry():
}
}

// public jcMove Query
// Querying the table for a ready-made move to play. Return null if there

136

// is none
public jcMove Query(jcBoard theBoard)

// First, look for a match in the table
int key = Math.abs(theBoard.HashKey() % TABLE_SIZE);
int lock = theBoard.HashLock() ;

// If the hash lock doesn't match the one for our position, get out
if (Table[key].theLock != lock)
return null;

// If there is an entry for this board in the table, verify that it
// contains a move for the current side
if (theBoard.GetCurrentPlayer() == jcPlayer.SIDE_BLACK)

if (Table[key] .BlackMove.MoveType != jcOpeningBookEntry.NO_MOVE)
return Table[key] .BlackMove;

}

else

if (Table[key] .WhiteMove.MoveType != jcOpeningBookEntry.NO_MOVE)
return Table[key] .WhiteMove;

}

// 1If we haven't found anything useful, quit
return null;

}

// Loading the table from a file
public boolean Load(String fileName } throws Exception
{
// Open the file as a Java tokenizer
FileReader fr = new FileReader(fileName)} ;
StreamTokenizer tok = new StreamTokenizer(fr });
tok.eolIsSignificant (false);
tok.lowerCaseMode(false };

// Create a game board on which to "play" the opening sequences stored in
// the book, so that we know which position to associate with which move
jeBoard board = new jcBoard():

jcMove mov = new jcMove() ;

jcMoveListGenerator sSuccessors = new jcMovelistGenerator();

// How many lines of play do we have in the book?
tok.nextToken() ;
int numLines = (int) tok.nval;

for(int wak = 0; wak < numLines; wak++)

// Begin the line of play with a clean board
board.StartingBoard() ;

// Load the continuation
while(true)

{

successors.ComputeLegalMoves (board) ;

// Is the token an end-of-continuation marker?
// If so, go on to the next continuation

if((tok.nextToken() == StreamTokenizer.TT_WORD) && (tok.sval.equalsIgnoreCase("END")))
{
break;
}
if (tok.ttype == StreamTokenizer.TT_EOL)

tok.nextToken () ;

// If not, gather the source and destination squares of the next move
int source = (int) tok.nval;

tok.nextToken () ;

int destination = (int) tok.nval;

137

}

// private StoreMove(jcBoard,

// Make a jcMove structure out of the source and destination squares;
// this determines whether there is a capture involved, a castling,
mov = successors.FindMoveForSquares(source, destination);

// And now, store the move in the table

StoreMove(board, mov };

// Finally, apply the move and get ready for the next one

board.ApplyMove(mov);

}
}

fr.close();
return true;

jcMov)

private boolean StoreMove(jcBoard theBoard, jcMove theMove)}

{

// Where should we store this data?
int key = Math.abs(theBoard.HashKey() % TABLE SIZE };

int lock = theBoard.HashLock();

// Is there already an entry for a different board position where we
// want to put this? If so, mark it deleted

if (Table[key }.theLock != lock
{
Table [key].BlackMove.MoveType
Table[key].WhiteMove.MoveType

}

// And store the new move
Table[key l.theLock = lock;
if (theBoard.GetCurrentPlayer(}

)

jcOpeningBookEntry.NO_MOVE;
jcOpeningBookEntry.NO_MOVE;

jcPlayer.SIDE_BLACK)}

Table[key].BlackMove.Copy(theMove);

}

else

Table[key] .WhiteMove.Copy(theMove);

}

recturn true;

138

etc.

