INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submiitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Assistant Assignment Planner System
Design and Implementation

JUN LIU

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March 2002

© Jun Liu 2002

i~l

National Library Bibli d:e nationale

Your Sle Votre réidrence

Our Sle Notre réédrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de

of Canada du Cana
uisitions and Acquisitions et
Bibliographic Services services bibliographiques
385 Wellington Street 395, rue Welington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68473-3

Canada

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Assistant Assignment Planner System
Design and Implementation

Jun Liu

This report describes the system design and implementation for the Teaching Assistant
Assignment Planner System (TAAP) for Computer Science Department in Concordia
University. TAAP system is expected to provide a convenient way for TA administrator
to manage TA assignment task. This report also presents an Object-Oriented approach for
the implementation of Graphical User Interface (GUI) for TAAP system in Windows
environment. UML (Unified Modeling Language) has been used in the design and
analysis procedure of TAAP, and we use Borland Jbuilder 5.0 for the implementation of
the user interface. Microsoft Access 2000 has been used to implement the database of the

system.

iii

Acknowledgement

I would like to thank my supervisor, Dr. Peter Grogono for his patience and valuable
suggestions.
Helpful discussions were had with other members of the TAAP project, especially with

Jiantao He and Xiang Wang.

iv

Table of Contents

1 INTRODUCTION 1
L] TAAP SYSTEM ...ooooeeeeieieeenneneeesssossossescsssesecscsssssssssssssssasnsessssasssssssssssasssssssassssssssssssases 2
1.2 ORGANIZATION OF THIS REPORT ... cceuueeeeeeemeensnssesesesssasesnssssssssssmssssesssssssssesassssaserssssns 3

2 BACKGROUND 4
2.1 ACRONYMS AND DEFINITIONS ... coiteeeeteeeenrtirsesnsesssmsmssessessssesssssssesssssssossrsessssosssesssssane 4
2.2 TAAP GUI DESIGN PRINCIPLES . .cueeeeteeeeeeeeameneeemenessnsssmssessssmserssessssssssosssssssesssssessss 6
2.3 HARDWARE ENVIRONMENTcuuuveeeveeemeeesveessensesssessassnseessssesssosssssessssssssssssssesessossasssss 8
2.4 SOFTWARE ENVIRONMENTooeeecieeueeenessesessssesssessssessssessesssssssessssssessassssessessosssssesnse 8

3 SYSTEM DESIGN 9
3.1 TAAP SYSTEM REQUIREMENTS ANALYSISovocvueereererencnressuesesaesessasesssessssasssssessanes 9
3.1.] USECASEDIAGRAMooieeeeieeeecneessemessessosessessesssnssessesssssssesssssssssssssssnssssssssssssassssss 9
3.1.2 TASK ANALYSIS ...eeneeeeeeeeeeeeeeesenesseessesonsensastessasasessassessesesssssssossosssossssstosssesssesenees 11
3.2 SYSTEM ARCHITECTURE ...ceieeeeeeemeeeseseescreetessessssnssnssennesssssssesssssssssssssssssssssseasssessossss 15
3.3 CLASS DIAGRAMeeeeeneeeeeeeeeeneevssnesssssnssesssssessssssssnssssssnssssssssssssssstesesssensssnssssnssssssson 17
3.4 SEQUENCE DIAGRAMo.eeooeoeeeeeeeeeeeeeeeeeeeesssssssasssesstesesnsssnssensessessanseesmssssssssassnsens 18
3.4.1 VIEW TA USE CASE cueeeveeveeeeeveeeseescesssessestssonssnsessassmesssssssessessssstassosssssssssssossnsonsases 18
3.4.2 VIEW TASK USE CASEevoeeeeeeereeeeesareesesssssssssasassessesessessssssssssssessassessessnsssssssssesss 20
3.4.3 VIEW UNASSIGNED TASK USE CASE ...ccuuttieereererererassscessesssersssssessesssssosssssnsssssanssssssss 21
3.4.4 VIEW ASSIGNED TASK USE CASE ...uceettremtereerseeeeeeseaesssasnesseresssesssssssssssssssssssesasnnsnnnss 22
3.4.5 VIEW ASSIGNMENT USE CASE .eueeeueeteemeoieeesoseeesessanssasenssssssssasssssssssssssasesssesssesssssssss 23
3.4.6 VIEW GENERATED ASSIGNMENT REPORT USE CASEcvueureceerereeeiessesesesssessesonsasssene 24
3.4.7 VIEW GENERATED TA REPORT CASE...outeeeeieeeeeeereneneeanassossesssssssssssssssssessssersessnsessas 26
3.4.8 VIEW GENERATED TASK REPORT USE CASE....ccieeuuueeeeneiereerenseeseceemesssessssssesssnsssssses 28

4 SYSTEM IMPLEMENTATION 30
4.] JBUILDER 5.0 INSTRUCTIONcouteeeeeciseresesaesseommnesesmssesssssssnssesssesssssssnsssssssnsssssssasarense 30
4.2 JBUILDER 5.0 GENERATED CLASSES IN TAAP SYSTEM ...coveveerrrrrreemereemesssseosssssseseseses 30
G.3 TAAP CLASSESconeeiieeeeeeecneeeeneesnsesassssssssssssssnnssnsensnssonsessssssssssssssssssensssssssesasasesnssses 31
4.3.] GUIMODULE CLASSES.ceeveueeesssetecssesssssorsessnssnsssssesssssorsasssssssssssssesssssssssssnansssseseas 31
4.3.2 DATA INTERFACE MODULE CLASS ...ccouuieveeteertemmmecsacssosescsssesseseesssssnsssnssssssssassssesnsanns 38

§ RESULT 40
S L DEMOceieiveeeaeeseesesennnsssssessessnssssnsssasennsssssssssesasesssnsssssssssssssessessasnsssssssassnnsssasnsnrnnes 40

6 CONCLUSION 41
G.]1 FUTHER WORKcoeoereeeeeereecneseosenneesaasesssssasasesssssssssosesssssassosssssasssssssssssnssssssssssssssserssnssssss 41

BIBLIOGRAPHY 43

APPENDIX A 44

List of Figures

FIGURE 3.1 USE CASE DIAGRAM FOR TAAP SYSTEMccccerneieriueenensunsnrsencssesccssasansnerans 9
FIGURE 3.2 VIEW TAS TASK FLOW DIAGRAMc.uueevuieierueanrancrcnessssscsessosossssasonssssnensoses 12
FIGURE 3.3 VIEW TASKS TASK FLOW DIAGRAMcoecteeeernersuenresnsenssnssssesssssnsnssssseseases 13
FIGURE 3.4 VIEW ASSIGNMENTS TASK FLOW DIAGRAMccerueruenernrencncrcneenessesernnnsens 14
FIGURE 3.5 GENERATE VIEW ASSIGNMENT REPORT TASK FLOW DIAGRAMcc....... 14
FIGURE 3.6 GENERATE VIEW TAS REPORT TASK FLOW DIAGRAM........cccccevercrencecarenereanas 15
FIGURE 3.7 TAAP SYSTEM ARCHITECHTURE DIAGRAMcccocuirnuirnuirnunnnnnsncossecsussnsaeranes 16
FIGURE 3.8 TAAP SYSTEM CLASS DIAGRAMcccoveirmenneeecrereenesesesesssseosassosassnsssssneseone 17
FIGURE 3.9 SYSTEM SEQUENCE DIAGRAM: VIEW TAcoetrreieverereesiecuerecnsesessacsssarassnases 19
FIGURE 3.10 SYSTEM SEQUENCE DIAGRAM: VIEW TASKccccvereereeccererescnseseoscsssoraseans 20
FIGURE 3.11 SYSTEM SEQUENCE DIAGRAM: VIEW UNASSIGNED TASKcccceruerurrecrrenene 21
FIGURE 3.12 SYSTEM SEQUENCE DIAGRAM: VIEW ASSIGNED TASKccoceecieruevueiennnnne 22
FIGURE 3. 13 SYSTEM SEQUENCE DIAGRAM: VIEW ASSIGNMENTcccceveerrinceeeecssnrennens 23
FIGURE 3.14 SYSTEM SEQUENCE DIAGRAM: GENERATE ASSIGNMENT REPORT 25
FIGURE 3.15 SYSTEM SEQUENCE DIAGRAM: GENERATE TA REPORT........coccereeuceneceenranes 27
FIGURE 3.16 SYSTEM SEQUENCE DIAGRAM: GENERATE TASK REPORT........coccounueeriruranee 29
FIGURE 4.1 THE MAIN WINDOW GUIDIAGRAM........cocerreiciranmrrenacsessssesssesssnssssesessesssssasanes 33
FIGURE 4.2 VIEW TA GUI DIAGRAM.......ccuerveieeerereernesseesseessessesesesssessssssssssssessssassssassssaes 35
FIGURE 4.3 VIEW ASSIGNMENT GUIDIAGRAMceeerurrernuerneratesnesscssnencsssossessesassesasnnes 36
FIGURE 4.4 VIEW TASK GUI DIAGRAM........ccceeiieereieneernenneesencssesseensescssssnsosssssssssessosssesacss 37
FIGURE 4.5 REPORT GUIDIAGRAMco.ocuveeenreenneeseeeseessnensessesssesssesmessssnsesssssssrsossnssonsas 38
FIGURE 6.1 MVC ARCHITECTUREcceevererrerresensesseessescsssssesseeessesssssssssasssmsassassensnssases 42

CHAPTER1
INTRODUCTION

This major report, which is under the supervision of Prof. Peter Grogono, is
originated from an actual requirement in the Computer Science Department of Concordia
University.

Every year staffs in Computer Science Department need to spend a lot of time in
processing “Teaching Assistant” (TA) applications before each new term. There normally
are more than a hundred of TA tasks posted every term with dozens of applicants on the
list. Therefore, the total number of applications can easily top hundreds. The information
of tasks, applicants and corresponding applications are stored in the database located in a
UNIX machine. The basic process of doing TA assignments is to first pick up an
unassigned task from the task table, then to check the application table to get the
information of the applicant(s) who have applied this task, and finally reflect the new
assignment in the application table. In order to obtain detailed information about an
individual applicant, the applicant table has to be consulted constantly during this
process.

So far the whole assignment process is still carried on manually by a TA
Coordinator, and no tools have been developed for them to help facilitate this routine and
mandatory task. Assigning TAs is a tedious and error-prone process which means not
only time consuming, but also likely susceptible to such errors as assignment schedule
conflicts (i.e. one applicant gets two tasks with conflict schedule), multiple assignments
(i.e. the same task is assigned to more than one applicant) and overloaded assignments.

(i.e. some applicants are too overloaded).

Without a tool, it is also hard for the TA coordinators to get the progressing
information about how many and what tasks have been assigned and how many and what
tasks are yet to be assigned.

“Teaching Assistant Assignment Planner” (TAAP) demonstrated in this major
report is the tool intended to help automate the assignment process in the manner of
eliminating human errors, minimizing the memorization request and providing the
progressing information and status report. The goal is to try to keep the system itself as
simple as possible, and the productivity is obtained by focusing on features like user-

friendly interface, easy-to-use and easy-to-maintain.

1.1 TAAP SYSTEM

TAAP, as mentioned before, is a semi-automation tool to help simplify the TA
assignment process. However, the actual assignment still needs to be done manually.
TAAP guarantees the better productivity by providing functionalities to assist TA
assigners doing their job not only effectively and efficiently, but also correctly. The
automatic assignment mechanism (which usually requires a sophisticated algorithm) is
not considered here, thus not implemented in TAAP. It might be part of the TAAP
implementation for the next phase.

The main functionalities implemented in TAAP are categorized as follows:

@ Assigning tasks and deleting assigned tasks

® Viewing TAs, assigned Tasks and unassigned Tasks.

® Reporting TAs, Tasks and Assignments.

TAAP is a local integrated database application system with both client-side

application and back-end database running on the same machine, therefore it can only be

accessed from where TAAP is installed, any attempt for remote access is not possible.
TAAP is developed and operated solely on the Windows platform (9x/2000/NT). For the
sake of clarity, TAAP will be referred as the client-side application hereafter, while back-

end database will be referred using the database name.

1.2 ORGANIZATION OF THIS REPORT

Chapter 1 presents the introduction of this report. Chapter 2 presents the
background on of TAAP system. Chapter 3 presents the object-oriented design for TAAP
system. Chapter 4 describes the implementation of TAAP system. Chapter 5 presents the
Result. A brief summary of the TAAP system, the contribution of this report, and the
suggested future work is given in Chapter 6.

We assume the readers are familiar with Object-Oriented modeling in Unified Modeling

Language (UML).

CHAPTER 2

BACKGROUND

This chapter describes the background knowledge necessary for designing and

implementing the TAAP system

2.1 ACRONYMS AND DEFINITIONS

e AWT
Abstract Window Toolkit, it is a large collection of classes for building graphical
user interfaces in Java.

e Jtable
Jtable is a Java Swing component.

e JcomboBox
A GUI independent object ComboBox in ComBox.java class. This object belongs
to the java.awt package.

e GUI
Graphic User Interface. A GUI is what computer types call the system of icons,
toolbars and other objects that our computer use to display and access
information.

e SQL
Structured Query Language. SQL is a kind of query language in which a user
requests information from the database. Query Languages are typically of level

higher than that of a standard programming language.

e Swing
Swing refers to the new library of GUI controls (buttons, sliders, checkboxes,
etc.) that replaces some weak and inflexible AWT controls.

e TA
Teaching Assistant. In TA table, A TA has some fixed characteristics and some
data that changes as user makes assignments. The fixed (or given) characteristics
are:
Name A string of characters.
Experience A list of the tasks that the TA can perform.
Tasks A list of the tasks actually performed by the TA.

e Tasks
Each course is offered in zero or more sections. A Task is described by the
following data:
Course A four-letter string: COMP, ENCS.

Number A three- or four-digit string: 248, 5421.

Session A single digit indicating the term: 1, 2, 4.
Title The name of the course. Artificial Intelligence.
Section The code for a section of the course: AA

Task type A task associated with this section: TUT, LAB, MRK.
Days Days on which the tutorial/lab is offered: T, W, F.

Start The start time of the tutorial/lab: 10:15.

Finish The finishing time of the tutorial/lab: 11:30.

o Task Flow Diagram

Task flow analysis will document the details of specific tasks. It can include
details of interactions between the user and the current system, or other
individuals, and any problems related to them. Copies of screens from the current
system may also be taken to provide details of interactive tasks. Task flows will
not only show the specific details of current work processes but may also
highlight areas where task processes are poorly understood, are carried out
differently by different staff, or are inconsistent with the higher level task
structure.
e Usability

Usability is a high-level quality objective: The extent to which a product (UI)
with effectiveness, efficiency and satisfaction in a specified context of use.

[ISO9241-11]

2.2 TAAP GUI DESIGN PRINCIPLES

Easy-to-use and Easy-to-maintain are our goals to design TAAP system.
Graphical User Interfaces (GUI) have been used for many years, and most users
interact with computer through GUI now. Due to 50% of interactive systems
development efforts are related to user interface, User Interface should be considered
as an important component for the organization and development of the overall
interactive system.

Since TAAP system is a local integrated database application system with both
client-side application and back-end database running on the same machine, the
interface of the TAAP system design uses the following guidelines:

e Understandability

The extent bears on measuring the difficulty of user on understanding software
functions, operations and concepts while user has no previous knowledge about
software.

The TAAP system just has one main window for user to do their task, so it is easy
to learn. Simplicity is important feature for user to understand the system easily.
Operability

Measures the user’s effort for operation and operation control.

In order to prevent user from becoming lost, TAAP system seldom opens a new
window, users could accomplish their goals in one window.

Efficiency

The amount of resources expended in relation to the accuracy and completeness
with which user achieves a goal.

The TAAP system interface tries to minimize the steps that users have to follow
to achieve their goals.

Completeness

The extent to which the user can complete a specified task. The TAAP system has
been designed to meet the user requirements, and all the functionalities are
implemented.

Flexibility

Indicates the degree of possible modification to user interface by the user. User
Interface should be easy to update when requirement changes.

The above quality-in-use factors are also defined in [ISO-9126].

2.3 HARDWARE ENVIRONMENT

Because TAAP system is a local database application system, one personal
computer is required for system installation and operation. The requirements for the
personal computer are at least 266M processor, 128M RAM and 50M hard disk free
storage space [5].

These requirements are suggested by Borland Company for installing and running

Jbuilder 5.0 software, which is used for TAAP system implementation.

2.4 SOFTWARE ENVIRONMENT

Since Windows 95/98 has weak security feature, Windows NT operating system
is recommended for the TAAP system. Borland JBuilder 5.0 is chosen for the
implementation of TAAP system because JBuilder supports visually designing and
programming Java classes. However, considering the portability of TAAP system, the
Jbuilder specific Java features could not be used, instead of standard AWT/SWING tool
kits have been used. Microsoft Access database is chosen because Access fulfills current

requirements for TAAP system.

CHAPTER 3

SYSTEM DESIGN

3.1 TAAP SYSTEM REQUIREMENTS ANALYSIS

3.1.1 USE CASE DIAGRAM

The Use Case diagram for TAAP system lists below, which illustrates an
overview of Use Cases for end-user (lab coordinator). This Use Case Diagram is
also used to precisely describe the functional requirements of TAAP system [1].

We define only one actor Lab coordinator in TAAP system. According to
the requirements of TAAP system, we divide use Cases into 5 parts, which are
Assign TA, View TA, View Task, View Assignment, and Help use case. Each

task in turn may have several sub-usecases.

Help) : '\,‘ . e
N -g<include>> <<include>»
View Unassioned Yask View Assianed Task Display summaries
View Tasks <<include>> .
<cinclude>> L
<<include>> - .Report Generation
. <<include>>
— . ™~ .
7. s <<include>>
‘ View Assignments © cdncludes>
Lab Coordinador . e
\ 3 . <<include>> 7 . e
- “
. : . Data handier
View TAs <<inciude>> o
<<include>> o
: Inteqrity
o <<include>> I
Assign TAs ' . ..’ N
Suggested

Figure 3-1: Use Case Diagram for TAAP system

e View TAs

The program displays all TAs, together with TA's Name, Student ID, Applied
Courses, Task Type and Assign Status. This enables the user to check progress
and to see which TAs are still short of work.

e View Tasks

The program displays all tasks. Each task is listed with the TA's name if a TA

has been assigned, this field is blank if no TA has been assigned.

e View Assigned Tasks

The program displays only the assigned tasks

e View Unassigned Tasks

The program displays only the unassigned tasks

e Report Generation

The program generates a report.

e Summary

The program provides summary data. Program will display the summary data on
the screen at all times.

(a) Number of TAs.

(b) Number of tasks.

(c) Number of tasks with a TA assigned.

e Data Handler

Data Handler is for handling data and accessing the database.

o Suggest TAs

10

The program is displaying unassigned tasks. If the user selects a task, the program
suggests suitable TAs (that is, the TAs whose Experience field includes this task).
e Assign TAs

The user selects a TA and a task; the program assigns the task to the TA and
checks for conflicts. The program is displaying a section and a list of suggested
TAs, clicking on a TA assigns the TA to that task.

e Integrity Check

When assign a Task to a TA, the program checks the time to make sure that the
time of assigned tasks will not conflict. (One TA should not be assigned more
than one task at a certain time).

e Help

The program provides help information for user to use the TAAP system.

3.1.2 TASK ANALYSIS

There are four different major tasks in TAAP system (Assign TA task is other
team member’s responsibility, it will not be discussed in this section): View TAs,
View Tasks, View Assignment and Generate Report. In generate report task part,
we present two examples which are Generate TA Report sub-task and Generate
Assignment Report sub-task. The detailed descriptions for the tasks are given as
below:
e View TAs: The Task starts when user selects View TAs function. The
program could display all TAs, or the TAs in specified department upon
request, together with their fixed and variable data, such as Name, SID,

Applied_Course, Task_Type and Assign_Status. This enables the user to

11

check progress and to see which TAs are still short of work. The user can also
generate a report file and save to disk. The task flow diagram is shown in

Figure 3-2.

Starting Task

!

System: Wait for action

No Select department Yes
1D

Display all TAs Display specific department’s
TAs

é

Ending task

Figure 3-2: View TAs Task Flow Diagram
e View Tasks: This Task starts when user selects View Tasks function. The
program could display all tasks, or display tasks in specific department and
task type on request. Each task is listed with the TA's name if a TA has been
assigned; this field is blank if no TA has been assigned. If no one assigned for
a specific task, the TAs who applied for this task will be listed.
The user can also generate a report file. The task flow diagram is shown in

Figure 3-3.

12

Starting Task

!

System: Wait for action

Select department Yes
D? |

No Select Task Type Yes

D? j

'

No

‘ Display Tasks of
Display all Tasks Display Tasks of Display Tasks of specific TaskType
snecific Task Tvne snecific denartment and department
Ending task

Figure 3-3: View Tasks Task Flow Diagram

e View Assignments: This Task starts when user selects View Assignments
function. The program display all assigned tasks sorted by task ID, session
and course on request. The unassigned tasks can also be displayed on request.
Program can also generate a report file. The task flow diagram is shown in

Figure 3-4.

13

Starting

!

Systemn: Wait for action

No Select assign
status?
‘ Yes
A Display
Display all assignments Display assignments Display assigned task
hv accion ctatie accionment huv by sort ID
Endina task

Figure 3-4: View Assignments Task Flow Diagram
e Generate Assignment Report: This sub-task starts when users finish View
Assignments task The report can also be displayed / saved on request. The

task flow diagram is shown in Figure 3-5.

Starting

!

Display Report

No Save ? Yes

\ 4

Save to disk

é

Endina

Figure 3-5: Generate View Assignments Report Task Flow Diagram

14

Generate TA Report: This sub-task starts when users finish View TAs task.
The report can also be displayed / saved on request. The task flow diagram is

shown in Figure 3-6.

Starting

!

Display Tas Report

No . Save ? Yes

A

Save to disk

é

Endina
Figure 3-6: Generate View TAs Report Task Flow Diagram

3.2 SYSTEM ARCHITECTURE

System architecture design is the high-level strategy for solving the target

problem and building a solution. We use the layered architecture to design TAAP system.

There are four layers in the TAAP system architecture.

Presentation layer

Contains the ViewTA, ViewTask ViewAssignment and AssignTA objects
which comprise the GUI of the TAAP system.

Domain Logic

There is only one class (Report) designed for Application Logic layer, we also

encapsulate the domain-specific process such as DisplayTAs, GenerateReport

15

methods into all GUI classes such ViewTA. Logically, the domain logic is an
independent layer in TAAP system.

Persistence

Contains the Datalnterface object to provide Read/Write access to the
database. Concretely, Datalnterface is implemented as a Java class that
supports Create, Read, Update and Delete operations through a set of
interfaces.

Data Storage

Contains the mechanism employed for storing data persistently. Access

database is used for data storage in TAAP system.

Presentation

GUI Objects ViewTA ViewTask
ViewTask

Method Calls lT

Domain Logic

Report object

Method Calis lT

Persistence

Datalnterface Objects

il

Data Storage

Access Database

Figure 3-7: TAAP System Layered Architecture Diagram

16

A user interacts with TAAP system through GUI part. All requests from user send
to Datalnterface object to produce the standard SQL command and pass the query
requests to Database. The result of an SQL query will send back to GUI module.

Datalnterface class provides data service, it directly accesses the database through

JDBC driver. All the database operations and queries encapsulated in class within

Datalnterface class.

3.3 CLASS DIAGRAM
MainWindow
IR

/ /

/
S
7 /

‘__—.ViewTA ViewTask ViewAssignment AssignTA !
‘.:\ N // \\\

' ,f/
F N |
/ Gepérates | /
Geherates }é ‘ /
\

\ Gen ral / UG\ Uges Uses

/)\ \/’/

GRepon Datalnterface

Figure 3-8: TAAP System Class Diagram

The class diagram for TAAP system is presented in Figure 3-8. It describes the

types of objects in TAAP system and the relationship existed among them
When TAAP system is started, MainWindow graphic object will be created. Upon the

run-time situation, it will create ViewTA graphic object if user click on "View TA"

17

button in main window. The same way, VeiwTask, ViewAssignment or AssignTA object

will be created if the corresponding button is clicked.

All TAs, Tasks and Assignments data request to database will be send to Database
Interface module. When Datalnterface receives data request from ViewTA, ViewTask, or
ViewAssignment, it will get the data records from Access database and return them to the
caller.

Report object will be generated when a request to report is received by ViewTA,
ViewTask, or ViewAssignment object. Report object will save report data to file on

request.

3.4 SEQUENCE DIAGRAM

We present following sequence diagrams for the major use cases in TAAP

system.

3.4.1 View TA Use Case

The system sequence diagram for View TA Use Case is presented in Figure 3-9.
The use case starts from user clicking on “ViewTA” button. MainWindow in turn will
call (deck.getLayout()).show() to show ViewTA panel. User then selects Course in which
TAs registered. Step by step, user enters display command by clicking on “Display”
button, the data which input by user then send to Datalnterface by calling listTA(Q)
function. Datalnterface will get query result from database and return to ViewTA. The

data finally will be displayed in MainWindow for user.

18

A MainWindow ViewTA Datainterface
User
Click "ViewTA" button
Show "ViewTA" panel
Select "course”
Click "Display” button
instance.listTA()
Return query result
Display query resuit

Figure 3-9: System Sequence Diagram: View TA

19

3.4.2 View Task Use Case

The system sequence diagram for View Task Use Case is presented in Figure 3-
10. The use case starts from user clicking on “ViewTask” button. MainWindow in turn
will call (deck.getLayout()).show() to show ViewTask panel. User then select Course in
which TAs registered, and select Task Type which TAs need to do. Step by step, user
enters display command by clicking on “Display” button, the data which input by user
then send to Datalnterface by calling listAllTask() function. Datalnterface will get query
result from database and return to ViewTask. The data finally will be displayed in

MainWindow for user.

R — ——
L . :MainWindow l ViewTask :Datalnterface
. : .
| User - _ —_—

Click "ViewTask" button

>

Show “ViewTask"® pane

Select ‘course”
— e o —=

Select Task Type

Click “Display® button
- e me O . - - ,,A,>

instance.listTAllTask()

Return query result

Display query resuit

Figure 3-10: System Sequence Diagram: View Task

20

3.4.3 View Unassigned Task Use Case

The system sequence diagram for View Unassigned Task Use Case is presented in
Figure 3-11. The use case starts from user clicking on “ViewTask” button. MainWindow
in turn will call (deck.getLayout()).show() to show ViewTask panel. User then selects
Course in which TAs registered, Task Type which TAs need to do. Unassigned Task
CheckBox in turn is selected. Step by step, user enters display command by clicking on
“Display” button, the data which input by user then send to Datalnterface by calling
listTUnassignedTask() function. Datalnterface will get query result from database and

return to ViewTask. The data finally will be displayed in MainWindow for user.

' :MainWindow ° ViewTask | ‘:Datalntedface

i User

l

Click "ViewTask" button

Show *ViewTask" pane

Select “course”

Select Un-assignedTask Type

Click "Display” button

instance.listTUnassignedTask()

Return query resuit

Display query result

Figure 3-11: System Sequence Diagram: View Unassigned Task

21

3.4.4 View Assigned Task Use Case

The system sequence diagram for View Assigned Task Use Case is presented in
Figure 3-12. The use case starts from user clicking on “ViewTask” button. MainWindow
in turn will call (deck.getLayout()).show() to show ViewTask panel. User then selects
Course in which TAs registered, select Assigned Task CheckBox. Step by step, user
enters display command by clicking on “Display” button, the data which input by user
then send to Datalnterface by calling listAssignedTask() function. Datalnterface will get

query results from database and return to ViewTask. The data finally will be displayed in

MainWindow for user.

Click *ViewTask* button

Show *ViewTask® panel

Select “‘course*

Y.y

Select AssignedTask Type

Click *Display® button

VAR2

; instance.listTAssignedTask()
Return query result J

|
Display query result [

Figure 3-12: System Sequence Diagram: View Assigned Task

22

3.4.5 View Assignment Use Case

The system sequence diagram for View Assignment Use Case is presented in
Figure 3-12. The use case starts from user clicking on “ViewAssignment” button.
MainWindow in turn will call (deck.getLayout()).show() to show ViewAssignment panel.
User then selects SortBy ComboBox by which TAs are sorted, select Select List
ComboBox. Step by step, user enters display command by clicking on “Display” button,
the data which input by user then send to Datalnterface by calling sortBy() function.
Datalnterface will get query results from database and return to ViewAssignment. The

data finally will be displayed in MainWindow for user.

User -MainWindow ViewAssignment ;Datalnterface

Click "ViewAssignment® button

> E
Show "ViewAssignment” panel
. — . . - >.
Select "Sort By" comboBox

S -- >
Select “Select List* comboBox E
Click *Display” button t
; : I el ;
I P
instance.sortBy() |
>‘

Return query resuit

Display query result

Figure 3-13: System Sequence Diagram: View Assignment

23

3.4.6 View Generated Assignment Report Use Case

The system sequence diagram for Generate Assignment Report Use Case is
presented in Figure 3-14. The use case starts from user clicking on “ViewAssignment”
button. MainWindow in turmn will call (deck.getLayout()).show() to show
ViewAssignment panel. User then select SortBy ComboBox by which TAs are sorted,
select "Select List” ComboBox. Step by step, user enters display command by clicking on
“Display” button, the data which input by user then send to Datalnterface by calling
sortBy() function. Datalnterface will get query results from database and return to
ViewAssignment. The data finally will be displayed in MainWindow for user. At this
time, the user gets all the data about assignments. To generate a report for this assignment
information, user could enter report command by clicking on “Report” button. Then
GReport() is called and a GReport object is created. User can save the data displayed in

report window to files.

24

: 1
User { |
Gick on “ViewAssignment” button | i
> ;
i
Sm'\liem\gfgnurmlgi
Select *Sort By” comboBox '
: >
Select *Select List" comboBox
Click on "Display” button *
> .
. 5 0>:
Retum query result
<
< Display query result
Click on “Report” button
> New

Figure 3-14: System Sequence Diagram: Generate Assignment Report

25

3.4.7 View Generated TA Report Use Case

The system sequence diagram for Generate TA Report Use Case is presented in
Figure 3-15. The use case starts from user clicking on “ViewTA” button. MainWindow
in turn will call (deck.getLayout()).show() to show ViewTA panel. User then selects
Course in which TAs registered. Step by step, user enters display command by clicking
on “Display” button, the data which input by user then send to Datalnterface by calling
listTA() function. Datalnterface will get query result from database and retum to
ViewTA. The data finally will be displayed in MainWindow for user.

To generate a report about TA information, user could enter report command by
clicking on “Report” button. Then GReport() is called and a GReport object is created.

User can save the data displayed in report window to files.

26

f T vem | s |
: |
i ! |
| : i
;Qid(m'\flewTA'hnm I ;
% > ; j |
, i |
Show "ViewTA" panel ; !
>I
> 1
Giick on "Display” button
> ! |
instance itTA() :
>,
Retum query result
<
Oisplay query result
Click on "Report” button :
> ‘ ‘
New ;

Figure 3-15: System Sequence Diagram: Generate TA Report

27

3.4.8 View Generated Task Report Use Case

The system sequence diagram for View Task Use Case is presented in Figure 3-
16. The use case starts from user clicking on “ViewTask” button. MainWindow in turn
will call (deck.getLayout()).show() to show ViewTask panel. User then selects Course in
which TAs registered, and select Task Type which TAs need to do. Step by step, user
enters display command by clicking on “Display” button, the data which input by user
then send to Datalnterface by calling listAllTask() function. Datalnterface will get query
result from database and return to ViewTask. The data finally will be displayed in
MainWindow for user.

To generate a report about Task information, user could enter report command by
clicking on “Report” button. Then GReport() is called and a GReport object is created.

User can save the data displayed in report window to files.

28

Figure 3-16: System Sequence Diagram: Generate Task Report

29

User ; :
= . l
|
| |
Ciick on "ViewTask" button ! i
; |
Show "ViewTask" panel ; }
Select “Course® comboBox ;
> |
Select “Task Type® comboBox |
Click on “Display” button ' ?
> |
instance.listAllTask()
n B > ..
Retumn query resuft -
Display query result
Click on “Report” button
>

CHAPTER 4

SYSTEM IMPLEMENTATION

4.1 JBUILDER 5.0 INSTRUCTION

Because the TAAP system is developed in Java using JBuilder 5.0, we introduce

some features of JBuilder V5.0.

JBuilder V5.0 is Borland Software Corporation product. The JBuilder integrated
development environment (IDE) provides a single window that is equipped to handle
many development functions {4].

JBuilder also provides many time-saving wizards for application development. With
these wizards you can quickly create or modify files, settings, and preferences. The
wizards create the framework of your file or application, allowing you to focus on
development [4].

JBuilder provides tools for visually designing and programming Java classes,

allowing you to produce new compound or complex components [4].

4.2 JBUILDER 5.0 GENERATED CLASSES IN TAAP SYSTEM

Following classes used in TAAP system are automatically generated by Jbuilder:
Initial ApplicationClass.java
This class is auto-generated application class for TAAP system. This class consist of

a main application class and frame class which can be customized by using the visual
designer [4].

Initial ApplicationFrame_AboutBox.java

30

This class provides TAAP product version, copyright and comments information.

You can change information in the About-Box by directly editing the code [4].

4.3 TAAP CLASSES
4.3.1 GUI Module Classes
According to the use cases and task analysis, we choose dialog-based interactive style
to achieve the goal of easy-to-use. The dialog-based interactive style provides contextual
information for the user, allowing them to make a related set of choices. To support a
clear presentation of TA, Task and Assignment information [2], JAVA Swing component
called JTable is used in construction of the GUI module. The Button, ComboBox,
ProgressBar, Label are also used to give user a clear information about functionality of
the TAAP system.
e MainWindow.java Class
This class is the main window GUI class. The TAAP GUI module has been designed
as one window system in order to accomplish the goal of simplicity. There are four
function buttons on top of the window to display ViewTA, ViewTask,
ViewAssignment and AssignTA panel when the corresponding button clicked. So it is
easy to use. By default, the ViewTask function is selected when initialize the TAAP
system.
MainWindow class is inherited from Jframe, its major Attributes are declared as

below:
/...
ViewAssignment viewAssignment = new ViewAssignment();

ViewTA viewTA = new TA();

31

ViewTask viewTask = new ViewTask();

AssignTA assignTA = new HelloWorldFrame();

/...

The ViewTA, ViewTask, ViewAssignment and AssignTA class are inherited
from JPanel, so these sub-GUI part could be put into MainWindow JPanel Container.
One of the functionality implemented in MainWindow class is to display ViewTA,
ViewTask, ViewAssignment or AssignTA panel on the same location in main window
when user click on function button. For this purpose, we implement a layout design

method as shown below:
JPanel deck = new JPanel();
/...
deck.setLayout(cardManager);
deck.add(viewTask, "ViewTask");
deck.add(viewTA, "ViewTA");
deck.add(viewAssignment, "ViewAssignment");
deck.add(assignTA, "AssignTA");
CardLayout CardManager2=new CardLayout();
/1 display viewtask by default

((CardLayout)deck.getLayout()).show(deck,"ViewTask");

/...
The above layout design make sure to display different panel in same location.

The example of event handler code is given below:

void jButton]_actionPerformed(ActionEvent e) {
/I show View TA panel for user in main window

((CardLayout)deck.getLayout()).show(deck,"ViewTA");

32

The Main Window GUI diagram is presented in Figure 4-1.

23 [rac hindg Assistant £ nment Plannes

Figure 4-1: The Main Window GUI Diagram

ViewTA.java Class

This class is designed for View TA functionality. ViewTA class is inherited from
Jpanel. In order to display TAs information for different department, we use
JcomboBox component for user to choose Course ID. User enters display command
by clicking on “Display” button on top of ViewTA panel, the data which input by

user then send to Datalnterface by calling listTA() function. Datalnterface will get

33

query result from database and return to ViewTA panel. The data finally will be
displayed in MainWindow for user.
One of the functionality implemented in ViewTA class is to display a clear presentation
of TA information. For this purpose, we implement a design method as shown below:
// initial table

JTable tbiTA = new JTable();
DefaultTableModel tmTask = new DefaultTableModel();
I/
void loadTADB()
{

tbTAHeader = new Vector();
String co = (String)cbbCourseSelect.getSelectedItem();
tbTAHeader.add("Name");
tbTAHeader.add("SID");
tbTAHeader.add(" AppliedCourse”);
tbTAHeader.add("Task Type");
tbTAHeader.add("Assign Status™);

tbTAContent = instance.listTA("Tasks"," Assignments","TAs" ,co,jLabel2,jLabel4);

tmT A setDataVector(tbT AContent, tbT AHeader);

tbITA.setModel(tmTA);

// set column

TableColumn column;

TableColumnModel cmod = tbITA.getColumnModel();
for (int i = 0; i<=4; i++){

column = cmod.getColumn(i);

}

34

