INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Development Frameworks for Mobile/Wireless User Interfaces:

A Comparative Study

Simona Pestina

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

March 2002

© Simona Pestina, 2002

i+l

National Lib Bibliothéq tionale
of Canada a du C:anad:e n
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fie Votre réldrerce
Our e Notre rékirence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68478-4

Canadi

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése m des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

Development Frameworks for Mobile/Wireless User Interfaces:

A Comparative Study

Simona Pestina

In this research, we investigated the development frameworks for mobile/wireless Web
applications with a special consideration to the user interface (UI) component. The Web
applications running on small mobile devices cannot support the full range of the traditional
desktop Web functionality. This is due to the devices’ physical and computational
constraints. We described how the mobile devices' constraints and their increased diversity
and connectivity are affecting the traditional Ul development tools, methods and concepts.
We also analyzed the development impacts that are emerging from the necessity of building
consistent user interfaces for different mobile devices and platforms. In particular, we
discussed how the current development frameworks could satisfy the constrained mobile
environment while preserving the cross-platform usability. We conducted a comparative
survey of these frameworks using, different criteria such as data processing, data interactivity
and presentation techniques, data transfer, security support, cross-platform or device specific
availability, scalability, Ul modeling techniques, UI delivery mechanism. We exposed the
strengths and weaknesses of each framework while highlighting the areas for future
improvements. Our survey highlighted the need for a "universal" high-level framework for

mobile Uls development.

it

TABLE OF CONTENTS

1. CHAPTERI - INTRODUCTION TO MOBILE COMPUTING DEVELOPMENT 1
1.1, MOBILE COMPUTING ...oueveieeneeereeveeeesseseseeeessssseesssmsnsesssssssssssassesssssasasesnsessssesassssssesessmsnsssanasnss 2
1.2. MOBILE AND WIRELESS DEVICES: CHARACTERISTICS AND CONSTRAINTScooveeeenveneenanans 4
1.3. MULTI-PLATFORM, MULTI-DEVICES AND MULTI-USER INTERFACEScoeeeeeeerrercececnanes 6
1.4. RESEARCH OBJECTIVES AND METHODOLOGYcoeieeeremeeerreeereeeessseerseessesnsesssssssssssssssonsressssnes 9

2. CHAPTER I - USABILITY CHALLENGES FOR MOBILE / WIRELESS

INTERACTIVE APPLICATIONS 11
2.1, WIRELESS USERS.....cccoieriierreerieeereeeereesaseesssssnesnsssssasssnsesmssssssasssssssssssssssesasssssssnsssonsnssssssnsessnnes 11
2.2. WAP USABILITY FINDINGS FROM NIELSEN SURVEYcocoiiirerrecerrcecmeenssssssssnsssnssssesas 12
2.3. MOBILE COMPUTING GUIDELINEScocererurumrimrnirrensensesnsnensssssessssesssssnsnssnsessessessssssnssnssens 16
2.4. DEVELOPMENT CHALLENGES AND TRENDS........cccieeeermemseissacssessessssnssissassossssenssssssnsesssannennes 19

2.4.1. Design for Device CONSIFAINLS.............oueeeeeeeeeueceecrinninineirineenesseiiacsssssesssersmssssesssses 20
2.4.2. Design for Multi-Platformooueeeeecmvirininieinciniinisnnssescsnssssssssesssssesnesnes 24
2.4.3. Design for CONIEXI-AWAreNeSSs................co.eceereeceerenserervereneesesissinisssasssssssssssssessessesenses 26
2.4.4. Low-level Frameworks versus High-level Frameworksccuuveueerceereunnn.. 29
2.4.5. Proposed “Universal” High-Level Architecture for Developing Mobile Applications.31

3. CHAPTER III - LOW-LEVEL FRAMEWORKS FOR MOBILE APPLICATIONS......... 34

3.1. HTML AND WEB CLIPPING FRAMEWORKccccouermmrieinreieninrereteneniisressesesnseasesnesssssnsssssnans 34
3.1.1. Motivation and OBJECliVesuueeeeeeeeeeeeereererseenereeeereteseaeseesessesessosssssesasssenases 34
3.1.2. Features DeSCriDLionooeoveeeeeeeeeeeeeeeeeeeeseerecnsesssssssisssrssesnesassssnsssnsnsesssasenens 34
3.1.3. Sample Code............eeeoeeeeeeeeeeeeee ettt 39
3.1.4. Advantages and Disadvantagesccccovirvinineieneiiiniinceee e 40

3.2, WAP FRAMEWORKoovcmreeneereeeenerecernnreeeesmnnseesssssesasssssossmtssssssssssssassanssessesssssresssssssrnnans 40
3.2.1. Motivation Gnd ODBJECtiVes..................ooeeeueeeeueeeeeeeeceereereeteeeresesesatesseeseeosssesssesnsesnanns 40
3.2.2. Features DeSCriDliOneeeeeeeeeeeecrerereeeeeiieceerestescstaseenesmessnassassnssssnssssasssasans 41
323, SAMPLE COde ...ttt e e 45
3.2.4. Advantages and Disadvantagesccocoueereeereeiimiicienieeeeee e 46

3.3, XML FRAMEWORK ...oouutiiiiiiieeeeecnrieeesseneaeesesassaesesssessomesssssanessesnsnsssanesensssassemsnrssnsnssssnsasnssn 48
3.3.1. Motivation and OBJECHiVesueeueeeeeeeeeeaeeeerceeeereeereeesersesesessenensssssssssssesnsasens 48
3.3.2. Features DeSCriDLONooeereereeecrraaeeeeeeencerineencssstesssssssessisssese s sssneesessansnansnesens 49
3.3.3. Sample Code ... ee ettt st 52

iv

3.34. Advantages and Disadvantagesc.coomiuiiiouiiiceriienineie st 32

34, UIML FRAMEWORKuoueirircrcuetinteesessssssesessssinsesssssss s ssss st s sesssesesssssenssassasassssesesssensssssnes 54
3.4.1. Motivation nd OBJECliVesuueeceeceeeeieeeneecteeeeeeeeestesestesesesesesseseessenessesn 54
3.4.2. Features DesCriDlONo.ooveneiiiniieiiiecie st seees e sessn s anesas 57
3.4.3. 8ample Code...............uoeeoneininiinieeeet et ettt e 62
3.4.4. Advantages and Disadvantagesccccccouuiniiuiiirniineneieeceeiereneesenesennne 62

3.5. JAVA 2 MICRO EDITION (J2ME) FRAMEWORKovomeeeimeieeeeeseeesieeeeseseesesessssssesesssesses 65
3.5.1. Motivation and OBJECHVESu.eoeeeeereereeeeeeeeeeeeeeeeeeseeeeesessesnresessesnsresee s esesnens 65
3.3.2. Features Descriplionoeemeneeetereeeneeete s ettt 65
3.5.3. Sample Code.................eeeeeeeceeeteet et sa e nn 71
3.5.4. Advantages and Disadvantagesc.ccouveeeunnireeininesenesenesernesesesenas 71

4. CHAPTERI1YV - HIGH-LEVEL FRAMEWORKS FOR MOBILE Ul DEVELOPMENT..73

73

4.1. AUTOMATIC UI DESIGN PROCESSccceerceeeuremeruraceereesenressesacsassesssasssssssssessrsesssnsasnnes

4.2. FRAMEWORK FOR BUILDING MULTI-PLATFORM USER INTERFACES THROUGH A MULTI-STEP

TRANSFORMATION PROCESSc.uoouireemmrnnrneesaesnsracssseesasssesessasossesssssssssasassssosesssssesssssassssassssssnsaes
4.3. FRAMEWORK FOR TASK AND BUSINESS KNOWLEDGE INTEGRATION.......ccccceceremueruerurrnenencs
44. FRAMEWORK FOR CONTEXT-SENSITIVE UIS EMPHASIZING THE TASK MODELING.............

4.5 FRAMEWORK FOR APPLYING THE PRESENTATION, PLATFORM AND TASK MODELS TO THE

DEVELOPMENT OF MOBILE UIS......neeeee ettt sensetsee e e eaeeassenestnea e s asnssssaseses
4.6 UNIFIED FRAMEWORK FOR DEVELOPMENT PROCESS OF PLASTIC UIS.........cccooceerncnenne...

4.7 XIML FRAMEWORKuvveviereeereeriecsveeessessesssssssesssssssesserenssssssesssssssssesssssssssnssssssanssssssssnsomnenn
48 FRAMEWORK FOR USER PREFERENCE MODELING FOR ADAPTIVE USER-INTERFACES.......

49 FRAMEWORK FOR CONTEXT — AWARENESS DEVELOPMENTcocesutemtnuiriniiresensesrosesnessenes

S. CHAPTER YV - CONCLUSIONS AND FUTURE DEVELOPMENT

REFERENCES

ACRONYMS AND ABBREVIATIONS

ANNEXES

ANNEX 1. WEB CLIPPING AND HTML FRAMEWORK EXAMPLEooiiiieiieceeeeeeeee e teeeemeseneees
ANNEX 2. WAP FRAMEWORK EXAMPLE.......eoooooieieeeieeeeeeeeesssesssssssesssssssssusssssosssssssssssessnssssssses
ANNEX 3. XML FRAMEWORK EXAMPLE.......ovoeeeiiiieeteereerrrreeeeiesnreesssssesesssssessssssssssanssseesaosesesen

107

110

112

ANNEX 5. J2ZME FRAMEWORK EXAMPLEcoiiienieeieceeeereeesecesieeesaesetsemsseeesssscsesssessmssnsssans 127

LIST OF TABLES
TABLE 4-1 UIML GENERIC VOCABULARY 1 [21] e cceeeeee e eee e csae e sesesnsnes 77
TABLE 4-2 UIML GENERIC VOCABULARY 2 [21]..uuiieeeeieerreieiceeeereeeceresscceseresseseessssessessssnsersnesesnes 77
TABLE 4-3 COMPARISON OF FRAMEWORKS FOR CONTEXT-SENSITIVE UITS......c.cocirrrreceeercren. 87
TABLE 4-4 PREFERENCE RELATIONS [32] .eeionieieeieeeeeeeeecceceeseee e cesnnn e snesenssesessassssassnsssnasasenens 99
TABLE 4-5 CONCRETE PREFERENCE [32] ...ucotiiieietnieiieneeneecreeceeeensceseeceensesscosessessesonsnsssseessonens 99
TABLE 4-6 ABSTRACT PREFERENCE [32] «..ceiieieieeiereeeeetereee e e eeetsee e s e s e ee st et s senssnnssnesssnesens 100
TABLE 5-1 COMPARISON OF HTML 3.2 FOR HANDHELD, WML, UIML AND JAVA LANGUAGES......103
TABLE 5-2 COMPARISON OF WEB CLIPPING, WAP, UIML AND J2ME FRAMEWORKS 105
LIST OF FIGURES

FIGURE 1-1 A FINANCIAL APPLICATION RENDERED FOR A DESKTOP PC [11]..ccoceuicinicceeececrirernnee. 7
FIGURE 1-2 HANDHELD PC RENDERING [11] cececviiiimrecnreeeeeeeeaeeeteeeetseeassesescnssensstesnsesssnsnees 7
FIGURE 1-3 CELL PHONE RENDERING [11]...uiiiiiieeiieeertecceccete e et seseeseaesesenasssssas s sssas s nnans 8
FIGURE 2-1 EXTENDED CLIENT-SERVER MODEL [1]..cuuuuiiieieeeeerctecreeeeacenecacnnsnesesseesnseseessnaens 28
FIGURE 2-2 UNIVERSAL ARCHITECTURE FOR DEVELOPING MOBILE APPLICATIONScccvovrereurnnnne 31
FIGURE 3-1 A ONE-PAGE PQA [7] couvuvemeeeeureveresteeseesesesssssssasssaseseesssnesssssesnssssssessnssnsssnsssseasessssnsssnones 35
FIGURE 3-2 A MULTIPAGE PQA [7].cceeeeeeeerirreceenerieiererecnesseeesstesssesesssessssssesassssssesnssnsessassssasssssnsens 36
FIGURE 3-3 TYPICAL WEB CLIPPING PAGE [7].evree ettt ceereseetereenesssnsssenesesssssssesesssssssssnsssens 36
FIGURE 3-4 WAE PROGRAMMING MODEL (ADAPTED FROM [8])...ccrveecrmeecneeenrtenecneneeeseneececnes 42
FIGURE 3-5 CONTENT TRANSFORMATIONScccoviuieeriniieresieneeceseesesssssesessenssasssssenssssesssesssassasstssassaens 50
FIGURE 3-6 MODEL FOR UIML DEPLOYMENT ([12]) cecrieiieeieeceeeeeeeeee e e st esne e eseesanas 61
FIGURE 3-7 J2ME ENVIRONMENT [13]...c ettt eeteae et s aessene e e sse e s emesenenanns 65
FIGURE 4-1 UI MODELINGcoeeterereeeeeerererareseesestsessnesesessssssssesassesssssssessassessssassssssesesssssnsansasesessassens 73
FIGURE 4-2 BUILDING MULTI-PLATFORM UIS USING UIML (ADAPTED FROM [20])...cocccercecenerennncne. 75
FIGURE 4-3 MODEL OF THE TRANSFORMATION PROCESS FROM AN ABSTRACT TO SPECIFIC Ul

(ADAPTED FROM [23]) ceecirierareerteeeterseteseensenenseensesessessesesssoneessenssssasesesasesnessessensessessssanesnesasnsas 79
FIGURE 4-4 DESIGNING CONTEXT-SENSITIVE UIS (ADAPTED FROM [24]) «..ovvemriienienneieecreecenceenes 82
FIGURE 4-5 CONTEXT-SENSITIVE SEPARATION APPROACH [24]......coiimimiiiiiiririencniecnccnceeseneeienes 84
FIGURE 4-6 COMPLETE SEPARATION APPROACH [24]ovinieeeieeeeeececeeeeeeeenee e seesneesecnacsnenees 85
FIGURE 4-7 FINAL APPROACH FOR MODELING A CONTEXT-SENSITIVE TASK [24]....cccce.everceecennnnn, 86

vi

FIGURE 4-8 MAPPING BETWEEN PRESENTATION AND PLATFORM MODELS [28]...........cccoeveveueeeenennne. 90
FIGURE 4-9 MAPPING BETWEEN PLATFORM MODEL, TASK MODEL AND PRESENTATION MODELS [28]

... 92
FIGURE 4-10 REFERENCE DEVELOPMENT PROCESS FOR SUPPORTING PLASTIC UIS [29].............c........ 94
FIGURE 4-11 REPRESENTATIONAL STRUCTURE OF XIML [31].ccueieiiieereeeeeev s 97
FIGURE 4-12 Ul DEPLOYMENT TO DIFFERENT TARGETS [31].ceeecieoeeeeeiereeneeeeeieeeeeetee e snesneone 98
FIGURE 4-13 CONTEXT TOOLKIT COMPONENTS [33] ...cueeeeeeeeeieeeereeeietecee st ssaessesaessnenes 101

vii

1. CHAPTERI - Introduction to Mobile Computing Development

Both the wireless data market and the Internet are growing very quickly and are continuously
reaching new customers. More and more people are accessing the Internet and the remote
applications, through cellular phones and handheld devices. The Web-enabled applications
contribute significantly to the success of PDA (Personal Digital Analyzer) and mobile
telephone. Such applications allow a user to access to Web services and information. In the
future more and more Internet access will be done through various mobile and wireless
devices. Devices could be mobile because they are carried around by users (a PDA or a
wearable computer), because they move themselves (robots!) or because they are embedded
within some other moving object (a car computer). All these devices have very different
capabilities and features (e.g. display size and resolution, bandwidth, processing power,

input/output).

From another perspective, the Internet and e-business development is confronted with an
increase growth in user variety, with a rapidly evolving hardware and software technologies
increasing the variety of client devices and network channels used to access the server-side
applications. The wireless applications are tailored to cell phones with mini-browsers, and
PDA devices that can connect wirelessly to the Internet. In the same time the modem-
equipped PDAs and other mobile computing devices could use a high-speed wired

connection to download content from the Internet.

Wireless connectivity [8] enables business to operate faster, better, more cost-effectively and
more profitably through the use of always on, always connected and always available content
and applications. The mobile computing devices’ functionality is mainly in the domains of
m-commerce, location-based services, group communication, voice-and text based
communication, storage and retrieval of personal data. This functionality have gone beyond
the one-way delivery of weather updates, news headlines, and stock quotes to offer more

interactivity, such as access to bank accounts, travel reservations, and email.

1.1. Mobile Computing

Mobile computing has emerged from convergence of two rapidly evolving network
technologies, wireless data and the Internet. Mobile wireless computing offers many benefits.
Corporations can provide workers with nonstop access to e-mail and enterprise applications,
allowing them to work productively no matter where they are. Field data can be captured in
real time and made available without delay to the rest of the organization, improving
coordination and responsiveness. However, mobile computing is treated as a separate form of
computing, posing significant challenges. It’s a new type of computing, with unique user
behaviors and expectations. The design of the user interface is governed by a separate set of

design and usability principles including the need to make the user interface more context-

oriented.

Mobile computing and the development in wireless communication have given users the
expectation that they can access information and services whenever and wherever. In order to
support this, the user interface needs to be adapted to a wide range of possible user situations.
The complete environment in which the user is carrying out an interactive task determines

the context of use. Two types of characteristics simultaneously determine the context of use:

e Internal changes that are related to the application and its Ul (e.g., the computing
platform, the software/hardware parameters, the interaction devices, the network
bandwidth, the latency, connectivity, the screen resolution and other display capabilities).

e [External changes that are independent from the system (e.g., the type of user, his role,
skills, knowledge, preferences, his location, the stress level, the organization structure,

the information channels, the sound and light conditions).

Any change of at least one of the above characteristics may generate a possible change of the
context of use, endangering the predicted usability of a predefined UIL. The internal changes
may occur also within the same computing platform. According to Dey and Abowd in [11]

the context represents the:

e Computing environment: available processors, devices accessible for user input and
display, network capacity, connectivity, and costs of computing
e User environment: location, identity, activity and state of people

e Physical environment: lighting and noise level.

All the above-mentioned characteristics imply a change in today’s UI’s concept. Uls today
are static, meaning that everyone that uses a software application sees the same interface.
Each person using the application must conform themselves to think and work the way the
programmers who wrote the interface expected them to act. The interface customization is
limited to things like setting colors and fonts, or hiding toolbars. Mobile computing is
introducing the need for more dynamic Uls according to user profile (user’s spoken language,
organization, role, experience level) and the profile of the network device (e.g., PC, cell
phone, PDA) being used. This tendency leads to the technology of dynamic, plastic user
interfaces which are generated “on-the-fly” and adapt themselves to the user profile, to the

features of the network device and to the context of use.

Context-sensitivity or plasticity is defined according to Thevenin et al. in [29] as “the ability
of a Ul to mould itself to a range of computational devices and environments, both statically
and/or dynamically, whether it be automatically or with human intervention”, by executing
reconfiguration of their presentation and dialog (e.g. widget resizing, reduction of a full
widget to its scrollable version, graceful degradation of a sophisticated widget into a

moderate one, or redistribution of widgets across windows).

Context-aware computing as mentioned by Dey and Abowd in [11] refers to the “ability of
computing devices to detect and sense, interpret and respond to aspects of a user's local
environment and the computing devices themselves”. Ideally the mobile application should
have the capacity to withstand variations of the physical and software platforms and the
physical environment where the interaction takes place (context of use) while preserving
usability. Finally, an application may sense its software and hardware environment to detect,

for example, the capabilities of nearby resources.

Context-aware applications dynamically change or adapt their behavior at changes of the
context that might occur at runtime, without explicit user intervention. Context-awareness
allows an application’s behavior to be customized to the user’s current situation. According
to Dey and Abowd in [11] the application is context-aware if it uses the context to provide

relevant information and/or services to the user, according to the user’s task.

1.2. Mobile and Wireless Devices: Characteristics and Constraints

We present in this chapter the heterogeneous processing and networking aspects of the
mobile computing environment. We describe the characteristics and constraints of the mobile
devices and their impact on the mobile applications development. Wireless and mobile

devices are small narrowband computing devices primarily characterized by four constraints:

¢ Display size - limited screen size and resolution. The cellular phone may only have a few
lines of textual display, each line containing 8-12 characters and limited number of
display colors.

¢ Limited interaction capabilities - a limited, or special-purpose input device. A phone
typically has a numeric keypad and a few additional function-specific keys. A more
sophisticated device may have software-programmable buttons, but may not have a
mouse or other pointing device.

¢ Limited computational resources - limited CPU aru memory, often limited by power
constraints.

¢ Narrowband network connectivity - limited bandwidth and high latency. Devices with

300-baud network connections and 5-10 second round-trip latency are not uncommon.

From the wide variety of wireless devices we included in our study the most commonly used
ones, such as the cellular phones and the PDAs. They are assigned an [P-type address and are
“always on”, acting as part of Internet, sending and receiving information using standard
protocols. Devices in new categories are expected to emerge in the near future, such as 3D-

immersive and natural language environments.

Mobile phone’s display size is between 2 and 10 lines of text and has limited navigation. The
images may be of poor quality and it is difficult to enter text. The WAP server connection
provides Internet access for the WAP phones. The phone applications should be entirely
service-oriented, providing quickly access to information. The PDA is a device with a
broader range of capabilities with a display resolution higher than the mobile phones and
may support a pointing device or handwriting recognition. The PDA can perform HotSync
synchronization over wireless and wired connections with either desktop PCs or network

servers and allow loading of small executable code segments.

Mass-market, hand-held wireless devices present a more constrained computing environment
compared to desktop computers having less powerful CPUs, less memory, restricted power
consumption, smaller displays and different input devices (e.g., a phone keypad, pen-based).

These wireless devices are interconnected among themselves and to the Intemnet.

Also the wireless networks also have much less capacity, i.e. less bandwidth, higher latency,
less connection stability and less predictable availability compared to the wired networks that
are presumed for the Internet. Mobile connectivity is highly variable in performance and
reliability. This is one of the reasons for which the integration of the wireless
telecommunication and Internet technologies is currently done in ad-hoc, inefficient,
functionally limited and in not a very less user-friendly manner. The second reason is that the
wireless networks and the Internet are intended for two completely different use situations,

where different metaphors are used.

All the constraints summarized in this section complicate the design of mobile information
systems and require us to rethink the traditional approaches to information accessibility and

usability.

1.3. Multi-Platform. Multi-Devices and Multi-User Interfaces

The problem of multi-platform Ul development is arising due to the emergence of a variety
of devices and channels. With the convergence of the Internet, mobile telephony, and hand-
held technologies, a Web application can offer multiple user interfaces, which allows users to
interact with the same application running on different devices and computers including
traditional desktops, laptops, PDAs and mobile phones. As the types of target devices have
exploded, the modern information and communication systems have to present their

application logic on different devices with different capabilities.

While in the traditional interface design for desktop, there is a strong standardization among
the devices which almost all development tools support, for the narrowly devices there are no
such standards not even within devices of the same class. Different kind of PDAs may have
quite different display characteristics and input methods. As from HTML browsers to WAP-
enabled devices, each target platform, with its distinctly different capabilities, imposes its
own constraints to the design of the web site, the most frequently current practice is the

development of a solution with a unique UI for each type of device.

Therefore different versions of a web site of the same application for each one of these
devices needs to be maintained, such that a lot of time and money consuming work will be
done to re-implement a Ul again and again, for each platform and usage case. Also the

introduction of a new device requires a re-implementation of the UL

The effort to keep all interfaces consistent increases, as developers need to maintain multiple
source code families in order to deploy multiple user interfaces of the same information
system on multiple devices. More than that, as the Uls are implemented with an increasing
number of software and hardware technologies, developers must learn multiple
implementation languages that are evolving over time. In Figures 1-1, 1-2 and 1-3 we show
three different interfaces to the same Internet financial management system, for a desktop

PC, handheld PC, and cellular phone, respectively.

Figure 1-2 Handheld PC rendering [11]

BACK

Figure 1-3 Cell phone rendering [11]

As we see in the figures above, the interface content of these Uls differ dramatically in

complexity (e.g., PC versus cell phone interfaces).

A solution that can contribute to achieving consistency across several platforms and also
greatly reduce the amount of code that needs to be maintained is to build interfaces with
some kind of universal language, free of assumptions about devices and interface technology.
To develop user interfaces that are portable across devices and operating systems, they need
to be described in an abstract manner. This could be achieved through a universal, device-
independent markup language that could manage family of interfaces of varying complexity
by describing the Uls in a highly device-independent manner, and mapping the description to
other markup languages or programming languages via style sheets. The use of a device-
independent UI language would allow reusing the interface description that is device-
independent with new technologies, reducing the risk of adopting new technologies. This is a
guiding principle for UIML language (e.g. the 3 interfaces presented in the figures above are
generated from a single UIML description with three style sheets) [11].

Multi-Platform development could be seen from two points of view. The users may move
between different platforms while carrying out a single task. Additional, users may want to

collaborate on a task while using heterogeneous platforms. Therefor the Uls should be built

in such a way that the users are allowed to perform the same kinds of tasks on devices with
different capabilities. In this case, what has to be changed is the set of interaction and
presentation techniques to support information access while taking into account the resources
available in the device considered. In the figures above we have an example of the same
tasks supported by a cellular WAP-enabled phone and a web desktop interface. There is
different content differently displayed in the 3 interfaces. The second point of view is to
consider different devices with regard to the choice of the tasks to support. For example,
phones are more likely to be used for quick access to limited information, whereas desktop

systems better support browsing through large amount of information.

We will see in the next section how concepts behind model-based Ul development

techniques have to be utilized for generating multi-platform Uls for the mobile applications.

1.4. Research Objectives and Methodology

In this research, we are investigating the development techniques for mobile computing
environment with emphasis on the user interface component of Internet-based interactive
applications. The Web applications for narrowly focused small devices cannot support the
full range of the traditional desktop Web functionality due to physical and computational
constraints. We will show how the increased connectivity of devices has a profound effect on

the Ul development tools and methods.

We present the development impacts that are emerging from the necessity of building
interfaces for different mobile devices and platforms. We will discuss the required design
techniques that can satisfy the ultimate constrained mobile environment while preserving the
applications usability. We also justify the need for improving these techniques, for new ways

of interface modeling, and for evaluating the usability of mobile interactive systems.

We concentrate in our work on the following questions:
e How can the high level of interactivity of the office computer be maintained or adapted

for reduced-capacity terminals such as mobile telephone and PDA without keyboard?

e Weather we should strive for uniformity in the services offered, dialogues and
presentation, or should we specialize the interfaces and services to reflect the constraints
of each device and/or the context of use?

e How the Ul can be adapted to the diversity of devices that exist today?

e What kind of methods is needed for designing for mobile users, their tasks, interaction
styles and contexts?

e Why the design techniques and existing forms of modeling software, systems and
interaction are or are not appropriate to address the problems of diversity, inconsistency,
and accessibility?

e Is the content markup languages are adequate for device-independent authoring?

To answer such questions, a comparative study has been conducted on the development
frameworks and techniques for the mobile interactive Internet applications development.
Some of the selected frameworks are available on the market while others still under
development. Some of the frameworks address the very important issue of applying model-
based techniques to the development of mobile Uls. We will expose their strengths and
weaknesses, highlighting the areas for improvements. The comparison is performed based on
criteria regarding the data processing, data interactivity, security support, the cross-platform
or device specific availability, scalability, extensibility, learnability, Ul modeling they might
involve, Ul deployment, delivery mechanism, any contribution to or involvement into model-
based methodology and the use of the model-based methodology. We will compare the
information presentation techniques and interaction mechanisms for supporting the user
interaction mainly with the mobile phone and PDAs as it is an important concem to
overcome the limitations (layout features, screen sizes and resolution, interaction

capabilities), imposed by the different platforms.

We also discuss the guidelines that can help developers to select one of the frameworks, for a
particular type of application and context of use. Our goal is to understand the wireless
development, why one development approach is suitable for a particular type of application
on a particular device, and ultimately to be able to make strategic decisions for building

highly effective mobile Intemet solutions based on design and usability guidelines.

10

2. CHAPTER II - Usability Challenges for Mobile / Wireless Interactive Applications
2.1. Wireless Users

The mobile user is anyone using a wireless device to access an Internet-based interactive

system. We should envision that the mobile users:

e Will use the device or/and the application as a convenience, thus more frequently, for less
time in short session and with less well-thought goals or plans;
e Need simplicity, and wearability rather than superfluous functionality;

e Will have small, specific tasks that need to be accomplished quickly.

Wireless users are much more likely to use their devices in public and while mobile. This
makes their experience short-lived, more open to distraction, and less open to pure browsing.
Wireless subscribers have a different set of essential desires and needs than desktop or even
laptop Internet users. Although people will not necessarily expect these devices to act like
“regular” computers, they expect similar capabilities and accessibility (anywhere, anytime,
any device) on a small screen device as on a big screen desktop. Today, mobile users expect
handhelds to help them manage information by being able to select data, drill down for more
detail, analyze it, input new data and perform transactions. Instead of trying to squeeze
desktop enterprise applications onto handheld, developers should build simple solutions
specifically for mobile users to give them access to information. There are an increase

number of user categories, each requiring a separate interface.

The assumptions the PC interface designers make, regarding the user of their applications
situated in a comfortable, free of distractions environment, with high concentration directed
towards performing tasks and achieving goals, having suitable access to input devices and
easily submitting required or requested information, do not accurately describe the mobile
user. These users are often situated in heterogeneous environments, where they are distracted
by the multiple tasks they are performing simultaneously. These users tend to avoid using

functions that require extensive interaction.

11

Whereas in the traditional office desktop application there are some factors the user has a
chance to configure to his convenience, so he can better perform the tasks and the overall
application usability is increased, this is not possible on the narrowly devices. On these
devices the tendency is to miniaturize the applications and the user is not really allowed to

configure any display or application parameters.

2.2. WAP Usability Findings from Nielsen Survey

During the fall of 2000 Nielsen Group [6] performed a usability evaluation for the WAP
services. Tests were conducted mainly from the perspectives of the efficiency in task
execution with the final objective of developing a more usable mobile Internet strategy. In
this section we will present some results from Nielsen’s survey. We used these results to
derive the major usability requirements not only for WAP phones but for any other small

devices with some kind of Internet access.

Some of the usability issues for the mobile/wireless Internet applications are related to how
the options are described to the user (labeling), to the availability of search facilities and
bookmarking, to the information that users managed to download, while the others come
from the users’ expectations of WAP in light of their assumptions about the PC Internet

counterpart.

According to Nielsen, the usability of current WAP services is severely reduced because of a
misguided use of design principles from traditional Web and GUI design. On a small-screen
device, designers must conserve screen space by showing only the most important
information. Given the cumbersome and slow process for moving between WAP screens, it
is even more important for WAP design than for other small-screen designs to optimize the
communicative value of each screen. The traditional websites design guideline of repeating
the user’s choice on the destination page for confirmation cannot be applied to WAP design.

The users often faced unclear labels and menu choices written in special language “invented”
by the WAP designer, while the users want standard terms for standard features. The need for

simple language is strong in WAP design, because there is no room to explain non-standard

12

terminology with rollover effects, icons, or captions.

Several WAP services that were tested were unnecessarily hard to use because of a mismatch
between their information architecture and the users’ tasks. The traditional Web also suffers
from poor task analysis, with many sites structured according to how company management
thinks rather than how users typically approach their tasks. Although poor task support is a
serious usability problem for a big-screen website, it is a usability catastrophe for a small-
screen WAP service. Therefore a very precise task analysis will be necessary for WAP
services to succeed. With the big screen, users can see many more alternative options, and
thus it is not so critical as for the small screen that designers pick exactly the right ones at
each step. Mobile applications need intelligent interfaces to assist users in performing their

tasks.

Another WAP usability finding from the Nielson survey, which has not been seen on the
Web, was a lack of clear differentiation between the services. Nielson conclude that the
differentiation cannot come through graphic design because of these small, mainly-text
screens; it will come from a better writing style optimized for very, very short and useful
content. This has to be the real way to distinguish WAP services. Mobile services must target

users with immediate, context-directed content.

Sometimes users failed in accomplishing their tasks because they did not scroll the WAP
screens to see content and menu options that were not visible on the first full screen.
Scrolling is less common in WAP navigation than in PC-based Web navigation. The usability
survey found a lot of screens with poor typography and for the WAP users who do not want
to read a lot of text it is painful to have to scroll through page after page of small snippets of

text and try to piece them together in mind.

One usability issue that should be addressed in generation of WAP interfaces, according to
Nielson is the “Back” feature for immediate redisplay of the user’s previous location. It is
unacceptable to expose users to further connection delays as they retrace their steps back

through an unsuccessful navigation path. The phone must cache many previous page views

13

and render them immediately. Also, when backtracking, users should be taken to their
previous location on each page. Although the users accept that they might find themselves on
the wrong track and have to go back a few steps to choose a different path, all too frequently,
they faced dead ends or error messages that blocked their path. Although instinctively most
of the users looked for and found a “Back” button, they were not always able to retrace their
steps. Sometimes they had to wait to be connected just to go back one step; other times they
were simply unable to go back any further or were forced to go back to the very beginning.

This wasted a lot of users’ time and money.

It may be a consequence of the limited real estate on a WAP screen, but even when a search
facility was available, its location was not clearly signaled on the networks’ portals. The
result was that users were frequently unable to find sites that might have given them the

information they were looking for.

Bookmarks are critical to users efficient use of WAP. However, users were greatly frustrated
that the Nokia 7110e can only store 10 selections at any one time. The Ericsson R320s stores
25, but even this number is too small to accommodate the number of selections a user is

likely to need.

The users found a lot of unhelpful or annoying messages like “Please try again” or “Internal
server error” which doesn’t tell whether it’s a problem of what the user has done on his
phone or whether it’s a problem with the site that the user is trying to access. Consequently
they wanted some more detailed and user — friendly message or maybe more of an
explanation as to why a service is not available owing to “too many people dialing at the

same time” or “it’s your connection problem”.

Navigation on WAP-enabled phones is based on the same principles as the Internet and its
success is critical to the efficiency of the system itself. Menus should hold a small number of
options and would be nice that users can customize their own menu so that their favorite sites
or interests come up automatically. Generally speaking, WAP users’ navigational aids are

restricted to menu options, search engines, and bookmarks. However, even these basic

14

functions did not run as smoothly as the users expected at the time these tests were

conducted.

We need to simplify navigation, to better direct the users to products and services, to simplify
the search functionality and to allow scaled images in the graphical layout. The consolidation
of the search function is needed, so that users would only search that portion of the database
related to their current navigation with results in the simplification and contextualization of

key features.

Once users succeeded in finding a site that interested them, the next hurdle was to read the
text from such a small screen. The small screens would not be a problem for the user if they
presented clear screen content, concise headlines, brief extracts or short openings to sum up
properly everything that lies beyond. For news one- or two-line headlines that can be
transmitted quickly and understood at a glance would be perfect for the instant work mode of
mobile users. As most of the mobile users, most of the time, are online for a handful of
minutes, they should be given a personalized summary of important information and be
allowed to easily drill down for more detailed information. If the item is still intriguing, they
can download the full text of the story. Certainly, these facilities must be offered with respect

to the small screen difficulties in scrolling or scanning.

Another finding from the Nielsen’s survey is that sometimes the phone is waiting for the user
to input more information, but doesn’t make this clear to the user. Often, the reason is that
the phone is waiting for the user to enter information into text boxes that can only be found
by scrolling further down the page. And sometimes, there is no indication that there is any
more text to scroll down to. The selection lists should be used to minimize the potential for
error occurring when the user is asked to type in too much information. Another useful, if not
vital, facility is the ever-present availability of a “Help” button. However, help functions are

sometimes offered with less than reassuring consequences.

Wireless connections get dropped a lot more than regular Internet connections. One of the

greatest problem users had with WAP is the inability to connect to services because of a

15

variety of failure modes—networks were down, the phones crashed, or the service itself was
down. Users don’t know and can’t find out because sometimes when all they get is an
incomprehensible error message. This has to be avoided through a good design. Connection
failures are particularly annoying for WAP users since they are paying for airtime.
Connectivity and the cost to the user of being online are critical to the future WAP
development. Therefore we should focus on tasks that could be completed in a short amount

of time with as few screens as possible.

Nielson conclusion was that WAP performed poorly in terms of learnability and efficiency.
Often when the system was used, errors rather than being “few and far between,” plagued the
system. In terms of being pleasant to use, WAP generally failed to satisfy. The users accepted
pretty well the screen’s limitations and realized that there has to be a trade off between
portability and ease of use. Some findings revealed the need for more highly interactive,
supportive, and easy-to-use user interfaces and for determining what aspects of interface

design are most important to be factored out.

Given the nature of the mobile, wireless user experience, we have to be extremely discerning
about what we want to present to the user, and how to present it, when developing the
wireless applications. It is extremely important to use the available “real estate” on the
display efficiently. Only menus and navigation aids related to the immediate task should be
visible; everything else should be hidden until needed. The lesson learnt from the Nielsen’s
survey is that when designing Uls for mobile devices, especially for heterogeneous
environments, we have to consider not only the capabilities of the involved device, but also

the special requirements demanded by their target users - the mobile, wireless subscribers.

2.3. Mobile Computing Guidelines

Handheld devices have their own user interface requirements in terms of space and memory.
The user interface requirements for handheld devices are different from those for desktop
computers. For these reasons, the user interface programming guidelines for applications

running on desktop computers and hand-held devices are different, as we will see.

16

In order for the PDA to function as a hardware extension to the user, enhancing abilities such
as recall, calculation, and mental organization, efficiency and ease of use are primordial for
mobile applications running on PDAs. In order to achieve this, the developers should use the

following guidelines extracted from [4]:

e Create fast applications

PDA users want instant access to information. The total time needed to navigate, select,
and execute commands can have a big impact on overall efficiency. To maximize
performance when working with the PDA, the UI should minimize navigation between

windows and opening of dialog boxes.

e Match use frequency with accessibility
PC user interfaces are typically designed to display commands as if they were used
equally, when in reality, some commands are used very frequently while most are used
only rarely. Similarly, some settings are more likely to be used than others. More

frequently used commands and settings should be easier to find and faster to execute.

e Create easy to use applications

Advanced commands should be easily accessible but should not be in the way.

The following guidelines allow for making the application's Ul intuitive, easy to use and

consistent with other applications on the device such that users work with familiar patterns.

¢ Data Entry Guidelines:

For the Palm device to work efficiently and comfortably with the displayed information

the users need to have a variety of input modes.

e Platforms that support different input modes for the user to enter data: infrared, note
pad, touch screen, onscreen keyboard (buttons, check boxes, and popup lists provide a
quick way to enter settings and select options), Graffiti software and foldout or clip-
on full-size keyboards, HotSync (the user can type data on the PC and download it to
the Palm OS device), should be chosen by the developers;

17

Users should be allowed to perform basic data entry in place;

The cursor should be ready and visible if there's only one field for text entry;

Details dialog should be provided for more elaborate data entry;

Dialog boxes should not be nested too deeply;

A graphical element should provide just one application’s functionality. The user
should interact with the application through either a button, menu, or popup list;
Whenever a field for user input is available, we have to ensure that: System keyboard
is available via shortcut or via menu, Graffiti input is possible (regular strokes and

shortcuts), Cut, Copy, Paste, and Undo are possible.

Command Execution Guidelines:

Users should be able to execute commands by using Command buttons or Menus,
Graffiti menu command shortcuts, buttons on command toolbar;

Menu shortcuts should be provided whenever possible.

Guidelines for Screen Layout:

Simple screen layout

In the title bar for each screen, we should provide both the application name and the
name of the screen, if possible. Otherwise, we should provide the most relevant
information;

In order to maximize the screen real estate available to the application, we should not
use borders;

Resources provided with the development environment and the recommended values
for width, height from the Palm OS Programmer's API Reference should be used;
Buttons should be aligned with the bottom edge of the screen. For text surrounded by
borders, there should be one pixel above and below the font height should. For
controls that can be displayed in groups, there should be at least two pixels to the left
and right of the text label. The exception is command buttons, which require wider

margins to accommodate the rounded border;

18

o Guidelines for Dialog Box Layout:

e Online help should be provided for dialogs;

e Labels should be bold and editable items nonbold;

e [n the details dialog, the label should be right-aligned and the editable field should be
left-aligned;

e [n dialogs, a space of four pixels should be left between the edge of the dialog and the
buttons, and between the adjacent buttons;

e Dialogs should be aligned with the bottom of the screen. The screen title bar should

be left visible if possible.

2.4. Development Challenges and Trends

Mobile computing imposes new challenges in Ul design and development, as user interfaces
must run on different computing platforms accommodating the capabilities of various

devices and the different contexts of use, while preserving consistency and usability.

Challenges are triggered also because of the universal access requirements for a variety of
users and devices [10]. All these devices need to be connected while the computers and
network services have only limited ability to communicate with each other and often have
widely different formats of data processing and interaction. We claim that our existing forms
of modeling software, systems and interaction do not adequately address problems of
diversity, inconsistency, accessibility and integration. Therefore we need to prepare new

ways of modeling, designing and evaluating the usability of mobile interactive systems.

To satisfy user and business needs for “anyone, anywhere,” one must design effective
information environments not only for mobility but also for contextual use in a situated
environment. The challenge that designing for mobility brings, is the need to take into the
account the “mobile user” philosophy opposing that which has been employed by traditional
software developers to date, and the new heterogeneity of computing platforms, each of them

with its own device capabilities.

19

2.4.1. Design for Device Constraints

The devices and medium constraints play determinant roles in defining the design strategy
for the mobile applications. Different devices always posing new constraints and have
different interaction capabilities, provoke in the mobile applications the need for

reconfiguration of UI beyond the traditional UI change.

Most of the technology developed for the Internet has been designed for desktop PCs with
high-resolution screens, graphical displays, ample memory and computing power, supporting
many types of user interaction, voice capabilities, the ability to download, store, and run
executable code (e.g., a Java-applet, Active-X) while connected through medium to high

bandwidth, generally reliable data networks.

Because of the devices’ constraints, the narrowly focused platforms cannot support the
advanced features offered by classic computing platforms such as desktop applications with
rich interfaces that employ widgets such as windows, icons, and menus to interact with the
user. While the existing PC Web applications/ pages are graphics-heavy having moving
images, featuring particular style fonts or buttons and offering a lot of content to the
customer, the wireless applications cannot replicate this look and content. Therefore the Ul
of a wireless handset is fundamentally different than that of a desktop computer and much

more restrictive.
When designing for small devices and mobile computing in order to achieve the same quality
of usability as for regular PC devices, we also need to consider that the device’s

characteristics and constraints have an immediate effect on the task execution time.

The differences between traditional Uls for graphical desktop interfaces and Uls for mobile

devices involves the following areas:

e Functionality and Complexity: Traditional desktop applications’ Uls may have

complex functionality. These Uls support a large set of interface elements, in contrast

20

with mobile Uls that typically are not as complex nor do they support a great deal of
functionality.

Input Mechanism and devices: In traditional desktop Uls, the keyboard and the mouse
are the primary forms of input devices. In mobile devices, typically the input mechanism
is through small keyboards, touch-sensitive screens and styli for PDAs, numeric keypads
for mobile phones, a constraint that places restrictions on the types of applications and
Uls that can be supported on hand-held devices. Changing from a mouse to a stylus on a

touch pad requires different interaction techniques.

Screen capability: Desktop devices have typical screen sizes with resolution up to
1024x1024 pixels. In contrast, mobile devices have limited screen size in the range of
200x150 pixels (PDAs). In particular, mobile phones have very limited screen size of a

few square inches. Most hand-held devices support only monochrome displays.

Delivery mechanism: In traditional Uls, the generation of Ul can be done either
remotely if the application is distributed and delivered to the device, or it can be done on
the device itself in the case of a non-distributed application. However, in the case of a
hand-held device, the actual Ul is created separately and just delivered to the device. This
mechanism is also used because of the limitations of wireless networks. However, the
generation of the Uls for mobile applications is done remotely in majority of the cases
and the delivery typically takes place through a gateway or an intermediate server over a
network. The low data rate for wireless devices also places a restriction on the size of the

user interface that can be delivered to the device.

The mobile applications needs to accommodate the devices’ proliferation and variations such

as processing, operating systems, storage, bandwidth, physical and display characteristics.

The bandwidth requirements are driven by the amount of content per page, the richness of the

media being delivered, the number of pages accessed and the size and frequency of requests

being sent. This constraint implies for the applications to present different content sets for

21

different users and platforms. The use of multiple URLSs to distribute comparable content to

users will pose significant usability concerns.

The most obvious impact of mobile devices diversity is that developers will now have to
create Uls that work with vastly differeni sizes and characteristics of displays, therefore the
current techniques that make implicit assumptions about device characteristics need to be
changed. The display resolution along with the reduction of the design space is the mobile
computing platform’s most difficult constraint to deal with. Because of screen resolution
differences, an optimal layout for one display may be simply impossible to render on another
device. Reducing the graphic might make it meaningless, while scrolling large graphics both
horizontally and vertically is an unwieldy, unfriendly approach.

In order to support the above-mentioned new form of user interactions (note pad, touch
screen, onscreen keyboard) and to overcome the display limitations for these small devices,
new presentation and interaction mechanisms for mobile computing and communication
devices are needed. We should carefully select the presentation techniques that convey
information quickly. The “deck of card” metaphor used by WAP [8] and the “screen”
metaphor related to MIDP [17, 18] both allow the Ul information to be presented on a cell
phone’s small display and be manipulated through keypad solutions. They will be presented
in Chapter III.

The following design considerations will have a determinant role in achieving the usability
requirements as presented in section 2.2 for both cellular phones and PDAs devices, while

taking the devices constraints into consideration:

e Feature Restriction
Many of the features common to PC applications are fundamentally not usable on a PDA
or cellular phone. A PDA can function ideally for rapid data entry, rapid information
retrieval, automated information collection, and higher-level manipulation. In a user
centered design model, the application architects should prioritize user goals according to

these feature categories. Feature restriction may then be applied to lower priority items.

22

Information Filtering

Typically a wireless user will require preprocessed or summarized information. A PDA
user is generally distracted by his environment, which makes absorbing larger quantities
of information difficult. It is therefore essential to build an interface layout that presents
important information in a form that is clear, uncluttered, and easily identifiable. In order
to comply with this criterion, it is suggested that information be classified according to
frequency of retrieval, and level of required detail. The most utilized information should
be immediately accessible. When more detail is required, the user should have the ability
to access suitable views by means of additional navigation. Essentially, retrieval
frequency and navigation complexity should be directly correlated. A possible altemmative
is to have modes that show local-only information (things that can be seen now) and
more global information. How and when the user would switch between these modes will

determine the ultimate utility of the device and the service.

Interface Compression
As we saw the physical size constraints of a PDA or cellular phone dictate a certain level

of interface compression. Still the interface needs to be visually appealing. Text must be
of a smaller font, GUI controls must be resized, and icons modified. Although feature
restriction and information filtering somewhat alleviate this problem by reducing the
number of objects that are displayed on screen at any particular time, interface
compression is a fundamental issue that must be addressed. Particularly two aspects
require our attention:
e Object Recognition

Modem GUIs are composed of controls, icons, and other objects whose functions

are hinted at visually. However, interface compression can greatly distort their

identification. Past a certain size threshold, many visual cognitive cues can no

longer be recognized. As a result, careful graphical design is essential. In the case

that an object cannot effectively be miniaturized without compromising ease of

use, new cognitive icons should be designed.

23

e Object Manipulation/Navigation
Small controls are difficult to select. Cluttered input areas are error prone. GUI
developers must consider these facts when designing the interface layout. An

efficient interface must be forgiving of user error and variation.

2.4.2. Design for Multi-Platform

An approach for multi-platform development for existent PC Web applications would be to
scale the current Uls to radically different platforms. This implies that the Ul would need to
be retargeted across different browsers and hardware platforms [10]. The adaptation of the
content displayed on PC to the small wireless devices screen should consider the wireless
browsing model, which is different than the traditional one. We present in Chapter III a

proposed system for automatically transformation and adaptation of a PC Web on any device.

Another approach for the multi-platform development is given by the model-based
techniques for generating Uls [5, 6]. Model-based user interface development tools usc
different kinds of high-level specification of the tasks that users need to perform, data models
that capture the structure and relationships of the information that applications manipulate,
specifications of the presentation and dialogue, user models etc, and automatically generate
some parts or the complete Ul. The Ul specification is automatically translated into an
executable program, or interpreted at run-time to generate the appropriate interface. The aim

is the portability across multiple types of devices.

The currently existing model-based systems use heuristic rules to automatically select
interactive components, layouts, and other details of the interface, such that the connection
between specification and final result can be quite difficult to understand and control. There
are significant limitations on the kinds of interfaces they can produce, and the generated Uls
do not have the quality of the Uls that could be created with conventional programming

techniques.

24

Model-based UI systems take an abstract model of the user-interface and apply design rules
and data about the application to generate an instance of the Ul Transformations from an
abstract model are used instead of transforming widget by widget because a model can have
more semantic information about the interface. For example, a model could determine the
relationships among widgets in a GUI dialog box by their layout, and keep those
relationships in a transformed interface for a PDA or a cell phone. Transforming only at the

widget level would lose those relationships.

Declarative model-based techniques involve user interface modeling techniques that require
the user-interface to be described from a position of abstraction. The Ul model expressed by
a modeling language should provide a formal, implementation-neutral description of the UL
The language should be declarative, so it can be edited by hand, but it should be formal so

that it can be understood and analyzed by a software system.

Currently the model-based techniques using mainly the task and domain models do not
generate quality interfaces. One more limitation of some of the earlier systems was the lack
of user control over the process of UI generation. Having more user-control over the Ul
development process and having more usable models could rectify some of the deficiencies

of the model-based approaches.

The challenge for the UI modeling is the creation of knowledge bases that describe other
various components of the user-interface, besides the task, the domain, the presentation, the
dialog, such as the platform, and the context. These knowledge bases can be further exploited
to automatically or semi-automatically produce a usable UI matching the requirements of
each context of use. With current model-based techniques the task analysis is performed for
obtaining a single UI that is adapted for a single context of use. As with the explosion of
computing platforms, and contextual conditions, the Uls need to adapt to multiple
configurations of the context of use, there is a special need for modeling tasks that can be
supported in multiple contexts of use, considering multiple combinations of the contextual
conditions. Therefore the model-based techniques should help designers to recognize and

accommodate the unique contexts in which mobile computing occurs. It seems critical that

25

models should be empowered with some elegant way to segment different aspects of Ul
design that are relevant to different contexts of use and to isolate context-generic issues from

context-specific ones.

We will show in Chapter [V how the model-based techniques range from relatively low-level
implementation solutions, such as the use of abstract and concrete interactor objects, to high-

level task-based optimization of the interface's presentation structure.

As currently there is a lack of support for the observation of usability guidelines in the
development of mobile user-interfaces, the model-based UI development environments need
to incorporate usability guidelines and to provide support for applying these guidelines. We
believe that user interface modeling will be an essential component of any effective long-

term approach to developing Uls for mobile computing.
2.4.3. Design for Context-Awareness

The challenge that designing for contextual use in a situated environment brings is that a
user’s attention can be divided depending on the location of device use and that the device

itself can both facilitate and frustrate the user’s goals.

As mobile computing increases the probability of environmental change while the user is
carrying out the task, the challenge for the Ul design is to continue to support users in
accomplishing their tasks while the context evolves in time, space, and resources. The
designer needs to match the UI configuration (e.g., look and feel) with the set of constraints
imposed by the new characteristics of the resulting context of use. A context sensitive
system would choose an appropriate representation for the Ul based on the user tasks or
activities and environment, when changes are of sufficient degree to justify a change in the
information representation. The incoming context should be used to determine the particular
actions that need to be performed in the new user situation. Context-aware applications need
to be able to display context information, capture it for later access and provide context-

based retrieval of stored information [33]. Also the context-aware applications need to:

26

e Acquire context from unconventional sensors: outdoor GPS receivers, indoor positioning
systems, Active Badges devices, video image processing or floor-embedded presence
Sensors.

e Acquire context from multiple distributed and heterogeneous sources

e Detect changes in environment in real-time and adapt to constant changes.

In summary, mobile computing requires that UIs be sensitive to:

e Platform: by having presentations that adapt to screen surface, color depth, screen
resolution and dialogs that adapt to network bandwidth;

e Interaction: by having mechanisms that remember previously used interaction
techniques, windows sizes and locations, and respect user preferences for these
presentations;

e User: by adapting to user experience level, system and task experiences, skills,

conventions, and preferences.

One of the adaptation techniques is the interface tailoring [2] for customization and
optimization of an interface according to the context in which it is used. Interfaces can be
tailored to tasks that different segments of the user population need to perform most often, to
the level of use and experience of users, to the physical abilities of users, to platform
characteristics, etc. Tailoring involves modifying the interface design. The simplest level of
tatloring happens at the concrete level of an interface specification where features such as the
layout, colors and fonts of an interface are changed. More sophisticated tailoring can happen
at the abstract interface specification where the dialogue is modified, for example to shortcut
certain steps, to rearrange the order for performing steps, etc. At the highest level, new tasks

might be defined by composing existing tasks.

Another aspect of Ul adaptation to the context is the “location-awareness”. One of the
unique aspect of mobile devices is that if combined with GPS (Global Positioning System)
technology they could become aware of their position, providing the opportunities for
location-aware applications where the information presented to the user is strongly linked to

the location where the device is being used. The degree to which the mobile application is

27

coupled with the location of the devices and how this location is made available to users is a
key design decision in supporting different interaction styles. The Lancaster GUIDE system

[30] is an attempt in exploiting the “location-awareness”.

For mobile applications the variations in the mobile systems infrastructure may dramatically
effect interaction and it is essential that interaction styles and interfaces provide access to the
information reflecting the state of the infrastructure. The UI must be designed to cope with
the level of uncertainty that is inevitably introduced into any system that uses wireless
communications. A key design element of the UI is to support the infrastructure variation,

how to present to the user the information obtained from the platform.

On the other hand the existing software infrastructure needs to be improved in order to
provide better support to adaptive mobile applications. These applications need to determine
how best to adapt, while preserving the ability of the system to monitor resources and enforce
allocation decisions. By using local resources to reduce communication and to cope with
uncertainty, adaptation insulates users from the vagaries of mobile environments. The client-
server model should be extended as shown in Figure 2-1 for the reasons that we further

present.

Y

Locsal Remote

Figure 2-1 Extended client-server model [1]

The resource limitations of clients may require certain operations normally performed on
clients to sometimes be performed on resource-rich servers. On the other hand the need to
cope with uncertain connectivity requires clients to sometimes emulate the functions of a
server. As the circumstances of a mobile client change, it must react and dynamically
reassign the responsibilities of client and server. Mobile clients must be adaptive and sense
changes in its environment, make inferences about the cause of these changes, and then react

appropriately. These imply the ability to make global estimates based on local observations.

28

To detect changes, the client must rely on local observations. For example, it can measure
quantities such as local signal strength, packet rate, average round-trip times, and dispersion
in round-trip times. A change in a given quantity can be due to a multiplicity of non-local
phenomena. For example, packet rate will drop due to an overload on a distant server. But it
will also drop when there is congestion on an intermediate network segment. If an incorrect
cause is inferred from an observation, the adaptation performed by the client may be

ineffective or counterproductive.

We end this section with the extremely important conclusion of the adaptation being the key

to mobility.

2.4.4. Low-level Frameworks versus High-level Frameworks

We consider as low-level or high-level framework the existing and under development
techniques for mobile UI development. We will describe in this section the reasoning behind
the split. Under the umbrella of low-level frameworks we consider the wide variety of
existing wireless Internet technologies and platforms such as: Web Clipping [7], WAP [8],
XML [9], UIML [11], and J2ME [13]. The low-level frameworks supports markup languages
for handheld and wireless like HTML used with Web Clipping, WML used with WAP,
XML, UIML, scripting languages such as WMLScript and programming languages like Java.
They all address the fact that screen size, input capability and bandwidth are limited. The

low-level frameworks that we consider are:

o Device-specific: Web clipping for PDAs and WAP for cellular phones and support
the development of unique Uls for a specific type of wireless device;

o Cross-platform like XML, UIML, J2ME with Java and strive for consistency
between the interfaces on a variety of platforms. XML along with XSL are among the

firsts attempts to abstract the UI functionality from its look and feel.

The device-specific low-level frameworks take into the consideration the unique constraints

posed by each platform, displaying information and interacting with the user in specific ways

29

for each device. The limited screen size, the lack of a mouse and the other new form of user
interactions mentioned in sections above, require a different user interface metaphor than the
traditional, standard desktop GUI model, such as the “deck of cards” metaphor implemented
by WAP. Web clipping is an HTML-based technology for building applications optimized
for handheld that runs on Web servers. Web clipping architecture is included in the Palm OS
platform. WAP specifies an open, standard architecture and network protocols for wireless

Intemnet access, mainly for the cellular phones and pagers.

We consider the high-level frameworks (see Chapter IV) the development environments, still
under current research, based exclusively on Ul model-based techniques. The aim of the
high-level frameworks is to allow cross-platform development of Uls while ensuring
consistency not only between the interfaces on a variety of platforms but also in a variety of
contexts, and maintaining the usability. They mainly address the issues of multi-platforms,

multi-devices and multiple Uls.

The high-level frameworks make use of abstract, platform-neutral models to describe the
user-interface, which we claim greatly facilitates the development of consistent, usable multi-

platform user-interfaces for mobile devices.

The high-level frameworks provide support for a new collection of constraints that are no
longer imposed by the computing platforms themselves, but rather by other factors, such as
the type of user, the external resources manipulated by the UI (e.g., the network, the ambient
environment). In addition, they will help designers to recognize and accommodate the unique

contexts in which mobile computing occurs.

One of the high-level frameworks issues is that the human computer interaction involved in
mobile systems extend well beyond the interface provided by the device and have significant
impacts on the infrastructure. The high-level frameworks should allow UI reconfigurations

depending on variations of the context of use, through the model-based approach.

30

High-level frameworks allow to a certain extent the integration of the low-level frameworks
for delivering the best possible, optimal wireless solutions. The concept of device
independent design and generation of user interfaces is actually based on the XML-
technology. In Chapter IV we will describe attempts that have been made to integrate task
and object knowledge into the UI development process and its underlying representations
using the XML technology. Also we will see the strategies used by the high-level

frameworks to cover the problems raised by context-sensitivity.

2.4.5. Proposed “Universal” High-Level Architecture for Developing Mobile
Applications

Our proposed framework would try to integrate the foundation technologies for both the low-
level and high-level frameworks to leverage a more interactive and dynamic wireless
application environment (see Figure 2-2). The “universal” architecture for development of
the interactive mobile applications will allow the flexibility of developing context-sensitive
Uls for multiple devices and multiple platforms, while respecting the unique constraints

posed by each platform and ensuring the usability.

High-Level Frameworks

Low-Level Frameworks

Platform
UI Toolkit

Operating System

Device

Figure 2-2 Universal Architecture for Developing Mobile Applications

e Platform is a combination of a device, operating system and toolkit. There are the
following OS for wireless development: Palm OS for Palm devices, EPOC (Symbian)

used by Motorola, Nokia, Ericsson, Windows CE a scaled version of Windows 98 used

31

by Pocket PC (can support current MS desktop applications), Java MicroEdition designed
to run on limited memory devices. It seems clear that the facilities that are provided by
the “operating system” will continue to expand. Some of the capabilities must be
provided at a very low level. For instance, access to information about the input, output
and communication capabilities of devices must be provided to the application software,
so it can make intelligent choices about the user interface. For instance, Windows CE for
palm-size devices seems to make it impossible to find out what kinds of hardware buttons
are available on the PDA. Another example is that none of today’s networking interfaces
makes it possible for an application to decide how fast a connection is available. In fact, it
is usually impossible to find out if you are connected at all, so applications freeze up for
minutes waiting to see if the network might respond, when the operating system could
easily tell that the machine is disconnected. This is unacceptable. Interfaces of the future
will need to make intelligent choices based on knowledge about the current capabilities

of the device and its connections to the environment.

Other capabilities might be provided on top of the OS, but alternatively might be part of
it. For applications to run on a variety of devices, a portable infrastructure must be
provided, possibly like the Java run-time library. There will also need to be high-level
protocols for accessing information on distributed files. End-user programming support
will be needed across multiple applications. Ideally, all of these required capabilities will
be available, but not bundled with the operating system. Platforms are needed that allows

applications to be built once and run on multiple networks and handheld.

Ul Toolkit normally is the software library upon which an application's Ul runs
(JavaAWT, JavaSwing, MFC) but, in the context of this thesis, as newly developed
markup languages like WML, HTML, UIML are capable of representing user interfaces,
we consider them “toolkits” as well. Toolkits typically provide both a library of
interactive components describing the widgets like menus, buttons and scrolling bars and
their behavior, and an architectural framework to manage the operation of interfaces
made up of those components. The use of library of reusable components makes Ul

construction much easier than programming interfaces from scratch. Therefore the

32

toolkits allow for achieving the goal of consistency between multiple interfaces. The
differences in input mechanisms between the desktop computers and the mobile devices
lead to the fact that a mobile user interface toolkit for small screen devices should be
independent of any particular input mechanism. We claim that there is a need of a
general, very highly abstracted user interface toolkit for applications that do not need any

platform specific user interface elements.

33

3. CHAPTERIII - Low-Level Frameworks for Mobile Applications

3.1. HTML and Web Clipping Framework
3.1.1. Motivation and Objectives

The HTML 3.2 subset of HTML was developed for small devices and mobile access, taking
into consideration their hardware restrictions. The goal is the creation of friendly and small
contents in the case of narrow bandwidth and low speed wireless networking, the ability to
perform simple and easy operations and the Web accessibility guidelines: prompting, and
providing appropriate documentation and help, providing flexible editing views, navigation

aids and access to display properties for authors.

The reason behind the Web-clipping technology was to provide a fast new and efficient way
for busy people on the move to access information on the web. The goal of Web Clipping is
to bring the user just the requested information, without all the links and graphics to slow
down the information transfer. It can be used from low-power handheld Palm VII organizer
computer with its tiny screen, battery-powered operation, and relatively slow and expensive

wireless connection to the Intemet.

3.1.2. Features Description

Web Clipping is a server side technology to generate Web pages for PDAs that dynamically
transforms an HTML document into a light subset of HTML 3.2 understood and accessible
by the PDA (Palm VII or Palm V with wireless modem). It is an HTML-based technology
for building applications optimized for handhelds that also runs on Web servers, allowing for
rich graphical displays and interactions, and flexible input. Web clipping is the best choice
for network-resident applications that require a richer display and more user interaction than
typical WAP applications. It’s well suited to presenting multiple pieces of information
simultaneously, as in online catalogs, travel guides, real estate home finders or online trading

applications.

34

Web clipping optimizes HTML for display on small handheld screens and the data transfer for
wireless networks by storing static HTML content on the handheld and thus minimizing the
amount of data that travels over the wireless link. As with WAP, some kind of network
connection must be available as the data access and most of the processing resides on a Web
server. In which concem the data transfer, Web clipping applications can send and receive
data over a variety of wireless and wireline connections. Web clipping is supported through

either built-in or add-on features by every Palm Powered handheld.

The Web clipping architecture model [7] includes a Web clipping client-side applications
that runs on a Palm handheld, proxy servers and content servers. There are no local database
or data processing capabilities. The client-side applications is constructed in HTML and
translated into the Web clipping application format, a subset of the HTML 3.2 standard. The
proxy servers handle translation between the HTML on the content server and the Web
clipping HTML subset that the handheld understands.

The Palm VII organizer has a mini-Web site named Palm Query Application (PQA). A
typical PQA is written in HTML, contains a form or a list of hyperlinks that request
additional information either locally on the handheld computer or remotely on the Internet.
Typically, the users composed simple PQA query (e.g., a request for a stock quote) is sent to

the proxy server and from there to the appropriate Internet server.

People Search $ w History

TELEPHONE - EMAIL

First Name:|

Last Name:

City:
State: w -Select One-

O Show Addresses

(Search?) [<lear) Help - Legal

eessccsenccensisnsictsraree

Figure 3-1 A One-Page PQA [7]

35

m_—
LO0M
About ESPN com

E< NFL B¢ Baseball

H< NBR EE NHL

B3 College FB @3 M Colleqe EB

B Soccer &8s W College BB
fluto Racing Golf

Extreme Sports More sports..%

BZ - Tap for scores

Figure 3-2 A MultiPage PQA [7]

The Web clipping is this HTML results page that answers the query. Clippings are typically
small pages generated by a CGI script from the user’s query, though they can be static pages

on an Intemet server as well.

¢ < ooy
HEADLINES ™ TOP STORY

USNews

Discovery Returns Heme::
World News

Kosovo Telks HNit Smags:
Business News

Every Man a Trader:

Figure 3-3 Typical Web Clipping Page [7]

The PQA is created and compiled using the Query Application Builder (QAB) on the desktop
computer and installed on a Palm VII organizer for testing, or they can be tested directly on
the computer using the Palm OS Emulator (POSE) [7]. When tapped, the PQA is rendered by

the Web Clipping application, an application otherwise invisible to the user.

Handheld applications are small executables designed for a Palm OS handheld but usually
created on a Windows desktop computer. A Web clipping application is a set of HTML

36

pages compressed into a special PQA format and downloaded onto a device equipped with
Internet capabilities. Each Web clipping application looks like an individual application in
the handheld's application launcher, and users select and run it as they would a normal
handheld application. This launches an internal web browser with the web clipping, which

can display static pages or receive dynamic information from an outside web server.

Development of a Web clipping involves:

e Design the HTML template, optimizing it for over-the-air transmission to and display on
the Palm VII organizer. Design, layout and link HTML files and graphics for the PQA
and compile them with QAB.

e Create the server-side scripts to generate HTML clipping pages when appropriate queries

are received.

PQA and clippings pages are authored in a subset of HTML 3.2. We can use simple tables,
gray-scale color, limited font markup, lists, and images. Referencing HTML pages and
graphics is very similar to normal Web pages. One can link to local or Internet files, other
PQAs, and other Palm VII applications. Palm also provides several HTML extensions that
enable Web servers to send content to both standard browsers and Web clipping-enabled

handhelds.

Every PQA should have a top-level or “index” page. This is the first page displayed when the
user launches the PQA on the Palm VII organizer. Hyperlinks to other HTML pages and
graphics in the PQA and on the Internet start here. There are “Single-Page PQAs” and
“Multi-Page PQA”. A PQA could easily contain only one on-device page: a query form with
its bare minimum of supporting graphics. If the result page to the user query could supply all
the needed information, the PQA structure is very simple. The index page is a form that

requests one page for downloading and display.

The PQA structure could be more complicated, with multiple pages and graphics on the
handheld computer. The PQA can display multiple pages before a clipping is requested and
retrieved. The results pages can link to local pages and graphics as well as to Palm OS

applications and remote hyperlinks. In this case the users will not want to drill down through

37

too many layers to find some information. Once users drill down, they will want to make
their way back up the information hierarchy, either to a previously visited page or to the top-
level index page. The Web Clipping application automatically supplies a back-arrow button.
We should supply home buttons and other links to make navigation more intuitive. The
History list is a useful way for the user to access cached clippings. And each clipping can
include a special META tag to provide a custom string that helps identify the clipping in the
History list. In any case, we should strive for ease of navigation and let the shape of the

content determine the relationships between the pages.

We will present further some of the POA design goals [7]. As we want to keep static
information in the PQA on the Palm VII organizer and dynamically generate clippings on the
Internet server, the information flow partitioning is a crucial step in designing the PQA. More
stable information should be included in the PQA and installed on the Palm VII organizer.
The query form, graphics files, and frequently consulted but nonvolatile information should
typically be made part of the PQA. More volatile information should be stored on the Internet
server for downloading and display only as requested on the Palm VII organizer. Information
flow should always be viewed from the user’s point of view and should be based on the
constraints and purposes of a handheld computer accessing the Internet over an expensive,

low-bandwidth radio connection

The design should strive for clarity, consistency, and utility. A good interface design, even
more important when developing content for the small, gray-scale screen of the Palm VII

organizer, should have the following goals:

e “Consistent Look and Feel”
All pages should have a consistent look and feel, enabling users to easily navigate
between pages and across applications, by maintaining their sense of context: similarity
in pages create a feeling of predictability, but remaining in the same time aware of the
difference between exploratory Web browsing and PQA use. Whenever possible, design
clements should be similar to those used in other Palm OS applications. There will be
remote links to content on the Internet. The look and feel of the result pages should match

that of the query pages, providing a difference between remote and local pages and links.

38

The pages should be well organized, easy to read, should keep functionality simple,
should say and show only what users need, should present only the most essential
information to the user and resort to over-the-air hyperlinks only when absolutely

necessary. The most frequently used features should be the most easily accessible ones.

e “User Control, Query Formation, and Results”
Users pay for every byte transferred over the air. The application should keep the connect
time to minimum, allowing the users to decide when to initiate wireless connections and
to understand when an action causes a wireless transaction by providing label commands
and dialog boxes that clearly indicate which ones will send and receive data over the air.
The Palm OS supplies over-the-air icons that are displayed when a remote hyperlink or
button is rendered and which are not automatically displayed in graphical links. The

local, on-device hyperlinks should present additional information, when possible.

e “Give users the tools they need to formulate precise queries”
This will ensure that the results downloaded from the Internet are small in size and to the
point. The user should be aware when the content of a clipping gets too large (>500

bytes). Pop-up menus should be used to help users form their queries.

e “Avoid unnecessarily graphics”
Graphics should only be used when they effectively communicate a message or make
things simpler for the user, especially over the air, because it slows down the response

time. They should be stored locally in the PQA whenever possible.

3.1.3. Sample Code

See Annex | for some sample code extracted from [7] regarding the use of Palm-specific

META tags.

39

3.1.4. Advantages and Disadvantages

Web Clipping architecture allows more generous information displays and more flexible user
interaction than typical WAP applications. Screen sizes are large enough to allow multiple
pieces of data to be presented at once and accommodate the use of check boxes, buttons,
menus and graphics that quickly and efficiently communicate input choices and results.
Users can simply tap or touch the screen to drill down from summary information to more
detail. Input modes include infrared transfer, note pad, touch screens, Graffiti software and
fold-out or attachable keyboards. Web clipping along with WAP incorporates industrial
strength security designed specifically for mobile computing.

In the same time the technology has some limitations on GUI design imposed by restrictions
on both HTML, and the PalmOS AP]I, in addition to the hardware constraints. The following
HTML tags: Applet, JavaScript, Vspace, Sub, Link, IsIndex are unsupported. Javascript,

frames and nested tables are not supported as well.

3.2. WAP Framework

3.2.1. Motivation and Objectives

The objectives of the WAP according to [8] are:

e To create a global wireless protocol specification that will work across differing wireless
network technologies;

e To embrace and extend existing standards and technology wherever appropriate.

e Define a layered, scaleable and extensible architecture;

e Provide support for secure applications and communication;

e To define application architecture model that is suitable for building interactive

applications that function well in narrow-band constraint environments.

40

3.2.2. Features Description

WAP is a set of protocols and conventions that can be used to create manufacturer
independent applications for mobile phones. WAP defines two essential elements of wireless
communication: an end-to-end application protocol and an application environment (WAE)
based on a microbrowser incorporated into the mobile phone. The layered communication
protocol is implemented in each WAP-enabled terminal. WAP takes a client server approach
[8]. WAP devices can receive data only over compatible WAP networks. WAP applications

and data reside on Web servers. Only limited resources are required on the mobile phone.

WAP programming model (see Figure 3-4) is based heavily on the existing WWW
programming model. WAE enhances some of the WWW standards in ways that reflect the
device and network characteristics. The microbrowser is used to:

e Make a request in WML for a specific URL;

e Pass the request to a WAP Gateway that retrieves the information from an Internet Server
either in standard HTML format or preferably directly prepared for wireless terminals
using WML. If the content being retrieved is in HTML format, a filter in the WAP
Gateway may try to translate it into WML. The WAP Gateway translates requests from
WAP protocol into the Intemet protocol (HTTP, TCP/IP). The encoders translate WAP
content into compact encoded formats to reduce the size of data over the network;

e Send the requested information from the WAP Gateway to the WAP client.

Because of this architecture, the content the URL references can also be something else than
WML, Java classes, for example. Terminals of course need UAs that can recognize and
handle the content. For Java content this means that there is an implementation of Java VM
and class libraries in a device. The WAE also needs to specify the application context issues
for Java. Nevertheless, this could be one method for distributing Uls to the WAP enabled

devices involving a lot of Java and WAP interoperability issues.

The microbrowser environment coordinates and controls the user interface, being analogous

to a standard Web browser. It defines how WML and WMLScript should be interpreted in

41

the handset and presented to the user. Its specification has been designed for wireless
handsets so that the resulting code will be compact and efficient, yet provide a flexible and

powerful UL

Client WAP Gateway I,\lnternet Server
l |
Request (HTTP)
Fncoded Reauest
L
WAE User Agent Encoders and Decoders
WML WML Encoder CGI WML
Scriots Decks
WML Script ;
crip! WML.Scnpt with
Comniler
WML
Protocol Adapters .
I /] Content Scripts
— R Content (HTTP
<r‘ Encoded Resnanse esponse, Content ()

Figure 3-4 WAE Programming Model (Adapted from [8])

The WAE User Agents (UA) are client-side in-device software (browsers, message editors)
that provides specific functionality (e.g., display content) to the end-user. They interpret
network content referenced by a URL. WAE includes user agents for the two primary
standard contents: encoded Wireless Markup Language (WML) and compiled Wireless
Markup Language Script (WMLScript). User agents have the freedom to decide how to best

present all graphical elements within a card depending on the device capabilities.

WAE includes the WML and WMLScript. WML [8] is the language standardized by the
WAP Forum intended for specifying Uls for WAP applications. WML is a lightweight
markup language, adhering to XML, inheriting technology from HDML and HTML but
optimized and designed for powerful applications within the constraints of narrow-band

devices. WML describes both content and an interactive UL

42

WML uses the “deck of cards’™ metaphor to specify a Ul, a powerful and functional UI model
that is appropriate for handheld devices. The WML document represents the “deck’™ and is
divided into a set of well-defined units of user interactions called “card”. The cards are
logically grouped in a deck and contain the widgets (e.g., a menu or a text field). Instructions
imbedded within cards may invoke services on origin servers as needed by the particular
interaction. Each card in a deck contains a specification for a particular user interaction. One
card is displayed at a time. WML and WMLScript contain methods to change the active card.
This enables navigation from one card to another. Specifically, WML contains event
bindings, timers and similar anchors than in HTML (A’ tag) that can be used to support

navigation.

The deck, the unit of content transmission, is similar to an HTML page being identified by an
URL. Decks are fetched from origin servers as needed. WML decks can be stored in ‘static’
files on an origin server, or they can be dynamically generated by a content generator running
on an origin server. Users navigate through cards from one or several WML documents with
up and down scroll keys instead of a mouse. Soft keys allow the user to perform specific
operations appropriate to the application context, or select menu options. A traditional 12-key
phone keypad is used to enter alphanumeric characters, including a full set of standard
symbols. Navigation functions such as Back, Home, and Bookmark are also provided, in
keeping with the standard browser model. Applications can map soft keys for easy user input

and use special features to maximize the effect of displaying text on the limited screen.

The user interface concepts of WML are highly abstracted from any particular

implementation. WML addresses four aspects of Ul specification:

e Presentation and layout of text and images. The content that can be presented with
WML is very limited. The main content is text with simple formatting elements, but in
addition small images and tables can be specified, although terminals may not display
them at all. Input elements of WML are also very restricted. Input elements the WML
contains are input text field with variable formatting constraints and single and multiple

selection lists.

43

¢ Organization of information into coherent units by grouping the cards inside a deck.
WML has an option selection control that allows the author to present the user with a list
of options that can set data, navigate among cards, or invoke scripts. WML also includes
task invocation controls. When activated, these controls initiate a navigation or a history
management task such as traversing a link to another card (or script) or popping the
current card off of the history stack. It may for example, bind them to physical keys on
the device, render button controls in a particular region of the screen (or inline within the

text), bind them to voice commands, etc.

e Creation of a navigation model that supports navigation both within and between decks,
jumps to anchored links, and captures specified events (through an UI event handling

mechanism) that can trigger navigation or script execution.

e Articulation of a state model based on the declaration of string parameters that are
replaced by values at run time. This is a particular innovation over HTML-style
architectures, dealing with the constrained bandwidth. Each WML input control can
introduce variables. The state of the variables can be used to modify the contents of a
parameterised card without having to communicate with the server. Furthermore, a
variable state can be shared across multiple decks without having to use a server to save
intermediate state between deck invocations. WML integrates variables in a different way

from that used in HTML and JavaScript.

WML includes a variety of technologies to optimize communication on a narrow-band
device. This includes the ability to specify multiple user interactions (cards) in one network
transfer (a deck), minimizing the need for origin server requests. WML includes other
mechanisms to help improve response time and minimize the amount of data exchanged
over-the-air such as supporting variable substitution and providing out-of-band mechanisms

for client-side variable passing without having to alter URLs.

WAP incorporates no compression techniques for the textual content, although the WML

markup commands are compressed. The deck, the smallest unit of downloadable information

in WML is limited to a maximum of 1400 bytes. This means that applications need to be
specifically designed to be very code efficient by using templates and variables, keeping
information on the server and using the cache on the phone. WML byte code converting
defines a (maybe inefficient) compression technique by string tables. With this technique
duplicate strings in the WML bytecode are avoided. This minimizes the data to transfer to the

mobile client.

” 6

WML has elements that specify a navigational result of an event, such as “go,” “prev,” and
“refresh.” The “do” element provides a general mechanism for acting on the current card. Its
UI representation depends on the implementation of the specific device. The application
developer can only assume that the device will provide a unique widget with which the user
can interact. In addition to actions specified within scripts, cards can generate events when
they are entered, options generate an event when one is selected, and timers generate an

event when they expire. Developers can associate actions with each of these events.

WMLScript [8] is a lightweight scripting language, similar to JavaScript, with procedural
logic, loops, conditionals, optimized for small-memory, small-cpu devices. It enhances the
standard browsing and presentation facilities of WML with behavioral capabilities, provides
a convenient mechanism to access the device and its peripherals, and reduces the need for
round-trips to the origin server. WMLScript has the ability to check the validity of user input
before it is sent to the content server and to generate messages and dialogs locally, so error
messages and confirmations can be viewed faster. WMLScript is compiled into byte code
before it is sent to the client in order to cope with the narrowband communication channels
and to keep client memory requirements to a minimum. WMLScript is fully integrated with
the WML browser and can be used to expose and extend device functionality without

changes to the device software.

3.2.3. Sample Code

See Annex 2 for code examples extracted from [8] for card/desk task shadowing, WML deck

structure and “fieldset” element. There is another example extracted from [17] of a simple

45

servlet displaying the current date and time on a wireless device when invoked. The JSP

version of the same application is provided as well.

3.2.4. Advantages and Disadvantages

The applications written in WML follow an industry standard. An application written in
WML will look good on any device that is WAP-compliant. An application can be
customized to take advantage of a particular device’s capabilities, by using standard HTTP

header mechanisms to learn about the device's capabilities.

WAP works well for building applications that deliver small chunks of timely data with
limited lifespans, such as stock quotes, weather forecasts and discount offers. It’s also ideal
for situations where there’s a large database of content, such as an online encyclopedia, from

which the user requires only a smal! piece at a time.

WML being an XML-based language, is easy language to learn and highly discoverable for
the first time user. By using the existing Internet model as a starting point, the WAP user

interface provides familiar functionality for those accustomed with the Web.

WAP provides a common user interface metaphor that is being used by all industry
participants. Just as the desktop metaphor is the de-facto standard for applications on PCs,

the WAP card metaphor provides a common interface to which all applications can conform.

WAP devices can receive data only over compatible WAP networks. As a result, WAP is
inappropriate for mission-critical applications and personal productivity applications that
must be constantly accessible. In addition, because all the processing takes place on the Web,
WAP applications can be tedious for processes that involve multiple decisions or
transactions. Going back and forth through the gateway to the server when an operation has
to be done, wastes bandwidth, and if the network connection is lost midway through the

process, the task can’t be completed and the work may be lost.

46

All WML content can be parameterized, allowing the author a great deal of flexibility in

creating cards and decks with improved caching behavior and better perceived interactivity.

WAP is an attempt to achieve platform independence through the usage of rather abstract Ul
elements, although the elements are still quite heavily tied to visual presentation. This has
already caused problems when implementing WAP to different platforms. One disadvantage
of WML'’s navigation mechanism is that there is no way to arbitrarily navigate to a new card
unless there is an explicit link to it from the current card. WML exhibit only a moderate
separation of content versus presentation comparing to UIML. Also it is moderately

extensible compared to UIML.

Developers can either use separate URLs for their HTML and WML entry points, or use a
single URL to dynamically serve either HTML or WML content according to the requestor’s
browser type. Although it is possible to translate HTML into WML using an automated
system, in practice the best applications use WML to tailor the interface to the specific needs
of the wireless user. This allows for the best possible use of the handset features, such as soft
keys, and provides the best user experience. The most valuable parts of any Web application
are typically the unique content it provides and the back-end database interaction, not the
particular HTML that was written to interact with the user. WML’s basis in XML also

positions it well as a future target markup language or automatic content transformation.

Currently, as we saw in Chapter I1, there are many usability issues that are limiting the spread
of the WAP phones. While in desktop systems we have mainly two well-known browsers
with some compatibility, in WAP-enabled phones a number of microbrowsers tend to accept
slightly different versions of WML, assume to interact with slightly different phones (e.g.,
phones with a different number of softkeys) and interpret the softkeys interactions

differently.
WML is pretty impressive with its emphasis on specifying the interactive aspects of an

application and by demonstrating how a device-focused language can describe an interface

without mapping to specific components in the target platform. These aspects apply to Web

47

Clipping architecture, as well. Both of these platforms have a strong focus on solving

problems in a single application domain and in an efficient manner.

WAP enables application development using existing tools, such as existing XML authoring
tools as well as many HTML development environments. Standard Web tools and
mechanisms such as Cold Fusion, CGI, Perl, ASP and others can be used to generate
dynamic WML applications. WAP applications hosted on Web servers can be written not
only in WML and WMLScript, but also using existing Web technologies like Java serviets
and JSP (Java Server Pages) [17].

3.3. XML Framework

3.3.1. Motivation and Objectives

The XML framework represents the basis for the WML and UIML frameworks. The XML is
the base meta-language for describing other languages like WML, UIML and XIML.

Initially XML has been developed to overcome the limitations of the HTML. XML is
intended for describing documents, compared to HTML that is more concerned with
displaying documents. XML itself does not provide any instructions on how the document is

to be presented or displayed.

The main problem with HTML and WML, besides the fact that they have only a set of
predefined tags, is that there is no clear separation between content and presentation. The
XML solves this problem by providing a standard for the semantic markup of content. One of
the purposes of the XML is to export content in an application-neutral form from legacy
systems and transfer it across the wireless network. When the client-side application receives
the data, it uses its own presentation language to display the content appropriately for the

handheld.

48

3.3.2. Features Description

XML is a family of technologies including the XSL, a language for expressing stylesheets,
and the XSLT, the XSL transformations language for XML documents. XML is the universal
format for structured documents and data on the Web. XML is a way of representing and
expressing data in a platform independent, extensible, self-descriptive and self-consistent

way. It defines a document creation, processing and exchange format.

XML formatted document is a hierarchical collection of elements. The beauty of XML is that
we can define our own element types and associate our own semantic with it. DTD is the set
of grammar rules, the syntax, for specifying the structure of an XML document. WML and
UIML all have their own XML DTDs. A document that respects the formatting rules is
“well-formed” and can be parsed by generic XML parsers. XML can be manipulated, though,
with scripting languages such as Perl, Tcl, or JavaScript. It can also be used with more-
powerful languages such C, C++, or Java. Java has APIs for building XML-based
applications: JAXP for XML Processing, JAXB with DOM and SAX for XML Binding &
Processing. With JAXB we can compile document schemas -the various fields that go into a
document-and generate Java objects. At runtime, the JAXB API automatically converts

documents into Java objects and vice versa.

XSL includes an XML vocabulary for specifying formatting. XSL specifies the styling
(presentation) of an XML document. XSLT describes how the document is transformed into
another XML document that uses the formatting vocabulary. XSLT is used as part of XSL or
independently of XSL, for rearranging, adding or deleting tags & attributes. XSLT consists
of two parts: a language for transforming XML documents and an XML vocabulary for
specifying formatting semantics. Content written in well-formed XML can be automatically
translated into content suitable for either HTML or WML by using different XSL style sheet.
By applying different stylesheets to the same content we can produce output suitable for

display on a variety of devices as shown in Figure 3-5.

49

XML Content

v

XSL Processor

WML Style Sheet | HTML Style Sheet

v v

WML Browser HTML Browser

Figure 3-5 Content Transformations

XML offers a common representation for interfaces executable by multiple devices, taking

into consideration the devices constraints, due to the following properties:

e Platform independent;

e Declarative: through the usage of XSL;

e Consistent: through the usage of DTD;

e Unconventional I/0 : XML can describe unconventional /O as in WML;

e Rapid prototyping: using a stylesheet we can see the results immediately in a browser;

o Constraint definitions: XML can contain constraint definitions for the form of the XML
itself and for the external resources as well.

e Easily extensible: because XML is a metalanguage it is by nature an extensible language;

e Reusability: it is relatively easy to fit an existing piece of XML into another.

We propose XSL for describing the user profile. Using the XSLT it is possible to filter out
the interested parts for the user. We can make an XSL, which describes the kind of
functionality the user is interested in. Letting the XSLT work on a XML structure results in
another XML structure only showing the contents of those parts the particular user is
interested in. An important part of this conversion is only selecting the relevant paths in the
XML user description. This can be done using XPath: an implementation to locate particular
branches in the logical tree XML presents. Using an XSL structure we filter out the
appropriate section out of the XML description of the user interface. Such an XSL structure
can be made by hand, or by monitoring the user's action by an agent, which automatically
generates a profile. XSL has declarative properties, which allows us to easily describe what

we want, rather than how it has be done.

50

We will present a proposed solution that automatically restructures an existing Web page for

specific platforms using XML and XSL [9,10] by transforming it to the device capabilities

and user preferences. The system will divide the existing page into smaller pages and re-

define the navigation mechanism through the new generated pages. There will be two main

steps:

Web Page Segmentation: It divides the document in different sections from contextual,
structural, and semantic points of view and depending on the document structure, layout,
discontinuities, fonts, styles. The input for the system may be HTML, or XML/XSLT.
After the document segmentation we have to generate the ontology of the page. In a
typical web page we find different elements: main content, navigation elements, images,
etc. The system parses the page and identifies and classifies the different elements in the
web page, and the relations between them in order to segment the document. The

ontology represents an abstract model of the web page.

Small Pages Generation: Using the device capabilities description (screen resolution,
number of color or gray-levels, bandwidth, processing power, languages supported:
HTML, WML, XML, input/output capabilities) and the user characteristics description
(expertise level, skills, preferences), the system could generates new web pages adapted
to the device capabilities and user preferences, by applying a set of XSLT

transformations to original page.

The system builds then a navigation strategy, which represents how we are going to show
the information to the user, which information we can remove, and how the user can
navigate between the different elements in the page. It also optimizes how the
information is transmitted and displayed to the device-user, considering characteristics of
the document, devices features and limitations, user knowledge and preferences, etc.
Using the navigation strategy the system generates a new page or set of pages with the
necessary navigation elements. The following XSLT transformations need be applied

sequentially to the original page:

5t

e HTML Code Adaptation: Some of the tags or attributes are added, removed or
replaced to accommodate the device limitations and constraints.

e Layout Adaptation: The layout and distribution of the different elements in the
page is modified to fit the device screen. For each of the sections we can put the
full content of the section or just the title of that section as an anchor link to that
section. Each section can be displayed with different levels of detail.

e Images and Multimedia Adaptation: Some graphics are scaled, or the number
of colors is reduced according to the device capabilities and user preferences.
Other graphics are replaced by their Alt attribute, a link, a simplified version, or
simply removed (e.g. decoration graphics).

e Navigation mechanisms: Code for navigation is added to each small page to
enable the user to navigate through the different pages. Also the system may

generate index pages with links to the different generated pages.

One of the benefits that we see for this kind of system is that new transformations can be
easily added to the system.

3.3.3. Sample Code
See in Annex 3 an example code that performs an XSL transformation on an XML file with
generation of HTML content.

3.3.4. Advantages and Disadvantages

XML technology is an essential element of the wireless picture because with XML the
delivery of data to a wide range of devices can be achieved. XML documents are used as a
cross-platform way of mapping and communicating data between systems. XML is a

promising technology for the platform independent generation of Uls.

The advantages of using an extensible markup language (XML)-based language for

describing Uls are:

52

e The separation of UI description from content, by providing a way to specify how Ul
components should interact, and spell out the rules that define interaction behavior;

e The support for rules to divide responsibilities among different pages, forms, and dialogs;

e The abstraction level that provides for adapting the UI to a particular device or set of

user capabilities.

Additionally, XML is much more powerful than HTML, specifying individual pieces of
information through the use of tags, ability HTML does not provide. Whereas HTML works
for presenting information to users, who can scan the page to find what they're looking for,
XML can present the like to an application that needs this specific, discrete information.

Unlike the case of HTML, element names in XML have no intrinsic presentation semantics.

Modem application servers are now typically configured and managed with XML files. A
key point is the usage for defining a format for configuration files. XML provides a good
mechanism for maintainability and compatibility between different systems and successive
generations of the same system. The use of XML for common, persistent files formats is a

big win.

The XSL provides a powerful mechanism for the dynamic transformation of well-formed

XML providing the following benefits:

e Without it, a processor could not possibly know how to render the content of an XML
document other than as an undifferentiated string of characters. XSL provides a
comprehensive model and a vocabulary for writing stylesheets using XML syntax;

e Even XSL was built on CSS, introduces a model for pagination and layout;

e Scrollable document windows and pagination introduces new complexities to the styling
of XML content. There is a correspondence between a page with multiple regions, such
as a body, header, footer, left and right sidebars, and a Web presentation using "frames".

XSL handles the distribution of content into the regions

The combination of XML and context sensitive XSLT allows development of device

independent web pages. Pages can be made multilingual by ensuring that XSLT stylesheets

53

are language independent through the use of vocabulary repositories.

XML is the preferred technology in many information-transfer scenarios because of its
ability to encode information in a way that is easy to read, process, and generate. Another
advantage of XML is its ability to facilitate an application architecture in which nearly all of
the heavy-duty processing is done on the server side. This makes it a natural fit with Java,
which has demonstrated its value in server-side application logic. This is a crucial point for
enterprise applications, because the servers must be maintained and evolved through multiple
generations of client devices. The server-side logic must produce the right data or document
for multiple platforms and generations of clients. In addition, both XML and Java are
portable, enabling XML data and Java code to be sent to any type of device. Both XML and

Java can run on modermn clients, such as the recently released J2ME and MIDP.

Because both Java and XML are completely platform-independent, they are used to create
Web applications where different clients, different devices, consume and generate
information exchanged between different servers that run on varied system platforms. XML

and Java offer a very powerful combination data and application independence.

3.4. UIML Framework

3.4.1. Motivation and Objectives

UIML is an XML based language that permits a declarative description of a user interface in
a highly device-independent manner - allowing portability across devices and operating
systems - and then use a style description to map the interface to various operating systems
and devices. One of the reasons for developing the UIML language was to overcome the
limitations of the existing languages designed with inherent assumptions about the type of
user interfaces and devices for which they would be used. The idea behind UIML is to
develop an open-source language that people can use to build interfaces for on web

applications, standalone computer applications, cell phones, and elsewhere.

UIML was supposed to be a new declarative language, powerful enough to describe any user

54

interfaces that before only an imperative programming languages or toolkits (e.g., C with X-
windows, C++ with MFC, Java with AWT/Swing) could have implemented. The intention
was to bridge the gap between HTML, which allows easy design of Uls with limited
interaction, and imperative languages such as Java, which allow design of rich Uls but only
in the hands of experienced programmers. In contrast with a declarative language, imperative
languages such as Java or JavaScript describe how to implement the functionality of the

interface.

According to [11, 12] the UIML language design goals are:

e “To allow individuals to implement Uls for any device without learning languages and
APIs specific to the device”

e “To allow non-programmers to implement Uls "

e “To permit rapid prototyping of Uls "

e “To represent Uls for any device, using any language, any UI metaphor, and any
operating system and to permit rapid prototyping of user interfaces”

e “To provide one syntax to describe presentation, user interaction with the UI, and
connection to the things outside the Ul, namely data sources and application logic,
regardless of the target device or language . Consequently, it is relatively easy in UIML
to create a generic description of the User Interface (UI) being developed that can be
transformed to various platforms.

e “To provide a natural separation between UI code and application code logic”

The UIML split content from appearance by the means of an device independent Ul
definition that specifies Ul content, and an device dependent style sheet that guides the
placement and appearance of user interface elements.

e “To allow the language to be extensible to support future technologies’

UIML tags can be assigned the attribute class. UIML authors can create new values of the
class attribute to extend UIML for appliances with interface technologies not in use
today. In addition, the style sheet maps values of the class attribute to particular
renderings for particular appliances. Events that arise for user interface elements are not

hard-wired into UIML. Instead, events are named with a class attribute, and attribute

55

values are mapped to events appropriate for specific interface technologies through a
style sheet.

e “To reduce the time to develop user interfaces for multiple device families "

When authoring multi-platform Uls, we design a family of Uls (see Figure 1-1, Figure 1-
2, Figure 1-3). Each UI exposes a different subset of functionality to a user from all the
available functions of an application. In describing the UI, time is saved if elements
common to multiple devices can be "factored out" and described once in a UI language.
Consequently, UIML itself presumes that a family of Uls can be represented by a tree,
with the description of functions common to all elements at the root, and differences
between different models of devices the leaves. The tree can have an arbitrary number of
levels; for example there can be a level representing different categories of devices (e.g.,
cell phone vs. desktop vs. PDA).

e “To facilitate internationalization and localization ",

o “To allow efficient download of user interfaces over networks to Web browsers on client
machines”. UIML achieves the ideal of allowing the flexibility of downloading code
(e.g., Java or Active-X), but using smaller files that are relatively quick to download and
that can be cached. For example, with UIML one can create, to our knowledge, any user
interface that one can create using Java with the AWT or Swing toolkits, yet require no
download of Java code to the Web browser. In essence, the Java portion is downloaded

once to the client as a UIML interpreter plug-in, which can then interpret any UIML file.

The most persuasive argument to use UIML is to facilitate multi-platform authoring tools. A
vocabulary of generic UI components, properties, and behaviors for multi-platform editing
has been defined [22]. We present more about a multi-platform framework using UIML in
section 4.2. A multi-platform authoring tool is under development at Harmonia [11], based
on a research project at Virginia Tech. The multi-platform authoring tool goal is the mapping

of a single UIML file to any target UI language.

56

3.4.2. Features Description

UIML distinguishes between the Ul elements that are present in the UI, the structure of these
elements, how are they organized for a family of similar devices, how the interface is to be
presented or rendered using CSSs, and how events are to be handled for each UI element. It

does not use any metaphor dependent tags to describe an interface.

There are 2 important aspects of UIML: the ability to generate user interfaces for different
platforms (see example for Java AWT, WML), and the ability to construct a library of
reusable interface components. UIML comes with different rendering programs allowing the
generation of user interfaces on different platforms. Also up to now the generation for Java
AWT/SWING, HTML, WML, PalmOS, VoiceXML are available.

Runtime interaction is done using events. Events can be local (between interface elements) or
global (between interface elements and objects that represent an application’s internal
program logic (the backend). Since the interface typically communicates with a backend to
perform its work, a runtime engine provides for that communication. The runtime engine also

facilitates a clean separation between the interface and the backend.

UIML represents an interface in five parts: Interface Structure, Presentation Style, Content
(text, images, sounds), Behavior (actions taken in response to user interaction) and
Interaction of the UI to the application logic or target Ul toolkit objects. An analogy could be
made between Ul architecture and the Model (Content)-View (Interface Structure,

Presentation Style, and Interaction)-Controller (Behavior):

e Structure: It defines the overall structure of the interface. The UI description is an
enumeration of the set of interface parts, with which the end user interacts and
comprising the interface, given in a hierarchical form, to designate the logical structure of
the interface. Multiple hierarchies or structures may be given for different families of

devices and categories of end users.

57

Style: Because the availability of specific Ul widgets varies from device to device, this
element specifies device-specific presentation style for each interface part (similar in
principle to CSS), mapping (rendering) the part into the associated widget. It uses
vocabulary of names of UI widgets in the platform the Ul will be mapped to (e.g., a
scrollable selection list). For example if the target is Java AWT, the vocabulary might
consist of the java.awt and java.awt.event class names, such as Frame, Menu and Button.
If the target is WML, the vocabulary might be tag names, such as card, select, input. The
vocabulary of target platforms is not part of the UIML. It only appears in UIML as the
value part of attributes in UIML.

The style mechanism provides a level of abstraction over the connection between parts
and the controls on the target device that implement the parts, allowing for the creation of
multiple presentations to be defined for a single device. Within a style specification, the
rendering property plays a key role in enabling platform independence. This property
maps a particular UIML part, event, or call to a widget, event, or method in a particular
UTI toolkit. Thus a developer can define generic (or functional) event names in UIML and
map them to specific control-based events such as menu choices, button clicks, or voice

commands in the target UI toolkit.

In practice, vocabularies will be defined externally for common UI toolkits and
incorporated into UIML specifications by reference to a URL. This architecture enables
ongoing creation of mappings between parts defined in UIML documents and additional
UI toolkits that may become available. The only shortcoming to this model is that it fails
to provide an explicit mechanism for creating anything more complex than a simple one-

to-one mapping from parts to components in the target toolkit.

Content element: Unlike other markup languages, a UIML document specifies the
content (e.g., text, sounds, images) of the interface in a separate XML element. This
facilitates internationalization and customization of the Uls for users of varying expertise.
The content is then assigned to the interface part by a reference to the content descriptor.

The content can also be set programmatically by the application code behind the UL

58

Behavior element: defines events for the UI and associates them with interface parts.

A unique aspect of UIML is that events are described in a generic device-independent
fashion and mapped to actual device events at runtime using the style sheet (Unlike style
sheets used with HTML). A generic event can be triggered by the user (e.g., when the
user enters some text), by the application (e.g., when the backend displays data), or by the

underlying system (e.g., when a timer expires or an exception is raised.

The behavior element contains simple rules, each of which consists of a condition
(typically the firing of an event) and a consequent action. An action may result in a
change in a property value, or it may invoke a function in a script or in an underlying

application library.

In UIML, the application logic is represented as a collection of components with a well-
defined programming interface. These components can be internal (e.g., scripting
embedded into a UIML document) or external (e.g., executable code on the local machine
or on a remote server). As one of UIML’s goals is to break the dependency between the
interface and the backend, no calculations are defined in the interface and all calculations
and backend integration actions are completely hidden. This is achieved by having a
runtime engine monitor all events. Application/interface integrators map generic interface

events to scripts or application methods.

Peers element: UIML being a device independent language does not contain any tags
that are specific to any particular toolkit. Instead, it used generic names like part, and
property. The peer part of the interface maps these generic names to more specific names
of the platform for which the UI is developed. It specifies what widgets in the target
platform and what functions or objects in scripts, programs or in the application logic are
associated with the UL The peers element provides mappings from abstract interface
elements to actual device-specific components that can be rendered (presentation) or

executed (logic).

59

We will present further some UIML strengths vis-a-vis of HTML:

The interface content is not embedded in UIML. The UI definition in UIML contains
references (or variables) that will be populated with content when the document is
rendered for the particular device. This contrasts with HTML, having no notion of
variables, and the cumbersome way of using a scripting language to insert content into an
HTML document.

Unlike HTML, UIML permits a variety of event handling to be described within UIML
without relying on a (procedural) scripting language. Each Ul component can be
associated with a set of events. Each event is able to set a new value for an Ul attribute or
to invoke a function or method outside the Ul This allows many common events to be
handled without any procedural code.

A UI rendered on a monitor sometimes consists of hundreds of screens with similar
appearance but different content (e.g., an interface for a hospital that serves many
different specialists in the hospital). UIML has a concept of UI templates, which allows
one to design reusable interface components, and then customize them to particular uses.
This saves a lot of work in building the interface software, and allows UI creation to be
partitioned between interface designers and content providers.

HTML can be embedded in UIML, so those Web pages can appear as part of an
application interface.

UIML is user extensible. Arbitrary interface components (e.g., Active-X controls, Java

Beans) can be used with UIML.

We discuss further the two ways in which the UIML interfaces are deployed to the user [12]

(see Figure 3-6). The Interface Server combines the UI definition, style sheet, and content

from a database into a UIML instance. The UIML Renderer maps a UIML instance into an

arbitrary language and API, such as WML, Windows MFC API or Java.

The Interface Server can deliver the UI to the device in two ways. It could retrieve or

generate the UIML document and deliver it to the device. The device in this case is supposed

to have the necessary capability to render it for displaying and for the user to interact with.

60

This is what happens in the case of normal Web browsers on PCs in which the Web page is

sent to the browser, which interprets it.

In the second case, the interface server translates the UIML document to the device’s native
language (WML or BinaryWML for a cellular phone) using the Renderer, and delivers the
compiled UIML document to the device which simply, displays it. The server uses the User
Profile to customize the UIML document, if needed.

The advantage of this second mechanism is that the Interface Server can use a single UIML
document and translate it for any device based on the user profile. This also cleanly separates
the structure of the interface from its presentation. In either case, a new Renderer and style
sheet can be written when a new interface technology is invented to present existing UI

definitions.

Device #1 (e g. % User Profile Interface
Web browser on PC |2 [~ Server
in English) 2 um
59 { Cache!
Device #2 (c.g., Cell | _USerProfile f=
phone with display in == — 5 I Database I
French) WML -

Figure 3-6 Model for UIML Deployment ([12])

Compilation on the server side is mandatory for devices that cannot download applications,
such as cellular phones, and where memory is limited. Interpretation is more flexible; for
example the Java interpretive Renderer permits the entire UIML interface to appear as a Java

bean, so that the interface may be manipulated programmatically by the application logic.
UIML can also be used without a server; in this case UIML or the compiled code or markup

language is installed along with the application logic on end-user devices. At runtime, the

rendered interface directly communicates with the application logic.

61

In UIML there are two ways in which the Ul can be tailored to the device/end user. First,
using multiple structure/style/content/behavior sections gives several alternatives to the user.
At runtime, the user may specify the names of each section they want to use (e.g., a simple
structure with a graphical style and Greek content) and get a custom interface. Second, UIML
can be dynamically generated from a database. The Interface Server can query the client for a
list of device features and/or user preferences and dynamically generate the UIML code for
the interface from a database query. The user gets a tailored UI that takes advantage of the
technologies supported by the device without overloading the network or the device with

unsupported code.

3.4.3. Sample Code

See in Annex 4 a UIML sample code of an Online Banking Application rendered for Java
Swing, Java AWT, HTML and WML platforms.

3.4.4. Advantages and Disadvantages

The declarative nature of UIML brings some advantages over the traditional procedural

programming languages (e.g., C++ and MFC), which specify how an interface is constructed:

e A few lines of UIML take the place of many lines of a procedural language;

e It s faster to use than traditional procedural languages;

e It’s easy to enforce a consistent style across many interface screens in an application with
UIML’s style sheets. There’s no comparable facility with procedural languages;

e UIML exposes relationships between pieces of the interface that low level procedural
code obscures;

e The UIML Renderer looks like an Active-X control or a Java bean to the rest of an

application, so UIML can be combined naturally with procedural languages.

We will present further our conclusions based on our working experience with UIML from
the language capabilities point of view. We believe that the declarative language still needs
improvement in order to comply to some of the UIML goals mentioned in section 3.4.1. We

claim that these goals are not entirely fulfilled for the reasons we further present. When

62

moving a Ul from the PC to a handheld device, the code is indeed simpler when using
UIML. But is not about just writing a new style sheet and doing some simple editing of
UIML; still heavy modification of procedural code is needed. In order to generate the UIML
interface for different platforms such as JavaAWT, Java Swing, HTML or WML, a great deal
of knowledge of the languages and methodologies used by these specific target platforms are
required for the developers. Besides the final UIML code looks very similar to corresponding
programming language code. Therefore we believe it is not quite a language for beginners or
non-experience users and it cannot really replace hand-coding of Uls. This leads further to
the conclusion that the adapting to different platforms could be pretty expensive, as specific
device implementation knowledge is needed and a special renderer is needed for each target

device.

This is an important disadvantage of UIML, as each renderer needs its own platform-specific
vocabulary of the target Ul elements such that the output results vary from renderer to
renderer. There is a great deal of differences in the vocabularies associated with each
language. Consequently, the UI developer would have to learn each different vocabulary in
order to build Uls that would work across multiple platforms. Therefore we do not think that
using UIML, reduces dramatically the effort to develop Uls for multiple platforms, in
comparison to the effort needed if the Uls had to be built using the native language and

toolkit for each platform.

We implemented an Online Banking Ul in UIML and tried to render this into Java, HTML
anc WML. This was achieved by implementing 3 different UIML documents, one for each
platform. We still have only one language, but for each platform the code has to be heavily
modified with specific language aspects. The language is not ready yet for rendering a single
and unique UIML document into any language. We cannot simply create one UIML file for
one particular platform and expect it to be rendered on a different platform with a simple
change in the vocabulary. Still, with a new Renderer, organizations using UIML should
indeed be able immediately to use the new technology on existing applications, but at the

cost mentioned above.

63

Some of the languages advantages that we notice were that changing in Ul can be done
without recompiling, when using Java rendered and the creation of clean HTML and WML
code. On the other hand, there are disadvantages such that it is not possible to include images

into UIML documents for Java and that the HTML renderer does not support Javascript.

The UIML architecture enables ongoing creation of mappings between interface parts
defined in UIML documents and additional UI toolkits that may become available. The only
shortcoming to this model is that it fails to provide an explicit mechanism for creating
anything more complex than a simple one-to-one mapping from user-defined interface parts
to components in the target toolkit. UIML lacks the ability to specify complex rules because
it does not have a direct approach for handling complex mappings, such as many-to-one or
one-to-many mappings, from developer-defined components to widgets available in the

target platform. This is partially solved by using templates.

However, although UIML allows a multi-platform description of Uls, there is limited
commonality in the platform-specific descriptions when platform-specific vocabularies are
used. This means that the UI designer would have to create separate user interfaces for each
platform using its own vocabulary which is defined to be a set of user interface elements with

associated properties and behavior.

In the delivery mechanism there is advantage of running an interpreter on the client side,
avoiding the need to send bulky executable code to devices. For example, Java applets today
are time consuming to load over the Internet. In contrast, a Java interpretive renderer
installed on a PC requires only UIML to be transmitted over the Internet, a benefit for
network security. UIML is a small text file compared to the equivalent executable code, just

as a form in HTML requires less bytes than a Java applet implementing the same form.

The UIML and mechanisms based on XML technology are technical attempts to address the
development problem of plastic Uls, but although useful, they do not provide sufficient

insight about how the adaptation process could happen.

3.5. JAVA 2 Micro Edition (J2ME) Framework

3.5.1. Motivation and Objectives

J2ME is a framework that enables anytime, anywhere deployment of services, provides Java
technology solutions for building devices across the spectrum - palmtops to desktops and

delivers the foundation for intelligent and dynamic networked content [13].

3.5.2. Features Description

A J2ME enabled PDA or cell-phone has the JVM (Java Virtual Machine) or KVM (K Virtual

Machine) embedded as hardware or software in the device itself.

The J2ME architecture [13] (see Figure 3-7) is modular and scalable in order to support the
flexible customizable deployment demanded by the consumer and embedded markets, by
providing a range of virtual machines, each optimized for the different processor types and
memory footprints. This is how the diversity in form, function and features of the network-

connected devices is addressed.

"]VM Legend:
config1l = Connected Device Configuration (CDC)
config2 = Connected, Limited Device Configuration (CLDC)

Figure 3-7 J2ME Environment [13]

65

J2ME supports minimal configurations of the JVM and Java APIs just for the essential

capabilities of each kind of device. As device manufacturers develop new features in their

devices, or service providers develop new and exciting applications, these minimal

configurations can be expanded with additional APIs or with a richer complement of JVM

features. The “configuration” and “profile” concepts are associated to J2ME:

Configuration. J2ME is deployed in several configurations. Each configuration defines
the minimum set of the Java features and libraries available for a particular “category” of
devices, each with similar requirements on total memory budget and processing power,
and representing a particular “horizontal” market segment. CLDC (Connected Limited
Device Configuration) is one of the J2ME configuration that defines targeted Java
platforms for mobile connected information devices with constrained 16-or 32-bit CPU
and memory resources between 160 kB and 512 kB. It is composed of the KVM and
core class libraries. The CLDC itself does not define any GUI functionality. Application
developers and content providers must design their code to stay within the bounds of the
Java virtual machine features and APIs specified by that configuration. In this way,
interoperability can be guaranteed among the various applications and devices in a

particular class.

Profile. A J2ME device profile extends and is implemented “upon” a particular

configuration. It defines the minimum set of APIs, available on a particular “family” of
devices, being more domain-specific than the class libraries provided in a configuration.
Some of these profiles will be very device-specific, while others will be more
application-specific. Applications are written “for” a particular profile and are thus
portable to any device that “supports” that profile. A device can support multiple profiles.
All profiles have the ability to safely download code onto a device and configure the Java
environment. Profiles implemented on top of the CLDC address these features:
application life-cycle management (installation, launching, deletion), UI, event handling,
high-level application model (the interaction between the user and the application). The

only existing profile is the MIDP (Mobile Information Device Profile) designed for cell

66

phones. Applications that run on devices supporting MIDP are called MIDlets. MIDP

have libraries for the user interface, database, and device-specific networking.

Official GUI classes for the J2ME are included in MIDP profiles. The GUI classes included

in the MIDP are not based on the AWT for the following reasons:

e The AWT is designed for desktop computers and optimized for these devices.

e The AWT assumes certain user interaction models. The component set of the AWT is
designed to work with a pointing device such as a mouse; however many handheld
devices, such as cell phones, have only a keypad for user input.

e While the AWT has a rich feature set, it is mainly desktop-based. Also, the feature set
includes support for features not found on handheld devices. For example, the AWT has
extensive support for window management, such as resizing overlapping windows.
However, the limited display size of handheld devices makes resizing a window
impractical. Therefore, the window and layout managers within the AWT are not
required for handheld devices.

e When a user interacts with an AWT-based application, event objects are created
dynamically. These objects exist only until each associated event is processed by the
system, at which time the object becomes eligible for garbage collection. The limited

CPU and memory of handheld devices cannot handle this behavior.

GUI classes are included in MIDP. The MIDP UI APIs are logically composed of high-level
(implemented by classes that inherit from the Screen class) and low-level (implemented by
Canvas and Graphics classes) APIs [6, 14, 15]. The high-level APIs use a high level of
abstraction to achieve the software portability across various cell phones and pagers. The
trade-off is that the high-level APIs limit the amount of control the developer has over the
human interface’s look and feel. Interaction with components is encapsulated by the
underlying implementation and the application is not aware of such interactions. If an
application has to be aware of component layout, scrolling, and focus traversal it
compromises portability. The underlying implementation is accomplished by the handset
manufacturer and does the necessary adaptation to the human interface on the device’s

hardware and native user interface style. This ensures a consistent user experience between

67

the native applications and the MID Profile applications. Typical applications using a high-
level API are stock transactions, travel reservations, online purchase of concert tickets, news

headlines, weather updates, and traffic information.

On the other hand, the low-level API:

e Provides very little abstraction and requires a bit more design work to remain portable;

e Designed for applications that need precise placement and control of graphic elements, as
well as access to low-level input events;

e Allows the application to access special, device-specific features, therefore the MIDlets
that access the low-level API are not guaranteed to be portable.

Games are a typical application that use this API.

The actual drawing to the MIDs display is performed by the device implementation. The
application cannot access concrete input devices such as individual keys. Because of the
small displays, instead of a window system, the central abstraction of the MID Profile Ul
API is the “screen”. A screen is an object that encapsulates device-specific graphics
rendering user input. Only one screen is visible at a time, and the user can only interact with
the items on that screen. The screen handles all events that occur as the user navigates on the
screen. Only high-level events are passed on to the application. Screens scroll vertically only;
there is no horizontal scrolling. Screens should be simple in design, basically one user task
per screen, and contain as few Ul components as possible to complete the task. An
application is composed of a set of screens, which the user steps through as they complete
tasks. The set of screens that compose an application do not need to be linear, branching and
jumping between screens to enable proper usability is expected. The application developer

should design the application in such a way that navigation is clear and obvious to users.

There are the following types of screens:

e Screens that encapsulate a complex user interface component like “List” (an implicit
menu list; a single-choice list; and a multiple-choice list) or “TextBox™ (will not support
fancy text formatting or font styles and allow only the basic text editing capabilities) and

have predefined structure. The application cannot add other components to them.

68

e Generic “Form” screens. The applications can an arbitrary mix of items including images,
read-only text, editable text, date and time fields, gauges and choice groups.

e “Alert” screen.

It is recommended to limit the screen to a single user task. Form screens should be not longer
than three to four displays in length. Forms that require extensive scrolling can overtax the
performance of the device and can become unwieldy for the user to interact with. In general,
any item or its subclass may be contained within a form. The implementation, not the
application, handles layout, traversal, and scrolling. None of the components contained on
the form screen are able to scroll independently — the entire contents scroll together
vertically. When a form is present on the display, the user can interact with it and its items
indefinitely, for example, traversing from item to item or scrolling. It is the form screen
capabilities, combined with the MID Profile abstract commands, that provide the most
flexibility in developing compelling, competitive, portable mobile interactive solutions for

the cell-phones.

To ensure application portability across devices, a method is needed to insulate the developer
from the actual set of buttons that may be on a device. MIDs will either have a one-handed
ITU-T phone keypad or a two-handed QWERTY-style keyboard. Beyond that, devices may
have any number of programmable (soft) buttons or no programmable buttons at all. There
may be dedicated hardware buttons for Back, Help, Clear, etc., or there may no dedicated
buttons at all. The Abstract command API is the layer that is used to map between the
buttons on a device and the set of commands that an application developer attaches to a

screen.

There is one policy per phone for how buttons are mapped on it. What is possible is to define
the set of actions the user can select from each screen in the particular application. Each
action is defined as a command with an associated command type, priority, and label. The
type, priority, and label provide hints to the underlying device implementation that can be
used to map the commands appropriately. For example, a command of type HELP might get

mapped to a dedicated Help button on a phone.

69

Working at this high-level of abstraction enables developers to state their preferences, but
offers have no guarantee that the commands will appear in a specific order or on a specific
button. Commands are mapped by type first, and then priority within that type. Developers
should plan on testing their application on as many different target devices as possible to
understand how the abstract command mapping policies of different devices will effect their

application.

If an application asks for more abstract commands than there are available buttons, the MID
Profile reference implementation, for example, uses another Ul mechanism, the Menu, to
make the commands accessible to the user. The overflow of abstract commands is placed in a
menu and the label Menu is mapped on to one of the programmable buttons.

J2ME provides a set of simple UI components. Programming with these components is easy
in comparison with the J2SE AWT and Swing libraries because the MIDP GUI API is

simpler.

Motorola’s LWT (Lightweight Windowing Toolkit) [19], the first available graphical user
interface extension for J2ME technology-enable wireless products, enhances the GUI
capabilities of the MIDP platform and gives developers better control over the look and feel
of their applications, making simpler, more intuitive system software possible for mobile

communication products.

Motorola’s LWT is an advanced graphics API for the J2ME. LWT integrates with the
LCDUI API within the MIDP, and enhances the capabilities to include a component-level
API. Developers can control the contents and layout of their screens, and include components
such as buttons, checkboxes, text fields, and images. LWT applications can even mix MIDP
screens and LWT screens in the same application. LWT is extensible so developers can add
new components, or match the look and feel of components on another user interface.
Components such as Button and Checkbox may be tailored to match existing applications on
other platforms or match other MIDP compliant applications like MIDlets. In addition,
developers can create imaginative new components. LWT integrates with and extends the

MIDP without impacting the portability of other MIDlets. MIDP APIs are supported, so

70

MIDlets are not disrupted. Manufacturers can easily add LWT to a MIDP implementation.
The basic requirement is MIDP on the device, and a small amount of flash memory. LWT

makes it easy to add graphics, making applications fast and easy to read.

The MIDP for Palm OS [18] is a J2ME application runtime environment based on the CLDC
and MIDP specifications. It is targeted at Palm OS handhelds running Palm OS. The product
feature sets include:

e MIDP specification features: Low-level graphics API (Canvas), High-level graphics API
(LCDUI) Abstract Commands and Canvas Input, Database access (RMS), Networking
(HTTP)

e Palm OS specific features: Preferences, HotSync support, MIDlet beaming support.

Developers can use the same tools to develop MIDlets running on Palm OS handhelds as
well as on other MIDP compliant devices. In MIDP for Palm OS, the abstract commands will
map onto buttons that are shown at the bottom of the screen. All Abstract Commands are also
duplicated in the menus for usability reasons. The goal of MIDP is to provide a common set
of APIs across mobile phones; therefore no Palm specific APIs are available. MIDP offers a

way to develop Java on a Palm OS device.

3.5.3. Sample Code

See Annex 5 for a sample MIDlet code extracted from [16] for displaying a string in display

area of the mobile phone.

3.5.4. Advantages and Disadvantages

J2ME allows applications to be dynamically downloaded to a mobile device in a secure
fashion. The application can be operated in disconnected mode (e.g. stand-alone game, data
entry application) and store data locally, providing a level of convenience that is not
available on current browser-based solutions. Because the application resides locally, the
user doesn’t experience any latency issues, and the application can offer quite a rich user

interface (drop-down menus, check boxes, animated icons). The user is empowered to

71

control when the application initiates a data exchange over the wireless network. This allows
for big cost savings on circuit-switched networks where wireless users are billed per minute,
and allows a more efficient exchange of data. Additionally, J2ME applications can leverage
any wireless network infrastructure, taking advantage of a WAP network stack on current

circuit-switched networks.

The MID Profile enriched the cell phone functionality. The interaction of lists, alerts, text
boxes, and form screens with high-level abstract commands provides a workable way for
developers to write portable applications in the Java that can run across a variety of MIDs.
This opens the door to a variety of new wireless services and applications. For example, the
device can automatically track a user’s stocks and let them know when a specified stock
reaches a certain price. A similar application could track auctions, alerting the user when
bidding reaches a particular point. Or, a user may wish to play a game that can be
downloaded and played locally; scores can then be uploaded to compare against other
players. A key benefit to incorporating J2ME technology into a wireless device is that it
enables consumers to continually upgrade the applications on that device once it has been

purchased.

J2ME complements the WAP with respect to security issues. The WAP server with its
decryption/ encryption routine is an easy target for hackers to steal confidential information.
Java can provide a more direct route to the wireless device. No gateway or WAP server is
necessarily needed, and no decryption/encryption occurs. WAP will continue to be useful for
simple, content needs, while Java will be necessary for secure, faster, and more robust
features and services. J2ME allows industry groups to define specific Java based profiles or

specifications defining a Java based platform suited to a specific class of device.

The key advantages that Java technology provides for mobile development are the
portability, simplified support and maintenance, reliability and secure networking. Since the
J2ME platform is an industry standard, the same software and applications can work on a

variety of different devices.

72

4. Chapter IV - High-Level Frameworks for Mobile UI Development

4.1. Automatic Ul Design Process

Model-based systems for user interface development [2, 3] exploit the idea of using a
declarative interface model to drive the interface development process. An interface model
represents all the relevant aspects of a user interface in some type of interface modeling
language. The model-based systems attempt to produce automatically a concrete interface
design (i.e., a presentation and dialog) from the abstract representation of Ul (task and
domain model). This is done through the mapping process of the abstract elements in the

concrete elements in the interface model.

For example, given user-task ¢ in domain 4 find an appropriate presentation p and dialog D
that allows user u to accomplish t. Therefore, the goal of a model-based system in such a case

is to link t, d, and u with an appropriate p and D.

In the current model-based systems [2] the process of generating the concrete interface

involves the stages as shown in the Figure 4-1.

Ul Modeling

Task, Domain Models

Abstract UI Specification

Congcrete Ul Specification

Figure 4-1 UI Modeling

The task model represents the tasks that users need to perform with the application. The
domain model describes the structure of the information that the application provides or the
objects that the user can view, access and manipulate through the interface. Tasks models
typically represent tasks hierarchically decomposed into subtasks, until the leaf tasks

represent operations supplied by the application and information included for sequencing

73

(and, or, xor). It may include references to the domain objects needed and produced in each
task. The task model it is used during the automatic generation to determine the interface

dialog and the information to be shown in each window.

The abstract UI specification represents the structure and content of the interface in terms of
two abstractions, abstract interaction objects (AlO), information elements and presentation
units. AlOs are low-level interface tasks such as selecting one element from a set, or showing
a presentation unit. Information elements represent data to be shown, either a constant value
such as a label, or a set of objects and attributes drawn from the domain model. Presentation
units are an abstraction of windows. They specify a collection of AIOs and information
elements that should be presented to users as a unit. In summary, the abstract UI specification
specifies in an abstract way the information that will be shown in each window, and the

dialogue to interact with the information.

The concrete UI specification specifies the style for rendering the presentation units, and the
AIOs and information elements they contain. The concrete specification represents the
interface in terms of toolkit primitives such as windows, buttons, menus, checkboxes, radio-
buttons, and graphical primitives such as lines, images, text, etc. In addition, the concrete

specification specifies the layout of all the elements of a window.

The automatically design of the interface is done in the following sequence of steps:

o Determine the presentation units. Determines the windows that will be used, and
what information will be shown in each window.

e Determine the navigation between presentation units. Computes a graph of
presentation units that defines which units can be invoked from which other units.

e Determine the abstract interaction objects for each presentation unit. Specifies the
behavior of each element of a presentation unit in an abstract way (e.g., select one
from set).

e Map abstract interaction objects into concrete interaction objects. The concrete

interaction objects represent the widgets available in the target toolkit.

74

e Determine the window layout. Determines the size and position of each concrete

interaction object.

The first three steps build the abstract user interface specification, and the last two build the
concrete specification. We believe that tools are needed to help designers move from models
to concrete user interfaces by choosing from several available criteria. We claim that the
limitations of current model-based systems for generating mobile Uls for different platforms
are due to the lack of a general solution to the mapping problem for all interfaces and to the
lack of availability of a general framework to search for solutions to the mapping problem for
individual interfaces. This will be a major concern for our “universal” “high-level”

framework.

4.2. Framework for Building Multi-Platform User Interfaces through a Multi-Step

Transformation Process

We saw in Chapter 1 how difficult it is difficult to develop an application for multi-platform
deployment without duplicating development effort. Here we present a multi-step process of
building multi-platform Uls that reduces the duplication of effort by factoring out common
parts of interfaces in different levels [20]. The different levels all use UIML as the
representation language and provide transformations that convert a Ul from one level to the

next (see Figure 4-2).

Platform 1-specific UIML

Physical Model 1

Platform 2-specific UIML

Logical Model —

Physical Model 2

<: Platform m-1-specific

Platform 1-specific UIML

Step 1 Step 2 Step 3

Figure 4-2 Building Multi-platform Uls using UIML (Adapted from [20])

75

Logical model of the interface is constructed to capture the UI description at a higher
level of abstraction than is possible by any physical model, without any knowledge of the
widgets or layout used in the physical model. It helps in providing the same functionality
of the application on different platforms. The logical model can be transformed into
different physical models that are specific to groups of devices or platforms that have
similar layout facilities. A hybrid task/domain model could be used that can be

transformed to the physical model.

Physical model of the interface is created that captures the UIML description of the
interface for a group of devices or platforms that have similar layout facilities. A set of
generic vocabulary of Ul elements [22] is used, which are not dependent on any
particular platform or language and are sufficient to provide general functionality needed
for Uls. We can see examples from the UIML Generic vocabulary in Tables 4-1 and
Table 4-2. This model describes the hierarchical arrangement of the interface being
generated using generic UIML interface elements. The interface can be created at Stepl

or Step2.

Different HTML browsers and the Java Swing platform can all be part of one physical
model based on their layout facilities. Some platforms might require a physical model of
their own. The physical models that can be built currently are for the desktop platform
(Java Swing and HTML) and phone (WML). These physical models are based on the
available renderers. The specification for the physical model is already built. The first

type of transformation is the mapping from the logical model to the physical model.

This type of transformation has to be developer-guided and cannot be fully automated.
By allowing the UI developer to intervene in the transformation and mapping process, it
is possible to ensure usability. Once the user had identified the mappings, the system will

generate the physical models based on the target platforms and the user mappings.

Platform model. A transformation algorithm is used to generate platform-specific

UIML, from generic UIML. This platform-specific UIML can then be used in

76

conjunction with a renderer to render the interface. This process can be largely

automated. However, there are certain aspects to the transformation that need to be

guided by the user. The developer has to select the mapping from elements in the generic

vocabulary to one or more sets of elements in the target platform and has the liberty of

enhancing the platform-specific UIML to add more platform-specific elements. The way

this is currently implemented, the developer does this as a special property of the Ul

element.
Generic User | JAVA™ (Swing) Palm OSG HTML 3.2"7(tag) | WML (tag) |

Interface Element Component)

" GButton JButton Command Bultan | <nput type="button"> <do>
GlLabel JLabel Label <p>
Glcon icon Bi < <
GSLTextRegion JTexdField Fiald <input ype="lext™> <input> [
Glist JList Popup List <al> <select>
GDialog JDialog Alert Dialog, - -

e e Process Dislog

[GMenu JMenu Menu -

GAraa JFrame, Window, Window <form>, <table> <carg>
JPanel,
JScrdiPane,
JTabbedPane,
JTable,
JintemalFrame L
GTopContainer JFrame Form <htmi> + <body> <wmbP>
Table 4-1 UIML Generic Vocabulary 1 [21]
Generic User JAVA™ (Swing) Palm OS® HTML 3.2 (tag) WML (tag)
Interface Element _(Component)

[GMLT extRegion JTextArea Field <lextarea> <input>
GCheckbox JCheckBox Checkbox <input type="checkbox™> -

™ GRadoButtan JRadioBution Pushbution <input type="rado >
GComboBoxd.ist JComboBax Popup List .

GScrallingList Just Papup List

GTree JTree . N
GTable JTable Table <iable> <table>
GMenuitem JMenuitem - <select> <chaice>
GProgressindicator JProgressBar Progress dialog

GSlider JSlider Stider

GToolBar JTooBar

GTodTip JTodTip

Table 4-2 UIML Generic Vocabulary 2 |21]

77

The researchers conclude that UIML provides a practical approach for the creation of multi-
platform Uls through a process of transformation that encompasses different devices with
various capabilities. The physical model and the transformation algorithm that converts the
physical generic model to the platform-specific UIML has already been developed at
Harmonia Inc.[22] and will be incorporated within a multi-platform Authoring Tool for
UIML. The logical model will be incorporated within this tool in the future. It’s about an IDE
(a Single Authoring Tool for Multiple Platforms), which allows graphical compose of UL
The events for each UI Component can be defined without any knowledge of Java, HTML or
WML. UIML is generated automatically from graphic design, and can also be edited.

4.3. Framework for Task and Business knowledge Integration

This model-based framework integrates task and business-object knowledge into the
development process and its underlying representations [23]. It exploits the user, task and
business-object models as the basis for the development of the application logic and the Ul
design. It is essential to model the users when they have different preferences, abilities, and
privileges. It is also often appropriate to model the domain characteristics of the tasks

supported by the UL Such information often guides the selection of appropriate widgets.

The user interface is considered as a simplified version of the MVC model and is separated
into a model component and a presentation component. The model component describes the
feature of the user interface on an abstract level. It is also called abstract interaction model
(AIM). The user-interface objects with their representation are specified in the presentation
component. It is also called specific interaction model (SIM) representing the features for the
specific UI objects for each device. During the development a mapping transforming the

abstract interaction model to the specific interaction model is necessary.
The XML allows the description of the abstract interaction model, the description of specific

characteristics of different devices and the specification of the transformation (mapping)

process from the AIM to the SIM (see Figure 4-3).

78

| User Model
Task Model Object Model
Application Logic User Interface Design
Abstract Interaction Model

| Modeling the Abstract Interface
1. XML-Based Ul Description I 2. XML-Based Device Definition

l Interactive Mapping Process

3. XML-Based Device Dependent -
Abstract Interaction Model Design rules

| Interactive Design Process

4. XSL-Based Model Description |

Interface Generation with Content Information

| 5. Specific Interaction Models (Specific User Interfaces) |

Figure 4-3 Model of the transformation process from an abstract to specific Ul
(Adapted from [23])

The main steps involved in the transformation process are:

1. XML-Based Abstract Interaction Model. The UI is composed at this stage by one or
more abstract UIO’s each composed by other UIO’s or one or more input /output values
given in an abstract form and describing features of the UI in an abstract manner. There
will be a mapping process of these abstract UIO’ to concrete ones. The abstract
interaction model is transformed into a notation, which is based on a language of the

XML family.

2. XML-Based Device Definition. There are XML documents containing abstract
descriptions of the properties and specific features of various target devices. They are
needed to support the transformation process from an abstract interaction model to a
device dependent abstract interaction model. The specifications are not only necessary for

this transformation they influence the specification of formatting rules as well.

79

3. XML-Based Device Dependent Abstract Interaction Model. This model fulfills
already some constraints coming from the device specification. It uses available features
and omits not available services. The result of the mapping process is a file in which all
abstract UIO's are mapped to concrete UIO's of a specific representation. The structure of
this file is based on a XML-DTD. The file is specific according to a target device and
includes all typical design properties of concrete UIO’s like colour, position, size. It is a
collection of option-value pairs where the content of the values are specified later on in
the design process and describes a “skeleton” representation of the specific UL The user

interface is designed on the basis of this skeleton during the following design process

4. XSL-Based Model Description. The creation of the XSL-based model description is
based on the knowledge of available UIO’s for specific representations. It is necessary to
know which values of properties of a UIO are available in the given context. The
“skeleton” and available values of properties are used to create a XSL-based model

description specifying a complete user interface.

5. Specific User Interfaces. A file describing a specific Ul will be generated by XSL
transformation:
e Creation of a specific file representing the Ul (WML, HTML, Java)

¢ Integration of the contents (database, application) into the interface.

The generated model is already a specification runable on the target platform. It is
constructed by a transformation process, which uses as input the device dependent AIM
coded in XML. The Ul could be generated once, like for java. AWT or it has to be generated
dynamically several times, like for WML. In the first case there is no need for a new
generation of the user interface if the contents changes. The content handling is handled
within the generated description file. In the second case the content will be handled by
instructions within the XSL-based model description. Each modification of the contents
results in a new generation of the generated description file. This approach allows a reuse of

designed models apart from final representations.

80

Attempts in applying this approach were done in the TADEUS [27] project, where both AIM

and SIM models have grammar representations. It proved that the development of different

grammars for different platforms is time consuming. Therefore the transformation process

needs to be improved especially at the integration of the specific features of different devices.

This approach shows that XML is a promising technology for the platform independent

generation of Uls. XML contributes to the model-based Ul design approaches in a way that

it is used for representation and transformation features ensuring a flexible development

process from an abstract interaction model to a specific interaction model.

4.4. Framework for Context-Sensitive Uls emphasizing the Task Modeling

This framework identifies four major steps for designing context-sensitive Uls [24]:

Production of a context-sensitive task model. This task model should foresee all sub-
tasks that might be considered in a single context of use or in multiple contexts of use.
This activity may involve adding sub-tasks that are especially supported in a particular
context of use and withdrawing of sub-tasks that are not supported in a particular context
of use. This task model should obey to the separation of concern principle: the non-
context-sensitive part should be clearly separated from the context-sensitive part, while

showing relationship between them.

Production of a generic Ul model. This generic Ul model is supposed to model a Ul
independently of any context of use, thus considering the non-context-sensitive part of

the context-sensitive task model.

Production of a specific UI model. This specific Ul model is supposed to model a Ul
depending on the constraints of intended contexts of use, thus considering the context-
sensitive part of the context-sensitive task model. Due to variation of these constraints,
multiple UI models may be produced. Sometimes one model tries to cover as many
contexts of use as possible, provided that the usability properties are preserved and that a

same Ul can hold the expected properties simultaneously.

81

¢ Production of a final running Ul. The previous model can then be exploited at design
time to automatically generate code (e.g., in HTML with CSS cascading style sheets for
Web-based contexts, WML for cellular phone contexts, in XML with XSL for XML-
compliant browsers), for a particular context of use or be interpreted at run-time to

produce the expected UL

Figure 4-4 highlights that some approaches or languages are more targeted at some steps of
this method. For example, UIML does not encompass any task model, but precisely supports
a smooth transition from a platform-independent UI model to a platform-dependent Ul
model, which is in tum converted into code of a programming language of the target
computing platform. XIML may serve as a continuous model repository for all steps,
including the last one if a run-time interpretation is performed. Any XML-compliant may
serve equally to model aspects in the steps. XIML aims to become an industry-wide
framework in which case it will ensure the performance, security, and maintenance of this

approach to interface design.

Context-Sensitive Generic Ul Specific UI Model Running Ul
Task-model Model
CTT, AUIML, UIML, HTML, CSS, WML, XIML,
XIML, XML XIML, XML, XSL XML, XSL

Figure 4-4 Designing Context-Sensitive Uls (Adapted from [24])

This framework proposes a few possible approaches for task modeling for context-sensitive
Uls, all of which exploit the concept of unit task and factoring out of the commonalties
across multiple contexts of use. For a unit task a clear separation of concern between the
context sensitive part and non context sensitive part is done. In the task tree model a new
decision tree which branches to context-sensitive tasks (a task that may require at least one

context of use switching for its performance), depending on contextual conditions.
The monolithic, graph oriented, context-sensitive separation, complete separation
approaches are considered for extending the existing tasks modeling techniques using the

CTT (ConcurTaskTree) notation to support the context-sensitive tasks [25].

82

The monolithic approach consists of drawing a global task model that directly encompass
non-context sensitive parts and context-sensitive parts. In these parts, we can find every level
of the task decomposition into sub-tasks and so forth. As the context of use may occur
wherever in the task accomplishment, the separation between non-context-sensitive and
context-sensitive task units may be located everywhere in the task tree. The main advantage
of this approach is the unicity of the task model as everything is modelled into a single
model. However, within context-sensitive parts, it is hard to differentiate nodes branching to
sub-trees to reflect possible changes of context from nodes indicating task units to carry out

after the context of use changed.

The graph oriented approach tries to address this shortcoming by extracting sub-trees
resulting from the context-sensitive part into separate trees that can be related where needed.
It consists of establishing a relationship to all sub-trees describing task units resulting from
changes of context. The biggest advantage of this approach relies in its distinction between
non-context-sensitive and context-sensitive parts. However, the resulting model looses its
hierarchical structure to become a directed graph. This approach is introducing additional
relationships that may increase model cluttering. This kind of graph is also harder to interpret
and to manipulate by a tool. Conversely, no representation of how and when the context of

use may change in the task model is given.

The context-sensitive separation approach (see Figure 4-5) attempts to solve this problem by

recognizing that the context-sensitive part actually holds two types of arcs and nodes:

e Traditional arcs and nodes as one can find in a classic task tree: these nodes represent the
task units at their various levels of decomposition and the arcs express their parent-child

relationship.

¢ Decision arcs and nodes so as to select the particular sub-tasks to carry out, depending on
conditions expressed on properties of the context of use. These properties are called
contextual properties, such as, for example, the type of computing platform, the screen

resolution, and the network bandwidth. Conditions on these contextual properties are

83

called in turn contextual conditions. The chaining of contextual conditions form a
decision tree that properly branches to the appropriate task units, depending on the

context of use selected.

This approach makes clearer the distinction between the non-context sensitive part, the

context sensitive part, and the decision tree making the link between those parts:

® A non-context-sensitive tree containing the decomposition into tasks units that do not
change if the context of use changes which ends up with decision points, where to branch
to a decision tree for considering right context;

e A series of context-sensitive trees modeling task units for all supported contexts of use;

e A decision tree summarizing all contextual conditions

d2
d1 d
’ /I\. /\.
dt d2
Figure 4-5 Context-sensitive separation approach [24]

However, it is likely that different contexts of use may be considered similarly at different
locations of the non-context sensitive part. There is consequently no way to factor out the

common parts of the context-sensitive part, depending on the selected context of use.

The complete separation approach (see Figure 4-6) aims at factoring out similar sub-trees,

which are possibly used at different locations in the global task tree, thus minimizing

duplication of these context-sensitive sub-trees. It consists of identifying:

® A non-context sensitive part, which similarly produced by the context-sensitive
separation approach;

e A series of separate decision trees representing branching to all the possible contexts of

use with decision points as root;

84

e A series of sub-trees of factored task units to carry out when needed, one sub-tree for
each considered value of the final contextual condition. The difference with respect to the
previous approach is that this context-sensitive part consists of a collection of sub-trees
that may be called from different places in the decision tree. Therefore, each such sub-

tree is unique.

P

- Seao

? N
- ~a
- -

Sod11 d12 d13 d21

: A AAAAL

d11 d12 d13 d21 d22 Thel

~e
~o -
.- -

Figure 4-6 Complete separation approach [24]

The advantages of this approach is the more obviously separation than in the context-
sensitive separation approach of the non-context sensitive part, decision part, and context-
sensitive part, all consisting of unique sub-trees. Also the decision trees can be edited and
maintained independently of each other, with their own logic. The major inconvenience of
this approach is that it dramatically suffers from a proliferation of trees, even if unique trees,
with no direct linking between them. Moreover, maintaining such series of trees in a
repository becomes quite complex, especially for future algorithms for UT derivation, and the

modelling becomes very different from the initial task model as noted in CTT.

The conclusion is that a better solution could be set up by combining the unique
representation of the monolithic approach with decision tree and clear separation as
discussed in the context-sensitive separation approach (context-sensitive part, non-context-
sensitive part, and context decision tree) to produce a model that is closer to the initial CTT

notation, while preserving the hierarchical structure of the model, as expressed in CTT.

The final solution would be:

85

\
~

e A non-context-sensitive part as typically modeled in a CTT task model;

e A decision tree represented by three CTT notation elements: the different contexts of
use are linked sequentially as optional sub-tasks at the first level with the sequencing
operator, then the different contextual conditions are expressed as sub-sub-tasks with
choice operator (mutual exclusion), and finally the leaves of the decision trees are the
roots for the context-sensitive part

e A context-sensitive part as a series of sub-trees as typically modeled in CTTE.

DNon-context sensitive part

DC ontext selection tree

Figure 4-7 Final approach for modeling a context-sensitive task [24]

In order to make a distinction between the normal choice operator and the ones used for the
decision tree, we decided to introduce a marked structured annotation in the tasks
representing the nodes of the decision tree. Each such task is then augmented with the current

value (e.g. low/moderate/high) of the contextual condition considered at that time.

We then choose to export the resulting CTT model into an XML-compliant file thanks to the
facility provided by CTTE, an automatic tool for supporting the development of task models
and their analysis. This XML file is then transformed into an XIML-compliant file using
XSLT transformations. In particular, the arcs and nodes used for the decision tree are isolated
in dedicated tags with the following structure:

<?xml version="1.0" encoding="1SO-8859-1" ? >

<!DOCTYPE csui PUBLIC "-//CSUT" "CSUI1_0.dtd">

86

<decision-tree>
<node> name
<node id> id </node_id>
<contextual-cond> condition </contextual-cond>
<context-value> value <context-value>
<task unit>... </task-unit>
<node> ... </node>
<node> ... </node> ...
</node>
</decision-tree>
This XIML file can then be exploited by UI derivation algorithms to progressively derive a

generic U, then a specific Ul, and a code generation/interpretation.

The following table provides a comparison between some of the low-level and high-level

frameworks from the supporting development of the context-sensitive point of view.

Language | Models Output Design Methodology | XML Supporting tool
Knowledge compliance

UIML Dialog Fully functional | None None Yes Code generator
Presentation interface
Domain (parts)

XIML Task Fully functional] Design Model-based | Yes Rendering engine
Domain interface Guidelines approach
User
Dialog Heuristics Code generator
Presentation Editor
Platform
Design

Table 4-3 Comparison of frameworks for context-sensitive Uls

While the UIML is ostensibly independent of the specific device and medium used for the
presentation, it does not seem to take into account the research work carried out in the last
decade on model-based approaches for user interfaces. In terms of supporting the particular

use of the task model-based method we conclude that the language provides no notion of

87

task, it mainly aims to define an abstract structure and needs further improvement. XIML is a
modeling language for specifying Task, Domain, User, Dialog, Presentation and Platform

design models, generating in the same time a fully functional interface [31].

4.5 Framework for Applyving the Presentation, Platform and Task models to the

development of Mobile Uls

This framework exploits three Ul models: platform model, presentation model and task
model to facilitate development of a highly adaptive, context-sensitive, multi-platform Uls.
The UI model developed with this approach serves to isolate those features that are common
to the various contexts of use, and to specify how the UI should adjust when the context
changes [28]. The approach places special emphasis on the connections (mappings) between
the various models as these mappings will determine the interactive behavior of the UL
These mappings are then interpreted to produce a static or dynamic UI that is specially

customized for the relevant device and context of use.

A platform model describes the various computer systems that may run a Ul A platform is
modeled in terms of resources, which is tun, determine the way information is computed,
transmitted, rendered and manipulated by users. This model includes information regarding
the constraints placed on the Ul by the platform (e.g. screen resolution of each device is
represented declaratively). The platform model contains an element for each platform that is
supported, and cach element contains attributes describing features and constraints. The
platform model may be exploited at design time and be used as a static entity. In this case, a
set of user-interface can be generated: one for each platform that is desired. However, we
prefer the dynamic exploitation of the platform model at run-time, so that it can be sensitive
to changing conditions of use. For example, the platform model should recognize a sudden

reduction in bandwidth, and the UI should respond appropriately.
A presentation model describes the visual appearance of the user interface. It is also possible

to represent the amount of screen space required by each presentation structure. The

presentation model includes information describing the hierarchy of windows and their

88

widgets (e.g., sliders, list boxes), stylistic choices, and the selection and placement of these
widgets. Widgets are described in accordance with the traditional distinction between AIOs
and CIOs [2]. Each widget is modeled abstractly as an AIO: an abstract interaction object,
which is platform-neutral. Then each AIO is associated with several CIOs: concrete
interaction objects, which are executable on a specific platform. CIOs inherit some of their
behavior from AlOs, supplying also some additional parameters and are then mapped on to
specific platforms. The distinction between the AIOs and CIOs allows our UI models to run
on any computing platform, as long as the appropriate CIOs are present. It gives the layout of
the interactors and their’s allocation between windows. When the UI model is interpreted, the

appropriate CIO is rendered automatically, depending on the platform.

If we want the system to generate the correct presentation structure given a set of user-
defined constraints we need to consider besides AIOs and CIOs other 2 abstractions: the
logical window (LW), a composite AIOs and PU (presentation unit). This represents a
complete presentation environment required for carrying out a particular interactive task.
Each PU can be decomposed into one or many LWs, which may be displayed on the screen
simultaneously, alternatively, or in some combination thereof. The abstractions can be
structured into a hierarchy that serves to expand modeling capabilities of a presentation
model. We can use this hierarchy to construct an automated design tool that generates several
platform-optimized presentation models from a starting presentation model that is platform

independent.

The connections between the presentation model and the platform model describe how the
constraints posed by the various platforms will influence the visual Ul appearance (see

Figure 4-8).

89

Presentation Medel Platierm Medel
ActiveX Desktop
Pesh | | PDA
Buttea Sutten PDA
\ WL
Buttes Cell Phone

Figure 4-8 Mapping between Presentation and Platform Models [28]

There are three parameters that contribute to the amount of display size required by a Ul

design:

e Individual interactors size. The interactors could be shrinked while observing the
usability constraints related to the AIO type. For example, the length of an edit box can
be reduced to a minimum (e.g., 6 characters visible at the same time with horizontal
scrolling) while its height cannot be decreased below the limit of the smallest font size
legible (e.g., 8 pixels). Usability experiments have determined that the minimum size for
an icon is roughly 8 by 6 pixels. An alternative to reducing the size dimensions of an
interactor is to replace that interactor with a smaller alternative. A Boolean check-box
typically requires less screen space than a pair of radio buttons. A WAP-enabled cellular
phone can display only one or two interactors at a time, no matter how small they are.

e Layout of interactors within a window;

e The allocation of interactors among several windows.

We need to select the appropriate presentation structure to accommodate the constraint of the
amount of screen-resolution afforded by the platform, in this way achieving the amount of
flexibility necessary to support all mobile devices. The other constraints such as bandwidth
usage, battery power consumption, number of display colors, and interaction capabilities can
usually be accommodated through AIO selection. Limited interaction capabilities constraints
are handled through interactor selection. The interactor selection can become a

multidimensional optimization problem. Interactors can be parameterized to reduce

90

bandwidth usage or battery consumption—for example, a video player can reduce the frame

rate or the number of colors.

Therefore we need a set of alternative presentation structures, which can be generated by the
designer or with the help of the system, and then to create mappings between each platform
and an appropriate presentation structure. This could be done dynamically using a mediator,
which should determine the maximum usable screen resolution for the relevant device, and
evaluate the amount of screen resolution required by each presentation structure alternative.
It can then select the presentation structure that consumes an amount of screen resolution that
falls just under the maximum. This solution is preferable because it accounts for the fact that
the screen resolution of a device may change while it is in use. Moreover, it eases the
integration of new devices into the platform model. Rather than forcing the user to explicitly
specify the appropriate presentation structure for a new device, the user needs only to specify

the amount of available screen space, and the mediator will find the correct mapping.

The task model should model features such as whether a task is optional, whether it may be
repeated, and whether it enables another sub-task. We have to accommodate the fact that a
device may be specially suited for a specific subset of the overall task model. Through the
application of a task model, we can take advantage of this knowledge and optimize the Ul for

each device.

The designer should create mappings between platforms (or classes of platforms) and tasks
(or sets of tasks). Additional mappings are then created between task elements and
presentation layouts that are optimized for a given set of tasks (see Figure 4-9). We can
assume these mappings are transitive; as a result, the appropriate presentation model is
associated with each platform, based on mappings through the task model. There are several
ways in which a presentation model can be optimized for the performance of a specific
subset of tasks. Particularly important tasks should be represented by AIOs that are easily
accessible. The automated generation of task-optimized presentation structures would be

explored in the future.

91

Figure 4-9 Mapping between Platform Model, Task Model and Presentation
Models [28]

Much of the information found in the platform and task models can be expressed as Ul
constraints: e.g., screen size, resolution, colors, available interaction devices, task structure,
and task parameters (e.g., frequency, motivation). It is therefore tempting to address the
problem of generating alternative presentation structures as a constraint-satisfaction problem.
In this case, there are two types of constraints: first, features that are common to the user-
interface across platforms and contexts of use; second, platform-specific constraints such as

screen resolution and available bandwidth.

As the UI guidelines are not always best represented as constraints, a trade-off between
device constraints and some usability heuristics need to be considered when generating
presentations structures (e.g. an AIO may be optimal in regard to usability but may consume

too much space.

Thevenin et al. [29] are reusing these concepts for analyzing plastic Uls when a presentation

and/or a dialog change according to any non-user variation such as the platform, the context.

92

4.6 Unified Framework for Development Process of Plastic Uls

Although the UIML and mechanism based on XML technology are technical attempts to
address the issue of the plastic UIs development, they do not provide sufficient insight about

how the Ul adaptation process to different computational devices could happen.

This framework sustains the development of the plastic Uls when a presentation and/or a
dialog change according to any non-user variation such as the platform, the context, and the
interaction capabilities [29]. It uses the domain concepts model, describing the concepts the
user manipulates in any context of use, and the tasks model, with improvements for
accommodating variations of contexts of use. New models and heuristics are introduced to

express contexts of use:

e Platform model. Describes the physical characteristics of the target platform. It should
include the interactional devices available, the computational facilities (e.g. memory and
processing power) and the communicational facilities (e.g. available bandwidth).

e Environment model. Describes the entities like objects, persons and events that are
peripheral to the current task(s) but that may have an impact on the system and/or the
user's behavior, either now or in the future. Specifies the context of use together with the
Platform model,

e Evolution model. Specifies the change of state within a context as well as the conditions
for entering and leaving a particular context.

e Interactors model. Describes “resources sensitive multimodal widgets” available for
producing the concrete interface. Widgets may be functionally equivalent but may have
very different costs (e.g., computational costs but also cognitive, conative, and physical
costs for the user). They are the initial models in contrast to the transient model or
intermediate model (e.g., the abstract and concrete user interfaces), inferred by the
developer or system through the development process, and necessary for the production

of the final executable UL

93

All of the above models are referenced along the development process from the task
specification to the running interactive system. The process is a combination of vertical
reification and horizontal translation. Vertical reification covers the derivation process, from
top level abstract models to run time implementation. Horizontal derivations, such as those
performed between HTML and WML content descriptions, correspond to translations
between models at the same level of reification. Reification and translation may be
performed automatically from specifications or manually by human experts. Because
automatic generation of Uls has not found wide acceptance in the past [2], this framework
makes possible manual reifications and translations. Such operations are manual when the
tools at hand cannot preserve the usability criteria set up for the particular system or when
they simply do not exist. Figure 4-10 shows the process when applied to two distinct

contexts: contextl and context2.

B
Contaxt 2

+ Resfication 4P Transismon Q Human Interventon +~ Reference

Figure 4-10 Reference development process for supporting plastic Uls [29]

ARTStudio (Adaptation by Reification and Translation) [29] is a tool designed to support
this framework. The current implementation addresses the reification process only, and does
not include the environment and the evolution models. According to the reference

framework, the concepts and the task models serve the task-oriented specification which, in

94

turn, leads to the automatic generation of the abstract user interface. Then, the platform
model and the interactors model come into play for the automatic generation of the concrete
UL ARTStudio is implemented in Java and uses the CLIPS rule-based language for
generating the concrete user interface. Initial and transient models are saved as XML files. So
far, final executable user interfaces are expressed in Java. As a result, the current version of
ARTStudio does not support XML-based executables. Concepts are modeled as UML
objects. The platform model is a UML description that captures the size and the depth of the
screen, the programming language supported by the platform (e.g., Java). Thevenin et al.
considers that ARTStudio provides a first step towards a systematic high quality
development of plastic Uls [29].

4.7 XIML Framework

XIML (eXtensible Interface Markup Language) is a framework the representation and
manipulation of interaction data which is the data that defines and relates all the relevant
elements of a UL. The aim of XIML is to provide the software infrastructure needed to
support web and application services for Uls. The XIML will be ultimately an XML-based
mechanism designed to manage the complex interactions among users, applications, devices,
and Uls [30, 31]. XIML has been under development for more than 2 years in the
laboratories of this Palo Alto-based startup. It seeks to model exhaustively a UlI, including
user tasks, user profiles, and domain information. XIML will be the centerpiece of the

development of a comprehensive Ul infrastructure.

The XIML is an extensible XML specification language for multiple facets of multiple
models in a model-based approach. An XIML specification can lead to both an interpretation
at runtime and a code generation at design time. XIML offers a representational basis for Ul
transformations. It represents the critical elements of a user interface, along with their
attributes and their relationships. In sum, it captures the structure and design of a user

interface.

The main features of the language are:

95

e Represents the concrete aspects of a user interface (such as presentation and dialog) and
also its abstract aspects (such as context).

e Bridges the gap between design and development of user interfaces by providing a single
common representational framework for both processes.

e Provides a ready knowledge repository for runtime operations such as personalization,
adaptation, context-aware and agent-based interaction.

e Provides mechanism for the distributed update of Ul components.

Using XIML, the design and implementation of a user interface is conceived as a series of
refinements from an abstract representation (of user context for example) to a concrete
representation (of widgets and interaction techniques for example). The development process
is visualized as the guided selection of appropriate transformations that effectively refine an

abstract interface into a concrete one.

XIML is an organized collection of interface elements that are categorized into one or more
major interface components (see Figure 4-11):
e contextual and abstract: task, domain and user;

e implementational and concrete: dialog and presentation.

The task component captures the business process and/or user tasks that the interface
supports. The component defines a hierarchical decomposition of tasks and subtasks that also
defines the expected flow among those tasks and the attributes of those tasks. The domain
component is an organized collection of data objects viewed or manipulated by a user. The
user component defines a hierarchy of users. A user in the hierarchy can represent a user
group or an individual user. Attribute-value pairs define the characteristics of these users.
The presentation component defines a hierarchy of interaction elements that comprise the
concrete objects that communicate with users in an interface. It determines what widgets,

interactors, and controls will be used to display each data item on each of the target devices.
The dialog component defines a structured collection of elements that determine the
interaction actions that are available to the users of an interface. For example, a “Click”, a
“Voice response”, and a “Gesture” are all types of interaction actions. The dialog component

also specifies the flow among the interaction actions that constitute the allowable navigation

96

of the user interface. This component is similar in nature to the Task component but it

operates at the concrete levels as opposed to the abstract level of the Task component.

A relation in XIML is a definition or a statement that links any two or more XIML elements
either within one component or across components. The set of relations in an XIML
specification captures the design knowledge about a UI. The runtime manipulation of those
relations constitutes the operation of the UL In XIML, attributes are features or properties of

elements that can be assigned a value.

Figure 4-11 Representational Structure of XIML [31]

XIML supports multi-platform development of the Uls, by displaying a single interface
definition on any number of target devices. In the XIML framework, the definition of the
interface is the actual XIML specification and the rendering of the interface is left up to the
target device to handle. This is an advantage over many model-based interface development
systems that do not have this separation established clearly and therefore developers ended
up mixing up interface logic with interface definition. In Figure 4-12 we see that by simply
defining one presentation component per target device the entire specification can support
multiple platforms. Besides the fact that a presentation component is needed for each target

device, the framework saves development time and ensures consistency among Uls.

97

T

Figure 4-12 UI Deployment to different targets [31]

XIML has the necessary capabilities to provide support for the development of the
frameworks described in the previous 3 sections. UIML, which is also a language for multi-
platform development, has the following disadvantages in comparison with XIML language:
e [t does not capture context data

e [tis not intended to support knowledge-based system functions

e [t does not target operation and evaluation functions

e It does not clearly separate the rendering of the interface from the definition of it.

4.8 Framework for User Preference Modeling for Adaptive User-Interfaces

Model-based UI development could be characterized as a process of creating mappings
between elements in various model components. Rather than modeling the Ul as a set of
static structures and mappings, the UI should be modeled as a set of design preferences [32].
Preferences are frequently many-to-one or many-to-many relationships that elude
conventional Ul modeling, which has largely focused on one-to-one mappings. Preference
relations allow for a more flexible and adaptable specification of the user-interface; rather
than specifying exactly how the UI must appear, the designer can specify what would be
preferred, and in which situation. This freedom is particularly important for user-interfaces
that must run on heterogeneous devices, since the contexts of use vary and may even change
at run-time. Preference modeling is also critical if interaction is to be dynamically

customized for the user; preference relations can be used to show how the user-interface

98

should change in relation to the user model.

There are concrete preferences and abstract preferences (see Table 4-4). Concrete
preferences specify their targets directly, although an ordered list of targets is permitted.
Abstract preferences specify their targets indirectly, based on criteria that describe

characteristics of either the targets themselves or some other object.

C ondition laredt € riteria Ohject

Binding 1 1 None None

Simple Preference | Any number 1 None None

Ordered Any number Any number None None

Preference

Abstract Any number More than 1 Criteria apply to targets; logical and { None

Preference preferential criteria are allowed

Design guideline Any number Any number Criteria apply to object; only logical | Any
criteria are allowed number

Table 4-4 Preference Relations [32]

The simple preference presented in Table 4-5 has the meaning that: "User U1 prefers

presentation element P1 for representing domain model Dm1."

CONDITIONS IARGETS OBIECTS CRITERIA

Table 4-5 Concrete Preference [32]

The preference presented in Table 4-6 has the meaning that: "For task model Tm2 and
domain model Dm1, user U4 likes presentation elements that require few clicks, take up little
screen real estate, and have lots of colors. The criteria of having lots of colors is most
important, followed by the number of clicks. But if the amount of space occupied is too

small, it won't be visible, so disallow it altogether."”

99

Tm2, Dml, U4 P1,P2,...Pn | Name Screen Space

Type Preferential
Behavior Minimize
Priority 25

Name Screen Space
Type Logical

Behavior Greater Than
Threshold 100

Name Clicks

Type Preferential
Behavior Minimize
Priority 50

Name Number of Colors
Type Preferential
Behavior Maximize
Priority 100

Table 4-6 Abstract Preference [32]

The formalism for modeling preference relations has been incorporated into XIML as part of
the Design Model Component. The design model consists of a list of preference elements. A
preference element can have four child elements: conditions, targets, objects and criteria.
Each of these elements contains a list of relation statements, which indicate a mapping to
another element somewhere else in the Ul specification. Relation statements are simple one-

to-one mappings, with a reference to an element’s ID and a semantic definition.

4.9 Framework for Context — Awareness Development

Efforts have already begun in developing frameworks that support building of context-aware
applications. The Context Toolkit [33, 34] is an infrastructure to support the rapid
development of context-aware services, assuming the sensing of perfect context. This
framework’s architecture enables the applications to obtain the context they require without

knowledge about how the context was sensed.
The Context Toolkit (see Figure 4-13) consists of context widgets that implicitly sense

context, aggregators that collect related context, interpreters that convert between context

types and interpret the context, applications that use context and a communications

100

infrastructure that delivers context to these distributed components. It makes easy to add the

use of context or implicit input to existing applications that don’t use context.

I

Figure 4-13 Context Toolkit Components [33]

Context widgets are software components that provide applications with access to context
information while hiding the details of context sensing. In the same way GUI widgets
insulate applications from some presentation concerns, context widgets insulate applications
from context acquisition concerns. They have state and behavior. Context widgets mediate
between the environment and the application in the same way graphical widgets mediate
between the user and the application. Already widget libraries have been developed for
sensing presence, identity and activity of people and things. A context widget encapsulate,
and is responsible for acquiring, a certain type of context information like: activity, identity,
location, time, and makes that information available to applications in a generic manner,
regardless of how it is actually sensed. Widgets maintain a persistent record of all the context
they sense. They allow other components to both poll and subscribe to the context
information they maintain. Widgets are responsible for collecting information about the

environment.

A context interpreter is used to abstract or interpret context. For example, a context widget
may provide location context in the form of latitude and longitude, but an application may
require the location in the form of a street name. A context interpreter may be used to provide
this abstraction. A more complex interpreter may take context from many widgets in a
conference room to infer that a meeting is taking place. A context aggregator is very similar

to a widget, in that it supports the same set of features as a widget. The difference is that an

101

aggregator collects multiple pieces of context. In fact, it is responsible for the entire context
about a particular entity (person, place, or object). Aggregation facilitates the access of

context by applications that are interested in multiple pieces of context about a single entity.

This architecture will allow an entity to create dynamic relationships with other entities that

share part of its context to identify, for example, all the people meeting in the same room.

The services of the Context Toolkit are: encapsulation of sensors, access to context data
through a network API, abstraction of context data through interpreters, sharing of context
data through a distributed infrastructure, storage of context data, including history, basic

access control for privacy protection.

Context components are intended to be persistent, running 24 hours a day, 7 days a week.
They are instantiated and executed independently of each other in separate threads and on
separate computing devices. The Context Toolkit makes the distribution of the context
architecture transparent to context-aware applications, handling all communications between
applications and components. XML and HTTP are used for sending data, Java and C++ for
widgets. There are components of the infrastructure executing on Windows CE, 95 and NT,
Linux, Solans, IRIX, and the Macintosh platforms, including mobile, wearable, and desktop
machines. Currently this infrastructure supports only discrete context, and not continuos
context such as video feed or GPS location information. In the future there is the need for

supporting this type of context.

If we consider the possibility that the sensors could make a mistake, than we would have to
deal with the context interpreters creating multiple ambiguous interpretations of the context.
In the future we need to handle this situation by using mediation techniques for correcting the

context. These mediation techniques could allow the users themselves to correct the context.

102

5. Chapter V - Conclusions and Future Development

In this thesis, we conducted an analysis of industry and academic research frameworks for
mobile Ul development. This analysis is a first step of an ongoing research project, which
aims to define and develop a universal framework for mobile applications. The framework
will overcome the current limitations of the existing frameworks while inhenting all their

benefits. The following two tables summarizes some of the major results:

Criteria HTML 3.2 WML UIML Java (MIDP)
XML-based No Yes Yes No
Learnability Easy Easy Learning curve | Sharp learning curve

present
Separation of No Moderately Strongly Strongly
content Versus

Presentation

Internationalization No Yes Yes Yes
Extensible No Moderately Strongly Strongly

Primary metaphor None Deck of cards None MIDP: Screen
for UI construction

Table 5-1 Comparison of HTML 3.2 for handheld, WML, UIML and Java languages

103

Criteria Web WAP UIML J2ME
Clipping
Delivery No Not clearly Not clearly MIDP
Mechanism specified specified
Device profile
specification
Delivery Proxy Yes Optional No
Mechanism Server
Gateway Required
Delivery Translation | Encoding/Decodi Rendering No Encoding
Mechanism from Web ng capability capability /Decoding required
Complexity of Clipping required needed.
gateway format into
HTML 3.2
needed.
Deployment Wide Wide Few Wide
Availability No Standard International Standard International Standard
Standard being
developed
Scalability in Palm Restricted to Available for | Available for any kind
terms of types of Powered cellular phones any kind of of device
devices Handheld and pagers, device
primarily
Security support | Moderately Moderately Moderately Highly
available
Data Transfer Limited No Yes Yes
Multiple Modes
Data Transfer Both Wireless, Both WAP, TCP/TP
Wireless / WAP Network
Wireline
Data Access No No No No
Local databases
Data Access No No No Yes
Local processing
Data Interactivity Yes No Yes Yes
Rich Display
Data Interactivity Yes No Yes Yes
Flexible Input
Applications Type Online Stock quotes, | Stock quotes, | Stock transactions,
catalogs/tra | weather forecasts travel travel reservations,
ding, travel and discount | reservations, | online purchase of

104

Criteria Web WAP UIML J2ME

Clipping
guides, real offers online concert tickets, news
estate banking, headlines, weather
home news updates, and traffic
finders headlines, | information, games
weather
updates, and
traffic
information

Table 5-2 Comparison of Web Clipping, WAP, UIML and J2ME frameworks

We believe that future research on Ul development framework should focus on automatic
content filtering and reformatting. One possible avenue for such research would be the
establishment of higher level patterns that could specify abstract information formats. These
same patterns would also describe alternate implementation solutions for use on the different
target platforms. Moreover, it is conceivable that these patterns be themselves implemented
as a toolkit. Content developers would then only have to ensure that they conformed to the
abstract specification defined by the pattern, and then could rely on pre-programmed real-

time interpreters to refine the data for use on a particular target device.

We also highlighted that current UI implementers face uncertainty and risk in adopting new
devices, because of the variety of Ul languages, operating systems and OS APIs. To deploy a
family of Uls for PDA, desktop, or phone, the development team needs to master PDA APIs
(e.g., for the Palm), Java AWT or Swing, and WML. We argue once again that this situation
impedes rapid adoption of new devices. Just as OSs were critical to shied multi-architecture
developers in the PC industry, we argue that development of the device-independent Ul
markup languages is essential to speed adoption of new devices today. We claim that without
some abstract description of the mobile U, it is likely that the design and the development of
Uls for mobile computing will be very time consuming, with significant chances for errors

and failures.

Many research efforts have demonstrated that the model-based approach could provide a

viable and effective new framework for developing user interfaces. Model-based interface

105

technology allowing UI code generation from models, is becoming more and more used for
interactive systems development and in particular for mobile devices. Our central claim is
that the use of abstract, platform-neutral models to describe the user-interface greatly
facilitates the development of consistent, usable multi-platform user-interfaces for mobile

devices.

It is clear that the research on user interface software tools has had enormous impact on the
process of software development up to now. However, we expect to see further development
of the UI software tools with respect to supporting the new design trends and methodologies
that we described and proposed for mobile computing. It will be important for tools to
provide facilities to manage data sharing and synchronization, especially since it must be
assumed that the data will go out of date while disconnected and need to be updated when
reconnected. Since data will be updated automatically by the environment and by other
people, techniques for notification and awareness will be important. Furthermore, the tools
will be needed to help present the information in an appropriate way for whatever device is
being used. If the user has multiple devices in use at the same time, then the content and

input might be spread over all the active devices.

With the rise of the use of the Internet and World-Wide Web, people will be more and more
interacting with multiple devices at the same time so the devices will need to communicate
and coordinate their activities. Decisions about what information is to be sent and shown to
the user should be based on the importance and timeliness of the information and the
capabilities of the current connection and devices. The tools will be needed to help present
the information in an appropriate way for whatever device is being used. If the user has
multiple devices in use at the same time, then the content and input might be spread over all
the active devices. The capabilities that should be available to all applications will be
important to be provided at a low level, which suggests that the supporting capabilities be
included in the underlying operating system or toolkits. As the computing environment used
to present data becomes distinct from the environment used to create or store information,
interface systems will need to support information adaptation as a fundamental property of

information delivery.

106

References

(1]

[2]

(3]

(4]
(3]

[6]

{7

(8]

9]

[10]

(1]

[12]

[13]

Satyanarayanan, M. Fundamental Challenges in Mobile Computing. Proceedings of
the fifteenth annual ACM symposium on Principles of distributed computing, ACM
Press, New York, Philadelphia, 20-28 May 1996.

Szekely, P. Retrospective and Challenges for Model-Based Interface Development.
Proceedings of 2™ Int. Workshop on Computer-Aided Design of User Interfaces
CADUI’96, Namur, 5-7 Juin 1996.

Puerta, A and Eisenstein, J. Towards a general computational framework for model-
based interface development systems. Proceedings of 1999 Intemmational Conferences
on Inteiligent User Interfaces, ACM Press, Los Angeles, Califomia, January 1999.

Palm OS User Interface Guidelines. Available at: http://www.palmos.com/dev/

Java Look and Feel, Available at:

http://java.sun.com/products/jlf/fed2/guidelines.html

Ramsay, M. and Nielsen, J., Nielsen Norman Group WAP Usability Déja Vu: 1994
All Over Again. Report from a Field Study in London, December 2000.
Available at: http://www.Nngroup.com/reports/wap

Web Clipping Developer's Guide. Available at:
http://www.palmos.com/dev/support/docs/webclipping/PalmWebClippingTOC.htm|

Wireless Application Protocol: Architecture Specification, April 1998, Wireless
Application Environment Specification, Wireless Markup Language Specification,
WMLScript Language Specification. Available at http://www.wapforum.org.

Zhang, H., Stroulia, E. Babel Application Integration through XML specification of
Rules. ACM Press, 23rd International Conference on Software Engineering, Toronto,
Canada, 2-19 May 2001.

Wiecha, C., Szekely, P. Transforming the Ul for anyone, anywhere. Proceedings of
CHI’2001, Seattle, Washington, 31 March-5 April 2001.

Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S. and Shuster, J.
UIML: An Appliance-Independent XML User Interface Language. Proceedings of the
World Wide Web Conference, Toronto, Canada, May 1999.

Abrams, M. and Phanouriou, C. UIML: An XML Language for Building Device
Independent User Interfaces. XML’99, Philadelphia, Pennsylvania, December 1999.

Java 2 Platform, Micro Edition, White Paper, Available at:
http://java.sun.com/j2me/j2me-ds-0201.pdf

107

[14]

[15]

(16]

[17]

[18]

(19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

Applications for Mobile Information Devices, White Paper, Sun Microsystyems, Inc.
Available at: http://java.sun.com/products/midp/midpwp.pdf

MIDP APIs for Wireless Applications, White Paper, Sun Microsystyems, Inc.
Available at: http://java.sun.com/products/midp/midp-wirelessapps-wp.pdf

Pawlan, M. Introduction to Wireless Programming with the MID Profile, September
2000. White Paper, Available at: http://wireless.java.sun.com/midp/articles/intro/

Mahmoud, Q. WAP for Java Developers: Develop WAP Applications with Servlets
and JavaServer Pages. White Paper, Available at:
http://wireless.java.sun.com/enterprise/articles/wap/intro/

Srikanth Raju Device Programming: MIDP For Palm, Motorola I85s.
White Paper, Available at:

http.//www.sun.com/developers/evangcentral/totallytech/midp_prog.html

Motorola Lightweight Windowing Toolkit for the J2ME. Available at:
http://www.motorola.com/java

Ali, M. F., Abrams, M., and Pérez-Quindnez, M. Muiti-Platform User Interface
Construction with Transformations using UIML, position paper for Workshop
“Transforming the UI for anyone anywhere” at CHI’2001, Seattle, Washington, 31
March-5 April 2001.

Ali, M. F. and Abrams, M. Simplifying Construction of Multi-Platform User
Interfaces Using UIML, UIML’2001Conference, Paris, France, March 2001.

Phanouriou, C. UIML: An Appliance-Independent XML User Interface Language,
Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 2000.

Muller, A., Forbig, P., Cap, C. Model-Based User Interface Design Using Markup
Concepts. Proceedings of the Eight Workshop of Design, Specification and
Verification of Interactive Systems, Glasgow, Scotland, UK, 13-15 June 2001.

Pribeanu, C., Vanderdonckt, J., Limbourg, Q., Souchon, N. and Florins, M. Task
modeling for context sensitive user interfaces. Proceedings of 8th International
Workshop on Design, Specification, Verification of Interactive Systems DSV-1S'2001
Glasgow, 13-15 Juin 2001.

Paterno, F., Breedvelt-Schouten, 1., deKonig, N. Deriving Presentations from Task
Models. Proceedings EHCI’98, Heraklion, Crete, Greece, 14-18 September 1998.
More details about ConcurTaskTree at: http://giove.cnuce.cnr.it/ctte.html

Cheverst, K., Davies, N., Mitchell, K., Friday, A. and Efstratiou, C. Developing a
Context-aware Electronic Tourist Guide: Some Issues and Experiences. Proceedings

108

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

of CHI’2000, Netherlands, April 2000. More details at:
http://www.comp.lancs.ac.uk/computing/research/mpg/most/guide.html

Elwert, T., Schlungbaum, E. Modelling and Generation of GUIs in the TADEUS
approach. In: P. Palanque, R. Bastide (Eds.): Designing, Specification, and
Verification of Interactive Systems. Springer Verlag, 1995.

Eisenstein, J., Vanderdonckt, J., Puerta, A. Applying Model-Based Techniques to the
Development of Uls for Mobile Computers. Proceedings of ACM Conference On
Intelligent User Interfaces [UI’2001, Francisco, California, 13-16 January 2002.

Calvary, G., Coutaz, J., Thevenin, D. A Unifying Reference Framework for the
Development of Plastic User Interfaces. Proceedings of IFIP WG 2.7 Conference on
Engineering the User Interface EHCI’2001, Chapman & Hall, London, Toronto,
Canada, 11-13 May 2001.

Puerta, A., Eisenstein, J. A Representational Basis for User Interface
Transformations. In: Wiecha, Ch., Szekely, P. (eds.): Proceedings of CHI’2001
Workshop "Transforming the Ul for anyone, anywhere — Enabling an increased
variety of users, devices, and tasks through interface transformations”. Seattle,
Washigton, 31 March-5 April 2001.

Puerta, A., Eisenstein, J. XIML: A Common Representation for Interaction Data.
IUI2002: ACM on Sixth International Conference on Intelligent User Interfaces. San
Francisco, California, 13-16 January 2002. Available at:

http://www.ximl.org/documents/XIMI BasicPaperES.pdf

Eisenstein, J. Modeling Preference for Adaptive User-Interfaces. First International
Conference on Universal Access in Human-Computer Interaction. Proceedings of
HCI International 2001. New Orleans LA, 5-10 August 2001.

Dey, AK., Salber, D., Abowd, G.D A Context-based infrastructure for smart
environments. Proceedings of the International Workshop on Managing Interactions
in Smart Environments. MANSE’99, Trinity College, Dublin, Ireland, 13-14
December 1999.

Dey, A K., Abowd, G.D., Mankoff J. Distributed mediation of imperfectly sensed
context in aware environments. GVU Technical report GIT-GVU-00-14, Georgia
Tech Institute. Available at:
http://www.cc.gatech.edu/fce/errata/publications/uist-distributedMediation00.pdf

Dey, A K., Abowd, G.D. Towards a Better Understanding of Context and Context-
Awareness. Proceedings of CHI’2000 Workshop on Context Awareness, Hague, 1-6
April 2000. Research report 2000-18¢, GVU Center, Georgia University of
Technology, Atlanta 2000.

109

Acronyms and Abbreviations

AM Abstract Interaction Model

AlO Abstract Interaction Object

API Application Programming Interface
AWT Abstract Window Toolkit

CPU Central Processing Unit

CLDC Connected Limited Device Configuration
CTIT ConcurTaskTree

CTTE ConcurTaskTree Editor

CIO Concrete Interaction Object

CSS Cascade Style Sheets

DOM Document Object Model

DTD Document Definition Type

GPS Global Positioning System

GUI Graphical User Interface

HTML Hypertext Markup Language

HDML Handheld Device Markup Language Specification
IDE Integrated Development Environment
J2ME Java 2 Micro Edition

JVM Java Virtual Machine

JSP Java Server Pages

LWT Lightweight Windowing Toolkit
MIDP Mobile Information Device Profile
MVC Model-View-Controller

oS Operating System

PDA Personal Digital Analyzer

PQA Palm Query Application

QAB Query Application Builder

SAX Simple API for XML

SIM Specific Interaction Model

UA User Agent

110

UIO
UIML
XSL
XSLT
XML
XIML
WAP
WML

User Interface

User Interface Object

User Interface Markup Language
Extensible Stylesheet Language

XML Stylesheet Language Transformation
Extensible Markup Language

eXtensible Interface Markup Language
Wireless Application Protocol

Wireless Markup Language

111

Annexes

Annex 1. Web Clipping and HTML Framework Example
Skeleton PQA Page [7]

<html>

<head>
<title>Sample Page for PQA</title>
<meta name="palmcomputingplatform" content="true">
<meta name="palmlauncherrevision" content="1.0">
<meta name="localicon" content="logo1.gif">
<meta name="localicon" content="logo2.gif">

</head>

<body>

<!-- your text and links here -->

</body>

</html>

Skeleton Clipping Page (7]
<html>

<head>
<title>Sample Clipping</title>
<meta name="palmcomputingplatform" content="true">
<meta name="historylisttext" content="Latest News - &date &time">
</head>
<body>
<!-- your text and links here -->
</body>
</html>

112

Annex 2. WAP Framework Example

Card/Deck Task Shadowing [8]
<wml|>
<template>
<do type="options" name="do1" label="default">
<prev/>
</do>
</template>
<card id="first">
<!-- deck-level do not shadowed. The card exposes the deck-level do as part of the
current card -->
<!-- rest of card -->
</card>
<card id="second">
<!-- deck-level do is shadowed with noop. It is not exposed to the user -->
<do type="options" name="dol">
<noop/>
</do>
<!-- rest of card -->
</card>
<card id="third">
<!-- deck-level do is shadowed. It is replaced by a card-level do -->
<do type="options" name="do1" label="options">
<go href="/options"/>
</do>
<!-- rest of card -->
</card>
</wml>

WML Deck Structure [8]
<wml>
<card>
<p>
<do type="accept">
<go href="#card2"/>
</do>
Hello world! This is the first card...
</p>
</card>
<card id="card2">
<p>
This is the second card. Goodbye.
</p>
</card>

</wml>
<wml>

113

Fieldset Element [8]

<wml>
<card>
<p>
<do type="accept">
<go href="/submit?f=$(fname)&l=$(Iname)&s=3(sex)&a=$(age)"/>
</do>
<fieldset title="Name">
First name:
<input type="text" name="fname" maxlength="32"/>

Last name:
<input type="text" name="Iname" maxlength="32"/>
</fieldset>
<fieldset title="Info">
<select name="sex">
<option value="F">Female</option>
<option value="M">Male</option>

</select>

Age: <input type="text" name="age" format="*N"/>
</fieldset>
</p>
</card>

</wml>

114

WAP and JAVA Examples
MOBILEDATE.JAVA [17]

import java.io.*;
import javax.servlet.*;
import javax.serviet.http.*;

public class MobileDate extends HttpServlet {

public void service (HttpServietRequest request, HttpServletResponse
response) throws ServietException, IOException {
/I set content type for wireless data
response.setContentType("text/vnd.wap.wml");

/1 get the communication channel with the requesting client
PrintWriter out = response.getWriter();

// write the data
out.println("<?xml version=\"1.0\"?>");

out.printin("<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML

L.1//EN\""),

out.printin(" \"http://www.wapforum.org/DTD/wml_1.1.xmI\">");
out.println("<wmI>");

out.printin("<card title=\"MobileDate\">");

out.println(" <p align=\"center\">");

out.printin("Date and Time Service
");

out.printin("Date is: "+ new java.util.Date());

out.println("</p>");

out.printin("</card>");

out.println("</wml>"); } }

MOBILEDATE.JSP [17]

<?xml version="1.0"7>

<!DOCTYPE wml PUBLIC "-/WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<% response.setContentT ype("text/vnd.wap.wml");
out.println("<wml>");

out.printin("<card title=\"MobileDate\">"),
out.printin(" <p align=\"center\">");
out.println("Date and Time Service
");
out.printin("Date is: "+ new java.util.Date());
out.printin("</p>");

out.printin("</card>");

out.printin("</wml>"); %>

115

Annex 3. XML Framework Fxample

BOOKTEST.XML
<?xml version="1.0" 7>
<book><title>Content Transformation Example</title>
<author>The Author</author>
<publisher>Wrox</publisher>
<tableOfContents showPageNumbers="yes">
<tocEntry>Printing</tocEntry>
<tocEntry>Cut&Paste</tocEntry>
<tocEntry>Drag&Drop></tocEntry>
</tableOfContents></book>

BOOKTRAN.XSL
<?xml version="1.0" 7>
<xsl:stylesheet xmins:xsl=http://www.w3.0rg/1999/XSL/Transforms version="1.0">
<xsl:template match="book”>
<htmI><body>
<center><h1><xsl:value-of select="title/><h1></center>
<h4><xsl:value-of select="author”/></h4>
<h3 Table Of Contents </h3>
<xsl: for-each select="tableOfContents/ tocEntry’>
</xsl: for-each>
</body></htmI></html>
</xsl:template>
</xsl:stylesheet>

Performing an XSL Transformation on an XML file

import org.apache.xalan.xslt.*;

public class XSLTest {

public static void main *String args[]) throws org.xml.sax.SAXException {

XSLTProcessor processor = XSLTProcessorFactory.getprocessor();
XSLTInputSource xmlFile = new XSLTInputSource(“booktest.xml™);
XSLTInputSource xslFile = new XSLTInputSource(‘“booktran.xsl™);
XSLTResultTarget outputFile = new XSLTResultTarget (“booktest.html™);
Processor.process(xmlFile, xslFile, outputFile); }}

The generated HTML content: BOOKTEST.HTML
<htmi><body>
<center><h1> Content Transformation Example </h1></center>
<h4> The Author </h4>
<h3>Table Of Contents</h3>
Printing
Cut&Paste
 Drag&Drop
</body>
</html>

116

