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Abstract

Query Output Merge Tool for DNA Sequence
BlastMerge

Xiaoming Wang

The standalone BLAST program is a popular tool to search a DNA sequence against the
NCBI database. Since NCBI updates its database every day, the user has to download the
latest database before he can run his query. Since the NCBI database is huge (by now
more than 100M), the download of the whole database isa time-consuming work. With

the continue increase of the NCBI database, this issue will become more significant.

The best solution is to re-download the whole database periodically. For each day before
the user runs the BLAST program, he has to download the update database, such as
month.aa. This update database is smaller than the whole database. He then searches the
query on both the whole local database and the update database. The merge of the two
query results should be equivalent to the query results on the latest whole database. The

BlastMerge program is designed for this purpose.

BlastMerge program is the tool that can merge the query results of blastn or blastp
program. Originally the idea is from Dr. Clement Lam and Dr. Gregory Butler. The key
point of the algorithm used in BlastMerge is to use some data structure to store query

results.
In this major report we designed the BlastMerge tool with the Object Oriented

Methodology, developed BlastMerge tool with C++ language on a UNIX platform, and
verified BlastMerge tool by merging the query output of yeast.nt and its update.
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Chapter 1 Introduction

1.1 NCBI database

DNA (deoxyribonucleic acid) is the genetic material of nearly all-living organisms. It
controls heredity and is located in the cell nucleus. The genetic information of the DNA
is contained in the sequence of bases along the molecule. This sequence is called the
DNA sequence. The research of the genetic information of DNA sequence is very
important. Understanding nature's mute but elegant language of living cells is the quest of
modern molecular biology. It will be an aid in gene discovery, in the design of molecular
modeling, in the planning of site-directed mutagenesis, and in experiments that can
potentially reveal previously unknown relationships with respect to the structure and

function of genes and proteins.

With the explosion of sequence and structural information available to researchers, the
field of bioinformatics, or more properly, computational biology, is playing an
increasingly larger role in the study of fundamental biomedical problems. It is necessary

to develop gene database and analyze it.

The National Center for Biotechnology Information ( NCBI ) built the NCBI
database(GenBank ). It is very convenient for researchers to query and to compare DNA
information in the database. GenBank is the genetic sequence database, an annotated
collection of all publicly available nucleotide and protein sequences. The records
represent single, contiguous stretches of DNA and RNA with annotations. The files are
grouped in divisions: some are phylogenetically derived, while others are based on the
technical approach that was used to generate the sequence information. Presently all
records in GenBank are generated from direct submissions to the DNA sequence
databases from the original authors, who volunteer their records as part of the publication

process or to make the data publicly available. Genbank, which is built by the National



Center for Biotechnology Information at NIH in Bethesda, Maryland, is part of the
[nternational Nucleotide database Collaboration, along with its two partners, the DNA
Database of Japan ( DDBJ, Mishima, Japan) and the European Molecular Biology
Laboratory (EMBL) nucleotide database from the European Mole Bioinformatics
[nstitute (EBI, Hinxton, England). All three centers are separate points of data
submission, but all are exchanging their information daily, and are making the same
database available to the community at large. NCBI and its partners maintain the

following databases.
1.1.1 Protein Database

1.1.1.1 PDB: Protein Data Bank at Brookhaven National Laboratories

Overview
Protein Data Bank contains the core public collection of three-dimensional structures of
proteins as well as holding 3-D structures of nuleic acid, carbohydrates, and a variety of

complexes. They are experimentally determined by X-ray crystallographers and NMR

spectroscopists.

PDB-ID Codes

The structure record accessioning scheme of the Protein Data Bank is a unique four-
character alphanumeric code called a PDB-ID or PDB code. This scheme uses the digits
0 to 9, and the uppercase letters A to Z. Thus there are over 1.3 million possible
combinations. PDB-IDs are not assigned in any particular order. Rather, indexers at

Protein Data Bank try to devise mnemonics that makes the structures easier to remember,
such as 3INS.

Sequences from PDB Structure Records
PDB-file-encoded sequences are notorious. Since completeness of a structure is not

always guaranteed, PDB file contains two copies of the sequence information, an explicit

(28]



sequence and an implicit sequence. Both are required to construct the chemical graph of

a biopolymer.

1.1.1.2 SWISS-PROT

SWISS-PROT is an annotated protein sequence database established in 1986 and
maintained collaboratively, since 1987, by the Department of Medical Biochemistry of
the University of Geneva and the EMBL Data Library (now the EMBL Outstation - The
European Bioinformatics Institute). The SWISS-PROT protein sequence data bank

consists of sequence entries.

The SWISS-PROT database distinguishes itself from other protein sequence databases by
three distinct criteria:

Annotation

Minimal redundancy

Integration with other databases

1.1.1.3 PIR

The PIR (Protein Information Resource) database was initiated at the NBRF in the early
1960's by the late Margaret O. Dayhoff as a collection of sequences for the study of
evolutionary relationships among proteins. The database is now an international
collaboration of three data centers: the NBRF, the Munich Information Center for Protein
Sequences (MIPS), and the Japan International Protein Information Database (JIPID).
The three centers cooperate to produce and distribute a single database of ‘wild-type'

protein sequences.

1.1.1.4 PRF

The PRF (Protein Research Fundation) of Japan database contains protein sequences

abstracted from scientific publications.

1.1.1.5 BLAST protein database

nr.Z




All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF .
Month.aa.Z
All new or revised GenBank CDS translation+PDB+SwissProt+PIR released in the
last 30 days.
Swissprot.Z
The last major release of the SWISS-PROT protein sequence database (no updates).
These are uploaded to the system when they are received from EMBL.
yeast.aa.Z
Yeast (Saccharomyces cerevisiae) protein sequences. This database is not to be
confused with a listing of all Yeast protein sequences. [t is a database of the protein
translations of the Yeast complete genome.
ecoli.aa.Z
E. coli (Escherichia coli) genomic CDS translations.
pdbaa.Z
Sequences derived from the 3-dimensional structure in the Brookhaven Protein Data
Bank.
pataa.Z
Protein sequences derived from the Patent division of GenBank.
kabat (kabatpro]
Kabat's database of sequences of immunological interest.
alu
Translations of select Alu repeats from REPBASE, suitable for masking Alu repeats

from query sequences.

1.1.2 Nucleotides Database

1.1.2.1 MMDB

NCBI’s Molecular Modeling Database (MMDB: Hogue et al., 1990), is part of NCBI's
Entrez (Schuler et al., 1997) 3-D structures of biomolecules from crystallographic and
NMR studies. MMDB is a database of ASN.1-formatted records (Rose, 1990), not PDB-

formatted records. Structures in MMDB have value-added information compared to the



original PDB structures. These include the addition of the explicit chemical graph
information following an extensive suite of validation procedures, the addition of
uniformly derived secondary structure definitions, citation matching to MEDLINE, and
the molecule based assignment of taxonomy to each biologically derived protein or

nucleic acid chain.

1.1.2.2 EMBL

The EMBL Nucleotide Sequence Database is a comprehensive database of DNA and
RNA sequences collected from the scientific literature and patent applications and
directly submitted from researchers and sequencing groups. Data collection is done in

collaboration with GenBank (USA) and the DNA Databank of J apan (DDBJ).

1.1.2.3 DDBJ
Entries from the DNA Databank of Japan (DDBJ) are wholly incorporated into GenBank.

1.1.2.4 dbEST
dbEST is the division of GenBank that contains "single-pass" cDNA sequences, or

Expressed Sequence Tags, from a number of organisms.

1.1.2.5 BLAST Nucleotides database

nt.Z
All Non-redundant GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS,
or HTGS sequences).
month.na.Z
All new or revised GenBank+EMBL+DDBJ+PDB sequences released in the last 30.
days.
est.Z
Non-redundant Database of GenBank+EMBL+DDBJ EST Divisions.
est_human.Z
Non-redundant Database of Human GenBank+EMBL+DDBJ EST sequences.
est_mouse.Z

Non-redundant Database of Mouse GenBank+EMBL+DDBJ EST sequences.




est_others.Z
Non-redundant Database of all other organisms GenBank+EMBL+DDBJ EST
sequences.
sts.Z
Non-redundant Database of GenBank+EMBL+DDBJ STS Divisions.
htg.Z
High Throughput Genomic Sequences.
yeast.nt.Z
Yeast (Saccharomyces cerevisiae) genomic nucleotide sequences.
ecoli.nt.Z
E. coli genomic nucleotide sequences.
pdbnt.Z
Sequences derived from the 3-dimensional structure Brookhaven Data Bank
vector.Z
Vector subset of GenBank, NCBI.
mito.Z
Database of mitochondrial sequences (Rel. 1.0, July 1995).
gss.Z
Genome Survey Sequence, includes single-pass genomic data, exon-trapped
sequences, and Alu PCR sequences.
patnt.Z

Nucleotide sequences derived from the Patent division of GenBank.

1.1.3 FASTA format description

When you search the alignments on a DNA sequence database, you need to specify your
DNA sequence. For the BLAST search tool, the common format of DNA sequence is the
FASTA sequence format.

A sequence in FASTA format begins with a single-line description followed by lines of

sequence data. The description line is distinguished from the sequence data by a greater-



than (">") symbol in the first column. It is recommended that all lines of text be shorter
than 80 characters in length. An example sequence in FASTA format is:

>gi|532319|pirl TVFV2E|TVFV2E envelope protein
ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNG
SYSENRTQ[WQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHS
QKYNLRLRQAWCHFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWG
DPETANLWFNCHGEFFYCKMDWFLNYLNNLTVDADHNECKNTSGTKSGNKRA
PGPCVQRTYVACHIRSVIIWLETISKKTYAPPREGHLECTSTVTGMTVELNY[PKN
RTNVTLSPQ[ES[WAAELDRYKLVEITP[GFAPTEVRRYTGGHERQKRVPFVXXXX
XXXXXXXXXXXXXXXXXXVQSQHLLAGILQQQKNLLAAVEAQQQMLKLTIWG

VK

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and
nucleic acid codes, with these exceptions: lower-case letters are accepted and are mapped
into upper-case; a single hyphen or dash can be used to represent a gap of indeterminate

length; and in amino acid sequences, U and * are acceptable letters (see below).

Before submitting a request, any numerical digits in the query sequence should either be
removed or replaced by appropriate letter codes. (e.g., N for unknown nucleic acid

residue or X for unknown amino acid residue).

The nucleic acid codes supported are:

A --> adenosine M --> A C (amino)
C --> cytidine S --> G C (strong)
G --> guanine W --> A T (weak)
T --> thymidine B->GTC

U --> uridine D->GAT

R --> G A (purine) H-->ACT

Y --> T C (pyrimidine) V->GCA
K-->GT (keto) N --> A G CT (any)

- gap of indeterminate length

For those programs that use amino acid query sequences (BLASTP and TBLASTN), the

accepted amino acid codes are:

A alanine P proline




B aspartate or asparagine Q glutamine

C cystine R arginine

D aspartate S serine

E glutamate T threonine

F phenylalanine U selenocysteine

G glycine \% valine

H histidine w tryptophan

[ isoleucine Y tyrosine

K lysine Z glutamate or glutamine
L leucine X any

M methionine * translation stop

N asparagine - gap of indeterminate length

1.2 Database search tool—BLAST

1.2.1 Sequence Alignment and database searching

Biology has a long tradition of comparative analysis leading to discovery. For instance,
Darwin’s comparison of morphological features of the Galapagos finches and other
species ultimately led him to postulate the theory of natural selection. In essence, we are
performing the same type of analysis today, but in much greater detail, when we compare
the sequence of genes and proteins. In this activity, we analyze the similarities and
differences--at the level of individual bases or amino acids—with the aim of inferring
structural, functional, and evolutionary relationships among the sequence under study.
The most common comparative method is sequence alignment, which provides an
explicit mapping between the residues of two or more sequences. For simplification we

discuss only pairwise alignments, which involves comparing two sequences.

1.2.1.1 The evolutionary basis of sequence alignment
One goal of sequence alignment is to enable the researcher to determine whether two
sequences display sufficient similarity to justify the inference of homology. Although

these two terms are often interchanged in popular usage, let us distinguish them to avoid



confusion. Similarity is an observable quantity that might be expressed as, say, percent of
identity or some other suitable measure. Homology on the other hand, refers to a
conclusion drawn from these data that two genes share a common evolutionary history.
Genes either are or are not homologous—there is no degrees of homology as there are of

similarity.

Bearing in mind the goal of inferring evolutionary relationships, it is fitting that most
alignment methods try, at least to some extent, to model the molecular mechanisms by
which sequences evolve. While it is presumed that homologous sequences have diverged
from common ancestral sequence through iterative molecular changes, we do not actually
know what the ancestral sequence was (barring the possibility that DNA could be
recovered from a fossil); all we have to observe are the sequence from extant organisms.
The changes that occur during divergence from the common ancestor can be categorized
as substitutions, insertions, and deletions. In the ideal case that a sequence alignment
genuinely reflects the evolutionary history of two genes or protein, residues that have
been aligned, yet are not identical, would represent substitutions. Regions in which the
residues of one sequence correspond to nothing in the other would be interpreted as either

an insertion into one sequence or a deletion from the other.

In a residue-by-residue alignment, it is often apparent that certain regions of a protein, or
perhaps specific amino acids, are more highly conserved than others. This information
may be suggestive of which residues are most crucial for maintaining a protein’s
structure or function. On the other hand, there may be other positions that do not play a
significant functional role yet happen to be identical for historical reasons. There is
reason for particular caution when the sequences are taken from very closely related
species, since similarities may be more reflective of history than of function.
Nevertheless, sequence alignments provide a useful way to gain new insights by
leveraging existing knowledge, for example, by deducing structural and functional
properties of a novel protein from comparison to those that have been well studied. It
must be emphasized, however, that these inferences should not be assumed to be correct

based on computational analysis alone: they must always be tested experimentally.




Upon observing a surprisingly high degree of sequence similarity between two genes or
proteins, we might infer that they share a common evolutionary history, and from this we
might anticipate that they would have similar biological functions. But again, this

prediction should be treated as hypothetical until tested experimentally.

The earliest sequence alignment methods were applicable to a simple type of relationship
in which the sequence shows easily detectable similarity along their entire lengths. An
alignment that spans essentially the full extents of the input sequences is called a global
alignment. Protein consisting of a single globular domain can often be aligned by means

of a global strategy, as can any homologous sequences that have not diverged

substantially.

1.2.1.2 The Modular Nature of Proteins

Many proteins do not display global patterns of similarity but instead appear to be
mosaics of modular domains. Patterns of modularity often arise by in-frame exchange of
whole exons. Global alignment methods do not take this phenomenon into account,
which is understandable, considering that they were developed before the exon/intron
structure of gens had been discovered. In most cases, it is advisable to instead use a
sequence comparison method that can produce a local alignment. Such an alignment
consists of paired subsequences, which may be surrounded by residues that are
completely unrelated. Consequently, users should bear in mind that some local
similarities might be missed if a global alignment strategy is applied inappropriately.
Another obvious case in which local alignments are desired is the alignment of the
nucleotide sequence of spliced mRNA to its genomic sequence, where each exon would

be in a distinct local alignment.

Dot matrix representations have enjoyed widespread popularity, in part because of their
ability to reveal complex relationship involving multiple region of local similarity. The
basic idea is to use the sequences as the coordinates of a two-dimensional graph and then

plot points of correspondence within its interior. Each dot usually indicates that within

10




some small window, the sequence similarity is above some cutoff. When two sequences

are consistently matching over an extended region, the dots will merge to form a diagonal

line segment.

In a dot matrix representation, certain patterns of dots may appear to sketch out a “path™,
but it is up to the viewer to deduce the alignment from this information. Another
graphical representation known as a path graph provides an explicit representation of an

alignment.

To understand a path graph, and image a two-dimensional lattice in which the vertices
represent points between the sequence residues. An edge that connects two vertices along
a diagonal corresponds to the pairing of one residue from each sequence. Horizontal and
vertical edges pair a residue from one sequence with nothing in the other. In other words,
these edges constitute a gap in the alignment. The entire graph corresponds to the search
space that must be examined for potential alignments. Each possible path through this

space corresponds to exactly one alignment.

1.2.1.3 Optimal Alignment Methods

For any but the most trivial problems, the total number of distinct alignments is
extraordinarily large, so it is usually of interest to identify the “best” one among them (or
the several best ones). This is where the concept of representing an alignment as a path
pays off. Many problems in computer science can be reduced to the task of finding the
optimal path through a graph; efficient algorithms have been developed for this purpose.
One requirement is a means of assigning a quality score to each possible path
(alignment). Normally this is accomplished by summing the incremental contributions of
each step along its route. For now let us assume that some positive incremental scores
will be used for aligning identical residues, with negative scores used for substitutions
and gaps. According to this definition of alignment quality, finding the path whose total
score is maximal will give us the best sequence alignment.

What is today known as the Needleman-Wunsch algorithm is an application of a best

path strategy called dynamic programming to the problem of finding optimal sequence

11




alignments ( Needleman and Wunsch, 1970 )- The idea behind dynamic programming
comes from the observation that any partial subpaths that ends at a point along the true
optimal sequence alignment must itself be the optimal path leading up to that point. Thus,
the optimal path can be found by an incremental extension of the optimal path. In the
basic Needleman-Wunsch formulation, the optimal alignment must extend from
beginning to end in both sequences, that is, from the top-left corner in the search space to

the bottom right. In other words, it seeks global alignment.

But a simple modification to the basic strategy allows the optimal local alignment to be
found (Smith and Waternman, 1981). The path for this alignment need not reach the
edges of the search graph, but may begin and end internally. Such an alignment would be
locally optimal if its score could not be improved by either increasing or decreasing the
extent of the alignment. This procedure relies on a property of the scoring system,
namely, that the cumulative score for a path will decrease in regions of poorly matching
sequence (the scoring systems described below satisfy this criterion). When the score
drops to zero, extension of path is terminal and new one can begin. There can be many
individual paths bounded by regions of poorly matching sequence instead of by the ends
of the sequences, as is the case for global alignments. Of other paths, the single one with

the highest score is reported as the optimal local alignment.

1.2.1.4 Substitution Scores and Gap Penalties

The score system just described made use of a simple match/mismatch scheme, but in
comparisons of proteins, we can increase sensitivity to weak alignments through the use
of a substitution matrix. It is well known that certain amino acids can substitute easily for
one another in related proteins, presumably owing to their similar physicochemical
properties. When calculating alignment scores, identical amino acids should be given
higher values than substitutions, but conservative substitutions should also be given
greater values than non-conservative changes. In other words, a range value is desired.
Furthermore, different sets of values may be desired for comparing very similar sequence

as opposed to highly divergent sequences. These considerations can be dealt with in a




flexible manner through the use of a substitution matrix, in which the score for any pair

of amino acids can be obtained, with a simple lookup.

The first substitution matrices to gain widespread usage were those based on point-
accepted-mutation (PAM) model of evolution( Dayhoff et al., 1978). One PAM is a unit
of evolutionary divergence in which 1% of the amino acids have been changed. This does
not imply that after 100PAMs every amino acids will be different; some positions may
change several times, perhaps even reverting to the original amino acid, while others may
not change at all. If these changes were purely random, the frequencies of each possible
substitution would be determined simply by the overall frequencies of the different amino
acids (called the background frequencies). However, in related proteins, the observed
substitution frequencies (called the target frequencies) are biased toward those that do not
seriously disrupt the protein’s function. In other words, these are point mutations that

have been “accepted” during evaluation.

The BLOSUM substitution matrices have been constructed in a similar fashion. but
making use of a different strategy for estimating the target frequencies. The underlying
set of data was derived from the BLOCKS database, which contains local multiple
alignments (“block™) involving distantly related sequences. As with the PAM model,
there is a numbered series of BLOSUM matrices, but the number in this case refers to the
maximum level of identity, which sequences may have and still contribute independently

to model.

To compensate for insertions and deletions, it is desirable to allow some gaps to be
introduced into an alignment but not so many that the alignment asserts an implausible
series of alterations. This is accomplished by deducting some amount from the alignment
score for each gap introduced. Although a number of strategies have been proposed for
penalizing gaps, the most common formulation involves a fixed deduction for introducing
a gap plus an additional deduction proportional to the length of the gap. This is governed
by two parameters: G (sometimes called the gap opening penalty) and L (the gap

extension penalty).



1.2.1.5 Statistical Significance of Alignments

For any given alignment we can calculate a score, but it is important to determine
whether this score is high enough to provide evidence of homology. In addressing this
matter, it is helpful to have some notion of the highest score that can be expected due to
chance alone. Unfortunately, there is no mathematical theory to describe the expected
distribution of scores for global alignments. One of the few methods available for
assessing their significance is comparison of the observed alignment score to those of
many alignment made from random sequences of same length and comparison as those
under study (Fitch, 1983).

However, for local alignments the situation is much better. As an initial simplification of
the problem, attention has been focused on local ali gnments that do not contain any gaps
(Karlin and Altschul, 1990). This type of alignment is called a high-scoring segment pair
(HSP). HSP may be found using a modification of the Smith-Waterman algorithm or by
simply imposing huge penalties for gaps. Karlin-Altschul statistics provides a
mathematical theory to describe the expected distribution of random HSP scores. The
form of the probability density function is known as the extreme value distribution. This
is worth noting because application of the more familiar normal distribution can result in
greatly exaggerated claims of significance. By relating an observed alignment score S to
the expected distribution, it is possible to calculate a p value, which gives the probability
that an alignment with that score or better could be due simply to chance. Highly

significant scores would therefore be those with p values very close to zero.

A related quantity is E, the expected number of chance alignments with scores at least
equal to S. The extreme value distribution is characterized by two parameters, K and A,
which can be calculated analytically and are constant for any particular scoring system
and set of background frequencies. The significance of an alignment also depends on the
size of the search space that was examined (Just as one’s chances of finding a needle in a
haystack depend on the size of the haystack). The size of search space has typically been
calculated as the product of the sequence lengths; but for correct statistics, these lengths

must be reduced by the expected length of a local alignment to avoid an “edge effect”
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(Altschul and Gish, 1996). This reduction is required because an alignment that begins

near the edge of the search space will run out of sequence before it can achieve a

significant score.

The restriction that alignments cannot contain gap is a useful simplification but represents
a departure from biological reality, since in fact gaps are needed to accurately model
insertions and deletions. However, provided the gaps are relatively few in number, it may
still be possible to find high-scoring ungapped regions between them. Typically, several
HSPs occurring in close proximity will be observed. In this case it is desirable to evaluate
their significance as an ensemble rather than individually. Perhaps, for example, no
segment is significant in its own right, but the appearance of several together is very
unlikely to have occurred by chance. Karlin-Altschul sum statistics allows the
significance of the N best HSPs to be calculated (Karlin and Altschul, 1993). The essence
of this method is to sum the score of the N best segments and then attempt to determine
the probability that this value could be due to chance. Typically, some additional
heuristics are applied to ensure that scores are summed only if the segments are
compatible with an alignment (i.e., ascending coordinates in both sequences with little or
no overlap). Although the distribution of summed scores will differ from that of maximal

HSP scores, it may be calculated analytically.

Finally, it is desirable to have the ability to evaluate the significance of local alignments

in which gaps are explicitly modeled. Such as the traditional Smith-Waterman

alignments.

Although no formal proof exists, it is believed that scores for these alignments will also
follow the extreme value distribution (Smith et al., 1985; Waterman and Vingron,
1994;Altschul and Gish, 1996). However, the value of K and A needed to parameterize
this distribution cannot be directly calculated. Instead, methods for estimating these

values through simulations have been developed (Waterman and Vingron, 1994; Altschul
and Gish, 1996).
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1.2.2 Database Similarity Searching

The discussion above focuses on the alignment of specific pairs of sequences, but for a
newly determined sequence we generally have no way of knowing the appropriate
sequences to use in such a comparison. Database similarity searching allows us to
determine which of the hundreds of thousands of sequences present in the database are
potentially related to a particular sequence of interest. This process sometimes leads to
unexpected discoveries. The first “eureka moment” with this strategy came when the
viral oncogene v-sis was found to be a modified form of cellular gene that encodes
platelet-derived growth factor (Doolittle et al., 1983). At the time of this discovery,
sequences database were small enough that such a finding might have been considered
surprising. But today it would be much more surprising to perform a database search and
not get a hit. The genome of the yeast Saccharomyces cerevisae has been completely
sequenced, as have several smaller genomes. Among the vertebrates, large numbers of
partial sequences representing novel human and mouse genes have been deposited in
GenBank as the result of a number of expressed sequence tag (EST) projects. The chief
utility of observing EST matches in a database search is that the cDNA clones from
which they were derived are freely available and can provide the critical reagents for

isolating genes of interest, including their homologs in other model organismes.

In database searching, the basic operation is to sequentially align a query sequence to
each subject sequence in the database. The results are reported as ranked hit list followed
by a series of individual sequence alignments, plus various scores and statistics. Choices
of search program sequence database, and various optional parameters can have impact
on the effectiveness of a search. Furthermore, there are various interfaces to these

facilities such as console-style commands, and WWW forms.

Current sequence databases are already immense and have continued to increase at an
exponential rate, making straightforward application of dynamic programming methods
impractical for database searching. One solution is to use massively parallel computers

and other specialized hardware. When optimal methods are impractical, it is necessary to
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resort to heuristic methods, which make use of approximations to significantly speed up

sequence comparisons, but with a small risk of missing true alignments.

One heuristic method is based on the strategy of breaking a sequence up into short runs of
consecutive letters called words. Words-based methods, introduced in the early 1980s by
Wilbur and Lipman, are used by virtually all of today’s popular search programs. The
basic idea is that an alignment representing a true sequence relationship will contain at
least one word that is common to both sequences. These word hits can be identified

extremely rapidly by pre-indexing all words from the query and then consulting the index

as the database is scanned.

1.2.2.1 FASTA

The FASTA program was the first widely used program for database similarity searching
(LipMan and Pearsin, 1985; Pearson and Lipman, 1988). To achieve a high degree of
sensitivity, this program performs optimized searches for local alignments using a
substitution matrix. As noted, however, it would take a substantial amount of time to
apply this strategy exhaustively. To improve speed, the program uses the observed
pattern of word hits to identify potential matches before the more time-consuming
optimized search is attempted. The trade-off between speed and sensitivity is controlled
by the ktup parameter, which specifies the size of a word. Increasing the value of ktup
decreases the number of background word hits (i.e.. those that do not mark the position of
an optimal alignment). This in turn decreases the amount of optimized searching required
and improves overall search speed. The default ktup value for comparing protein is 2, but

for finding very distant relationships, reduction to 1 is recommended.

The FASTA program does not investigate every word hit encountered, but instead looks
initially for segments containing several nearby hits. Using a heuristic method, these
segments are assigned scores, and the score of the best segment found appears in the
output as the initl score. Several segments may then be combined and a new initn score is
calculated from the ensemble. Most potential matches are then further evaluated by

performing a search for gapped local alignment that is constrained to a diagonal band
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centrered around the best initial segment. The score of this optimized alignment is shown
in the output as the opt score. For alignments finally reported (a user-specified number
from the top of hit list), a full Smith-Waterman alignment search (i.e., without the
constraining band) is performed. Only the single optimal alignment is produced for each
database sequence. Since, however, meaningful alignments can be missed by this
approach if the proteins contain multiple modules, matching sequences should be further

analyzed with the LLIGN program.

Beginning with version 2.0, FASTA provides an estimate of the statistical significance of
cach alignment found. The program assumes an extreme value distribution for random
scores, but uses a rewritten form of the probability density function in which the expected
score is a linear function of the natural log of the length of the database sequence. Simple
linear regression can then be used to calculate a normalized z score for each alignment.
Finally, an expectation E is calculated, which gives the expected number of random

alignment with z scores greater than or equal to the value observed.

1.2.2.2 BLAST

1.2.2.2.1 The statistics of global sequence comparison

To assess whether a given alignment constitutes evidence for homology, it helps to know
how strong an alignment can be expected from chance alone. In this context, "chance"
can mean the comparison of (i) real but non-homologous sequences; (ii) real sequences
that are shuffled to preserve compositional properties; or (iii) sequences that are
generated randomly based upon a DNA or protein sequence model.

Analytic statistical results invariably use the last of these definitions of chance, while

empirical results, based on simulation and curve-fitting may use any of the definitions.

Unfortunately, under even the simplest random models and scoring systems, very little is
known about the random distribution of optimal global alignment scores. Monte Carlo
experiments can provide rough distributional results for some specific scoring systems

and sequence compositions, but these can not be generalized easily. Therefore, one of the
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few methods available for assessing the statistical significance of a particular global
alignment is to generate many random sequence pairs of the appropriate length and
composition, and calculate the optimal alignment score for each. While it is then possible
to express the score of interest in terms of standard deviations from the mean, it is a
mistake to assume that the relevant distribution is normal and convert this Z-value into a
P-value; the tail behavior of global alignment scores is unknown. The most one can say
reliably is that if 100 random alignments have score inferior to the alignment of interest,
the P-value in question is likely less than 0.01. One further pitfall to avoid is
exaggerating the significance of a result found among multiple tests. When many
alignments have been generated, e.g. in a database search, the significance of the best
must be discounted accordingly. If it was selected as the best among 1000 independent

trials an alignment with P-value 0.0001 in the context of a single trial may be assigned a

P-value of only 0.1

1.2.2.2.2 The statistics of local sequence comparison

Fortunately statistics for the scores of local alignments, unlike those of global alignments,
are well understood. This is particularly true for local alignments lacking gaps. which we
will consider first. Such alignments were precisely those sought by the original BLAST

database search programs.

A local alignment without gaps consists simply of a pair of equal length segments, one
from each of the two sequences being compared. A modification of the Smith-Waterman
or Sellers algorithms will find all segment pairs whose scores can not be improved by

extension or trimming. These are called high-scoring segment pairs or HSPs.

To analyze how high a score is likely to arise by chance, a model of random sequences is
needed. For proteins, the simplest model chooses the amino acid residues in a sequence
independently, with specific background probabilities for the various residues.
Additionally, the expected score for aligning a random pair of amino acid is required to

be negative. Were this not the case, long alignments would tend to have high score




independently of whether the segments aligned were related, and the statistical theory
would break down.

Just as the sum of a large number of independent identically distributed (1.i.d) random
variables tends to a normal distribution, the maximum of a large number of i.i.d. random
variables tends to an extreme value distribution. (We will elide the many technical points
required to make this statement rigorous.) In studying optimal local sequence alignments,
we are essentially dealing with the latter case. In the limit of sufficiently large sequence
lengths m and n, the statistics of HSP scores are characterized by two parameters, K and
A. Most simply, the expected number of HSPs with score at least S is given by the

formula.

E = kmn e th

We call this the E-value for the score S.

This formula makes eminently intuitive sense. Doubling the length of either sequence
should double the number of HSPs attaining a given score. Also, for an HSP to attain the
score 2x it must attain the score x twice in a row, so one expects £ to decrease
exponentially with score. The parameters K and 1 can be thought of simply as natural

scales for the search space size and the scoring  system  respectively.

1.2.2.2.3 Bit scores

Raw scores have little meaning without detailed knowledge of the scoring system used,
or more simply its statistical parameters K and A Unless the scoring system is
understood, citing a raw score alone is like citing a distance without specifying feet,

meters, or light years. By normalizing a raw score using the formula

=S - In K)/(In2) (2)

One attains a "bit score" §’, which has a standard set of units. The E-value corresponding

to a given bit score is simply

E= mn2% (3)



Bit scores subsume the statistical essence of the scoring system employed, so that to

calculate significance one needs to know in addition only the size of the search space.

1.2.2.2.4 P-values

The number of random HSPs with score >= § is described by a Poisson distribution. This

means that the probability of finding exactly a HSPs with score >=S is given by

efE*/al (4)

where £ is the E-value of S given by equation (1) above.
Specifically, the chance of finding zero HSPs with score >=S is ¢E, so the probability of

finding at least one such HSP is

5)

This is the P-value associated with the score S. For example, if one expects to find three
HSPs with score >= S, the probability of finding at least one is 0.95. The BLAST
programs report E-value rather than P-values because it is easier to understand the
difference between, for example, E-value ot 5 and 10 than P-values of 0.993 and

0.99995. However, when E < 0.01, P-values and E-value are nearly identical.

1.2.2.2.5 Database searches

The E-value of equation (1) applies to the comparison of two proteins of lengths m and n.
How does one assess the significance of an alignment that arises from the comparison of
a protein of length m to a database containing many different proteins, of varying
lengths? One view is that all proteins in the database are a priori equally likely to be
related to the query. This implies that a low E-value for an alignment involving a short
database sequence should carry the same weight as a low E-value for an alignment

involving a long database sequence.



To calculate a "database search" E-value, one simply multiplies the pairwise-comparison
E-value by the number of sequences in the database. Recent versions of the FASTA

protein comparison programs take this approach.

An alternative view is that a query is a priori more likely to be related to a long than to a
short sequence, because long sequences are often composed of multiple distinct domains.
If we assume the a priori chance of relatedness is proportional to sequence length, then
the pairwise £-value involving a database sequence of length n should be multiplied by
N/n, where N is the total length of the database in residues. Examining equation (1), this
can be accomplished simply by treating the database as a single long sequence of length

N. The BLAST programs take this approach to calculating database E-value.

Notice that for DNA sequence comparisons, the length of database records is largely
arbitrary, and therefore this is the only really tenable method for estimating statistical

significance.

1.2.2.2.6 The statistics of gapped alignments

The statistics developed above have a solid theoretical foundation only for local
alignments that are not permitted to have gaps. However, many computational
experiments and some analytic results strongly suggest that the same theory apply as well
to gap alignments. For ungapped alignments, the statistical parameters can be calculated.
using analytic formulas, from the substitution scores and the background residue
frequencies of the sequences being compared. For gapped alignments, these parameters

must be estimated from a large-scale comparison of "random" sequences.

Some database search programs, such as FASTA or various implementation of the Smith-
Waterman algorithm, produce optimal local alignment scores for the comparison of the
query sequence to every sequence in the database. Most of these scores involve unrelated
sequences, and therefore can be used to estimate 1 and K. This approach avoids the

artificiality of a random sequence model by employing real sequences, with their



attendant internal structure and correlations, but it must face the problem of excluding

from the estimation scores from pairs of related sequences.

The BLAST programs achieve much of their speed by avoiding the calculation of optimal
alignment scores for all but a handful of unrelated sequences. The must therefore rely
upon a pre-estimation of the parameters 1 and K, for a selected set of substitution
matrices and gap costs. This estimation could be done using real sequences, but has

instead relied upon a random sequence model, which appears to yield fairly accurate

results.

1.2.2.2.7 Edge effects

The statistics described above tend to be somewhat conservative for short sequences. The
theory supporting these statistics is an asymptotic one, which assumes an optimal local
alignment can begin with any aligned pair of residues. However, a high-scoring
alignment must have some length, and therefore can not begin near the end of either of

tweo sequences being compared.

This "edge effect" may be corrected by calculating an "cffective length" for sequences.

the BLAST programs implement such a correction.

For sequences longer than about 200 residues the edge effect correction is usually

negligible.

1.2.2.2.8 The choice of substitution scores

The results a local alignment program produces depend strongly upon the scores it uses.
No single scoring scheme is best for all purposes, and an understanding of the basic
theory of local alignment scores can improve the sensitivity of one's sequence analyses.
As before, the theory is fully developed only for scores used to find ungapped local
alignments. So we start with that case.



A large number of different amino acid substitution scores, based upon a variety of

rationales, have been described.

However, the scores of any substitution matrix with negative expected scores can be

written uniquely in the form

Sij = (In(q;/(pipj) /A 6)

where the g;;, called target frequencies, are positive numbers that sum to 1, the p; are
background frequencies for the various residues, and 1 is a positive constant. The A here

is identical to the 2 of equation (1).

Multiplying all the scores in a substitution matrix by a positive constant does not change
their essence: an alignment that was optimal using the original scores remains optimal.
Such multiplication alters the parameter A but not the target frequencies g;;. Thus, up to a
constant scaling factor, every substitution matrix is uniquely determined by its target

frequencies. These frequencies have a special significance.

A given class of alignments is best distinguished from chance by the substitution matrix

whose target frequencies characterize the class.

To claborate, one may characterize a set of alignments representing homologous protein
regions by the frequency with which each possible pair of residues is aligned. If valine in
the first sequence and leucine in the second appear in 1% of all alignment positions, the

target frequency for (valine, leucine) is 0.01.

The most direct way to construct appropriate substitution matrices for local sequence
comparison is to estimate target and background frequencies, and calculate the
corresponding log-odds scores of formula (6). These frequencies in general can not be

derived from first principles, and their estimation requires empirical input.
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1.2.2.2.9 The PAM and BLOSUM amino acid substitution matrices

While all substitution matrices are implicitly of log-odds form, the first explicit
construction using formula (6) was by Dayhoff and coworkers. From a study of observed
residue replacements in closely related proteins, they constructed the PAM (for "point
accepted mutation") model of molecular evolution. One "PAM" corresponds to an

average change in 1% of all amino acid positions.

After 100 PAMs of evolution, not every residue will have changed: some will have
mutated several times, perhaps returning to their original state, and others not at all. Thus
it is possible to recognize as homologous proteins separated by much more than 100
PAMs. Note that there is no general correspondence between PAM distance and
evolutionary time, as different protein families evolve at different rates.
Using the PAM model, the target frequencies and the corresponding substitution matrix
may be calculated for any given evolutionary distance. When two sequences are
compared, it is not generally known a priori what evolutionary distance will best
characterize any similarity they may share. Closely related sequences, however, are
relatively easy to find even will non-optimal matrices, so the tendency has been to use
matrices tailored for fairly distant similarities. For many years, the most widely used
matrix was PAM-250, because it was the only one originally published by Dayhoft.
Dayhoff's formalism for calculating target frequencies has been criticized, and there have
been several efforts to update her numbers using the vast quantitics of derived protein
sequence data generated since her work. These newer PAM matrices do not differ greatly

from the original ones.

An alternative approach to estimating target frequencies, and the corresponding log-odds
matrices, has been advanced by Henikoff & Henikoff. They examine multiple alignments
of distantly related protein regions directly, rather than extrapolate from closely related
sequences. An advantage of this approach is that it cleaves closer to observation; a
disadvantage is that it yields no evolutionary model. A number of tests suggest that the
"BLOSUM" matrices produced by this method generally are superior to the PAM

matrices for detecting biological relationships.



1.2.2.2.10 DNA substitution matrices

Our theoretical development concerning the optimality of matrices constructed using
equation (6) unfortunately is invalid as soon as gaps and associated gap scores are
introduced, and no more general theory is available to take its place. However, if the gap
scores employed are sufficiently large, one can expect that the optimal substitution scores
for a given application will not change substantially. In practice, the same substitution
scores have been applied fruitfully to local alignments both with and without gaps.
Appropriate gap scores have been selected over the years by trial and error, and most
alignment programs will have a default set of gap scores to go with a default set of
substitution scores. If the user wishes to employ a different set of substitution scores,

there is no guarantee that the same gap scores will remain appropriate.

No clear theoretical guidance can be given, but "affine gap scores”, with a large penalty
for opening a gap and a much smaller one for extending it, have generally proved among

the most effective.

1.2.2.2.11 Low complexity sequence regions

There is one frequent case where the random models and therefore the statistics discussed
here break down. As many as one fourth of all residues in protein sequences occur within
regions with highly biased amino acid composition. Alignments of two regions with
similarly biased composition may achieve very high scores that owe virtually nothing to
residue order but are due instead to segment composition. Alignments of such "low
complexity” regions have little meaning in any case: since these regions most likely arise
by gene slippage, the one-to-one residue correspondence imposed by alignment is not
valid. While it is worth noting that two proteins contain similar low complexity regions,

they are best excluded when constructing alignments.

The BLAST programs employ the SEG algorithm to filter low complexity regions from

proteins before executing a database search.




1.2.2.12 BLAST Tool Outline

BLAST® (Basic Local Alignment Search Tool) is a set of similarity search programs
designed to explore all of the available sequence databases regardless of whether the
query is protein or DNA. The BLAST programs have been designed for speed, with a
minimal sacrifice of sensitivity to distant sequence relationships. The scores assigned in a
BLAST search have a well-defined statistical interpretation, making real matches easier
to distinguish from random background hits. BLAST uses a heuristic algorithm which
seeks local as opposed to global alignments and is therefore able to detect relationships

among sequences which share only isolated regions of similarity.

The BLAST algorithm was written balancing speed and increased sensitivity for distant
sequence relationships. Instead of relying on global alignments (commonly seen in
multiple sequence alignment programs) BLAST emphasizes regions of local alignment to
detect relationships among sequences which share only isolated regions of similarity
(Altschul et al., 1990). Therefore, BLAST is more than a tool to view sequences aligned
with each other or to find homology, but a program to locate regions of sequence

similarity with a view to comparing structure and function.

BLAST can be run in a standalone or in a remote machine. The main advantage of a
standalone BLAST is to be able to create your own BLAST database. This make BLAST

query more efticient, fast, and independent of the remote server.

BLAST tool mainly consists of four programs: blastn, blastp, blastx, tblastn, and tblastx.

blastn: Compares a nucleotide query sequence against a nucleotide sequence database.

blastp: Compares an amino acid query sequence against a protein sequence database.

blastx: Compares a nucleotide query sequence translated in all reading frames against a
protein sequence database. You could use this option to find potential translation
products of an unknown nucleotide sequence.

tblastn: Compares a protein query sequence against a nucleotide sequence database

dynamically translated in all reading frames.



tblastx: Compares the six-frame translations of a nucleotide query sequence against the

six-frame translations of a nucleotide sequence database.
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Chapter 2 BlastMerge Tool

With an enormous amount of data stored in databases and data warehouses, it is
increasingly important to develop powerful tools for analysis of such data and mining

interesting knowledge from it. In DNA sequence search field we have similar situation.

[f you use the standalone BLAST search tool to search protein and nucleic acid sequences
and compare them against a selection of local NCBI databases, you have to maintain your
local database. Since NCBI update its database every day, if you want to search your
query on the latest database, you have to download the whole latest database before you
can run queries. Since the NCBI database is huge (by now more than 100M),
downloading the whole database is a time-consuming work. With the continue increase

of the site of the NCBI database, this issue will become more significant.

The best solution is to re-download the whole database only periodically. Each day
before you run the BLAST program, you download the update database, such as
month.aa. This update database is smaller than the whole database. You search your
query on both the whole local database and the update database, the merge of these two
query results is equivalent to the query results on the latest whole database. The

blastMerge program is designed for this purpose.

2.1 Object-oriented Design in BlastMerge

The BlastMerge program is the tool that can merge the query results of blastn and blastp
program. Originally the idea is from Dr. Clement Lam and Dr. Gregory Butler. The key
point of the BlastMerge design is to use object-oriented methodology to model query
results. First let us analyze the format of query results. The query results generated by
blastn and blabtp are different.



We use Object Oriented Methodology and Data Mining theory to design the BlastMerge.
In object-oriented modeling, classes, objects, and their relationships are the primary
modeling elements. Classes and objects model what it is in the system we are trying to
describe, and the relationships between them reveals how they are structured in terms of
each other. Classification has been used for thousands of simplify descriptions of
complex systems, so that we can more casily understand them. When using object-
oriented programming to build software systems, classes and relationships become the

actual code.

Data mining is a process of inferring knowledge from such huge data. Data Mining has
three major components Clustering or Classification, Association Rules and Sequence
Analysis. By simple definition, in classification/clustering we analyze a set of data and
generate a set of grouping rules, which can be used to classify future data. An association
rule is a rule that implies certain association relationships among a set of objects in a
database. In this process we discover a set of association rules at multiple levels of
abstraction from the relevant set(s) of data in a database. In sequential Analysis, we seek
to discover patterns that occur in sequence.

The analysis to combine object-oriented modeling and data mining method is specialized
for huge data processing. Using object-oriented methodology we can easily model real
world system. With data mining theory we can infer knowledge from such huge data.
Data mining involves knowledge base and machine-learning. It contains two aspects:
heuristic and some inferring algorithms. Therefore using dada mining theory to analyze

DNA sequence database and its query output is an interesting field.

2.2 The query result of blast program
2.2.1 The query result for blastn program
To design BlastMerge tool, first we have to model DNA sequence query output, that is,

understand what it is in the query outputs of the blast tool. We classified them as follows.
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The query result of the blastn program can be classified into the following parts (for a
sample of the detail output, refer to appendix I).
1) Program name and version.
2) Reference. It defines the developer of the blast tool.
3) Query. It defines DNA sequence that is to be used to compare with database
sequence.
4) Database name, which database was searched.
5) Sequence producing significant alignments. This part consists of sequence record
title, Score, and E value.
6) A list of match records.
For blastn each record contains following parts.
a) Full sequence record title.
b) Sequence length.
A List of High Scoring pairs (HSPs)[parts (c) to (g)].
They represent “pairwise alignment” among High Scoring pairs (HSPs). A
"pairwise alignment” is one in which the aligned positions of the query part and
the database match part (the subject) are arranged with one vertical space
between them. In protein alignments, identical residues are listed in the middle.
Conserved residues are represented by plus signs. In DNA alignments, vertical
lines connect identical residues. Gaps are represented as dashes within the query

or subject sequence.

Due to filtering, an amino acid query sequence may contain X's in place of low
complexity sequences. (N's in a nucleic acid query). This accounts for a decrease
in identity and increase in E value than would otherwise be seen in a match of a
query against the identical or other highly related sequences in the database.

More than one alignment per database entry may be listed among the HSPs. The

parts (c) to (g) may be repeated several times.

¢) Score and E value.
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The score of an alignment, S, calculated as the sum of substitution and gap
scores. Substitution scores are given by a look-up table (see PAM, BLOSUM).
Gap scores are typically calculated as the sum of G, the gap opening penalty and

L, the gap extension penalty. For a gap of length n, the gap cost would be G+Ln.

The choice of gap costs, G and L is empirical.
Expectation value, E. The number of different alignments with scores equivalent
to or better than S that are expected to occur in a database search by chance. The

lower the E value, the more significant the score.

d) Identities. The extent to which two (nucleotide or amino acid) sequences are
invariant.
e) Strand.
f) Query.
g) Sbjct.
Parts (7) to (9) specify the Values for lambda, K, and H calculated from the results of the
search (ungapped, gapped).

A
A statistical parameter used in calculating BLAST scores that can be thought of as

a natural scale for scoring system. The value lambda is used in converting a raw

score (S) to a bit score (S).

8) K
A statistical parameter used in calculating BLAST scores that can be thought of as

a natural scale for search space size. The value K is used in converting a raw score

(S) to a bit score (S").

9 H
H is the relative entropy of the target and background residue frequencies. H can be
thought of as a measure of the average information (in bits) available per position

that distinguishes an alignment from chance. At high values of H, short alignments




can be distinguished from chance, whereas at lower H values, a longer alignment

may be necessary.

10) Matrix.
Specify which matrix was used during the search.
A key element in evaluating the quality of a pairwise sequence alignment is the
"substitution matrix", which assigns a score for aligning any possible pair of
residues. The matrix used in a BLAST search can be changed depending on the

type of sequences you are searching with.

11) Gap Penalty.
Gap creation and gap extension costs.
A space introduced into an alignment to compensate for insertions and deletions in
one sequence relative to another. To prevent the accumulation of too many gaps in
an alignment, introduction of a gap causes the deduction of a fixed amount (the gap
score) from the alignment score. Extension of the gap to encompass additional

nucleotides or amino acid is also penalized in the scoring of an alignment.

Parts 12) to 22) specify BLAST statistics.
12) Number of Hits to DB.
13) Number of sequence.
14) Number of extensions.
15) Number of successful extensions.
16) Number of sequence better than.
17) Length of query.
18) Length of database.
19) Effective HSP length.

High-scoring segment pair. Local alignments with no gaps that achieve one of the top
alignment scores in a given search.

20) Effective length of database.
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21) Effective search space.

22) Effective search space used.
23) T.

24) A.

25) X1.

26) X2.

27) S1

28) S2.

2.2.2 Query Result for blastp

The query results between blastn and blastp have minor differences. In the query results
of blastn, HSPs contain a list of Score, Expect, Identities, Strand, Query and Sbjct
corresponding to each hit record. In the query results of blastp HSPs contain Score,

Expect, Identities, Positives, gap and a list of Query and Sbjct corresponding to each hit

record.

2.3 Modeling Query Output

With object-oriented modeling methodology we consider the whole query output as an
object. We use class AlignmentRecord to represent the data of a query result. It is a
container class, which contains the information one instance per query. That is item 1) to
5), item 7) to 28), and a list of match records. We use a sorted linked list to represent this
part of data. Class AlignmentRecord contains a pointer to the sorted linked list. Each
node of the sorted linked list is an AligmentDetail. Its data members are item a)to g). In
the real world, we cannot predict the number of the matched records. So we use a sorted
linked list to store the number of matched records. Thus, there is no size limitation to the
records. With the use of sorted linked list BlastMerge tool it is easily to output merge
query result in sequence. For very huge query output processing it will be more efficient.
With the use of a pointer to linked list, when AlignmentRecord construct it only allocates
a pointer to linked list, the real linked list is constructed during parsing the query output

file. The objects diagram is as follows.
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Link node
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Figure 1 Objects diagram in BlastMerge
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2.3.1 Class AlignmentRecord

Class AlignmentRecord represents the output file per query. It contains the information

one instance per query and a sorted linked list. Its class diagram is

AlignmentRecord

Attributes:

char programName1(128)

char programDescription{ 1024)
char databaseName[ 128]

char databascPostedDate{ 1 28]

int currentAligmentNumber

char Lambda_st{512)

float K

char matrix[64]

int numberOfHitsToDb

int numberOfExtensions

char numberOfSequencesBetterThan[64]
int lengthOfDatabase

int effectivel.engthOtQuery
unsigned long effectiveSearchSpace
char T[32]

char X1{64]

char S1[64]

Sorted_linking list * ADList

Mecthods:

void WriteAlignmentRecord(); /7 output merge result

char programName2[ 28]

char queryDescription[256]

char databaseName_append( 128]
char searchingDone{ 128]

char postedDate{64)

float Lambda

float H

char gapPcnality[64]

int numberOfScquences

int numberOfSucessfulExtensions
int lengthOfQuery

int effectiveHSPLength

int effectivelengthOfDawbase
unsigned long effectiveSearchSpaceUsed
char A[32]

char X2[64)

char S2[64]

void Init(char* filepath); // parse first query file and insert matched records into the linked list
viod Append(char® filepath)y/ parse second file and insert matched records into the linked list

Figure 2. Class diagram AlignmentRecord

2.3.2 Class AlignmentDetail

Class AlignmentDetail contains a set of HSPs and the current score number. Class

diagram is
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AlignmentDetail

Attributes:

char* matchRecordName bool matchRecordNameFlag
int currentScoreNumber int aligmentLength

int blastAligmentDetail Type HSPs hps[50]

Methods:

GetAlignment();// construct HSPs set for per matched record
WriteAlignment()//output one matched record in detail
WriteAlignmentShort():;//output sequence producing significant alignments

Figure 3 class diagram of AlignmentDetail.

2.3.3 Class HSPs

Class HSPs represents a matched record behavior.

HSPs

Attributes:

Double Score double secondScore
Double Expect char* Identity
char* Strand char* Query

bool QueryFlag char* Sbjct

Figure 4 Class diagram of HSPs

For sorted linked list it is standard class. We omit its class description.

2.3.4 Sequence diagram of parsing query output files in BlastMerge tool

Sequence diagrams illustrate how objects interact with each other. They focus on
message sequences, that is, how messages are sent and received between a number of
objects. Sequence diagram has two axes: the vertical axis shows time and horizontal axis
shows a set of objects. A sequence diagram also reveals the interaction for a specific
scenario— a specific interaction between the objects that happens at some point in time

during the system’s execution. Parse query file is a major scenario when BlastMerge tool

merges query files. We give the sequence diagram as follows.
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Parse file |

AlignmentRecord AlignmentDetail HSPs

Parse file 2

PE—

IsMatchedRecond()

New AlignmentDetail()

q&l

GetAlignmentDetail()

*’

Inser()

Sorted link list

\

[SEndOfFile2()

WriteAlignmentRecord( )

S

< Display()

WritcAlignmentShort()

Writealignment()

‘.

Figure 5 Sequence diagram in parsing file

38




When the BlastMerge tool merges two query results, it reads first the query result and
inserts them into a sorted linked list, then reads the second query result and inserts them

into the sorted linked list.

2.4 Some sample output

The BlastMerge program can merge the outputs of two queries, one against a database
and the other against the update to the database. It can handle ouputs from blastn and
blastp. For example, we downloaded the DNA sequence database yeast.aa and its update

month.aa. As a test, we use the query DNA sequence.

>gil416278|dbj|D11125|VIBVCI384 V. cholerae rfbT3 gene for Ogawa specific antigen
in the case of Inaba serotype, complete cds

TCTAATAGAACTTTTGATGAGATTTI TAACATAATAAACTCAAAATTCGGAAG
TAAGGCATATTT TATTCATCCATTATCATCCGCTGAACATCCTGAGTTTAATA
AAGCAACGCAGGATAWAATGGGAATATCTG[ [TTAAATATGTATCATAAAA
TAATT TAATATATTCCGTATGTCATTGCAAGTTCAACAGACATT TCCGAAGA
With blastp we obtain two query output yeast.xout and month.xout. We run blastMerge.

Then we obtain the merged output out.data.

We have also downloaded the DNA sequence database yeast.nt and pdbnt. With blastn,
we get two query output yeast.nt.out and pdbnt.out. We run BlasetMerge to get merge
output out.data. Since the query output of blastp is too big, so we give only the query
outputs from the DNA database yeast and pdbnt. [n order to limit the number of pages,
we take only the first four highest scoring hit records. Then we give the merge output of

BlastMerge. The detail is in Appendix .

From BlastMerge output in Appendix [ we find that, for sequence producing significant
alignments and hit records, the merge output of original database and its update is exactly
same as the query output of whole database. We take it from original database query
output since statistics part is hard to merge. However, since its daily update is smaller

compared to the latest whole database the statistics part of original is dominant. With the
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increase of DNA sequence database, the search space difference between the whole

database and its update will be decreased.

2.5 A brief user guide

The BlastMerge is a program to merge query outputs of blastn or blastp. It is easy of use.

Step 1. You download the databases that you would like to search from the NCBI web

site. For example, blast database fip site is ( ftp://ftp.ncbi.nlm.nih.gov/blast/db/).

Step 2. Format the downloaded databases by running the formatdb tool.
Before running the blast program blastall, the formatdb should be used to format
the FASTA databasefor both protein and DNA database. The advantage is that
ambiguity information is now retrieved from the file produced by tormatdb, rather
than from the original FASTA file. The original FASTA file is no longer needed
for the BLAST runs. This saves both disk-space and improves performance, as the
large FASTA file is no longer needed by BLAST.

A simple example of using formatdb is:
formatdb —i ecolint -pF —o T
where the arguments have following meaning:
-t — input file for formatting (this parameter must be set) [File In]
ecoli.nt — the database you want to format.
-p —type of file.
T — protein.
F — nucleotide [T/F]  Optional.
-0 — Parse options
T —True: Parse Seqld and create indexes.

F — False: Do not parse Seqld. Do not create indexes.

Step 3. Run blastn or blastp to get the query outputs.
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The blastall may be used to perform all five flavors of blast comparison (balstn,
blastp, blastx, blasttn, or tblastx). One may obtain the help on blastall options by
executing “blastall —" (note the dash). A typical use of blastall to perform a blastn
search (nucl. Vs. nucl.) of a file called QUERY would be
blastall —pblastn -dnr -i QUERY -o out.QUERY
-p — Prgram name [String]
Input should be one of *“balstn”, “blastp™, “blastx™, “blasttn™, or “tblastx”.
-d — Databse [String]
default = nr
The database specified must first be formatted with formatdb. Multiple database
names (braketed by quotations) will be accepted. An example would be
-d *“nr est”
-t — Query File [ File In]
default = stdin
The query should be in FAST format. If multiple FAST entries are in the input
file.
-0 — BLAST report Output File [File In] Optional

Step 4. Copy the two query outputs to the directory where the BlastMerge executable

exists.

Step 5. Run the BalstMerge, when it prompts you, input two query output file names.
After you type the names of two query outputs it will generate the merge output

(out.data) in the same directory as the BlastMerge executable exists.
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Chapter 3 Conclusion

3.1 Conclusion

With the explosive expansion of DNA sequence database any tool that directly processes
data in the database will become expensive. Find the way to indirectly process the output
result of the tool is the best solution. BlastMerge is designed for this purpose. BlastMerge
is an efficient tool to process the query output. Currently it can merge the query outputs
of blaptn and blastp. We merge two query outputs, one against a database and the other
against the update to the database. For sequence producing significant alignment and hit
records the output of BlastMerge is exactly the same as the query output against the latest
database. For the statistics part, BlastMerge takes it from the original database, since the
search space of the original database is predominant. With the continue increase of DNA
sequence database the search space of the original database will become more significant

compared to that of its update.

3.2 Future work
By now BlastMerge tool can only process outputs from blastn and blastp. Improving

BlastMerge to process the query outputs of other blast tool is one of possible the future

works.

Current BlastMerge version can only process a single query output. In future we should

improve BlastMerge tool to handle multiple queries.




Applying Data mining theory to the BlastMerge tool should be considered in the future
since machine-learning and knowledge base theory is inevitable in processing huge

database.
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S. Appendix I

5.1 Quey output (yeast.nt.out) for yeast.nt

Quey output (yeast.nt.out) for yeast.nt is as follow.

BLASTN 2.0.14 (Jun-29-2000]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs®, Nucleic Acids Res. 25:3389-3402.

Query= gi|4162781dbj|D11125|VIBVC[384 V. cholerae rftbT3 gene for Ogawa
specific antige
(231 letters)

Database: E:\major_report\db_download\yeast.nc\yeast.nt
17 sequences; 12,155,026 total ietters

Score E
Sequences producing significant alignments: (bits) vValue
releC_OOll46.l| Saccharomyces cerevisiae chromosome XIV, comple... 43  lJe-004
ref [NC_001144.1} Saccharomyces cerevisiae chromosome XII, comple... 35 0.073
ref |[NC_001147.1} Saccharomyces cerevisiae chromosome XV, complet. .. 33 0.30
releC_001142.1| Saccharomyces cerevisiae chromosome X, complete... 33 0.30

>releC_001146.l[ Saccharomyces cerevisiae chromosome XIV, complete chromosome sequence
Length = 784328

Score = 43.2 bits (21), Expect = 3e-004
Identities = 21/21 (100%)
Strand = Plus / Plus

Query: 96 attatcatccgctgaacatce 116

FLCLTELLVET R R

Sbjct: 44808 attatcatccgctgaacatcce 44828

Score = 33.0 bits (16), Expect = 0.30
Identities = 16/16 (100%)
Strand = Plus / Minus

Query: 33 ttttgatgagattttt 48

SERRRRRRNRRARRR
Sbjct: 429548 trrtgatgagattttt 429533

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15% {(100%)
Strand = Plus / Plus

Query: 145 aatgggaatatctgt 159
(RRRRRRESRRRRE!



Sbjct: 21710 aatgggaatatctgt 21724

Score = 31.0 bits (15}, Expect = 1.2
Identities = 15/15 (100%)
Strand = Plus / Plus

Query: 24 taatagaacttttga 38

ARNRRARRRRRRRE

Sbjct: 557276 taatagaacttttga 557290

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 164 aatatgtatcataa 177

Sbjct: 420911 aatatgtatcataa 420898

Score = 29.0 bits (l4), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 123 taataaagcaacgc 136

FELEETVIETEN

Sbjct: 309783 taataaagcaacgc 309770

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Plus

Query: 152 atatctgttttaaa 165

FEVETTIEITEL

Sbjct: 738969 atatctgttttaaa 738982

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 81 attttattcatcca 96

FEEIETITIT

Sbjct: 440715 attttattcatcca 440702

>ref [NC_001144.1} Saccharomyces cerevisiae chromosome XII, complete chromosome sequence
Length = 1078172

Score = 35.1 bits (17), Expect = 0.073
Identities = 17/17 (100%)
Strand = Plus / Minus

Query: 154 atctgttttaaatatgt 170

SENRNARRRRRARRER

Sbjct: 155341 atctgttttaaatatgt 155325

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15 (100%)
Strand = Plus / Minus

45




Query: 27 tagaacttttgatga 41

RERRENRENERENN
Sbjct: 1041926 tagaacttttgatga 1041912

>ref|NC_001147.1}| Saccharomyces cerevisiae chromosome XV, complete chromosome sequence
Length = 1091283

Score = 33.0 bits (16), Expect = 0.30
Identities = 16/16 (100%)
Strand = Plus / Minus

Query: 34 tttgatgagattceerea 49

(RERRERERRRRRERY
Sbjct: 636999 ttrgatgagattttta 636984

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15 (100%)
Strand = Plus / Minus

Query: 212 tcaacagacatttce 226

ARARRRRRARARNY

Sbjct: 1041336 tcaacagacatttcc 1041322

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Plus

Query: 54 aataaactcaaaat 67

NRRRRRRRRRNRE

Sbjct: 22740 aataaactcaaaat 22753

Score = 29.0 bits (1l4), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 173 cataaaataattta 186

NEARRRRNARARE

Sbjct: 766574 cataaaataattta 766561

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 159 ttttaaatatgtat 172

ARRRARERRRARR:

Sbjct: 72761 ttttaaatatgtat 72748

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 176 aaaataatttaata 189

FELEEEEEETTT Y

Sbjct: 736136 aaaataatttaata 736123

Score = 29.0 bits (14), Expect = 5.0
Identities = 14,14 (100%)
Strand = Plus / Minus

46




Query: 34 tttgatgagatttec 47

ANARRRRERRRAN
Sbjct: 942314 tttgatgagatctt $42301

>ref|NC_001142.1| Saccharomyces cerevisiae chromosome X, complete chromosome sequence
Length = 745440

Score = 33.0 bits (16), Expect = 0.30
Identities = 16/16 (100%)
Strand = Plus / Minus

Query: 150 gaatatctgttttaaa 165

FLLELETTRELTNT T

Sbjct: 180402 gaatatctgttttaaa 180387

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 211 ttcaacagacattt 224

AR RRRRARE

Sbjct: 582789 ttcaacagacattt 582776

Score = 29.0 bits (l14), Expect = 5.0
Identities = 17/18 (94%)
Strand = Plus / Minus

Query: 158 gttttaaatatgtatcat 175

HEEELYTTERD T

Sbjct: 396997 gttttaaatatttatcat 396980

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 119 agtttaataaagca 132

CREVERETTENI g
Sbjct: 669781 agtttaataaagca 669768

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Plus

Query: 54 aataaactcaaaat 67

NERRERRRRNRRY

Sbjct: 16983 aataaactcaaaat 16996

Database: E:\major_report\db_download\yeast.nt\yeasc.nt
Posted date: Mar 14, 2001 8:54 PM

Number of letters in database: 12,155,026

Number of sequences in database: 17

Lambda K H

1.41 0.715 1.33
Gapped
Lambda K H

1.41 0.715 1.33
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Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2
Number of Hits to DB: 2504

Number of Sequences: 17

Number of extensions: 2504

Number of successful extensions: 739
Number of sequences better than 10.0: 15
length of query: 231

length of database: 12,155,026

effective HSP length: 16

effective length of query: 215

effective length of database: 12,154,754
effective search space: 2613272110
effective search space used: 2613272110
T: 0

A: O

X1: 5 (10.2 bits)

X2: 9 (18.3 bits)

Sl: 12 (24.9 bits)

S2: 14 (29.0 bits)

5.2 Query output (pdbnt.out) for pdbnt
Query output(pdbnt.out) for pdbnt is as follow.

BLASTN 2.0.14 (Jun-29-2000]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database scarch
programs®, Nucleic Acids Res. 25:3389-3402.

Query= gi|416278[dbj|D1112SIVIBVCI384 V. cholerae rtbT3} gene for Ogawa
specific antige
(231 letters)

Database: E:\major_report\blast_download\pdbnt\pdbnt
2787 sequences; 53,920 total letters

Searching.. ... ... . done

Score
Sequences producing significant alignments: {(bits)
pdb|1F66|J Chain J, 2.6 A Crystal Structure Of A Nucleosome Core... 25
pdb|1F66|I Chain I, 2.6 A Crystal Structure Of A Nucleosome Core. .. 25
pdb|lEQZ|J Chain J, X-Ray Structure Of The Nucleosome Core Parti... 25
pdb|1EQZ|I Chain I, X-Ray Structure Of The Nucleosome Core Parti... 25

>pdb|1F66|J Chain J, 2.6 A Crystal Structure Of A Nucleosome Core Particle
Containing The Variant Histone H2a.?Z
Length = 146

Score = 24.9 bits (12), Expect = 0.16
Identities = 12/12 (100%)
Strand = Plus / Minus

Query: 103 tcecgctgaacat 114
I

RRRRRENNRE

Sbjct: 72 tccgctgaacat 61

>pdb|1F66|I Chain I, 2.6 A Crystal Structure Of A Nucleosome Core Particle
Containing The Variant Histone H2a.Z
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Length = 146

Score = 24.9 bits (12), Expect = 0.16
Identities = 12/12 (100%)
Strand = Plus / Minus

Query: 103 tccgctgaacat 114

VLTI

Sbjct: 72 tccgctgaacat 61

>pdb|1EQZ|J Chain J, X-Ray Structure Of The Nucleosome Core Particle At 2.5 A
Resolution
Length = 146

Score = 24.9 bits (12), Expect = 0.16
Identities = 12/12 (100%)
Strand = Plus / Minus

Query: 103 tccgctgaacat 114

FELELETET T

Sbjct: 72 ctccgctgaacat 61

>pdb| 1EQZ|1 Chain I, X-Ray Structure Of The Nucleosome Core Particle At 2.5 A
Resolution
Length = 146

Score = 24.9 bits (12), Expect = 0.16
Identities = 12/12 (100%)
Strand = Plus / Minus

Query: 103 tccgctgaacat 114
PLETEELEET T

Sbjct: 72 tceccgctgaacat 61

Database: E:\major_reporc\blast_download\pdbnt\pdbnt
Posted date: Feb 8, 2001 9:45 pM

Number of letters in database: 53,920

Number of sequences in database: 2787

Lambda K H

1.41 0.715 1.33
Gapped
Lambda K H

1.41 0.71% 1.33

Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2
Number of Hits to DB: 9

Number of Sequences: 2787

Number of extensions: 9

Number of successful extensions: 9
Number of sequences better than 10.0: 5
length of query: 231

length of database: 53,920

effective HSP length: 11

effective length of query: 220
effective length of database: 23,263
effective search space: 5117860
effective search space used: 5117860
T: 0

A: O

X1: S (10.2 bits)

X2: 9 (18.3 bits)
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Sl: 12 (24.9 bits)
S2: 10 (20.8 bits)

5.3 Outpt (out.data) for BlastMerge
Outpt(out.data) for BlastMerge as follow.

BLASTN 2.0.14 (Jun-29-2000}
BLASTN 2.0.14 (Jun-29-2000)

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs®, Nucleic Acids Res. 25:3389-3402.

Querys= gi!416278|dbj|Dlll25|VIBVCI384 V. cholerae rfbT3 gene for Ogawa
specific antige
(231 letters)

Database: E:\major_report\db_download\yeasc.nc\yeast.nc
17 sequences; 12,155,026 total letters

Database: E:\major_report\bldst_download\pdbnt\pdbnc
2787 sequences; 53,920 total letters

Score E
Sequences producing significant alignments: (bits) Value
ref [NC_001146.1| Saccharomyces cerevisiae chromosome X1V, comple... 43 3e-004
refINC_001144.ll Saccharomyces cerevisiae chromosome XII, comple. .. 35 0.073
pdb|1F66|J Chain J, 2.6 A Crystal Structure Of A Nucleosome Caore. .. 25 0.160
pdb|1F66|I Chain I, 2.6 A Crystal Structure Of A Nucleosome Core. .. 25 0.160
pdb| 1EQZ|J Chain J, X-Ray Structure Of The Nucleosome Core Parti... 25 0.160
pdb|1EQZ|I Chain I, X-Ray Structure Of The Nucleosome Core Parti... 25 0.160
releC_001147.1[ Saccharomyces cerevisiae chromosome XV, complet... 33 0.300
ref|NC_001142.1]| Saccharomyces cerevisiae chromosome X, complete. .. 33 0.300

>ref|NC_001146.1) Saccharomyces cerevisiae chromosome X1V, complete chromosome sequerice
Length = 784328

Score = 43.2 bits (21), Expect = 3e-004
Identities = 21/21 (100%)
Strand = Plus / Plus

Query: 96 attatcatccgcectgaacatce 116

FLVEEVELER R T

Sbjct: 44808 attatcatccgctgaacatce 44828

Score = 33.0 bits (16), Expect = 0.30
Identities = 16/16 (100%)
Strand = Plus / Minus

Query: 33 ttttgatgagattecet 48
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RN RERERRERAN
Sbjct: 429548 ttttgatgagatrttt 429533

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15 (100%)
Strand = Plus / Plus

Query: 145 aatgggaataccegt 159

NRNRRRARRNRRRY

Sbjcr: 21710 aatgggaatatctgt 21724

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15% (100%)
Strand = Plus / Plus

Query: 24 taatagaacttttga 38

NARRRRRRERRRNE

Sbjct: 557276 taatagaacttttga 557290

Score = 29.0 bits (14), Expect = 5.0
Identities = 14,14 (100%;
Strand = Plus / Minus

Query: 164 aatatgtatcataa 177

NERARNRNRAARE

Sbjct: 420911 aatatgtatcataa 420898

Score = 29.0 bits (l14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 123 taataaagcaacgc 136

ERRARRRRRRRRE

Sbjct: 309783 taataaagcaacgc 309770

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Plus

Query: 152 atatctgttttaaa 165

FELLTTLTEL T

Sbjct: 738969 atatctgttttaaa 738982

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 83 attecrtattcatcca 96

SEERRRRRRRARY

Sbjct: 440715 attttattcatcca 440702

>ref [NC_001144.1}| Saccharomyces cerevisiae chromosome XII, complete chromosome sequence
Length = 1078172

Score = 35.1 bits (17), Expect = 0.073

Identities = 17/17 (100%)
Strand = Plus / Minus
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Query: 154 atctgttttaaatatgt 170

LELELEETEETLELT T

Sbjct: 155341 atctgttttaaactatgt 155325

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15 (100%)
Strand = Plus / Minus

Query: 27 tagaacttttgatga 41

R ERRARERRARRN
Sbjct: 1041926 tagaacttttgatga 1041912

>pdb|1F66]J Chain J, 2.6 A Crystai Structure Of A Nucleosome Core Particle
Containing The Variant Histone H2a.Z
Length = 146

Score = 24.9 bits (12), Expect = 0.16
Identities = 12/12 (100%)
sStrand = Plus / Minus

Query: 103 tccgctgaacat 114

RRREARARENE!

Sbjct: 72 teccgetgaacat 61

>pdb|1F66 | Chain I, 2.6 A Crystal Structure Of A Nucleosome Core Particle
Containing The Variant Histone H2a.Z
Length = 146

Score = 24.9 bits (12), Expect = 0.16
Identities = 12,12 (100%)
Strand : Plus -/ Minus

Query: 103 tccgctgaacat 114

FEERLERLENT

Sbjct: 72 tccgetgaacat 61

>pdb|{1EQZ|J Chain J, ¥-Ray Structure Of The Nucleosome Core Particle At 2.5 A
Resolution
Length = 146

Score = 24.9 bits (12), Expect = 0.i6
Identities = 12/12 (100%)
Strand = Plus / Minus

Query: 103 tccgctgaacat 114

RARRRRRRRRE

Sbjct: 72 tccgctgaacat 61

>pdb|1EQZ| I Chain I, X-Ray Structure Of The Nucleosome Core Particle At 2.5 A
Resolution
Length = 146

Score = 24.9 bits (12), Expect = 0.16

Identities = 12/12 (100%)
Strand = Plus / Minus

Query: 103 tccgctgaacat 114

FEELETTEET T
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Sbjct: 72 tccgctgaacat 61

>ref|[NC_001147.1| Saccharomyces cerevisiae chromosome XV,

Length = 1091283

Score = 33.0 bits (16), Expect = 0.30
Identities = 16/16 (100%)
Strand = Plus / Minus

Query: 34 tttgatgagattrtta 49

Sbjct: 636999 tttgatgagattttra 636984

Score = 31.0 bits (15), Expect = 1.2
Identities = 15/15 (100%)
Strand = Plus / Minus

Query: 212 tcaacagacatttce 226

ARANRRRARRARRN

Sbjct: 1041336 tcaacagacatttcc 1041322

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Plus

Query: 54 aataaactcaaaat 67

FEVTEEEITEL T

Sbjct: 22740 aataaactcaaaat 22753

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 173 cataaaataattta 186

FEVTERIIERLEL

Sbjct: 766574 cataaaataattta 766561

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 159 ttttaaatatgtat 172

RERERRRRNNNAN
Sbjct: 72761 ttttaaatatgtat 72748

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 176 aaaataatttaata 189

PELEITTEIITND

Sbjct: 736136 aaaataatttaata 736123

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 34 tttgatgagatctte 47
RN

LT
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Sbjct: 942314 ttrtgatgagatttt 942301

>ref |NC_001142.1| Saccharomyces cerevisiae chromosome X, complete chromosome sequence

Length = 745440

Score = 33.0 bits (16), Expect = 0.30
Identities = 16/16 (100%)
Strand = Plus / Minus

Query: 150 gaatatctgttttaaa 165

FELELEETEERELLT

Sbjct: 180402 gaatatctgttttaaa 180387

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 211 ttcaacagacatctt 224

Sbjct: 582789 ttcaacagacattt 582776

Score = 29.0 bits (l14), Expect = 5.0
Identities = 17/18 (94%)
Strand = Plus / Minus

Query: 158 gtrttaaatatgtatcat 175

Sbjct: 396997 gttttaaatatttatcat 396980

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Minus

Query: 119 agrttaataaagca 132

FLELLTTELIELD

Sbjct: 669781 agtttaataaagca 669768

Score = 29.0 bits (14), Expect = 5.0
Identities = 14/14 (100%)
Strand = Plus / Plus

Query: 54 aataaactcaaaat 67

Sbjct: 16983 aataaactcaaaat 16996

Database: E:\major_report\db_download\yeast.nt\yeast.nt
17 sequences; 12,155,026 total letters

Database: E:\major_report\blast_download\pdbnt\pdbnt
2787 sequences; 53,920 total letters

Posted date: Mar 14, 2001 8:54 BM

Lambda K H

1.41 0.71% 1.33
Gapped
Lambda K H

1.41 0.71% 1.33
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Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2
Number of Hits to DB: 2504

Number of Sequences: 17

Number of extensions: 2504

Number of successful extensions: 739
Number of sequences better than 10.0: 15
Length of query: 231

Length of database: 12155026

effective HSP length: 16

effective length of query: 2158

effective length of database: 12154754
effective search space: -1681695186
effective search space used: 2613272110
T: O

A: 0

Xl: S (10.2 bits)

X2: 9 (18.3 bits)

Sl: 12 (24.9 bits)

S2: 14 (29.0 bits)

6. Appendix II The list of the programs in an appendix.

Following is soure code of BlastMerge.

/#tt‘t‘*###t*#t‘*t*“#tt##t#‘t#‘*############‘t##tt#t/

/* */
/* File Name: blastApp.h */
/* Class Name: AligmentRecord */
/* o
/* Author: Xiaoming Wang */
/* */

/##*#‘####t‘t##tttt#tt#*‘##tt#tt####t*#t#‘t##*#“tt##/

#include <string.h>
#include "Llist_I.h"

#define MAX_RECORDS 50

bool findStringFirst( const char*src.const char* substry);

class AligmentRecord

{
public:
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AligmentRecord();//constructor
void Init(char* filePath);
void Append(char* FilePath);
void WriteAligmentRecord();
//private:
char programName[128];
char programName2[128];
char programDescription{ 1024];
char queryDescription[256];
char databaseName[128];
char databaseName_append[128];
char databasePostedDate[ 128];
char searchingDone[128];
// count on how many local aligments in database
int currentAligmnetNumber;
List* ADList;
char postedDate[64];
char Lambda_str{512];
float Lambda;
float K;
float H;
char matrix[64];
char gapPenality[64];
int numberOfHitsToDb;
int numberOfSequences;
int numberOfExtensions;
int numberOfSucessfulExtensions:
char numberO fSequencesBetterThan[64];
int lengthOfQuery;
int lengthOfDatabase;
int effectiveHSPLength;
int effectiveLengthOfQuery:;
int effectiveLengthOfDatabase:
unsigned long effectiveSearchSpace:
unsigned long eftectiveSearchSpaceUsed:
char T[32];
char A[32];
char X1[64};
char X2[64];
char S1[64];
char S2[64];

/t#tttttt#t#ttt#t#t*#ttt#ttt####ttttt##tt##tt*ttttttt/

I+ ¥
/* File Name: blastApp.cpp */
/* Class Name: AligmentRecord */
* o
/* Author: Xiaoming Wang */
/* */

/**#*##*#t*##'t#t##t###*tt##ttt#######t#t##*###t#*###/
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#include "blastApp.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include "blast.h"

// global variable

bool programNameFlag = false;

bool programDescriptionFlag = false;
bool queryDescriptionFlag = false;
bool databaseNameFlag = false:

bool databaseName_appendFlag = true;
bool searchingDoneFlag = false:

int blastType = 0;

AligmentRecord:: AligmentRecord()
{

strepy(programNamel,"");
strepy(programName2,"");
strepy(programDescription,™);
strepy(queryDescription,”");
strcpy(databaseName,"");
strepy(databaseName_append,"");
strepy(databasePostedDate,"");
strepy(searchingDone,"");
currentAligmnetNumber = 0;

ADList = new List(}); // create empty list
strepy(postedDate,"");
strepy(Lambda_str,"");

Lambda = 0.0;

K =0.0;
H=0.0;
strepy(matrix,"");
strepy(gapPenality,"");
numberOfHitsToDb = 0;
numberOfSequences = 0;
numberOfExtensions = 0;
numberOfSucessfulExtensions = 0;
strepy(numberOfSequencesBetterThan,™):
lengthOfQuery = 0;
lengthOfDatabase = 0;
effectiveHSPLength = 0;
effectiveLengthOfQuery = 0;
effectiveLengthOfDatabase = 0;
effectiveSearchSpace =0;
effectiveSearchSpaceUsed = 0;
strepy(T,"™"):
strepy(A."™"),
strepy(X1,"");
strepy(X2,™);
strepy(S1,"");
strepy(S2,"");
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H

void AligmentRecord::Append(char* FilePath)

{

char* buffer;
FILE* fp;
fp = fopen(FilePath,"r"):
if('fp)
{
printf{"can not open file:%s\n" FilePath):
return;
}
buffer = (char*)malloc(256);
while(fgets(buffer,256,fp))
{
if (findStringFirst(buffer,"BLASTN"))
!
blastType = BLASTN;
strepy(programName?2 buffer);
b
else if(ﬁndSlringFirst(buffer,"BLASTP"))
{
blastType = BLASTP;
strepy(programName?2 buffer);
]
¢
else if(findStringFirst(buffer," Database:"))
{
strcpy(databaseName _append, buffer);
databaseName_appendFlag = false;
1
else if ( databaseName_appendFlag == false)

!

strcat(databaseName_append. buffer):;
databaseName_appendFlag = true;
t

v
else if{(!findStringFirst(buffer,">"))

continue;
else
{
while(1)
{
ELEM elem = new AligmentDetail();
buffer = elem->getAligment(fp, buffer. blastType);
if(! ADList->search(elem))
ADList->sort_insert(elem);
else
delete elem;
if (strstr(buffer, "Database:") = NULL)
break;
h
t
H
fclose(fp);
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void AligmentRecord::Init(char* FilePath)

{

char* buffer;
FILE* fp;
fp = fopen(FilePath,"t"):

if(!fp)

{

}

printf("can not open file:%s\n" FilePath);
retumn;

buffer = (char*)malloc(256);
while(fgets(buffer,256,fp) '= NULL)

{

if (stremp(buffer, ") == 0) continue;
if (findStringFirst(buffer,"BLASTN"))
{
blastType = BLASTN;
strepy(programName |, buffer);
h
else if (findStringF irst(buffer"BLASTP"))
{
blastType = BLASTP;
strepy(programName |, buffer):
(]
f
else if (findStringFirst(buffer," Reference:"))
{
programNameFlag = true;
strepy(programDescription,buffer);
b
else if (findStringF irst(buffer,"Query="))
{
programDescriptionFlag = true;
strepy(queryDescription,buffer);
H
else if(ﬁndStringFirst(buffer."Databasc:"))
{
queryDescriptionFlag = true;
strepy(databaseName, buffer);
'
else if(findStringFirst(buffer,"Searching..."))
{
databaseNameFlag = true:
strepy(searchingDone, buffer);
strcat(searchingDone,"\n");
'
else if (strstr(buffer, "Score E") = NULL)
{
searchingDoneFlag =true;
continue;
H
else if{findStringFirst(buffer,"Sequences producing significant alignments:"))
{
searchingDoneFlag =true;
continue;
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else if{ strstr(buffer,"...") = NULL) // skip the line which contains pattern "..."
continue;

else if (programNameFlag = false) // start copy

{

strcat(programName [ buffer);
H
else if(findStringFirst(buffer,">"))
{

while(1)
{
ELEM elem = new AligmentDetail();
buffer = elem->getAligment(fp,buffer, blastType);
if(! ADList->search(elem))
ADList->sort_insert(elem);
else
delete elem;
if (strstr(buffer, "Database:") '= NULL)
break;
‘
H
else if (strstr(buffer."Posted date:") != NULL)
{
strepy(postedDate,buffer);
!
else if ( (strstr(buffer,”Number of letters in database:") !'= NULL )|
(strstr(buffer,"Number of sequences in database:") = NULL))
continue;
clse if (strstr(buffer,"Lambda K = H")!'= NULL)
{
strcpy(Lambda_str,buffer);
fgets(buffer,256,fp);
strcat(Lambda_str,buffer);
fgets(buffer,256,fp);
strcat(Lambda_str,buffer);
fgets(buffer,256.fp);
strcat(Lambda_str.buffer);
fgets(buffer,256,fp);
strcat(Lambda_str,buffer);
fgets(buffer,256,fp);
strcat(Lambda_str,buffer);
H
else if (strstr(buffer,"Matrix:") '= NULL)
{
strepy(matrix,buffer);

else if (strstr(buffer,"Gap Penalties:") = NULL)

{ strepy(gapPenality,buffer);

i.lse if (strstr(buffer,"Number of Hits to DB:") I= NULL)

! for( unsigned int i = 0; i < strlen(buffer) && buffer[i] !=""; i++);
strepy(buffer, buffer + i+ 1);
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numberOfHitsToDb = atoi(buffer):
H
else if (strstr(buffer,"Number of Sequences:") '= NULL)
{
for( unsigned inti=0; i< strlen(buffer) && buffer{i] !=""; i++):
strcpy(buffer, buffer + i + 1);
numberOfSequences = atoi(buffer);
Y
else if (strstr(buffer,"Number of extensions:") != NULL)
{
for( unsigned inti=0; i< strien(buffer) && buffer(i] !=""; I++);
strepy(buffer, buffer + i + 1);
numberOfExtensions = atoi(buffer):
H
else if (strstr(buffer,"Number of successful extensions:") != NULL)
{
for( unsigned inti=0; i< strlen(buffer) & & buffer{i] {="'; i++);
strecpy(bufter, buffer + i + 1);
numberOfSucessfulExtensions = atoi(buffer);
H
else if (strstr(buffer.”Number of sequences better than") !'= NULL)
{
strepy(numberOfSequencesBetterThan buffer):
t
]
else if(ﬁndStringFirst(buffer,"length of query:"))
{
for( unsigned int i = 0; i < strlen(buffer) && buffer(i] ="' i++);
strepy(bufter, buffer + i + 1);
lengthOfQuery = atoi(buffer):
v
]
else if (ﬁndStringFirst(buffcr."lcngth of database:"))
{
for( unsigned int i = 0:i < strlen(buffer) && buffer[i] !=""; i++);
strepy(buffer, buffer +i + 1);
char* temp = (char*)malloc(strlen(buffer));
char *tempPtr;
tempPtr = temp;
while(*buffer 1=n0")
{
if(*buffer 1="))
{
*tempPtr = *buffer;
tempPtr++;
H
bufter++;
H
*tempPtr ="0";
lengthOfDatabase = atoi(temp);
free(temp);
\
)
else if (surstr(buffer,"effective HSP length:") != NULL)
{
for( unsigned inti=0:i < strlen(buffer) && buffer(i] !=""; i++);
strepy(buffer, buffer + i + 1);
effectiveHSPLength = atoi(buffer);
}
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else if (strstr(buffer,"effective length of query:") 1= NULL)
{
for( unsigned inti=0; i< strlen(buffer) && buffer{i] !=""; i++);
strepy(buffer, buffer + i + 1);
effectiveLengthOfQuery = atoi(buffer);
H
else if (strstr(buffer,"effective length of database:") '= NULL)
{
for( unsigned int i = 0; i < strlen(buffer) && buffer(i] !="'; i++);
strepy(buffer, buffer + i + 1);
char* temp = (char*)malloc(strlen(buffer));
char* tempPtr;
tempPtr = temp;
while(*buffer !="\0")
!
if(*buffer !="))
{
*tempPtr = *buffer;
tempPtr++;
!
buffer++;
H
*tempPtr = "\0";
effectiveLengthOfDatabase = atoi(temp):;
free(temp);

else if (strstr(buffer,"eftective search space:") !'= NULL)
{
for( unsigned inti=0; i< strlen(buffer) && buffer(i] 1=""; i++);
strepy(buffer, buffer + i + 1);
effectiveSearchSpace = atol(buffer);
M
else if (strstr(buffer,"effective search space used:") '= NULL)
{
for( unsigned inti =0; i < strlen(buffer) && buffer{i] !=""; i++):
strepy(buffer, buffer + i + 1);
effectiveSearchSpaceUsed = atol(buffer):
y
1)
else if (findStringFirst(buffer,"T:"))
{
strepy(T,buffer);
fgets(buffer,256,p);
strepy(A,buffer);
fgets(buffer,256,fp);
strepy(X 1, buffer);
fgets(buffer,256,fp):
strepy(X2,buffer);
fgets(buffer,256,fp);
strepy(S1,buffer);
fgets(buffer,256,fp);
strepy(S2,buffer);
h
else if (programDescriptionFlag = false)
{

}

strcat(programDescription,buffer);




else if (queryDescriptionFlag = false)
b

t

H
else if (databaseNameFlag = false)

{

strcat(queryDescription,buffer);

strcat(databaseName,buffer):
t
f

else if (searchingDoneFlag == false)

{

H
H
fclose(fp);

strcat(searchingDone, buffer);

}

void AligmentRecord:: Write AligmentRecord()
{

FILE* fpOut;
fpOut = fopen("out.data" "w"):

printf("%s\n" programNamel ):
printf("%s\n" ,programName2);
printf("%s\n",programDescription);
printf("%s\n",queryDescription);
printf("%s\n" databaseName);
printf("%s\n" searchingDone);
fprintf(fpOut,"%s\n" programNamel);
fprintf(fpOut,"%s\n" programName?2):
fprimf(prut,"%s\n",prograchscription);

forintf(fpOut,"%s\n" .queryDescription):
fprintf(fpOut."%s\n" databaseName);
fprintf(prut."%s\n",databaseName_appcnd):
fprintf(fpOut,"%s\n" searchingDone);
ADList->display(fpOut);
printf("\n%s" databaseName);
printf(" %s'\n",postedDate);
printf("%s\n",Lambda_str);

printf("%s",matrix);
printf("%s" gapPenality);
printf("Number of Hits to DB: %d\n", numberOfHitsToDb);
printf("Number of Sequences: %d\n". numberOfSequences);
printf("Number of extensions: %d\n" ,numberOfExtensions);
printf("Number of successful extensions: %d\n" .numberOfSucessful Extensions);
printf("%s",numberOfSequencesBetterThan);
printf("Length of query: %d\n", lengthOfQuery);
printf(" Length of database: %d\n", lengthOfatabase);
printf{("effective HSP length: %d\n", effectiveHSPLength);
printf("effective length of query: %d\n", effectiveLengthOfQuery);
printf("effective length of database: %d\n", effectiveLengthOfDatabase);
printf("effective search space: %u\n", effectiveSearchSpace);
printf("effective search space used: %u\n", effectiveSearchSpaceUsed);
printf("%s", T);
prantf("%s",A);
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printf{"%s" X1);
printf("%s",X2);
printf("%s",S1);
printf("%s",S2);
fprintf(fpOut,"%s\n" databaseName);
fprintf(prut,"%s\n",databaseName_appcnd);
fprintf{fpOut,” %s\n",postedDate);
fprintf(fpOut,"%s\n" Lambda_str);
fprintf{fpOut,"%s\n" matrix);
fprintf(fpOut,"%s\n" gapPenality):
fprintf{fpOut,"Number of Hits to DB: %d\n",numberOfHitsToDb);
fprintf(fpOut."Number of Sequences: %d\n" ,numberOfSequences);
fprintf{fpOut,"Number of extensions: %d\n" .numberOfExtensions);
fprintf(fpOut,"Number of successful extensions: %d\n",numberOfSucessful Extensions);
fprintf(EpOut,"%s\n",numberOtSequencesBetterThan);
fprintf(fpOut,"Length of query: %d\n" lengthOfQuery);
fprintf(fpOut,"Length of database: %d\n" lengthOfDatabase);
fprintf(fpOut,"effective HSP length: %d\n" effectiveHSPLength);
fprintf(fpOut,"effective length of query: %d\n" effectiveLengthOfQuery);
fprintf(fpOut,"effective length of database: %d\n" cffectiveLengthOfDatabase);
fprintf{fpOut,"effective search space: %d\n" effectiveSearchSpace):
fprintf(fpOut, "efTective search space used: %eu\n" effectiveSearchSpaceUsed):
fprintf(fpOut,"%s\n", T);
fprintf(fpOut,"%s\n" A ):
fprintf{(fpOut,"%s\n" . X 1);
fprintf{(fpOut,"%s\n" X2);
fprintf{fpOut,"%s\n" .S 1);
fprintf(fpOut,"%s\n".S2);
fclose(fpOut);
ADList->clear();

b

void main()
{

char *filePath, *filePath|:
filePath = (char*)malloc(40);

filePathl = (char*)malloc(40);
char *namel, *name2;
namel = (char*)malloc(20);
name2 = (char*)malloc(20);
printf(" Please enter first file name:\n");
scanf("%s",namel);
printf("Please enter second file name:\n");
scanf("%s",name2);
sprintf(filePath,nametl);
sprintf(filePath| name2);

AligmentRecord* ald = new AligmentRecord();
ald->Init(filePath);
ald->Append(filePathl );
ald->Wn'teAligmentRecord();
free(filePath);
free(filePathl);

|3
s

/#*t#tttt*ttt##t*t**#ttt##ttttttt*tt#*#tt###t*t##ttt#tt#ttt#t/
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/* */

/* File name: Llist_1.h */
/* Class Name: List */
/* Author:  Xiaoming Wang *)
/* ¥/

/****‘#t‘t**##*t*t*tt‘###*#t*#*#‘t‘##t‘t*#*t#*#*#**##*#t*#ttt/

/**##‘#t#tt#‘#‘#ttt*#*#t#*t#*##t‘#ttt*###t#t**###**#t*‘t**t‘t/

/* Interface of class List */
/ﬁ#**‘**##‘**#“t###*##*‘*‘*‘##‘#**‘t“‘*##“##*‘*######‘*t*#/

// Listh

#ifndef _List_1 _h
#define _List_1_h

#include"link.h"

class List { //A singly_linked list class
private:

link* head; //Pointer to lidt header

link* tail;

link* curr; //position of "current” ELEM
public:

bool search(const ELEM& elem);

void sort_insert(const ELEM& item):

List(); //Constructor

~List(); //Destructor

void clear(); //Remove all ELEMs from list

void insert(const ELEM&); //Insert ELEM at current position
void append(const ELEM&); //Insert ELEM AT tail of list

ELEM remove(); //Remove and return current ELEM
void first(); //Set curr to first position

void next(): //Move curr to next position
void prev(): //Move curr to previous position

int length() const; //Return current lenth fo list

void setPos(const int);  //Set current to specified position

void setValue(const ELEM&); //Set current ELEM's value

ELEM currValue() const;  //Return current ELEM’s value

bool isEmpty() const; //Return TRUE if list is empty

bool isInList() const;  //TRUE if curr is within list

bool find(const ELEM&):  //Find value (from current position)

void display(FILE* fpOut) const; //Dislpay all the element in list

void add( const ELEM&); //Add a new node to circular linked_list
R

#Hendif // End of class List.h

/*##tt##t##t*#t#‘t###*######*#*###t##t#*#*##t###tt####tt##t#‘/

/* */
/* File name: Llist_l.cpp */
/* Class Name: List */
/* Author:  Xiaoming Wang */
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/* %/

/#t##t#######‘t‘*t##***t‘*t#t*t*tt#t*t##t#*itt##**t#*t#t###*t/

/‘**“*tt*#‘tt#t#‘#tt#####*t###tttt##tt#*#tt***#‘##tt#*tt##/

™ Definition of Class List */
/‘#t*##*t#t**‘##**##*t*#*#*#‘t##t"#*ﬁt*#ttt**‘**##t‘t##t##/

1 Llist.cpp
/f#include "stdafx.h"

#include <stdio.h>

#include <assert.h>
#include"Llist_1.h"

#include <string.h>

#include "blast.h”

/I Definitions for List class -- doubly-linked List implementation.

List::List() /! Constructor -- ignore sz
{ tail = head = curr = new link; }

List::~List() { /I Destructor
while(head = NULL) | /f Return link nodes to free store
curr = head;

head = head->next;
delete curr;

)

f

\
f

void List::clear() ¢ // Remove all ELEMs from List
while (head->next != NULL) { // Return link nodes to free store
curr = head->next;
head->next = curr->next;
delete curr;
1
curr = tail = head;

'

// Insert ELEM at current position
void List::insert(const ELEM&: item) {
assert(curr '= NULL);
curr->next = new link(item, curr->next, curr);
if (curr->next->next != NULL)
curr->next->next->prev = curr->next;
if (tail = curr) tail = curr->next;

H

void List::sort_insert(const ELEM& item)
{
curr = head->next;
if (curr)
{
while(curr->next && (curr->element->Expect[0] <= item->Expect[0]))
CuIT = curr->next;
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if (curr->element->Expect[0] > item->Expect[0])
CUrT = curr->prev;
if(curr->next)
curr->next = new link(item,curr->next,curr);
else
curr->next = new link(item,NULL curr);
if(curr->next->next '= NULL)
curr->next->next->prev = curr->next;

else

tail->next = new link(item, NULL, tail);
tail = tail->next;

-

H

void List::append(const ELEM& item) { // Append ELEM at tail of List
tail->next = new link(item, NULL, tail);
tail = tail->next;

H

ELEM List::remove() { // Remove ELEM at current position
assert(isInList()); /I Must be valid position in List
ELEM temp = curr->next->element;
link* ltemp = curr->next;
if (Itemp->next '= NULL) ltemp->next->prev = curr;
else tail = curr; // Removed tail ELEM - change tail
curr->next = ltemp->next;
delete ltemp;

return temp;
L
§

void List::prev() /I Move curr to previous position
}if (curr '= NULL) curr = curr->prev; !

void List:: first() // Set curr to first position
{ curr = head; }

void List::next() /f Move curr to next position
{ if (curr '= NULL) curr = curr->next: '

int List::length() const { // Return current length of List
intcnt = 0;
for (link* temp = head->next; temp != NULL: temp = temp->next)
cnt++; /f Count the number of elements
return cnt;

L
void List::setPos(const int pos) { // Set curr to specified position
curr = head;
for(int i=0; (curr!=NULL) && (i<pos); i++)
CUrT = curr->next;

'

void List::setValue(const ELEM& val) // Set current ELEM's value
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{ assert(isInList()); curr->next->element = val; }

ELEM List::currValue() const /I Return value of current ELEM
{ assert(isInList()); return curr->next->element; }

bool List::isEmpty() const // Return TRUE if List is empty
{ if (head->next == NULL)
return false;
else
return true;

;

bool List::isInList() const // TRUE if curr is within List
{ if( (curr!'= NULL) && (curr->next != NULL))
retumn true;
else
return false:

}

bool List::find(const ELEM& val) { // Find value (from current position)
while (isInList())
if (currValue() = val) return true:
else next();
return false; // Not found

}

void List::display(FILE* fpOut) const
{

printf(" Score E \n");

printf("Sequences producing significant alignments: (bits) Value n");
fprintf(fpOut,"” Score E \n");

fprintf(fpOut."Sequences producing significant alignments: (bits) Value \n\n"):

link* temp;

temp = head;

while(temp->next != NULL)
{

tcmp->next->element->writeAligmentShon(ﬁ)Out):
temp = temp->next;

'

temp = head;

while(temp->next != NULL)

{
temp->next->element->writeAligment(fpQOut);
temp = temp->next;

}

bool List::search(const ELEM &elem)
{
link* temp;
temp = head->next;
while( temp)
{

if(strcmp(temp->elemem->matchRecordName,elem->matchRecordName) =0)
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return true;
temp = temp->next;

H
return false;

}

/‘t#****‘*tt*#*#t#t#t####tt**t‘#t‘t*t#tt#*t#ttttt##*t/

/% */
/* File Name: link.h */
/* Class Name: AlignmentDetail link */

/* */
/* Author: Xiaoming Wang */
r* */

/*#*#*###*##‘*#tt#ﬁ*#ﬂ###*tt#t#‘t#tt###t#*tt*t##t##**/

#ifndef _link_h
#define _link_h

# include <stdlib.h>

# include <stdio.h>

# include <iostream.h>
# include <fstream.h>

#include<assert.h>
#include<iostream.h>

#define MAX_SCORE_NUM 20
bool findStringFirst(char* src, char* substr);

/***‘#‘t‘##t‘#t*‘###*##*‘#tt#t‘tt“tt#######‘t‘t#*#t#*tt##‘i‘t*/

r* Interface File of Class AligmentDetail */

/‘#t'#*‘###*‘tt*####t‘#tt#*#tt*t#t‘t##t##tt‘tt##*###'ttt*##‘#t#/

class AligmentDetail

{

public:

AligmentDetail():

char* getAligment(FILE* fp.char* buffer, int blastType);
void writeAligment(FILE* fpOut);
void writeAligmentShort(FILE* fpOut);
char* matchRecordName:
bool matchRecordNameFlag;
int currentScoreNumber;
int aligmentLength;
int blastAligmentDetail Type;
double Score[MAX_SCORE_NUM];
double secondScore[MAX_SCORE_NUM]|;
double Expect[MAX_SCORE_NUM];
char* [dentity[MAX_SCORE_NUM];
char* Strand[MAX_SCORE_NUM];
char* Query[MAX_SCORE_NUM];
bool QueryFlag;

char* Sbjet[MAX_SCORE_NUM];
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typedef AligmentDetail* ELEM;

const int LIST_SIZE=12;

/i*‘##‘t*#t##tt*##tt*tt*#t‘###tt#t#*ttt#*t*t#t###‘tt##t‘#t#t#t#/

/* Interface File of Class link */

/‘*“##ﬁ##tttt*###t##**t*tt**#t#######tt###*#ttt*#t#‘##tt#ttt##/

class link { // A doubly-linked list node
public: /1 with freelist
ELEM element; /I ELEM value for this node
link* next; // Pointer to next node in list
link* prev; // Pointer to previous node
static link* freeList; /! Link class freelist

link(const ELEM& elemval, link* nextp =NULL, link* prevp =NULL)
{ element = elemval; next = nextp; prev = prevp; !

link(link* nextp =NULL, link* prevp = NULL)
{ next = nextp; prev = prevp; |

~link() { } // Destructor: take no action

void* operator new(size_t):  / Overloaded new operator

void operator delete(void*);  // Overloaded delete operator

b

#endif //end of class link

/‘###t*#‘##‘##*#‘#“##tt##‘t‘t‘##‘##*t#‘##t##‘#tt##‘#t/

/* */
/* File Name: link.cpp */
/* Class Name: AlignmentDetail link */
/* */
/* Author: Xiaoming Wang */
/* */

/‘t#tt##tttt##tt#t#tt####t‘t##ttt###tt##“#t###‘#t##t/

/##t###t#‘t###‘tt#t#####t‘t##tt‘t!*i###t#‘##'t#t“t#######t#/

/* Definition of Class link */
/####t#ttt#t##tt##tt#tt#t#t##tt#tttt*#t#ttt#ttttttt#tttt####/

/#include "stdafx.h"
#include <string.h>
#include "link.h"
#include "blast.h"
bool findStringFirst(char* src. char* substr)
{
char *pl,*p2;
pl =src;
p2 = substr;
int n = strlen(p2);
while (n !=0)
{
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if ( *pl!=*p2)
return false;
pl++;
p2++;
n--;
}
return true;

'

//This creates space for the freelist variable
link* link::freeList = NULL;

void* link::operator new(size_t) { // Overload new operator
if (freeList == NULL) return ::new link; // Create new space

link* temp = freeList; // Otherwise, get from freeList
freeList = freeList->next;
return temp; // Retumn the link node

i

void link::operator delete(void* ptr) { // Overload delete operator
((link*)ptr)->next = freeList: // Put on freeList
freeList = (link*)ptr;

[]

H

/t#t#‘#t‘##*#‘t*#t‘t#t“#*##tt#‘t#t‘###ttt“#t‘#*###‘#t*#tt#/

* Definition of Class AligmentDetail */
/#“t#*‘t#‘##**#‘##t##*“t“#‘*#*#“*#“#***‘l‘#‘#“#‘###*#ﬁ

AligmentDetail:: AligmentDetail()
{
matchRecordName = (char*)malloc(512);
strepy(matchRecordName,"™);
matchRecordNameFlag = false;
blastAligmentDetail Type = 0;
aligmentLength = 0;
currentScoreNumber = 0;
for (inti = 0; i < MAX_SCORE_NUM: i++)
{
Score[i] = 0.0;
secondScore[i} = 0.0;
Expect{i] =0.0;
[dentity[i] = (char*)malloc(32);
strepy(Identity{i],");
Strand[i] = (char*)malloc(32):
strepy(Strand(i],"");
Query[i] = (char*)malloc(128);
strepy(Query[i],"");
Sbjet{i] = (char*)malloc(128);
strepy(Sbjet[i],"");
t

f
QueryFlag = false;
H

char* AligmentDetail::getAligment(FILE* fp, char* buffer, int blastType)

71



char *tok, *stopString, *tempStr;
strepy(matchRecordName buffer);
if(blastType = BLASTN)

blastAligmentDetail Type = BLASTN;
else if(blastType == BLASTP)

blastAligmentDetail Type = BLASTP;
while(fgets(buffer,256.fp))
f
t

if(strcmp(buffer,"") == 0)

continue;
else if{ findStringFirst(buffer,">"))
{

}
else if (strstr(buffer,"Database:") !=NULL)

{

return buffer;

return buffer;

1

f

else if (strstr(buffer,"Length =") 1= NULL)

{
matchRecordNameFlag = true;
for( unsigned int i = 0; i < strlen(buffer) && buffer[i] 1="'="; i++);
strepy(buffer, buffer + i + 1);
aligmentLength = atoi(buffer);

H

else if (strstr(buffer,"Score =") 1= NULL)

{

tok = strtok(buffer," ");
for( unsigned int i = 0; i < strlen(tok) && tok{i] !="=" i++);
strepy(tok, tok + i + 1);
Score[currentScoreNumber] = strtod(tok.&stopString);
tempStr = stopString;
for(i = 0; i < strlen(tempStr) && tempStrfi] '='(’; i++);
strepy(tempStr, tempStr + 1 + 1);
secondScore[currentScoreNumber| = strtod(tempStr, &stopString);
tok = strtok(NULL,",");
for(i = 0; i < strlen(tok) && tok[i] !="=": i++);
strepy(tok, tok + i + 1);
Expect[currentScoreNumber] = atof(tok);
}
else if (strstr(buffer,"[dentities =") != NULL)
{
for( unsigned inti=0: i< strlen(buffer) && buffer[i] !='="; i++);
strepy(butter, buffer + i + 1);
strepy(Identity[currentScoreNumber],buffer):

h

else if (strstr(buffer,"Strand =") != NULL)

{
for( unsigned inti=0; i< strlen(buffer) && buffer{i] !="="; i++);
strepy(buffer, buffer + i + 1);
strepy(Strand[currentScoreNumber], buffer);

H

else if (findStringFirst(buffer,"Query:"))

{
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QueryFlag = false;
sprintf(Query[currentScoreNumber],"\n%s".buffer);

}

else if (strstr(buffer,"Sbjct:"))

{
QueryFlag = true;
strepy(Sbjct[currentScoreNumber] buffer);
currentScoreNumber++;

H

else if ( matchRecordNameFlag == false)

{
H
else if ( QueryFlag == false)
{

}

strcat(matchRecordName, buffer):

strcat(Query[currentScoreNumber],buffer):

[}
J

return buffer;

void AligmentDetail::writeAligment(FILE* fpOut)
{
printf(" \n\n");
printf("\n\n%s\n", matchRecordName);
printf(" Length = %d\n", aligmentLength);
fprintf(fpOut,"\n%s".matchRecordName);
fprintf{fpOut,” Length = %d\n\n",aligmentLength);
for(int i = 0; i < currentScoreNumber: i++)
{
if ( (blastAligmentDetailType == BLASTP && i == 0) || (blastAligmentDetail Type ==
BLASTN))
!
printf("Score = %f bits (%d), Expect = %2e\n",
Score(i],(int)secondScore(i],Expect(i]):
printf("Identities = %s\n", Identity{i]);
if(blastAligmentDetail Type == BLASTN)
printf("Strand = %s\n", Strand{i]);
}
printf("\n%s", Query[i]);
printf("%s\n", Sbjct{i]);

if ( (blastAligmentDetailType = BLASTP && i = 0) [| (blastAligmentDetail Type == BLASTN)

{
if((int)(Expect[i]*1000))
fprintf{fpOut,"\nScore = %.1f bits (%d) Expect =
%.3 t\n",Score[i],(im)secondScore[i],Expect[i]);
else
fprintf{fpOut,"\nScore = %.1f bits (%d) Expect =
%.Oe\n",Score[i],(int)secondScore[i].Expect[i]);
fprintf{ fpOut,"Identities = %s" Identity[i]);
if(blastAligmentDetail Type == BLASTN)
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}

fprintf(fpOut,”Strand = %s\n" Strand[i]);

fprintf(fpOut,"\n%s" Query([i]);
fprintf(fpOut,"%s" Sbjct[i]);

}

void AligmentDetail::write AligmentShort(FILE* fpOut)

{

-

char * temp, *temp2;
int len = strlen(matchRecordName);
temp = matchRecordName + 1;
temp2 = (char*)malloc(65);

if(len > 64)

'

temp2 = strncpy(temp2 temp,64);
temp2[64] = "\0';

strepy(temp2 temp);
temp2(len - 1]="0";
temp2[len-2]="0";

printf("%s... %d Yle\n" ,temp2 (Score[0] + 0.5).Expect[0]):
if((int)(Expect[0]*1000))

{

else

)

)
free(temp2);

tprintf(fpOut."%s" temp2):
if(strlen(temp2) < 64)

for (unsigned intk = 0; k < 64 - strlen(temp2): k++)
fprintf(fpOut,"” ");

i
fprintf(fpOut.”... %d %.3f\n" (int)(Score[0] + 0.5).Expect[0]):

fprintf(fpOut,"%s" temp2);
if(strlen(temp?2) < 64)
{
for (unsigned intk = 0; k < 64 - strlen(temp2); k++)
forintf{ fpOut." ");
'
fprintf(fpOut,”... %d %.0e\n",(int)(Score[0] + 0.5).Expect[0}]);
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