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ABSTRACT

TREE AUTO-CONFIGURATION FOR THE RELIABLE
MULTICAST TRANSPORT PROTOCOL
Wang Tianyu
The Reliable Multicast Transport Protocol is a hierarchical transport level
protocol for IP multicast that provides reliable data transmission. The
objective of this thesis is to define and implement the Tree
Auto-Configuration algorithm. which generates a tree topology used for
tree based reliable multicast transport protocols. The tree topology is
comprised of a pre-deployed mesh, multiple senders, local service nodes.
and a large number of receivers. We implement this algorithm in C++
based on Meta-Transport Library, which is a set of C4+ base classes

designed to present an infrastructure for building transport protocols.
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Chapter 1. Introduction.

1.1 Multicast.

There is a growing requirement for techniques that can exchange
messages among a group on the Internet. This kind of group
communication involves more than two application processes. Such
group communication requirements exist in several applications, both in
the local-area and wide-area environments. such as distributed-database
applications, client and multi-server arrangements,  multimedia
applications,  teleconferencing and  video conferencing, industrial

automation and process control.

In the current TCP/IP client-server model. this group communication
requirement cannot be satisfied etticiently: the server has to serve every
client and a separate copy of the message is sent from the source to every
single destination. Because the server has Just limited resource, it cannot
efficiently serve all data requirements from an enormous number of
clients. When such a situation occurs, the server’s capacity will become
the bottleneck of the group communication and delivering quality of

service (QoS) will become impossible.



When data is to be sent from a single source to multiple destinations,
unicast has been proven to be inefficient. A better and more reliable
alternative solution is multicast. In multicast, the sender just sends a
single copy to all receivers, and this communication group can be
identified by a single group address. The multicast group can also
encapsulate the internal states of this group and conceal the interactions
of those group members. The multicast protocols can be fault-tolerant.
despite random communication delays and communication or application
process failure. The multicast protocols can enable the application
processes to maintain consistent states of the communications and

retransmit data packets if necessary.
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Point-To-Multipoint (1to-N) Multipoint-to-Multipoint (N-to-M)

Figure I: Topologies of Multicast

Based on user’s requirement, the multicast protocols can be divided into
two groups, Point-to-Multipoint (1-to-N) protocols. which send data from

a single source to multiple destinations, and Multipoint-to-Multipoint
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(N-to-M) protocols, which involve multiple senders and multiple

receivers. The topologies of these multicast protocols are shown in Figure

.

Multicast is an efficient way to distribute information from a single
source to multiple destinations. Efficiency in multicast comes from two

ways:

a. Number of transmissions from a source.

b. Number of packets generated within the network.

A source need only transmit once instead of n times for n destinations
when multicast is used instead of multiple unicasts. Similarly. by virtue of
using a source-based tree at the network level for distribution, multicast is
able to reduce the number of packets within the network significantly

compared to multiple unicasts [1].

Multicast communication is the focus of intense study in the research
community. It is growing into a true deployment challenge for Internet
engineers. It is now being offered by some Internet service providers
(ISPs), and it is starting to be used by a number of companies offering

large-scale Internet applications and services.
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As for next-generation Internet, multicasting is one of a few techniques
without which a certain class of application is absolutely infeasible.
Although multicast has received lots of attention, it still has some issues
to be resolved. As a result of this, the multicast protocol is still evolving,

and some standards are still not finished yet.

There are several existing multicast protocols: DVMRP, MOSPF,
PIM-DM/SM, CBT, MBGP/PIM-SM/MSDP, and so on. We will discuss

these protocols later.

1.2 Motivation of Thesis.

The existing multicast protocols have some problems in scalability and
manageability. These problems come from the topologies the protocols
use and the growth of nodes involved in multicast communications. The
existing protocols do not provide reliable communication capability as

Reliable Multicast Transport Protocol (RMTP) does.

RMTP is a hierarchical protocol that provides reliable data transmission
from a few senders to a large group of receivers. An RMTP tree consists

of a single top node (TN), one or more sender nodes (S§Ds), many
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receivers (LNs), and zero or more designated receivers (DRs). There is
considerable difficulty in configuring the topology of the hierarchy in a
way that is approximately congruent with the underlying physical
network topology. So the designers of RMTP have left this issue out of
their original design and have focused their work on the core teatures

needed for reliable delivery.

In this thesis, we propose an algorithm that defines a standard process to
gencrate a tree topology used for tree based reliable multicast protocol.
such as RMTP. This algorithm is motivated by and concerned with the
requirements of the tree-based acknowledgement (TRACK) multicast
building block. and can be extended to provide other services. This tree
topology can also provide scalability and manageability to multicast

protocols.

1.3 Scope of the Thesis.

In Chapter 2, we will start our discussion with the overview of multicast
protocols. In this chapter, we describe these protocols and discuss their

advantages and disadvantages, especially RMTP.

In Chapter 3, we introduce the definition and specification of the Tree
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Auto-configuration algorithm. The terminology is also provided in this

chapter.

In Chapter 4, we give the details of the algorithm implementation. We
also introduce the Meta-Transport Library (MTL) on which the

implementation is based.

In Chapter 5, we offer our conclusion and discuss possible future work.



Chapter 2. Overview of Multicast Protocols

2.1 Multicast protocols in Network layer.

There are some multicast protocols designed in Network layer. These
protocols are divided in two groups: the Intra-domain multicast protocols

and the Inter-domain multicast protocols.

2.1.1 Intra-domain Multicast Protocols.

From the first Internet multicast experiment in 1992, the Internet
multicast protocols development was focused on a single flat topology.
There were several multicast routing protocols developed for this tlat
topology in Intemet multicast standardization and deployment. From the
middle of 1997, the research community realized the need for a
hierarchical multicast infrastructure and inter-domain routing [2]. The
existing multicast protocols before 1997 are now called intra-domain

multicast protocols.

2.1.1.1 The Standard IP Multicast Model.

Stephen Deering is responsible for describing the standard multicast

7



model for [P networks [3]. This IP multicast model describes the explicit
and implicit requirement for how end systems in an [P network send and

receive multicast packets. The model has [4]:

a. [P-style semantics. A source can send multicast packets at any time,
with no need to register or to schedule transmission. [P multicast is
based on User Datagram Protocol (UDP), so packets are delivered
using a best-eftort policy.

b. Open groups. Sources only need to know a multicast address. They do
not need to know group membership, and they do not need to be a
member of the multicast group to which they are sending. A group can
have any number of sources.

¢. Dynamic groups. Multicast group members can join and leave a
multicast group at will. There is no need to register, synchronize, or

negotiate with a centralized group management entity.

The standard IP multicast model is an end-system specification and does
not discuss requirements for how the network should perform routing.
The model also does not specify any mechanisms for providing quality of

service, security, or address allocation.

2.1.1.2 The early Multicast Backbone (MBone) and the
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DVMRP protocol.

The early eftorts of building multicast-capable Internet and creation of
Multicast Backbone, MBone, is motivated by Stephen Deering’s [P

multicast model. In March 1992, the MBone carried its first worldwide

Multicast router

o
O Multicast router

Multicast link

Unicast link with tunnel

Figure 2. A tunnel-based topology of early MBone.

event when 20 sites received audio from the meeting of the IETF in San
Diego. While the conferencing software itself represented a considerable
accomplishment, the most significant achievement here was the

deployment of a virtual multicast network (2]



A daemon process called mrouted was running on workstations, and this
process provided the multicast routing function. While recetving
unicast-encapsulated multicast packets from an incoming interface, the
mrouted process will forward the packet through a proper set of outgoing
interfaces. Connectivity among these machines is provided by
point-to-point [P-encapsulated tunnel [2]. Each tunnel is a logical link

between end-points, but it can cross several routers.

The original multicast routing protocol was the Distance Vector Multicast
Routing Protocol (DVMRP). DVMRP constructs source-based multicast
trecs using Reverse-Path Multicast (RPM) protocol. So the multicast tree
built by DVMRP is called a reverse shortest path tree. The basic RPM
algorithm in this protocol is described as follow:

a. The source broadcasts each packet on its local network. An attached
router receives the packet and sends it on all outgoing interfaces.

b. Each router that receives a packet performs a reverse path forwarding
(RPF) check. That is, each router checks to see if the incoming
interface on which a multicast is received is the interface the router
should use as an outgoing interface to reach the source. In this way, a
router will choose to only receive packets on the one interface that it

believes is the most efficient path to the source. All packets received
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on the proper interface are forwarded on all outgoing interfaces. All
other packets will be discarded silently.

Eventually a packet will reach a router with some number of attached
hosts. This leaf router will check to see if it knows of any group
members on any of its attached subnets. A router discovers the
existence of group members by periodically issuing Internet Group
Management Protocol (IGMP) queries. If there are members, the leaf
router forwards the multicast packets to the subnet. Otherwise. the leaf
router will send a prune message toward the source on the RPF
interface, that is, the interface the leaf router would use to forward
packets to the source.

Prune packets are forwarded back toward the source. and routers along
the way create prune state for the interface on which the prune
message is received. It prune messages are received on all interfaces
except the RPF interface, the router will send a prune message of its

own toward the source [2].

The procedure of reverse shortest path tree construction is shown in

Figure 3. In Figure 3, the arrow lines are the direction of datagram flows.

The dashed lines are the direction of prune message tlows.

[n DVMREP, if a router is on the reverse shortest path tree and receives



datagrams from the source on the proper interface, it forwards received
datagrams on the other interfaces only if the interface | on which the
datagram arrives lies on the shortest path back to source. There are
datagrams for a (source, group) pair periodically sending across the
network, shown in Figure 3b. If a leaf router has no group members on its
attached subnet, it periodically sends prune message toward the source,
shown in Figure 3c. Periodically the prune state times out, and the
process of forwarding datagrams across the entire network and trimming
tree branches based on prune message received repeats [4]. The resulting

shortest path tree is shown in Figure 3d.

Figure 3. The tree construction process in DVMRP,
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This method is a primitive multicast routing algorithm. It is actually a
controlled form of flooding algorithm. It makes routers send a lot of
prune message and forward lots of packets to achieve a better and
dynamic routing solution. The large number of prunes and forwarded
packets makes this algorithm inefficient and infeasible in 2 wide-area
network, because there are thousands of routers that may be interested in
this multicast session and there may also be thousands of multicast
sessions on the Internet. A method to reduce the prune latency is to add a
Graft message to the original protocol. If a router has sent a prune
message previously and finds a new multicast group member on its
attached subnet, it sends a Graft message to the upstream router. Then the
upstream router that receives the Graft message updates its prune states

accordingly.

2.1.1.3 Multicast Extensions to Open Shortest Path First
(MOSPF)

This method is based on extending the Open Shortest Path First (OSPF)
protocol to provide multicast routing capacity. In OSPF, each router keeps
topological and state information of the routing domain, by link-state

advertisement (LSA) flooding. Similarly, MOSPF routers use IGMP to
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monitor multicast membership on directly attached subnets and flood an
OSPF area with information about group receivers. This allows all
MOSPF routers in this area to have the same view of group membership
(2]. Each MOSPF router can independently construct the shortest-path
tree for each source and group by Dijkstra’s algorithm, in the same way
as in OSPF. After the multicast tree is built, group membership is used to
prune the branches that do not lead to subnets with group members. The
result is a pruned shortest-path tree rooted at the source (4]. MOSPF is
considered as a dense mode multicast protocol because the membership
information is broadcast throughout the arca and to all the MOSPFE

routers.

2.1.1.4 Protocol Independent Multicast — Dense Mode
(PIM-DM)

Dense mode refers to an environment where the multicast members are
relatively densely packed and bandwidth is plentiful [4]. PIM-DM s
similar to DVMRP. The PIM-DM uses the RPM algorithm and uses Gruft
messages to add branches that have been previously pruned. There are
only two differences between these two kinds of multicast protocol. The
first one is that PIM takes advantage of the IP routing information to

perform the RPF checks, while DVMRP maintains its own routing table.
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The second is that DVMRP tries to avoid sending unnecessary packets to
its neighbors who will generate prune message based on a failed RPF
check. So the DVMPF router builds its routing table in a way that the
routing table only includes the downstream routers that use the given
router to reach the source. PIM-DM simply floods packets on all outgoing

interfaces.

The multicast protocols described above are all dense mode multicast
protocols. which broadcast membership information throughout the
network. Now let us discuss another class of multicast protocol, sparse
mode multicast protocols, which explicitly send join requests to the router,
which acts as a core. without widely broadcasting traffic and triggering
the prune message. The dense mode multicast protocols are usually used
for an area where a lot of members are located in the area and interested
in the multicast session. The sparse mode multicast protocols are used
when there are only a few widely distributed group members. We will

discuss two kinds of sparse mode multicast protocols: CBT and PIM-SM.

2.1.1.5 The Core Based Tree (CBT)

CBT uses the basic sparse mode paradigm to create a single shared tree

used by all sources [2]. The root of this shared tree is called a core. All
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senders send their data to the core, and the core forwards these data
packet to all receivers. Receivers send explicit Join messages to the core.
The shared tree is a bi-directional tree, which is more complicated but
more efficient when a packet traveling from a source to the core comes

across branches of the multicast tree.

A host first sends a join-request message to the local router. This step is to
explicitly express its interest in the multicast session. Then the local
router will contact the next-hop router on the shortest path toward the
core router. The join-request message sets up transient join states on the
router on the path it traverses. The join-request travels hop by hop toward
the core, until a core or an on-tree router receives this message and
accepts this join request. Then the router that accepts this new child sends
a join-acknowledgement back along the reverse path to the router, which
initiates the join request. When a router on the path, which received the
Join-request  previously and is in join  state, receives this
join-acknowledgement, it updates its forwarding table, becomes an
on-tree router, and forwards the join-acknowledgement toward the

requesting router.

Figure 4 shows the member join procedure in CBT. The Rl and R2

represent the direction of join-request messages, and Al and A2 represent

16



the direction of join-acknowledgement messages.

RP

Al

Request router with

a new member

Figure 4. The member join process in CBT.

There is a dynamic and automatic tree maintenance mechanism in CBT.
The routers can periodically send a CBT “keep-alive” (i.e.. echo-request)
to its parent router on the tree. The parent router sends a response (i.c..
echo-reply) back to its child, if the parent receives a “keep-alive”
message from a valid child. If there is no response in a predefined time
threshold, the child should send a “quit-notification” message toward the
core and send “flush-tree” message to all downstream branches. [n this
way, all its child routers can know the changes of the multicast tree. leave
the tree. and re-join individually, if it is necessary. If a member host wants
to leave the multicast tree and its directly attached router does not have

any other member on its subnet, the local router sends a



“quit-notification” message to its parent and deletes the corresponding

forwarding entry.

During data transmission, the data packets flow from the source to its
parents and its children. Then the parent of the source sends the
datagrams to its children other than the source, and forwards toward the
core. This procedure continues until the datagrams reach the core. Then

the core sends datagrams to other downstream branches.

2.1.1.6 Protocol Independent Multicast — Sparse Mode
(PIM-SM)

Sparse mode refers to an environment where group members are
distributed across many regions of the network, and bandwidth is not
necessarily widely available. PIM-SM is similar o the PIM-DM in
routing decision. It uses the underlying unicast routing table. However, it
uses the similar tree construction algorithm to that used by CBT. PIM-SM
uses a unidirectional-shared tree:
a. A core called a rendezvous point (RP) in PIM terminology must be
configured. Ditterent groups may use ditferent routers for RP’s, but a
group can only have a single RP. All routers must discover

information about which routers in the network are RP’s and the
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c

mapping of multicast groups to RP’s. RP discovery is done using a
bootstrap protocol. However, because the RP discovery mechanism is
not included in the PIM-SMvl specification, each vendor
implementation of PIM-SMv1 has its own RP discovery mechanism.
For PIM-SMv2, the bootstrap protocol is included in the protocol
specification. The basic function of bootstrap protocol, in additional to
RP discovery, is to provide robustness on case of RP tailure. The
bootstrap protocol includes mechanisms to select an alternate RP if the

primary RP goes down.

A receiver that wishes to join the multicast tree contacts its directly
attached router via IGMP query/report messages. The local router then
creates a forwarding cache for (*, group) pair, which means that it
joins all sources to that group, and explicitly joins the distribution tree
by sending a unicast PIM-join message to the group RP. An
intermediate router forwards the PIM-join message and creates the (*,
group) pair. As with other multicast protocols, the tree is a reverse
shortest path tree - the join message follows a reverse path from

receivers to the RP.

When a source host first transmits a multicast packet to a group, the

local router encapsulates the packet in a PIM-register packet and

19



unicasts it to the RP. When an RP receives one of these PIM-register
packets, a number of actions are possible. First, if the RP has
forwarding state of the group (i.e., there are receivers who have joined
the group), the encapsulation is stripped off the packet, and it is sent

on the shared tree. However, if the RP does not have forwarding state

RP

Request router with a

new member

Source
Figure 5. The member join process in PIM-SM.
for the group. it sends a register-stop message to the source. This
avoids wasting bandwidth between the source and the RP, Second, the
RP may wish to send a PIM-join message toward the source. By
establishing multicast forwarding state between the source and the RP,
the RP can receive the source’s traffic as multicast and avoid the

overhead of encapsulation [2].

The basic goal is to use RP as a “meeting place” for source and receivers.
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A PIM-SM tree is rooted at the RP and constructed to span all the group
members. Receivers send an explicit join message to the RP. Forwarding
State is created in each router along the path from the receiver to the RP. A
single shared tree, rooted at the RP, is formed for each group. The source
first sends PIM-register message to RP via its local router. The primary
RP then transmits a PIM-join message back to source router. Upon receipt
of the PIM-join message from the RP, the source router then ceases to
encapsulate data packets in RIM-registers but forwards them in the native

multicast format to the RP.

Figure 5 show the PIM-SM tree built by the procedure mentioned above.
in Figure 5, S1 is the PIM-register message sent from the source. $2 and
S3 are PIM-join messages sent from RP to the source. RI and R2 are

PIM-join messages sent from a new group member to the RP.

PIM-SM also has a dynamic refresh mechanism. In the steady state, each
router periodically sends PIM-join/prune messages, for each router active
PIM route entry, to capture state, topology, and membership changes [4].
A PIM-join/prune message may also be sent based on some events that
new route entries are added for some new sources. There is no form of
explicit acknowledgement for PIM-join/prune messages. The periodic

refresh mechanism can help routers recover from lost packets.
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The sparse mode multicast protocols have some advantage over the dense
mode multicast protocols. First, the sparse mode protocols have better
scalability in terms of routing states. The routing states are only kept in
the routers on the path between the source and receivers in spars¢ mode
protocol, while the dense mode protocols require all routers to keep
routing states. Second, the sparse mode protocols require receivers to join
the shared tree explicitly, so the data flows across only the links that have

been explicitly added to the tree.

The sparse mode multicast protocol also have some disadvantages. First,
the RP can a single point of failure. Using bootstrap protocols. which can
select an alternate RP, can solve this problem. Second. the RP can be the
bottleneck of multicast traffic. The third problem is that having data
forwarding from a source to RP and then to each recleiver means that a
non-optimal path may exist from source to receivers. The CBT protocol
solves the second and the third problem by using a bi-directional shared
tree. The PIM-SM provides a mechanism to switch the shared tree to the
shortest path tree to solve these problems. When some traffic rate
threshold is exceeded, this mechanism is triggered. Forwarding state is
changed, so that the data flow is sent from the source to the receivers

directly across the shortest path, instead of through the RP.

22



2.1.1.7 Problems with intra-domain multicast

As the MBone has grown, it has suffered from an increasing number of
problems, and these problems have been occurring with increasing
frequency [2]. The problems of scalability and manageability are the two

most important problems.

Scalability problem comes from inherent instability of a large, flat
network and the organizational mechanisms that do not provide
significant routing aggregation. At its peak, the MBone had almost
10,000 routes. Unfortunately, most of these routes had long prefixes
(between /28 and /32). which meant that very few hosts could be
represented in cach routing table entry [2]. The best solution for this
problem is route aggregation and hierarchical routing. The problem now

is how to apply the solutions to multicast.

The manageability problem comes from the fact that there are no protocol
mechanisms to build a hierarchical multicast routing topology. The
current model of Internet is to establish autonomous system (AS)
boundaries between Internet domains. Autonomous systems are owned

and managed by difterent organizations. Entities in one AS are typically
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not trusted by entities in another AS. As a result, routing information is
very carefully exchanged across AS boundaries. Peering relationships
among ASes are provisioned using the Border Gateway Protocol (BGP),
which provides routing abstraction and policy control. Because the
current intra-domain multicast routing protocols do not provide such an
inter-domain protocol, it does not offer the protection across domain
boundaries. When there is a single flat topology connected using tunnels,

routing problems can easily spread throughout the topology.

Figure 6. The problem of connecting sources and receivers across
two sparse mode domains.

As an example, let us discuss a problem with PIM-SM. It is difficult to
inform an RP in one domain that there is a source in another domain. The
underlying assumption is that a multicast group, which spans two or more
domains, can have multiple RPs, each domain has only one RP. There is
no mechanism to connect the various intra-domain multicast trees
together. When sources are located in different domains, as shown in

Figure 6, receivers cannot discover the existence of sources in another

24




domain using different RPs. There is no mechanism for RPs to
communicate with each other when one receives a source register

message.

2.1.2 Inter-domain Multicast Protocols.

Since 1997, multicast research community realized the need tor a
hierarchical multicast infrastructure and inter-domain routing.
Inter-domain multicast has evolved out of the need to provide scalable,
hierarchical, Internet-wide multicast [2]. However. the inter-domain
technology is relatively immature. Protocols that provide the necessary
functionality are being considered by the IETF and are being evaluated
through extensive deployment. Because the protocols lack elegance and
long-term scalability, they are considered as a near-term solution and

possibly only an interim solution.

2.1.2.1 Carrying Multicast Routes in BGP.

[t is a straightforward extension of the inter-domain unicast routing and
follows the need of making multicast routing hierarchical in the same
way as unicast routing. BGP provides route aggregation and abstraction

as well as hop-by-hop routing policy. ISPs or administrators can choose
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any routing protocol within their own domains.

BGP can be used to reliably exchange network reachability information
among ASes. This information is used to compute an end-to-end
distance-vector-style path of AS numbers. Each AS can advertise the
routes it can reach and the associated costs with the routes. Then the
border routers can find the proper route to reach any network by using a
distance vector algorithm together with full path information, which is an

improvement over the traditional distance vector algorithm.

The functionality provided by BGP, and well-understood paradigm for
connecting ASes. are important catalysts for supporting interdomain
multicast. A version of BGP, which can carry multicast routes, is called
Multi-protocol Extensions to BGP4 (MBGP). The MBGP is able to
carry multi-protocol routes by adding the Subsequent Address Family
I[dentifier (SAFI) to two BGP4 messages: MP_REACH_NLRI and
MP_UNREACH_NLRI. The SAFI field can specify unicast, multicast, or

unicast / multicast.

The MBGP can not only provide the hierarchical routing and policy
decision for inter-domain multicast, but also use different topologies for

unicast and multicast traffic. With MBGP, each router only needs to know
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its own domain topology and routes to reach other domains, instead of the
entire flat multicast topology. The domains can be connected together by

different connections for unicast and multicast, as one case in Figure 7.

Figure 7. Inter-domain multicast topology running BGP and/or MBGP

In Figure 7, dotted lines are Multicast-capable connections between
intra-domain multicast clouds (ASes). and solid line is a unicast
connection. MBGP messages do not carry information about multicast
groups (i.e., class D addresses). MBGP information is used when a join
message is sent from a RP or receiver toward the source [2]. An MBGP
message can carry hop-by-hop routing information between domains.
This kind of message can help the join message to find out the best
reverse path to the RP or receiver. If the topology for multicast between
domains is the same as the unicast topology, the reverse path is the same
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next hop that unicast traffic would follow. MBGP allows network
administrators to set up a different reverse path for a join message to
follow, and a different forward path for data packets.

MBGP is not a complete solution for inter-domain multicast routing. It
Just provides next-hop information between domains. There is still a need

for a tree construction solution.

2.1.2.2 The Multicast Source Discovery Protocol.

PIM-SM was chosen to build the multicast tree in the current short-term
inter-domain multicast solution, because it can avoid the broadcast and
prune mcthod to build the tree. MBGP is chosen to provide the boundary
routing information. To solve the problem shown in Figure 6, the
multicast source discovery protocol (MSDP) was created. This protocol
works by having representatives in each domain announce to other
domains the existence of an active source. This protocol is run in the RP
of a PIM-SM tree in a domain. The basic operation step is described as
follows:

) When a new source is active in one domain, it registers itself with the

domain’s RP.
2) The MSDP peer in this domain will detect the existence of the active

source, and send a Source Active (SA) message to all directly
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3)

4)

5)

6)

connected MSDP peers.

MSDP message flooding:

-MSDP peers that receive an SA message will perform a peer-RPF
check. The MSDP peer that received the SA message will check to see
if the MSDP peer that sent the message is along the correct
MSDP-peer path. These peer-RPF checks are necessary to prevent SA
message looping.

-If an MSDP peer receives an SA message on the correct interface, the
message is forwarded to all MSDP peers except the one trom which
the message was received. This is called peer-RPF flooding.

Within a domain, an MSDP peer (also the RP) will check to see it it
has state for any group members in that domain. If state does exist, the
RP will send a PIM join message to the source address advertised in
the SA message.

If data is contained in the message, the RP then forwards it on the
multicast tree. Once group members receive data, they may choose to
switch to a shortest path tree using PIM-SM conventions.

Steps 3-5 are repeated until all MSDP peers have received the SA

message and all group members are receiving data from the source [2].

The solution is referred to with the abbreviation for the three relevant

protocols:  MBGP/PIM-SM/MSDP.  MBGP/PIM-SM/MSDP s a
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functional solution largely built on existing protocols. It is already

deployed on the Internet with a fair amount of success,

However, MBGP/PIM-SM/MSDP still has some disadvantages. The first
problem is the scalability problem. Because of the way MSDP operates, if
multicast becomes tremendously successful, the overhead of MSDP may
become too large [2]. If there are thousands of multicast sources located
in thousands of domains, the number of SA messages being tlooded could

become very large.

Other problems occur in dynamic groups. In MSDP. information about
the existence of sources must first be transmitted before routing state can
be created. When groups are dynamic. due to either bursty sources and
frequent group member join/leave events. the overhead of managing the
group can be significant [2]. First, because SA messages are only sent
periodically, there may be a significant delay between when new
receivers join and when they hear the next SA message. To solve this
problem, MSDP peers may be configured to cache SA messages. The
trade-off is the extra state and complexity of maintaining the cache.
Another problem is due to bursty source, which sends a short packet
bursts separated by silent periods on the order of several minutes. It is

difficult to establish a multicast tree for such a kind of source. When one
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or a few packets are sent to the RP, the RP will hear the packet and flood
an SA message, and RPs in other domain will send Join message back to
the source. However, because no multicast forwarding state existed when
the original packet was sent and it takes time to flood SA message and to
establish forwarding state in RPs in other domain, the original burst will
not reach new receivers. Once forwarding states are created in all RPs, all
subsequent packets will reach these receivers. However if the period of
silence between packet-bursts exceeds the torwarding state timeout value,
the forwarding states will be discarded. When another burst is sent, the
procedure described above will be repeated. The initial packets are lost

and no packets from bursty source reach group members.

2.2. Multicast Protocols in the Transport layer

There are some multicast protocols designed in Transport layer. We

introduce some Transport Multicast protocols in this section: Local Group

Multicast Protocol and Reliable Multicast Transport protocol.

2.2.1. Local Group based Multicast Protocol.

Local Group based Multicast Protocol is a multicast protocol designed in

the Transport layer by Institute of Telematics. University of Karlsruhe.
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The local Group based Multicast Protocol (LGMP) defines a hybrid
approach. It supports reliable and semi-reliable transfer of both

continuous media and data tiles [15].

LGMP is based on the principle of sub-grouping for local error recovery
and local acknowledgement processing. Receivers dynamically organize
themselves into subgroups, which are called Local Groups. They
dynamically select a Group Controller to coordinate local transmissions
and to handle status reposts. The selection of appropriate receivers as
Group Controller is based on the current state of the network and of the
receivers themselves. However, the selection of Group Controller is not a
task of a data transfer protocol like LGMP. The author of LGMP has
defined and implemented a separated configuration protocol. which is
called Dynamic Configuration Protocol (DCP). Packet errors are firstly
recovered inside Local Groups using a receiver-initiated approach.
Missing data units are requested from the sender or a higher level Group
Controller only if not even a single number of the Local Group holds a
copy of the missing data unit. Otherwise, errors will be recovered by local
retransmissions. Full reliability and efficient buffer utilization are ensured

by a novel, three-state acknowledgement scheme [15].

DCP provides mechanisms for an automated establishment of virtual
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group structures and for dynamic reconfiguration in accordance with the
current network load and group membership. No manual administration is
necessary. The definition of subgroups is based on a combination of
multiple metrics depending on the QoS requirements of the user. DCP is
self-organizing and tolerant with respect to tailing controllers. Each
Group Controller periodically sends packets of type LG_ADVERTISE to
announce its existence. The DCP uses an Expanded Ring Advertisement
scheme to reduce network load while allowing short reaction times upon
changes within the local scope of a receiver. Group Controllers send their
advertise message with dynamically changing TTL. values, such as 15, 31,
I5,63. 15,31, 15, 127 and so on. Receivers within a scope of 15 will get
each of the advertise messages. If the distance of a host is between 16 and
31 hops, it will receive every second advertisement. This scheme
continues in a way that every 16" advertise message will be distributed
worldwide. The Expanded Ring Advertisement ensures that the frequency
of advertise message decreases exponentially with increasing scope. The
Expanded Ring Advertisement could also be used to estimate the number

of hops between a receiver and a Group Controller [15].

Initially, it is the founder of a Local Group that will become the Group
Controller. Due to the joining and dropping out of receivers, the group

structure has to be reconfigured dynamically during the lifetime of an
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association. It might be beneficial to split a growing Local Group or to
merge several waning subgroups. In addition, a Joining receiver might be
a better Group Controller than the current one. Therefore, a dynamic
reconfiguration mechanism is used to choose a new Group Controller and
rebuild the local group. All groups are bound to a tree that is the
backbone of the multicast transmission. This multicast tree traverses most

of the distance in the network.

2.2.2. Reliable Multicast Transport Protocol.

[P multicast is an Internet Engineering Task Force (IETF) standard that
allows a sender to unreliably send a single packet to thousands of
receivers. However. most applications require some form of reliability to
recover from link-level losses and from the packet losses that are an
inherent by-product of Internet congestion control [6]. Reliable Multicast
Transport Protocol Il is a transport protocol for IP multicast, which draws
heavily on the original RMTP protocol [7]. The original RMTP protocol
provided groundbreaking work in the use of a tree topology for
acknowledgement (ACK) aggregation and local recovery, but it does not
support negative ACKs (NACKSs) or forward error control (FEC). Also, it
only provides rudimentary control on the amount of ACK traffic it

generates, and its automatic tree configuration algorithms are not suited
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to all environments. Finally, it does not include explicit network
management, counted membership, or time bounded reliability. So the

[ETF extended the core idea of RMTP to RMTP-II.

RMTP-II is a hierarchical protocol that provides reliable data
transmission from a few senders to a large group of receivers. An
RMTP-II tree consists of a single top node (TN), one or more sender
nodes (SDs), many receivers (LNs), and zero or more designated
receivers (DRs). There may be a backup top node. The topology of an

RMTP-II tree is shown in Figure 8.

Sender Nade [ —> Top Top Node
Backup

—Pp{ Designated —gp{  Designated

Receiver Node Receiver Node
Receiver Receiver Receiver Recciver -
\
Muilticast Control Channel

Unicast Control Channel

. Multicast data Channel

Figure 8. An RMTP-II tree.
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The top node is assigned administratively and is the core of the tree [8]. It
can control and dynamically change the transmission parameters and
congestion parameters for each sender. One of its most important tasks is
to aggregate the Tree-Based ACKs (TRACKSs) received from its children
and then send aggregated TRACKSs to senders. The TRACK aggregation
is essential in guaranteeing data reliability. The top node can also accept
unicast data from the sender and multicast these data to the group, when
the sender is not multicast capable. It is also the core of membership

management and data stream ID allocation.

The sender node maintains the values of variables relating to the data
stream: the size of the data queue, the packet admission rate. the sequence
number of the lowest numbered packet that needs to be retransmitted. and
the sequence number of the highest numbered packet in the data queue. [t
maintains data queue according to the TRACK received from the top

node. It can retransmit a data packet if necessary.

The designated receiver can aggregate ACKs received from its children,
send an aggregated ACK to its parent, and forward received NACK to its
parent. The designated receiver accumulates the membership count of its
receivers, and passes this count to its parent [8]. It can forward data

retransmission received from its parent, and also it can bufter the data for
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potential local data recovery.

A receiver joins the data stream by sending an explicit JoinStream
message to its parent. It can send ACK for stable data and send NACK to

expedite the recovery for missing data packets.

The top node (TN) and designated receivers (DRs) have local control
channels. The control channel of a TN or DR is a multicast group that
connects to all its children and is used for local multicast retransmission
of lost packets. This multicast control channel is also used to transfer
periodic heartbeat messages that inform children of the existence and
functionality of itself. An RMTP-II tree can support multiple multicast
data channels. A sender can use one or more data channel. and receivers
must join all the data channels that they are interested in. A receiver uses
a unicast control channel to periodically send TRACK to its parent. The
TRACKS inform the parents about the packets that a receiver has or has
not received. Each parent receives all the TRACKSs from its children and
sends a single aggregated TRACK to its parent via the unicast control
channel. The TN can also send an aggregated TRACK to the sender via

the unicast control channel.

The core of RMTP-II is a set of algorithms that provide and manage
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Tree-Based ACKs (TRACKs), which is a key requircment of many
applications that need group management and positive confirmation of
data delivery to receivers. FEC and NACK algorithms are optional in
RMTP-IL. FEC is required in order to scale in the face of independent loss,

and NACKs are essential for providing low-latency delivery in the face of

packet loss.

The following is a list of the top RMTP-II design goals [7]:

I. Few-to-many delivery: The protocol supports up to a few senders per

transport session, but without any ordering guarantees across these
senders. Its primary focus is on scaling the number of receivers.
2. Receiver scalability: This is a primary design goal. Scalability is
achieved through the combination of the following:
a. Hierarchical positive ACKs, with strict management of the amount
of retumn traffic.

b. Local retransmission from Designated receivers (DRs).

]

Use of optional FEC to reduce the effects of independently
distributed loss.

d. Use of optional NACKs to allow TRACKs to be sent very
infrequently; NACKs are scoped in a hierarchical fashion, as
opposed to being sent to the entire group.

3. Strong reliability guarantees: The protocol provides a fully distributed
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group membership and acknowledgement algorithm, which allows
TRACKs to give positive confirmation when all receivers have
delivered a packet.

. Explicit network management: All senders must connect to the TN in
order to send to the group. The TN provides a centralized point of
management and control for network managers.

- Asymmetrical network support: The protocol differentiates between
the control channel and the data channel. to allow the protocol to work
in fundamentally asymmetrical environments, such as with a satellite
downlink and a terrestrial return path.

. Optional router assist: It has been well demonstrated that special
software in the routers can increase the scalability of a protocol.
However. it IP multicast is an example, this software tends to take an
extremely long time to deploy widely. Hence. the protocol is designed
to take advantage of generic router assist when it becomes available.,
but without requiring it for scalability.

- Support of congestion control: RMTP-II is designed to support
TCP-friendly congestion control. Its hierarchical positive ACKs allow
it to solve two of the most difficult problems: slow start and scalable
RTT measurement. Its use of hierarchy also allows it to take advantage
of restricted worse edge calculations.

. No requirement of many-to-many multicastt Some multicast
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deployments do not support receivers being able to source multicast
packets to the same group a sender is using. RMTP-II is designed not
to require this feature.

9. Simplicity: While more complex than some protocols. RMTP-]I
strives to be as simple as possible. One way it does this is by

differentiating the roles of the group members.

Step3: TN backup

Step2: Sender connection.

connection.
Sender Node [ ’ Top Top Node
Backup
Stepta: DRs
connechion

. Designated —pp  Designated -

Receiver Node Receiver Node

Stepl: Recewver

Conanection

Receiver P Receiver L’ Receiver | Receiver -

Figure 9. The normal operation of nodes Joining the RMTP tree.

Figure 9 shows the normal operation process of nodes joining the RMTP
tree. At the beginning, time O, there are only a top node and two DRs
running, but they are not connected to each other. At time I, when four
receivers want to join the tree, they contact the two DRs and join the tree.
Then the DRs join the TN according to the join request of their children.

At time 2, a sender joins the tree by connecting to the TN, and advertises
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a new multicast data channel. The receivers will join the new data stream.
The TN backup can join the tree at time 3.

In order to join a tree, each node, except the top node, sends a JoinStream
packet to its parent node and sets a Join timer for the confirmation [8]. If
the parent can accept the join request and confirm immediately, it
responds with a BindConfirm message, or it responds with a BindACK, if
it needs some time to process the join request. [t sends BindConfirm, after
it fully processes the request. Each node can leave the data stream by
sending LeaveStream to its parent, and its parent responds to the leave
request by sending LeaveConfirm. A designated receiver can only leave

the tree when it does not have any child.

The hierarchical structure of RMTP-1I has some disadvantages. First, the
TN could be a potential bottleneck in the multicast transmission because
of the risk of generating more control traffic than a NACK-only protocol;
and it would seriously damage the multicast group if the TN were to fail.
RMTP-II provides a set of smoothing and control algorithms to manage
and limit the TRACK control traffic. These algorithms do not eliminate
the control traffic trade-off, but allow it to be explicitly monitored and
controlled {7]. RMTP-II also minimizes the risk that TN becomes the
bottleneck of the system by minimizing the amount of work done by the

TN, including restricting TN from transmission of the data packet.
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RMTP-II also provides an optional hot backup of the top node to
eliminate the potential single point failure of top node. However, the risk
is still very high. Even more important, there is considerable difficulty in
configuring the topology of the hierarchy in a way that is approximately
congruent with the underlying physical network topology [7]. RMTP-II
provides an algorithm for automatically configuring the tree if there is
only a -single level hierarchy, which can be sufficient for real-time
applications of up to 100 or more receivers and non-real-time applications
of up to 1000 or more receivers. For large deployment, RMTP-II assumes
the existence of manual contiguration files or a separate session manager
component. to handle the configuration of interior tree nodes (DRs) [7].
So the designers of RMTP-II have left this issue out of their original
design and focus their work on the core features needed for reliable

delivery.
2.2.3. TRACK algorithm

The Internet Engineering Task Force (IETF) defines a building block,
Tree Based Acknowledge (TRACK) in Reliable Multicast Protocols. This
building block contains functions relating to positive acknowledgements
and hierarchical tree construction and maintenance. It is designed to be
useful as part of overlay multicast system that wishes to otfer efficient
confirmed delivery of multicast messages. The TRACK relies on a repair
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tree to provide good-put as well as confirmed delivery. It provides some
functionality: Hierarchical Session Creation and Maintenance. TRACK
generation, Local Recovery, TRACK aggregation, and Distributed RTT

Calculations [14].

The Hierarchical Session Creation and Maintenance functions are a set of
functionality that is responsible for creating and maintaining the
hierarchical tree of Repair Heads and Receivers. The TRACK generation
is a set of functionality that is responsible for periodically generating
TRACK messages from all receivers to acknowledge receipt of data,
report missing messages, advance flow control windows. provide
roundtrip time measurements and provide other group management
information. The functionality of Local Recovery describes how repair
heads maintain state on their children and provide repairs in response to
requests for retransmission contained in TRACK messages. In order to
provide the highest levels of scalability and reliability, interior tree nodes
provide aggregation of control traffic flowing up the tree. The aggregated
feedback information includes that used for end-to-end confirmed
delivery, flow control, congestion control. and group membership

monitoring and management, as described in section 2.2.2 [14].

The TRACK algorithm is proposed for one layer topology and expected
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to extend to multiple layers. The repair tree is the infrastructure of the
TRACK algorithm. However, the TRACK building block for Reliable
Multicast Transport protocol does not provide an auto-configuration

mechanism to build such a tree.

2.3 Summary and meotivation.

As we can see in this chapter, there are some intra-domain multicast
protocols designed in Network layer. These multicast protocols are
designed to distribute data on the network. These network protocols can
be divided into two groups: dense mode and sparse mode. The dense
mode multicast protocols construct source-based trees and are suitable for
multicast within a LAN. The sparse mode multicast protocols construct
shared trees and are suitable for autonomous systems (ASes). As we
discussed in section 2.1.1.7, these intra-domain protocols have some
problems in manageability and scalability. The flat topology of these
protocols cannot support inter-domain multicast communications. An
example is the problem of RP advertisement in PIM-SM. Therefore the
Internet research community introduced hierarchical inter-domain
multicast protocols to solve these problems. The hierarchical topology
can provide inter-domain capacity to multicast protocols. However, these

inter-domain protocols are only short-term solutions and have some



problems as we discussed in section 2.1.2.2. The requirement for

long-term solutions is rising.

Some multicast protocols are developed in transport layer. These
protocols can be divided into two groups: multiple-to-multiple and
one-to-multiple. The one-to-multiple transport protocols are used to
distribute data packets from a single sender to a large number of receivers.
These protocols need a tree topology. The multiple-to-multiple transport
multicast protocols are based on collaborative groups and comprised of a
small number of senders and a large number of receivers. These protocols
need a multiple header tree topology to support multiple senders

distributing data packets across the tree.

We introduced Local Group based Multicast Protocol (LGMP) and
Reliable Multicast Transport Protocol (RMTP). The RMTP-II is an
Internet Engineering Task Force (IETF) standard of reliable multicast
transport protocol. This protocol has some problems. To support hierarchy,
it needs interior nodes to bind to a tree. However, the tree topology is
difficult to construct. Moreover, it needs multiple trees to support
multiple multicast instances. These multiple trees may share a lot of the
edges. This feature makes RMTP protocol inefficient and difficult to

manage.
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A tree topology is essential in all multicast protocols, both network layer
and transport layer. It is the infrastructure of multicast data distribution
and membership management. We develop our Tree Auto-Configuration
algorithm as a solution to these problems we mentioned above. There are

two important features in the topology generated by this algorithm: a

mesh and the local groups.

We divided receivers into multiple local groups. Each group is comprised
of a local service node and multiple receivers within a LAN. The local
service node is responsible of managing local groups, contacting to upper
level nodes. and distributing data packets among the local group. The
group division can support multiple source-based trees. The local service
node can join multiple multicast sessions and distribute received data
packets among the local group. The receivers on different multicast trees
can share the local service node as a common data source. The feature
can improve efficiency of muiticast and solve the problem for multiple

instances in RMTP.

To bind all local groups together, this algorithm builds a mesh that is a
group of pre-deployed service nodes. All local groups bind to the mesh

directly or indirectly. Each sender can have its source-based tree. [t
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chooses a node on the mesh as the root of the multicast tree and sends
data to the root. The root distributes data within the mesh. Each service
node on the mesh sends data to its children, local service nodes. The local
service nodes torward data to other local service nodes or leaf nodes,
receivers. The mesh method can provide inter-domain capacity by
configuring routers on the AS boundaries as a node on mesh. This feature

can solve the problem for inter-domain session announcement in

intra-domain protocols.

This algorithm is motivated by and concerned with the requirements ot
the tree-based acknowledgement (TRACK) algorithm. TRACK is
designed to provide confirmed delivery, receiver-based flow control.
distributed management of group membership. and provide aggregation
of information up the tree. It also provides requests for retransmissions

as part of TRACK messages. and local recovery of lost packets [14].

The algorithm can be extended to multiple-layered tree topology. The
algorithm combines the Local Group Concept (LGC) from LGMP,
Designated Receiver node and Aggregated Node from RMTP-II, and
Mesh proposed in IETF internet draft “Reliable Multicast Transport
Building Block: Tree Auto-Configuration” [6]. This algorithm happens to

solve the problems of network layer multicast protocols as well.
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Chapter 3. Tree Auto-Configuration Algorithm.

3.1 Description.

As we have already seen in Chapter 2, both intra-domain and
inter-domain protocols have some problems in scalability and
manageability. The intra-domain protocols lack a hierarchical multicast
routing topology. The existing inter-domain protocols still need a
mechanism to build multicast trees in dynamic groups. Both of them lack
reliable multicast capacity. The Reliable Multicast Transport Protocol [I
provides reliable multicast transmission, but still needs a tree construction

mechanism.

The objective of this thesis is to define and implement a Tree
Auto-Configuration algorithm that generates a hierarchical tree topology
used for tree based multicast protocols. The algorithm can be used in
sparse mode multicast protocols in which members join and leave the
multicast group dynamically and explicitly. This algorithm is motivated
by and concemed with the requirements of the tree-based
acknowledgement (TRACK) multicast algorithms, and can be extended

to provide reliable multicast transport and management.
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The IETF draft, Reliable Multicast Transport Building Block: Tree

Auto-Configuration [6], defines a process for auto-configuration of a tree

comprised of a single Sender, Service Node, and Receivers into a tree,

which is called a session tree in Reliable Multicast Protocol. A session 1s

used to distribute data over a multicast address. A Session Tree is used to

provide reliability and feedback services for a session [5]. This session

tree is to satisfy the requirement of not only ACK-based protocol but also

other services.

Mesh
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RN | Sender
\ MN |"7777777 1 MN
SN | MN
MN becoaoo MN

RN 1 SNI,2 SN 1

RN 2

RN | RN |

MN = Service Node in the mesh.

SN = Service Node
RN = Receiver Node

Dashed Line = Connection that is not used in the session trees.
Figure 10. Topology generated by Tree Auto-Configuration Algorithm.

Here we extend the basic topology proposed in the IETF’s draft to a more

complicated topology that is comprised of multiple Senders, multiple

Service nodes, a pre-deployed mesh of service nodes, and receivers. This
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topology can provide a session tree for each multicast group. Moreover, it
is an infrastructure with better scalability for multiple multicast sessions.
A sample topology is shown in Figure 10. The topology in Figure 10 is
used by two multicast sessions. The numbers following the node types are

session numbers of the multicast tree that the nodes joined.

The session tree auto-configuration algorithm proceeds generically as

follow:

I. Mesh construction.

N

Sender locates a neighbor MN. sends a Session Announcement.

and binds to the closest MN in the mesh. MN “broadcasts’ this

session announcement on the mesh.

3. Receivers locate a local SN and send a BindRequest message to
this local SN.

4. Local SNs join the session tree and accept receivers’ bind

request.

5. Session tree in the mesh is built.

The Mesh shown in Figure 10 is a set of pre-deployed service nodes as
infrastructure servers. These service nodes are online, but are not
necessarily aware of any particular session unless informed by a Sender.

We can call these service nodes on the mesh as MN. Each MN in the
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mesh knows who its neighbor MN's in the mesh are and has a forwarding
table. The forwarding table gives a “Next-hop™ MN that can be used to
reach the destination MN. A given MN can "broadcast" information to all
other MN's on the mesh (in the sense of having a means of sending the
same information to all other MNs, but not necessarily simultaneously).
An MN can also cache the data packets for necessary retransmission. If
each MN has direct connections to all other MNs, the Mesh is a tully
connected mesh. The Mesh construction process and algorithm will be

discussed in section 3.2.1.

The Sender should bind itself (0 the Mesh before it can start a multicast
session. The Sender finds a neighboring MN. when it wants to start a
multicast session. It sends a BindRequest message to the selected MN and
waits for the BindContirm message, as shown in Figure 10. After sending
the BindConfirm message, the MN selected by the Sender becomes the
root of the session tree. The Sender sends a session announcement, which
includes a multicast session ID, multicast address and port number. The

root MN is responsible for managing the whole session tree.

As shown in Figure 10, different senders can choose different MN as the
root of its multicast session tree. This feature can avoid a single MN

becoming the bottleneck of the multicast transport. Sender can also
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choose another MN as the root of its session tree, if the previous root
crashed. This feature can avoid potential single point failure of the root

node. The detailed process of sender binding to the mesh will be

discussed in section 3.2.2.

BRI
MN B > SENDER
BCI

Mesh

BC3
L.ocal Group Local Group

BR = BindRequest Message
BC = BindConfirm Message

Figure 11. Normal process of member join in Tree Auto-Configuration
Algorithm

After the Mesh is constructed and sender binds to the Mesh. the tree
construction starts with join request from a leat node, a receiver. Each SN

or MN will join a specific session tree before it can accept a session join

request from a child.

A receiver that wants to join a multicast session broadcasts a BindRequest
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message (message BR2 in Figure 11) on its LAN. There are three
scenarios. The first scenario is: if there is a local service node (SN) of the
desired multicast session on the LAN, it accepts this bind request and

makes the receiver bind to itself.

Second: if the there is a SN on the LAN, but it is not on the session tree, it
tries to find its closest SN or MN as its parent, sends a BindRequest
message (as message BR3 in Figure 11) to its parent, and joins the
session first. The SN uses a controlled expanding ring search algorithm
(Controlled ERS) to find and bind to a parent. This algorithm will be
discussed in section 3.2.4. After binding to the session tree, the local SN

can accept the receiver as its child.

The third scenario is the most complicated one: it there is not a SN on the
LAN, all receivers of all multicast sessions in this LAN should elect one
of themselves as a local SN, and this SN joins every session tree first by
using Controlled ERS. The SN election process is similar to the group
controller selection and replacement process in Local Group based
Multicast Protocol (LGMP), which is a group-based multicast protocol.
The detailed process of a receiver Joining the session tree will be

discussed in section 3.2.3.
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Any SN that is not on a specific session tree will not accept any other SN
as its child, although it may be on the shortest path and be on another
session tree. It can avoid unnecessary nodes joining the tree and reduce
the delay between nodes on the session tree. When a SN node receives
BindRequest, it holds the child’s request and tries to bind to the tree first,

if it is interested in this session but is not on the tree yet.

If an MN accepts BindRequest message from a child (a SN or an MN)
and it is not on the session tree yet, it tries to bind itself to the “next-hop™
MN that is in the forwarding table entry for the session tree root. It sends
a BindRequest message (as message BR4 in Figure 10). The “next-hop™
also tries to bind to its “next-hop™ and so on. This process continues until
this binding request reaches the root or an MN that is already on the tree.
The root of MN on the session tree sends a BindConfirm message (as
Message BC2 in figure 10) back to the requesting MN. This process can
build a session tree on the mesh, which is rooted at the MN that binds to
the Sender. After binding itself to the tree, MN sends RequestConfirm

message to all its children and starts to receive multicast data.

The service node that is in a lower tree level joins the tree after receiving
BindConfirm message (as message BC3 in Figure 10) from its parent.

Then it accepts children, receivers or other SN, by sending BindConfirm
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message (as message BC4 in Figure 10) to all its children. When the

process ends, the session tree is built.

The built session tree can be maintained and reconfigured automatically.
The session tree can be dynamically and automatically rebuilt by
following the process above, if some nodes join or leave the tree. The
SNs and MNs periodically send a heartbeat message to inform their
children that they are still functional. Children will respond to this
Heartbeat if necessary. If the Heartbeat messages are not received in a
specific interval, the children will restart the tree auto-configuration
process to find another parent node. If the responses to the Heartbeat
message are not received in a specific interval, the service node deletes
the entry tor the children in its child list. In multicast session, the children
can send ACK or NAK for the received data packets to their parent. and
parent aggregates these messages and sends aggregated ACK to upper
tree level. If the quality of service is worse than a pre-assigned threshold,
a SN can start the process above to find a better parent node. If the root is

shut down, the sender can try to choose another MN as the root.

3.2 The process of the Tree Auto-Configuration algorithm

The process of tree Auto-Configuration algorithm in reliable multicast is
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complicated and cannot be solved by only one method optimally. This
section is to combine some effective algorithm and try to make all nodes
in the session build a tree based on available information. The built
session tree may not be the most optimal solution but a useful and
manageable one. The dynamic rebuild mechanism can find a better

solution according to the real network conditions.

3.2.1. Mesh construction.

Mesh

~

Sender

RN 1 /—\ Sender

MN MN
SN MN

| MN MN

L ——

RN 1 Rth_]

RN 2 d

Figure 12. Mesh Construction.

The first step in the Tree Auto-Configuration is to build the mesh that is
comprised of some pre-deployed service nodes. These nodes, MNs, can
exchange forwarding messages with each other and build their
forwarding tables when they are started up. Each MN maintains a
forwarding table in which the information of “Next-hop™ MNs to reach
the destination MNss is stored. A given MN in the mesh can "broadcast”
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information to all other MN on the mesh. The built Mesh is shown in
Figure 12. Each MN also maintains a child list for a session. This list
stores the children’s IP address, binding status, child count, and other
information. A MN periodically sends Heartbeat to its neighbors and its

children and waits for responses from children.

There are two ways to build the mesh. The first one is a static way. This
method assumes that all MNs are reliable, robust, and available forever.
The topology of the Mesh never changes. and the connections have fixed
distance values. If some SN shuts down, maintenance team can repair it
as soon as possible. The Mesh will always provide reliable connections.
The SNs know the existence of others and have pre-calculated forwarding
tables. The ISP configures the forwarding table entries carefully and
administratively. The forwarding tables of all MNs must not form a loop

in the Mesh.

The static method is easily to implement: ISP can put forwarding table in
a specific file. MN can access this file when it starts up. It does not need
complicated routing-like algorithm to set up forwarding table at the
beginning or to refresh forwarding table later. However, it requires that
information about the network connections must be known before the

mesh is built, and the information always exactly reflects the condition of
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underlying network. [t has no automatic fault tolerant and dynamic
re-configuration capabilitics. If some MNs must connect to root via a
specific MN, the single point failure of the intermediate MN will prevent
those MNs from continuing their multicast communication. It has no
adaptability for growth. It another router wants to join the Mesh, the ISP
must build a forwarding entry for the new MN in all other MN's
forwarding tables. This feature will hinder the scalability of the Mesh

approach.

Another way is a dynamic way. In this method. MN needs a dyramic
method to set up and refresh the forwarding tables according to the real

condition of the underlying network.

In the dynamic way. a new MN does not know the existence of others at
the beginning. It may contact with a known MN or a designated node to
get information of other nodes on the mesh. The MN or the designated
node, called Point of Contact (POC). sends information of all available
MNs to the new MN. POC method will be discussed later. After knowing
all the MNss, the new MN tries to find its neighbors, build a forwarding

table, and join the mesh by binding to its neighbors.

It is the first thing for a new MN to do that it should learn who its
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neighbors are. Because this algorithm is built in transport layer and the
routing function locates in network layer, the algorithm should use some
underlying network layer protocol services to find neighboring MNs. The
network layer service is out of the scope of this thesis, so we just make

some proposals below.

We cun use unicast routing information to build forwarding tables, the
same way as in PIM-DM/SM. The MN may check the path to all other
MNs according to the unicast routing information. It regards the closest
MNs on each path it finds as its neighbor and the next-hops =+ the
destinations. Then the MN tries to bind to its neighbors by sending
BindRequest message and waiting for BindConfirm message like other
kinds of nodes do. After binding to its ncighboring MN. it measures the
distance to its neighbors. exchanges reachability information with

neighbors, and finds the shortest path to all other MNs.

Some routing-like algorithm can also be used by MNs to exchange
reachability information and to find shortest paths. Link State Routing,
and hierarchical routing algorithms can be used here. The Link State
Routing algorithm has five steps to build the routing table: discover its
neighbors and leamn their network addresses, measure the delay or cost to

each of its neighbors. construct a packet telling all it has just learned,
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sending this packet to all other routers, and compute the shortest path to
every other router [10]. Because the MNs may not be directly connected
to each other, the new MN has to use the method mentioned above to find
its neighbors. MN measures the distance to its neighbors by a metric. The
metric that is used to measure distance can be hop-count, delay, or static
parameters. Then it sends the link state packet to all other MNs. When all
MNs get the link state packet, they can compute the shortest path by
using Dijkstra’s algorithm and refresh their forwarding tables. At a certain
point the network may grow to the point where it is no longer feasible for
every MN to have an entry for every other MN, and MN joining or
leaving events may occur frequently. So the routing will have to be done
hierarchicaily. as it is in the telephone network [9]. Each MN knows all
detailed information about how to route packets within its own domain,
but it knows nothing about the intemal structure with other domains.
When different domain are connected together, it is natural to regard each
one as a separate domain in order to free the MNs from having to know

the topological structures of other domains.

The dynamic way has some advantages and disadvantages. It can allow
new MN to join or leave the mesh dynamically after the mesh is built.
and allow the mesh to rebuild itself according to the membership changes.

It has fault tolerant ability. Each MN may periodically send a heartbeat
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message to its neighbors. [f an MN did not receive heartbeat from one of
its neighbors within a specific interval, it will know its neighbor is
unavailable. Then it will initiate a process described above to let itself
and others MNs refresh the forwarding tables. The Mesh is rebuilt when
all MNs complete the refreshing routing computation. This method is
complex and difficult to implement. When the mesh grows to a very large
scale and node join/leave events occur too frequently, the time taken to
compute and refresh the forwarding table can be very long, and
forwarding information stored in each MN can be very large. The
information of all MNs may not always be available and correct. Any
invalid forwarding entry will prevent the Mesh from working properly.
The difficulty and complexity of the dynamic way will damage its

scalability.

As the infrastructure of the multicast transport, the mesh can provide
intra-domain and inter-domain capability. In a specific domain, a set of
MNs can construct the backbone of the sub-tree within the domain. All
other service nodes and receivers only need to know the session
information and send explicit join requests to the session tree. The MN
can accept the session tree join requests and forward data packets
downstream to all its children. The MN can cache the received data

packets for potential retransmission. The MN can aggregate TRACKs
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from its children. These TRACKs can be processed on MN or be
forwarded to the nodes on upper levels. The multicast membership
management and sub-tree configuration can also be done within the

domain to reduce control information generation. The basic intra-domain

topology is shown in Figure |3.
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Figure 13. Intra-domain topology of Mesh

In Figure 13, the Mesh provides a backbone for the multicast transport. [n
the mesh, unicast control information path and multicast path can use the
same topology as the underlying physical network, if we only choose

multicast routers and native multicast links to build the mesh. This feature

can reduce the complexity of using different multicast data channel and
unicast control channel as in RMTP-IL. All MNs can be chosen as a root
node. So if the root node of a session tree fails or the quality of service is

below a minimum level, the sender can easily choose another MN within

62



the same domain. There is no need to configure a backup root node. If
there is more than one sender, each router can choose its own root node in
the mesh, as shown in Figure 13. A MN can be root for more than one
multicast session. The feature of supporting multiple sessions can avoid
the problem in some core-based multicast protocols that the core can be
overburdened if there is more than one session tree rooted at the core. The
topology is also a good infrastructure for future many-to-many multicast

communications.

[ntra-domain

Intra-domain
cloud
cloud

Figure 14. Inter-domain topology of Mesh

The Mesh approach can also provide inter-domain capability. In Figure
14, the Mesh has inter-domain connections. If we configure a border

router in a domain as an MN, this MN can easily use the connection
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between autonomous systems (ASes) and use BGP to compute
inter-domain forwarding route. The torwarding route computation is
simplified in the session tree construction process when a sub-tree is built
on the Mesh. This feature can solve the problem of connecting sources
and receivers across two sparse mode domains in Intra-domain multicast
protocols. The Mesh is constructed before the session tree, and the
inter-domain routing information is stored in forwarding tables in each
MN. Because the MNs can “broadcast” session announcements to each
other. a receiver does not need to know the location of sender. The
receiver just gets the multicast session [D, sender’s multicast address, and
port number from the sender’s multicast session announcement and sends
a join request to local service node. The service node initiates the join
request and binds to the mesh directly or indirectly, if one of its children
is interested in a session. The Mesh can find out the sources in other
domains according to pre-computed forwarding information. The mesh
can also solve the join latency and bursty source problems described in
section 2.2.2, because the MN has the pre-computed routing information

and can cache data packets for necessary retransmission.

3.2.2. Sender joins the session tree.

After the mesh is constructed, the actual first step in session tree
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auto-configuration begins at the sender node. Let us continue our

discussion based on the basic scenario in Figure 10.

When a Sender wants to start a new multicast session, it tries to find the
closest MN by asking the POC or Just contacting an MN assigned by the
ISP. Then Sender sends a BindRequest message to the selected MN. This
message indicates that the requesting node is a Sender. The MN sends
back a BindConfirm message telling the sender about the acceptance. The
MN that accepts the Sender becomes the root of the session tree. The root
is the only node in the tree that can communicate with the sender. It
receives the data packets and forwards to all other MNs and receivers. It
can aggregate TRACKSs from the tree and send an aggregated TRACK to
the Sender, if' necessary. This feature can allow a source that lacks
multicast capacity to start a multicast session. The root is responsible for
managing the tree construction and membership. Different senders can
use the Mesh to build their own session trees. A MN can be the root ftor

multiple session trees.

After being accepted by an MN, the Sender sends a Session
Announcement to the root. This Session Announcement should contain
session [D, multicast address, port number, and other information about

the multicast session. There is a standard Session Announcement protocol
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[12]. In this way, a Receiver discovers the multicast group address, the
Sender’s address, and other information necessary for logical tree
construction.  Sessions may be announced in two parts, the first part
containing generic information about the session, such as the multicast
address, and the second part, announced on the multicast address,

containing additional information [12].

The root will send this session announcement to all MNs. All MNs will
maintain a session table to store information about each session on the
tree. The MNs use the session ID to identify a specific session and the

request tor joining or leaving a specific multicast session.

3.2.3. Receivers join the session tree.

Receivers of a session use a standard out-of-band mechanism  ftor
discovery of a session’s existence (e.g., Session Advertisement [12]. URL,
etc). This out-of-band session announcement is out of the scope of this

thesis.

Before any MN, SN, or receiver joins the session tree, the tree consists of
only one Sender and a root MN. The original join request is initiated at a

leat of the session tree, a receiver. The SN may join the session tree on
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behalf of a child.

A receiver that is interested in the specific session should join the local
group first, before it can receive any multicast data packet. Because there
may be thousands of receivers on the Internet, they should be divided into
local groups and choose a local SN. Division of local multicast group can
avoid a very large number of control messages and data packets being
transferred on the Internet. The local group controller, a SN, can do a lot
of tree maintenance and data retransmission within the LAN. In this way.

it can enhance the efficiency of multicast significantly.

A receiver broadcasts a BindRequest message on its local network. [f
there is a SN on this LAN. it responds to the BindRequest message. If the
SN is already on the session tree and can accept one more child, it sends
back a BindConfirm message, makes the receiver bind to itself, and
builds an entry in its child list for this new receiver. If it is not on the
session tree yet, the SN sends a BindACK to the receiver. This message
causes the receiver to wait for SN to process its request. The SN sends a

BindRequest to its parent and waits for the response.

If there is no service node on the LAN, all the receivers in this LAN

should elect one of themselves as a local SN. The SN joins the session
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tree first. After sending BindRequest on LAN, if receiver does not receive
BindConfirm or BindACK message after a specific interval, the receiver

knows there is no SN on the LAN and initiates a SN election process.
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Figure 15. Local SN election.

The receiver broadcasts a SNElect message on the LAN. Any receiver on
the LAN should respond to this message by sending back its IP address
and other information in a Heartbeat message. The receiver who initiates
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the SN election will choose a node as the new group controller, SN,
according to the node capacity, CPU speed, or IP address. After choosing
the new SN, the receiver broadcasts the information about the new SN in
an SNConfirm message. The new SN will modify its own property from a
receiver to a SN. Other receivers will send join requests to this new SN.

The SN election process is shown in Figure 15.
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Figure 16. Receivers join the session tree.

The SN election process is also useful when a local SN crashes. It can be
essential to local group management. To obtain the optimal multicast
capability, we can configure the local router with an interface to the
Internet as the local SN. However, it is not necessary. In the best
condition, any node on the LAN can be the local group SN. Figure 16

shows the result of this step. The dashed line is the path of the
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BindRequest.

3.2.4. Local SNs join the session tree.

The local SN should join the session tree before accepting any receiver'’s
bind request. The SN can bind itself to an MN or an intermediate SN that
is on the session tree and can accept another child. To find the shortest
path to the root, the SN has to measure the distance of each possible path
and choose the best one. Figure 17 shows the result of this step. The

dashed lines show the paths of BindRequests.
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Figure 17. Local SNs join the session tree.

The most important and difficult function of a local SN is neighboring
node discovery and selection. The local SN finds out some MN:ss, tries to

measure the distance of each path to these MNs, and binds to the chosen

70



parent node.

There are two ways to find the closest neighboring SN. The POC method
can be used here. The local SN queries POC for possible closest MN. The
POC recommends some MNs to the local SN. The local SN sends a
Query message to all recommended MNs to find out the closest neighbor.
All SNs or MN that receive this Query message and have capability for
another binding should reply to it. The local SN that sends Query
message chooses the closest neighbor according to all reply messages it
received. If there is no respense from other nodes. the local SN should

ask the POC for information about more SN in the mesh.

Another way is to use a controlled expanding ring search algorithm. The
local SN tries to trace the IP route to root by a tunction like the traceroute
program. Such a function can find all the intermediate routers on the path.
Then the SN sends the Query messages to all the routers, with a specific
TTL (time to live) value, and wait for the reply in a specific interval,
SolicitPeriod. If there is one or more reply from those routers within a
SolicitPeriod, the SN figures out the round trip time of the message
between the routers and itself and chooses the closest node as its parent.
If there is no reply at all, the SN will increase the TTL and query for

parent again. This process ends when at least one reply has been received
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or the TTL becomes greater than a maximum TTL, TTLMax. If TTL is

greater than the TTLMax, the binding has failed and the local SN will

inform all receivers about the result.
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Figure 18. An example of Controlled ERS algorithm.




There is an example of controlled Expanding Ring Search algorithm in
Figure 18. In Figure 18A, a new SN finds out all routers on the path to the
root by the traceroute function. Then in Figure 8B, the SN sends a
Query (Q1) message with an initial TTL to the routers it found in the first
step. The dotted circle is the search ring that a message with such a TTL

can reach.

We assume that there is no reply at all after a SolicitPeriod. So, in Figure
I8C, the SN sends Query (Q2) messages with an increased TTL. The
search ring is enlarged. If there is a service node (MN or SN) that can
accept another child and is within the search ring, a Heartbeat (H) is sent

back to the SN, as in Figure 18D.

This algorithm has some advantages over the expanding ring search (ERS)
algorithm recommended in the IETF draft, Reliable Multicast Transport
Building Block: Tree Auto-Configuration. In the IETF draft, the new
node sends Query messages in the multicast channel. ERS floods the
query message over the whole multicast tree. Expanding ring search
(ERS) is an effective technique in a local subnet or intranet (especially
when the IP multicast routing protocol is dense-mode based). On the
other hand, it is not practical in a multi-domain network. It is not

effective when the routing protocol is sparse-mode based. It can add
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significant control traffic overhead [6].

The controlled ERS algorithm queries only the nodes that are on the path
to the root. Other nodes will not be involved in this process. This feature
can significantly avoid unnecessary control messages. It can also avoid
some inefficient tree branch as created by the ERS algorithm. We can see
an example in Figure 19. We have seen a sample MBone multicast

network with a combination of IP-encapsulated tunnels and native

multicast link in Figure 2.

N2 is a SN that
is already on the
tree.

N3 is a new SN.
. Multicast router

Multicast router

Multicast link

Unicast link with tunnel

Figure 19. An example of inefficient tree branch
created by ERS.

74



In this topology, we assume that there is a multicast tree rooted at N1 and
there is already a service node on the tree, N2. When a new service node,
N3, wants to join a tree, it uses ERS and multicasts Query message with
an initial TTL. If the TTL is not long enough to allow Query message to
reach the root, but it is long enough to the reach N2, the new SN may
consider N2 as the best parent candidate and bind to it. Clearly, N2 is not
the best choice and it even needs to get multicast data via N3. The
controlled ERS algorithm can avoid such inefficient connections by only

querying routers on the shortest path to the root.

After the parent node is chosen, the SN node sends a BindRequest to the
parent. [t sends BindConfirm message to its children after receiving a
BindConfirm message from its parent and binding to the parent. If it
receives a BindReject message, it tries to find another parent and binds to
it, following the process above. It maintains a child list that contains
information about its children. If it accepts a new child, it makes a new
entry in its child list. It deletes a child entry if this child leaves the session

tree.

Each SN maintains a child list for a session. This list stores the [P address,

child count, and other information. The local SN periodically sends
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Heartbeat to its parent and all its children to inform them of its existence.
If a SN crashed, its parent node will delete the entry for this node in the

child list and its children will try to bind to another SN.

A SN can leave a session only when all its children have left the session
tree. The SN sends a LeaveRequest message to its parent, and waits for

the LeaveConfirm message.
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Figure 20. Unicast and Multicast have different paths.

In this step. the unicast control information path from a SN to its parent
can be different from the multicast path. There is an example in Figure 20.
The tree links between service nodes are logical links in the transport
layer. The service node will maintain the connection state of both unicast
and multicast. The SN1 can still build an entry for SN2 in its child list.
However, the entry should include two fields indicating next-hops
information of unicast and multicast. In this cast, the next-hop for unicast

is R1, and next-hop for multicast is R2. The SN2 just has the IP address
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of SNI. The SN2 will send control information (c.g.., BindRequest,
LeaveRequest, or TRACK) via R1. SN1 sends multicast data packet and

retransmission packet via R2.

3.2.5. Session sub-tree on the mesh.

The MN that accepts BindRequest messages should try to bind to its
“next-hop” MN, if it is not a node on the session tree yet. The mesh
approach uses the next-hop neighbor as the selection for the best neighbor
to bind to for MN-MN bindings. MN may accept a node as a child, as
long as selecting it would not cause a loop in the tree. This process ends
when a MN on the session or the root accepts a bind request. After the
tree on the mesh is built, all MN nodes should respond to the

BindRequests that they received. Then the whole session tree is built.

The result of this step is shown in Figure 9. The solid lines show the

binding built in the tree auto-configuration process. The dashed lines arc

connections that are not used in the session tree.

3.3. Tree Formation.

This section is a detailed description of the tree formation process and
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tree level computation defined in IETF Internet-Draft, Reliable Multicast
Transport Building Block: Tree Auto-Configuration [6]. [t defines the
Sender’s tree level as 0, the tree level of session tree’s root MN as [, the
child’s tree level is one more than its parent’s tree level. When a node is
not connected to the tree yet, it has a tree level value greater or equal to
128. The reason for reserving part of the space (of tree levels) for
indicating off-tree status is that a special technique can be used to prevent
forming loops. The largest value is 255, so the range of oft-tree levels is
in the range 128 - 255. At the beginning, any new node assumes that its

iree level is 128.

Because an MN selects and binds to the next-hop in its forwarding entry
for root. and the next-hop node is on the shortest path to the root
according to the Mesh Construction mechanism described in section 3.2.1.

we can be sure about a fact that there is no loop in the sub-tree on Mesh.

However, the situation in lower level sub-tree is more complex. Once a
SN has been selected as a service node’s (SN) parent, the node sends a
BindRequest message to the selected SN. In the BindRequest message,
the requesting node should inform the selected node of its current tree

level and number of children.
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If the SN has an outstanding request to bind to another service node, it
must refuse the incoming bind request in case it would form a loop.
Otherwise, it may accept the node as a child, as long as selecting it would
not cause a loop in the tree. Loop freedom is guaranteed by these two

rules [5]:

I. If the requesting node does not have children, the SN can accept it as
a child as long as the SN has no outstanding bind requests. If it does
have an outstanding binding request, the SN can accept the node as a

child if its tree level is less than the child’s tree level.

9

If the requesting node has children, the SN can accept it as a child if
a. The SN's level is 128. i.e.. it is the top of a sub-tree not yet
connected to the Sender, or
b. The SN's level is less than 128, i.e.. it is connected (o the session

tree.

The second rule prevents a node from selecting one of its own children as
its parent. Two nodes at level 128 are prevented from selecting each other

using the tie-breaking criteria described step | above.

If the node is not connected to the session tree and accepts a child, it
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sends a BindACK message to its child. The parent should include its
current tree level in the BindACK message. The child node should
change its tree level to parent’s tree level plus one. If the child does have
its own children, it informs its children about the change in its tree level.

Its children will change their own tree level value accordingly.

After being connected to the session tree, a requesting node will get its
parent’s tree level in the received BindConfirm message from its parent,
change its trec level to parent’s tree level plus one, and inform its children
about this change in its BindConfirm message. This process ends when a

leaf node (receiver) corrects its tree level accordingly.

We can see an example of this process in Figure 21. At time | in Figure
21A, a receiver R1 sends BindRequest to SNI. At this time, SNI's tree
level is [28. Because R1 is a receiver and does not have any children.
SNI accepts it as a child and send the BindACK to RI. R changes its
tree level to 129 as shown in Figure 21B. We assume that SN2 is
interested in this session and is not connected to session tree yet (with
tree level 128). If SN2 is on the shortest path from SN to the root. SN1
will choose SN2 as its parent. So at time 2, SNI sends BindRequest to
SN2. If SN2 has no outstanding request, it can accept SNI as a child.

Otherwise, it has to refuse SN1’s request. We assume that SN2 does not
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have an outstanding request at this time. So SN sends a BindACK to SNI1.
SN1 will change its tree level to 129 and inform R1 of this change in a
BindACK message. R1’s tree level is changed to 130 as shown in Figure
21C. Then SN2 sends a BindRequest at time 3, Figure 21C. Figure 21D

shows the result that all nodes are connected to the session tree.

l SN3: 0 l SN3: 40

SN2: 128 & SN2: 128
SNI: 128 2 SNIL: 128
¢
RI: 128 RE: 129
A B
SN3: 40 SN3: 40
SN2: 128 . SN2:
2 sN SNI: 42
¢
R1: 130 RI: 43
C D
D —

Direction of BindRequest message.

Connection that is not on the tree

Conaection that is on the tree.

Figure 21. Tree Formation.
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If an SN cannot accept a requesting node as its child, it sends a
BindReject message to the requesting node. In the BindRequest message,
SN should indicate the reason for rejecting this bind request. The
requesting node will try to select another node as its parent and try to bind

to it.

There is another reason that a SN rejects a child, except for forming a
loop on the tree. SN may limit the number of children they support
depending on their capacity. Once an SN has accepted its maximum
number of children. MAXChildren, it stops accepting new children until a
change in membership that causes its count of children to go below this

limit.



Chapter 4

Implementation of Tree Auto-Configuration

Algorithm.

[n this chapter, an implementation of Tree Auto-configuration algorithm
will be given. This implementation is based on a protocol base class
library, Meta-Transport Library, designed by Infrastructure and
Networking Research, Sandia National Laboratories, Livermore,
California. The system state representation and architecture will be

given.

4.1. Meta-Transport Library (MTL)

The Meta-Transport Library (MTL) is a set of C++ base classes designed
to present an infrastructure for building transport protocols. The classes
represent the necessary protocol components, and the member variables
and functions of these classes represent the state each component must
keep and the work each component must do [10]. The current MTL

version number is 1.5.1.

The goal of MTL is to allow transport protocol designers to prototype a

protocol rapidly. The designer does not need to modify any kernel, or
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support special hardware. The MTL also allows the designer to reduce
use of root privilege as much as possible. So MTL has these design
characteristics: portability, adaptability, configurability, and readability

[10].

Portability: MTL has been ported to most major Unix varieties, including
SGI IRIX, Sun SunOS and Solaris, HP HP-UX, DEC Ultrix and OSF/I.
IBM AIX, FreeBSD, Linux, and BSDI BSD/OS [10]. This teature allows

an MTL-derived protocol to be easily ported to all those platforms.

Adaptability: The modularity of the MTL design allows for easy
replacement of the underlying data delivery service (10]. MTL has two
different delivery service modules for IP and UDP. The module for [P
needs some root privilege, but the module for UDP does not. It is easy to
build modules for other services, such as a connection-oriented network
service. This feature allows the derived transport protocol to run over a

variety of networking technologies.

Configurability: In addition to changing the underlying data delivery
service, replacement of various protocol control algorithms is easily done

when the protocol implementation is modular [1O].
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Readability: This approach is designed to enhance the understanding of
how protocol components interoperate, and to allow a designer to replace
components  without undo effort. C++ separates interfaces from
implementations, and encapsulates concepts into modules. This makes

the implementation process both easier to understand and easier to

User Process Daemon Process
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Program Manager
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)
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v |
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Figure 22. MTL User/Daemon Model.

manipulate [10].

In general, a transport protocol has five components: packets, data
delivery service, context, context manager, and user interface. A transport
protocol implementation sends and receives packets via the use of some
services of the underlying data delivery service. The state of the

communication is maintained by some context. A context manager is an
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agent that de-multiplexes incoming packets and incoming user requests,
delivering these to the proper contexts. The user interface is the
abstraction through which access to the functionality of the protocol is

granted to the user.

Figure 22 shows the general MTL model. A MTL derived protocol
asuatly has at least a daemon process, a context manager object, an
interface object, a data delivery object, and several context objects. An
MTL-derived protocol implementation is instantiated as a user-space
daemon process. A user process uses the intertace object to send requests
to the dacmon process via an [PC facility, which is a facility that enables
the daemon process to communicate with its users. The main loop of the
daemon process accepts a user request and uses the context manager
object to direct the request to the proper context object. Some of the
requests may cause the context to generate packets. These packets are
constructed and sent through the data delivery service object to
underlying network. The daemon process sends the result of a user
request via IPC back to the interface object as well. The daemon also
listens for the incoming packets, and uses the context manager objects to

steer them to the proper contexts for processing.

There are six main classes within the MTL library package, five of which
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correspond to the main abstractions named above: a data delivery service
class, a packet class, a context class, a context manager class, and a user
interface class. The sixth class is a daemon class that wraps everything
into an entity that can be handled by the operating system. Each of these

classes except for the data delivery service class is designed to be a base

mtldaemon Main_loop
[PC to users
dispatch_request U
¢ del_srv
packets
A 4
Context_manager

Figure 23. Main Loop of mtldaemon.

class for a protocol-specitic class.

The main program of the protocol implementation initiates a global
daemon object through which the protocol processing is conducted. The
basic daemon class, mtldaemon, provides some fundamental

functionality and access to several objects used throughout the system.

A daemon must determine if another daemon is running in order to avoid
colliding with some of its IPC mechanisms, parse the arguments given to
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the daemon process, initialize the daemon, start the main loop of getting
packets and user request and processing them, and shutting down when is

told to do so.

A context is the collection of all state information for an endpoint of an
association. Certain state information is common to all transport
protocols, and MTL reflects this in the context base class. Much of the
information is just clerical such as identification and priority values. The
context class provides access to these variables and reference through
member tunctions. The context also holds the state of communication.

Most of this information is protocol-specitic.

The context manager manages contexts. The context manager class is a
container class for all of the contexts in the system. It has a linked list
linking all context objects, which allows them to be manipulated easily.
The main purpose of the context manager is to match user requests and
incoming packets to the appropriate context, so that the contexts can do
the necessary protocol processing. To aid in manipulating the contexts,
the context manager is a friend class to the context class. A context is
identified by its key value. The key value is a 64-bit handle by which the

context manager can find the context among all contexts in the system.
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Half of the context manager’s job is to dispatch user requests; the other
half is steering incoming packets to their contexts. Both jobs require
matching the key value and the proper context. For a user request, this is
straightforward: MTL dictates that all user requests have the same header

format and include the key value in this header.

There is a command value in emd field of the user request header format.
This command value is protocol-specific, and identifies what the request
is. For example, the REGISTER user command instructs the user request
dispatcher to tnitialize a new context for use by a user. The user sends the
request via the user interface: the protocol-specific dispatcher must cail a
virtual function init_context() with the user request and the user's
address for sending results and information back to the user. The key
field is used to match this request to the appropriate context. The upid
value is the process identifier for the user process. The result-code is
either one of the command error codes defined in MTL or an addition
error code defined in the protocol-specific type files. The snd_shmid and
rev_shmid values are used for setting up shared send and receive buffers
between the daemon and the user, and snd_buf size and rcv_buf size are

the sizes of these buffers. The len field holds the total length of this user

request.
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After initializing a context, placing a context on the context manager’s
active list puts the context into the processing stream. The context
manager goes through each of the active contexts cyclically allowing
them to do work. In MTL, an active context is just one that is on the

active list, the derived protocol’s definitions of states notwithstanding.

The context becomes the user’s representative during communication, so
it must hold information about the user process. The user process ID and
the user’s retum address are part of this information. When a user
requests that a context be initialized, the user PID (from the user request
structure) is installed into the context. The return address is obtained
from the IPC facility, and is also installed into the context. Knowing the
user PID allows the derived protocol to send the process a signal when
some event happens, if the daemon has sufficient permission. While the
user makes requests via an I[PC mechanism hidden by the user interface,
the second way for exchanging information between the context and the
user is via data buffers. Both user and the context hold two buffer
managers each, one for the send buffer and one for receive buffer. When
the user sends the request to initialize a context, the context establishes
two buffers according to the size given in the user request. The context
can block a user request. According to the semantics of the user request,

the context may not respond to the user request with a result or other
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information immediately, but rather may hold the user’s request until

some condition is met.

The context manager has a virtual function handle_new packet as an
entry point to specific protocol’s packet handling code. The simplest
thing to do is to put the packet on a packet FIFO queue and deliver it to
the proper context later. If the packet’s destination context is easily
discovered, this function may put the packet on the destination context’s
received packet FIFO queue. The context manager also has a virtual
tunction to be used when the daemon is shutting down. This call should
return any resources that the context manager gathered. and possibly

notity each user that the daemon is shutting down.

All other classes are designed to be compiled directly into the program
that implements the protocol. The user interface class is targeted (o be
part of a library that will be compiled into the user’s application code.
The user instantiates the interface object; it provides the user’s
application with a means of issuing requests to the daemon and
managing the data in the user’s send and receive buffers. Two user
requests are essential: registering with the daemon, and release from the
daemon. The user application sends a request with a REGISTER

command value to register with the daemon, and RELEASE to release
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from the daemon. The user interface controls the user’s end of the two
buffer managers. The user writes data into these buffers and issues the
send command. The presence of data is made known to the context, and
the context’s buffer manager pulls the data into the protocol. As the user
application asks for data through the receive request, the context informs

the interface’s receive buffer about the size and location of the received
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Figure 24. Buffer Manager

data.

Each user has two buffers, one for sending and one for receiving, as
shown in Figure 24. A context has two buffer manager objects. Each

buffer manager object controls each of the user’s buffers. Data are
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written into and read from the buffers through the buffer manager
interface routines. A shared memory segment is used to reduce the
amount of copying required to send or receive data. Internally, this data
bufter is a piece of shared memory that two or more process gain access
to using the buffer manager method. Consequently, there can be multiple

buffer manager objects granting access to a single data buffer.

One process must create the physical data buffer using the crear()
method with a integer index, and the buffer manager will use this value
as the key to the shared memory allocation system. [t index is not
included in the calling parameters. the bufter manager will attempt to
find a unique shared memory identifier. Once a data buffer has been
created, another process can attach to the buffer. So data written into the
buffer by one process can be read by another process. To do that. the
second process must instantiate a buffer manager object, and then get the
shared memory id from the first process (communicated by TPC facility).
The second process attaches its buffer manager to this shared memory.
Now both processes are attached to the shared memory, and a buffer
manager will immediately see any activity on the buffer from another

buffer manager.

In MTL, the two parties interested in the data buffer are the user and the
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appropriate context in the protocol daemon. The context creates the data
buffers, and the user interface attaches to them. This avoids that the
user’s demise will remove the shared memory buffer. The buffers are
created and attached to in pairs, one for sending. and one for receiving.
The user writes data to the send buffer, and the context reads data from it.
The context also keeps track of what data has been acknowledged, so
that portion of the data buffer can be reused. The buffer manager also

provides the methods for reading, writing. and manipulation of the data

buffers.

The data delivery service class del_srv is an abstract class specitying the
interface to a data delivery service system used to send and receive
packets. Classes derived trom del_srv implement this abstract interface
by employing a particular data delivery service. such as ip_del srv for [P
and wdp_del_srv tor UDP. An instantiated derived data delivery service
object is the daemon’s access point to the network. There are three
functions that return data delivery service characteristics: get_maxpdu()
returns the maximum protocol data unit size possible on this delivery
service; get rate() returns the number of bytes per millisecond; and
get_burst() returns the number of bytes in a single burst. The addresses
used by the system calls do not necessarily follow the same structure, so

the data delivery service addresses are abstracted by the class
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dds_address.

The data delivery service addressing structure dds_address is also an
abstract class. It hides the internal structure of the addresses, and
provides instead a common set of functions on the address. Specific data
delivery services derive an address class from dds_address, providing an
implementation for each of the pure virtual functions. For example, the
ip_dds_address class is based on the dds_address class and the

sockaddr_in addressing structure.

Packets are the vehicle for data and information exchange between
endpoints. Packets are sent and received by a data delivery service that
treats the contents of the packets as un-interpreted payload. The derived
protocol defines the structure of its packets, and information is placed or
extracted only with knowledge of the structures. Therefore, the packet
class provided by MTL does not impose a structure on the packet, but
rather provides packet shells; packet shells are the manipulated by both

MTL and the derived protocol as is appropriate.

The packet class is not designed to be a base class. A packet object is just
a repository for data to be sent and received via the data delivery service;

packet classes from the derived protocol should contain a member
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variable of MTL packet type, and their member functions should impose

some order onto the raw data contained within the packet.

There are two packet manipulator classes in MTL: the packet_pool class
and the packet_fifo class. The packet pool class is a general repository for
packet objects and manages packet objects. The packet pool is
responsible for allocating all of the packets in the system, and
de-allocating them when the daemon terminates. For incoming packets,
the context manager asks the packet pool for a new packet shell in which
to put the data from the network. For outgoing packets, the context will
ask for a packet shell, and then fill in the packet information according to
the structure imposed by the protocol. The packet_fifo class builds a
FIFO list of packets. There is no restriction on the size of this FIFO
except for the number of packets in the system. Each context has two
packet FIFO objects, one for holding unprocessed receiver packets, and

one for holding outgoing packets that have been sent.

There are two ways to view a packet, as monolithic contiguous memory
or as a vector of scatter-gather elements. Methods that operate on a
monolithic packet use a function to get a pointer to the start of the
contiguous data. Protocol-specific agents then use this pointer to read

and write to offsets within the packet. The scatter-gather vector is a set of
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pointer, length pairs. The packet class provides member functions to set
and retrieve the scatter gather elements. This style is intended for
constructing packets with minimal data copying. The data delivery
service object provides some methods that can get address information
from incoming data packets, and put address information to outgoing
packets. A packet object is designed to be handled by reterence to avoid
excessive data copies. When a packet is initialized, it use count is 0. Each
time a copy of the reference to the packets is given out, the use count
increases by 1. When the entities complete their use of the packet, the use
count decreases by 1. The packet cannot be returned to the packet pool

until its use count is 0.

MTL defines some data types: for example, byte8 for an 8 bit integer,
short16 for a 16 bit integer, word32 for a 32 bit integer, and word64 for a

64 bit integer.

Because original MTL version 1.5.1 did not take account the timer
management issue, Jiang Yonglin modified the original source code of
MTL and introduced two new classes, cctimer and cctimer link, to
manage the timer in a linked list. The idea of managing linked timer list
is introduced by Prof. Atwood. This modification can improve the

efficiency of timers that are used by any synchronized service [13].
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4.2 Implementation.

4.2.1. Assumption.

We introduced MTL concept and infrastructure above. The next question
is how to implement our protocol based on the MTL. Before we introduce
the implementation, we introduce some assumptions on which we build

our algorithm implementation.

First, we assume that the service nodes (MNs) are always functional, and
never change or crash after the Mesh is constructed. There is no new node
Joining the session tree, and no node leaving the tree later. So we can use
the static method to configure the torwarding tables of the MNs. The
dynamic way is more complex to implement than the static way. For
more detail, please review the section 3.2.1 Mesh Construction. This
assumption can simplify our implementation. Because our goal of this
implementation is to build a multicast session tree to prove that the
proposed algorithm is feasible and efficient, we restrict this condition of
the scenario. Although this assumption will reduce our implementation’s
capability of reflecting real network conditions, the implementation can

still verify and validate the proposed tree auto-configuration algorithm.
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The dynamic way to build mesh and forwarding table will be

implemented and added in the future work.

Second, we assume that the Point-Of-Contact (POC) is not available in
the scenario in which our implementation is built. Although the POC
method can help nodes get information about the Mesh and simplify
routing computation, it does not reflect the current technique in real
networks. Server from which applications can retrieve information about

multicast service nodes and topology do not exist.

Third, we assume that all nodes can provide UDP data delivery service,
rather than IP service. Because some of the IP services need root privilege,
it is more realistic to implement our algorithm based on UDP. Because
this algorithm proposes a topology that is different from the topology in
RMTP-II, we modify something in RMTP-II. First, every node uses two
ports to communicate with others: one port for unicast control
information, and one for multicast data channel. A multicast session is
identified only by the root’s multicast port. So the multicast session [D
has two parts: root’s IP address, and the port number of root multicast
channel. Second. we add some packet formats to adapt to the
modifications in topology. The detailed packet formats used are described

in the next section.



4.2.2. Common Structure and Classes.

MTL reflects some common characteristics of transport protocols. We
derive our implementation from the MTL classes to achieve the features

providing by MTL.

Some classes in our implementation directly derive from MTL classes.

The basic structure of our implementation is same as the User/Daemon

model in MTL.

There are four types of node in this implementation: Sender. Service node
in the Mesh (MN), Service node (SN), Receiver. The functionality of
these node types is discussed in Chapter 3. The design details will be
given in the next section. Here, we just discuss the general structure and

class division of those node types.

Every node in this implementation has a daemon process derived from
the MTL daemon process. The class definition of our daemon and is

shown below:

class TACDaemon : public mtldaemon
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private:

int Node_Type;

public:
time_t start_t;

TAC_SESSION_ID d_sid[MAX_SES_NUM]:

TACDaemon();
TACDaemon(int protocol _num);

~TACDaemon();

int parse_args(int arge, char®* argv);

int init_daemon(int protocol_num, char* req_addr);
req_action dispatch_request(user_request* request,
req_addr_struct* user_addr);

int change_node_type(int new_type);

The daemon process has a private integer member variable, Node Type,
which indicates the node type of the application running on the host. This

variable is set when the daemon process is initialized. A public function,
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int change _node_type(int new_type), can change the node type value only
it a receiver node is selected as a new local SN in the SN election. The
start_t is variable used to store the beginning timestamp of the daemon
process. The integer array _sid is a multicast session ID list that the node
joined. The structure TAC_SESSION _ID has two fields: a 64 bits structure
SESSION _ID variable Session_ID in which the multicast session ID is
represented, and a character roor indicating if it is the root node of a
session. The structure SESSION_ID has two fields: a four byte IP address
and a 2 byte UDP port number. There are three implementations of virtual
functions defined in mtidaemon class. The function parse_args parses
command arguments and initializes the daemon according  the
arguments. We ask the user to specify the node type in the command line.
The function init_daemon initializes the dacmon process after the daemon

object is constructed.

The TACContext_manager is derived from context_manager. The

following is the TACContext_manager class definition.

class TACContext_manager : public context_manager {
public:

Forwarding_Table* mn_forw_table[MESHS N_NUM];

*



TACContext_manager(word32 num_contexts);

~TACContext_manager();

init_context(user_request* request, req_addr_struct* user_addr);
int release(word64 key);
void handle_new_packet(packet* pkt);

word32 satisfy();

/I quiescent_routine function which was introduced by yjiang

void quiescent_routine(TACContext * ¢);

TACContext* search_context_list(short16 context_port) :

The public mn_forw_table is the forwarding table. if the node is an MN.
This forwarding table is set up when an MN start up. The structure

includes a destination node address and a next_hop address.

The constructor instantiates a new context manager object with a number
(num_contexts) of contexts. The function (nit_context initializes a context
and binds it to a socket with a fixed port number. The function release

releases contexts when the user terminates a context. The function
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handle_new packet steers an incoming packet to proper context. If a
child sends service node a BindRequest message to join a new session,
the context_manager will initialize a new SN context and register this
session in the daemon process’s session list. The function
search_context_list is used to find a context with a specific port number
in the context list managed by the context manager. The function
quiescent_routine is an implementation of a virtual function introduced
by Jiang Yonglin in context_manager class. The function is called when a

context is inactive and a specific event times out.

Each context corresponds to a receiver, a service node (SN). a Mesh node

(MN). or a Sender. The class definition is:

class TACContext : public context {

friend class TACContext_manager;

private:

void unblock_user();

public:
TACState_machine* c¢_state_machine:

9
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TAC_NODE_TYPE NodeType;
udp_del_srv* delsrv;

udp_dds_address* ¢_addr:;

TACSender* sender;
TACReceiver* receiver:;
TACSN* service_node;
TACMN* mesh_node;

cctimer® ¢_timer;

/I Constructor/Destructor
TACContext();

virtual ~TACContext():

int process_packet():

int send(user_request* request);

int receive(user_request* request):
packet_fifo* send_fifo() { return c_snd_fifo;}

packet_fifo* recv_fifo() { return c_rcv_fifo;}

// Implementation of virtuals

int is_quiescent();



void go_quiescent ();
int initialize(user_request* request);
int bind();

short16 set_port(short16 n_port);

// Functions to handle the timeout and routine
void handle_timeout(word32 ttype);

void routine();

1l Misc
void log_status();

¥

A variable ¢_state_machine points to a state machine object that records
the current protocol-specific state of the context. The variable NodeTvpe
specifies the node type of the context. TAC _NODE TYPE is an
enumerated type given names of node types. There are some pointers to
some node objects. The application will initialize a node object and make
one of the context’s pointers to point to this node object. Each context has

a cctimer object for timing some events.

Function unblock_user activates a blocked user requesting service from
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this context. Functions send sends packets via the data delivery service
object delsrv, and recv extracts incoming packets from delsrv. Function
process_packet processes incoming packets and delivers the packets to
node object. Function send fifo and recv _fifo return pointers to the
sending packet FIFO queue ¢ snd fifo and the receiving packet FIFO
queue c_rev_fifo. Implementations of MTL context virtual function
is_quiescent and go_quiescent check and set context blocking state.
Function initialize initializes class member variables and initial states of
the context. Function bind binds the context with a socket. Function
ser_port sets the socket port number. Function handle_timeout handles a
time out event. sets the proper state of the context, and calls the proper
functions to process it. Function routine is the idle function. which is
called when a context is waiting for some event. Function log_status is a

miscellaneous function recording events in a log file.

The user interface class is the user’s access point to the protocol services.

The following is the class definition:

class TACIf: public mtlif {
public:
~TACIf();
TACif();
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int reg(int req);
int release(int no_answer);
void perror(int res, char* usr_msg);

void init_req(user_request* command);

//1PC routines.
int issue(regbuf* req);
int accept(reqbuf* req);

int inform(regbuf * req);

Function reg builds a user request with REGISTER command value and
sends it to the daemon process. The user register request will make the
daemon process initialize a context for this user and put the context in the
active context list. Function release releases the context that provides
services to the user. Function perror takes the result code returned from
the context and prints out the standard error textual meaning of the result.
Function (nit_req builds a user request in a standard user request format
according to the user command. There are three [PC facility functions:
issue, accept, and inform. The user’s requests are issued using function

issue. The request requires a response from the daemon, so issue waits

108



until the daemon responds with the result of the request. The issue
rewrites the user request req with the results of the request. The inform
method tells the daemon of some changes with user, but does not require
a response, so this call does not block. Function accept is used when
more than one response is required by an issue call. The accept call

blocks until the daemon sends back a response.

4.2.3. State Representations and function description

There are four kinds of Node types in this implementation: Service Node
on the mesh (MN), Service Node (SN). Receiver (RN). and Sender. The
basic functions of each kind of node are described in Section 2.2. The
State Representations and detailed function descriptions of each node

type are given in this section.

4.2.3.1. The Service Node in the mesh (MN).

Because the static method is used to build the mesh, the MN sets up the
forwarding table by accessing a specific file when it starts up. Each MN
maintains a child list for each session. The state representation of MN is

shown in Figure 25.
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The state PO is the start state. At this moment, MN is waiting for an
incoming packet. If the incoming packet is a BindRequest packet, MN’s

state changes from PO to P1.

In state PI, if SN is the root, it sends BindConfirm or BindReject
message to the request node according to the fact that it can accept
another binding or not. If SN is not the root, there are two possible
conditions: it has been on the tree already and can accept more children, it
sends BindConfirm message to the request nodes. If the SN is not on the
trec yet and can accept another binding, it sends BindACK to the-
requesting node. Then it checks the torwarding table entry of the session
tree root, and sends BindRequest message to next hop node. It sets a
timer for this outgoing BindRequest packet. Its state changes to P2. If it
cannot accept another child, it sends BindReject to the requesting node
and changes its state to P1. If the BindRequest is received from a Sender,
the MN just sends a BindConfirm. if it can establish a multicast session;

otherwise it sends a BindReject message.

In state P2, if SN receives BindConfirm or BindReject message from the
next hop, MN’s state changes to state P3. If the timer times out. the MN
changes its state to Pl and sends BindRequest packet again. In state P3.

SN sends BindConfirm or BindReject message to requesting node
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according to the BindConfirm or BindReject message it received in P2. If
the binding is successful, it accepts the binding to request node and binds

itself to the next hop. It puts the requesting node into its child list. Then

P4

s 'HeartBeat

?SessionAnnouncement or 1SessionAnnouncement
or ?7Query
'BindConfirm, to the request
node, if binding is successful.
Or !BindReject, if binding is

unsuccessful.
< P3

?

PO

'‘BindConfirm, «f the
binding ts successful.

Or 'BindReject to the
request node. if binding is

unsuccessful.
Time out /_J

PI P2

'BindRequest o the
next hop.

TBindContirm
or BindReject
from the next
hop node.

TBindRequest

? =receive

' =send

Figure 25. State Representation of Mesh Node (MN).

MN’s state changes to state P1.

In state PO, if MN receives a Session Announcement from the Sender, it
sends this Session Announcement to its neighboring MNss. If it receives a

service node Query message from a SN, it responds to the Query message
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with a Heartbeat message. In PO, MN may periodically send Heartbeat
messages to all its children and neighboring MN, and wait for
Heartbeat_response messages from its children. This process is not shown

in Figure 25.

The class TACMN is a class providing MN services. The TACMN class

definition is shown below:

class TACMN {

friend class TACContext:

protected:
Children_List* childrcn(MAX_CH[LDREN__NUM|:
Children_List* ¢_head:;
int children_num;
packet_pool* pool;
TAC_SESSION_ID sid:
byte8 root;

Forwarding_Table* mn_forw_table:

public:
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udp_dds_address* parent;
byte8 bind;

byte8 treelevel;

TACMN();

~TACMN();

byte8 is_root();

int bind_to_tree(context* context);
int leave_tree():

int accept_child(context* context);

Children_List* search_children_list(udp_dds_address* child_addr):
int send_bindrequest(context* ctxt, udp_dds_address* mn_add);
int recv_bindrequest(context* ctxt);
int send_bindack(context* ctxt):
int recv_bindack(context* ctxt);
int send_bindconfirm(context* ctxt, udp_dds_address* child);
int recv_bindconfirm(context* ctxt);
int send_bindreject(context* ctxt, udp_dds_address* child, int

reason);
int recv_bindreject(context* ctxt);

int recv_query(context* ctxt);
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int recv_sessionannouncement(context* ctxt):

int send_sessionannouncement(context® ctxt. udp_dds_address*
mn_add);

int send_heartbeat(context* ctxt, udp_dds_address* rec);

int recv_heartbeat(context* ctxt);

int send_heartbeat_response(context* ctxt, dds_address* rec);

A

int recv_heartbeat_response (context* ctxt);

In this class. an MN maintains a child list, children. of Children List
structure. This list is a linked list. A Children_List structure includes three
fields: udp_dds_address child_addr, an 8 bit bind. and a 16 bit next. The
bind indicates when the child is accepted. The nexr is pointer to the next
child. The variable ¢_head is the head of this child list. The children_num
is the number of children. A MN object maintains a packet pool, pool.
The sid is the session number of the TACMN object. Each MN object
serves one session. A MN node can have multiple TACMN to serve
multiple sessions. The variable parent is the address of the parent node in
this session tree. The variable bind indicates whether the node is bound to
the tree. The variable treclevel is the node’s value of level in the tree. The
pointer mn_forw_table points to the forwarding table maintained in the

TACContext_manager object.
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The method bind_to_tree starts the process of binding to the session tree.
The MN object selects the next hop node for the destination and tries to
bind it. The method leave tree defines the process of leaving a session
tree. The method accepr_child is called, when a BindRequest message
arrives, to deal with the new request. The method search_children_list
returns a pointer to a child with a specific address in the child list. The
send_bindrequest method sends a BindRequest to the selected possible
parent node. The recv_bindrequest receives the BindRequest packet from
a potential child node. When a BindRequest packet is received, the
send_bindrequest method analyzes the packet and changes the state of
MN. The state machine object ¢_state_machine defined in the context.
Other functions send or receive a kind of packet and change the MN state

according to Figure 25.

4.2.3.2. Sender.

At the beginning of session tree construction process, Sender should
locate the closest MN node in the mesh and try to bind to the MN. In this
implementation, the sender tries to bind to a pre-assigned MN. Then the
Sender sends a bind request to the selected MN and waits for the bind

confirmation from the closest service node on the mesh. After being
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accepted by the MN, Sender sets the MN as the root of the session tree,
and sends Session Announcement packet to the root. The Session
Announcement should contain the Multicast address, session ID, the
Sender’s address, any specific port numbers to be used, and any global

information useful for tree construction.

THeartheat THeartbeat _response
o8

Figure 26. State Representation of Sender node.

In the state representation in Figure 26, state PO is the start state. In state
PO, Sender sends a BindRequest message to selected MN, waits for the

response, and changes the state to P1.
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In state PI. if Sender receives a BindConfirm message, it sets the MN as
the root of the session tree and changes its state to P2. If Sender receives
a BindReject or times out, it changes its state to Pl and tries to bind to

another MN.

In state P2, Sender sends SessionAnnoucement message to the root of the
session tree. The root will send the session announcement to all MNSs.
Then Sender changes its state to P3. Now, the Sender is bound to the tree
and ready to multicast data packet. Sender sends data packet to the tree

and receives ACK from the root, which are not shown in Figure 26.

In P3, if Sender receives a Heartbeat packet from the root, it changes its

state to P4. In P4, it sends Heartbeat_response packet to the root.

The class TACSender is the class providing Sender’s service. The class

definition is:

class TACSender {

friend class TACContext;

protected:
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packet_pool* pool;

TAC_SESSION_ID sid:;

public:
udp_dds_address* root:

byte8 bind;

TACSender();

~TACSender ();

int bind_to_tree(context* context);

int leave_tree();

int send_bindrequest(context* ctxt. udp_dds_address* mn_add):

int recv_bindconfirm(context* cixt);

int recv_bindreject(context* ctxt):

int send_sessionannouncement(conlext* ctxt, udp_dds_address*
mn_add);

int recv_heartbeat(context* ctxt);

int send_heartbeat_response(context* ctxt, dds_address* rec);

The meanings of variable sid and pool are the same as in the TACMN
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class. The variable root is address of the root. The variable bind indicates

whether the Sender is bound to the root.

The method bind_to_tree defines the process of binding to the root. When
a Sender finishes its session, it calls leave_tree to terminate the session.
Other methods send or receive packets, and change Sender’s state

appropriately.

4.2.3.3. Service Node (Group Manager or local router)

The Service Node (Group Manager or Local Router) can accept a limited
number of children, SNs or receivers. The state representation is shown in

Figure 27.

PO is the start state in the state representation. In state PO, if this SN
receives a bind request from a node. another SN or receiver, then it

changes its state to P1.

In state P1, if the SN is already on the tree, it should respond to this
message by sending a BindConfirm or a BindRe ject message according to
the fact that it can accept another child or not, and then it changes its

states to PO. If the SN is not on the tree, it should try to bind to the tree
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before accepting any child, send BindACK to the requesting node, and

MQuery 'Heartbeat

'BindConfirm
THeartbeat

P6

! Heartbeat_response

-
'BindConfirm, ’BindContirm

or 'BindReject .
MBindRequest

H BindACK
NG/ s o)
Timer tmes out

for several times,
or "BindReject

'BindACK

'BindRequest | liime out

time out

?Heartbeat

Figure 27. State Representation of Service Node (SN).

change its state to P2.

In state P2, SN uses the traceroute method, which is discussed in section
3.2.4, to find some potential parent nodes. Then SN sends Query
messages to these potential parent roots and changes its state to P3.
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[n state P3, if the SN receives Heartbeat messages from other nodes as the
response to Query, it changes its state to P4. If timer times out, the SN
changes its state to P2 and send a Query message again. If timer times out
fora MAX_TIMEOUT times, SN changes its state to P2 and tries to bind

to another node.

In state P4, the SN chooses the closest neighbor, and then tries to bind to
the chosen one by sending a BindRequest message, and then it changes

its state to PS.

In state PS. it it receives the BindConfirm from the chosen node, SN sets
the chosen node as its parent SN. and changes its state to P6. Now, it can
accept the binding request from other nodes by sending BindConfirm to
all requesting nodes. If timer times out, SN changes its state to P4 and
sends a BindRequest. If timer times out for a MAX_TIMEOUT times or
SN receives a BindReject message, SN changes its state to P2 and tries to
bind to another node. If SN receives a BindACK message, it remains in

its state until a new event occurs.

In state P6, SN sends BindConfirm messages to all nodes that request to

bind to it, and puts these nodes in its child list.
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[n state PO, if SN receives a Query message from an SN, it responds with
a Heartbeat message. The SN should respond to other SN’s Query
message, if it can accept another child. This function is important to build
the sub-tree for multicast. If receiving a Heartbeat from its parent, it

responds with a Heartbeat_response message if necessary.

In PO, SN may periodically send Heartbeat messages to all its children,
and wait for Heartbeat_response messages from its children. This process

1s not shown in Figure 27.

The TACSN is the class that defines the SN node. The class definitions

are shown in below:

class TACSN {

friend class TACContext;

protected:
Children_List* children[MAX_CHILDREN_NUM];
Children_List* ¢_head:

int children_num:;



packet_pool* pool;

TAC_SESSION_ID sid;

public:
udp_dds_address* parent:
byte8 bind;

byte8 treelevel,

TACSN(Q);

~TACSN(Q);

int bind_to_tree(context* context);

int leave_tree();

int accept_child(context* context);

int send_bindrequest(context* ctxt);

int recv_bindrequest(context* ctxt);

int send_bindconfirm(context* cixt, udp_dds_address* child);

int recv_bindconfirm(context* ctxt);

int send_bindreject(context* ctxt, udp_dds_address* child, int
reason);

int recv_bindreject(context* ctxt);

int send_bindack(context* ctxt, udp_dds_address* child, int
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reason);
int recv_bindack(context* ctxt);
int send_query(context* ctxt);
int recv_query(context* ctxt);
int send_heartbeat(context* ctxt);
int recv_heartbeat(context* ctxt);
int send_heartbeat_response(context* ctxt, dds_address* rec);
int recv_heartbeat_response (context* ctxt):

int traceroute();

Most of member variables and methods have the same meaning as in
class TACMN, except for traceroute method. which is used to find all
intermediate routers on the path trom this SN to the root of the multicast

session tree.

4.2.3.4. Receiver.

The receiver initiates a BindRequest to the session tree. If local router can
be Service Node and is not on the session tree yet, it should join the tree
before accepting the child, as in the state representation shown above. If

the local router cannot be a Service Node, receivers on the LAN should
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elect one of themselves as the Group Manager. The group manager

becomes a Service Node first, joins the session tree, and then accepts

7SNElect 'Heartbeat

Heartbeat ISNConfirm

P6 A\P'o P4
!Heartbeat_response

?BindConfirm,
?BindReject.

or time out.

'BindRequest Miecartbeat

"BindACK Pl

Time ou

Timer times out -
. . ISNElect
for several times.

Figure 28. State Representation of Receiver Node.

other receivers as children.

In the state representation in Figure 28, PO is the start state. A Receiver
gets multicast session information by some out-of-band mechanism and
broadcasts BindRequest on LAN in state PO. Then it changes state to P1.

In state P1, if this receiver gets a BindContfirm message, it binds to the
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SN. It sets parent node address and tree level value, and its state goes
back to PO. It it receives BindReject message, the binding has failed. If it
receives BindACK, it stays in state Pl and waits for the next event. If
time out, it goes back to state PO and resend BindRequest message. If the
timer times out for MAX_TIMEOUT times, Receiver can be sure there is

no SN on this LAN, and Receiver changes its state to P2.

In state P2, it broadcasts a SNElect message on the LAN to initiates a SN
election, and goes to state P3. Any nodes on the LAN that receives this
message should reply with a Heartbeat message to the node that initiates

the election.

In state P3, if the Receiver receives one or more Heartbeat messages, it
changes its state to P4. If time out, Receiver goes back to P2 and resends
SNElect message for at most MAX_TIMEOUT times. [f it does not
receive any response at all, it makes itself an SN, terminates the Receiver

object, and initiates a SN object.

In state P4, it chooses a node as the new SN, broadcasts the result in an

SNConfirm message, and goes to state PO.

In PO, the Receiver should respond to the Heartbeat message received
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from the parent with a Heartbeat_response message. and respond to the

SNElect message with a Heartbeat message.

Also, receiver receives SNConfirm in state PO. If it is not the new SN, it
sends BindRequest to join desired multicast sessions. If it is the new SN

"

it terminates the Receiver object, and initiates a SN object.

The class TACReceiver defines the services that a receiver can provide.

The class definition is:

class TACReceiver {

friend class TACContext:

protected:
TAC_SESSION_ID sid:;
packet_pool* pool;

udp_dds_address* parent;

public:
byte8 bind:

byte8 treelevel;



TACReceiver();

~TACReceiver();

int bind_to_tree(context* ctxt, user_request® request);
int leaver_tree();

int elect_sn(context* context, user_request™® request);
int send_bindrequest(context* ctxt);

int recv_bindconfirm(context* ctxt):

tnt recv_bindreject(context* ctxt);

int recv_bindack(context* ctxt):

int send_heartbeat(context® ctxt):

int recv_heartbeat(context* ctxt);

int send_heartbeat_response(context® ctxt. dds_address* rec);
int send_snelect(context* ctxt);

int recv_snelect(context* ctxt);

int send_snconfirm(context* ctxt):

int recv_snconfirm(context* ctxt);

Most of member variables and methods have the similar meaning with

those in class TACSN. The method elect_sn defines the process of SN
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election. The method send snelect broadcasts SNElect message on the

LAN. and recv_elect receives SNElect from the LAN.

4.2.4. Packet Formats.

There are several packet formats in this implementation: BindRequest,
BindConfirm, BindACK, BindReject, LeaveRequest, LeaveConfirm,
Query, Heartbeat, HeartbeatResponse, SNElect, and SNConfirm. In these
packet formats. BindRequest., BindConfirm. BindACK. BindReject,
LeaveRequest, [.eaveContirm, LeaveRequest, LeaveConfirm. Heartbeat.
and HeartbeatResponse are defined in RMTP-II specification. Because
the tree auto-configuration algorithm introduces some new process, three

new packet formats are introduced: Query, SNElect, and SNConfirm.

4.2.4.1. Packet Header.

All kinds of packet have a fixed header:

ol 1] 2 3'4]56]70]ll2[3f4[5]6|!70[1[2]3[4[5[6[2 0[1[2[3[4[5[6%/
VER | Num | Res TYPE 3 Session ID

Session ID

Data or Optional Fields

Table 1. Packet Header.
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VER:  Specifies the version number of the protocol, the first field to be

checked by a receiver

Num: a number that specifies the number of options present in this

packet. If no options are present, then this field is set to 0.

TYPE: Packet type.

Value  Meaning

0 Reserved
i Data
2 Retransmission
3 ACK
4 BindRequest
S BindAck
6 BindConfirm
7 LeaveRequest
8 Heartbeat
9 NuflData
10 BindReject
i1 EOS
12 HeartbeatResponse
13 LeaveConfirm
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14 Query

15 SNElect

16 SNConfirm

17-255 Reserved for Future Use.
Some of these packet types are not used in this algorithm.
Session ID: Tree ID is a six-byte identifier of the RMTP-II tree.
Currently Tree ID consists of the four bytes [P address and a two bytes

UDP port of the top node.

4.2.4.2. BindRequest.

BindRequest packet can be used to Join a session. The packet format is

shown below.

()[T[E[ij#[s[g[o? 0 i[zh[i[%jcjb o[ {214 4]56 [27 ol 2] ] 4] 56 [37
Orig. TTL R Res Role Res ]
Sequence No

Table 2. BindRequest packet.

Orig. TTL: This is the original TTL sent from the originator. This
field allows receiving node to assess roughly the distance from the

source.

R: This flag is set to 1 to indicate a rejoin request.
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Role: This specifies the role of the Joining node in the Session tree.

Sequence No: This is the number of times the same request has been

sent.

4.2.4.3. Bind Confirm.

BindConfirm packet is sent from a parent node to a child, when the parent

accepts the child.

o[ N -
NEEERERER 2l fafslo[70ld2]4]6]70][2]] 4367
;_ ___ Childindex _Role Cl R HB_TTL i
L ___ Sequence No. Parent’s Tree Level | Overhear ]

Table 3. BindConfirm packet.

Child Index:  This is the index of the child node in its parent’s child list.
Role: This identifies or acknowledges the role of the parent.

C:.  This flag is set to I, if the parent accepts the child. or to O if the
parent rejects the child.

R:  This flag is set to I to indicate confirmation for a Rejoin packet.
HB_TTL: This is the time-to-live for the Heartbeat packet.

Sequence No.: This is the sequence number of the BindRequest packet.

Parent’s Tree Level: The level number for the parent node in the session

tree.
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Overhead: This is the response constant that specifies the number of

HACKSs that the answering parent expects for each Data packet.

4.2.4.4. BindACK.

BindACK packet is sent to a child, if the parent needs to process its bind

request.

;_,

l

Qrig: TTL - Res o _ Sequence No.

l 0 2 3
NIBERNERERNLIR, R NRENERENIBERE! (Jjj
|

HB_TTL

Parent’s Tree Level f Res i

Table 4. BindACK packet.

Orig. TTL. This is the original TTL sent from the originator. This
ficld allows a receiving node to roughly assess the distance from the
source.

Sequence No.: This indicates how many times the same packet has been
sent.

HB_TTL: This is the time-to-live for the Heartbeat packet.

Parent’s Tree Level: The level number for the parent node in the session

tree.

4.2.4.5. BindReject.
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BindReject packet:

OEBEOEREOBEEEOE DN N OLOLEEEEE
Sequence No Reason code

Table 5. BindReject packet.
Sequence No.:  This is the sequence number of the BindRequest packet.

Reason Code: This code indicates the reason for sending the reject

packet
4.2.4.6. LeaveRequest.

A child sends LeaveRequest packet to its parent. if it wants to leave the

session tree.

ONBEEEDEONREBEDENTEE BEDL T EE 4Lsﬁﬁj

Orig. TTL Sequence No Role R
.. Child index

Table 6. LeaveRequest packet.
Orig. TTL: This is the original time-to-live sent from the originator.

Sequence no.: This indicates how many times the same packet has been

sent.

Role: This is the role of the node sending the leave packet.

Child Index: This is the index of the child node in its parent’s child list.

134




4.2.4.7. LeaveConfirm.

LeaveConfirm packet:

r-

l

. 0]
ol 2] 3 4[J6[7

[45]d7

2
o1 [F3[45]d7

NERERLE

Sequence No.

o[1]93
R

S

Child index

Table 7. LeaveConfirm packet.

Sequence no.: This is the sequence number of the LeaveRequest packet.

Child Index: This is the index of the child node in its parent’s child list.

4.2.4.8. Query.

Query packet is sent when a node measures the distance to a service node.

0

of 2] a[ 6] 7
Orig. TTL

IEREECT

Sequence No

FOEHEREE

Role

MENEBLE

Res

Table 8. Query packet.

Orig. TTL: This is the original time-to-live sent from the originator.

Sequence No: This indicates how many times the same packet has been

sent.

Role: This specifies the role of the Joining node in the Session tree.

4.2.4.9. Heartbeat.
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Heartbeat packet:

D BENEOE NP EDEGEOTEERE OO EEE L
Role N Node port

Node address

Role:

Table 9. Heartbeat packet.

This specifies the role of the node in the Session tree.

N:  This flag is set to | to indicate that the node must respond

immediately.
Node Address:

Node Port:

This is the [P address of the node.

4.2.4.10. HeartbeatResponse.

This is the UDP port number of the Node.

0

2

ol L 2] 4[5 6]7

0] 1]

2] *l 4L5[ 6[

ol 2]4]6]7

Role

Role:

Child Index:

4.2.4.11. SNElect.

. Child mdu
Table 10. H&ll‘tdetRCSp()nﬁc

This specities the role of the node in the Session tree.

This is the index of the child node in its parent’s child list.

o] 2] 4] 5!7»T5

ANEs

2[ 3 4] 5l6[7

2
o[ 12] 34 6[7

o[ [ 2] 4 4] 6 ]37

Orig. TTL

Sequence No.

Node

port

Node address
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Table 11. SNElect packet.
Orig. TTL: This is the original time-to-live sent from the originator.
Sequence No: This indicates how many times the same packet has been
sent.
Node Address: This is the IP address of the node.

Node Port:  This is the UDP port number of the Node.

4.2.4.12. SNConfirm:

0 | 2 3
Si a3l 56l Tl 2|34l sl 6] 7 0] 2[5 s 5670 2054567

Sequence No. L Res. SN port
SN address

Table 12. SNConfirm packet.

Sequence No: This indicates how many times the same packet has been
sent.
SN Address:  This is the IP address of the new SN.

SN Port:  This is the UDP port number of the SN.
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Chapter 5 Conclusion.

In this chapter, a concluding overview of Tree Auto-Configuration is
given, summing up its technical and theoretical background. Furthermore,

an outlook for future development is provided.

5.1. Summary.

To provide multicast communication in a modern network, several
multicast protocols have been developed and deployed. such as DVRMP,
PIM-DM, and PIM-SM. Many multicast transport protocols have been
proposed. The Reliable Multicast Transport protocol is a hierarchical
multicast transport protocol for IP multicast that provides reliable data
transmission from a few senders to a large group of receivers. This thesis
proposes and implements a Tree Auto-Configuration algorithm for
RMTP-IL. This algorithm has been left out from RMTP-II, due to its

complexity.

This algorithm generates a tree topology used for a tree based multicast
protocol. This algorithm is motivated by and concemed with the
requirements of the tree-based acknowledgement (TRACK) multicast
protocol, and can be extended to provide reliable multicast transport and

management. The generated hierarchical tree topology is comprised of
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multiple sender nodes, a Mesh, multiple local multicast groups. The Mesh
is the infrastructure of the multicast communication and is comprised of
multiple pre-deployed service nodes. Local multicast groups are local
units of the multicast communication and are comprised of a local service
node and multiple receivers. The local groups are connected to the Mesh
directly or indirectly. Senders are the data sources and directly connected
to the Mesh. The algorithm provides a standard process to build the
proposed topology. This process includes several sub-processes: Mesh
construction, sender binding to the Mesh, local group constructions. local
groups binding to the Mesh, sub-tree on Mesh construction. A set of

different algorithms is used to fulfill the tasks of these sub-processes.

With this algorithm, a prototype implementation is built to show its
feasibility and capability. This implementation is built based on the
Meta-Transport Library, MTL. which is a set of C++ base classes
designed to present an infrastructure for building transport protocols. We
build four kinds of nodes in this implementation: sender, service node on
the mesh, local service node. and receivers. These nodes are the

fundamental components of the multicast session tree.

5.2 Future work
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The most important component of the proposed topology in the algorithm
is the Mesh. It is the multicast communication infrastructure on which the

multicast management can be carried.

We can build a software framework on service nodes on the Mesh. The
software framework can support emerging requirements of all kinds of
multicast protocols, securing the multicast communication, and providing

reliable multicast transmissions for all kinds of applications.

As we discussed in section 2.2.1.1, the Mesh has intra-domain and
inter-domain capability. All protocols can use this feature and run on it.
Multicast membership management can be distributed all around the
Mesh. Distributed intelligence to manage multicast protocol can provide
flexibility for all kinds of multicast protocol. Mesh can carry data stream

and decrease routing algorithm complexity.

The Mesh can also be the infrastructure of multicast security management.
The membership authentication system distributed on Mesh can avoid
non-authorized people listening to the multicast channel. Additional
priority mechanism can avoid a problem that any user can start their

multicast session and send data in multicast channel. so called “anycast”.



The congestion control and quality of service (QoS) algorithm can be
added to the Mesh to fit requirement of diftferent applications. Mesh
nodes can cache the data packet to provide error recovery capability. This

can make multicast more reliable and efficient.
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